
www.allitebooks.com

http://www.allitebooks.org

Learning Big Data with
Amazon Elastic MapReduce

Easily learn, build, and execute real-world Big Data
solutions using Hadoop and AWS EMR

Amarkant Singh

Vijay Rayapati

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Learning Big Data with Amazon Elastic MapReduce

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: October 2014

Production reference: 1241014

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78217-343-4

www.packtpub.com

Cover image by Pratyush Mohanta (tysoncinematics@gmail.com)

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

Credits

Authors
Amarkant Singh

Vijay Rayapati

Reviewers
Venkat Addala

Vijay Raajaa G.S

Gaurav Kumar

Commissioning Editor
Ashwin Nair

Acquisition Editor
Richard Brookes-Bland

Content Development Editor
Sumeet Sawant

Technical Editors
Mrunal M. Chavan

Gaurav Thingalaya

Copy Editors
Roshni Banerjee

Relin Hedly

Project Coordinator
Judie Jose

Proofreaders
Paul Hindle

Bernadette Watkins

Indexers
Mariammal Chettiyar

Monica Ajmera Mehta

Rekha Nair

Tejal Soni

Graphics
Sheetal Aute

Ronak Dhruv

Disha Haria

Abhinash Sahu

Production Coordinators
Aparna Bhagat

Manu Joseph

Nitesh Thakur

Cover Work
Aparna Bhagat

www.allitebooks.com

http://www.allitebooks.org

About the Authors

Amarkant Singh is a Big Data specialist. Being one of the initial users of Amazon
Elastic MapReduce, he has used it extensively to build and deploy many Big Data
solutions. He has been working with Apache Hadoop and EMR for almost 4 years
now. He is also a certified AWS Solutions Architect. As an engineer, he has designed
and developed enterprise applications of various scales. He is currently leading the
product development team at one of the most happening cloud-based enterprises in
the Asia-Pacific region. He is also an all-time top user on Stack Overflow for EMR at
the time of writing this book. He blogs at http://www.bigdataspeak.com/ and is
active on Twitter as @singh_amarkant.

Vijay Rayapati is the CEO of Minjar Cloud Solutions Pvt. Ltd., one of the leading
providers of cloud and Big Data solutions on public cloud platforms. He has over
10 years of experience in building business rule engines, data analytics platforms,
and real-time analysis systems used by many leading enterprises across the world,
including Fortune 500 businesses. He has worked on various technologies such as
LISP, .NET, Java, Python, and many NoSQL databases. He has rearchitected and led
the initial development of a large-scale location intelligence and analytics platform
using Hadoop and AWS EMR. He has worked with many ad networks, e-commerce,
financial, and retail companies to help them design, implement, and scale their data
analysis and BI platforms on the AWS Cloud. He is passionate about open source
software, large-scale systems, and performance engineering. He is active on Twitter
as @amnigos, he blogs at amnigos.com, and his GitHub profile is https://github.
com/amnigos.

www.allitebooks.com

http://www.bigdataspeak.com/
amnigos.com
https://github.com/amnigos
https://github.com/amnigos
http://www.allitebooks.org

Acknowledgments

We would like to extend our gratitude to Udit Bhatia and Kartikeya Sinha from
Minjar's Big Data team for their valuable feedback and support. We would also
like to thank the reviewers and the Packt Publishing team for their guidance in
improving our content.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Venkat Addala has been involved in research in the area of Computational
Biology and Big Data Genomics for the past several years. Currently, he is working
as a Computational Biologist in Positive Bioscience, Mumbai, India, which provides
clinical DNA sequencing services (it is the first company to provide clinical DNA
sequencing services in India). He understands Biology in terms of computers and
solves the complex puzzle of the human genome Big Data analysis using Amazon
Cloud. He is a certified MongoDB developer and has good knowledge of Shell,
Python, and R. His passion lies in decoding the human genome into computer
codecs. His areas of focus are cloud computing, HPC, mathematical modeling,
machine learning, and natural language processing. His passion for computers
and genomics keeps him going.

Vijay Raajaa G.S leads the Big Data / semantic-based knowledge discovery
research with the Mu Sigma's Innovation & Development group. He previously
worked with the BSS R&D division at Nokia Networks and interned with Ericsson
Research Labs. He had architected and built a feedback-based sentiment engine and
a scalable in-memory-based solution for a telecom analytics suite. He is passionate
about Big Data, machine learning, Semantic Web, and natural language processing.
He has an immense fascination for open source projects. He is currently researching on
building a semantic-based personal assistant system using a multiagent framework. He
holds a patent on churn prediction using the graph model and has authored a white
paper that was presented at a conference on Advanced Data Mining and Applications.
He can be connected at https://www.linkedin.com/in/gsvijayraajaa.

www.allitebooks.com

https://www.linkedin.com/in/gsvijayraajaa
http://www.allitebooks.org

Gaurav Kumar has been working professionally since 2010 to provide solutions
for distributed systems by using open source / Big Data technologies. He has
hands-on experience in Hadoop, Pig, Hive, Flume, Sqoop, and NoSQLs such as
Cassandra and MongoDB. He possesses knowledge of cloud technologies and
has production experience of AWS.

His area of expertise includes developing large-scale distributed systems to analyze
big sets of data. He has also worked on predictive analysis models and machine
learning. He architected a solution to perform clickstream analysis for Tradus.com.
He also played an instrumental role in providing distributed searching capabilities
using Solr for GulfNews.com (one of UAE's most-viewed newspaper websites).

Learning new languages is not a barrier for Gaurav. He is particularly proficient
in Java and Python, as well as frameworks such as Struts and Django. He has
always been fascinated by the open source world and constantly gives back to the
community on GitHub. He can be contacted at https://www.linkedin.com/in/
gauravkumar37 or on his blog at http://technoturd.wordpress.com. You can
also follow him on Twitter @_gauravkr.

www.allitebooks.com

Tradus.com
GulfNews.com
https://www.linkedin.com/in/gauravkumar37
https://www.linkedin.com/in/gauravkumar37
http://technoturd.wordpress.com
http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers, and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print and bookmark content
• On demand and accessible via web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

Instant updates on new Packt books
Get notified! Find out when new books are published by following @PacktEnterprise on
Twitter, or the Packt Enterprise Facebook page.

www.allitebooks.com

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
http://PacktLib.PacktPub.com
www.PacktPub.com
http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

I would like to dedicate this work, with love, to my parents Krishna Jiwan Singh and Sheela
Singh, who taught me that in order to make dreams become a reality, it takes determination,

dedication, and self-discipline. Thank you Mummy and Papaji.

Amarkant Singh

To my beloved parents, Laxmi Rayapati and Somaraju Rayapati, for their constant support
and belief in me while I took all those risks.

I would like to thank my sister Sujata, my wife Sowjanya, and my brother Ravi Kumar
for their guidance and criticism that made me a better person.

Vijay Rayapati

Table of Contents
Preface 1
Chapter 1: Amazon Web Services 9

What is Amazon Web Services? 9
Structure and Design 10

Regions 11
Availability Zones 12

Services provided by AWS 14
Compute 14

Amazon EC2 14
Auto Scaling 15
Elastic Load Balancing 15
Amazon Workspaces 15

Storage 16
Amazon S3 16
Amazon EBS 16
Amazon Glacier 16
AWS Storage Gateway 17
AWS Import/Export 17

Databases 17
Amazon RDS 17
Amazon DynamoDB 18
Amazon Redshift 18
Amazon ElastiCache 19

Networking and CDN 19
Amazon VPC 19
Amazon Route 53 20
Amazon CloudFront 20
AWS Direct Connect 20

Analytics 20
Amazon EMR 20
Amazon Kinesis 21
AWS Data Pipeline 21

Table of Contents

[ii]

Application services 21
Amazon CloudSearch (Beta) 21
Amazon SQS 21
Amazon SNS 21
Amazon SES 22
Amazon AppStream 22
Amazon Elastic Transcoder 22
Amazon SWF 22

Deployment and Management 22
AWS Identity and Access Management 22
Amazon CloudWatch 22
AWS Elastic Beanstalk 23
AWS CloudFormation 23
AWS OpsWorks 23
AWS CloudHSM 23
AWS CloudTrail 23

AWS Pricing 23
Creating an account on AWS 24

Step 1 – Creating an Amazon.com account 25
Step 2 – Providing a payment method 25
Step 3 – Identity verification by telephone 25
Step 4 – Selecting the AWS support plan 26

Launching the AWS management console 26
Getting started with Amazon EC2 27

How to start a machine on AWS? 27
Step 1 – Choosing an Amazon Machine Image 27
Step 2 – Choosing an instance type 27
Step 3 – Configuring instance details 28
Step 4 – Adding storage 28
Step 5 – Tagging your instance 28
Step 6 – Configuring a security group 29

Communicating with the launched instance 30
EC2 instance types 31

General purpose 31
Memory optimized 32
Compute optimized 32

Getting started with Amazon S3 33
Creating a S3 bucket 33

Bucket naming 33
S3cmd 34

Summary 35
Chapter 2: MapReduce 37

The map function 38
The reduce function 39

Divide and conquer 40

Table of Contents

[iii]

What is MapReduce? 40
The map reduce function models 41

The map function model 41
The reduce function model 42

Data life cycle in the MapReduce framework 42
Creation of input data splits 44

Record reader 44
Mapper 45
Combiner 45
Partitioner 47
Shuffle and sort 47
Reducer 48

Real-world examples and use cases of MapReduce 49
Social networks 50
Media and entertainment 50
E-commerce and websites 50
Fraud detection and financial analytics 51
Search engines and ad networks 51
ETL and data analytics 51

Software distributions built on the MapReduce framework 52
Apache Hadoop 52
MapR 53
Cloudera distribution 53

Summary 53
Chapter 3: Apache Hadoop 55

What is Apache Hadoop? 55
Hadoop modules 56
Hadoop Distributed File System 57

Major architectural goals of HDFS 57
Block replication and rack awareness 58
The HDFS architecture 60

NameNode 61
DataNode 62

Apache Hadoop MapReduce 62
Hadoop MapReduce 1.x 63

JobTracker 63
TaskTracker 64

Hadoop MapReduce 2.0 64
Hadoop YARN 64

Table of Contents

[iv]

Apache Hadoop as a platform 67
Apache Pig 68
Apache Hive 69

Summary 69
Chapter 4: Amazon EMR – Hadoop on Amazon Web Services 71

What is AWS EMR? 71
Features of EMR 72
Accessing Amazon EMR features 73
Programming on AWS EMR 73

The EMR architecture 75
Types of nodes 76
EMR Job Flow and Steps 77

Job Steps 77
An EMR cluster 80

Hadoop filesystem on EMR – S3 and HDFS 82
EMR use cases 82

Web log processing 83
Clickstream analysis 83
Product recommendation engine 83
Scientific simulations 83
Data transformations 83

Summary 84
Chapter 5: Programming Hadoop on Amazon EMR 85

Hello World in Hadoop 85
Development Environment Setup 85

Step 1 – Installing the Eclipse IDE 86
Step 2 – Downloading Hadoop 2.2.0 86
Step 3 – Unzipping Hadoop Distribution 86
Step 4 – Creating a new Java project in Eclipse 87
Step 5 – Adding dependencies to the project 87

Mapper implementation 89
Setup 90
Map 90
Cleanup 90
Run 91

Reducer implementation 96
Reduce 96
Run 96

Driver implementation 99
Building a JAR 104

Table of Contents

[v]

Executing the solution locally 105
Verifying the output 107

Summary 107
Chapter 6: Executing Hadoop Jobs on an Amazon EMR Cluster 109

Creating an EC2 key pair 109
Creating a S3 bucket for input data and JAR 111
How to launch an EMR cluster 113

Step 1 – Opening the Elastic MapReduce dashboard 113
Step 2 – Creating an EMR cluster 113
Step 3 – The cluster configuration 114
Step 4 – Tagging an EMR cluster 115
Step 5 – The software configuration 115
Step 6 – The hardware configuration 116

Network 116
EC2 availability zone 116
EC2 instance(s) configurations 116

Step 7 – Security and access 117
Step 8 – Adding Job Steps 118

Viewing results 122
Summary 123

Chapter 7: Amazon EMR – Cluster Management 125
EMR cluster management – different methods 125
EMR bootstrap actions 127

Configuring Hadoop 128
Configuring daemons 130
Run if 131
Memory-intensive configuration 132
Custom action 133

EMR cluster monitoring and troubleshooting 134
EMR cluster logging 134

Hadoop logs 134
Bootstrap action logs 135
Job Step logs 135
Cluster instance state logs 135

Connecting to the master node 135
Websites hosted on the master node 136

Creating an SSH tunnel to the master node 137
Configuring FoxyProxy 138

EMR cluster performance monitoring 141
Adding Ganglia to a cluster 142
EMR cluster debugging – console 143

Table of Contents

[vi]

EMR best practices 143
Data transfer 143
Data compression 144
Cluster size and instance type 144
Hadoop configuration and MapReduce tuning 144
Cost optimization 145

Summary 146
Chapter 8: Amazon EMR – Command-line Interface Client 147

EMR – CLI client installation 147
Step 1 – Installing Ruby 147
Step 2 – Installing and verifying RubyGems framework 148
Step 3 – Installing an EMR CLI client 149
Step 4 – Configuring AWS EMR credentials 149
Step 5 – SSH access setup and configuration 150
Step 6 – Verifying the EMR CLI installation 151

Launching and monitoring an EMR cluster using CLI 151
Launching an EMR cluster from command line 152

Adding Job Steps to the cluster 155
Listing and getting details of EMR clusters 156
Terminating an EMR cluster 159

Using spot instances with EMR 160
Summary 161

Chapter 9: Hadoop Streaming and Advanced
Hadoop Customizations 163

Hadoop streaming 163
How streaming works 164
Wordcount example with streaming 164

Mapper 164
Reducer 165

Streaming command options 166
Mandatory parameters 167
Optional parameters 167

Using a Java class name as mapper/reducer 168
Using generic command options with streaming 169
Customizing key-value splitting 169
Using Hadoop partitioner class 171
Using Hadoop comparator class 173

Adding streaming Job Step on EMR 174
Using the AWS management console 174
Using the CLI client 175

Launching a streaming cluster using the CLI client 176

Table of Contents

[vii]

Advanced Hadoop customizations 176
Custom partitioner 177

Using a custom partitioner 178
Custom sort comparator 178

Using custom sort comparator 179
Emitting results to multiple outputs 180

Using MultipleOutputs 180
Usage in the Driver class 180
Usage in the Reducer class 181
Emitting outputs in different directories based on key and value 182

Summary 183
Chapter 10: Use Case – Analyzing CloudFront Logs
Using Amazon EMR 185

Use case definition 185
The solution architecture 186
Creating the Hadoop Job Step 186

Inputs and required libraries 187
Input – CloudFront access logs 187
Input – IP to city/country mapping database 188
Required libraries 188

Driver class implementation 189
Mapper class implementation 192
Reducer class implementation 195
Testing the solution locally 197
Executing the solution on EMR 198

Output ingestion to a data store 199
Using a visualization tool – Tableau Desktop 199

Setting up Tableau Desktop 200
Creating a new worksheet and connecting to the data store 200
Creating a request count per country graph 202
Other possible graphs 204

Request count per HTTP status code 204
Request count per edge location 205
Bytes transferred per country 206

Summary 207
Index 209

Preface
It has been more than two decades since the Internet took the world by storm.
Digitization has been gradually performed across most of the systems around the
world, including the systems we have direct interfaces with, such as music, film,
telephone, news, and e-shopping among others. It also includes most of the banking
and government services systems.

We are generating enormous amount of digital data on a daily basis, which is
approximately 2.5 quintillion bytes of data. The speed of data generation has picked
up tremendously in the last few years, thanks to the spread of mobiles. Now, more
than 75 percent of the total world population owns a mobile phone, each one of them
generating digital data—not only when they connect to the Internet, but also when
they make a call or send an SMS.

Other than the common sources of data generation such as social posts on Twitter
and Facebook, digital pictures, videos, text messages, and thousands of daily news
articles in various languages across the globe, there are various other avenues that
are adding to the massive amount of data on a daily basis. Online e-commerce is
booming now, even in the developing countries. GPS is being used throughout the
world for navigation. Traffic situations are being predicted with better and better
accuracy with each passing day.

All sorts of businesses now have an online presence. Over time, they have collected
huge amount of data such as user data, usage data, and feedback data. Some of the
leading businesses are generating huge amount of these kinds of data within minutes
or hours. This data is what we nowadays very fondly like to call Big Data!

Technically speaking, any large and complex dataset for which it becomes difficult
to store and analyze this data using traditional database or filesystems is called
Big Data.

Preface

[2]

Processing of huge amounts of data in order to get useful information and actionable
business insights is becoming more and more lucrative. The industry was well aware
of the fruits of these huge data mines they had created. Finding out user behavior
towards one's products can be an important input to drive one's business. For example,
using historical data for cab bookings, it can be predicted (with good likelihood) where
in the city and at what time a cab should be parked for better hire rates.

However, there was only so much they could do with the existing technology and
infrastructure capabilities. Now, with the advances in distributed computing, problems
whose solutions weren't feasible with single machine processing capabilities were now
very much feasible. Various distributed algorithms came up that were designed to run
on a number of interconnected computers. One such algorithm was developed as a
platform by Doug Cutting and Mike Cafarella in 2005, named after Cutting's son's toy
elephant. It is now a top-level Apache project called Apache Hadoop.

Processing Big Data requires massively parallel processing executing in tens,
hundreds, or even thousands of clusters. Big enterprises such as Google and Apple
were able to set up data centers that enable them to leverage the massive power of
parallel computing, but smaller enterprises cannot even think of solving such Big
Data problems yet.

Then came cloud computing. Technically, it is synonymous to distributed computing.
Advances in commodity hardware, creation of simple cloud architectures, and
community-driven open source software now bring Big Data processing within
the reach of the smaller enterprises too. Processing Big Data is getting easier and
affordable even for start-ups, who can simply rent processing time in the cloud
instead of building their own server rooms.

Several players have emerged in the cloud computing arena. Leading among them
is Amazon Web Services (AWS). Launched in 2006, AWS now has an array of
software and platforms available for use as a service. One of them is Amazon Elastic
MapReduce (EMR), which lets you spin-off a cluster of required size, process data,
move the output to a data store, and then shut down the cluster. It's simple! Also,
you pay only for the time you have the cluster up and running. For less than $10,
one can process around 100 GB of data within an hour.

Advances in cloud computing and Big Data affect us more than we think. Many
obvious and common features have been possible due to these technological
enhancements in parallel computing. Recommended movies on Netflix, the Items for
you sections in e-commerce websites, or the People you may know sections, all of these
use Big Data solutions to bring these features to us.

Preface

[3]

With a bunch of very useful technologies at hand, the industry is now taking on its
data mines with all their energy to mine the user behavior and predict their future
actions. This enables businesses to provide their users with more personalized
experiences. By knowing what a user might be interested in, a business may approach
the user with a focused target—increasing the likelihood of a successful business.

As Big Data processing is becoming an integral part of IT processes throughout the
industry, we are trying to introduce this Big Data processing world to you.

What this book covers
Chapter 1, Amazon Web Services, details how to create an account with AWS and
navigate through the console, how to start/stop a machine on the cloud, and how
to connect and interact with it. A very brief overview of all the major AWS services
that are related to EMR, such as EC2, S3, and RDS, is also included.

Chapter 2, MapReduce, covers the introduction to the MapReduce paradigm of
programming. It also covers the basics of the MapReduce style of programming
along with the architectural data flow which happens in any MapReduce framework.

Chapter 3, Apache Hadoop, provides an introduction to Apache Hadoop among all the
distributions available, as this is the most commonly used distribution on EMR. It
also discusses the various components and modules of Apache Hadoop.

Chapter 4, Amazon EMR – Hadoop on Amazon Web Services, introduces the EMR service
and describes its benefits. Also, a few common use cases that are solved using EMR
are highlighted.

Chapter 5, Programming Hadoop on Amazon EMR, has the solution to the example
problem discussed in Chapter 2, MapReduce. The various parts of the code will be
explained using a simple problem which can be considered to be a Hello World
problem in Hadoop.

Chapter 6, Executing Hadoop Jobs on an Amazon EMR Cluster, lets the user to launch a
cluster on EMR, submit the wordcount job created in Chapter 3, Apache Hadoop, and
download and view the results. There are various ways to execute jobs on Amazon
EMR, and this chapter explains them with examples.

Chapter 7, Amazon EMR – Cluster Management, explains how to manage the life
cycle of a cluster on an Amazon EMR. Also, the various ways available to do so
are discussed separately. Planning and troubleshooting a cluster are also covered.

Preface

[4]

Chapter 8, Amazon EMR – Command-line Interface Client, provides the most useful
options available with the Ruby client provided by Amazon for EMR. We will
also see how to use spot instances with EMR.

Chapter 9, Hadoop Streaming and Advanced Hadoop Customizations, teaches how to use
scripting languages such as Python or Ruby to create mappers and reducers instead
of using Java. We will see how to launch a streaming EMR cluster and also how to
add a streaming Job Step to an already running cluster.

Chapter 10, Use Case – Analyzing CloudFront Logs Using Amazon EMR, consolidates all
the learning and applies them to solve a real-world use case.

What you need for this book
You will need the following software components to gain professional-level expertise
with EMR:

• JDK 7 (Java 7)
• Eclipse IDE (the latest version)
• Hadoop 2.2.0
• Ruby 1.9.2
• RubyGems 1.8+
• An EMR CLI client
• Tableau Desktop
• MySQL 5.6 (the community edition)

Some of the images and screenshots used in this book are taken from the
AWS website.

Who this book is for
This book is for developers and system administrators who want to learn Big Data
analysis using Amazon EMR, and basic Java programming knowledge is required.
You should be comfortable with using command-line tools. Experience with any
scripting language such as Ruby or Python will be useful. Prior knowledge of
the AWS API and CLI tools is not assumed. Also, an exposure to Hadoop and
MapReduce is not required.

After reading this book, you will become familiar with the MapReduce paradigm
of programming and will learn to build analytical solutions using the Hadoop
framework. You will also learn to execute those solutions over Amazon EMR.

Preface

[5]

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"You can use the chmod command to set appropriate permissions over the .pem file."

A block of code is set as follows:

FileInputFormat.setInputPaths(job, args[0]);
FileOutputFormat.setOutputPath(job, new Path(args[1]));

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

export JAVA_HOME=${JAVA_HOME}

Any command-line input or output is written as follows:

$ cd /<hadoop-2.2.0-base-path>/bin

New terms and important words are shown in bold. Words that you see on the
screen, in menus or dialog boxes for example, appear in the text like this: "Click on
Browse and select our driver class (HitsByCountry) from the list. Click on OK and
then click on Finish."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important
for us to develop titles that you really get the most out of.

Preface

[6]

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If you have any feedback or have noticed any issues with respect to content,
examples, and instructions in this book, you can contact the authors at
emrhadoopbook@gmail.com.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things
to help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register
to have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save
other readers from frustration and help us improve subsequent versions of this book.
If you find any errata, please report them by visiting http://www.packtpub.com/
submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list
of existing errata, under the Errata section of that title. Any existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/support

Preface

[7]

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

mailto:copyright@packtpub.com

Amazon Web Services
Before we can start getting on with the Big Data technologies, we will first have a
look at what infrastructure we will be using, which will enable us to focus more on
the implementation of solutions to Big Data problems rather than spending time and
resources on managing the infrastructure needed to execute those solutions. The cloud
technologies have democratized access to high-scale utility computing, which was
earlier available only to large companies. This is where Amazon Web Services comes
to our rescue as one of the leading players in the public cloud computing landscape.

What is Amazon Web Services?
As the name suggests, Amazon Web Services (AWS) is a set of cloud computing
services provided by Amazon that are accessible over the Internet. Since anybody
can sign up and use it, AWS is classified as a public cloud computing provider.

Most of the businesses depend on applications running on a set of compute and
storage resources that needs to be reliable and secure and shall scale as and when
required. The latter attribute required in there, scaling, is one of the major problems
with the traditional data center approach. If the business provisions too many
resources expecting heavy usage of their applications, they might need to invest
a lot of upfront capital (CAPEX) on their IT. Now, what if they do not receive the
expected traffic? Also, if the business provisions fewer resources expecting lesser
traffic and ends up with receiving more than expected traffic, they would surely
have disgruntled customers and bad experience.

www.allitebooks.com

http://www.allitebooks.org

Amazon Web Services

[10]

AWS provides scalable compute services, highly durable storage services, and
low-latency database services among others to enable businesses to quickly provision
the required infrastructure for the business to launch and run applications. Almost
everything that you can do on a traditional data center can be achieved with AWS.
AWS brings in the ability to add and remove compute resources elastically. You
can start with the number of resources you expect is required, and as you go, you
can scale it up to meet increasing traffic or to meet specific customer requirements.
Alternatively, you may scale it down any time as required, saving money and having
the flexibility to make required changes quickly. Hence, you need not invest a huge
capital upfront or worry about capacity planning. Also, with AWS, you only need
to pay-per-use. So, for example, if you have a business that needs more resources
during a specific time of day, say for a couple of hours, with AWS, you may
configure it to add resources for you and then scale down automatically as specified.
In this case, you only pay for the added extra resources for those couple of hours
of usage. Many businesses have leveraged AWS in this fashion to support their
requirements and reduce costs.

How does AWS provide infrastructure at such low cost and at pay-per-use? The
answer lies in AWS having huge number of customers spread across almost all over
the world—allowing AWS to have the economies of scale, which lets AWS bring
quality resources at a low operational cost to us.

Experiments and ideas that were once constrained on cost or resources are very
much feasible now with AWS, resulting in increased capacity for businesses to
innovate and deliver higher quality products to their customers.

Hence, AWS enables businesses around the world to focus on delivering quality
experience to their customers, while AWS takes care of the heavy lifting required to
launch and keep running those applications at an expected scale, securely and reliably.

Structure and Design
In this age of Internet, businesses cater to customers worldwide. Keeping that
in mind, AWS has its resources physically available at multiple geographical
locations spread across the world. Also, in order to recover data and applications
from disasters and natural calamities, it is prudent to have resources spread across
multiple geographical locations.

Chapter 1

[11]

We have two different levels of geographical separation in AWS:

• Regions
• Availability zones

Regions
The top-level geographical separation is termed as regions on AWS. Each region
is completely enclosed in a single country. The data generated and uploaded to an
AWS resource resides in the region where the resource has been created.

Each region is completely independent from the other. No data/resources are
replicated across regions unless the replication is explicitly performed. Any
communication between resources in two different regions happens via the public
Internet (unless a private network is established by the end user); hence, it's your
responsibility to use proper encryption methods to secure your data.

As of now, AWS has nine operational regions across the world, with the tenth one
starting soon in Beijing. The following are the available regions of AWS:

Region code Region name
ap-northeast-1 Asia Pacific (Tokyo)
ap-southeast-1 Asia Pacific (Singapore)
ap-southeast-2 Asia Pacific (Sydney)
eu-west-1 EU (Ireland)
sa-east-1 South America (Sao Paulo)
us-east-1 US East (Northern Virginia)
us-west-1 US West (Northern California)
us-west-1 US West (Oregon)

In addition to the aforementioned regions, there are the following two regions:

• AWS GovCloud (US): This is available only for the use of the
US Government.

• China (Beijing): At the time of this writing, this region didn't have public
access and you need to request an account to create infrastructure there.
It is officially available at https://www.amazonaws.cn/.

https://www.amazonaws.cn/

Amazon Web Services

[12]

The following world map shows how AWS has its regions spread across the world:

This image has been taken from the AWS website

Availability Zones
Each region is composed of one or more availability zones. Availability zones are
isolated from one another but are connected via low-latency network to provide high
availability and fault tolerance within a region for AWS services. Availability zones
are distinct locations present within a region. The core computing resources such
as machines and storage devices are physically present in one of these availability
zones. All availability zones are separated physically in order to cope up with
situations, where one physical data center, for example, has a power outage or
network issue or any other location-dependent issues.

Availability zones are designed to be isolated from the failures of other availability
zones in the same region. Each availability zone has its own independent
infrastructure. Each of them has its own independent electricity power setup and
supply. The network and security setups are also detached from other availability
zones, though there is low latency and inexpensive connectivity between them.

Basically, you may consider that each availability zone is a distinct physical data
center. So, if there is a heating problem in one of the availability zones, other
availability zones in the same region will not be hampered.

Chapter 1

[13]

The following diagram shows the relationship between regions and availability zones:

Region

Amazon Web Services

Availability

Zone

Availability

Zone

Availability

Zone

Region Availability

Zone

Availability

Zone

Availability

Zone

Customers can benefit from this global infrastructure of AWS in the following ways:

• Achieve low latency for application requests by serving from locations nearer
to the origin of the request. So, if you have your customers in Australia, you
would want to serve requests from the Sydney region.

• Comply with legal requirements. Keeping data within a region helps some
of the customers to comply with requirements of various countries where
sending user's data out of the country isn't allowed.

• Build fault tolerance and high availability applications, which can tolerate
failures in one data center.

When you launch a machine on AWS, you will be doing so in a selected region;
further, you can select one of the availability zones in which you want your machine
to be launched. You may distribute your instances (or machines) across multiple
availability zones and have your application serve requests from a machine in
another availability zone when the machine fails in one of the availability zones.

You may also use another service AWS provide, namely Elastic IP addresses, to mask
the failure of a machine in one availability zone by rapidly remapping the address to
a machine in another availability zone where other machine is working fine.

This architecture enables AWS to have a very high level of fault tolerance and, hence,
provides a highly available infrastructure for businesses to run their applications on.

Amazon Web Services

[14]

Services provided by AWS
AWS provides a wide variety of global services catering to large enterprises as well as
smart start-ups. As of today, AWS provides a growing set of over 60 services across
various sectors of a cloud infrastructure. All of the services provided by AWS can be
accessed via the AWS management console (a web portal) or programmatically via
API (or web services). We will learn about the most popular ones and which are most
used across industries.

AWS categorizes its services into the following major groups:

• Compute
• Storage
• Database
• Network and CDN
• Analytics
• Application services
• Deployment and management

Let's now discuss all the groups and list down the services available in each one
of them.

Compute
The compute group of services includes the most basic service provided by AWS:
Amazon EC2, which is like a virtual compute machine. AWS provides a wide range
of virtual machine types; in AWS lingo, they are called instances.

Amazon EC2
EC2 stands for Elastic Compute Cloud. The key word is elastic. EC2 is a web service
that provides resizable compute capacity in the AWS Cloud. Basically, using this
service, you can provision instances of varied capacity on a cloud. You can launch
instances within minutes and you can terminate them when work is done. You can
decide on the computing capacity of your instance, that is, number of CPU cores or
amount of memory, among others from a pool of machine types offered by AWS.

You only pay for usage of instances by number of hours. It may be noted here that if
you run an instance for one hour and few minutes, it will be billed as 2 hours. Each
partial instance hour consumed is billed as full hour. We will learn about EC2 in
more detail in the next section.

Chapter 1

[15]

Auto Scaling
Auto scaling is one of the popular services AWS has built and offers to customers to
handle spikes in application loads by adding or removing infrastructure capacity.
Auto scaling allows you to define conditions; when these conditions are met, AWS
would automatically scale your compute capacity up or down. This service is well
suited for applications that have time dependency on its usage or predictable spikes
in the usage.

Auto scaling also helps in the scenario where you want your application infrastructure
to have a fixed number of machines always available to it. You can configure this
service to automatically check the health of each of the machines and add capacity as
and when required if there are any issues with existing machines. This helps you to
ensure that your application receives the compute capacity it requires.

Moreover, this service doesn't have additional pricing, only EC2 capacity being
used is billed.

Elastic Load Balancing
Elastic Load Balancing (ELB) is the load balancing service provided by AWS.
ELB automatically distributes the incoming application's traffic among multiple
EC2 instances. This service helps in achieving high availability for applications
by load balancing traffic across multiple instances in different availability zones
for fault tolerance.

ELB has the capability to automatically scale its capacity to handle requests to match
the demands of the application's traffic. It also offers integration with auto scaling,
wherein you may configure it to also scale the backend capacity to cater to the
varying traffic levels without manual intervention.

Amazon Workspaces
The Amazon Workspaces service provides cloud-based desktops for on-demand
usage by businesses. It is a fully managed desktop computing service in the cloud.
It allows you to access your documents and applications from anywhere and from
devices of your choice. You can choose the hardware and software as per your
requirement. It allows you to choose from packages providing different amounts
of CPU, memory, and storage.

Amazon Workspaces also have the facility to securely integrate with your corporate
Active Directory.

Amazon Web Services

[16]

Storage
Storage is another group of essential services. AWS provides low-cost data storage
services having high durability and availability. AWS offers storage choices for
backup, archiving, and disaster recovery, as well as block, file, and object storage.
As is the nature of most of the services on AWS, for storage too, you pay as you go.

Amazon S3
S3 stands for Simple Storage Service. S3 provides a simple web service interface
with fully redundant data storage infrastructure to store and retrieve any amount
of data at any time and from anywhere on the Web. Amazon uses S3 to run its own
global network of websites.

As AWS states:

Amazon S3 is cloud storage for the Internet.

Amazon S3 can be used as a storage medium for various purposes. We will read
about it in more detail in the next section.

Amazon EBS
EBS stands for Elastic Block Store. It is one of the most used service of AWS.
It provides block-level storage volumes to be used with EC2 instances. While the
instance storage data cannot be persisted after the instance has been terminated,
using EBS volumes you can persist your data independently from the life cycle of
an instance to which the volumes are attached to. EBS is sometimes also termed
as off-instance storage.

EBS provides consistent and low-latency performance. Its reliability comes from the
fact that each EBS volume is automatically replicated within its availability zone to
protect you from hardware failures. It also provides the ability to copy snapshots
of volumes across AWS regions, which enables you to migrate data and plan for
disaster recovery.

Amazon Glacier
Amazon Glacier is an extremely low-cost storage service targeted at data archival
and backup. Amazon Glacier is optimized for infrequent access of data. You can
reliably store your data that you do not want to read frequently with a cost as low
as $0.01 per GB per month.

Chapter 1

[17]

AWS commits to provide average annual durability of 99.999999999 percent for an
archive. This is achieved by redundantly storing data in multiple locations and on
multiple devices within one location. Glacier automatically performs regular data
integrity checks and has automatic self-healing capability.

AWS Storage Gateway
AWS Storage Gateway is a service that enables secure and seamless connection
between on-premise software appliance with AWS's storage infrastructure. It
provides low-latency reads by maintaining an on-premise cache of frequently
accessed data while all the data is stored securely on Amazon S3 or Glacier.

In case you need low-latency access to your entire dataset, you can configure this
service to store data locally and asynchronously back up point-in-time snapshots
of this data to S3.

AWS Import/Export
The AWS Import/Export service accelerates moving large amounts of data into and
out of AWS infrastructure using portable storage devices for transport. Data transfer
via Internet might not always be the feasible way to move data to and from AWS's
storage services.

Using this service, you can import data into Amazon S3, Glacier, or EBS. It is also
helpful in disaster recovery scenarios where in you might need to quickly retrieve a
large amount of data backup stored in S3 or Glacier; using this service, your data can
be transferred to a portable storage device and delivered to your site.

Databases
AWS provides fully managed relational and NoSQL database services. It also has one
fully managed in-memory caching as a service and a fully managed data-warehouse
service. You can also use Amazon EC2 and EBS to host any database of your choice.

Amazon RDS
RDS stands for Relational Database Service. With database systems, setup, backup,
and upgrading are the tasks, which are tedious and at the same time critical. RDS
aims to free you of these responsibilities and lets you focus on your application.
RDS supports all the major databases, namely, MySQL, Oracle, SQL Server, and
PostgreSQL. It also provides the capability to resize the instances holding these
databases as per the load. Similarly, it provides a facility to add more storage as
and when required.

Amazon Web Services

[18]

Amazon RDS makes it just a matter of few clicks to use replication to enhance
availability and reliability for production workloads. Using its Multi-AZ
deployment option, you can run very critical applications with high availability and
in-built automated failover. It synchronously replicates data to a secondary database.
On failure of the primary database, Amazon RDS automatically starts fetching data
for further requests from the replicated secondary database.

Amazon DynamoDB
Amazon DynamoDB is a fully managed NoSQL database service mainly aimed
at applications requiring single-digit millisecond latency. There is no limit to the
amount of data you can store in DynamoDB. It uses an SSD-storage, which helps
in providing very high performance.

DynamoDB is a schemaless database. Tables do not need to have fixed schemas.
Each record may have a different number of columns. Unlike many other
nonrelational databases, DynamoDB ensures strong read consistency,
making sure that you always read the latest value.

DynamoDB also integrates with Amazon Elastic MapReduce (Amazon EMR).
With DynamoDB, it is easy for customers to use Amazon EMR to analyze datasets
stored in DynamoDB and archive the results in Amazon S3.

Amazon Redshift
Amazon Redshift is basically a modern data warehouse system. It is an enterprise-
class relational query and management system. It is PostgreSQL compliant, which
means you may use most of the SQL commands to query tables in Redshift.

Amazon Redshift achieves efficient storage and great query performance through
a combination of various techniques. These include massively parallel processing
infrastructures, columnar data storage, and very efficient targeted data compressions
encoding schemes as per the column data type. It has the capability of automated
backups and fast restores. There are in-built commands to import data directly from
S3, DynamoDB, or your on-premise servers to Redshift.

You can configure Redshift to use SSL to secure data transmission. You can also
set it up to encrypt data at rest, for which Redshift uses hardware-accelerated
AES-256 encryption.

Chapter 1

[19]

As we will see in Chapter 10, Use Case – Analyzing CloudFront Logs Using Amazon EMR,
Redshift can be used as the data store to efficiently analyze all your data using existing
business intelligence tools such as Tableau or Jaspersoft. Many of these existing
business intelligence tools have in-built capabilities or plugins to work with Redshift.

Amazon ElastiCache
Amazon ElastiCache is basically an in-memory cache cluster service in cloud. It
makes life easier for developers by loading off most of the operational tasks. Using
this service, your applications can fetch data from fast in-memory caches for some
frequently needed information or for some counters kind of data.

Amazon ElastiCache supports two most commonly used open source in-memory
caching engines:

• Memcached
• Redis

As with other AWS services, Amazon ElastiCache is also fully managed, which
means it automatically detects and replaces failed nodes.

Networking and CDN
Networking and CDN services include the networking services that let you create
logically isolated networks in cloud, the setup of a private network connection to
the AWS cloud, and an easy-to-use DNS service. AWS also has one content delivery
network service that lets you deliver content to your users with higher speeds.

Amazon VPC
VPC stands for Virtual Private Cloud. As the name suggests, AWS allows you
to set up an isolated section of AWS cloud, which is private. You can launch
resources to be available only inside that private network. It allows you to create
subnets and then create resources within those subnets. With EC2 instances without
VPC, one internal and one external IP addresses are always assigned; but with
VPC, you have control over the IP of your resource; you may choose to only keep
an internal IP for a machine. In effect, that machine will only be known by other
machines on that subnet; hence, providing a greater level of control over security
of your cloud infrastructure.

Amazon Web Services

[20]

You can further control the security of your cloud infrastructure by using features
such as security groups and network access control lists. You can configure inbound
and outbound filtering at instance level as well as at subnet level.

You can connect your entire VPC to your on-premise data center.

Amazon Route 53
Amazon Route 53 is simply a Domain Name System (DNS) service that translates
names to IP addresses and provides low-latency responses to DNS queries by using
its global network of DNS servers.

Amazon CloudFront
Amazon CloudFront is a CDN service provided by AWS. Amazon CloudFront has
a network of delivery centers called as edge locations all around the world. Static
contents are cached on the edge locations closer to the requests for those contents,
effecting into lowered latency for further downloads of those contents. Requests
for your content are automatically routed to the nearest edge location, so content
is delivered with the best possible performance.

AWS Direct Connect
If you do not trust Internet to connect to AWS services, you may use this service.
Using AWS Direct Connect, a private connectivity can be established between your
data center and AWS. You may also want to use this service to reduce your network
costs and have more consistent network performance.

Analytics
Analytics is the group of services, which host Amazon EMR among others. These are
a set of services that help you to process and analyze huge volumes of data.

Amazon EMR
The Amazon EMR service lets you process any amount of data by launching a cluster
of required number of instances, and this cluster will have one of the analytics engines
predeployed. EMR mainly provides Hadoop and related tools such as Pig, Hive, and
HBase. People who have spent hours in deploying a Hadoop cluster will understand
the importance of EMR. Within minutes, you can launch a Hadoop cluster having
hundreds of instances. Also, you can resize your cluster on the go with a few simple
commands. We will be learning more about EMR throughout this book.

Chapter 1

[21]

Amazon Kinesis
Amazon Kinesis is a service for real-time streaming data collection and processing.
It can collect and process hundreds of terabytes of data per hour from hundreds
of thousands of sources, as claimed by AWS. It allows you to write applications
to process data in real time from sources such as log streams, clickstreams, and
many more. You can build real-time dashboards showing current trends, recent
changes/improvements, failures, and errors.

AWS Data Pipeline
AWS Data Pipeline is basically a service to automate a data pipeline. That is, using
this, you can reliably move data between various AWS resources at scheduled times
and on meeting some preconditions. For instance, you receive daily logs in your S3
buckets and you need to process them using EMR and move the output to a Redshift
table. All of this can be automated using AWS Data Pipeline, and you will get
processed data moved to Redshift on daily basis ready to be queried by your BI tool.

Application services
Application services include services, which you can use with applications.
These include search functionality, queuing service, push notifications, and
e-mail delivery among others.

Amazon CloudSearch (Beta)
Amazon CloudSearch is a search service that allows you to easily integrate fast
and highly scalable search functionality into your applications. It now supports
34 languages. It also supports popular search features such as highlighting,
autocomplete, and geospatial search.

Amazon SQS
SQS stands for Simple Queue Service. It provides a hosted queue to store messages
as they are transferred between computers. It ensures that no messages are lost,
as all messages are stored redundantly across multiple servers and data centers.

Amazon SNS
SNS stands for Simple Notification Service. It is basically a push messaging service.
It allows you to push messages to mobile devices or distributed services. You can
anytime seamlessly scale from a few messages a day to thousands of messages
per hour.

Amazon Web Services

[22]

Amazon SES
SES stands for Simple Email Service. It is basically an e-mail service for the cloud.
You can use it for sending bulk and transactional e-mails. It provides real-time access
to sending statistics and also provides alerts on delivery failures.

Amazon AppStream
Amazon AppStream is a service that helps you to stream heavy applications such as
games or videos to your customers.

Amazon Elastic Transcoder
Amazon Elastic Transcoder is a service that lets you transcode media. It is a
fully managed service that makes it easy to convert media files in the cloud
with scalability and at a low cost.

Amazon SWF
SWF stands for Simple Workflow Service. It is a task coordination and state
management service for various applications running on AWS.

Deployment and Management
Deployment and Management groups have services which AWS provides you to
help with the deployment and management of your applications on AWS cloud
infrastructure. This also includes services to monitor your applications and keep
track of your AWS API activities.

AWS Identity and Access Management
The AWS Identity and Access Management (IAM) service enables you to create
fine-grained control access to AWS services and resources for your users.

Amazon CloudWatch
Amazon CloudWatch is a web service that provides monitoring for various AWS
cloud resources. It collects metrics specific to the resource. It also allows you to
programmatically access your monitoring data and build graphs or set alarms to
help you better manage your infrastructure. Basic monitoring metrics (at 5-minute
frequency) for Amazon EC2 instances are free of charge. It will cost you if you opt
for detailed monitoring. For pricing, you can refer to http://aws.amazon.com/
cloudwatch/pricing/.

http://aws.amazon.com/cloudwatch/pricing/
http://aws.amazon.com/cloudwatch/pricing/

Chapter 1

[23]

AWS Elastic Beanstalk
AWS Elastic Beanstalk is a service that helps you to easily deploy web applications
and services built on popular programming languages such as Java, .NET, PHP,
Node.js, Python, and Ruby. There is no additional charge for this service; you only
pay for the underlying AWS infrastructure that you create for your application.

AWS CloudFormation
AWS CloudFormation is a service that provides you with an easy way to create a set
of related AWS resources and provision them in an orderly and predictable fashion.
This service makes it easier to replicate a working cloud infrastructure. There are
various templates provided by AWS; you may use any one of them as it is or you
can create your own.

AWS OpsWorks
AWS OpsWorks is a service built for DevOps. It is an application management
service that makes it easy to manage an entire application stack from load balancers
to databases.

AWS CloudHSM
The AWS CloudHSM service allows you to use dedicated Hardware Security
Module (HSM) appliances within the AWS Cloud. You may need to meet some
corporate, contractual, or regulatory compliance requirements for data security,
which you can achieve by using CloudHSM.

AWS CloudTrail
AWS CloudTrail is simply a service that logs API requests to AWS from your
account. It logs API requests to AWS from all the available sources such as AWS
Management Console, various AWS SDKs, and command-line tools.

AWS keeps on adding useful and innovative products to its repository of already vast
set of services. AWS is clearly the leader among the cloud infrastructure providers.

AWS Pricing
Amazon provides a Free Tier across AWS products and services in order to help you
get started and gain hands-on experience before you can build your solutions on top.
Using a Free Tier, you can test your applications and gain the confidence required
before a full-fledged use.

Amazon Web Services

[24]

The following table lists some of the common services and what you can get in the
Free Tier for them:

Service Free Tier limit
Amazon EC2 750 hours per month of the Linux, RHEL, or SLES t2.micro

instance usage
750 hours per month of the Windows t2.micro instance usage

Amazon S3 5 GB of standard storage, 20,000 Get requests, and 2,000 Put requests
Amazon EBS 30 GB of Amazon EBS: any combination of general purpose (SSD)

or magnetic
2,000,000 I/Os (with EBS magnetic) and 1 GB of snapshot storage

Amazon RDS 750 hours per month of micro DB instance usage
20 GB of DB storage, 20 GB for backups, and 10,000,000 I/Os

The Free Tier is available only for the first 12 months from the sign up for new
customers. When your 12 months expire or if your usage exceeds the Free Tier limits,
you will need to pay standard rates, which AWS calls pay-as-you-go service rates.
You can refer to each service's page for pricing details. For example, in order to get
the pricing detail for EC2, you may refer to http://aws.amazon.com/ec2/pricing/.

You should keep a tab on your usage and use any service after you
know that the pricing and your expected usage matches your budget.
In order to track your AWS usage, sign in to the AWS management
console and open the Billing and Cost Management console at
https://console.aws.amazon.com/billing/home#/.

Creating an account on AWS
Signing up for AWS is very simple and straightforward. The following is a
step-by-step guide for you to create an account on AWS and launch the AWS
management console.

http://aws.amazon.com/ec2/pricing/
https://console.aws.amazon.com/billing/home#/

Chapter 1

[25]

Step 1 – Creating an Amazon.com account
Go to http://aws.amazon.com and click on Sign Up.

This will take you to a page saying Sign In or Create an AWS Account. If you
already have an Amazon.com account, you can use this to start using AWS; or you
can create a new account by selecting I am a new user and clicking on Sign in
using our secure server:

Further, you will need to key in the basic login information such as password,
contact information, and other account details and create an Amazon.com account
and continue.

Step 2 – Providing a payment method
You will need to provide your payment information to AWS. You will not be
charged up front, but will be charged for the AWS resources you will use.

Step 3 – Identity verification by telephone
In order to complete the sign-up process, AWS needs to verify your identity.
After you provide a phone number where you can be reached, you will receive
a call immediately from an automated system and will be prompted to enter the PIN
number over the phone. Only when this done, you will be able to proceed further.

http://aws.amazon.com
Amazon.com
Amazon.com

Amazon Web Services

[26]

Step 4 – Selecting the AWS support plan
There are various levels of support available from AWS, and you can choose from
the following four packages:

• Basic
• Developer
• Business
• Enterprise

That's all. You have your AWS account created and you are ready-to-use AWS.

Launching the AWS management
console
Go to https://console.aws.amazon.com and sign in using the account you just
created. This will take you to a screen displaying a list of AWS services. After you
start using AWS more and more, you can configure any particular service page
to be your landing page:

The resources are listed on per region basis. That is, first a region needs to be selected
and then only you can view the resources tied to that region. AWS resources are
global, tied to a region, or tied to an availability zone.

https://console.aws.amazon.com

Chapter 1

[27]

Getting started with Amazon EC2
EC2 is the most basic web service provided by AWS. It allows you to launch
instances of various capacities. You can get complete control over the lifetime
of this instance, and you also have the root access.

How to start a machine on AWS?
After you sign in to your AWS console, you can start a machine in a few steps. Go
to the EC2-specific console view from your AWS console. Select the region in which
you want to launch your instance. This can be selected from the top-right corner of
the page.

Click on Launch Instance. Let's walk through the simple steps you need to follow
after this.

Step 1 – Choosing an Amazon Machine Image
Amazon Machine Image (AMI) is a set of predefined software configuration and
applications. It is basically a template that contains the details about operating system,
application server, and initial set of applications required to launch your instance.
There are a set of standard AMIs provided by AWS, there are AMIs contributed by the
user community, and also there are AMIs available in the AWS marketplace. You can
select an AMI from among them. If you are confused, select one of the AMIs from the
Quick Start section.

Step 2 – Choosing an instance type
AWS EC2 provides various instance types optimized to fit different use cases.
A virtual machine launched on AWS is called as an instance. They have varying
combinations of CPU, memory, storage, and networking capacity giving you the
liberty to decide on the right set of computing resources for your applications.

Choose the instance type that fits your needs and budget. If you are just trying out
things, you may go for t1.micro, which is available under Free Tier. We will discuss
about instance types in more detail in our next section.

At this stage, you may skip other steps and go ahead and launch your instance.
However, that is not recommended, as your machine would be open to the world,
that is, it will be publicly accessible. AWS provides with a feature for creating
security groups, wherein you can create inbound and outbound rules restricting
unwanted traffic and only allowing some trusted IPs to connect to your instance.

Amazon Web Services

[28]

Step 3 – Configuring instance details
In this step, you may instruct AWS to launch multiple instances of the same type and
with the same AMI. You may also choose to request for spot instance. Additionally,
you can add the following configurations to your instance:

• The network your instance will belong to. Here, you choose the VPC of
which you want your instance to be a part of. After selecting a VPC, if you
want, you may also let AWS automatically assign a public IP address to your
instance. This IP will only be associated with your instance until it is stopped
or terminated.

• The availability zone your instance will belong to. This can be set if you do
not select a VPC and go with the default network, that is, EC2-Classic.

• The IAM role, if any, you want to assign to your instance.
• The instance behavior when an OS-level shut down is performed. It is

recommended to keep this configuration to Stop. Instances can be either
terminated or stopped.

You can also enable the protection from accidental termination of the instance.
Once this is enabled, you cannot terminate it from the AWS management console or
using AWS APIs until you disable this. You can also enable CloudWatch detailed
monitoring for this instance.

Step 4 – Adding storage
Every instance type comes with a definite instance storage. You can attach more
instance storage volumes or may decide to add EBS volumes to your instance.
EBS volumes can also be attached later after launching the instance. You can also
edit the configurations of the root volume of your instance.

Step 5 – Tagging your instance
For better book-keeping purposes, it is always good to give a name to your instance,
for example, MyApplicationWebserverBox. You can also create custom tags suiting
your needs.

Chapter 1

[29]

Step 6 – Configuring a security group
You can create a new security group for your instance or you can use an already
defined security group. For example, if you already have a few web servers and you
are just adding another instance to that group of servers, you wouldn't want to create
a separate security group for that, rather you can reuse the existing security group
that was created for those web servers.

While creating a new security group, you will see that one entry is prefilled to
enable remote login to that machine via SSH from anywhere. If you want, you can
constrain that rule to allow SSH traffic only via fixed IPs or IP ranges. Similarly, you
can add rules for other protocols. If you have a web server running and you want
to open the HTTP traffic for the world or if you have a MySQL database running on
this machine, you would want to select MySQL from the type while adding a new
rule and set the Source setting to your machines from where you would want your
MySQL to be accessible.

You can now review your configurations and settings and launch your instance.
Just one small thing before your instance is launched: you need to specify the key
pair in order to access this instance remotely. You can choose an existing key pair
or can create a new key pair. You must download the private key file (*.pem) and
keep it securely. You would use this to SSH into this instance.

It is very important to note that if this private key file is lost, there is no
way to log in to the instance after it is launched. As AWS doesn't store
the private key at its end, keep it securely.

That's all. Click on Launch Instances. Your instance should be up and running
within minutes.

If you go back to the EC2 dashboard of your AWS management console, you will see
that your instance is added to the number of running instances. Your EC2 dashboard
view will look as follows:

www.allitebooks.com

http://www.allitebooks.org

Amazon Web Services

[30]

Communicating with the launched instance
After launching your instance, when you click on the link saying n Running
Instances, where n is the number of instances running, you will be taken to a page
having all the running instances listed. There, you should select the instance you
had launched; you can identify it from the name you had given while launching the
instance. Now, in the bottom pane, you can see the Public DNS and Public IP values
listed for the selected instance (let's assume that you had configured your instance to
be provided a public IP while launching). You will use either of these values to SSH
into your instance.

Let's assume the following before moving ahead:

• Public IP of your machine is 51:215:203:111 (this is some random IP just
for the sake of explanation)

• Public DNS of your machine is ec2-51-215-203-111.ap-southeast-1.
compute.amazonaws.com (your instance's public DNS will look like this given
the above IP and that your instance was launched in the Singapore region)

• Private key file path in the machine from where you want to connect to
newly launched instance is /home/awesomeuser/secretkeys/my-private-
key.pem

Now that you have all the information about your instance, connecting to the
instance is only a matter of one SSH command. You should ensure that you have
an SSH client installed on the machine from where you will connect to your AWS
instance. For Linux-based machines, a command-line SSH client is readily available.

As the private key pair is very critical from security point of view, it is important to
set the appropriate access control to this file so that it isn't publicly viewable. You can
use the chmod command to set appropriate permissions over the .pem file:

chmod 400 my-key-pair.pem

You can connect to your instance by executing the following command from the
command line:

$ssh -i /home/awesomeuser/secretkeys/my-private-key.pem ec2-user@ec2-51-
215-203-111.ap-southeast-1.compute.amazonaws.com

Chapter 1

[31]

Alternatively, you can also connect using the public IP:

$ssh -i /home/awesomeuser/secretkeys/my-private-key.pem ec2-
user@51:215:203:111

You may note that the username to log in is ec2-user. You can assume root access
by simply switching user by the following command, you won't be prompted
for a password:

$ sudo su

For Windows machines, you can also use a simple connectivity
tool such as Putty to SSH to your instance.

EC2 instance types
EC2 has several predefined capacity packages that you can choose to launch an
instance with. Instance types are defined and categorized based on the following
parameters:

• CPU
• Memory
• Storage
• Network Capacity

Each instance type in turn includes multiple instance sizes for you to choose from.
Primarily, there are three most commonly used instance types:

• General purpose: M3
• Memory optimized: R3
• Compute optimized : C3

General purpose
The general purpose set of instances consists of M3 instance types. These types of
instances have a balance of compute, memory, and network resources. They have
SSD-based instance storage.

Amazon Web Services

[32]

M3 instance sizes
The following table lists the instances sized for M3 instance types:

Instance size vCPU Memory (GB) Storage (GB)
m3.medium 1 3.75 1 * 4
m3.large 2 7.5 1 * 32
m3.xlarge 4 15 2 * 40
m3.2xlarge 8 30 2 * 80

As you can see, with every increasing instance size, CPU and memory gets doubled.

Memory optimized
This set of instances consists of R3 instance types. These types of instances are best
fit for memory-intensive applications. R3 instances have the lowest cost per GB
of RAM among all EC2 instance types.

These types of instances are suitable for in-memory analytics, distributed-memory-
based caching engines, and many other similar memory-intensive applications.

R3 instance sizes
The following table lists the instances sized for R3 instance types:

Instance size vCPU Memory (GB) Storage (GB)
r3.large 2 15 1 * 32
r3.2large 4 30.5 1 * 80
r3.4xlarge 8 61 1 * 160
r3.4xlarge 16 122 1 * 320
r3.8xlarge 32 244 2 * 320

Compute optimized
This set of instances consists of C3 instance types. These types of instances are best
fit for compute-intensive applications. C3 instances have the highest performing
processors and the lowest price / compute performance available in EC2 currently.

These types of instances are suitable for high performance applications such as
on-demand batch-processing, video encoding, high-end gaming, and many other
similar compute-intensive applications.

Chapter 1

[33]

C3 instance sizes
The following table lists the instances sized for C3 instance types:

Instance size vCPU Memory (GB) Storage (GB)
c3.large 2 3.75 2 * 16
c3.2large 4 7.5 2 * 40
c3.4xlarge 8 15 2 * 80
c3.4xlarge 16 30 2 * 160
c3. 8xlarge 32 60 2 * 320

There are other instance types such as GPU, which are mainly used for game
streaming, and storage optimized instance types, which are used to create large
clusters of NoSQL databases and house various data warehousing engines.
Micro instance types are also available, which are the low-end instances.

Getting started with Amazon S3
S3 is a service aimed at making developers and businesses free from worrying about
having enough storage available. It is a very robust and reliable service that enables
you to store any amount of data and ensures that your data will be available when
you need it.

Creating a S3 bucket
Creating a S3 bucket is just a matter of a few clicks and setting a few parameters such
as the name of the bucket. Let's have a walk-through of the simple steps required
to create a S3 bucket from the AWS management console:

1. Go to the S3 dashboard and click on Create Bucket.
2. Enter a bucket name of your choice and select the AWS region in which

you want to create your bucket.
3. That's all, just click on Create and you are done.

Bucket naming
The bucket name you choose should be unique among all existing bucket names in
Amazon S3. Because bucket names form a part of the URL to access its objects via
HTTP, it is required to follow DNS naming conventions.

Amazon Web Services

[34]

The DNS naming conventions include the following rules:

• It must be at least three and no more than 63 characters long.
• It must be a series of one or more labels. Adjacent labels are separated

by a single period (.).
• It can contain lowercase letters, numbers, and hyphens.
• Each individual label within a name must start and end with a lowercase

letter or a number.
• It must not be formatted as an IP address.

Some examples of valid and invalid bucket names are listed in the following table:

Invalid bucket name Valid bucket name
TheAwesomeBucket the.awesome.bucket

.theawesomebucket theawesomebucket

the..awesomebucket the.awesomebucket

Now, you can easily upload your files in this bucket by clicking on the bucket name
and then clicking on Upload. You can also create folders inside the bucket.

Apart from accessing S3 from the AWS management console, there are
many independently created S3 browsers available for various operating
systems. For Windows, there is CloudBerry and there is Bucket Explorer
for Linux. Also, there are nice plugins available for Chrome and Firefox.

S3cmd
S3cmd is a free command-line tool to upload, retrieve, and manage data on Amazon
S3. It boasts some of the advanced features such as multipart uploads, encryption,
incremental backup, and S3 sync among others. You can use S3cmd to automate
your S3-related tasks.

You may download the latest version of S3cmd from http://s3tools.org and
check for instructions on the website regarding installing it. This is a separate open
source tool that is not developed by Amazon.

In order to use S3cmd, you will need to first configure your S3 credentials.
To configure credentials, you need to execute the following command:

s3cmd –-configure

http://s3tools.org

Chapter 1

[35]

You will be prompted for two keys: Access Key and Secret Key. You can get these
keys from the IAM dashboard of your AWS management console. You may leave
default values for other configurations.

Now, by using very intuitive commands, you may access and manage your
S3 buckets. These commands are mentioned in the following table:

Task Command
List all the buckets s3cmd ls

Create a bucket s3cmd mb s3://my.awesome.unique.bucket

List the contents of a bucket s3cmd ls s3://my.awesome.unique.bucket

Upload a file into a bucket s3cmd put /myfilepath/myfilename.abc
s3://my.awesome.unique.bucket

Download a file S3cmd get s3://my.awesome.unique.bucket/
myfilename.abc /myfilepath/

Summary
We learned about the world of cloud computing infrastructure and got a quick
introduction to AWS. We created an AWS account and discussed how to launch
a machine and set up storage on S3.

In the next chapter, we will dive into the world of distributed paradigm of
programming called MapReduce. The following chapters will help you understand
how AWS has made it easier for businesses and developers to build and operate
Big Data applications.

MapReduce
We will get into the what and how of MapReduce in a bit, but first let's say you have
a simple counting problem at hand. Say, you need to count a number of hits to your
website per country or per city. The only hurdle you have in solving this is the sheer
amount of input data you have in order to solve this problem. That is, your website
is quite popular and you have huge amounts of access logs generated per day. Also,
you need to create a system in place which would send a report on a daily basis to
the top management showing the number of total views per country.

Had it been a few hundred MBs of access logs or even a few GBs, you could easily
create a standalone application that would crunch these data and count the views per
country in a few hours. But what to do when the input data is in hundreds of GBs?

The best way to handle this will be to create a processing system that can work
on parts of the input data in parallel and ultimately combine all the results. This
system has to have a distributed algorithm, that is, the algorithm can be executed
independently on multiple machines simultaneously on different parts of the input
and it should be able to combine the results from all of those independent executions.

Using MapReduce is certainly one of the best ways available to achieve that. It is
a programming model with a distributed algorithm that can be executed in parallel
on a cluster.

Now, let's see how we can count the views per country, crunching large amount of
access logs. While MapReduce as a framework entails many more attributes, it boils
down to breaking the solution for the problem at hand into two functions:

• The map function
• The reduce function

MapReduce

[38]

Now, before we get into creating these two functions for our counting problem, let's
clear up our input format. For simplicity, let's assume that each line in the access log
may look as follows:

Time, Requesting-IP-Address(remote host)

Many other details such as the request line from client, the status code returned
by server, the referrer, the user-agent identifying the browser, or application used
to request the webpage, among others, are generally present in access logs. These
data points can be used to add many other dimensions to the report you are going
to generate for your top management. For example, they may want to know how
many requests they are getting from mobile devices and whether they need to
focus on improving/building/customizing their website for a particular mobile
operating system.

Getting back to our counting problem, let's say we have the following lines of input:

T1, IP1
T2, IP2
T3, IP3
T4, IP4
T5, IP5
T6, IP1
T7, IP3
T8, IP6
T9, IP7

This input just signifies that we going to ignore the other details we have in our
access logs and only be concerned about the IP address of the remote host requesting
the web page. Using the IP address, we can find out the country from where the
request has originated.

The map function
Let's design the map function now. A map function takes in a <key,value> pair as
input and emits one or more <key,value> pairs. This function operates on the input
value in isolation, that is, it has nothing to do with any other input values, which
signifies that a map function is stateless. This is desired, as now map functions
can be executed against many input data in parallel.

Chapter 2

[39]

In our case, the map function can take one line in the access log as input value
(key can be either null or an autoincrement integer), find the country to which the
requesting IP belongs, and emit the output as <Country,1>. So for our set of input
lines to map function, we will have the following lines emitted as output:

Input access log Map output <Key, Value>
T1, IP1 <Country1, 1>

T2, IP2 <Country2, 1>

T3, IP3 <Country3, 1>

T4, IP4 <Country1, 1>

T5, IP5 <Country3, 1>

T6, IP1 <Country1, 1>

T7, IP3 <Country3, 1>

T8, IP6 <Country2, 1>

T9, IP7 <Country1, 1>

The reduce function
Before the reduce function comes into the picture, the MapReduce framework
groups all the map output as per the key and lines up the input for the reducer. It
is again formed as a key-value pair wherein the key is the same as the output of the
map function, but the value is now the list of values of all those map outputs having
the same key. All the preceding map outputs now get grouped as follows:

<Country1, [1,1,1,1]>
<Country2, [1,1]>
<Country3, [1,1,1]>

Each of these above aggregated key-value pairs will be fed to the reduce function.
A reduce function expects a key and a list of values as input. Now, we have a super
simple task of addition in the reduce function. This function just needs to add up the
number of elements in the list of values it receives and emit the output key-value
pair in the form of <Country, Number-of-occurrences>. Even reduce functions are
stateless as they are isolated from the execution of other reduce functions. So, many
reduce functions can run in parallel, working on a subset of map outputs.

Getting back to our problem, the output you now have after reduce functions are
executed will look as follows:

<Country1, 4
<Country2, 2>
<Country3, 3>

MapReduce

[40]

That's all. You have your report ready for your higher management.

That's very easy, isn't it? MapReduce is very intuitive for problems of counting
and summation.

Divide and conquer
If you look closely, the approach we took in the form of MapReduce is nothing but
the age-old technique of divide and conquer. Our main problem was size of data;
now with this paradigm of MapReduce, we can work on this data in parallel and get
the desired results in the required timeframe. If we can break down the logical steps
involved, it will be as follows:

1. Divide the input dataset into many chunks.
2. Execute our map function on them in parallel.
3. Start conquering and group the map outputs as per their key.
4. Execute our reduce function on them in parallel. Conquered!

Generally, the MapReduce framework will do most of the tasks for you and you
will only need to worry about designing map and reduce functions and think in
terms of key-value pairs as part of your solution. Tasks such as dividing the input
data and grouping the map outputs are done by the framework itself. Sure, you
have the option to control and customize these actions as per your needs.

What is MapReduce?
MapReduce is a style of programming model getting popular with the emergence
of easily accessible distributed cloud computing. It is a programming paradigm
that allows massively parallel execution and brings in the scalability required for
processing huge amounts of data within desired time frames.

As for the definition, here is a quote from an abstract of the initial paper on
MapReduce from Google; it says:

"MapReduce is a programming model and an associated implementation for
processing and generating large data sets. Users specify a map function that
processes a key/value pair to generate a set of intermediate key/value pairs, and
a reduce function that merges all intermediate values associated with the same
intermediate key.

Programs written in this functional style are automatically parallelized and
executed on a large cluster of commodity machines."

Chapter 2

[41]

The abstract also states that the runtime system, which will be a part of the
MapReduce framework, will take care of the input data partitioning, scheduling the
program's execution across multiple systems, handling failures, and managing the
required inter-machine communication.

The map and reduce function in itself aren't the only driving force of the MapReduce
framework; it is the scalable nature it brings to the applications that makes this
framework useful in processing large datasets. This framework has been built with
assumptions that machines running these systems will fail. Hence, right from the
onset, it is designed to be fault tolerant.

Although this framework can be used to process even small amounts of data, its
benefit can really be seen only when multiprocess, multimachine implementation
is used to process large amounts of data, wherein the network communication
optimizations and fault tolerance of the MapReduce framework come into play.

The map reduce function models
We have already seen in the implementation of our initial problem how a map
function and reduce function is expected to behave. Now, let's see the systematic
model of map and reduce functions and their expected definitions along with
their limitations and possibilities.

The map function model
Each map function accepts a key-value pair as input and emits a list of
key-value pairs:

Map(key-input,value-input) → List(key-map-output, value-map-output)

Two small points regarding input/output of a map function are as follows:

• In some systems, the input might just be a single value rather than a
key-value pair. In these cases, the map function might be considered
to have a null or empty key.
The function will look as follows:
Map(input-value) → List(key, value)

• The list emitted by a map function may be empty, have a single key-value
pair, or have multiple key-value pairs depending on the input and the
function's corresponding logic.

MapReduce

[42]

The reduce function model
Each reduce function accepts a key and a list of values as input and emits a list
of key-value pairs. This behavior is a bit different from the traditional functional
programming using map and reduce, wherein one single value is returned after
the reduction:

Reduce(key-map-output, List(value-map-output)) → List(key-output, value-output)

Similar to the map function, the following points are correct for the reduce output:

• In some systems, the output might just be a list of single values rather than a
list of key-value pairs.
The function will look as follows:
Reduce(key, List(value)) → List(value)

• The list emitted by a reduce function may be empty, have a single key-value
pair, or have multiple key-value pairs depending on the map output and the
function's logic.

One key take away from the above descriptions of map and reduce models is that the
initial map input and reduce output can be decided by the map and reduce functions
individually, but they have to be designed such that the output of the map function
can be accepted by the reduce function and the reduce function should be designed
in such a way that it can accept the map output.

If you think in actual implementation terms, basically, the map function emitting
outputs should match the data types accepted by reduce functions. You will
understand this clearly when we see some code in our later chapters.

Data life cycle in the MapReduce
framework
As we have discussed earlier, there is more to a MapReduce framework than just
map and reduce functions. There is an input data division and accordingly the
number of mappers are decided upon. Then, there are combiners, partitioners,
and fling and sorting phase.

Chapter 2

[43]

The following diagram depicts the data lifecycle from input to output via a
MapReduce framework:

X 5

Reducer

51a

Y 7 Z 9

Reducer Reducer

71b 92c 8

Shuffle and Sort

Combiner

1a 1b

Partitioner

1a 1b

Mapper

Combiner

3c 6c

Partitioner

9c

Mapper

Combiner

5a 2c

Partitioner

5a 2c

Mapper

Combiner

7b 8c

Partitioner

7b 8c

Mapper

αA βB γC δD εE ζF

The following are the six distinct phases in the lifecycle of data being processed
through the MapReduce framework:

• Creation of input splits
• Mapper
• Combiner
• Partitioner
• Shuffle and Sort
• Reducer

MapReduce

[44]

Creation of input data splits
In order to work on huge input datasets, subsets need to be created so that multiple
mappers can be executed in parallel over those subsets. MapReduce frameworks
have built-in features to take care of this. The responsibility of performing splits
are generally with the input formats. Frameworks provide a bunch of predefined
input formats, and if you need a custom way of splitting your dataset, you can also
define your own input formats. If you do not want to split your input files, you can
even configure that. There are configuration parameters provided by the framework
dictating the maximum number of bytes to be present in a single split.

Each input split is processed by one mapper. Hence, the number of
mappers is equal to the number of input splits.

Record reader
Each split is further divided into multiple logical units to be processed by the user-
defined map functions. That is, on each of these records, the map function will be
executed once. Each input format has its implementation of a record reader. You may
want to read line by line, that is, each line is a separate record. Or, you may want
to process a paragraph at once with a single map function call; in such a case, your
record reader should be capable of reading paragraphs as separate records, as shown
in the following figure:

Input

Large
Input
File

Input
Splits

Records in a
single split

Max Split Size
Record 1

Record 2

Record 3

Record 4

Record 5

Record 6

Record 7

Chapter 2

[45]

Mapper
Each map task processes a single split. The map tasks that are spawned by the
framework to take on the task of executing map functions for each of the records
of a single input split are fondly called as a Mapper. A map task is also entrusted
to perform the tasks of combining and partitioning, which we will see in a while.

The following diagram shows the simplified data flow in the mapper phase:

Records in a
single split

Record 1

Record 2

Record 3

Record 4

Record 5

Record 6

Record 7

Map Task

M
ap

 F
un

ct
io

n

Key, Value

Record is generally
a key-value pair

Key1, Value1

Key2, Value2

Key1, Value3

Key1, Value4

Key3, Value5

Key2, Value6

Key4, Value7

Map Output
Key-Value Pairs

Records in an InputSplit are
deciphered by a RecordReader

Many output pairs may have
same key

Combiner
You might call combiners to be mini-reducers. Use of combiners is optional and
executed per map task. That is, there has to be a user-defined combine function that
would be executed over all the output pairs of the map task. This function should
be like a reduce function, that is, it should take in key and list of values as input
parameter and emit one or more key-value pairs.

MapReduce

[46]

They are helpful in decreasing the effort that would go into the shuffle and sort
phases later. Your mapper may be emitting more than one record per key, which
would finally be grouped and passed to a single call of the reducer method. Hence,
if these records can be combined even before passing them to reducers, the amount
of data that will be shuffled across the network in order to get it to the right reducer
will be reduced, resulting in better job performance. Also, reduction in the total
amount of data to be sorted will lead to a quicker sorting.

Unless you suspect that your map tasks are going to emit a considerable
number of key-value pairs having the same key, you should not use a
combiner. As combiners too take some execution time; hence, unless this
extra time taken is justified by enough in-situ reductions by combiners, do
not go for them. Also, keep in mind that combiners can be run multiple
times by the framework.

The following diagram depicts the dataflow between mapper and combiner:

Key1, Value1

Key2, Value2

Key1, Value3

Key1, Value4

Key3, Value5

Key2, Value6

Key4, Value7

Map Output
Key-Value Pairs

Many output pairs may have
same key

Combiner

C
om

bi
ne

 F
un

ct
io

n

Key1, Value-1-3-4

Key2, Value-2-6

Key3, Value-5

Key4, Value-7

Many output pairs having same key
are reduced by the combiner into a single pair

Combined
Map Output

Chapter 2

[47]

Partitioner
As map tasks running on different machines may produce output with the same
keys that should be processed by a single reducer, there should be a way to decide
upon map outputs with which key should be forwarded against which reducer
for reduction.

The MapReduce framework has built-in capability to do this, which you can
certainly customize. There is a partition function that helps the framework make
the decision as to which reducer a given map output has to be forwarded.

Often, the default function is to get a numeric hash of the key and divide that by the
total number of reducers, and allocate the output with that key to a reducer according
to the remainder of the division. So, this function takes in the map output key and
the total number of reducers as input parameters and emits an integer indicating the
reducer to which that map output should be allocated for reduction.

This function in its simplest form will look like the following in Java if we consider
that the map output key is of the KeyType (which in reality will be an actual
data type):

int getPartition(KeyType key, int numberOfReducers){
 int hash=0;
 if(key!=null){
 hash = (key.toString().hashCode() ;
 }
 return (hash & Integer.MAX_VALUE) % numberOfReducers;
}

There are implementations of the partition function, wherein both the key and value
are passed as input parameters along with total number of reducers.

Shuffle and sort
The map outputs with the same keys can be emitted by various map tasks running
on separate machines. Now, as we have seen that using a partitioner, it is decided
to which reducer a specific map output record will be sent. This process of moving
around the map output records between different machines is called shuffling.

MapReduce

[48]

Each map task writes output to a memory buffer and spills the overflow data to a
local disk in a round robin fashion. Now, before data is written to disk, the following
operations take place:

1. The data is divided into partitions as per the partition function.
2. Within each partition, an in-memory sort is performed based on map

output keys.
3. If a combiner function has been defined, it is executed over the sorted data

for each of the partitions. This happens in memory only if the number of
spills is less than a specific number, which is a configurable value in most
of the frameworks and is generally a small integer such as 2 or 3.

Reducer
The number of reduce tasks are predefined, either you can explicitly tell the
framework to have a certain number of reducers or the framework will decide it for
you, but it will be decided from the onset of the job execution. This early decision
helps in the distribution of map outputs among reducers.

Each map task has output data sorted and kept separately for each of the partitions.
Basically, the map outputs are sorted and are present in containers tagged with
the reducer that needs to do the reduction. Also, as there can be many map tasks
that might have data for a particular reducer, a reduce task needs to perform the
following operations:

1. Fetch the sorted map data from various machines having data for this reducer.
2. Merge that data.
3. Perform a sort operation.
4. Execute the reduce function over the sorted data in order.

The following diagram shows the dataflow between the mappers and reducers going
through partitioning, sorting, and shuffling:

Chapter 2

[49]

Mapper

Reducer

Input Split

Map

Output

In-Memory Buffer

Sorting

Partition 1 Partition 2

Sorting

Merge Merge

Partition 3

Sorted data on disk for Reducer-2

Partition 2

To other Reducers

Sorted data chunk from Mapper 2Sorted data chunk from Mapper 1

Merge

Sort

Complete data sorted as per key

Ready for reduction in sorted order

Reduce

Output

Sorted data on disk for Reducer-1 ...

From other Mappers

Sorting Sorting Sorting

Partition 3Partition 1

Partition 1 Partition 2

Real-world examples and use cases of
MapReduce
Let's now check out a few of the actual applications using MapReduce. The
MapReduce paradigm is the core of the distributed programming model in many
applications to solve big data problems across different industries in the real
world. There are many challenging problems such as log analytics, data analysis,
recommendation engines, fraud detection, and user behavior analysis, among others,
for which MapReduce is used as a solution.

Some of the examples of MapReduce usage are listed in the next sections.

MapReduce

[50]

Social networks
Most of us are daily users of sites such as Facebook, Twitter, and LinkedIn to
connect with our friends, community, and colleagues. All of these sites are heavy
users of the MapReduce model for solving problems such as who are the common
friends/followers between you and another user on Facebook/Twitter or common
connections in LinkedIn between two users. Many of the interesting features such as
who visited your profile on LinkedIn or read your post on Facebook or Twitter can
be computed using the MapReduce programming model.

Media and entertainment
Services such as Netflix and Hulu use Hadoop and MapReduce to solve problems
such as finding out the most popular videos, what you might like based on what you
have watched till now, or provide suggestions to newly signed up users based on
their interests similar to existing users. Hadoop and MapReduce allow companies to
identify user content consumption behavior and leverage insights to provide them
with better suggestions so that they can increase the overall user engagement and
revenue. We can use the MapReduce programming model to identify related videos
for a given video using the meta of the video such as its category, cast or crew,
and how users are watching videos in the system by analyzing the web logs and
clickstream logs.

E-commerce and websites
Many of the e-commerce providers such as Amazon, Walmart, and eBay use the
MapReduce programming model to identify popular products based on users'
interests or purchasing behavior. These include building product recommendation
engines for e-commerce catalogs by analyzing the website logs, purchase history,
user interaction logs and so on. It can also be used to identify user sentiment for the
given product by analyzing comments or reviews using MapReduce to identify the
sentiment. Most of the leading e-commerce retailers have a very large inventory of
the products in their systems, and it will be very difficult for users to discover all
of them. So, building a recommendation engine or product suggestion engine can
help drastically in providing related products based on user interests or their past
purchase behavior.

The MapReduce programming model can also be used to analyze all search logs in
the e-commerce website to identify what the most popular items are based on search
and also identify which products are missing by analyzing all search logs.

Chapter 2

[51]

Many website providers use the MapReduce model for analyzing the website logs
to understand user visits, their engagement, locations, mobile devices and browsers
used, and so on.

Fraud detection and financial analytics
Hadoop and MapReduce can be used in financial industries including companies
such as banks, insurance providers, or payment gateways for fraud detection,
identifying the trends, or business metrics by analyzing transactions and application
logs. Let's take the example of an insurance company selling multiple products
across different countries. They can capture all their transaction and application logs
for processing using MapReduce to identify which are the most popular insurance
products in different locations across the world. They can also identify the trend
lines of newly launched products with respect to existing products and which
products are purchased in groups by end users. Banks can analyze credit card spend
data of their users to provide them with categorization of their spend and also make
recommendations for different merchant offers by analyzing their anonymous
purchase behavior over time.

Search engines and ad networks
Many popular search engine systems use MapReduce for understanding user
behavior such as popular searches during a specific period or in a specific country
or during a specific event such as presidential elections. It can be used to analyze
and understand users' search behavior, trends, or missing results for specific
keywords. Also, Adworks such as Yahoo! and InMobi use Hadoop and MapReduce
for understanding ad impressions served, click-through rates, and user engagement
behavior. It can be used to identify trends or popular publishers in their network.

ETL and data analytics
MapReduce programming can be used to migrate data, files, or records from one
system to another using distributed models. Let's assume that we have 10 TB of
files in DataCenter1 located in Europe and we want to migrate all these files to
DataCenter2 located in the U.S. The traditional way of bulk copy and move will not
work, so we can use the MapReduce programming model to build a distributed
system for copying files from DataCenter1 to DataCenter2. We can use the map
function to locate a specific file and break it down into chunks for transfer, while
the reduce function can combine the chunks of a related file, perform checksum to
ensure data integrity, and so on.

MapReduce

[52]

We can use MapReduce programming for analyzing large volumes of data from
databases, data warehouses, or logs while implementing specific business logic
to derive insights. It can also be for building Extract, Transform, and Load (ETL)
systems for moving data from one data store to an other.

One of the most important issues to understand while performing data
analysis using the MapReduce model is to be aware of the different
data privacy and safeguarding laws of different countries. In most
countries, the local laws mandate to safeguard end user privacy by using
anonymous user data for any further analysis or analytics. This subject
is out of scope in this book, but it's important to be aware of local data
privacy laws before collecting, aggregating, and analyzing data.

Software distributions built on the
MapReduce framework
One of the most popular software distributions made for large-scale distributed
computing based on the MapReduce framework is Apache Hadoop.

There are many other distributions that use Apache Hadoop as their base and
repackage it with additional features and improvements. The most popular
among them are listed as follows:

• Cloudera Distribution
• MapR

Apache Hadoop
Apache Hadoop is a platform for big data storage and processing. It is the most
popular open source implementation of the MapReduce framework. It is an
Apache top-level project and is widely used for many big data problems.

As it is available under Apache license 2.0, it has been taken as the backbone over
which many other custom and improved distributions have been created.

We will learn about Apache Hadoop in greater detail in the next chapter. We will
also use Apache Hadoop with Amazon EMR.

Chapter 2

[53]

MapR
MapR is a derived implementation of Apache Hadoop claiming improved
performance and full data protection. It provides its distributions in three different
flavors: M3, M5, and M7. While M3 is a free version, the other two have some added
features and come with some cost.

Along with Apache Hadoop, Amazon EMR also provides the option to launch your
cluster with one of the MapR distributions and charges you accordingly.

Cloudera distribution
Cloudera distribution of Apache Hadoop (CDH) is an open source distribution.
Basically, Cloudera is a company that provides services and support to
enterprise-level implementation of Hadoop based systems. Its main product is
Cloudera Manager that helps in the administration of enterprise big data solutions.
Cloudera is one of the largest contributors to Apache Hadoop.

Summary
We learned about the very popular MapReduce framework in this chapter.
We covered the basics of MapReduce style of programming along with the
architectural data flow that happens in any MapReduce framework.

We did not talk about the network architecture, which includes concepts such
as JobTracker and TaskTracker. We will learn about these and more in the next
chapter where we will take up Apache Hadoop and its architecture in detail.

Apache Hadoop
Very few people will deny that the evolution of Apache Hadoop has been one of
the major driving forces behind the advancements we see in Big Data processing.
Apache Hadoop has enabled businesses of all sizes to start getting more out of their
data. It has not only helped businesses get more from their data, but has also been
very useful in the field of medicine and healthcare—resulting in better lives for
many. From fraud detection by financial institutions to providing recommendations
to users by an e-commerce portal, Apache Hadoop has revolutionized the industry
in many ways.

What is Apache Hadoop?
It is an open source software framework that enables reliable and scalable storage
and processing of large datasets in a distributed environment.

Here is the definition provided on the official Apache Hadoop's website:

"The Apache Hadoop software library is a framework that allows for the
distributed processing of large data sets across clusters of computers using simple
programming models. It is designed to scale up from single servers to thousands
of machines, each offering local computation and storage. Rather than rely on
hardware to deliver high-availability, the library itself is designed to detect and
handle failures at the application layer, so delivering a highly-available service on
top of a cluster of computers, each of which may be prone to failures."

It has been designed to handle hardware-level failures at the application layer itself,
and this is one of the prime features that enables use of commodity hardware as part
of the clusters crunching data using Apache Hadoop. It provides the ability to scale
the running cluster as per the requirement.

Apache Hadoop

[56]

The founder of Hadoop, Doug Cutting, had initially designed it to solve the need to
store and compute large numbers of files that were generated from Apache Nutch,
an open source web search engine. Apache Nutch, which we can say was the root of
Hadoop, was a subproject of Apache Lucene, a text search library created by Doug
Cutting himself.

When Doug Cutting, the chief architect of the curiously named Hadoop,
was creating this open source software, he knew that the project would
need an appropriate name. Fortunately, he had one up his sleeve that he
had saved for an appropriate time. Thanks to his son who, while playing
with his yellow elephant toy, coined the term Hadoop for the first time!

It has been primarily built on two of the papers from Google, namely, Google
MapReduce and Google File System (GFS). It has gone through a series of
improvements since its first release that involved the addition of a robust job
scheduling and resource management framework. It provides the complete package,
having a viable solution to a large amount of data storage as well as data analysis on
that stored data.

The name Apache Hadoop, sometimes, is also used for the family of projects related
to distributed computing and Big Data processing, most of which are hosted by
Apache Software Foundation. The Hadoop ecosystem, as it has come to be called, is
growing with many projects coming up that complement Hadoop or use Hadoop.

Hadoop modules
An Apache Hadoop project mainly comprises the following four components:

• Hadoop Common: This module comprises the common utilities that provide
the basic support to other Hadoop modules. This includes the components
and implementations for the common I/O operations and utilities to handle
the distributed filesystem. It has implementations of abstraction over Java
RPC and serialization required to be used in other Hadoop modules.

• Hadoop Distributed File System: This is an implementation of a distributed
filesystem that enables storage of large amounts of data in redundancy over
a cluster of commodity machines, providing high aggregate throughput
access to data. Its implementation has been inspired by a paper published
by Google on its proprietary, distributed filesystem named GFS.

Chapter 3

[57]

• Hadoop YARN: With the initial implementation of Hadoop, the MapReduce
module itself took care of both cluster resource management as well as the
actual data processing. With Hadoop 2.0, a new framework was introduced
that takes care of the cluster resource management and job scheduling tasks.
This framework is called YARN.

• Hadoop MapReduce: With Hadoop 2.0, it is now a YARN-based system for
distributed processing of large scale data. Hence, this module named Hadoop
MapReduce is basically the implementation of the programming model we
discussed in the previous chapter, and it forms the core component of Apache
Hadoop. Its implementation too has been inspired by a paper published
by Google on the MapReduce framework for distributed computing on
commodity hardware.

Hadoop Distributed File System
The Hadoop Distributed File System (HDFS) is a distributed filesystem that has
been designed to run on commodity hardware. It excels in availability, scalability,
and fault tolerance. It is suitable for applications that need to process large datasets
with high throughput access. HDFS was originally built as the storage framework
for Apache Nutch, which is a web search engine project.

Major architectural goals of HDFS
As HDFS has been designed to solve storage problems with large datasets, it has
been built with the following major assumptions and architectural goals in mind:

• Hardware will fail: Hardware failure is a norm rather than an exception.
A deployment of HDFS may have multiple servers, hundreds or even
thousands, each storing a part of data present in the filesystem as a whole.
Now, at any given point of time, it is very likely that out of many servers,
some are nonfunctional. Therefore, detection of such faults and quick,
automatic recovery from them is a core architectural goal of HDFS.

• Emphasis on high throughput of data access over low latency of data
access: HDFS has been designed to be able to provide streaming access of
data to the applications using it. So basically, it hasn't been designed for
general purpose applications, wherein there is an interactive use by the user.
It has been designed for batch processing. It can be said that HDFS isn't
POSIX-compliant, as it relaxes few of the POSIX requirements in order to
achieve high throughput for data access by the target applications.

Apache Hadoop

[58]

• Tuned to support large files: HDFS has been built to support applications
having to deal with large files. A file in HDFS is expected to be of gigabytes
to terabytes in size. It has been designed to be able to support tens of millions
of files on a single HDFS instance having the capability to scale to hundreds
of nodes, and hence, providing high aggregate data bandwidth to its
applications. In fact, HDFS performs rather poorly if large numbers of
small files are stored in it.

• It has a write-once-read-many access model for files: This is called the
Simple Coherence Model. This basically means that there is no append
feature available once a file had been created, written to, and closed. This does
simplify data coherency issues, especially in a distributed environment, and
ultimately contributes to high throughput data access. The official document
states that there is a plan to support appending-writes to files in the future.

• Portable across heterogeneous hardware and software platforms.

Moving computation is cheaper than moving data
This is one of the simple architectural principles on which Apache
Hadoop has built its computation allocation strategy. Over the years,
computation and storage got cheaper, but network and disk speeds
didn't really catch up. Hence, a computation requested to be done over
a large dataset will be more efficient if it is performed near to where
data resides physically. This approach is better than moving data over
the network. This results in minimizing network communication and
effectively reducing traffic and increasing the overall throughput of the
system. HDFS has built-in capabilities that applications can use to move
themselves closer to where the data is located.

Block replication and rack awareness
HDFS is designed to allow applications to move processing of data to where data
resides physically or to a relatively nearer location. In order to achieve this, HDFS
breaks files into blocks as per its configurable block size and replicates these blocks
into a number of different servers according to a configurable replication factor. The
default block size is 128 MB and the default replication factor is 3.

HDFS instances are often run over large clusters composed of many servers spread
across multiple racks. The rack awareness feature aims at achieving higher fault
tolerance in order to cater to the situations wherein a complete rack fails. HDFS is
designed to distribute data evenly between different racks in order to provide faster
access and making it more fault tolerant. This is one feature that other distributed
filesystems do not have.

Chapter 3

[59]

Let's assume that we have a file of 300 MB and we have the default HDFS
configuration, that is 128 MB block size and a replication factor of 3. Hence, the
file will be divided into three blocks; let's name them for simplicity as follows:

• Block A (128 MB)
• Block B (128 MB)
• Block C (44 MB)

Even though Block C is 44 MB in size, storing it in HDFS will take
only 44 MB space and not the whole 128 MB of block size.

Now, let's say we have two racks of data storage available, namely Rack-I
and Rack-II, and each rack has two data nodes each. HDFS would store the
aforementioned blocks in the following fashion:

Writing Block B

Block A Block B

Block A

Block A Block B

Block B

Writing Block C

Block A Block B

Block C

Block A Block C

Block A Block B

Block B Block C

Writing Block A

Block A

DataNode 1

Block A

DataNode 2

Block A

DataNode 3

DataNode 4

Rack-I Rack-II

DataNode 1

DataNode 2

DataNode 3

DataNode 4

Rack-I Rack-II

DataNode 1

DataNode 2

DataNode 3

DataNode 4

Rack-I Rack-II

Apache Hadoop

[60]

Since our replication factor is 3, each data block will be written into three different
data nodes. Now, HDFS makes sure that at least one copy of the data block exists
in both the racks. In order to achieve that, after writing Block A in one of the data
nodes in Rack-I, HDFS copies it to one of the data nodes in Rack-II and from there in
a round robin fashion, and as per the availability of space in each of the data nodes,
all other blocks are written.

Here is what the official documentation states regarding the replica placement policy
in HDFS:

"For the common case, when the replication factor is three, HDFS's placement
policy is to put one replica on one node in the local rack, another on a different node
in the local rack, and the last on a different node in a different rack. This policy
cuts the inter-rack write traffic which generally improves write performance. The
chance of rack failure is far less than that of node failure; this policy does not impact
data reliability and availability guarantees. However, it does reduce the aggregate
network bandwidth used when reading data since a block is placed in only two
unique racks rather than three. With this policy, the replicas of a file do not evenly
distribute across the racks. One third of replicas are on one node, two thirds of
replicas are on one rack, and the other third are evenly distributed across the
remaining racks. This policy improves write performance without compromising
data reliability or read performance."

The HDFS architecture
HDFS has a master-slave architecture. An HDFS cluster consists of a single master
called the NameNode, which manages the filesystem namespace for the entire
distributed filesystem and also controls the file access. Additionally, there are
multiple DataNodes, usually one per node in the cluster. Each DataNode manages
storage attached to the node it is running on.

Chapter 3

[61]

HDFS Architecture

Namenode
Metadata (Name, replicas,...):

/home/foo/data, 3,...

Datanodes

Replication

Client

Datanodes

Rack 2Rack 1

Client

Write

Blocks

Read

Metadata ops

Block ops

NameNode
NameNode is the arbitrator and central repository of file namespace in the cluster.
The NameNode executes the primary filesystem namespace operations such as
opening, closing, and renaming files and directories. It also determines the mapping
of blocks to DataNodes, as it holds the metadata about all the block replicas and
location of their respective DataNodes.

NameNode keeps track of the health of each of the DataNodes in the cluster via
a periodic heartbeat, which it receives from each DataNode. A proper periodic
heartbeat informs NameNode that data in the DataNode is ready for use. If there
are no recent heartbeats, the NameNode assumes that the specific DataNode is dead
and updates its metadata accordingly. It does not forward any further I/O requests
to that DataNode. Death of a DataNode brings down the replication factor for the
blocks available in that node from their specified values. NameNode keeps track of
this and constantly initiates new replication in other DataNodes for those blocks.

Prior to Hadoop 2, NameNode was the Single Point of Failure (SPOF)
for an HDFS cluster. With Hadoop 2, the addition of HDFS High
Availability feature allows running of two redundant NameNodes in the
same cluster in an active/passive configuration with a hot standby. As
NameNode stores huge metadata in RAM, it is advisable to use a machine
with good hardware and lots of RAM as NameNode.

Apache Hadoop

[62]

DataNode
DataNode manages the storage attached to the node on which it runs. It is
responsible for serving all the read and write requests. It also performs certain
operations on instruction from NameNode. These operations include creation,
deletion, and replication of blocks.

In a typical deployment, NameNode is run on a dedicated machine.
Each of the other machines in the cluster runs one instance of DataNode.
Running multiple DataNodes on the same machine isn't prohibited, but in
a real deployment scenario, such a case rarely arises.

Apache Hadoop MapReduce
Apache Hadoop MapReduce is the most popular implementation of the MapReduce
programming paradigm. Coupled with a distributed storage framework in the form
of HDFS, it provides a very robust system for processing of large datasets over a
cluster of hundreds or even thousands of nodes.

The Hadoop MapReduce project can be broken down into the following three
major components:

• The MapReduce API: This includes the set of libraries available for the
end users to create their applications. You will use these to create the map
and reduce functions to be executed by the framework. The APIs also have
provisions to set various configurations for the cluster and its components.

• The MapReduce framework: This is the runtime implementation of various
phases involved in the execution of a MapReduce task, which includes the map
phase, sort/shuffle/merge phase, and the reduce phase. The intricacies of the
data flow throughout various stages form the major part of this component.

• The MapReduce cluster management system: This consists of the backend
system that manages the complete infrastructure to execute your MapReduce
applications. It includes the cluster resource management along with the
scheduling of jobs submitted to the cluster.

Having this separation of concerns enables users to focus only on the creation of their
application, letting the Hadoop framework take care of the data flow and resource
management in order to get the task executed.

Chapter 3

[63]

Hadoop MapReduce 1.x
Hadoop 0.20.205, having matured enough, has been renamed as Hadoop 1.0 to be
consistent with the naming of other enterprise products. It is also called MRv1.

The following diagram shows the MapReduce 1.0 framework architecture:

Job

Tracker

MapReduce Status

Job Submission

Task

Tracker

Task Task

Task

Tracker

Task Task

Task

Tracker

Task Task

Client

Client

JobTracker
JobTracker is responsible for managing the cluster resources. It is also responsible
to identify the TaskTracker most suitable to execute a given task. When a new job
is submitted to JobTracker, it first breaks the job into multiple tasks as per the input
data; for that, it connects with NameNode to identify the list of DataNodes and
blocks where the input data for the submitted job resides. Now, JobTracker allocates
those tasks to respective TaskTrackers accordingly.

In this architecture, JobTracker is the master, while each of the TaskTrackers acts
like its slave. A heartbeat signal between JobTracker and TaskTracker is the time
when JobTracker passes information to TaskTracker to execute. If JobTracker hasn't
received any recent heartbeat, it deems TaskTracker to be dead and stops allocating
any further tasks to it. Also, it tries to schedule the tasks being done by the dead
TaskTracker with other alive TaskTrackers.

Apache Hadoop

[64]

TaskTracker
TaskTracker, being a slave, follows orders from its master, JobTracker. It launches
or stops tasks when asked to do so from the JobTracker. It also has the responsibility
of sending periodic status updates to the JobTracker regarding the task it is running.
TaskTrackers are normally configured in such a way that they can occupy one
CPU core per TaskTracker.

Some tasks may be slower than others due to various reasons including hardware or
software issues. Since tasks are run in parallel, the overall time taken depends on the
slowest task. So, if Hadoop detects a slow running task, it launches another equivalent
task. This is called as speculative execution. The task which completes first announces
its completion, and Hadoop kills the other one as it's no longer required.

Hadoop MapReduce 2.0
Hadoop MapReduce underwent a sort of complete overhaul with its Hadoop 0.23
version. This version is now commonly known as MapReduce 2.0, MapReduce
NextGen, MRv2, or YARN.

Hadoop YARN
We saw earlier that Hadoop MapReduce can be seen as composed of three distinct
components. One of these, the cluster management system has been now decoupled
in the form of a subproject under Apache Hadoop, named YARN (short for Yet
Another Resource Negotiator).

Now with MRv2, the responsibilities of job scheduling and resource management
will no longer be part of the MapReduce implementation. The component of
MapReduce that was responsible for those tasks has been carved out as a more
generic module that will provide Apache Hadoop's robust distributed computing
infrastructure to be used along with many other different types of data processing
layers in addition to that of MapReduce.

With the Hadoop 1.x architecture, JobTracker being a single point of task
distribution, didn't allow for scaling out of the cluster to a very large size
without performance issues.

Chapter 3

[65]

The following diagram shows the high-level difference between MRv1 and MRv2:

HADOOP 1.0

MapReduce
(cluster resource management

& data processing)

HDFS
(redundant, reliable storage)

HADOOP 2.0

MapReduce
(data processing)

Others
(data processing)

YARN
(cluster resource management)

HDFS
(redundant, reliable storage)

How does YARN work?
The following diagram shows the MapReduce 2.0 (YARN) framework architecture:

Resource
Manager

Node
Manager

Container App Mstr

Client

Client

Node
Manager

Node
Manager

App Mstr Container

Container Container

MapReduce Status

Job Submission

Node Status

Resource Request

Apache Hadoop

[66]

As the official documentation states, the fundamental idea of MRv2 is to split
up the two major functionalities of the JobTracker, resource management and
job scheduling/monitoring, into separate daemons. The idea is to have a global
ResourceManager and per-application ApplicationMaster. An application is either a
single job in the classical sense of MapReduce jobs or directed acyclic graphs (DAG)
of jobs.

YARN consists of the following major entities:

• A global ResourceManager
• A per-application ApplicationMaster
• A per-node NodeManager
• A per-application Container running on NodeManager

ResourceManager
The ResourceManager (RM) is the ultimate authority on allocation of resources
among all the applications in the system.

It has two main components:

• Scheduler: This is responsible for allocating required resources to various
running applications according to various constraints of need and available
capacity. It performs no monitoring or tracking of application status, and is
hence a pure scheduler. It performs scheduling based on the abstract notion
of a resource Container that incorporates elements such as memory, CPU,
disk, and network, among others; as of now, only memory is supported.

• ApplicationsManager: This is responsible for accepting job submissions and
making sure that it gets a Container to launch an ApplicationMaster for the
submitted job, which would be specific to the submitted job application. It
also takes care of restarting the Container, which has the ApplicationMaster.

NodeManager
NodeManager, along with ResourceManager, forms the data computation
framework. It is basically a reporter that reports the usage of resource capacity
(CPU, memory, disk, and network) by the containers on the node it runs.

ApplicationMaster
Every application has its own instance of ApplicationMaster (AM). It has the
responsibility of negotiating the required resources from ResourceManager. It
also works with one or more NodeManagers to execute and monitor tasks.

Chapter 3

[67]

Container
A Container represents a successful resource allocation from ResourceManager. A
Container grants rights to an application for usage of a specific amount of resources
on a specific host. Now, it's the responsibility of ApplicationMaster to present the
Container to the NodeManager of the node for which the Container has been allotted
and acquired access to the resources.

The benefits of having YARN in the Hadoop backyard:
• Enhanced scalability: Having a dedicated ResourceManager

focusing exclusively on scheduling, it can manage a large cluster
with much ease.

• Improved cluster utilization: ResourceManager is a pure
scheduler that optimizes cluster utilization according to
various criteria such as capacity guarantees and fairness
in resource allocation.

• Allowed support for processing engines other than MapReduce:
Additional programming models such as graph processing and
iterative modeling are now possible to be plugged-in in place of
MapReduce for data processing.

So, now YARN takes the distributed resource management and scheduling
capabilities that were in MapReduce 1.x and packages them into a separate module
altogether so that these capabilities can be used by new processing engines. This
also enables the MapReduce project to now focus and grow further into its core
functionality, that is, to efficiently process distributed data—leaving the cluster
resource management responsibilities with YARN.

If you have already created applications on MRv1 and want to use MRv2, don't be
discouraged, as MRv2 maintains backward API compatibility with the previous
stable release (MRv1). This means that all MapReduce jobs should still run
unchanged on top of MRv2 with just a recompile.

Apache Hadoop as a platform
Apache Hadoop is generally also referred to as a family of Hadoop-related projects.
It is also commonly known as Hadoop Ecosystem. This includes some of the
datastores created on top of HDFS and some having created abstraction layers
on top of Hadoop MapReduce.

Apache Hadoop

[68]

Right now, as listed on Apache Hadoop's official website, the following projects are
part of this family:

• Ambari: A web-based management tool for Hadoop clusters
• Avro: A data serialization system
• Cassandra: A scalable multimaster datastore capable of storing large datasets
• Chukwa: A distributed data collection engine
• HBase: A scalable, distributed database
• Hive: A data warehouse engine built on top of Hadoop MapReduce with

SQL such as ad hoc querying
• Mahout: A scalable machine learning library built on top of

Hadoop MapReduce
• Pig: A high-level programming language providing an abstraction

over Hadoop
• Spark: A fast and general engine for large-scale data processing
• Tez: A generalized dataflow programming framework, built on

Hadoop YARN
• ZooKeeper: A high-performance coordination service for distributed

applications

Let's now discuss two of the most popular projects of the Hadoop family in brief.

Apache Pig
Pig is a high-level programming language that runs over Hadoop. It was originally
designed and developed by Yahoo! in 2006 and later on moved to Apache in 2007.
The motive behind designing Pig was to allow the developers to focus more on
analyzing the problem statement involving large datasets and spend less time
writing the MapReduce jobs.

Pig comprises of two components: one is the scripting language, PigLatin, and
the other one is the runtime environment where the script executes. PigLatin is a
dataflow language describing how the data will be transformed at different stages.
On runtime, the operations in the PigLatin script are converted to the series of
MapReduce jobs, which are run by the Hadoop clusters. Although Pig has limited
defined operators, we can extend and write our own functions, categorized as the
User Defined Functions (UDFs).

Chapter 3

[69]

Pig has gained tremendous popularity, especially in the field of research. It helps
researchers to create the best working prototype by providing a quick benchmark
for their analysis or algorithms. Pig, with its services such as ETL Data Pipelines, has
also proved to be very useful in cases where there is a requirement for iterative data
processing and data analysis.

Apache Hive
Hive is a powerful data warehouse package that is built on top of Hadoop. It
helps keep analysts and developers busy accessing Hadoop Data, hence justifying
the name "Hive". Since Pig was a new framework and required more efforts in
grasping the same, Hive was developed by Facebook for the SQL developers
to take advantage of Hadoop without any additional learning.

Hive allows users to explore, structure, and analyze the data stored in the Hadoop
clusters by writing in Hive Query Language (HQL), which is mainly inspired by
SQL. Like SQL, you can exploit the HQL in various forms such as through command
line (Hive Shell) or even a database client known as Hive Thrift, which can easily
be integrated with the other programming languages. Even JDBC or ODBC drivers
allow playing with Hive data. Each HQL query is broken down into a series of
MapReduce jobs that run over Hadoop clusters.

As Hive runs over Hadoop, it has several limitations as well. Due to the high latency
time for the queries, they cannot be used in real-time systems. It doesn't support
row-level insertion, deletion, and update operations. However, despite these limited
features, it is a very useful tool in the field of text mining, collaborative filtering,
predictive modeling, and even document indexing.

If you know SQL, Hive will look familiar to you. However, you have to rely on
Hive optimizer to optimize your queries. While Pig requires more verbose coding,
it provides you more control over optimization and dataflow than Hive does.

Summary
In this chapter, we learned about the components of Apache Hadoop in detail, along
with their architecture. We also saw the major enhancement brought into Hadoop
in the form of YARN and how it opens up many possibilities for Apache Hadoop
to be used as the underlying engine for distributed computing by various different
programming layers in place of MapReduce.

We will now move on to discovering Amazon Elastic MapReduce in greater depth in
our next chapter, learning to program on Hadoop and executing the same on EMR.

Amazon EMR – Hadoop on
Amazon Web Services

The goal of this chapter is to introduce you to AWS Elastic MapReduce (EMR)
and show its advantages over in-house Hadoop clusters.

Traditionally, very few companies had access to large-scale infrastructure to build
Big Data applications. However, cloud computing has democratized the access
to infrastructure allowing developers and companies to quickly perform new
experiments without worrying about the need for setting up or scaling infrastructure.

As we have seen in Chapter 1, Amazon Web Services, a cloud provides an infrastructure
as a service platform to allow businesses to build applications and host them reliably
with scalable infrastructure. It includes a variety of application-level services to help
developers to accelerate their development and deployment times. Amazon EMR is
one of the hosted services provided by AWS and is built on top of a scalable AWS
infrastructure to build Big Data applications.

What is AWS EMR?
Amazon EMR provides a hosted Hadoop, Pig, Hive, and HBase services for
developers and businesses to help them build Big Data applications without
worrying about the deployment complexity or managing Hadoop clusters with
underlying infrastructure. Many improvements have been made into the open
source Apache Hadoop and other applications in order to make them interact
seamlessly with other AWS services.

Amazon EMR – Hadoop on Amazon Web Services

[72]

Features of EMR
Let's now discuss some of the key features of EMR, most of which come with EMR
being a service provided over cloud infrastructure. These are the features that are
hard to achieve on an in-house local cluster:

• Ease of use: EMR provides a hosted Hadoop service without worrying about
deployment complexity or configuration challenges. We can use multiple
Hadoop distributions and third-party libraries with EMR. We can easily
integrate EMR with other AWS services such as S3, DynamoDB, Redshift,
CloudWatch, and many more.

• Elasticity: EMR allows you to scale up and scale down the nodes in a
Hadoop cluster without worrying about underlying infrastructure. You can
easily launch a cluster with a few nodes or thousands of nodes in a matter
of minutes.

• Scalable storage: You can use AWS S3 as a filesystem with EMR, which is
scalable to petabytes of storage. We don't need to worry about managing
the filesystem for our applications or underlying failures of disks. You can
be rest assured about not losing your data if you use S3 as the final output
location of your Hadoop tasks.

• Cost effective: EMR allows us to leverage their spot pricing for EMR to
build large-scale clusters at a lower cost. With EMR, we can quickly launch
a five-node cluster to analyze data for a few hours at the cost of less than $1.
It also gives you the ability to start with a small number of nodes and
increase them on the fly when the need arises. For example, you might want
to speed up the process or when after completion of a small task, you want to
process another task using the same cluster that needs more nodes to finish
within a stipulated time. This effectively reduces your cost.

• Configurable: EMR provides a custom bootstrapping capability to override
default configurations or packages. You have complete control over the
cluster and can get root access to underlying instances in the EMR cluster
to make any required changes. It's also easy to use various third-party tools
with EMR as AWS provides configuration and customization options. You
can also use monitoring tools such as Ganglia along with your EMR cluster.

• Programmable: This is one feature of AWS that makes it easy to build
custom application layers on top of its services. EMR provides API and
client SDK to programmatically create and manage clusters. You can
programmatically increase or decrease the existing cluster to leverage AWS
spot pricing to reduce your costs. You can monitor your running jobs and
raise alerts such as e-mails by writing an application using APIs and SDKs
provided by AWS.

Chapter 4

[73]

Before accessing the EMR service from Amazon, you will need to
subscribe to it from the AWS web console. Once you have subscribed
to the EMR service, you can use the AWS web console, API SDK, or
CLI tools to launch and manage EMR clusters.

We will learn about this in more detail in Chapter 6, Executing Hadoop Jobs on an
Amazon EMR Cluster, where we will launch an EMR cluster via the AWS console.

Accessing Amazon EMR features
Once you have subscribed to the AWS EMR service, it can be accessed in
multiple ways:

• Web console: This is a web interface to access all AWS offerings. You can
use the EMR section within the web console to launch EMR jobs and manage
them.

• SDK: EMR provides SDKs that have functions to access EMR features using
popular languages such as Java, Python, .NET, and many more. You can
launch, manage, or customize EMR clusters using SDK.

• CLI tool: This is a client-side tool that can be installed on your computer to
access EMR services and manage the jobs via command line. This is a client
written in Ruby. We will read about it in detail in Chapter 8, Amazon EMR –
Command-line Interface Client.

• WebService API: Amazon provides low-level API access to EMR features for
custom integration or to build a specific toolkit for your business needs.

Programming on AWS EMR
Hadoop allows you to write programs using a variety of languages such as C++,
Java, Python, Ruby, PHP, Perl, Node.js, R, Hive, and Pig Latin. You can refer to
the AWS EMR documentation at http://aws.amazon.com/articles/Elastic-
MapReduce for sample applications.

http://aws.amazon.com/articles/Elastic-MapReduce
http://aws.amazon.com/articles/Elastic-MapReduce

Amazon EMR – Hadoop on Amazon Web Services

[74]

Let's now discuss the various ways in which you can program your solutions
over Amazon EMR. When you add a job step to be executed on an EMR cluster,
you will have to choose from the following options. This will let EMR know your
programming choice and accordingly set up the execution environment:

• Custom JAR: For programmers familiar with the Java language, Hadoop
supports writing applications using Custom JAR in Java. For writing Hadoop
applications using Custom JAR, we need to be familiar with MapReduce
APIs and Java programming. It allows customization of the underlying
functionalities as they are exposed as APIs for programmers to override
the default behavior. We can also use the cascading Java library.

If you are comfortable with Java as a programming language, then going
for the custom JAR way of creating a solution is always recommended.
Using Java gives you much more control over the various functions as
Apache Hadoop is written in Java and you can override and customize
many default behaviors to suit your requirements.

• Streaming Hadoop: EMR supports the usage of Hadoop streaming to
write MapReduce jobs quickly using any scripting language. You can write
jobs using Ruby, PHP, or Python without worrying about the underlying
Hadoop APIs. However, using Hadoop streaming limits you to only being
a user of the APIs while creating your solutions. You should use this way
of programming as a solution over EMR when you don't have familiarity
with Java and also when you have relatively less time to create a solution,
when a scripting language such as Python or Ruby with minimal codes
is a better choice.

• Apache Hive: Amazon EMR supports Hive to allow developers or business
analysts to quickly write applications using a familiar SQL style syntax. A
Hive query is broken down into multiple MapReduce tasks and executed.
According to Apache Hive's official website, hive.apache.org:

"The Apache HiveTM data warehouse software facilitates querying
and managing large datasets residing in distributed storage. Hive
provides a mechanism to project structure onto this data and query
the data using a SQL-like language called HiveQL. At the same time
this language also allows traditional map/reduce programmers to
plug in their custom mappers and reducers when it is inconvenient or
inefficient to express this logic in HiveQL."

hive.apache.org

Chapter 4

[75]

So, if you are someone who is more comfortable with SQLs and aren't
very familiar with programming languages, this should be your choice
of programming your Big Data solutions on EMR.

• Apache Pig: Pig is a high-level scripting language for writing data analysis
applications over a large volume of data. Pig has a compiler which in turn
translates Pig jobs into MapReduce programs by abstracting the complexity
from end users.

The EMR architecture
Let's get familiar with the EMR architecture and concepts before we get to writing
a Hadoop program and executing that using EMR. This section outlines the key
concepts of EMR.

Hadoop offers distributed processing by using the MapReduce framework for
execution of tasks on a set of servers or compute nodes (also known as a cluster).
One of the nodes in the Hadoop cluster will be controlling the distribution of tasks
to other nodes and it's called the Master Node. The nodes executing the tasks using
MapReduce are called Slave Nodes:

Master
Node

Slave
Node

Slave
Node

Slave
Node

Slave
Node

Amazon EMR is designed to work with many other AWS services such as S3 for
input/output data storage, DynamoDB, and Redshift for output data. EMR uses
AWS CloudWatch metrics to monitor the cluster performance and raise notifications
for user-specified alarms. We can create on-demand Hadoop clusters using EMR
while storing the input and output data in S3 without worrying about managing a
24*7 cluster or HDFS for data storage.

Amazon EMR – Hadoop on Amazon Web Services

[76]

The Amazon EMR job flow is shown in the following diagram:

Input data

Output results

Amazon CloudWatch

Amazon EMR Job Flow

Amazon EC2 Instance
M

et
ric

s

Amazon Simple
Storage Service

(S3)

The Amazon EMR job flow
runs on a cluster of
Amazon EC2 Instances

AWS

Types of nodes
Amazon EMR provides three different roles for the servers or nodes in the cluster
and they map to the Hadoop roles of master and slave nodes. When you create an
EMR cluster, then it's called a Job Flow, which has been created to execute a set of
jobs or job steps one after the other. We will learn more about Job Flows and Steps
in a later section. The following are the types of nodes:

• Master node: This node controls and manages the cluster. It distributes the
MapReduce tasks to nodes in the cluster and monitors the status of task
execution. Every EMR cluster will have only one master node in a master
instance group.

• Core nodes: These nodes will execute MapReduce tasks and provide HDFS
for storing the data related to task execution. The EMR cluster will have core
nodes as part of it in a core instance group. The core node is related to the
slave node in Hadoop. So, basically these nodes have two-fold responsibility:
the first one is to execute the map and reduce tasks allocated by the master
and the second is to hold the data blocks.

Chapter 4

[77]

• Task nodes: These nodes are used for only MapReduce task execution and
they are optional while launching the EMR cluster. The task node is related
to the slave node in Hadoop and is part of a task instance group in EMR.

When you scale down your clusters, you cannot remove any core nodes.
This is because EMR doesn't want to let you lose your data blocks. You
can remove nodes from a task group while scaling down your cluster.
You should also be using only task instance groups to have spot
instances, as spot instances can be taken away as per your bid price and
you would not want to lose your data blocks.

You can launch a cluster having just one node, that is, with just one master node and
no other nodes. In that case, the same node will act as both master and core nodes.
For simplicity, you can assume a node as EC2 server in EMR.

EMR Job Flow and Steps
A Job Flow is a user-defined action for executing a set of related Job Steps using an
EMR cluster. A MapReduce program will be referred to as a Job Step in EMR and it
can be written using one of the approaches specified in the Programming on AWS
EMR section.

A Job Flow typically consists of one or more Job Steps, where output from one Job
Step becomes an input to the next Job Step with data being shared across Job Steps
using HDFS. The data will be stored in HDFS as long as the EMR cluster is running
and, upon termination, the data will be lost. So, if we are running transient clusters,
then the final Job Step should store the output data in a S3 bucket.

When you are creating a Job Flow with multiple Job Steps, then each of those Job
Steps will be executed in the sequential order of their addition to the Job Flow.
The maximum number of Job Steps in an EMR cluster is 256; however, this may
change in the future.

Job Steps
A Job Step is a unit of work and it can be an application of one of the following types:

• Custom JAR
• A streaming program
• A Hive program
• A Pig program

Amazon EMR – Hadoop on Amazon Web Services

[78]

Each Job Step will be executed one or more times until it succeeds or fails.

Let's say we want to perform web access log processing using EMR to understand
top URLs, HTTP status codes, IP addresses, and so on. Then, we will create a Job
Flow with multiple Job Steps as outlined in the following bullet list to do different
tasks, all in sequence. Each step is like a logical successor to the previous one and
requires the previous one to have completed successfully:

• Job Step 1: This provides access and cleans the input logs
• Job Step 2: This analyzes the logs after cleaning by URL, HTTP status code,

and IP address
• Job Step 3: This creates summary reports based on URLs, HTTP status codes,

or IP addresses

At any given point of time in the life cycle of a Job Step, it will have one of the
following states:

• RUNNING
• COMPLETED
• PENDING
• FAILED
• CANCELLED

In an EMR cluster, you can track the status of each Job Step in a Job Flow using
WebConsole or CLI tools.

What if the Job Step fails?
Generally, if one of the Job Steps fails, then all the subsequent pending Job Steps
should be marked with the CANCELLED state. However, EMR lets you control
this as well; you can set the action to be performed if the step fails.
This can be done while adding a Job Step.

EMR provides the following three choices:

• Continue: If you are creating a Job Flow which has disjointed Job Steps,
that is, a Job Flow in which it is alright to execute a step even if the previous
one has failed, then in that case, you should set Continue to be your action
on failure.

Chapter 4

[79]

• Cancel and wait: This will be the option you would choose most often. If
you want your cluster to cancel all the already added steps, which are in
the queue and are yet to be executed when one of the steps failed, then you
would set Cancel and wait to be your action on failure. If this behavior has
been set for a step, then after a step has failed and all the added steps are
cancelled, you can add fresh steps and their processing will start immediately
in the order of their execution.
Let's assume that you have three Job Steps and for all the steps, we have
selected Cancel and wait. Initially, the states for each step will be as follows:
Job Step1 – RUNNING
Job Step2 – PENDING
Job Step3 – PENDING

Now, say if Job Step1 fails, the states will be as follows:
Job Step1 – FAILED
Job Step2 – CANCELLED
Job Step3 – CANCELLED

Your cluster will be still running if you have launched your cluster with keep
alive enabled. You will then quickly find out the reason for the failure of step
1, fix it, and add the job steps again. Now, the Job steps list along with their
states will look as follows:

Job Step1 – FAILED
Job Step2 – CANCELLED
Job Step3 – CANCELLED
Job Step1 – RUNNING
Job Step2 – PENDING
Job Step3 – PENDING

• Terminate cluster: If you are creating a cluster, which isn't going to be
monitored actively and you do not want to either continue or cancel and
wait when one of the job steps fails, in that case, you should choose to set
Terminate cluster to be your action on failure.

www.allitebooks.com

http://www.allitebooks.org

Amazon EMR – Hadoop on Amazon Web Services

[80]

The following diagram illustrates the status of Job Steps in a typical Job Flow in EMR.

End
Processing

Steps

Process
Steps

Step 1
Completed

Step 2
Completed

Step 3
Running

Step 4
Pending

Step 5
Pending

Step N
Pending

An EMR cluster
The Job Steps of a Job Flow are executed using an EMR cluster. You can think of an
EMR cluster as a set of servers running on the AWS platform.

An EMR cluster may have one of the following states:

• STARTING
• BOOTSTRAPPING
• RUNNING
• WAITING
• SHUTTING_DOWN
• TERMINATED
• COMPLETED
• FAILED

Chapter 4

[81]

When we launch an EMR cluster, it will be in the STARTING state to
provision required master and slave nodes for the cluster. The next stage is
BOOTSTRAPPING, where user-defined actions are run on the cluster including any
required customizations or installation of software/packages/tools. After successful
completion of the BOOSTRAPPING state, the cluster will be in a RUNNING state
to execute the Job Flow with required Job Steps.

When a cluster terminates after successful completion of all Job Steps in a transient
cluster, it enters the SHUTTING_DOWN state to delete the data in HDFS and stop
servers. After successful shutdown, the cluster status changes to COMPLETED.
However, if termination protection is not enabled on the cluster, then any problem
or error encountered during cluster process will terminate the associated servers
and delete the data in HDFS with a cluster status of FAILED. When the user initiates
termination of the cluster, it first enters the SHUTTING_DOWN state and then on
successful termination, the status is changes to TERMINATED.

Keep alive
When launching an EMR cluster, you can specify whether it should be long running
or transient based on the needs. If you configure the EMR cluster to be long running,
then it will be in the WAITING state after successful completion or failure of Job
Steps. However, a transient EMR cluster will automatically terminate after successful
completion or failure of Job Steps.

Termination protection
This is one of the new features added by EMR. Enabling termination protection on
your EMR clusters lets you ensure that the nodes aren't terminated accidently from
the AWS console, by any API call, or by any CLI tool. You can use this feature when
you do not want to lose data present on your nodes, even accidently.

By default, termination protection is disabled for an EMR cluster. When termination
protection is enabled, you must explicitly remove the termination protection setting
from the AWS management console before you can terminate the cluster.

The keep alive and termination protection features are similar, but the
protections they provide are different. The keep alive feature ensures
that a cluster is kept running even after all the added job steps are
completed, but the cluster can be terminated via TerminateJobFlow
API call or on errors. With keep alive disabled, termination protection
lets the cluster terminate on successful completion of all steps, but it
does not allow the cluster to be terminated in case of any user action,
errors, or the TerminateJobFlow API call.

Amazon EMR – Hadoop on Amazon Web Services

[82]

The following diagram illustrates the EMR cluster's life cycle:

Launch Job Flow

STATE:
STARTING

Run Bootstrap
Actions

STATE:
BOOTSTRAPPING

Shut Down Cluster

STATE:
SHUTTING DOWN

Shut Down Cluster

STATE:
SHUTTING_DOWN

Shut Down Cluster

STATE:
SHUTTING_DOWN

Job Flow Failure

STATE:
FAILED

Job Flow
Terminated by User

STATE:
TERMINATED

Process Steps

STATE:
RUNNING

Job Flow
Completed

STATE:
COMPLETED

Job Flow
Configured
to Wait?

Job Flow
Waiting for
Instruction

STATE:
WAITING

NO

YES

Terminate
Add Step

Any Job Flow
Failure

Hadoop filesystem on EMR – S3 and HDFS
EMR supports using AWS S3 or HDFS as filesystems for the hosted Hadoop.
We can use S3 for input data to jobs and output data of the EMR cluster or mix it
with HDFS usage. However, if we use S3 to store the input data, then we can run
multiple clusters that are performing different jobs on the same dataset.

We can load the input data to jobs from S3 into HDFS for job execution and then
load the output data from HDFS into S3 for persistence if we terminate a cluster.
Amazon provides a toolkit to read or write data from HDFS to S3. It will be very
useful to transfer data when you want to migrate an existing cluster from the data
center to AWS.

If you have uploaded files to Amazon S3, they are stored using the S3
native filesystem (S3N). Earlier, it was required to have s3n:// in file
paths instead of s3:// for all files that you upload. Now on Amazon
EMR, both s3n:// and s3:// map to the S3 native filesystem.

EMR use cases
Amazon EMR can be used to build a variety of applications such as recommendation
engines, data analysis, log processing, event/clickstream analysis, data
transformations (ETL), fraud detection, scientific simulations, genomics, financial
analysis, or data correlation in various industries. The following section outlines
some of the use cases in detail.

Chapter 4

[83]

Web log processing
We can use EMR to process logs to understand the usage of content such as video, file
downloads, top web URLs accessed by end users, user consumption from different
parts of the world, and many more. We can process any web or mobile application logs
using EMR to understand specific business insights relevant for your business. We can
move all our web access application or mobile logs to Amazon S3 for analysis using
EMR even if we are not using AWS for running our production applications.

Clickstream analysis
By using clickstream analysis, we can segment users into different groups and
understand their behaviors with respect to advertisements or application usage. Ad
networks or advertisers can perform clickstream analysis on ad-impression logs to
deliver more effective campaigns or advertisements to end users. Reports generated
from this analysis can include various metrics such as source traffic distribution,
purchase funnel, lead source ROI, and abandoned carts among others.

Product recommendation engine
Recommendation engines can be built using EMR for e-commerce, retail, or web
businesses. Many of the e-commerce businesses have a large inventory of products
across different categories while regularly adding new products or categories. It
will be very difficult for end users to search and identify the products quickly. With
recommendation engines, we can help end users to quickly find relevant products
or suggest products based on what they are viewing and so on. We may also want
to notify users via an e-mail based on their past purchase behavior.

Scientific simulations
When you need distributed processing with large-scale infrastructure for scientific or
research simulations, EMR can be of great help. We can quickly launch large clusters
in a matter of minutes and install specific MapReduce programs for analysis using
EMR. AWS also offers genomics datasets for free on S3.

Data transformations
We can perform complex extract, transform, and load (ETL) processes using
EMR for either data analysis or data warehousing needs. It can be as simple as
transforming XML file data into JSON data for further usage or moving all financial
transaction records of a bank into a common date-time format for archiving
purposes. You can also use EMR to move data between different systems in
AWS such as DynamoDB, Redshift, S3, and many more.

Amazon EMR – Hadoop on Amazon Web Services

[84]

Summary
In this chapter, we learned about the Amazon EMR along with its features and
architecture. We understood the concepts related to EMR for various node types,
tasks, Job Flows, and Job Steps in detail. We discussed all the states of an EMR.
We also learned the various ways we can program our Big Data solutions on EMR.

In the next chapter, we will create our hello world solution using Hadoop
(custom JAR) and will get ready to launch a cluster on EMR.

Programming Hadoop on
Amazon EMR

We will now create a solution to the problem we discussed in Chapter 2, MapReduce,
using Hadoop 2.2.0. We will create the solution in Java, and by the end of this
chapter, you will have created a JAR with a solution and will have tested it locally
on a sample input data.

Hello World in Hadoop
Let's quickly recap the problem we discussed in Chapter 2, MapReduce.

Problem statement
Given access logs, you need to count the number of hits to your website
per country. The input access logs will be in the following form:

Date, Requesting-IP-Address(remote host)

We are going to create a solution for this problem in Java to be executed over
Hadoop 2.2.0. In Chapter 9, Hadoop Streaming and Advanced Hadoop Customizations,
we will see how we can use Hadoop streaming to create mapper and reducer even
in other languages such as Python and Ruby among others.

Development Environment Setup
We will use Hadoop 2.2.0. It requires Java 7 or later versions of Java 6
(Oracle 1.6.0_31). It is recommended that you use Java 7 (preferably Oracle Java).
You can refer to http://wiki.apache.org/hadoop/HadoopJavaVersions for
more information on available JREs for Hadoop.

http://wiki.apache.org/hadoop/HadoopJavaVersions

Programming Hadoop on Amazon EMR

[86]

We like to use Eclipse as our preferred IDE, you may use any other IDE as per
your choice. We also recommend you to use some flavor of Unix as the OS. We
are using Ubuntu.

Now, let's have a look at the step-by-step checklist for you to be ready to create your
first Hadoop MapReduce solution. We will assume the use of Eclipse as IDE.

Step 1 – Installing the Eclipse IDE
Confirm that you have one of the latest versions of either Eclipse IDE for Java
Developers or Eclipse Standard installed along with Java 7. You may follow the
instructions to install them from their official pages. You can get Eclipse from their
official download page at https://www.eclipse.org/downloads/.

Step 2 – Downloading Hadoop 2.2.0
The following substeps can be used to download Hadoop 2.2.0 distribution:

1. Go to the Apache Download Mirrors page for Apache Hadoop:
http://www.apache.org/dyn/closer.cgi/hadoop/common/.

2. After selecting your nearest mirror, you will be taken to a page which
should have a listing of Hadoop releases available for download.

3. Click on hadoop-2.2.0 from the listing.
4. Download hadoop-2.2.0.tar.gz.

Step 3 – Unzipping Hadoop Distribution
Unzip the downloaded tar.gz file, say to /<hadoop-2.2.0-base-path>.

We will not be setting up a single node cluster; if you want to set it up,
you can follow the instructions provided at http://hadoop.apache.
org/docs/r2.2.0/hadoop-project-dist/hadoop-common/
SingleCluster.html.

https://www.eclipse.org/downloads/
http://www.apache.org/dyn/closer.cgi/hadoop/common/
http://hadoop.apache.org/docs/r2.2.0/hadoop-project-dist/hadoop-common/SingleCluster.html
http://hadoop.apache.org/docs/r2.2.0/hadoop-project-dist/hadoop-common/SingleCluster.html
http://hadoop.apache.org/docs/r2.2.0/hadoop-project-dist/hadoop-common/SingleCluster.html

Chapter 5

[87]

Step 4 – Creating a new Java project in Eclipse
Start Eclipse and create a new Java project. Let's name it HadoopHelloWorld as
shown in the following screenshot:

Step 5 – Adding dependencies to the project
Add the following two JARs to your build path:

• hadoop-common-2.2.0.jar: This can be found in the unzipped directory at
/<hadoop-2.2.0-base-path>/share/hadoop/common/

• hadoop-mapreduce-client-core-2.2.0.jar: This can be found in the
unzipped directory at /<hadoop-2.2.0-base-path>/share/hadoop/
mapreduce/

As you can see, Hadoop now has most of its components available as separate
modules, so you only use what you need. The two libraries mentioned are required
to compile our code and it has most of the classes and utilities we need to create the
MapReduce solution for our problem.

Programming Hadoop on Amazon EMR

[88]

In order to add these external JARs to the build path in Hadoop, you have to perform
the following steps:

1. Add a folder named lib to the project created in Step 4 – Creating a new Java
project in Eclipse.

2. Copy the mentioned JARs in this folder.
3. Right-click on the project name in Package Explorer.
4. Select Build Path and then Configure Build Path.
5. Click on Add Jars, select our project HadoopHelloWorld and add these two

JARs from the lib folder.

After addition, your Java Build Path window should look like the following:

We are now ready to code.

Let's first create the following two packages which will host our classes:

• learning.bigdata.main: This will have our driver class
• learning.bigdata.mapreduce: This will have our mapper and reduce

implementations

Chapter 5

[89]

At this stage, your Package Explorer window should look like the following:

We will create the following three classes as part of our solution:

• learning.bigdata.mapreduce.HitsByCountryMapper: This will
be our mapper implementation that extends org.apache.hadoop.
mapreduce.Mapper

• learning.bigdata.mapreduce.HitsByCountryReducer: This will
be our reducer implementation that extends org.apache.hadoop.
mapreduce.Reducer

• learning.bigdata.main.HitsByCountry: This will be the driver class
that extends org.apache.hadoop.conf.Configured and implements
org.apache.hadoop.util.Tool

Mapper implementation
As discussed in Chapter 2, MapReduce, our mapper is going to process each line in the
input (simplified access log), find the country to which the IP address belongs, and
emit the key-value pair in the form of <Country, 1>.

Apache Hadoop provides a basic mapper implementation present in the form of an
org.apache.hadoop.mapreduce.Mapper class.

You just need to extend this class and override the required methods.

Programming Hadoop on Amazon EMR

[90]

The org.apache.hadoop.mapreduce.Mapper class has the following methods:

• setup

• map

• cleanup

• run

Setup
By default, this method is empty and is called once per map task at the beginning
before processing the input split. It should be overridden if any statement or set of
statements are required to be executed at the beginning of each map task.

It is defined in the Mapper class as follows:

protected void setup(Context context) throws IOException,
 InterruptedException {
 // This method is empty
 }

Map
In a default implementation, this method is called once for each key-value pair in the
input split. Most often, you will just be overriding the map function and provide the
custom implementation required, but the default is the identity function.

It is defined in the Mapper class as follows:
 protected void map(KEYIN key, VALUEIN value,
 Context context) throws IOException,
 InterruptedException {
 context.write((KEYOUT) key, (VALUEOUT) value);
 }

Cleanup
By default, this method is empty and is called once per map task at the end after
processing the input split and should be overridden if any statement or set of
statements are to be executed at the end of each map task.

It is defined in the Mapper class as follows:
protected void cleanup(Context context) throws IOException,
 InterruptedException {
 // This method is empty
 }

Chapter 5

[91]

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

Run
This is the actual method which is run internally. This method defines the order
in which the mentioned three methods are executed, so unless you absolutely
know what you are doing, you should not override this method in your mapper
implementations.

Overriding this method provides you complete control over execution of
the mapper.

It is defined in the Mapper class as follows:

public void run(Context context) throws IOException,
 InterruptedException {
 setup(context);
 try {
 while (context.nextKeyValue()) {
 map(context.getCurrentKey(), context.getCurrentValue(),
 context);
 }
 } finally {
 cleanup(context);
 }
 }

We are going to override only the map function for our solution. Let's create a class
named HitsByCountryMapper in the learning.bigdata.mapreduce package. Its
signature will be as follows:

public class HitsByCountryMapper extends Mapper<LongWritable,
 Text, Text, IntWritable> {
// map function implementation here along with any other utility
 methods
}

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support

Programming Hadoop on Amazon EMR

[92]

You may have noticed the four sets of Writable types mentioned as part of the
signature extending the Mapper class. The following displays how the Mapper
class signature looks:

public class Mapper<KEYIN, VALUEIN, KEYOUT, VALUEOUT> {
...
}

In our case, the input key is expected to be read into LongWritable and input value
is expected to be read into Text. The choice of these two data types depends on what
input format you are using, as the input format will read the data from the input split
and pass it on to the map method. In our case, we are going to use TextInputFormat
that generates keys of type LongWritable and values of type Text.

The mapper output key-value pair also needs its types to be defined. There also
needs to be an agreement over the types between mapper and reducer. That is, the
output key-value types of the mapper should match the input key-value pair of the
reducer. Also, these need to be defined in the driver class while creating the job. We
will see how this is done in the Driver implementation section.

In our case, since we want to emit a string (country name) and a count (value 1)
as our key and value respectively from our mapper, we have the mapper output
key-value types as Text and IntWritable.

Hence, combining all four in place of the following placeholders, we get the
following code:

<KEYIN, VALUEIN, KEYOUT, VALUEOUT>

We have the following writable types:

<LongWritable, Text, Text, IntWritable>

Create two properties within HitsByCountryMapper, which will hold the key and
value to be emitted by our map method. You just set the appropriate value to these
properties and emit them. This can be done as follows:

private Text outputKey = new Text();
private IntWritable outputValue = new IntWritable();

Let's now create our map method implementation. The signature of our map method
will be as follows:

@Override
public void map(LongWritable key, Text value, Context context)
 throws IOException, InterruptedException {
// process each access log line here
}

Chapter 5

[93]

You can see that the method parameters' types need to correspond to the mapper
input key and value types, that is, LongWritable and Text respectively.

TextInputFormat uses either linefeed or carriage-return to signal the end of a line
and reads the position in the file as key, and the line of text is read as value.

Hence, your single line of access log will come as value to the map method. You will
need to get the IP address from the input value and you can ignore the input key.
The value is expected to be in the following format:

Date, IP-Address

You can get the IP address simply by splitting the value, as shown in the
following code:

String valueString = value.toString();
String[] row = valueString.split(","); // Split the value string
 to get Date and ipAddress
String ipAddress = row[1]; // row[0]= Date and row[1]=ipAddress

Now, you need to get the country name to which this IP address belongs. Ideally,
we would use a commonly available database such as Geoip, which also provides
Java-based APIs to connect to its database file having IP to country mapping. In
the setup method, we can create the database reader and use that inside our map
method to convert an IP address to its corresponding country name. We will see
such implementation in Chapter 10, Use Case – Analyzing CloudFront Logs Using
Amazon EMR.

For now, we will create a method that will emit fake country names, but
will do that consistently. So, you can create a simple implementation named
getCountryNameFromIpAddress, which would take the IP address as a parameter
and return a country name, as shown in the following code:

private final static String[] COUNTRIES = { "India", "UK", "US",
 "China" };
private static String getCountryNameFromIpAddress(String
 ipAddress) {
 if (ipAddress != null && !ipAddress.isEmpty()) {
 int randomIndex = Math.abs(ipAddress.hashCode()) %
 COUNTRIES.length;
 return COUNTRIES[randomIndex];
 }
 return null;
}

Programming Hadoop on Amazon EMR

[94]

You can now use this method in the map method to get the country name. This can be
done as follows:

String countryName = getCountryNameFromIpAddress(ipAddress);

At last, you will just set the outputKey and outputValue properties and write them
into the context variable, which is passed on to the map method along with the input
key and value, as follows:

outputKey.set(countryName);
outputValue.set(1);
context.write(outputKey, outputValue);

Finally, we have the complete mapper implementation as follows:

public class HitsByCountryMapper extends Mapper<LongWritable,
 Text, Text, IntWritable> {

 private final static String[] COUNTRIES = { "India", "UK", "US",
 "China" };
 private Text outputKey = new Text();
 private IntWritable outputValue = new IntWritable();

 @Override
 public void map(LongWritable key, Text value, Context context)
 throws IOException, InterruptedException {

 // 'value' is expected to have one line from input file
 // It is expected to be in the following format:
 // Date, ipAddress
 try {
 String valueString = value.toString();

 // Split the value string to get Date and ipAddress
 String[] row = valueString.split(",");

 // row[0]= Date and row[1]=ipAddress
 String ipAddress = row[1];

 // Get the country name to which the ipAddress belongs
 String countryName = getCountryNameFromIpAddress(ipAddress);
 outputKey.set(countryName);
 outputValue.set(1);
 context.write(outputKey, outputValue);

 } catch (ArrayIndexOutOfBoundsException ex) {
 context.getCounter("Custom counters",
 "MAPPER_EXCEPTION_COUNTER").increment(1);

Chapter 5

[95]

 ex.printStackTrace();
 }
 }

 /**
 * This method is just for testing purposes and does not return
 the correct country for a given IP Address.
 * It just returns one of the countries from { "India", "UK",
 "US", "China" }, on the basis of ipAddress.hashCode()
 *
 * @param ipAddress
 * @return The country name.
 */
 private static String getCountryNameFromIpAddress(String
 ipAddress) {

 if (ipAddress != null && !ipAddress.isEmpty()) {
 int randomIndex = Math.abs(ipAddress.hashCode()) %
 COUNTRIES.length;
 return COUNTRIES[randomIndex];
 }
 return null;
 }
}

You may have seen one additional detail in there at the end of the map
method, that is, you can have a global counter that Hadoop helps to aggregate
across all map and reduce tasks. In our case, we are creating our custom
counter named MAPPER_EXCEPTION_COUNTER and it is incremented when an
ArrayIndexOutOfBoundsException is caught. This can happen when we have
a corrupted access log line in our input. Having such a global counter may help
us know how many corrupt lines were present in our input data and decide
accordingly whether it is within a tolerable limit or whether some appropriate
action needs to be undertaken.

You can get an instance of a Counter object from the context object. The
getCounter method, which we are using here takes in two parameters:
a counter group name and the counter name.

Using the increment method of the Counter class, you can increment the counter
accordingly. In our case, within the catch block, we have the following statement
incrementing the counter:

context.getCounter("Custom counters",
 "MAPPER_EXCEPTION_COUNTER").increment(1);

Let's now move on to our reducer implementation.

Programming Hadoop on Amazon EMR

[96]

Reducer implementation
As discussed in Chapter 2, MapReduce, our reducer is going to receive input in the
form of <Country, [1,1,1,1,...,1]> and it will sum the values, which will
represent the number of hits from that country.

Apache Hadoop provides a basic reducer implementation present in the form of an
org.apache.hadoop.mapreduce.Reducer class.

You just need to extend this class and override the required methods.

The org.apache.hadoop.mapreduce.Reducer class also has methods similar to that
of the Mapper class and instead of the map method, there is a reduce method. The
setup and cleanup methods serve the same purpose as they do in the Mapper class.

Let's see the reduce and run methods as present in the Reducer class.

Reduce
In default implementation, this method is called once for each unique key emitted
from the mapper. Most often, you will just be overriding the reduce function
and providing the custom implementation as required, but the default is the
identity function.

It is defined in the Reducer class as follows:

protected void reduce(KEYIN key, Iterable<VALUEIN> values,
 Context context
) throws IOException, InterruptedException
 {
 for(VALUEIN value: values) {
 context.write((KEYOUT) key, (VALUEOUT) value);
 }
 }

Run
Same as it is in the Mapper class, this is the actual method which runs internally.
This can be overridden in order to control how a reduce task works. But precautions
should be taken while overriding this method and it should not be overridden unless
you know exactly what you are doing.

Chapter 5

[97]

It is defined in the Reducer class as follows:

public void run(Context context) throws IOException,
 InterruptedException {
 setup(context);
 try {
 while (context.nextKey()) {
 reduce(context.getCurrentKey(), context.getValues(),
 context);
 // If a back up store is used, reset it
 Iterator<VALUEIN> iter = context.getValues().iterator();
 if(iter instanceof ReduceContext.ValueIterator) {
 ((ReduceContext.ValueIterator<VALUEIN>)iter).
resetBackupStore();
 }
 }
 } finally {
 cleanup(context);
 }
 }

We are going to override only the reduce function for our solution.

Let's create a class named HitsByCountryReducer in the learning.bigdata.
mapreduce package.

Its signature will be as follows:

public class HitsByCountryReducer extends Reducer<Text,
 IntWritable, Text, IntWritable> {
// reduce function implementation here
}

As you can see, the input key-value pair types is consistent with the mapper
output key-value pair types. The reducer output key-value pair types are Text and
IntWritable for key and value respectively. Our output will have the key as the
country name, a string; hence, we have Text as our output key type. The value we
will have is going to be a sum; hence, IntWritable. If you expect your hits count
to be large enough not to be accommodated as an integer, you may use other types
such as LongWritable in place of IntWritable.

First, in the Reducer class, let's declare the required outputKey and outputValue
along with a variable that will hold the sum count. This part will be as follows:

private Text outputKey = new Text();
private IntWritable outputValue = new IntWritable();
private int count = 0;

Programming Hadoop on Amazon EMR

[98]

Let's now create our reduce method implementation. The signature of our reduce
method will be as follows:

@Override
protected void reduce(Text key, Iterable<IntWritable> values,
 Context context) throws IOException,
 InterruptedException {
// process each unique key emitted from Mapper, basically, process
 every country name
}

You can see that the types of method parameters need to correspond to the mapper's
output key and value types, that is, Text and IntWritable respectively. The reduce
method receives a key and an Iterable object to iterate over the list of values. It also
receives a context object.

The task we need to perform in the reduce method is very simple; we just need to
find the sum of all the occurrences of a country name. This can be done as follows
within the reduce method:

count=0;
Iterator<IntWritable> iterator = values.iterator();
while (iterator.hasNext()) {
 IntWritable value = iterator.next();
 count += value.get();
}

The count variable is reinitialized to 0 so that the count might not be carried to the
processing of the next key, that is, the next country name.

Now, you just need to set the output key to be the same as what has been received
by the reduce method, that is, the country name. The output value will be the count.
This can be done as follows:

outputKey.set(key);
outputValue.set(count);
context.write(outputKey, outputValue);

The following is how your complete reducer implementation should look:

public class HitsByCountryReducer extends Reducer<Text,
 IntWritable, Text, IntWritable> {

 private Text outputKey = new Text();
 private IntWritable outputValue = new IntWritable();
 private int count = 0;

Chapter 5

[99]

 protected void reduce(Text key, Iterable<IntWritable> values,
 Context context) throws IOException,
 InterruptedException {

 count = 0;
 Iterator<IntWritable> iterator = values.iterator();
 while (iterator.hasNext()) {
 IntWritable value = iterator.next();
 count += value.get();
 }
 outputKey.set(key);
 outputValue.set(count);
 context.write(outputKey, outputValue);
 }
}

Driver implementation
The driver class is the one which has the main method and provides the place where
the Hadoop job is created and its mapper and reducer along with a bunch of other
configurations and settings are declared. The job is initiated from here itself.

We will name this class HitsByCountry and let's create this class inside the
learning.bigdata.main package. Your driver class should have the following
signature:

public class HitsByCountry extends Configured implements Tool {
 // Here we will have the main method as well as the
 overridden implementation of run method
}

The driver class extends the Configured class and implements the Tool interface.
There are many Hadoop configurations you can set in the driver class while
creating a job. For example, you can set the number of reducers using the
mapred.reduce.tasks configuration and you can set the separator between the
key and value you will have in your reducer output while using TextOutputFormat
with mapred.textoutputformat.separator as the configuration name, and
so on. Inside your driver class, you can create an object of the org.apache.hadoop.
conf.Configuration class and set a particular Hadoop configuration in the
following fashion:

Configuration conf = new Configuration();
conf.set("mapred.textoutputformat.separator", ",");

Programming Hadoop on Amazon EMR

[100]

Also, what if you need to change this configuration on the fly, that is, after the JAR
has been created, or what if you need to test various values of the same configuration
parameter? If you are going to have the configuration parameters set explicitly inside
the driver class, each time you will need to change the value, recompile it, and build
a new JAR. That's just painful and a waste of time.

By extending the Configured class along with implementing the Tool
interface, we get the liberty to use the Configured class's setConf()
method and pass these Hadoop configurations via command line while
executing our jobs. These configurations can be provided as command-
line arguments along with -D. For example, it can be as follows:

-D mapred.reduce.tasks=2 <comma separated input paths>
<output path>

It should be noted that these command-line arguments should be placed
at the beginning, followed by actual job arguments. It internally uses
GenericOptionsParser to separate out the Hadoop configuration parameters
from other actual job parameters such as the input and output paths.

We will use the ToolRunner's static method, run, to launch our job. This method
expects an implementation of the Tool interface, which our driver class itself is and
a String array of arguments. Now it's the responsibility of this class to segregate the
actual job parameters and Hadoop configurations along with other generic options
such as -libjars and -files among others. This means that the args variable in
our main method will receive all the command-line parameters but the args variable
in our overridden run method will only receive the actual job parameters as if only
these were provided to the job. If you are confused, it will all become clear in a while,
let's have a look at how our main method should look:

public static void main(String[] args) throws Exception {
 if (args.length < 2) {
 System.out.println("Usage: HitsByCountry <comma separated
 input directories> <output dir>");
 System.exit(-1);
 }
 int result = ToolRunner.run(new HitsByCountry(), args);
 System.exit(result);
}

As you can see, the code in our main method is straightforward and minimal,
thanks to Tool and Configured. In the first few lines, we have just made sure that
a minimal number of arguments are received by the application, that is, one comma
separated list of input paths and one path to the output directory.

Chapter 5

[101]

At this point, it would be prudent to mention that Hadoop
expects that the output path you are going to mention does
not exist; otherwise, it would complain that the file already
exists.

Now, let's see how our run method will be implemented. Its signature is as follows:

@Override
public int run(String[] args) throws Exception {
// Here you will have code to create a job, launch it and wait for
 its completion
}

First, inside the run method, you will get an object of the Configuration class using
the getConf() method of the Configured class that our driver is extending from.
Also, using that object of Configuration, you can get the instance of the Job class,
as shown in the following code:

Configuration conf = getConf();
Job job = Job.getInstance(conf);

Since Hadoop Version 2, using the constructor of the Job
class has been deprecated, and instead you should use the
getInstance(Configuration conf) factory method
to get an instance of the Job class.

Next, you need to set the job name by which your job can be identified:

job.setJobName("Calculating hits by country");

The next thing you need to do is specify a class name, using which the Hadoop job
can decide which JAR should be passed on to the worker nodes in order to perform
the map and reduce tasks. Basically, you need to provide a class that will identify the
JAR in which the mapper and reducer implementations are present. This is required
as your implementation might have more than one JAR in its class path. It is also
possible that your driver class might reside in a different JAR than that of your
mapper and reducer implementations. Also, you should at least make sure that both
the mapper and reducer implementations are present in the same JAR. In our case,
all of our implementations including our driver class are going to be a part of the
same JAR; hence, we can use our driver class itself, as follows:

job.setJarByClass(HitsByCountry.class);

Programming Hadoop on Amazon EMR

[102]

Next, you will need to declare your mapper and reducer implementations to take up
the job. You will also need to provide the output key class and output value class for
both mapper and reducer implementations.

In our case, these steps can be done by using the following set of statements:

job.setMapperClass(HitsByCountryMapper.class);
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(IntWritable.class);

job.setReducerClass(HitsByCountryReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);

You will notice that we need not provide the input key and value
classes for either mapper or reducer. The input types for the mapper
are decided by the input format you will use, while the input types
for the reducer are determined by the output types of mapper.

Now, you will set the input and output formats for the job. We will use
TextInputFormat and TextOutputFormat respectively. Hadoop does provide
many other predefined input and output formats, and you can even override the
base classes and create custom formats, as follows:

job.setInputFormatClass(TextInputFormat.class);
job.setOutputFormatClass(TextOutputFormat.class);

We are almost done. You just need to add the input paths and the output path as
received via the command-line arguments.

As explained earlier, even if the command-line arguments submitted while executing
the job have generic options having Hadoop configurations among others, the actual
job parameters that are passed after the generic options will be received by the run
method in the original order.

Consider that your job was executed as follows:

$hadoop jar hits-by-country.jar -D
mapred.textoutputformat.separator=,
/home/awesome-hadoop/input/file1.csv home/awesome-hadoop/output/

Your main method would receive all the arguments and the configuration to set the
TextOutputFormat separator to be a comma instead of the default tab, but your run
method will only receive the following:

/home/awesome-hadoop/input/file1.csv home/awesome-hadoop/output/

Chapter 5

[103]

Hence, args[0] will have the input path(s) and args[1] will have the output path.
You can set the input paths and the output path as follows:

FileInputFormat.setInputPaths(job, args[0]);
FileOutputFormat.setOutputPath(job, new Path(args[1]));

One last thing you need to do now is to launch the job and wait for its completion.
We will use the job object's waitForCompletion() method to do just that:

boolean success = job.waitForCompletion(true);

The full implementation of your driver class will look as follows:

public class HitsByCountry extends Configured implements Tool {

 private static final String JOB_NAME = "Calculating hits by
 country";

 public static void main(String[] args) throws Exception {

 if (args.length < 2) {
 System.out.println("Usage: HitsByCountry <comma separated
 input directories> <output dir>");
 System.exit(-1);
 }

 int result = ToolRunner.run(new HitsByCountry(), args);
 System.exit(result);
 }

 @Override
 public int run(String[] args) throws Exception {
 Configuration conf = getConf();
 Job job = Job.getInstance(conf);

 job.setJarByClass(HitsByCountry.class);
 job.setJobName(JOB_NAME);

 job.setMapperClass(HitsByCountryMapper.class);
 job.setMapOutputKeyClass(Text.class);
 job.setMapOutputValueClass(IntWritable.class);
 job.setReducerClass(HitsByCountryReducer.class);
 job.setOutputKeyClass(Text.class);
 job.setOutputValueClass(IntWritable.class);

Programming Hadoop on Amazon EMR

[104]

 job.setInputFormatClass(TextInputFormat.class);
 job.setOutputFormatClass(TextOutputFormat.class);

 FileInputFormat.setInputPaths(job, args[0]);
 FileOutputFormat.setOutputPath(job, new Path(args[1]));

 boolean success = job.waitForCompletion(true);
 return success ? 0 : 1;
 }
}

That's all. You are done creating your Hello World in Hadoop. We will now create
the JAR and test it locally once before we go ahead and launch an EMR cluster and
execute this solution here.

Building a JAR
Now, you need to create the runnable JAR to be provided to Hadoop. There are
other ways to create a JAR; however, since we are using Eclipse, we will export
a JAR from here itself.

Follow these steps to export a JAR:

1. In the Package Explorer window, right-click on the project name
(HadoopHelloWorld) and click on Export.

2. Select Java and then JAR file from the list and click on Next.
3. Provide the path you want your JAR to be created at, which will also include

the JAR name. You may name it hits-by-country.jar. Leave other options
in their default state and click on Next.

4. Leave the default option on the JAR packaging options section and click
on Next.

5. In the JAR Manifest Specification section, in the bottom, specify the
Main class.

6. Click on Browse and select our driver class (HitsByCountry) from the list.
Click on OK and then click on Finish.

7. That's all, your JAR should be exported successfully. Let's assume that you
have exported your JAR in the following path: /<test-base-path>/bin/
hits-by-country.jar.

Chapter 5

[105]

Executing the solution locally
Now, let's try to execute this solution locally. You should ensure that the JAVA_HOME
environment variable has been properly set.

We already have a JAR ready with us, what we need is a sample input file to run our
local test over; you can create a sample input file with random dates and random
IP addresses in the following form:

2014-05-01,180.166.24.11
2014-05-02,113.57.188.101
...
2014-05-06,183.22.251.177
2014-05-06,180.166.24.11
2014-05-07,180.166.24.11
2014-05-07,223.87.29.14

Let's assume that you have created this file at the following path:

/<test-base-path>/input/sample.csv

In order to test the correctness of your MapReduce code, you need not set up a local
cluster, you can run hadoop as any other command/script. In order to do that, let's
first go to the location where we had downloaded and unzipped the hadoop-2.2.0
distribution in an earlier section.

Make sure that JAVA_HOME is set appropriately, or alternatively, open <hadoop-
2.2.0-base-path>/etc/hadoop/hadoop-env.sh.

You will see the following line in here:

export JAVA_HOME=${JAVA_HOME}

You can edit this line to have the required path as follows:

export JAVA_HOME=/usr/lib/jvm/java-7-oracle/

Now, let's move to the directory where we have the hadoop executable:

$ cd /<hadoop-2.2.0-base-path>/bin

Execute our JAR with the following command, making sure that the output folder
doesn't already exist:

$ hadoop jar /<test-base-path>/bin/hits-by-country.jar -D
mapred.textoutputformat.separator=,
/<test-base-path>/input/sample.csv /<test-base-path>/output/try1/

Programming Hadoop on Amazon EMR

[106]

Your job should execute successfully and at the end, it should have something
similar to that shown in the following command:

14/06/10 04:34:46 INFO mapreduce.Job: map 100% reduce 100%

14/06/10 04:34:46 INFO mapreduce.Job: Job job_local1362926395_0001
completed successfully

14/06/10 04:34:46 INFO mapreduce.Job: Counters: 27

 File System Counters

 FILE: Number of bytes read=7901699

 FILE: Number of bytes written=8202415

 FILE: Number of read operations=0

 FILE: Number of large read operations=0

 FILE: Number of write operations=0

 Map-Reduce Framework

 Map input records=3526

 Map output records=3526

 Map output bytes=30565

 Map output materialized bytes=37623

 Input split bytes=134

 Combine input records=0

 Combine output records=0

 Reduce input groups=4

 Reduce shuffle bytes=0

 Reduce input records=3526

 Reduce output records=4

 Spilled Records=7052

 Shuffled Maps =0

 Failed Shuffles=0

 Merged Map outputs=0

 GC time elapsed (ms)=5

 CPU time spent (ms)=0

 Physical memory (bytes) snapshot=0

 Virtual memory (bytes) snapshot=0

 Total committed heap usage (bytes)=384696320

 File Input Format Counters

 Bytes Read=90244

 File Output Format Counters

 Bytes Written=47

Chapter 5

[107]

Verifying the output
On a successful execution, you should have the output files created in the output
directory you had mentioned as an argument while executing:

$ ls /<test-base-path>/output/try1/

part-r-00000 _SUCCESS

You can see that there is a file named part-r-00000; this is the naming convention
followed by Hadoop wherein each reducer writes an output file. So if we had two
reducers, we will get two output files, namely, part-r-00000 and part-r-00001.

Now, let's check out what output we have got:

$ cat /<test-base-path>/output/try1/part-r-00000

China,819

India,1142

UK,633

US,932

There you go, you have a number of hits per country in your output. Also, since
we had used a dummy method that emits only one of the four country names,
we have all of them in the preceding output. You might get some other hit counts
value per country, depending on your sample input data and your implementation
of getCountryNameFromIpAddress(ipAddress).

Summary
We created a solution to a very simple counting problem and we aptly called it
Hello World in Hadoop. We went through all the components you would have
in a Hadoop MapReduce implementation in Java.

Now, we are all set to launch a cluster on EMR and test this simple solution that
we created. In our next chapter, we will start with the creation of a S3 bucket and
uploading the solution .jar file as well as the sample input file, and then follow it by
launching an EMR cluster, which would execute our solution. On its completion, we
will download the output and check it out. We will also learn the various Hadoop
job models available on EMR.

Executing Hadoop Jobs on
an Amazon EMR Cluster

In this chapter, we will now see how to launch an EMR cluster via the AWS
management console. We will then execute the solution that we created in the
previous chapter in this cluster. Out of various ways to program a solution on EMR,
as we saw in Chapter 4, Amazon EMR – Hadoop on Amazon Web Services, we chose the
custom JAR technique, and we will use the JAR we created in the previous chapter.

Before you go ahead and launch your EMR cluster, you will need to make sure that
the following two things are taken care of:

• You need to have an EC2 key pair. If you do not have it, you can get it
generated from your AWS management console. You will need this to SSH
into the master node of the EMR cluster.

• You need to upload the input files and the custom JAR we created in Chapter
4, Amazon EMR – Hadoop on Amazon Web Services, to Amazon S3. EMR will
fetch the input as well as the program to be executed (a JAR file) by the
cluster from S3.

Creating an EC2 key pair
If you already have an EC2 key pair that you have generated while launching an
EC2 machine, you can use this while launching the EMR cluster. Also, if you do not
have it, you need not worry as you can generate it with a few clicks on the AWS
management console.

Executing Hadoop Jobs on an Amazon EMR Cluster

[110]

Perform the following steps to generate an EC2 key value pair:

1. Log in to your AWS management console and go to the EC2 Dashboard
by navigating to Services | All AWS Services | EC2. Also from the
top-right corner, select the region for which you want this EC2 key
pair to be generated.

2. From the left-hand side navigation pane, click on Key Pairs; you can find this
in the NETWORK & SECURITY section.

3. Click on Create Key Pair; you will have a pop up as follows:

4. You should key in an appropriate name for the key pair, and click on Create.
This will create the key pair and the private key file will be automatically
downloaded by the browser. It will be a PEM file for you to use while
connecting to the EC2 machines or EMR clusters created with this key pair.
The filename will have the base name the same as the key pair name you
gave it in the previous step and the extension will be .pem. For example, if
you have created the key pair with the name learning_bigdata_emr, the
filename would be learning_bigdata_emr.pem.

Amazon uses public key cryptography, which uses a public
key to encrypt data, and the recipient uses a private key
to decrypt the data. This set of public and private keys
are called a key pair. The .pem file is the private key. You
should store this .pem file in a safe location because if you
lose it, there is no way for you to get this same key pair
generated again. AWS doesn't store this private key.

Chapter 6

[111]

5. If you are using an SSH client on Linux/Mac to connect to your master
node, you will need to provide the appropriate permission to the .pem file
restricting the permissions so that only you can read it. Considering that your
key pair file name is learning_bigdata_emr.pem, this can be done by the
following command:
$ chmod 400 learning_bigdata_emr.pem

Your key pair is now ready to be used to launch an EC2 machine or the EMR cluster.

Creating a S3 bucket for input data
and JAR
You will need to create an Amazon S3 bucket to hold the following four things:

• Input file(s)
• The custom JAR executable
• Output file(s)
• Hadoop job's logfiles generated by the EMR cluster

Perform the following steps to create a S3 bucket and upload the custom JAR we
have created, and also upload the sample input file on which we have executed this
locally in the previous chapter:

1. Log in to your AWS management console and go to the EC2 Dashboard
by navigating to Services | All AWS Services | S3. S3 doesn't require
region selection.

2. Click on Create Bucket and provide a suitable name for the bucket. Let's say
you named your bucket learning-bigdata. It is to be kept in mind that S3
bucket names are unique globally, so your bucket name will be allowed only
if no other bucket exists with the same name.
At this point, your browser screen will look as follows:

Executing Hadoop Jobs on an Amazon EMR Cluster

[112]

3. Create an appropriate folder structure inside the bucket. Click on Create
Folder and create a folder named HadoopHelloWorld. Now, click on the
newly created folder name and within that folder create three more folders;
one each for input files, binaries (JAR), and output files. You can also create
the folder for EMR logs; but if you don't, EMR will create it for you. Now,
your browser screen will look as follows:

4. Click on the folder named input, and then click on Upload. A pop up
comes up with options to upload files. Click on Add Files to open up the
file browser. Select the input file(s). In our case, select the sample input file
named sample1.csv as used in the previous chapter.
Let's now look at the browser screen which will look as follows:

Chapter 6

[113]

5. Now, click on Start Upload. Follow the instructions to upload the JAR file in
the bin folder.

Now, we are all set to launch an EMR cluster to execute our Hello World solution
created in the previous chapter.

How to launch an EMR cluster
The following are the tools provided by AWS to launch an EMR cluster:

• AWS management console
• CLI tools
• SDKs available for a range of programming languages

In this chapter, we will use the first method, that is, we will launch an EMR cluster
from the AWS management console. You will get to know about the second method
in Chapter 8, Amazon EMR – Command-line Interface Client, which would take up the
command-line tool available to be used with EMR.

Perform the following steps to launch an EMR cluster and add the Job Step
to execute our HadoopHelloWorld problem.

Step 1 – Opening the Elastic MapReduce
dashboard
Log in to your AWS management console and go to the EMR Dashboard by
navigating to Services | All AWS Services | Elastic MapReduce. From the top-right
corner, select the region in which you want your cluster to be launched. Also make
sure that you have an EC2 key pair generated for this region.

Step 2 – Creating an EMR cluster
Click on Create Cluster. This will open up a page, wherein you can configure the
cluster and provide various other parameters along with bootstrap actions and add
Job Steps to be executed by this cluster.

Executing Hadoop Jobs on an Amazon EMR Cluster

[114]

Step 3 – The cluster configuration
Create the cluster configuration. The following very basic configurations are set in
this section:

• Cluster name: You should give any suitable name to the cluster.
• Termination protection: As we discussed in Chapter 4, Amazon

EMR – Hadoop on Amazon Web Services, by enabling termination protection,
your clusters will be prevented from accidental terminations. Also, with
this feature enabled to terminate the cluster, you must turn it off from your
AWS management console.

• Logging: A cluster generates several types of logs. These include step logs,
Hadoop logs, bootstrap action logs, and instance state logs, among others.
By default, these logs are stored in the master node. By enabling logging, you
can configure periodic archiving of these logs from the master node to S3.

• Log folder S3 location: If you enable logging, you need to provide the
location on one of your S3 buckets where EMR will archive the logs.

• Debugging: EMR provides a clean user interface to browse the log files from
the console. If you enable debugging on a cluster, in addition to archiving the
log files to S3, it indexes those files. You can browse the step, job, task, and
task attempt logs for the cluster.
The following screenshot shows a sample cluster configuration:

Chapter 6

[115]

Step 4 – Tagging an EMR cluster
You may add up to 10 tags to your EMR cluster. Basically, these tags will be attached
with the EC2 machines that will be launched as part of the cluster. Let's add a tag
having a key as EMR and value as HadoopHelloWorld-Test, as shown in the
following screenshot:

Step 5 – The software configuration
In this step, you need to decide which Hadoop distribution you want to use.
Currently, these are the following two options:

• Amazon's Hadoop distribution
• MapR's Hadoop distribution

We will use the Amazon's Hadoop distribution. It is based on Apache Hadoop and
has patches and improvements added to it in order to make it work more efficiently
within the AWS environment and communicate better with other AWS services.

Amazon EMR provides you with multiple versions of Hadoop to choose from.
Amazon keeps on updating this list with the latest releases of Apache Hadoop. You
need to select the AMI version as per the Hadoop version you want to launch your
cluster with. As discussed in the previous chapter, we have created our solution to
work on Hadoop 2.2.0; hence, let's select 3.0.4 (hadoop 2.2.0) from the dropdown, as
shown in the following screenshot:

Executing Hadoop Jobs on an Amazon EMR Cluster

[116]

You may notice that Hive and Pig are by default added to be installed on the cluster.
Remove them as we only need to have a Hadoop distribution installed on our
cluster. Remove these two by clicking on the cross sign to the right of each row,
as shown in the following screenshot:

Step 6 – The hardware configuration
In this step, you need to set the networking and hardware configuration for your
cluster. Here you need to specify a number and type of EC2 instances you want
your cluster to start with.

The following configuration can be set in this section.

Network
If you are processing sensitive data, you can choose to launch your cluster within an
AWS VPC (Virtual Private Cloud). For the purpose of our Hello World solution test,
let's leave this option to have the default value of Launch into EC2-classic.

EC2 availability zone
Within the selected region on which you are launching the cluster, you have the
option to choose the availability zone in which you want your cluster to be launched.
Let's leave the default option of No preference selected. You may select any
availability zone of your choice.

EC2 instance(s) configurations
You have to decide on the instance type, count, and whether you want to use spot
instances or not. As we have discussed in Chapter 4, Amazon EMR – Hadoop on
Amazon Web Services, EMR provides the following three different groups of instances:

• Master
• Core
• Task

Chapter 6

[117]

Using the AWS management console, the smallest type of instance that can be
selected as Master is m1.medium. For the purpose of our test, let's have master as
m1.medium. As our test is not going to process huge amounts of data, you should
have no machine in Core and Task groups, that is, have their count should be set
as 0. Your settings should look like the following screenshot:

You may also request spot instances for each instance group, but spot instances can
be taken away from you if the average market price goes up more than that of your
bid price. Hence, it is not recommended to use spot instances as the master node.
Also, it is advised that you should have a small percentage of on-demand instances
for the Core group. For the rest of the nodes, use spot instances and keep them as
part of the Task group.

Step 7 – Security and access
In this section, you need to select the EC2 key pair that we created earlier. Using this
key pair, you can SSH into the master node of your cluster:

As in the previous screenshot, leave other values to default in this section.

You can also provide one or more bootstrap actions, which are scripts that are
executed by EMR on every node before setting up Hadoop on them. Let's skip the
section on bootstrap actions for now; we will learn about this in our next chapter.

Executing Hadoop Jobs on an Amazon EMR Cluster

[118]

Step 8 – Adding Job Steps
As we discussed in Chapter 4, Amazon EMR – Hadoop on Amazon Web Services, you can
add Job Steps to your EMR cluster, and EMR executes them one by one in sequential
order in the order these Job Steps were submitted. Your Job Step can be one of the
following five options provided by EMR right now:

• Custom JAR
• Streaming program
• Hive program
• Pig program
• Impala program

You will select Custom JAR as we are going to execute the custom JAR we have
created in the previous chapter:

Now, click on Configure and add. A pop up will be shown to you that can configure
your job step. The following four parameters can be configured here:

• Name of the step: You should provide an appropriate name for this Job Step.
Let's keep it HadoopHelloWorld Test.

• S3 location of your JAR file: This is the key in the S3 location of the JAR
file where you have uploaded your custom JAR, as discussed in our earlier
section. It should resemble something like s3://learning-bigdata/
HadoopHelloWorld/bin/hits-by-country.jar.

• Arguments to your JAR: This is an optional field. Here you will provide the
arguments for the custom JAR; the same arguments that we had passed to
our custom JAR while executing it locally in the previous chapter. You can
have the following value:
-D mapred.textoutputformat.separator=, s3://learning-bigdata/
HadoopHelloWorld/input/sample1.csv s3://learning-bigdata/
HadoopHelloWorld/output/1/

Chapter 6

[119]

• Action that EMR should take on the failure of your step: The default
value for this parameter is to continue executing other jobs in the queue. As
discussed in Chapter 4, Amazon EMR – Hadoop on Amazon Web Services, you
might want to change the parameter to Cancel and wait if you have jobs
dependent on the previous job's success.

After filling all these details for the Job Step, you will have something similar to what
is shown in the following screenshot:

Now, click on Add to add your Job Step.

One last configuration you have to do is to decide whether you want your cluster
to be automatically terminated after the Job Step is completed. For now, it is
recommended to select No and keep the cluster running until you explicitly
terminate it. This is to allow you to add more steps and test various other things.
Also, what if the Job Step fails? You should have the chance to correct it and add
another step. Anyway, this test step will be finished within a few minutes and AWS
bills per hour, so you can keep the cluster up for at least an hour, as shown in the
following screenshot:

You are all set to create your cluster now. Click on Create cluster on the right-bottom
corner to create the cluster with the configurations you have done till now.

Executing Hadoop Jobs on an Amazon EMR Cluster

[120]

Your cluster will be launched and you will be taken to the Cluster Details page
of the newly launched cluster. It may take up to 5 minutes for your cluster to
bootstrap itself.

As we have discussed in Chapter 4, Amazon EMR – Hadoop on Amazon Web Services,
a launched cluster will go through a set of states. You can see the current state
of the cluster at the top, just beside the cluster name. You may notice the state
transition of your cluster from Starting to Bootstrapping to Running, as shown
in the following screenshot:

Your Job Step should be completed within a couple of minutes. You can check out
the collapsible Steps section. You can see two Job Steps: the one that you had added
and the other one that was added by EMR to set up Hadoop debugging.

When you click on View logs for your Job Steps, the following four types of logs can
be viewed to the right of the AWS management console:

• controller: This log file has the information about the processing of this
particular step. If your step fails while loading, you can find the stack trace
in this log. For example, if your JAR file's path is incorrect or your output
directory already exists, these kinds of logs can be found in this file.

• syslog: This log has the description of the execution of Hadoop jobs in
the step.

• stderr: This contains the output to the standard error channel of Hadoop
while it processes the step.

• stdout: This contains the output to the standard output channel of Hadoop
while it processes the step.

Chapter 6

[121]

At this point, your Job Steps section should look as follows:

If you want, you can try to execute this same JAR over other input files or add any
of your other solutions as a Job Step. But if you are done with it, do not forget to
terminate the cluster.

Do not forget to terminate your cluster.

In order to terminate your cluster, click on Terminate, as shown in the
following screenshot:

You will be prompted with a confirmation message stating the following:

Are you sure you want to terminate this cluster?

Any pending work or data residing on the cluster will be lost, such as data stored
in HDFS. This action is irreversible.

If you are sure that no job is running on the cluster and that you are done with
testing and playing around with this cluster, you can click on Terminate on the
pop-up confirmation box.

Executing Hadoop Jobs on an Amazon EMR Cluster

[122]

Viewing results
Now that we have successfully executed our HadoopHelloWorld Job Step on EMR,
we should check out the output.

You should log in to your AWS management console and go to the S3 dashboard.
Here, you will browse to the output location you had given in the arguments while
adding the Job Step to the cluster.

You should see two files being created in your output location, as shown in the
following screenshot:

Hadoop's MapReduce runtime creates a _SUCCESS file in the output directory on the
successful completion of a job. This is useful as it makes it easy for applications that
are going to consume this output to decide that the complete result set is present or it
will wait.

Also, the second file you see there is named part-r-00000. The output files are
named as part-x-yyyyy, where:

• x is either m or r, depending on whether the output is written directly from
a mapper (by a map-only job) or a reducer.

• yyyyy is the mapper or reducer task number.
• Now, you should select part-r-00000 and navigate to Actions | Download.

Open this file in your favorite editor. You should find the output as follows:
China,819

India,1142

UK,633

US,932

• This is the same output we saw in the previous chapter where we executed
it locally.

Chapter 6

[123]

Summary
We have successfully launched an EMR cluster and executed the HadoopHelloWorld
solution we created in the previous chapter. We also learned how to create an EC2
key pair and how to upload files to S3.

You can connect to the master node via SSH using the EC2 key pair. You can open
an SSH tunnel to the master, and by coupling that with browser proxy tools or
plugins, you can even access websites such as the web view of the NameNode and
the ResourceManager that are hosted on the master node. We will learn about all
these in our next chapter along with some of the advanced configurations you can
do while launching an EMR cluster.

Amazon EMR – Cluster
Management

In this chapter, we will learn about EMR cluster management including different
mechanisms for managing EMR clusters, troubleshooting, and performance
tuning. We will look at how you can connect to the master node of an EMR cluster
along with learning how to access the various web views provided by Hadoop.
We will also become familiar with accessing different logs provided by EMR for
troubleshooting and debugging purposes.

EMR cluster management – different
methods
Amazon EMR provides a hosted Hadoop, Pig, Hive, and Hbase services for
developers and businesses to help them build Big Data applications without
worrying about the deployment complexity or managing Hadoop clusters with
scalable underlying infrastructure. We have learned the benefits of Amazon EMR
in Chapter 4, Amazon EMR – Hadoop on Amazon Web Services. In this section, we
will look at the different ways of managing an Amazon EMR cluster.

We can access the AWS EMR service using multiple ways as listed:

• Web console (AWS management console): This is a web interface to access
all Amazon Web Service offerings. It can be used to launch EMR jobs and
manage them. The AWS management console is an easy-to-use interface for
developers who are not very familiar with using command-line interface
(CLI) or programmatic SDK. We saw how to use the AWS management
console to launch an EMR cluster in Chapter 6, Executing Hadoop Jobs on an
Amazon EMR Cluster.

Amazon EMR – Cluster Management

[126]

• AWS SDK: This SDK provides functions to access EMR features using
popular languages such as Java, Python, .NET, and many more. We can
launch, manage, or customize EMR clusters using SDK.

• CLI tools: These are client-side tools, which can be installed on your
computer to access EMR services and manage jobs. They are very useful
while building automated jobs for launching EMR clusters or terminating
them on a need basis using scripted automation.

We will see how to use the CLI tools provided by AWS to
launch, monitor, and manage an EMR cluster in Chapter 8,
Amazon EMR – Command-line Interface Client.

• WebService API: Amazon provides low-level API access to EMR features
for custom integration or building a specific toolkit for your business needs.
This will be useful for programmatic integration into your existing product
or application.

The following table compares the functionalities of the Amazon EMR interfaces:

Feature Console CLI API, SDK,
and libraries

Launch multiple clusters Yes Yes Yes
Define bootstrap actions in a cluster Yes Yes Yes
View logs for Hadoop jobs, tasks and task attempts
using a graphical interface Yes

Implement Hadoop data processing
programmatically Yes

Monitor clusters in real time Yes
Provide verbose cluster details Yes Yes
Resize running clusters Yes Yes Yes
Run clusters with multiple steps Yes Yes
Specify the MapReduce executable in multiple
computer languages Yes Yes Yes

Transfer data to and from Amazon S3 automatically Yes Yes Yes
Terminate clusters in real time Yes Yes

Chapter 7

[127]

EMR bootstrap actions
Suppose you want some specific software installed on the machines executing your
Hadoop jobs, or if you want to tweak some of the default Hadoop configurations,
EMR bootstrap actions will help you perform these tasks.

Amazon EMR provides a mechanism to customize the installation and configuration
of Hadoop clusters using bootstrap actions. A bootstrap action is a script that will be
run on the cluster before Hadoop starts and a node is ready for data processing.

EMR provides certain default bootstrap actions like Hadoop configuration
customization, so you can tweak or tune the default Hadoop parameters of
their cluster. However, you can create custom bootstrap actions based on
your requirements.

We need to store the bootstrap actions in the S3 bucket and one cluster can have up
to 16 bootstrap actions. They will be executed in the order of their assignment while
launching the cluster.

If a bootstrap action script returns a nonzero error code,
then EMR considers it to be a failure and will terminate the
entire cluster. However, if only a few nodes return an error
while executing the bootstrap action, then AWS EMR will
try to launch replacement instances in the cluster.

We can add bootstrap actions from the AWS management console, CLI, or
EMR SDK.

When you launch an EMR cluster from the management console, you will have the
following five options while adding a bootstrap action:

• Configure Hadoop
• Configure daemons
• Memory intensive configuration
• Run if
• Custom action

Amazon EMR – Cluster Management

[128]

These options are shown in the following screenshot:

Every bootstrap action is ultimately a program/script that should be located
somewhere in S3, which your clusters can access and execute on your behalf while
launching an EMR cluster. As you can see from the list of options EMR provides
for bootstrap action, in addition for you to add a custom action, it also has a set of
predefined bootstrap actions which you can use. Each bootstrap action also takes a list
of arguments that depends on the bootstrap program as well as your requirements.

Let's take a look at each one of these options.

Configuring Hadoop
This bootstrap option allows you to customize Hadoop configurations for an
entire cluster. The program (script) for this is located at s3://elasticmapreduce/
bootstrap-actions/configure-hadoop.

You can either provide the XML file having Hadoop configurations overriding the
existing default configuration files or you can just set a key-value pair for some
specific Hadoop configurations. In accordance with this, there are two type of
arguments this script accepts:

• --keyword-config-file: You can specify a S3 or local location of a Hadoop
configuration file. It merges the default configurations with the configuration
you have provided in your XML configuration file. This file should be a valid
Hadoop configuration file.

• --keyword-key-value: Using this option, you can override specific
key-value pairs in the default Hadoop configurations.

Chapter 7

[129]

There are many categories in which Hadoop configurations are divided and each
of them is specified in a separate XML configuration file. The --keyword portion
of the options denotes which category of configuration you are specifying. The
following table shows the list of these configuration types and the file in which
these configurations are expected to be:

Configuration file
name

--keyword File name
shortcut

Key-value pair
shortcut

core-site.xml core C c

hdfs-site.xml hdfs H h

mapred-site.xml mapred M m

yarn-site.xml yarn Y y

So, if you want to override any configurations in the mapred-site.xml file, and
assuming that your configuration file is located at s3://myCustomConfig/mapred-
site.xml, your arguments will look like one of the following:

• --mapred-config-file s3://myCustomConfig/mapred-site.xml

• -M s3://myCustomConfig/mapred-site.xml

You can also provide a key-value pair along with a file; in this case, if any
configuration is repeated, then the later one will override the earlier ones.

For example, let's assume that your configuration file has the following entry:

<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
<configuration>
 <property>
 <name>mapred.child.java.opts</name>
 <value>-Xmx256m</value>
 </property>
</configuration>

You provide the following argument to your Configure Hadoop bootstrap action:

-M s3://myCustomConfig/mapred-site.xml –m mapred.child.java.opts
'-Xmx512m'

In this case, the setting in the file will be overridden by the key-pair provided after
you set up the same configuration in the configuration file.

Amazon EMR – Cluster Management

[130]

So, if you want to configure Hadoop while launching an EMR cluster, in the
bootstrap actions section, you will choose the Configure Hadoop option and click
on Configure and add. You will get a popup where you can provide the location of
your configuration file and/or the configuration key-value pairs, as shown in the
following screenshot:

Configuring daemons
There are many daemons which collectively form the entire execution system
of Hadoop. This bootstrap action allows you to configure the heap size or other
advanced JVM options for these Hadoop daemons. The program (script) for this is
located at s3://elasticmapreduce/bootstrap-actions/configure-daemons.

There are three types of arguments this script expects:

• --daemon-heap-size: This allows you to set the heap size in megabytes for
the specified daemon

• --daemon-opts: This allows you to set additional Java options for the
specified daemon

• --replace: This allows you to replace the existing hadoop-user-env.sh file

The --daemon portion of these options denotes the daemon for which the
configuration is to be applied. The following table lists the daemons for
Hadoop-1.x and Hadoop-2.x:

Hadoop 1.x Hadoop 2.x
namenode namenode

datanode datanode

Chapter 7

[131]

Hadoop 1.x Hadoop 2.x
jotracker resourcemanager

tasktracker nodemanager

client client

Say you want to provide the cluster's namenode a heap size of 1 GB (1024 MB)
and want it to use parallel GC, you can use this bootstrap action with the
following arguments:

--namenode-heap-size=1024 --namenode-opts="-XX:-UseParallelGC"

The --client-heap-size option does not work with
Hadoop-1.x. If you want to set the heap size to 1024 MB, you
need to use –-client-opts="-Xmx1024".

Run if
EMR holds node settings in the instance.json file and cluster configuration in
job-flow.json. It provides you with a predefined bootstrap action using which
you can run a command conditionally when any value you provide is present in
instance.json or in job-flow.json.

The command you specify can also be a file on S3 that EMR can download and
execute. Let's say that you have a script at s3://myCustomCommand/command.sh
that you want to execute only on the master node. You can use this bootstrap action
with the following arguments:

instance.isMaster=true s3://myCustomCommand/command.sh

The following table lists the parameters present in the node settings file,
instance.json:

Parameter Hadoop version
isMaster 1.x, 2.x
isRunningNameNode 1.x, 2.x
isRunningDataNode 1.x, 2.x
isRunningJobTracker 1.x, 2.x
isRunningTaskTracker 1.x, 2.x
isRunningResourceManager 2.x
isRunningNodeManager 2.x

Amazon EMR – Cluster Management

[132]

All the parameters are self-explanatory. They are all of Boolean type and either have
true or false as their value.

The following table lists the parameters present in the cluster configuration file,
job-flow.json:

Parameter Type Description
JobFlowID String The job flow ID of the cluster
jobFlowCreationInstant Long The time when a cluster was created
instanceCount Integer Number of nodes in an instance group
masterInstanceID String The ID of the master node
masterPrivateDnsName String The private DNS of the master node
masterInstanceType String The instance type of the master node
slaveInstanceType String The instance type of the slave node
HadoopVersion String The Hadoop version running on the cluster
instanceGroups This is a list of objects having the details of

each of the instance groups in the cluster

Additionally, each entry in the list of values for instanceGroups has the
following details:

• instanceGroupId

• instanceGroupName

• instanceRole (this can be one of Master, Core, or Task)
• instanceType

• requestedInstanceCount

Memory-intensive configuration
EMR has a predefined bootstrap action that configures your cluster to take
on memory-intensive workloads. It takes the instance types in your cluster
into consideration and accordingly sets the following Hadoop variables
(from hadoop-user-env.sh) and configurations:

• HADOOP_JOBTRACKER_HEAPSIZE

• HADOOP_NAMENODE_HEAPSIZE

• HADOOP_TASKTRACKER_HEAPSIZE

• HADOOP_DATANODE_HEAPSIZE

• mapred.child.java.opts

Chapter 7

[133]

• mapred.tasktracker.map.tasks.maximum

• mapred.tasktracker.reduce.tasks.maximum

You might not need to use this bootstrap action because from AMI
2.0.0 and later, the memory-intensive settings are set by default. If
you do not need memory-intensive configurations, then you can
use the Configure Hadoop and/or Configure daemon actions to
tune your cluster's configurations accordingly.

Custom action
You can have any custom script executed as a bootstrap action. You just need to
provide the valid S3 location of your script. Additionally, you can also specify
arguments accepted by your script, if any.

Say, you have your custom bootstrap script at s3://myCustomAction/action.
sh and it accepts two arguments, you would add it as shown in the following
screenshot:

You can use custom bootstrap actions to install third-party
software such as Ganglia for monitoring the cluster performance.
The location for the script to install and set up Ganglia is s3://
elasticmapreduce/bootstrap-actions/install-ganglia.
It does not accept any argument.

Amazon EMR – Cluster Management

[134]

EMR cluster monitoring and
troubleshooting
We can use one of the tools (web console, CLI, SDK, or API) to get EMR cluster
details in AWS. The web console displays all of the clusters you've launched in the
past two weeks (both active and terminated).

We have seen in the previous chapter that if you click on a cluster name, then the
web console displays a Details pane with information about that cluster. As we will
see in our next chapter, we can also find the details about a cluster from the CLI
using the --describe argument along with a Job Flow ID.

EMR cluster logging
Amazon EMR and Hadoop both generate logfiles as the cluster begins execution.
You can access these logfiles from several different tools, depending on the
configuration specified when we launch the cluster.

Every cluster publishes log files to the /mnt/var/log/ directory on the master
node. These logfiles are only available while the cluster is running.

When you launch the cluster with an Amazon S3 log path, the cluster copies the
logfiles stored in /mnt/var/log/ on the master node to the Amazon S3 bucket
location in five-minute intervals. This ensures that you have access to the logfiles
even after the cluster is terminated.

We have seen earlier that EMR cluster generates multiple logfiles that can be
accessed when the cluster is in the active state. However, if you would like to persist
these logfiles for further analysis after cluster termination, then you need to launch
the cluster with logging enabled from the AWS web console or with the --log-uri
option from the EMR CLI toolkit. When you enable persistent logging for the EMR
cluster, it requires the location of the S3 bucket for storing cluster logs.

The following sections describe the different types of logfiles generated by an
EMR cluster.

Hadoop logs
These are the standard logfiles generated by Apache Hadoop and stored in
/mnt/var/log/hadoop/ on the master node. They contain information about
Hadoop jobs, MapReduce tasks, and task attempts.

Chapter 7

[135]

Bootstrap action logs
When an EMR cluster is launched with bootstrap actions, the execution of bootstrap
action are logged. These logfiles are stored in /mnt/var/log/bootstrap-actions/
on the master node of the cluster. If we have multiple bootstrap actions, then each
action logs its results in a separate subdirectory such as /mnt/var/log/bootstrap-
actions/1/ for the first bootstrap action, /mnt/var/log/bootstrap-actions/2/
for the second bootstrap action, and likewise.

Job Step logs
These logs are generated by the Amazon EMR service for each of the Job Steps and
contain information about the cluster. These logfiles are stored in the /mnt/var/log/
hadoop/steps/ directory on the master node of the cluster. Each of the Job Steps
logs its results in a separate subdirectory such as /mnt/var/log/hadoop/steps/1/
for the first step, /mnt/var/log/hadoop/steps/2/ for the second step, and likewise.

Cluster instance state logs
These logs provide information about the system health metrics such as CPU,
memory, and garbage collector threads of the node. The logfiles are stored in
/mnt/var/log/instance-state/ on the master node. You can also access the
instance health metrics of an active cluster using the CloudWatch service.

Connecting to the master node
In order to connect to the master node of your EMR cluster via SSH, you need
two things:

• The master node's public DNS name, which you can get from the cluster
details on the AWS management console.

• The private key file for the EC2 key pair you had used while launching the
cluster. In Chapter 6, Executing Hadoop Jobs on an Amazon EMR Cluster, we
saw how to create and use an EC2 key pair while launching the cluster.

Connect to your cluster's master node using the following command:

ssh –i <path-to-private-key-file> hadoop@<master-public-DNS-name>

Amazon EMR – Cluster Management

[136]

For example, say, your private key file path is /home/user/keys/learning_
bigdata_emr.pem and your cluster's master has the DNS name as ec2-108-22-
59-61.compute-1.amazonaws.com, then you would SSH to your master using the
following command:

ssh –i /home/user/keys/learning_bigdata_emr.pem hadoop@ec2-108-22-59-
61.compute-1.amazonaws.com

It should be noted that the path and master node's DNS name used in this example
are just imaginary and should be replaced by your actual data.

In order to provide SSH access to your master node while launching
your EMR cluster, you must add your external source IP for it to
be allowed to connect to the TCP port 22 (SSH). You can do this by
modifying the security group.

Websites hosted on the master node
Hadoop publishes web-based user interfaces. Ganglia (a monitoring application) and
other such applications also publish web interfaces. These are websites hosted on the
master node. Due to security reasons, these websites aren't open to the public and
can only be accessed via the local web server in the master node.

The following table lists the various web interfaces Hadoop provides:

Name of the interface URL Hadoop
version

ResourceManager http://<master-public-dns-name>:9026/ 2.x
HDFS NameNode http://<master-public-dns-name>:9101/ 1.x and 2.x
NodeManager http://<master-public-dns-name>:9035/ 2.x
JobTracker http://<master-public-dns-name>:9100/ 1.x
TaskTracker http://<master-public-dns-name>:9103/ 1.x

There are multiple ways you can access these websites:

• Connect to the master node via SSH and use a text-based web browser to
access these websites. You can use the Lynx text browser. If you are running
Hadoop 2.x, then you can view the web interface for the ResourceManager
by using the following command:
lynx http://localhost:9026

Chapter 7

[137]

Though it is the easiest and fastest way to view these websites, it has a very
limited user interface and cannot display graphics.

• Create an SSH tunnel to the master node and configure your browser to use
a SOCKS proxy for all URLs. How to configure this depends on the browser;
hence, you can consult your browser's documentation for details.

• Create an SSH tunnel to the master node and use a browser plugin such
as FoxyProxy (available for Google Chrome, Mozilla FireFox, and Internet
Explorer). It allows you to filter URLs based on user-defined text patterns
and uses a SOCKS proxy only for the URLs that match those patterns.

It is recommended to use the third option as once installed and configured, it
automatically uses the SOCKS proxy when you browse websites from your master
node and turn off the proxy while you browse other websites on the Internet. We
will see in a bit how to configure it, but first let's see how to create an SSH tunnel
to the master node.

Creating an SSH tunnel to the master node
As with connecting to the master node, you will need the private key file of the EC2
key pair as well as the DNS name of the master node of your cluster.

Now, in order to create an SSH tunnel from your local machine to the master node of
your cluster, execute the following command:

ssh –i <path-to-private-key-file> -ND <port-number> hadoop@<master-
node-public-DNS-name>

For example, say, your private key file path is /home/user/keys/learning_
bigdata_emr.pem and your cluster's master has the DNS name as ec2-108-22-59-
61.compute-1.amazonaws.com, then you would create an SSH to your master
using the following command:

ssh –i /home/user/keys/learning_bigdata_emr.pem –ND 8157 hadoop@ec2-
108-22-59-61.compute-1.amazonaws.com

Whatever <port-number> you provide here should be used while
creating the proxy configurations on your browser.

Amazon EMR – Cluster Management

[138]

Configuring FoxyProxy
FoxyProxy is a popular browser plugin that provides various proxy management
tools. It is now available for Google Chrome, Mozilla Firefox, and Internet Explorer.
You can configure it to use a proxy server based on URLs matching patterns that
you can define.

If you have created an SSH tunnel to the master node, you can configure FoxyProxy
to use it as a SOCKS proxy to connect to the websites hosted on the master node based
on the URL pattern of the public DNS name of an Amazon EC2 instance (master
node is also an EC2 instance).

Let's see how to install and set up FoxyProxy in Google Chrome.

Installing FoxyProxy in Google Chrome
The following steps will guide you to install FoxyProxy in Google Chrome:

1. Go to http://getfoxyproxy.org/downloads.html and click on the
Standard version for Chrome.

2. This will take you to the web store of Google Chrome listing FoxyProxy
Standard. Click on Free and then on the pop-up confirmation, click on Add.

3. This plugin should now be successfully added to your Google Chrome
browser and you should be able to access it from the top-right corner just
beside the address bar, as shown in the following screenshot:

Creating a proxy setting
To create a proxy setting, perform the following steps:

1. Click on the FoxyProxy plugin icon and select Options. This will take you
to the FoxyProxy's Extension tab.

2. Click on Add New Proxy. This will bring up a pop up, where you can
provide the required parameters to create your proxy setting.

3. Click on the General tab and enter a name for this proxy setting, say, name it
AWSProxy as shown in the following screenshot:

http://getfoxyproxy.org/downloads.html

Chapter 7

[139]

4. Click on the Proxy Details tab and select Manual Proxy Configuration. Now,
perform the following settings:

1. As you have created the SOCKS proxy (an SSH tunnel) on your local
machine on <port number> , say 8157, enter localhost in the Host
or IP Address field and 8157 in the Port field.

2. Tick the SOCKS proxy? checkbox.
3. Select SOCKS v5.

These settings are shown in the following screenshot:

Amazon EMR – Cluster Management

[140]

5. Click on the URL Patterns tab. Now you need to add patterns so that any
URL having a text pattern, *ec2*.amazonaws.com*, *ec2.internal*,
or *.compute.internal* will use this proxy.

6. Click on Add New Pattern and perform the following settings:
1. Select the Enabled checkbox.
2. Provide a suitable name for the pattern.
3. Enter the following URL pattern in the URL pattern box: *ec2*.

amazonaws.com*.
4. Under URL Inclusion/Exclusion, select Whitelist.
5. Under Pattern Contains, select Wildcards.
6. Click on OK.

Similarly add other patterns as well. After performing these settings, you will
get the following screen:

7. Now in the Extensions home tab, click on the options for Proxy mode and
select Use proxies based on their predefined patterns and priorities.

8. Now, you should be good to access websites hosted on your cluster's master
node directly from your local machine's browser using the public DNS of
the master node. So, assuming that your master node's public DNS name
is ec2-108-22-59-61.compute-1.amazonaws.com, you can access the
web interface for the ResourceManager by entering the following address
from your browser: http://ec2-108-22-59-61.compute-1.amazonaws.
com:9026.

Chapter 7

[141]

9. You should see a web view, as shown in the following screenshot:

You can refer to the AWS documentation for the steps to set up
FoxyProxy in Firefox available at http://docs.aws.amazon.com/
ElasticMapReduce/latest/DeveloperGuide/emr-connect-
master-node-proxy.html.

EMR cluster performance monitoring
When we are using Amazon EMR for Hadoop programming, we want to track
MapReduce tasks' progress and know the health metrics of different nodes in the
cluster. For this purpose, EMR provides several tools to monitor the performance
of EMR clusters.

Each Hadoop cluster publishes a set of web interfaces on the master node that
contain information about the cluster. We can access these web interfaces by using
an SSH tunnel to connect them on the master node or by allowing all traffic to the
master node from your network by configuring AWS security groups. The Hadoop
job tracker UI console can be accessed on the master node at the default http port of
9100 to look at the internal metrics of map/reduce executions.

Also, EMR cluster reports metrics to the CloudWatch service in AWS. CloudWatch is
a web service that tracks metrics that can be used to define alarms on those metrics.
Those alarms can be delivered to your e-mail as notifications. Some of the metrics
provided by EMR using CloudWatch include a number of map tasks, reduce tasks,
pending map/reduce tasks, HDFS utilization, HDFS bytes read, HDFS bytes written,
S3 bytes read, S3 bytes written, Jobs Status, Jobs Pending, and so on.

http://docs.aws.amazon.com/ElasticMapReduce/latest/DeveloperGuide/emr-connect-master-node-proxy.html
http://docs.aws.amazon.com/ElasticMapReduce/latest/DeveloperGuide/emr-connect-master-node-proxy.html
http://docs.aws.amazon.com/ElasticMapReduce/latest/DeveloperGuide/emr-connect-master-node-proxy.html

Amazon EMR – Cluster Management

[142]

However, sometimes we want to have granular monitoring data for the entire cluster
including node-level health metrics such as CPU, disk, network, and others, so EMR
supports using Ganglia as a cluster monitoring tool. To use Ganglia, we have to
install it on the cluster using bootstrap actions. After successful installation, we can
monitor various health metrics of the cluster by using an SSH tunnel to connect it
to the Ganglia UI running on the master node.

Adding Ganglia to a cluster
In addition to the steps we discussed in Chapter 6, Executing Hadoop Jobs on an Amazon
EMR Cluster, while you are launching an EMR cluster from the AWS management
console, you can install Ganglia in your cluster by choosing Ganglia under the
Additional Applications list and click on Configure and add. That's all, a fantastic
monitoring tool will be installed for you to use.

Ganglia also publishes a web interface to the local web server of the master node;
hence, you need to follow the same path you did in order to access the Hadoop
websites hosted on the master node. That is, create an SSH tunnel and use FoxyProxy
to set up a SOCKS proxy. You can access Ganglia's web interface by entering the
following URL from your browser: http://<master-node-public-DNS-name>/
ganglia.

The section <master-node-public-DNS-name> in the mentioned URL should be
replaced by your master node's public DNS name.

Ganglia's web interface's home page has the overview of the cluster's performance
having graphs related to the following four major metrics:

• Cluster Load
• Cluster Memory
• Cluster CPU
• Cluster Network

Just below the four graphs, you can see one graph each for the number of nodes in
your cluster. The default metric for which these graphs are shown is Load. You can
change that from the Metric dropdown.

You can get a detailed set of statistics for a given node by selecting the node from the
related dropdown or by clicking on the corresponding node-instance graph. This will
take you to the Host Overview page of the node.

Chapter 7

[143]

Ganglia also reports Hadoop-related metrics for each node. These metrics are
prefixed by their category:

• Distributed filesystem (dfs.*)
• Java virtual machine (jvm.*)
• Mapreduce (mapred.*)
• Remote procedure calls (rpc.*)

You can see the complete list of metrics by clicking on the Gmetrics link on the
Host Overview page.

EMR cluster debugging – console
The AWS management console provides a Debug button that can be used to open an
interface to browse an archived copy of the logfiles stored in an Amazon S3 bucket.
When you launch a cluster with debugging enabled, Amazon EMR creates an index
of those logfiles. When you click on Debug, it provides a graphical interface that you
can use to browse the indexed logfiles.

EMR best practices
In this section, we will see some of the best practices you should follow while
using EMR.

Data transfer
If you need to read a lot of data from S3, then it's recommended to use the S3DistCP
utility to copy data into the local HDFS for analysis instead of directly reading from
S3 to improve the performance. The S3DistCP utility is provided by AWS and it can
be scheduled as a first step of your Job Flow to copy data from S3 to the local HDFS
for further analysis by the next set of jobs in the Job Flow.

If you have large data to be moved from the local HDFS to S3 for persistence or
save results before terminating a transient cluster, then look at the Jets3t toolkit.
It provides various tools including data synchronization to move data from local
directories to S3. It is ideal for performing data backups to S3.

Also, Aspera Direct-to-S3 is a toolkit-based on proprietary file transfer
implementation using UDP to move large amounts of data over the Internet at
very high speeds. It can be used to move data from on-premise to AWS or from
existing HDFS to S3.

Amazon EMR – Cluster Management

[144]

Data compression
Compression is one of the most quick and effective ways to reduce the data size in
S3 to lower AWS costs and also reduce data transfer time to move data around. Also,
data compression can be used between different MapReduce jobs while sharing data
from map to reduce or from one job to other. It will be very effective if you have
large intermediate data during the processing. EMR supports different compression
algorithms such as gzip, lzo, snappy, and bzip2. However, gzip and snappy don't
allow splitting compressed files. It might not be an effective way if your input data
set contains many large compressed files.

Data compression can be enabled by setting mapreduce.map.output.compress to
true and you can choose the compression algorithm to be used by setting mapreduce.
map.output.compress.codec to a specific algorithm such as lzo or snappy.

Cluster size and instance type
AWS provides a variety of EC2 instance types to suit different workloads broadly
categorized based on memory, CPU, or network types. While provisioning an EMR
cluster, it's important to choose the correct instance type as some jobs are CPU bound
while others may be memory or disk bound. So, it's important to benchmark your job
and choose an appropriate instance type.

Also, one m3.xlarge machine will have twice the capacity of an m3.large machine, so
if your cluster size is 100 and you are using m3.large instances, then you can consider
using m3.xlarge to reduce the size while effectively providing the same amount of
capacity for the cluster. One of the main benefits of AWS is that you can easily switch
between different instance types without worrying too much about the underlying
infrastructure complexity based on your business needs.

Hadoop configuration and MapReduce tuning
When you are writing MapReduce programs, it's always recommended to profile
your programs on a single node before launching a cluster to execute it. Based on our
requirements, we might also have to tune the default parameters of Hadoop such as
the number of tasks per node, heap size of the JVM, HDFS block size, and others.

The size of your cluster depends on the number of MapReduce tasks required
given the size of your input data set and HDFS block size. If you are using data
compression for the files in the input dataset, then make sure these files are splittable
to avoid the bottleneck of each file being processed by only one mapper.

Chapter 7

[145]

You can use default bootstrap action to increase JVM heap size and number of
map/reduce tasks per node based on sample executions or profiling data. It
can help you in tuning the cluster size and type later.

Also, if your map tasks execution time takes only seconds to a minute, then you can
reduce the number of mappers in the cluster to avoid the overhead of managing too
many mappers. By default, the number of mappers will be computed based on the
input data set size and HDFS block size; but if you have many small files, then your
mapper tasks are short lived, so we should aggregate them to produce large files as
part of the data ingest process.

You should also check if your mapper tasks are using disk due spill where available
buffer memory for a mapper task was exhausted, so it results in data being written
to a disk. In such cases, using data compression in mapper as described in an earlier
section will reduce the disk I/O and improve mapper performance.

Cost optimization
AWS provides a variety of instances such as on-demand, reserved, and spot
instances for EMR. Depending upon your use case of EMR cluster, you can choose
going for reserved instances, where by paying a little one-time upfront fee, we will
get significant discounts on the per hour billing rates.

If your EMR clusters can run for more than 17 percent of the time (in a month),
then going for reserved instances will save you money. There are multiple types
of reserved instances such as low, medium, and high utilization based on the
usage patterns. If you have a very sporadic data analysis job using EMR, then low
utilization based reserved instances would work great, or else you can look at
medium or high utilization for use cases where a permanent cluster is required.

Spot instances are a spare capacity of EC2 made available to end users via real-time
bidding price, where we can bid our own price for EC2 instance per hour billing
and if the current spot price is lower than our bid price, then EC2 instances will
be available for the usage. However, if the spot price exceeds the bid price, then
instances will be taken away automatically. Since the MapReduce framework allows
for failure of some nodes in the cluster and work can be reallocated to other nodes,
spot instances are a good choice.

EMR uses master, core, and task nodes in the cluster for processing in which task
nodes are purely for MapReduce jobs execution, so failure is acceptable unlike
master node, where a failure means the entire cluster will be terminated. So, we can
use spot instances as task nodes in the cluster where a failure of nodes will not affect
the overall job execution but would delay the total processing time.

Amazon EMR – Cluster Management

[146]

Summary
In this chapter, we learned some of the advanced configurations such as various
different types of bootstrap actions you can add to your cluster. We also learned
ways to connect to the master node and view the various web interfaces published
by Hadoop. Further, we learned how to install Ganglia and access its web view in
order to monitor our cluster's performance in detail.

Till now, we have used the AWS console to launch and manage an EMR cluster, but
many of us like the CLI tools. In our next chapter, we will learn how to launch an
EMR cluster, add steps to it, keep track of the status of each step, and finally, how
to terminate the cluster, all from the command line.

Amazon EMR –
Command-line Interface Client
The command-line interface (CLI) tools and commands are often preferred over the
UI-based tool by experienced programmers. Also, using CLI clients, we can do things
in a single command, while we might need multiple clicks in the UI-based tool. In
this chapter, we will learn about EMR cluster management using the CLI client. We
will go through its installation and setup and discuss the various ways in which we
can use the CLI client to manage Amazon EMR clusters.

EMR – CLI client installation
CLI is a client-side tool that can be installed on your computer to access EMR
services and manage the cluster. We will learn to set up this toolkit and how to use it
to launch EMR clusters and execute MapReduce jobs. The EMR CLI client requires a
Ruby environment to be installed, and it supports Ruby 1.8.7, 1.9.2, and 2.0 Versions.

Step 1 – Installing Ruby
Linux users can download Ruby in different versions from the following URLs:

• Ruby 1.8.7: http://www.ruby-lang.org/en/news/2010/06/23/ruby-1-8-
7-p299-released/

• Ruby 1.9.2: https://www.ruby-lang.org/en/news/2014/02/24/ruby-1-
9-3-p545-is-released/

• Ruby 2.0: https://www.ruby-lang.org/en/news/2014/02/24/ruby-2-0-
0-p451-is-released/

http://www.ruby-lang.org/en/news/2010/06/23/ruby-1-8-7-p299-released/
http://www.ruby-lang.org/en/news/2010/06/23/ruby-1-8-7-p299-released/
https://www.ruby-lang.org/en/news/2014/02/24/ruby-1-9-3-p545-is-released/
https://www.ruby-lang.org/en/news/2014/02/24/ruby-1-9-3-p545-is-released/
https://www.ruby-lang.org/en/news/2014/02/24/ruby-2-0-0-p451-is-released/
https://www.ruby-lang.org/en/news/2014/02/24/ruby-2-0-0-p451-is-released/

Amazon EMR – Command-line Interface Client

[148]

Windows users can download RubyInstaller for the setup from
http://rubyinstaller.org/downloads/.

Mac OS X ships with a Ruby environment installed.

You can use the ruby –v command to check whether Ruby is installed on your
system or not, including the version details:

ruby 2.0.0p451 (2014-02-24 revision 45167)
[universal.x86_64-darwin13]

Step 2 – Installing and verifying RubyGems
framework
The EMR CLI requires RubyGems Version 1.8 or later, so we need to check whether
it's installed on the system or not before proceeding further.

You can use gem –v to check whether RubyGems is installed or not. Linux/Mac OS
X users can download RubyGems from https://rubygems.org/pages/download
and extract it into a folder.

After downloading the latest version, you can use the following command to install
it from the extracted folder:

sudo ruby setup.rb

Windows users can download the development kit (DevKit) from
http://rubyinstaller.org/downloads/ and create a new directory
called rubygems to extract files from the downloaded kit.

From the extracted directory, you can execute the following commands to install
RubyGems:

ruby dk.rb init

ruby dk.rb install

Ruby installation's file path needs to be added to the environment variable
of PATH so that it can be accessed using the Windows command line.

http://rubyinstaller.org/downloads/
https://rubygems.org/pages/download
http://rubyinstaller.org/downloads/

Chapter 8

[149]

Step 3 – Installing an EMR CLI client
Create a new directory where you are going to install the CLI client. Give an
appropriate name, for example, emr-client. In the command line, enter the
following command to create a directory:

mkdir ~/emr-client

Now, download the Amazon EMR CLI toolkit from the following URL and save it
in the new directory created:

http://elasticmapreduce.s3.amazonaws.com/elastic-mapreduce-ruby.zip

In order to install the CLI toolkit application, you only need to unzip the
downloaded ZIP file:

cd ~/emr-client

unzip elastic-mapreduce-ruby.zip

Step 4 – Configuring AWS EMR credentials
After you have successfully installed the EMR CLI toolkit, you need to configure the
credentials file that will be used by the CLI toolkit to calculate the signature required
to authenticate requests with AWS for EMR services.

Create a file named credentials.json in the emr-client directory where we
installed the EMR CLI toolkit. If the file is already present, just edit it with appropriate
data. This file should have the access credentials of AWS, S3 bucket directory to store
EMR logs, and AWS region information in which you would be launching the
EMR cluster.

The contents of this file will be as follows:

{
"access_id": <AWS Access Key ID>,
"private_key": <AWS Secret Access Key>,
"key-pair": <Your key pair name>,
"key-pair-file": <The path and name of your PEM file>,
"log_uri": <A path on Amazon S3, such as,
 s3n://myBucket/emr-logs/">,
"region": <The region of your cluster, either us-east-1,
 us-west-2, ap-southeast-1, ap-southeast-2 ... >
}

http://elasticmapreduce.s3.amazonaws.com/elastic-mapreduce-ruby.zip

Amazon EMR – Command-line Interface Client

[150]

This .json file requires AWS credentials (access key and secret key) to access the
EMR services, and you can create a new access key and secret key with permissions
to required resources such as EMR, S3, EC2, CloudWatch, and others. You can follow
the tutorial on the AWS website (http://docs.aws.amazon.com/general/latest/
gr/getting-aws-sec-creds.html) to create or view the AWS security credentials.

As we have seen in Chapter 6, Executing Hadoop Jobs on an Amazon EMR Cluster,
Amazon EC2 uses public key cryptography to encrypt and decrypt login information
of end users accessing EC2 instances. If you do not have a key pair created on AWS,
refer to Chapter 6, Executing Hadoop Jobs on an Amazon EMR Cluster, and create a key
pair, which you will use to launch and connect with EC2 machines launched as part
of your EMR clusters.

You can learn more about EC2 key pairs by visiting http://docs.
aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.
html#having-ec2-create-your-key-pair.

As we have seen while launching an EMR cluster from the AWS management
console, you need to provide the S3 location where various logs can be persisted
by EMR for your cluster and its jobs.

A S3 bucket should have appropriate read and write permissions for
the IAM users whose security credentials are used for accessing AWS
services. To change the permissions, right-click on the S3 bucket name
and select the Properties option. It shows the Permissions section where
we can grant the required permissions to the IAM users on this bucket.

Step 5 – SSH access setup and configuration
After the successful setup of the EMR CLI with the required credentials configured,
you have to set up SSH access to the EMR cluster using the key pair for accessing
the instances in an EMR cluster.

As we have seen earlier, you need SSH access to log in to the master node of
an EMR cluster, so just make sure that the private key file (the .pem file) has the
limited permission allowed by SSH clients.

http://docs.aws.amazon.com/general/latest/gr/getting-aws-sec-creds.html
http://docs.aws.amazon.com/general/latest/gr/getting-aws-sec-creds.html
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html#having-ec2-create-your-key-pair
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html#having-ec2-create-your-key-pair
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html#having-ec2-create-your-key-pair

Chapter 8

[151]

On Linux/Mac OS X, we need to switch to the directory where you have the
private key file and execute the following command to set the right permissions
for the .pem file:

chmod og-rwx learning_bigdata_emr.pem

Windows users need to download the PuTTY software for SSH
access to the master node. After installing PuTTY, we need to use the
puttygen utility to convert the key pair file from the.pem format
to the .ppk format. You can download PuTTY from http://www.
chiark.greenend.org.uk/~sgtatham/putty/download.
html and FAQs are available at http://www.chiark.greenend.
org.uk/~sgtatham/putty/faq.html.

Step 6 – Verifying the EMR CLI installation
Now, we are ready to test CLI toolkit to access AWS EMR services. You can use the
following commands to check whether we are able to access AWS EMR APIs or not:

cd ~/emr-client/

ruby elastic-mapreduce --version

If the EMR CLI setup is correct and valid credentials are configured, these commands
will display the EMR API version as output. You should see output similar to
the following:

Version 2014-08-10

You can use the --help option to view the help information of the EMR CLI:

ruby elastic-mapreduce --help

Launching and monitoring an EMR
cluster using CLI
Before launching an EMR cluster, you need to decide on the AWS region that will
be used to launch the cluster and accordingly, you should have configured your
credentials.json file. As discussed in our initial chapters, choosing a specific AWS
region depends on factors such as your business location and latency requirements
of connecting your existing data center or office with AWS using the virtual private
network and so on for a secure data transfer.

http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html
http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html
http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html
http://www.chiark.greenend.org.uk/~sgtatham/putty/faq.html
http://www.chiark.greenend.org.uk/~sgtatham/putty/faq.html

Amazon EMR – Command-line Interface Client

[152]

Another important consideration is choosing the right instance type based on
the analysis requirements. You would also need to consider an EMR cluster size
depending on the size of data to be analyzed and stored in HDFS for processing.
One m1.xlarge instance provides 1,680 GB of disk storage, so if you have an HDFS
replication factor of 3, then you need at least three core nodes along with one master
node for processing 1 TB of data. However, your cluster size also depends on the
MapReduce job requirements for CPU and memory including the size of HDFS blocks
and other factors. If you have a smaller cluster, then it could take longer to process the
jobs and a large cluster with a smaller set of data would be a waste of money.

Since Hadoop can scale by adding more nodes, you can start with a smaller portion
of data with a cluster to understand the job performance and tune the size of the
cluster accordingly for the large data set. Let's say you have 100 GB of data to be
processed, then you can work on 10 GB of that data and test your MapReduce jobs
on a cluster size of three core nodes, which processes it in 1 hour. Then to process the
100 GB data in 1 hour, we would need 30 core nodes or use 10 core nodes to process
it in 3 hours.

Launching an EMR cluster from command line
In Chapter 6, Executing Hadoop Jobs on an Amazon EMR Cluster, we executed our
HadoopHelloWorld program on an EMR cluster from the AWS management console.
We will now launch a similar cluster and execute the same MapReduce job from the
command line. One point to note is that it will launch the machines in the region
specified in the credentials.json file created earlier.

You can launch an EMR cluster with similar configuration, which we have used in
the same chapter, using the following command:

ruby elastic-mapreduce --create --alive --name "HadoopHelloWorld

Test" \

--ami-version 3.0.4 \

--master-instance-type m1.medium --slave-instance-type m1.medium \

--num-instances 1 \

--bootstrap-action s3://elasticmapreduce/bootstrap-actions/install-
ganglia

If the cluster is successfully created, it should return the Job Flow ID of the cluster;
the output would be something like the following:

Created job flow j-2LR6RDN91MJUI

Chapter 8

[153]

This Job Flow ID will now be used to fetch information about the cluster, to add Job
Steps, to check the status of the cluster as well as the added Job Steps, and also to
terminate the cluster.

In the preceding command, the --alive option is used to keep the cluster in running
state and not to terminate it until the terminate cluster command is issued from
CLI or AWS EMR web console.

The --ami-version option is used to specify which EMR AMI provided by AWS
is to be used for launching the Hadoop cluster. Since now the --hadoop-version
parameter is not supported, --ami-version also determines the Hadoop version
you want to install in your EMR cluster. We wanted to run on Hadoop 2.2.0; hence,
we chose AMI Version 3.0.4. The following table shows the list of Hadoop versions
along with the AMI version in which they are available.

Hadoop version AMI version
2.4.0 3.1.0
2.2.0 3.0.4, 3.0.3, 3.0.2, and 3.0.1
1.0.3 2.4.5, 2.4.3, and 2.5.2
0.20.205 2.1.4
0.20 1.0

While launching a cluster, you can perform multiple other configurations, including
overriding the region setting in the credentials.json file. The following is the list
of all the available options you can use while creating a cluster using the CLI client:

• --alive: This is used in conjunction with --create to launch a cluster,
which would continue running even after completing all the added Job Steps.

• --ami-version <AMI_Version>: This is used in conjunction with --create
to launch a cluster with specific AMI version. This is also used to determine
the Hadoop version in which your cluster is installed.

• --availability-zone <Availability_Zone>: This is used to specify the
availability zone within the region where you want the machines forming
the cluster to be launched.

• --bootstrap-action <S3_Path> [--args "arg1,arg2"]: This is used to
provide any bootstrap action, which you might need to add to your cluster
launch. In the preceding cluster launch command (--create), we added
the install of Ganglia as part of our bootstrap action. You can refer Chapter 7,
Amazon EMR – Cluster Management, for more details.

Amazon EMR – Command-line Interface Client

[154]

• --bid-price <Bid_Price>: This is used to specify the bid price in US
dollars while using spot instances for your cluster. We will see how
to launch a cluster using spot instances in a while.

• --create: This is used to create a cluster.
• --instance-group INSTANCE_GROUP_TYPE: This is used to set the instance

group type. An instance group can be MASTER, CORE, or TASK.
• --jobflow-role <IAM_Role_Name>: This is used to launch the EC2

instances in the cluster with a specified IAM role.
• --service-role <IAM_Role_Name>: This is used to launch the Amazon

EMR service with a specified IAM role.
• --key-pair <Key_Pair_Pem_File>: This is used to override the default

key-pair information provided in the credentials.json file. If you want
to use a specific key pair for your cluster, then you can use this option.

• --master-instance-type <Instance_Type>: This is used to specify the
EC2 instance type to launch the master node.

• --name "Cluster_Name": This is used to provide a name to the cluster.
• --num-instances NUMBER_OF_INSTANCES: This is used to specify the

number of EC2 instances in the cluster. It is used in conjunction with either
–-create or –-modify-instance-group.

• --plain-output: This is used when you want the output of a create cluster
command to just return the JobFlowID value as plain text.

• --region <Region>: This is used to override the region setting in the
credentials.json file.

• --slave-instance-type: This is used to specify the EC2 instance type to
launch the slave nodes.

• --subnet <EC2-Subnet_ID>: This is used to launch the EMR cluster within
an Amazon VPC subnet.

• --visible-to-all-users <true|false>: This can be used to make the
instances in the cluster visible to all of your IAM users.

• --with-supported-products <Product>: This is used to install third-party
software on the EMR cluster. It is used in conjunction with --create.

• --with-termination-protection: This is used to launch a cluster with
termination protection enabled. It is used in conjunction with --create.

Chapter 8

[155]

While testing your MapReduce jobs, you should launch the EMR
cluster with the --alive option. Otherwise, when your job fails, even
for a simple reason such as output location already exists, the cluster
will terminate. When you are confident about your MapReduce code
and have tested it a few times, then in production, you can let the
cluster terminate as and when it completes the job, that is, do not use
the --alive option then.

Adding Job Steps to the cluster
Now, after you have launched the cluster using the create cluster command as
shown in the preceding section, you can use the following command to add the
Job Step to execute our HadoopHelloWorld job of finding out hits by country:

ruby elastic-mapreduce --jobflow j-2LR6RDN91MJUI \

--jar s3://learning-bigdata/HadoopHelloWorld/bin/hits-by-country.jar
\

--args -D,"mapred.textoutputformat.separator=|" \

--args s3://learning-bigdata/HadoopHelloWorld/input/,s3://learning-
bigdata/HadoopHelloWorld/output/3/ \

--step-name "HadoopHelloWorld"

Note that the Job Flow ID to be used should be the same as that returned by the
create cluster command. The --jobflow option is used to specify the Job Flow ID.

On successful addition of the Job Step, the following should output be returned:

Added jobflow steps

There are mainly three options while adding a Custom JAR Job Step:

• --jar JAR_FILE_LOCATION [--args "arg1, arg2"]: This is used to
specify the path of the JAR file to be executed along with the arguments
the JAR takes

• --main-class: This is used to specify the JAR's main class in case the JAR
doesn't have a manifest file

• --step-name: This is used to provide a name to the Job Step.

You can also add streaming job steps using CLI. We will see how to execute
streaming jobs in the next chapter.

Amazon EMR – Command-line Interface Client

[156]

Listing and getting details of EMR clusters
Now that you have added the Job Step using the command as shown in the
preceding section, you can use the following command to view the list of active
clusters along with their Job Steps:

ruby elastic-mapreduce --list --active

This command will return with the following list of clusters:

j-2LR6RDN91MJUI BOOTSTRAPPING ec2-54-87-166-19.compute-
1.amazonaws.com HadoopHelloWorld Test

PENDING HadoopHelloWorld

If you want to just list the clusters without the steps, then use the --no-steps option
as shown here:

ruby elastic-mapreduce --list --active --no-steps

You can review the details of recent clusters launched during the last 2 days using
the following command:

ruby elastic-mapreduce --list

This command's output will show the recent clusters including their Job Flow ID,
status, name, and the list of the Job Steps along with their statuses as well.

Using the --active option along with --list will show only active clusters in the
output. Also, using the --state option, you can view the clusters in specific statuses
such as RUNNING, STARTING, SHUTTING_DOWN, and BOOTSTRAPPING,
among others.

To view the job flow details of a specific cluster, you can use the following command:

ruby elastic-mapreduce --describe --jobflow <JobFlowID>

In our case, we will execute the following command to get the details of our cluster:

ruby elastic-mapreduce --describe --jobflow j-2LR6RDN91MJUI

The output of this command is as follows:

{

 "JobFlows": [

 {

 "BootstrapActions": [

 {

 "BootstrapActionConfig": {

Chapter 8

[157]

 "Name": "Bootstrap Action 1",

 "ScriptBootstrapAction": {

 "Path": "s3:\/\/elasticmapreduce\/bootstrap-
 actions\/install-ganglia",

 "Args": []

 }

 }

 }

],

 "Name": "HadoopHelloWorld Test",

 "Instances": {

 "InstanceGroups": [

 {

 "ReadyDateTime": 1406436263.304,

 "InstanceType": "m1.medium",

 "Name": "Master Instance Group",

 "CreationDateTime": 1406435906.265,

 "State": "ENDED",

 "InstanceGroupId": "ig-F7ELQBAQRN9U",

 "StartDateTime": 1406436263.304,

 "InstanceRole": "MASTER",

 "Market": "ON_DEMAND",

 "LastStateChangeReason": "Job flow terminated",

 "EndDateTime": 1406437150.709,

 "InstanceRunningCount": 0,

 "InstanceRequestCount": 1

 }

],

 "InstanceCount": 1,

 "MasterInstanceType": "m1.medium",

 "MasterPublicDnsName": "ec2-54-87-166-19.compute-
 1.amazonaws.com",

 "KeepJobFlowAliveWhenNoSteps": true,

 "Ec2KeyName": "learning-bigdata",

 "TerminationProtected": false,

 "NormalizedInstanceHours": 2,

Amazon EMR – Command-line Interface Client

[158]

 "HadoopVersion": "2.2.0",

 "Placement": {

 "AvailabilityZone": "us-east-1b"

 },

 "MasterInstanceId": "i-40aef86c"

 },

 "ExecutionStatusDetail": {

 "ReadyDateTime": 1406436268.108,

 "CreationDateTime": 1406435906.264,

 "State": "TERMINATED",

 "StartDateTime": 1406436127.987,

 "LastStateChangeReason": "Terminated by user request",

 "EndDateTime": 1406437151.122

 },

 "AmiVersion": "3.0.4",

 "VisibleToAllUsers": false,

 "JobFlowId": "j-2LR6RDN91MJUI",

 "SupportedProducts": [],

 "Steps": [

 {

 "StepConfig": {

 "ActionOnFailure": "CANCEL_AND_WAIT",

 "Name": "HadoopHelloWorld",

 "HadoopJarStep": {

 "Properties": [],

 "Jar": "s3:\/\/learning-
 bigdata\/HadoopHelloWorld\/bin\/hits-by-country.jar",

 "Args": [

 "-D",

 "mapred.textoutputformat.separator=|",

 "s3:\/\/learning-bigdata\/HadoopHelloWorld\/input\/",

 "s3:\/\/learning-
 bigdata\/HadoopHelloWorld\/output\/3\/"

]

 }

 },

Chapter 8

[159]

 "ExecutionStatusDetail": {

 "CreationDateTime": 1406436701.295,

 "State": "COMPLETED",

 "StartDateTime": 1406436707.372,

 "EndDateTime": 1406436809.41

 }

 }

],

 "LogUri": "s3n:\/\/learning-bigdata\/emr-logs\/"

 }

]

}

Terminating an EMR cluster
When your Job Step has completed you would want to terminate the cluster. In
order to find out whether your Job Step has completed or not, you can execute
the list command as follows:

ruby elastic-mapreduce --list --active

j-2LR6RDN91MJUI WAITING ec2-54-87-166-19.compute-
1.amazonaws.com HadoopHelloWorld Test

 COMPLETED HadoopHelloWorld

If the status of your Job Step is COMPLETED, then you can now go ahead and
terminate the cluster. If it has failed, then you can check out the logs and figure
out the reason, correct it, add the Job Step again, and wait for it to complete.

We can terminate an existing cluster using the EMR CLI command as follows:

ruby elastic-mapreduce --terminate <JobFlowID>

In our case, we will execute the following command to terminate the cluster
launched in the earlier section:

ruby elastic-mapreduce --terminate j-2LR6RDN91MJUI

On successful termination, this will return with the following output:

Terminated job flow j-2LR6RDN91MJUI

Amazon EMR – Command-line Interface Client

[160]

Using spot instances with EMR
AWS states the following:

"Spot Instances allow you to name your own price for Amazon EC2 computing
capacity. You simply bid on spare Amazon EC2 instances and run them whenever
your bid exceeds the current Spot Price, which varies in real-time based on supply
and demand."

Using spot instances can certainly prove very cost effective but it is prudent to use
spot instances only for time-flexible and interruption-tolerant tasks. As and when
the current spot price goes above your bidding price, the instance can be taken
away from you, though you will not be charged for that hour in which it was taken
away. The MapReduce jobs aren't generally interruption tolerant; hence, in order
to use spot instances while still not losing our cluster, we need to use a balance of
on-demand and spot instances.

As discussed earlier in Chapter 4, Amazon EMR – Hadoop on Amazon Web Services, we
have three different types of nodes and hence, three instance groups can be formed:

• Master instance group: This consists of only a single master instance
• Core instance group: This consists of those instances that would execute our

Job Steps as well as provide storage for HDFS
• Task instance group: This consists of those instances that will only execute

our Job Steps

You can choose to run spot instances for all the mentioned instance groups, but it is
not recommended to have a master instance procured as a spot instance. Similarly,
even with instances in the core instance group, it is not advised to use spot instances
because you might lose data.

Hence, the best and most safe way to use spot instances is to have a percentage
of total instances in your cluster launched as on-demand and as part of the core
instance group and the rest as spot instances and as part of the task instance group.

For example, if you want to launch a cluster with 10 m1.xlarge slave nodes and an
m1.medium master node and you also want to use spot instances, you can use the
following command to launch the instance from CLI:

ruby elastic-mapreduce --create --alive --name "Cluster Using Spot" \

--ami-version 3.0.4 \

--instance-group master –instance-type m1.medium –instance-count 1 \

--instance-group core –instance-type m1.xlarge –instance-count 4 \

Chapter 8

[161]

--instance-group task –instance-type m1.xlarge –instance-count 6 --
bid-price 0.20 \

--bootstrap-action s3://elasticmapreduce/bootstrap-actions/install-
ganglia

If you see, we have divided the total number of slave nodes among the core and task
groups. This division depends on how much data you are going to store in HDFS. If
it is going to be considerable, then you can increase the number of nodes in the core
group. Also, having a very low number of nodes in the core group will result in too
many network calls in reading data by the instances in the task group.

Summary
In this chapter, you learned to install and use the EMR Ruby client to launch a
cluster, add steps to it, and terminate the cluster when the steps are completed.
We also saw how to use spot instances with EMR.

In the next chapter, you will learn how to execute streaming jobs from CLI. We will
also see some advanced concepts such as implementing custom partitioner and
multiple outputs.

Hadoop Streaming
and Advanced Hadoop

Customizations
In this chapter, we will learn how to use scripting languages such as Python or Ruby
to create mappers and reducers instead of using Java. We will see how to launch
a streaming EMR cluster and also how to add a streaming Job Step to an already
running cluster. We will also see some advanced concepts such as implementing
custom partitioner and emitting results to multiple outputs.

Hadoop streaming
This is basically a prebuilt utility that comes along with the Hadoop distribution. It
allows you to create a MapReduce job using any executable program or script as the
mapper and reducer.

As discussed in Chapter 5, Programming Hadoop on Amazon EMR, let's say you have
your local copy of Hadoop distribution in <hadoop-2.2.0-base-path>. You should
be able to find the streaming utility jar file in <hadoop-2.2.0-base-path>/share/
hadoop/tools/lib/hadoop-streaming-2.2.0.jar. Say you have written your
mapper and reducer in Python, and you have mapper.py and reducer.py as your
mapper and reducer respectively. Now, locally you can use the streaming utility by
executing the following command:
<hadoop-2.2.0-base-path>/bin/hadoop jar <hadoop-2.2.0-base-
path>/share/hadoop/tools/lib/hadoop-streaming-2.2.0.jar \

 -input <inputDirectoryOrFile> \

 -output <outputDirectory> \

 -mapper mapper.py \

 -reducer reducer.py

Hadoop Streaming and Advanced Hadoop Customizations

[164]

How streaming works
The executables should be created in such a way that they read input from STDIN
and emit output to STDOUT. The input is read line by line by default.

Each mapper task will launch the executable as a separate process when it is
initialized. Now, the streaming utility reads the input provided with the streaming
job and passes on to the executable. It reads the input line by line and feeds the lines
to STDIN of the mapper executable process. The output from the mapper executable
is also expected to be line based and is expected to be written to STDOUT. Now, it's
the job of the streaming utility to convert each line into a key-value pair.

Each reducer task also works in the same manner.

By default, the tab character is considered to be the separator between the
key and the value. So, the part of a line up to the first tab character is the
key and the rest of the line (excluding the tab character) will be the value.
If there is no tab character in the line, then the entire line is considered as
the key and the value is null. However, you can customize this; we will
see how to do this in a later section.

Wordcount example with streaming
In order to demonstrate what was explained in the preceding section, let's create
the mapper and reducer in Python for a simple task of counting words in the
given input.

Mapper
Inside the mapper.py file, you would loop into sys.stdin as the streaming utility
will bring all the input line by line to the executable's standard input (STDIN).

You can then split the line into words and for each word emit a count of 1, which
can then be aggregated in the reducer to get the count of each word.

Your mapper.py file's content will look as follows:

#!/usr/bin/python

import sys

In hadoop streaming, the input files are read and provided to
mapper as input from STDIN

Chapter 9

[165]

for line in sys.stdin:

 # trim the input line of any whitespaces
 line = line.strip()
 results = line.split()
 for word in results:
 # emitting the tab-delimited result to STDOUT
 print '%s\t%s' % (word, 1)

Reducer
Inside the reducer.py file, you would again loop into sys.stdin as the streaming
utility will bring all the output from mapper line by line to the executable reducer's
standard input (STDIN).

Here, you are not going to get all the values for a given key together as we get in
custom JAR implementation. However, the following two factors make it easy to
write logic in the reducer:

• The input received by reducer is sorted
• All data related to a given key will reach a single reducer

Hence, in your reducer, you can get a count for the key until the key changes. The
following content of reducer.py will explain it:

#!/usr/bin/python

import sys

key = None
currentKey = None
currentCount = 0

In hadoop streaming, the output from mapper is received by reducer
as input from STDIN
for line in sys.stdin:

 # trim the input line of any whitespaces
 line = line.strip()

 key, count = line.split('\t', 1)

 try:
 count = int(count)

Hadoop Streaming and Advanced Hadoop Customizations

[166]

 except ValueError:
 continue

 # Since all the keys are sorted before it is passed to the
reducer,
 # we can count till we find a different key
 if currentKey == key:
 currentCount += count
 else:
 if currentKey:
 # Results are emitted to STDOUT
 print '%s,%s' % (currentKey, currentCount)
 currentCount = count
 currentKey = key

This section makes sure that the last key is also emitted
if currentKey == key:
 print '%s,%s' % (currentKey, currentCount)

If you noticed, here we are not emitting output as tab delimited; hence, the entire
line emitted to STDOUT becomes the key and the value is empty. However, since the
utility considers the tab character as the default separator, each of the lines in our final
output from the reducer will have a tab character at the end as the value is empty.

Streaming command options
The streaming utility supports a list of options. It also supports generic
command options.

The general command-line syntax is as follows:

bin/hadoop command [genericOptions] [streamingOptions]

The generic options should be placed before the streaming options,
otherwise the streaming job will fail.

The following section provides a list of options that the streaming utility supports.

Chapter 9

[167]

Mandatory parameters
The following are the mandatory parameters:

Parameter Description
-input
<inputDirectoryOrFile>

Input location to a directory or a file

-output <directory> Output directory location; this location should
not already exist

-mapper
<executableOrJavaClassName>

Path to the mapper executable or a Java class
name

-reducer
<executableOrJavaClassName>

Path to the reducer executable or a Java class
name

Multiple input directories with multiple -input options:
 hadoop jar hadoop-streaming.jar -input /inputs/dir1
-input /inputs/dir2

Optional parameters
The following are the optional parameters:

Parameter Description
-file <fileName> Makes the mapper, reducer, or combiner

executable available locally on the
compute nodes.

-inputFormat
<javaClassName>

The class you supply should return key/
value pairs of the Text class. If not specified,
TextInputFormat is used as the default.

-outputFormat
<javaClassName>

The Class you supply should take key/
value pairs of the Text class. If not specified,
TextOutputformat is used as the default.

-partitioner
<javaClassName>

Class that determines which reducer task a
key is sent to.

-combiner
<executableOrJavaClassName>

Path to the combiner executable or a Java
class name.

-cmdenv <name=value> Pass an environment variable to streaming
commands.

-verbose Provides verbose output.

Hadoop Streaming and Advanced Hadoop Customizations

[168]

Parameter Description
-lazyOutput Creates output lazily. For example,

if the output format is based on
FileOutputFormat, the output file is
created only on the first call to output.
collect (or Context.write)

-numReduceTasks Specifies the number of reducers.
-mapdebug Path to a script which will be called when a

map task fails.
-reducedebug Path to a script which will be called when a

reduce task fails.

Using a Java class name as mapper/reducer
As you have seen from the preceding options, you can specify a Java class as mapper
and/or reducer for your streaming job. Hadoop has some prebuilt classes that can be
used for general use cases.

For example, if your task is to just sum up each user's time spent on your website for
the full year, your input will be something like the following:

Day1,user1,11234
Day1,user2,1098
...
DayN,user1,2008
DayN,user2,456

In this case, you would not want to do anything in the mapper and hence, you can
use the prebuilt org.apache.hadoop.mapred.lib.IdentityMapper class as your
mapper. Its usage will be as follows:

<hadoop-2.2.0-base-path>/bin/hadoop jar <hadoop-2.2.0-base-
path>/share/hadoop/tools/lib/hadoop-streaming-2.2.0.jar \

 -input <inputDirectoryOrFile> \

 -output <outputDirectory> \

 -mapper org.apache.hadoop.mapred.lib.IdentityMapper \

 -reducer reducer.py

Chapter 9

[169]

Using generic command options with
streaming
You can use generic options with streaming the same way you would use them
with custom JAR execution. Care should be taken that the generic options should
be provided before the streaming options.

You can specify configuration variables using the –D option. You can also provide the
list of files, jars, or archives to be copied to the Map/Reduce cluster. The following is
a list of important generic options supported with streaming:

Parameter Description
-conf
<configurationFile>

Path to an application configuration file

-D <property=value> Specifies Hadoop/MapReduce configuration variables
-files
<commaSeparatedList>

Provides comma-separated files to be copied to the
Map/Reduce cluster

-libjars
<commaSeparatedList>

Provides comma-separated jar files to include in the
class path

-archives
<commaSeparatedList>

Provides comma-separated archives to be unarchived
on the compute machines

For example, if you want to set a number of reducers while executing your streaming
job, you can execute the following command:

<hadoop-2.2.0-base-path>/bin/hadoop jar <hadoop-2.2.0-base-
path>/share/hadoop/tools/lib/hadoop-streaming-2.2.0.jar \

 -D mapred.reduce.tasks=2 \

 -input <inputDirectoryOrFile> \

 -output <outputDirectory> \

 -mapper mapper.py \

 -reducer reducer.py

Customizing key-value splitting
As discussed earlier, the streaming utility reads the input line by line and each line
is split into a key and value pair considering that, by default, the separator is a tab
character. So, everything in a line before the first occurrence of a tab character is
considered as key and everything after the first tab character is considered as value.

Hadoop Streaming and Advanced Hadoop Customizations

[170]

You can customize both the following aspects of a line being split into key value:

• The separator character. This can be done using the following configuration
parameters:

 ° stream.map.input.field.separator

 ° stream.map.output.field.separator

 ° stream.reduce.input.field.separator

 ° stream.reduce.output.field.separator

• The occurrence number of the character to be taken as separation
(instead of default first occurrence). This can be done using the following
configuration parameters:

 ° stream.num.map.input.key.fields

 ° stream.num.map.output.key.fields

 ° stream.num.reduce.input.key.fields

 ° stream.num.reduce.output.key.fields

So, let's say that you want to split the output line from the mapper into key and
value using the hyphen character and you want the first occurrence of the hyphen
to remain as part of the key and split from the second occurrence, you can use the
following command:

<hadoop-2.2.0-base-path>/bin/hadoop jar <hadoop-2.2.0-base-
path>/share/hadoop/tools/lib/hadoop-streaming-2.2.0.jar \

 -D stream.map.output.field.separator=- \

 -D stream.num.map.output.key.fields=2 \

 -D mapred.reduce.tasks=2 \

 -input <inputDirectoryOrFile> \

 -output <outputDirectory> \

 -mapper mapper.py \

 -reducer reducer.py

Hence, consider one of your mapper output lines has the following data:

key-1-value-1

Using the mentioned configurations, this line will be split as follows:

key = key-1

value = value-1

Chapter 9

[171]

Using Hadoop partitioner class
You might need to partition the map outputs based on certain parts of the key
rather than the whole key. Hadoop already has a library class that allows you to
decide what proportion of the key should be used in partitioning mapper output
data among reducers. The useful class is org.apache.hadoop.mapreduce.lib.
partition.KeyFieldBasedPartitioner.

You can use it as shown in the following command:

<hadoop-2.2.0-base-path>/bin/hadoop jar <hadoop-2.2.0-base-
path>/share/hadoop/tools/lib/hadoop-streaming-2.2.0.jar \

 -D stream.map.output.field.separator=- \

 -D stream.num.map.output.key.fields=2 \

 -D map.output.key.field.separator=- \

 -D mapred.text.key.partitioner.options=-k1 \

 -D mapred.reduce.tasks=2 \

 -input <inputDirectoryOrFile> \

 -output <outputDirectory> \

 -mapper mapper.py \

 -reducer reducer.py

 -partitioner
 org.apache.hadoop.mapred.lib.KeyFieldBasedPartitioner

You might notice the following two new configuration parameters in this command:

• map.output.key.field.separator: This specifies the character on which
the key will be separated into fields.

• mapred.text.key.partitioner.options: This specifies all the fields from
which the key has to be considered for partitioning. Its value is specified in
the form –k position1[,position2].

Say, we get the following mapper outputs:

keyOne-100-value-1

keyTwo-8-value-3

keyAnother-21-valueAnother-1

keyOne-3-value-2

keyAnother-2-valueAnother-2

Hadoop Streaming and Advanced Hadoop Customizations

[172]

Since we have set stream.map.output.field.separator as hyphen (-) and
stream.num.map.output.key.fields as 2, we have the following list of keys
ready to be partitioned among reducers:
keyOne-100

keyTwo-8

keyAnother-21

keyOne-3

keyAnother-2

Now, since we have set map.output.key.field.separator as hyphen and mapred.
text.key.partitioner.options as –k1, this means that we are separating our key
into fields using the hyphen character and want to partition them only on the basis of
first field among them.

Hence, we have the mentioned keys partitioned into three reducers as follows:

• For Reducer1, we have the following keys::
 ° keyOne-100

 ° keyOne-3

• For Reducer2, we have the following key:
 ° keyTwo-8

• For Reducer3, we have the following keys:
 ° keyAnother-21

 ° keyAnother-2

Sorting of keys happens within each partition and all the fields will be used for
sorting; hence, the reducers will receive input in the following order:

• For Reducer1, the input is:
 ° keyOne-3

 ° keyOne-100

• For Reducer2, the input is:
 ° keyTwo-8

• For Reducer3, the input is:
 ° keyAnother-2

 ° keyAnother-21

In our last section, we will see how we can create our own custom partitioner in Java.

Chapter 9

[173]

Using Hadoop comparator class
Hadoop already has a library class that allows you to decide which parts of the
mapper output keys should be used in sorting before passing on the data to the
reducers. The useful class is org.apache.hadoop.mapreduce.lib.partition.
KeyFieldBasedComparator.

You can use it as shown in the following command:

<hadoop-2.2.0-base-path>/bin/hadoop jar <hadoop-2.2.0-base-
path>/share/hadoop/tools/lib/hadoop-streaming-2.2.0.jar \

 -D mapred.output.key.comparator.class=org.apache.hadoop.mapred.lib.
KeyFieldBasedComparator \

 -D stream.map.output.field.separator=- \

 -D stream.num.map.output.key.fields=2 \

 -D map.output.key.field.separator=- \

 -D mapred.text.key.partitioner.options=-k1 \

 -D mapred.text.key.comparator.options=-k2,2nr \

 -D mapred.reduce.tasks=2 \

 -input <inputDirectoryOrFile> \

 -output <outputDirectory> \

 -mapper mapper.py \

 -reducer reducer.py

 -partitioner
 org.apache.hadoop.mapred.lib.KeyFieldBasedPartitioner

Here, in this command, we are forced to use the first field of the key for partitioning
while using the second field for sorting. Using –n indicates numerical sorting while
using –r indicates reverse sorting, that is, sorting in descending order; hence, the
reducers will receive input in the following order:

• For Reducer1, the input will be received as:
 ° keyOne-100

 ° keyOne-3

• For Reducer2, the input will be received as:
 ° keyTwo-8

• For Reducer3, the input will be received as:
 ° keyAnother-21

 ° keyAnother-2

In our last section, we will see how we can create our own custom comparator
class in Java.

Hadoop Streaming and Advanced Hadoop Customizations

[174]

Adding streaming Job Step on EMR
Now, let's see how you can execute a streaming job on an EMR cluster. You can
refer to Chapter 6, Executing Hadoop Jobs on an Amazon EMR Cluster, to launch an EMR
cluster from the AWS management console and you can refer to Chapter 8, Amazon
EMR – Command-line Interface Client, to launch a cluster using the CLI client tool.

Using the AWS management console
While you are launching the cluster in the Steps section, select Streaming program
from the Add step drop-down selection, as shown in the following screenshot:

After that, click on Configure and add. This will bring up a pop-up box where you
can define various parameters for your streaming job. You should have your mapper
and reducer executables along with the input files to be present in S3. The following
screenshot shows the various parameters:

Chapter 9

[175]

After you have entered the required parameters, click on Add. Optionally, you
can also enter a list of arguments (space-separated strings) to pass to the Hadoop
streaming utility. For example, you can specify additional files to be copied to the
cluster using the -files option.

Continue with other cluster configurations and then launch the cluster. Your
streaming job should get executed along with the other added Job Steps.

Using the CLI client
Assuming that you have already launched a cluster using CLI as explained in
Chapter 8, Amazon EMR – Command-line Interface Client, and you have the jobFlowId
value for the cluster with you, you can add a streaming Job Step by executing the
following command:

ruby elastic-mapreduce -j <jobFlowId> --stream \

--args "-files,s3://learning-bigdata/streaming/mapper.py" \

--step-name "MyTestStreamingJob" \

--jobconf mapreduce.job.reduces=2 \

--mapper mapper.py \

--reducer s3://learning-bigdata/streaming/reducer.py \

--input s3://learning-bigdata/streaming/input/sample.txt \

--output s3://learning-bigdata/streaming/output

In this command, you will notice that we have specified the number of reducers by
using the --jobconf option.

If you are using earlier versions of Hadoop instead of mapreduce.job.
reduces, you would use mapred.reduce.tasks to set the number of
reducers for your Job Step.

You might also have noticed that for the mapper option, we have just provided the
mapper.py executable name instead of the full S3 path. This is just to demonstrate
that you can use the --args option to pass on other Hadoop streaming options such
as –files, which in the case of the preceding command will copy the mapper.py file
from the specified S3 location to each node in the cluster, making the mapper.py file
locally available to all the map tasks.

Hadoop Streaming and Advanced Hadoop Customizations

[176]

Launching a streaming cluster using the CLI client
Instead of first launching a cluster and then adding the streaming Job Step to it, you
can also launch a streaming cluster.

As we have seen in Chapter 8, Amazon EMR – Command-line Interface Client, if you
want to launch a cluster with specific versions, you should use the ami-version
option; also, for Hadoop 2.x, only machine types with configurations higher than or
equal to m1.medium are allowed. Keeping these two things in mind, you can launch
a streaming cluster by executing the following command:

ruby elastic-mapreduce --create --stream --ami-version 3.0.3 \

--instance-type m1.medium --instance-count 1 \

--args "-files,s3://learning-bigdata/streaming/mapper.py" \

--name "MyTestStreamingJob" \

--jobconf mapreduce.job.reduces=2 \

--mapper mapper.py \

--reducer s3://learning-bigdata/streaming/reducer.py \

--input s3://learning-bigdata/streaming/input/sample.txt \

--output s3://learning-bigdata/streaming/output

If you do not provide the instance-count option, by default, a cluster with a single
node will be created.

Advanced Hadoop customizations
When you are creating the custom JAR implementation for a Hadoop job, you have
the flexibility to customize most of the default implementations being used. You can
create your own implementation of InputFormat and OutputFormat, and you can
create your own key and value classes to be used in place of LongWritable or Text
classes. You can also customize the way your Map/Reduce job will partition and sort
data. You have already seen how to create custom counters in Chapter 5, Programming
Hadoop on Amazon EMR.

In this section, we will see how to create your own implementation of a partitioner
and a sorting comparator.

Chapter 9

[177]

Custom partitioner
You can create your own implementation of partitioner by extending org.apache.
hadoop.mapreduce.Partitioner. The following is the implementation of a
partitioner performing function similar to the one in the previous section:

import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Partitioner;
import org.apache.hadoop.mapreduce.lib.partition.HashPartitioner;

public class KeyFieldsPartitioner extends Partitioner<Text, Text> {

 HashPartitioner<Text, Text> hashPartitioner =
 new HashPartitioner<Text, Text>();
 Text newKey = new Text();

 @Override
 public int getPartition(Text key, Text value, int
 numReduceTasks) {

 try {

 // Get the first field of the key
 String keyString = key.toString();
 String[] keyFields = keyString.split("-");
 newKey.set(keyFields[0]);

 // Execute the default partitioner over the first
 field of the key
 return hashPartitioner.getPartition(newKey, value,
 numReduceTasks);
 } catch (Exception e) {
 e.printStackTrace();
 return (int) (Math.random() * numReduceTasks);
 // this would return a random value in the range
 // [0,numReduceTasks)
 }
 }
}

So, basically, here you need to extend the Partitioner class and override its
getPartition method. This method should return an integer in the range
[0, numReduceTasks).

Hadoop Streaming and Advanced Hadoop Customizations

[178]

Within this method's implementation, the key is split into fields using a hyphen (-)
as the separator and then the partition is decided only on the basis of the first field.
We are executing the default HashPartitioner over the first field.

Using a custom partitioner
In order to instruct your Map/Reduce job to use your custom implementation of the
partitioner, you need to use the setPartitionerClass method of the org.apache.
hadoop.mapreduce.Job class.

So, if you refer to the Driver implementation in Chapter 5, Programming Hadoop on
Amazon EMR, you can add the following line in the overridden run method:

Configuration conf = getConf();
Job job = Job.getInstance(conf);
...

job.setPartitionerClass(KeyFieldsPartitioner.class);

...
boolean success = job.waitForCompletion(true);
return success ? 0 : 1;

Custom sort comparator
Similar to creating the custom partitioner, you can create your own implementation of
a sort comparator by extending the org.apache.hadoop.io.WritableComparator
class and overriding the compare method. The following is the implementation of a
sort comparator performing function similar to the one in the previous section:

import org.apache.hadoop.io.Text;
import org.apache.hadoop.io.WritableComparable;
import org.apache.hadoop.io.WritableComparator;

public class KeyFieldsComparator extends WritableComparator {
 protected KeyFieldsComparator() {
 super(Text.class, true);
 }
 @SuppressWarnings("rawtypes")
 @Override
 public int compare(WritableComparable w1, WritableComparable
 w2) {

Chapter 9

[179]

 Text key1 = (Text) w1;
 Text key2 = (Text) w2;

 // Get the fields of the key
 String keyString1 = key1.toString();
 String[] keyFields1 = keyString1.split("-");

 String keyString2 = key2.toString();
 String[] keyFields2 = keyString2.split("-");

 // (compare on the second part of the key)
 int compare = keyFields1[1].compareTo(keyFields2[1]);

 return compare;
 }
}

If you see, we are comparing keys on the basis of the second field after splitting the
key using the hyphen (-) character.

The preceding comparator implementation sorts in ascending order; if you want
to sort in reverse order, then you just need to reverse the comparison section,
as follows:

int compare = keyFields2[1].compareTo(keyFields1[1]);

Using custom sort comparator
In order to instruct your Map/Reduce job to use your custom implementation of
the sort comparator, you need to use the setSortComparatorClass method of the
org.apache.hadoop.mapreduce.Job class.

If you refer to the driver implementation in Chapter 5, Programming Hadoop on
Amazon EMR, you can add the following line in the overridden run method:

Configuration conf = getConf();
Job job = Job.getInstance(conf);
...

job.setSortComparatorClass(KeyFieldsComparator.class);

...
boolean success = job.waitForCompletion(true);
return success ? 0 : 1;

Hadoop Streaming and Advanced Hadoop Customizations

[180]

Emitting results to multiple outputs
Hadoop provides a utility class org.apache.hadoop.mapreduce.lib.output.
MultipleOutputs that simplifies writing output data to multiple files and locations.

You might use MultipleOutputs mainly for the following two use cases:

• To emit additional outputs other than the job default output
• To emit data to different files and/or directories provided by a user

Using MultipleOutputs
Each additional output or named output might be configured with its own output
format, key class, and value class. You can define multiple named outputs in your
Driver class and then use them in your Reducer class to emit additional output.
Each Reducer class creates a separate copy of these named outputs, the same way
it does with default job output.

Usage in the Driver class
You can use the following static method of the MutilpleOutputs class to define a
named output, which will be in addition to the job default output:

addNamedOutput(Job job, String namedOutput, Class<? extends
OutputFormat> outputFormatClass, Class<?> keyClass, Class<?>
valueClass)

So, if you refer to the Driver implementation in Chapter 5, Programming Hadoop on
Amazon EMR, you can add the following line in the overridden run method:

Configuration conf = getConf();
Job job = Job.getInstance(conf);
...

// Defines additional single text based output 'text' for the job
 MultipleOutputs.addNamedOutput(job, "text", TextOutputFormat.class,
 LongWritable.class, Text.class);

...
boolean success = job.waitForCompletion(true);
return success ? 0 : 1;

Chapter 9

[181]

This code will let you emit some additional data into an additional set of output files
from each Reducer class; hence, with the usual part-r-00000, part-00001 and so
on, you can also see output files named text-00000, text-00001 and so on in your
output directory.

Usage in the Reducer class
After defining the named outputs in the Driver class, you can use them in your
Reducer class to emit additional output data.

Within your Reducer class, you should create an instance of the MultipleOutputs
class in the setup method, as shown here:

private MultipleOutputs multipleOutputsInstance;
public void setup(Context context) {
 ...
 multipleOutputsInstance = new MultipleOutputs(context);
}

Now, within the reduce method implementation, you can use the write method of
the MultipleOutputs class to emit output. The following three variants of the write
method are available:

• write(String namedOutput, K key, V value): This is the write key and
value to namedOutput. You can use it in your reduce method implementation
as follows:
multipleOutputsInstance.write("text", key, new
 Text("Hello"));

• write(String namedOutput, K key, V value, String
baseOutputPath): This is the write key and value to baseOutputPath using
namedOutput. The only difference this method has from the first one is that
it allows you to emit additional outputs to more than one file for the same
named output, that is, you can provide different baseOutputPaths; however,
the framework will generate a unique filename for baseOutputPath. The /
characters in baseOutputPath will be translated into directory levels in your
filesystem. You can use it in your reduce method implementation as follows:
multipleOutputsInstance.write("text", key, new
 Text("Hello"),"output/1"); .
multipleOutputsInstance.write("text", key, new
 Text("Hello"),"output/2");

Hadoop Streaming and Advanced Hadoop Customizations

[182]

• write(KEYOUT key, VALUEOUT value, String baseOutputPath): This is
the write key value to an output filename. When you use it, make sure that
the job's output format should be a FileOutputFormat. You can use it in
your reduce method implementation as follows:
multipleOutputsInstance.write(key, new Text("Hello"),"output/1");

Do not forget to close the multipleOutputsInstance. The best place to do this is the
cleanup method:

public void cleanup(Context) throws IOException {
 multipleOutputsInstance.close();
 ...
 }

Emitting outputs in different directories based on
key and value
Often, you might want to segregate outputs depending on some key or value data.
You can create a method that accepts both key and value and emits a relative file
path and uses that in conjunction with the last variant of the write method, as
shown in the previous section.

For example, your key has both Country and City separated with a hyphen and you
want each country's data to be emitted in separate directories. Also, the filenames
will have names starting with the city name. You can achieve this by following this
short method:

private String generateFileName(Text key) {
 // "Country-City"
 String[] keyParts = key.toString().split("-");

 String country = keyParts [0];
 String city = keyParts [1];
 return country + "/" + city;
 }

Also in your reduce method, you can emit the output as follows:

multipleOutputsInstance.write(key, value, generateFileName(key));

Now, say your key was India-Bangalore and the output directory for your job is
/user/learning-bigdata/output/, the output from the first reducer would be
written to /user/learning-bigdata/output/India/Bangalore-r-00000.

Chapter 9

[183]

To achieve this, adding any named output is not required in your Driver class. Also,
no call to context.write() is necessary in your reduce method implementation
if you just want to emit your output via MultipleOutputs into different locations.
But using MultipleOutputs in this way will still create zero-sized default output
files (part-00000). In order to prevent this, you can use the org.apache.hadoop.
mapreduce.lib.output.LazyOutputFormat class.

You just need to change the way you define your OutputFormat class in your Driver
implementation.

In your OutputFormat class, consider the following code:

job.setOutputFormatClass(TextOutputFormat.class);

Instead of the preceding code, you can use the following:

LazyOutputFormat.setOutputFormatClass(job, TextOutputFormat.class)

This code delays the creation of the output file until any data is available to be written,
and while you use MultipleOutputs exclusively instead of context.write() to emit
your output, you would certainly not want the empty part files to be created.

Summary
In this chapter, we learned about Hadoop streaming and how it works. We also
saw how to run streaming jobs on Amazon EMR. We learned how to create custom
partitioners and custom comparators in Java, and we also saw how to emit output
from a Hadoop job in multiple files and directories.

In the next chapter, we will build upon the sample Hadoop solution that we created
in Chapter 5, Programming Hadoop on Amazon EMR.

Use Case – Analyzing
CloudFront Logs

Using Amazon EMR
In this chapter, we will use all that we learned in previous chapters to build a
real solution to analyze Amazon CloudFront logs using Hadoop and then use
a visualization tool to show that data in a tabular and/or graphical format.

Use case definition
As we have seen in our first chapter, Amazon CloudFront is a content delivery web
service that helps end users to distribute content with low-latency to their customers.
Amazon CloudFront uses its edge locations that are spread across the world to
deliver content. Requests originating from any place are served by the nearest
edge location resulting in the desired low latency.

Now, say you are using Amazon CloudFront as the CDN service for your website
and you want to know the access trends across the world for your website. Basically,
you want to get the total request count, hit count, miss count, error count, per city
per country. You want to be able to see how many bytes have been transferred per
edge location. You also want to get the breakdown of all the requests on the basis
of HTTP status codes. That is, for example, how many 404 errors were there.

So, our use case here is to get insights from Amazon CloudFront access logs analysis.

Use Case – Analyzing CloudFront Logs Using Amazon EMR

[186]

The solution architecture
When you create an Amazon CloudFront distribution, you can enable access logging.
When enabled, Amazon CloudFront saves the access logs in a W3C extended format
into a S3 bucket that you define.

The following diagram depicts the solution architecture:

CloudFront writes
Access logs to S3

EMR processes logs
from S3 and emits back

output to S3
EMR outputs in S3

Output from EMR is
ingested into a data store

Use a visualization tool to
show insights from log

analysis as graphs or tables

So, we will use Hadoop to do the parsing, IP to city/country mapping, and
aggregation among other things.

Amazon EMR will be used to execute this Hadoop Job Step and emit the results
into an output S3 bucket.

The output of our Hadoop Job Step will be ingested into a data store; for this solution,
we will use MySQL as our data store, but you can choose more distributed and
scalable data stores such as Amazon Redshift if you are actually moving this solution
to production, depending on the volume and velocity of your CloudFront logs.

For creating graphs and charts, we will use a visualization tool named Tableau;
you can also use other tools such as Jaspersoft as well.

Creating the Hadoop Job Step
You need to build on to the Hello World example we saw in Chapter 5, Programming
Hadoop on Amazon EMR.

Chapter 10

[187]

Inputs and required libraries
Let's first understand what inputs are available to us and what more metadata
we need.

This Hadoop Job Step will take the following data as input:

• CloudFront access logs
• IP to city/country mapping database

Input – CloudFront access logs
The first two lines of each logfile will look as follows:

#Version: 1.0
#Fields: date time x-edge-location sc-bytes c-ip cs-method
 cs(Host) cs-uri-stem sc-status cs(Referer) cs(User-Agent)
 cs-uri-query cs(Cookie) x-edge-result-type
 x-edge-request-id x-host-header cs-protocol cs-bytes

After that, every line will depict one access, each field is separated by a tab character
and that would look as follows:

2014-02-11 22:03:27 ATL50 611 24.98.201.202 GET
d20asd43wfx2.cloudfront.net /public/assets/images/
ui-bg_1x400.png 404 http://www.minjar.com/index.html
Mozilla/5.0%2520(Windows%2520NT%25205.1)%2520AppleWebKit/537.36%2520
(KHTML,%2520like%2520Gecko)%2520Chrome/32.0.1700.107%2520Safari/537.36
- -
Error 1foSyTpksllq6WjX9RNV4c1XiCytd-FhwkyrbgOuCDEou7sm317CoQ==
asset1.minjarcdn.com http 400

Among all the fields available in the logs, the following are the fields of concern
for us:

• Filename

• Edge Location

• Date

• Time

• IP

• HTTP status code

• Server to client bytes transferred

• Cache Hit/Miss/Error

Use Case – Analyzing CloudFront Logs Using Amazon EMR

[188]

Input – IP to city/country mapping database
The logs have the IP address of the origin of request, but we need to get the insights
per city and country. In order to convert IP to city or country, we need an IP to
city/country mapping database. Many such free and paid databases are available.

You can use the MaxMind's developer version that is free. The database is named
GeoLite2 and can be downloaded from http://dev.maxmind.com/geoip/geoip2/
geolite2. MaxMind also provides you with the APIs in various languages to
read this database. We will use the Java library provided by MaxMind to read the
database file. You can read the documentation of their Java API at http://maxmind.
github.io/GeoIP2-java/.

Download the ZIP file having the JAR file and other dependencies from
http://geolite.maxmind.com/download/geoip/database/
GeoLite2-City.mmdb.gz.

Required libraries
The solution which we are going to create should have the following libraries in
its class path:

• Hadoop APIs: The following libraries are required:
 ° hadoop-common-2.2.0.jar

 ° hadoop-mapreduce-client-core-2.2.0.jar

• MaxMind APIs: The following libraries are required:
 ° geoip2-0.7.0.jar

 ° maxmind-db-0.3.1.jar

• MaxMind APIs' dependencies: The following libraries are required:
 ° jackson-annotations-2.3.0.jar

 ° jackson-core-2.3.0.jar

 ° jackson-databind-2.3.0.jar

• Apache commons API: The following libraries are required:
 ° commons-cli-1.2.jar

http://dev.maxmind.com/geoip/geoip2/geolite2
http://dev.maxmind.com/geoip/geoip2/geolite2
http://maxmind.github.io/GeoIP2-java/
http://maxmind.github.io/GeoIP2-java/
http://geolite.maxmind.com/download/geoip/database/GeoLite2-City.mmdb.gz
http://geolite.maxmind.com/download/geoip/database/GeoLite2-City.mmdb.gz

Chapter 10

[189]

Driver class implementation
You can refer to Chapter 5, Programming Hadoop on Amazon EMR, for details on what
things are generally done in this class. This is basically a class where you create the
Hadoop job and define the various configurations, including defining the Mapper
and Reducer classes.

The structure of this class will be as follows:

public class LogAnalyzer extends Configured implements Tool {

 private static final String JOB_NAME = "CloudFront Log
 Analyzer";

 @Override
 public int run(String[] args) throws Exception {
 }

 public static void main(String[] args) throws Exception {
 }
}

You need to override the run method. First, within the run method, you should
get the Configuration object and set the configuration which enables output
to be compressed, as follows:

Configuration conf = getConf();

// set compression to be true by default
conf.setBoolean("mapred.output.compress", true);

Now, we also want the output to be directly ingested into a data store; hence, a true
CSV output will help. So, in order to set the separator between the key and value in
the output to be a comma character, the following configuration can be used:

conf.set("mapred.textoutputformat.separator", ",");

You need to pass on the MaxMind's mmdb database file to your job and make it
available for each mapper task locally. For this, you can add this database file as a
distributed cache. In addition to getting the input and output path(s), we also need
to get the path to the database file. In order to get it from the arguments, we will use
Apache CLI library, which is very simple to use, as shown in the following code:

Options options = new Options();
options.addOption("ipcitycountrymappingfile", true,
 "ipcitycountrymappingfile - IP to City Mapping File");
CommandLineParser parser = new PosixParser();

Use Case – Analyzing CloudFront Logs Using Amazon EMR

[190]

CommandLine cmd = parser.parse(options, args);
String ipcitycountrymappingfilePath =
 cmdgetOptionValue("ipcitycountrymappingfile");

Now, you can add this file to the distributed cache of your job. Using the
DistributedCache class, as shown in the following code, has been deprecated
in Hadoop 2.

DistributedCache.addCacheFile(new URI(argument), conf);
 // Deprecated

Instead of the DistributedCache class, use the addCacheFile method of job class,
as shown in the following code:

 job.addCacheFile(new URI(ipcitycountrymappingfilePath));

Say along with analyzing logs on the basis of city and county, you also want to
analyze the logs on the basis of IPs, you would want different sets of outputs for each
of them. This can be achieved by using MultipleOutputs as discussed in Chapter 9,
Hadoop Streaming and Advanced Hadoop Customizations. Let's define two named
outputs, one for aggregating counts by city/country and the other for aggregating
by IP, as shown here:

MultipleOutputs.addNamedOutput(job, "detailsbycitycountry",
 TextOutputFormat.class, Text.class, Text.class);
MultipleOutputs.addNamedOutput(job, "detailsbyip",
 TextOutputFormat.class,
 Text.class, Text.class);

Now, empty part-r-***** files will be created, while MultipleOutputs is used
to emit the output.

The following statement makes sure that Hadoop emits the default output lazily,
that is, the output file will be created only when something is written to the context:

LazyOutputFormat.setOutputFormatClass(job,
 TextOutputFormat.class);

Other than this mentioned statement, you will need to provide the basic configurations
such as Key and Value classes and also at the end, you will need to call the
job.waitForCompletion method.

The following is the complete implementation of the driver class, which is
named LogAnalyzer:

public class LogAnalyzer extends Configured implements Tool {

 private static final String JOB_NAME = "CloudFront Log Analyzer";

Chapter 10

[191]

 @Override
 public int run(String[] args) throws Exception {

 try {
 Configuration conf = getConf();
 conf.setBoolean("mapred.output.compress", true);
 conf.setInt("mapred.task.timeout", 0);
 conf.set("mapred.textoutputformat.separator", ",");

 Job job = Job.getInstance(conf);

 Options options = new Options();
 options.addOption("ipcitycountrymappingfile", true,
 "ipcitycountrymappingfile - IP to City Mapping File");
 CommandLineParser parser = new PosixParser();
 CommandLine cmd = parser.parse(options, args);
 String ipcitycountrymappingfilePath =
 cmdgetOptionValue("ipcitycountrymappingfile");

 if (ipcitycountrymappingfilePath!= null) {
 job.addCacheFile(new URI(ipcitycountrymappingfilePath));
 } else {
 throw new MissingArgumentException("Argument '"
 + "ipcitycountrymappingfile" + "' is required.");
 }

 job.setJarByClass(LogAnalyzer.class);
 job.setJobName(JOB_NAME);

 job.setMapperClass(LogAnalyzerMapper.class);
 job.setReducerClass(LogAnalyzerReducer.class);
 job.setOutputKeyClass(Text.class);
 job.setOutputValueClass(Text.class);
 job.setInputFormatClass(TextInputFormat.class);
 job.setOutputFormatClass(TextOutputFormat.class);
 job.setMapOutputValueClass(Text.class);
 job.setMapOutputKeyClass(Text.class);

 FileInputFormat.setInputPaths(job, args[0]);
 FileOutputFormat.setOutputPath(job, new Path(args[1]));

 // Define two named outputs, one for aggregating counts by
 // city/country and the other for aggregating by IP

Use Case – Analyzing CloudFront Logs Using Amazon EMR

[192]

 MultipleOutputs.addNamedOutput(job, "detailsbycitycountry",
 TextOutputFormat.class, Text.class, Text.class);
 MultipleOutputs.addNamedOutput(job, "detailsbyip",
 TextOutputFormat.class, Text.class, Text.class);
 LazyOutputFormat.setOutputFormatClass(job,
 TextOutputFormat.class);
 boolean success = job.waitForCompletion(true);
 return success ? 0 : 1;
 } catch (Exception e) {
 e.printStackTrace();
 return 1;
 }

 }

 public static void main(String[] args) throws Exception {

 if (args.length < 3) {
 System.out
 .println("Usage: LogAnalyzer <comma separated list of
 input directories>" +
 " <output dir> -ipcitymappingfile <path to mmdb
 database>");
 System.exit(-1);
 }

 int result = ToolRunner.run(new LogAnalyzer(), args);
 System.exit(result);
 }
}

Mapper class implementation
The mapper processes each line in the input, finds the country to which the IP
address belongs using MaxMind GeoIP2 API and the database. For each record
in the logfile, the mapper outputs two key-value pairs, one for aggregation by
city-country and the other for aggregation by IP.

In the setup method, you will need to get the IP to city-country mapping database
file from the distributed cache and create an instance of the com.maxmind.geoip2.
DatabaseReader class to be used in the map method implementation.

In the map method implementation, you can ignore the first two lines of each logfile,
and as these two lines start with a hash character (#), they can easily be ignored.
You then split each line on the tab character and extract the relevant fields.

Chapter 10

[193]

Using the IP address which you would have extracted from the log record and the
com.maxmind.geoip2.model.CityResponse class along with the DatabaseReader
class, you would get the corresponding city and country. You can decide whether the
access record is for a hit or a miss depending on the value of the xEdgeResultType
column extracted from the log record.

Now, you will emit two sets of output from the mapper:

• Set 1: The following output is emitted:
 ° Key = date, filename, scStatus, city, country,

xEdgeLocation

 ° Value = requestCount, hitCount, missCount, errorCount

• Set 2: The following output is emitted:
 ° Key = date, filename, IP

 ° Value = requestCount

You might want to emit different sets of key-value pairs as per your analysis
requirements.

The following is the complete implementation of the Mapper class.

public class LogAnalyzerMapper extends Mapper<LongWritable, Text,
 Text, Text> {

 private Text outputValue = new Text("");
 private Text outputKey = new Text();
 DatabaseReader reader;

 /*
 * It reads the Maximind's database from Distributed Cache and
 creates
 * an instance of DatabaseReader for further use.
 */
 @Override
 public void setup(Context context) {

 URI ipCityMappingFile;
 try {
 ipCityMappingFile = context.getCacheFiles()[0];
 File database = new File(ipCityMappingFile.toString());

 reader = new DatabaseReader.Builder(database).build();
 } catch (IOException e) {
 e.printStackTrace();

Use Case – Analyzing CloudFront Logs Using Amazon EMR

[194]

 }
 }

 @Override
 public void map(LongWritable key, Text value, Context context)
 throws IOException, InterruptedException {

 // The first 2 lines of each log file are info records
 // and hence should be ignored.
 // These lines start with the hash (#) character.
 if (value.toString().charAt(0) == '#') {
 return;
 }
 String[] valueRow = value.toString().split("\\t");

 /*
 * Fields: date time x-edge-location sc-bytes c-ip cs-method
 cs(Host)
 * cs-uri-stem sc-status cs(Referer) cs(User-Agent) cs-uri-
 query
 * cs(Cookie) x-edge-result-type x-edge-request-id
 */
 String date = valueRow[0];
 String xEdgeLocation = valueRow[2];
 String scBytes = valueRow[3];
 String cIP = valueRow[4];
 String csURIStem = valueRow[7];
 String scStatus = valueRow[8];
 String xEdgeResultType = valueRow[13];

 String city = "";
 String country = "";
 CityResponse response = null;
 try {
 response = reader.city(InetAddress.getByName(cIP));
 city = response.getCity().toString();
 country = response.getCountry().toString();
 } catch (GeoIp2Exception e) {
 e.printStackTrace();
 context.getCounter(Constants.CUSTOM_COUNTERS_GROUP_NAME,
 Constants.IP_TO_CITY_COUNTRY_MISS_COUNTER).increment(1);

 }

 // Output for Details_By Date_File_HTTPStatus_City_Country_
EdgeLocation

Chapter 10

[195]

 String filename = csURIStem.substring(csURIStem.lastIndexOf('/') +
1);

 // Key = date, filename, scStatus, city, country,
 xEdgeLocation
 outputKey.set(date + "," + filename + "," + scStatus + "," +
 city + ","
 + country + "," + xEdgeLocation);
 // Value = requestCount, hitCount, missCount, errorCount
 outputValue
 .set("1,"
 + (xEdgeResultType.toString().equals("Hit") ? "1,"
 : "0,")
 + (xEdgeResultType.toString().equals("Miss") ? "1,"
 : "0,")
 + ((!xEdgeResultType.toString().equals("Miss") &&
 !xEdgeResultType
 .toString().equals("Hit")) ? "1," : "0,")
 + scBytes);
 context.write(outputKey, outputValue);

 context.getCounter("CUSTOM COUNTERS",
 "DETAILS BY CITY-COUNTRY").increment(1);

 // Output for Details_By_Date_File_IP
 outputKey.set(date + "," + filename + "," + cIP);
 outputValue.set("1");
 context.write(outputKey, outputValue);
 context.getCounter("CUSTOM COUNTERS",
 "DETAILS BY IP").increment(1);
 }

}

Reducer class implementation
In the Reducer class, you will need to initialize a MultipleOutputs instance and
use it to emit both kinds of aggregated results, that is, aggregation by city-country
and aggregation by IP. This initialization has to be done in the setup method and do
not forget to override the cleanup method as well and close the MultipleOutputs
instance here.

Use Case – Analyzing CloudFront Logs Using Amazon EMR

[196]

In the reduce method implementation, you will need to split the key's string value
on a comma character and according to the split array size, you can decide that is it
details by city-country or details by IP.

The following is a complete implementation of the Reducer class:

public class LogAnalyzerReducer extends Reducer<Text, Text, Text,
 Text> {

 private Text outputValue = new Text("");

 // Using MultipleOutputs to output data in different folders.
 private MultipleOutputs<Text, Text> multipleOutputs;

 @Override
 protected void setup(Context context) throws IOException,
 InterruptedException {

 super.setup(context);
 multipleOutputs = new MultipleOutputs<Text, Text>(context);
 }

 @Override
 protected void reduce(Text key, Iterable<Text> values, Context
 context)
 throws IOException, InterruptedException {

 Iterator<Text> iterator = values.iterator();
 Integer requestCount = 0;
 Integer missCount = 0;
 Integer hitCount = 0;
 Integer errCount = 0;
 Integer bytesTransferred = 0;
 String[] keyRows = key.toString().split(",");
 if (keyRows.length == 6) { // DETAILS_BY_CITY_COUNTRY data
 while (iterator.hasNext()) {
 Text value = iterator.next();
 String[] rows = value.toString().split(",");
 requestCount += Integer.parseInt(rows[0]);
 hitCount += Integer.parseInt(rows[1]);
 missCount += Integer.parseInt(rows[2]);
 errCount += Integer.parseInt(rows[3]);
 bytesTransferred += Integer.parseInt(rows[4]);
 }

Chapter 10

[197]

 outputValue.set(requestCount + "," + hitCount + "," +
 missCount + "," + errCount + "," + bytesTransferred);
 multipleOutputs.write("detailsbycitycountry", key, outputValue,
 "detailsbycitycountry" + File.separator + "part");
 } else if (keyRows.length == 3) { // DETAILS_BY_IP data
 while (iterator.hasNext()) {
 iterator.next();
 requestCount++;
 }
 outputValue.set(requestCount + "");
 multipleOutputs.write("detailsbyip", key, outputValue,
 "detailsbyip" + File.separator + "part");
 }
 }

 @Override
 protected void cleanup(Context context) throws IOException,
 InterruptedException {

 multipleOutputs.close();
 }
}

Testing the solution locally
You can build the JAR file for the above solution as explained in Chapter 5,
Programming Hadoop on Amazon EMR, and then you will need to make sure that your
local Hadoop configuration has details about the compression codec or not, as you
would have noticed we are setting compression to true.

You can see a file named mapred-site.xml.template or mapred-site.xml in your
local copy of Hadoop at /<base-path>/hadoop-2.2.0/etc/hadoop. If it is the
.template file, then remove this .template suffix and add the following section
in the XML file:

<?xml version="1.0" encoding="UTF-8"?>
<configuration>
 <property>
 <name>mapred.output.compression.codec</name>
 <value>org.apache.hadoop.io.compress.GzipCodec</value>
 </property>
</configuration>

Use Case – Analyzing CloudFront Logs Using Amazon EMR

[198]

Now, you can test this locally by executing the following command:

/<base-path>/hadoop-2.2.0/bin/hadoop jar /<jar- directory
>/cloudfront_log_analyzer.jar <input-file-or- directory -path>
<output-directory-path> -ipcitymappingfile /< geolite-directory
>/GeoLite2-City.mmdb

On successful completion of the job, you will see two directories in the output
folder, namely, detailsbycitycountry and detailsbyip. The output files
within them should be gzipped.

Executing the solution on EMR
You should upload the input logfiles to S3 or use your own CloudFront access logs
location on S3 as an input. You should also upload the cloudfront_log_analyzer.
jar file and the mmdb database file to S3.

Now, using the CLI client tool, as described in Chapter 8, Amazon EMR –
Command-line Interface Client, you will first need to launch a cluster and
then add the Job Step to it, using the following command:

ruby elastic-mapreduce --create --alive --name "CloudFront Log Analysis"
\

--ami-version 3.0.4 \

--master-instance-type m1.medium --slave-instance-type m1.medium \

--num-instances 1

This command will give you a Job Flow ID.

Next, you need to add the Job Step for the log analysis. You can do that using the
following command:

ruby elastic-mapreduce --jobflow <jobFloeId> \

--jar s3://learning-bigdata/LogAnalyzer/bin/
cloudfront_log_analyzer.jar \

--args s3://learning-bigdata/LogAnalyzer/input/cloudfront_logs/,
s3://learning-bigdata/LogAnalyzer/output/1/ \

--args -ipcitymappingfile, s3://learning-
bigdata/LogAnalyzer/input/GeoLite2-City.mmdb \

--step-name "LogAnalyzer"

After successful completion of the Job Step, you can download the output and get
ready to ingest data into a data store to be consumed by a visualization tool.

Chapter 10

[199]

Output ingestion to a data store
As discussed earlier, we are going to use MySQL. In any MySQL server, either local
or remote, create two tables, details_by_city_country and details_by_ip. Let's
just focus on the details_by_city_country table. In accordance with the output
from our reducer, you can create it using the following command:

CREATE TABLE details_by_city_country (

date date NOT NULL,

filename varchar(100) NOT NULL,

http_status_code integer NOT NULL,

city varchar(100) NOT NULL,

country varchar(100) NOT NULL,

edge_location varchar(10) NOT NULL,

request_count BIGINT NOT NULL,

hit_count BIGINT NOT NULL,

miss_count BIGINT NOT NULL,

error_count BIGINT NOT NULL,

bytes_transferred BIGINT NOT NULL

);

You should combine all the output in <output-directory-path>/
detailsbycitycountry/ using the following command:
zcat output-directory-path>/detailsbycitycountry/part-r-* >
detailsbycitycountry.csv

Now, you can import it to MySQL using the LOAD DATA LOCAL INFILE command
of MySQL.

Similarly, you can import data to MySQL for the details_by_ip table.

You are now ready to use any visualization tool to create graphs and charts by
connecting to this data store.

Using a visualization tool – Tableau
Desktop
We chose Tableau Desktop as our visualization tool because it is very simple to
install and use. In order to use this tool, you need to have either Windows or Mac
as it isn't available currently for any Linux distributions.

Use Case – Analyzing CloudFront Logs Using Amazon EMR

[200]

Setting up Tableau Desktop
Get the executable/installer for Tableau Desktop from http://www.
tableausoftware.com/products/desktop/download.

After the completion of download, execute the installer and follow the instructions
to complete the setup.

As we are going to connect to MySQL, its connector also needs to be installed. You
can go to http://www.tableausoftware.com/support/drivers and download
and install the correct driver. If you are using any other data store instead of MySQL,
you can install the relevant driver.

Creating a new worksheet and connecting to
the data store
The following steps create a new worksheet and connect to MySQL:

1. Start the Tableau Desktop program and go to File | New.
2. Click on either Data | Connect to Data or click on Connect to Data on the

left-hand side section, as shown in the following screenshot:

http://www.tableausoftware.com/products/desktop/download
http://www.tableausoftware.com/products/desktop/download
http://www.tableausoftware.com/support/drivers

Chapter 10

[201]

3. Select MySQL from the left-hand side section and key in your MySQL
server's details and click on Connect:

4. Select the cloudfront_log_analysis option from the Database dropdown and
click on Go to Worksheet, as shown in the following screenshot:

Use Case – Analyzing CloudFront Logs Using Amazon EMR

[202]

This will take you to a screen, as shown in the following screenshot:

As you can see, Tableau automatically decides which columns/fields can be
the dimensions and which can be the measures. Dimensions generally form
the rows and measures are taken to be part of columns while creating graphs
and tabular charts.

Creating a request count per country graph
The following steps will create a request count per country graph:

1. Drag Country from the Dimensions section and drop it into the Rows
section on the right-hand side pane.

2. Similarly, drag Request Count from the Measures section and drop it into
the Columns section on the right-hand side pane.

Chapter 10

[203]

3. You can see the horizontal bar graph, as shown in the following screenshot:

That's all you need to do. Now, if you want to see an ordered list of values, you can
click on the right-hand side of the Country label in the Rows section and click on
Sort..., as shown in the following screenshot:

Use Case – Analyzing CloudFront Logs Using Amazon EMR

[204]

You will get a popup where you should select Descending and click on OK. Now,
you should see the results with the country with the highest number of request
counts at the top, as shown in the following screenshot:

If you want different types of graphs and charts, you can click on Show Me on
the top-right corner and select among multiple choices ranging from pie charts
to tree maps.

Other possible graphs
Similar to the preceding example, you can create many possible graphs and charts as
per your requirements.

The following sections provide a few more examples.

Request count per HTTP status code
Similar to creating visualization for request count per country, you can also create
the visualization to know the request count per HTTP status code. This bar chart can
be useful in finding out the number of erroneous requests and whether their counts
are under considerable limits or not.

Chapter 10

[205]

The following screenshot shows the request count per HTTP status code:

Request count per edge location
To obtain a request count per edge location, perform the following steps:

1. Let's create a pie chart for the request counts served per edge location. Drag
Edge Location from the Dimensions section and drop it into the Rows
section on the right-hand side pane.

2. Similarly, drag Request Count from the Measures section and drop it into
the Columns section on the right-hand side pane.

Use Case – Analyzing CloudFront Logs Using Amazon EMR

[206]

3. Now, click on Show Me in the top-right corner and select piechart among
the multiple choices. The output should be as shown in the following
screenshot:

Bytes transferred per country
Let's create a packed bubbles visual for the bytes transferred per country:

1. Drag Country from the Dimensions section and drop it into the Rows
section on the right-hand side pane.

2. Similarly, drag Bytes Transferred from the Measures section and drop it into
the Columns section on the right-hand side pane.

3. Now, click on Show Me in the top-right corner and select packed bubbles
among the multiple choices.

Chapter 10

[207]

4. The output should be as shown in the following screenshot:

You can play around and create more than one view per page and add filters on top
of the results.

Summary
In this chapter, we leveraged what we have learned in this book and created a
real-world solution of getting business insights from CloudFront logs. Using this
visual data, the business might want to focus more on certain areas in the world from
where it receives maximum hits, and at the same time, some businesses might use it
to find out the areas where they need to work on marketing and improve upon the
hits from those areas.

We hope that by following this book, you have become familiar with the opportunities
that lie in Big Data processing and have learned the two major technologies involved
with it: Hadoop MapReduce and Amazon ElasticMapReduce. By now, you should
have become familiar with the MapReduce paradigm that enables massively
distributed processing. You should also be comfortable now in creating solutions
and executing them on EMR clusters.

Use Case – Analyzing CloudFront Logs Using Amazon EMR

[208]

You should now try out creating solutions using Hadoop for various business
problems such as creating a movie recommendation engine or market basket analysis.

Hadoop as well as EMR are improving continuously. Follow their official
pages online at http://hadoop.apache.org and http://aws.amazon.com/
elasticmapreduce/ and keep yourself updated.

http://hadoop.apache.org
http://aws.amazon.com/elasticmapreduce/
http://aws.amazon.com/elasticmapreduce/

Index
Symbols
.pem file 110

A
account, AWS

AWS support plan, selecting 26
creating 24
identity verification, by telephone 25
payment method, providing 25

advanced Hadoop customizations
about 176
custom partitioner 177
custom sort comparator 178, 179

Amazon AppStream 22
Amazon CloudFront 20
Amazon CloudSearch (Beta) 21
Amazon CloudWatch

about 22
URL, for pricing 22

Amazon.com account
creating 25

Amazon DynamoDB 18
Amazon EBS 16, 24
Amazon EC2 14, 24, 27
Amazon ElastiCache 19
Amazon Elastic Block Store. See

Amazon EBS
Amazon Elastic MapReduce. See

Amazon EMR
Amazon Elastic Transcoder 22
Amazon EMR 18, 20
Amazon EMR CLI

URL 149

Amazon EMR interfaces
functionalities, comparing 126

Amazon Glacier 16, 17
Amazon Kinesis 21
Amazon Machine Image (AMI)

selecting 27
Amazon RDS 17, 18, 24
Amazon Redshift 18, 19
Amazon Relational Database Service. See

Amazon RDS
Amazon Route 53 20
Amazon S3

about 16, 18, 24, 33
bucket, creating 33
bucket, naming 33

Amazon S3 bucket
creating, for input data 111-113
creating, for JAR 111-113

Amazon Simple Email Service
(Amazon SES) 22

Amazon Simple Notification Service.
See Amazon SNS

Amazon Simple Queue Service.
See Amazon SQS

Amazon Simple Storage Service.
See Amazon S3

Amazon Simple Workflow Service. See
Amazon SWF

Amazon SNS 21
Amazon SQS 21
Amazon SWF 22
Amazon Virtual Private Cloud (Amazon

VPC) 19, 20
Amazon Web Services. See AWS

[210]

Amazon Workspaces 15
Ambari 68
analytics, AWS

about 20
Amazon EMR 20
Amazon Kinesis 21
AWS Data Pipeline 21

Apache commons API
libraries 188

Apache Hadoop
about 52, 55, 56, 73
as platform 67, 68
components 56
dev environment setup 85, 86
Hello World 85
YARN 64

Apache Hadoop, components
Common 56
Hadoop Distributed File System 56
Hadoop YARN 57
MapReduce 57
YARN 57

Apache Hive. See Hive
Apache Pig. See Pig
ApplicationMaster, YARN 66
application services, AWS

about 21
Amazon AppStream 22
Amazon CloudSearch (Beta) 21
Amazon Elastic Transcoder 22
Amazon SES 22
Amazon SNS 21
Amazon SQS 21
Amazon SWF 22

auto scaling 15
availability zones 12, 13
Avro 68
AWS

about 9, 10
design 10
geographical separation 11
structure 10
URL 11, 150

AWS CloudFormation 23
AWS CloudHSM 23
AWS CloudTrail 23

AWS Data Pipeline 21
AWS Direct Connect 20
AWS Elastic Beanstalk 23
AWS Elastic MapReduce (AWS EMR)

about 71
credentials, configuring 149, 150
features 72
solutions, programming 74, 75
URL, for documentation 73

AWS EMR service, accessing
AWS SDK used 126
CLI tools used 126
Web console used 125
WebService API used 126

AWS Import/Export 17
AWS management console

launching 26
URL 26
using 174, 175

AWS OpsWorks 23
AWS SDK

used, for accessing AWS EMR service 126
AWS services

about 14
analytics 20
application services 21
compute 14
databases 17
deployment and management 22
networking and CDN 19
pricing 23, 24
storage 16

AWS Storage Gateway 17

B
best practices, EMR

cluster size 144
cost optimization 145
data compression 144
data transfer 143
Hadoop configuration 144
instance type 144
MapReduce, tuning 144

Billing and Cost Management console
URL 24

[211]

Bootstrap action logs 135
Bucket Explorer 34
bytes transferred per country graph 206, 207

C
C3 instance sizes 33
Cassandra 68
CDH 53
Chukwa 68
cleanup method 90
CLI 125, 147
CLI client

used, for launching streaming cluster 176
using 175

CLI tools
about 73
used, for accessing AWS EMR service 126

CloudBerry 34
Cloudera distribution 53
Cloudera distribution of Apache Hadoop.

See CDH
CloudFront access logs 187
cluster creation option, CLI client

--alive 153
--ami-version <AMI_Version> 153
--availability-zone <Availability_Zone> 153
--bid-price <Bid_Price> 154
--bootstrap-action <S3_Path> [--args

"arg1,arg2"] 153
--create 154
--instance-group INSTANCE_GROUP_

TYPE 154
--jobflow-role <IAM_Role_Name> 154
--key-pair <Key_Pair_Pem_File> 154
--master-instance-type

<Instance_Type> 154
--name "Cluster_Name" 154
--num-instances

NUMBER_OF_INSTANCES 154
--plain-output 154
--region <Region> 154
--service-role <IAM_Role_Name> 154
--slave-instance-type 154
--subnet <EC2-Subnet_ID> 154
--visible-to-all-users <true|false> 154

--with-supported-products <Product> 154
--with-termination-protection 154

Cluster instance state logs 135
combiner 45, 46
command line

EMR cluster, launching from 152
command-line interface. See CLI
compute optimized, EC2 instance types

C3 instance sizes 33
compute service, AWS

about 14
Amazon EC2 14
Amazon Workspaces 15
auto scaling 15
Elastic Load Balancing (ELB) 15

Configure daemons option 130, 131
Configure Hadoop, arguments

--daemon-heap-size 130
--daemon-opts 130
--keyword-config-file 128
--keyword-key-value 128
--replace 130

Configure Hadoop option 128-130
container, YARN 67
counting problem 37, 38
credentials.json file 151
Custom action option 133
Custom JAR 74
custom partitioner

about 177
using 178

custom sort comparator
about 178
using 179

D
databases, AWS

about 17
Amazon DynamoDB 18
Amazon ElastiCache 19
Amazon RDS 17, 18
Amazon Redshift 18, 19

data lifecycle
about 42, 43
combiner 45, 46

[212]

input splits, creating 44
mapper 45
partitioner 47
reducer 48
shuffle and sort 47

DataNode 60, 62
debugging, EMR cluster 143
deployment and management, AWS

about 22
Amazon CloudWatch 22
AWS CloudFormation 23
AWS CloudHSM 23
AWS CloudTrail 23
AWS Elastic Beanstalk 23
AWS OpsWorks 23
Identity and Access Management (IAM) 22

dev environment, Hadoop
dependencies, adding to project 87-89
Eclipse IDE 86
Hadoop 2.2.0 distribution, unzipping 86
Hadoop 2.2.0, downloading 86
Java project, creating in Eclipse 87

divide and conquer 40
Domain Name System (DNS) 20
driver class

executing 105
implementing 99-104
jar, building 104
output, verifying 107

Driver class
MultipleOutputs, using in 180, 181

Driver class implementation, Hadoop Job
Step 189, 190

E
EC2 instance types

about 31
compute optimized 32
general purpose 31
memory optimized 32

EC2 key pair
creating 109-111
URL 150

Eclipse
Java project, creating in 87

setting up 86
URL, for downloading 86

edge locations 20
Elastic Load Balancing (ELB) 15
Elastic MapReduce dashboard,

EMR cluster 113
EMR

spot instances, using with 160, 161
EMR architecture 75
EMR bootstrap actions

adding 127, 128
Configure daemons option 130, 131
Configure Hadoop option 128-130
Custom action option 133
Memory intensive configuration option 132
Run if option 131, 132

EMR CLI client
downloading 149
installing 149

EMR CLI client installation
about 147
Ruby, downloading 147
RubyGems framework, installing 148
RubyGems framework, verifying 148

EMR CLI installation
verifying 151

EMR cluster
access 117
configurations 114
connecting, to master node 135
creating 113
debugging 143
details, listing 156
details, obtaining 156
Elastic MapReduce dashboard 113
hardware configuration 116
Job Steps, adding to 118, 155
keep alive feature 81
launching 113, 151
launching, from command line 152
logging 134
managing 125, 126
monitoring 134, 141, 151
monitoring, with Ganglia 142
requisites 109
security 117

[213]

software configuration 115
states 80, 81
tags, adding 115
termination 159
termination protection feature 81
tools 113
troubleshooting 134

EMR cluster configurations
cluster name 114
debugging 114
log folder S3 location 114
logging 114
termination protection 114

EMR use cases
about 82
click stream analysis 83
data transformations 83
product recommendation engine 83
scientific simulations 83
web log processing 83

examples, MapReduce
ad networks 51
data analytics 51, 52
e-commerce 50
Extract, Transform, and Load (ETL) 51, 52
financial analytics 51
fraud detection 51
media and entertainment 50
search engines 51
social networks 50
websites 50

Extract, Transform, and Load (ETL) 52, 83

F
features, for accessing AWS EMR

CLI tool 73
SDK 73
web console 73
WebService API 73

FoxyProxy
configuring, for hosting websites 138
installing, in Google Chrome 138
proxy setting, creating 138-140
URL, for documentation 141
URL, for downloading 138

G
Ganglia

used, for monitoring EMR cluster 142
general purpose, EC2 instance types

M3 instance sizes 32
generic command options

-archives <commaSeparatedList> 169
-conf <configurationFile> 169
-D <property=value> 169
-files <commaSeparatedList> 169
-libjars <commaSeparatedList> 169
using, with streaming 169

geographical separation, AWS
availability zones 12, 13
region 11

GeoLite2
download link 188

global infrastructure, AWS
benefits 13

Google Chrome
FoxyProxy, installing 138

Google File System (GFS) 56
graphs

bytes transferred per country 206, 207
examples 204
request count per edge location 205
request count per HTTP status code 204

H
Hadoop. See Apache Hadoop
Hadoop 2.2.0

downloading 86
URL, for downloading 86

Hadoop 2.2.0 distribution
unzipping 86
URL, for setting up 86

Hadoop APIs
libraries 188

Hadoop comparator class
using 173

Hadoop Distributed File System. See HDFS
Hadoop filesystem, EMR

HDFS 82
S3 82

[214]

Hadoop Job Step
CloudFront access logs 187
creating 186
data, accepting as input 187
Driver class implementation 189, 190
executing, on EMR 198
IP to city/country mapping database 188
Mapper class implementation 192, 193
Reducer class implementation 196
requisites library 187
testing 197

Hadoop logs 134
Hadoop partitioner class

using 171, 172
Hadoop streaming

about 163
command options 166
generic command options 169
Java class name, using as

Mapper/Reducer 168
key-value splitting, customizing 169, 170

hardware configuration, EMR cluster
about 116
EC2 availability zone 116
EC2 instance(s) configurations 116, 117
network 116

Hardware Security Module (HSM) 23
HBase 68
HDFS

about 57
architectural goals 57, 58
assumptions 57, 58
block replication 58-60
rack awareness 58-60

HDFS, architecture
about 60
DataNode 62
NameNode 61

Hive
about 68, 69, 74
URL 74

Hive Query Language (HQL) 69

I
Identity and Access Management (IAM) 22

input splits
creating 44
record reader 44

installation, FoxyProxy
in Google Chrome 138

instance groups
about 160
core instance group 160
master instance group 160
task instance group 160

J
JAR

Amazon S3 bucket, creating for 111-113
Jaspersoft 186
Java class name

using, as mapper/reducer 168
Java project

creating, in Eclipse 87
Job Flow 76, 77
job-flow.json file

HadoopVersion parameter 132
instanceCount parameter 132
instanceGroups parameter 132
jobFlowCreationInstant parameter 132
JobFlowID parameter 132
masterInstanceID parameter 132
masterInstanceType parameter 132
masterPrivateDnsName parameter 132
slaveInstanceType parameter 132

Job Step
about 77
adding, to EMR cluster 155
Cancel and wait option 79
Continue option 78
failure case 78, 79
Terminate cluster option 79

Job Step, EMR cluster
adding 118-121
parameters, configuring 118

Job Step logs 135
JobTracker 63
JRE, for Hadoop

reference link 85

[215]

K
key-value splitting

customizing 169, 170

L
launched instance

communicating with 30
logfiles, EMR cluster

Bootstrap action logs 135
Cluster instance state logs 135
Hadoop logs 134
Job Step logs 135

logs
controller 120
stderr 120
stdout 120
syslog 120

M
M3 instance sizes 32
machine, starting on AWS console

about 27
Amazon Machine Image (AMI),

selecting 27
instance details, configuring 28
instance, tagging 28
instance type, selecting 27
security group, configuring 29
storage, adding 28

Mahout 68
mandatory parameters, streaming

command options
-input <inputDirectoryOrFile> 167
-mapper <executableOrJavaClassName>

167
-output <directory> 167
-reducer <executableOrJavaClassName>

167
map function

about 37, 38, 90
input access log 39
model 41

map.output.key.field.separator
parameter 171

Mapper
about 45, 164
implementation 89

Mapper class
cleanup method 89, 90
map method 89
run method 89-95
setup method 89

Mapper class implementation, Hadoop Job
Step 192, 193

mapper/reducer
Java class name, using as 168

MapR 53
mapred.text.key.partitioner.options

parameter 171
MapReduce

about 37, 40, 41
data lifecycle 42, 43
examples 49
map function 37
map function model 41
reduce function 37
reduce function model 41
software distribution 52
use cases 49

MapReduce 1.x, Apache Hadoop
architecture 63
JobTracker 63
TaskTracker 64

MapReduce 2.0, Apache Hadoop
about 64
YARN 64-66

MapReduce, Apache Hadoop
about 57, 62
API 62
cluster management system 62
framework 62
MapReduce 1.x 63
MapReduce 2.0 64

master node
EMR cluster, connecting to 135
SSH tunnel, opening to 137
websites, hosting on 136, 137

MaxMind
references 188

[216]

MaxMind APIs
libraries 188

MaxMind APIs' dependencies
libraries 188

Memory intensive configuration option 132
memory optimized, EC2 instance types

about 32
R3 instance sizes 32

modules, Apache Hadoop
about 56
Common 56
Hadoop Distributed File System 56
MapReduce 57
YARN 57

MRv1 63
multiple outputs

results, emitting to 180
MultipleOutputs

about 180
using, in Driver class 180, 181
using, in Reducer class 181, 182

N
NameNode 60, 61
networking and CDN, AWS

about 19
Amazon CloudFront 20
Amazon Route 53 20
Amazon VPC 19, 20
AWS Direct Connect 20

NodeManager, YARN 66
nodes, Hadoop cluster

Master Node 75
Slave Node 75

nodes types, AWS EMR
core 76
master 76
task 77

O
optional parameters, streaming command

options
-cmdenv <name=value> 167
-combiner <executableOrJavaClassName>

167

-file <fileName> 167
-inputFormat <javaClassName> 167
-lazyOutput 168
- mapdebug 168
- numReduceTasks 168
-outputFormat <javaClassName> 167
-partitioner <javaClassName> 167
- reducedebug 168
-verbose 167

options, Custom JAR Job Step
--jar JAR_FILE_LOCATION [--args "arg1,

arg2"] 155
--main-class 155
--step-name 155

output
emitting, in different directories 182, 183

output ingestion, to data store 199

P
partitioner 47
Pig 68, 75
PuTTY

URL 151
puttygen utility 151

R
R3 instance sizes 32
record reader 44
reduce function

about 37, 39, 96
divide and conquer 40
model 42

Reducer
about 48, 165, 166
implementation 96

Reducer class
MultipleOutputs, using in 181, 182
reduce method 96
run method 96-98

Reducer class implementation, Hadoop
Job Step 195, 196

region 11
request count per country graph

creating 202-204
request count per edge location graph 205

[217]

request count per HTTP status
code graph 204

requisites libraries, Hadoop Job Step
Apache commons API 188
Hadoop APIs 188
MaxMind APIs 188
MaxMind APIs' dependencies 188

ResourceManager (RM), YARN
about 66
ApplicationsManager 66
scheduler 66

results
emitting, to multiple outputs 180

Ruby
downloading 147
installing 147

Ruby 1.8.7
URL 147

Ruby 1.9.2
URL 147

Ruby 2.0
URL 147

RubyGems
URL 148

RubyGems framework
installing 148
verifying 148

RubyInstaller
URL 148
URL, for downloading development

kit (DevKit) 148
Run if option 131, 132
run method, Mapper class 91-95
run method, Reducer class 96-98

S
S3cmd

URL 34
SDK 73
setup method 90
shuffle and sort 47
shuffling 47
Single Point of Failure (SPOF) 61
software configuration, EMR cluster

about 115, 116
options 115

software distribution, MapReduce
Apache Hadoop 52
Cloudera distribution 52, 53
MapR 52, 53

solution architecture 186
Spark 68
spot instances

using, with EMR 160, 161
SSH access

configuring 150
setting up 150

SSH tunnel
opening, to master node 137

storage service, AWS
about 16
Amazon EBS 16
Amazon Glacier 16, 17
Amazon S3 16
AWS Import/Export 17
AWS Storage Gateway 17

streaming
generic command options, using with 169
working 164

streaming cluster
launching, CLI client used 176

streaming command options
about 166
mandatory parameters 167
optional parameters 167, 168

Streaming Hadoop 74
streaming Job Step, adding on EMR

about 174
AWS management console, using 174, 175
CLI client, using 175

T
Tableau Desktop

about 199
references 200
setting up 200
worksheet, connecting to data store 200-202
worksheet, creating 200-202

tags, EMR cluster
adding 115

TaskTracker 64

[218]

Tez 68
tools, AWS 113
troubleshooting, EMR cluster 134

U
use case definition 185
User Defined Functions (UDFs) 68

V
visualization tool

using 199

W
web console (AWS management console)

about 73
used, for accessing AWS EMR service 125

WebService API
about 73
used, for accessing AWS EMR service 126

websites
hosting, on master node 136, 137

word count example, streaming
about 164
mapper 164
reducer 165, 166

write method, MultipleOutputs
class 181, 182

Y
YARN, Apache Hadoop

about 57, 64, 65
ApplicationMaster (AM) 66
benefits 67
container 67
entities 66
NodeManager 66
ResourceManager (RM) 66
working 65

Z
ZooKeeper 68

	Cover
	Copyright
	Credits
	About the Authors
	Acknowledgments
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Amazon Web Services
	What is Amazon Web Services?
	Structure and Design
	Regions
	Availability Zones

	Services provided by AWS
	Compute
	Amazon EC2
	Auto Scaling
	Elastic Load Balancing
	Amazon Workspaces

	Storage
	Amazon S3
	Amazon EBS
	Amazon Glacier
	AWS Storage Gateway
	AWS Import/Export

	Databases
	Amazon RDS
	Amazon DynamoDB
	Amazon Redshift
	Amazon ElastiCache

	Networking and CDN
	Amazon VPC
	Amazon Route 53
	Amazon CloudFront
	AWS Direct Connect

	Analytics
	Amazon EMR
	Amazon Kinesis
	AWS Data Pipeline

	Application services
	Amazon CloudSearch (Beta)
	Amazon SQS
	Amazon SNS
	Amazon SES
	Amazon AppStream
	Amazon Elastic Transcoder
	Amazon SWF

	Deployment and Management
	AWS Identity and Access Management
	Amazon CloudWatch
	AWS Elastic Beanstalk
	AWS CloudFormation
	AWS OpsWorks
	AWS CloudHSM
	AWS CloudTrail

	AWS Pricing

	Creating an account on AWS
	Step 1 – Creating an Amazon.com account
	Step 2 – Providing a payment method
	Step 3 – Identity verification by telephone
	Step 4 – Selecting the AWS support plan

	Launching the AWS management console
	Getting started with Amazon EC2
	How to start a machine on AWS?
	Step 1 – Choosing an Amazon Machine Image
	Step 2 – Choosing an instance type
	Step 3 – Configuring instance details
	Step 4 – Adding storage
	Step 5 – Tagging your instance
	Step 6 – Configuring a security group

	Communicating with the launched instance
	EC2 instance types
	General purpose
	Memory optimized
	Compute optimized

	Getting started with Amazon S3
	Creating a S3 bucket
	Bucket naming
	S3cmd

	Summary

	Chapter 2: MapReduce
	The map function
	The reduce function
	Divide and conquer

	What is MapReduce?
	The map reduce function models
	The map function model
	The reduce function model

	Data life cycle in the MapReduce framework
	Creation of input data splits
	Record reader

	Mapper
	Combiner
	Partitioner
	Shuffle and sort
	Reducer

	Real-world examples and use cases of MapReduce
	Social networks
	Media and entertainment
	E-commerce and websites
	Fraud detection and financial analytics
	Search engines and ad networks
	ETL and data analytics

	Software distributions built on the MapReduce framework
	Apache Hadoop
	MapR
	Cloudera distribution

	Summary

	Chapter 3: Apache Hadoop
	What is Apache Hadoop?
	Hadoop modules
	Hadoop Distributed File System
	Major architectural goals of HDFS
	Block replication and rack awareness
	The HDFS architecture
	NameNode
	DataNode

	Apache Hadoop MapReduce
	Hadoop MapReduce 1.x
	JobTracker
	TaskTracker

	Hadoop MapReduce 2.0
	Hadoop YARN

	Apache Hadoop as a platform
	Apache Pig
	Apache Hive

	Summary

	Chapter 4: Amazon EMR – Hadoop on Amazon Web Services
	What is AWS EMR?
	Features of EMR
	Accessing Amazon EMR features
	Programming on AWS EMR

	The EMR architecture
	Types of nodes
	EMR Job Flow and Steps
	Job Steps
	An EMR cluster

	Hadoop filesystem on EMR – S3 and HDFS

	EMR use cases
	Web log processing
	Clickstream analysis
	Product recommendation engine
	Scientific simulations
	Data transformations

	Summary

	Chapter 5: Programming Hadoop on Amazon EMR
	Hello World in Hadoop
	Development Environment Setup
	Step 1 – Installing the Eclipse IDE
	Step 2 – Downloading Hadoop 2.2.0
	Step 3 – Unzipping Hadoop Distribution
	Step 4 – Creating a new Java project in Eclipse
	Step 5 – Adding dependencies to the project

	Mapper implementation
	Setup
	Map
	Cleanup
	Run

	Reducer implementation
	Reduce
	Run

	Driver implementation
	Building a JAR
	Executing the solution locally
	Verifying the output

	Summary

	Chapter 6: Executing Hadoop Jobs on an Amazon EMR Cluster
	Creating an EC2 key pair
	Creating a S3 bucket for input data
and JAR
	How to launch an EMR cluster
	Step 1 – Opening the Elastic MapReduce dashboard
	Step 2 – Creating an EMR cluster
	Step 3 – The cluster configuration
	Step 4 – Tagging an EMR cluster
	Step 5 – The software configuration
	Step 6 – The hardware configuration
	Network
	EC2 availability zone
	EC2 instance(s) configurations

	Step 7 – Security and access
	Step 8 – Adding Job Steps

	Viewing results
	Summary

	Chapter 7: Amazon EMR – Cluster Management
	EMR cluster management – different methods
	EMR bootstrap actions
	Configuring Hadoop
	Configuring daemons
	Run if
	Memory-intensive configuration
	Custom action

	EMR cluster monitoring and troubleshooting
	EMR cluster logging
	Hadoop logs
	Bootstrap action logs
	Job Step logs
	Cluster instance state logs

	Connecting to the master node
	Websites hosted on the master node
	Creating an SSH tunnel to the master node
	Configuring FoxyProxy

	EMR cluster performance monitoring
	Adding Ganglia to a cluster
	EMR cluster debugging – console

	EMR best practices
	Data transfer
	Data compression
	Cluster size and instance type
	Hadoop configuration and MapReduce tuning
	Cost optimization

	Summary

	Chapter 8: Amazon EMR – Command-line Interface Client
	EMR – CLI client installation
	Step 1 – Installing Ruby
	Step 2 – Installing and verifying RubyGems framework
	Step 3 – Installing an EMR CLI client
	Step 4 – Configuring AWS EMR credentials
	Step 5 – SSH access setup and configuration
	Step 6 – Verifying the EMR CLI installation

	Launching and monitoring an EMR cluster using CLI
	Launching an EMR cluster from command line
	Adding Job Steps to the cluster
	Listing and getting details of EMR clusters
	Terminating an EMR cluster

	Using spot instances with EMR

	Summary

	Chapter 9: Hadoop Streaming and Advanced Hadoop Customizations
	Hadoop streaming
	How streaming works
	Wordcount example with streaming
	Mapper
	Reducer

	Streaming command options
	Mandatory parameters
	Optional parameters

	Using a Java class name as mapper/reducer
	Using generic command options with streaming
	Customizing key-value splitting
	Using Hadoop partitioner class
	Using Hadoop comparator class

	Adding streaming Job Step on EMR
	Using the AWS management console
	Using the CLI client
	Launching a streaming cluster using the CLI client

	Advanced Hadoop customizations
	Custom partitioner
	Using a custom partitioner

	Custom sort comparator
	Using custom sort comparator

	Emitting results to multiple outputs
	Using MultipleOutputs
	Usage in the Driver class
	Usage in the Reducer class
	Emitting outputs in different directories based on key and value

	Summary

	Chapter 10: Use Case – Analyzing CloudFront Logs Using Amazon EMR
	Use case definition
	The solution architecture
	Creating the Hadoop Job Step
	Inputs and required libraries
	Input – CloudFront access logs
	Input – IP to city/country mapping database
	Required libraries

	Driver class implementation
	Mapper class implementation
	Reducer class implementation
	Testing the solution locally
	Executing the solution on EMR

	Output ingestion to a data store
	Using a visualization tool – Tableau Desktop
	Setting up Tableau Desktop
	Creating a new worksheet and connecting to the data store
	Creating a request count per country graph
	Other possible graphs
	Request count per HTTP status code
	Request count per edge location
	Bytes transferred per country

	Summary

	Index

