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Foreword

Data science is changing the way we go about our daily lives at an unprecedented 
pace. The recommendations you see on e-commerce websites, the technologies that 
prevent credit card fraud, the logic behind airline itinerary and route selections, the 
products and discounts you see in retail stores, and many more decisions are largely 
powered by data science. Futuristic sounding applications like self-driving cars, 
robots to do household chores, smart wearable technologies, and so on are becoming 
a reality, thanks to innovations in data science.

Predictive analytics is a branch of data science, used to predict unknown future 
events based on historical data. It uses a number of techniques from data mining, 
statistical modelling and machine learning to help make forecasts with an acceptable 
level of reliability. 

Python is a high-level, object-oriented programming language. It has gained 
popularity because of its clear syntax and readability, and beginners can pick up 
the language easily. It comes with a large library of modules that can be used to 
do a multitude of tasks ranging from data cleaning to building complex predictive 
modelling algorithms.

I'm a co-founder at Tiger Analytics, a firm specializing in providing data science and 
predictive analytics solutions to businesses. Over the last decade, I have worked with 
clients at numerous Fortune 100 companies and start-ups alike, and architected a 
variety of data science solution frameworks. Ashish Kumar, the author of this book, 
is currently a budding data scientist at our company. He has worked on several 
predictive analytics engagements, and understands how businesses are using data to 
bring in scientific decision making to their organizations. Being a young practitioner, 
Ashish relates to someone who wants to learn predictive analytics from scratch. This 
is clearly reflected in the way he presents several concepts in the book. 



Whether you are a beginner in data science looking to build a career in this area, or 
a weekend enthusiast curious to explore predictive analytics in a hands-on manner, 
you will need to start from the basics and get a good handle on the building blocks. 
This book helps you take the first steps in this brave new world; it teaches you how 
to use and implement predictive modelling algorithms using Python. The book does 
not assume prior knowledge in analytics or programming. It differentiates itself 
from other such programming cookbooks as it uses publicly available datasets that 
closely represent data encountered in business scenarios, and walks you through the 
analysis steps in a clear manner. 

There are nine chapters in the book. The first few chapters focus on data exploration 
and cleaning. It is written keeping beginners to programming in mind—by 
explaining different data structures and then going deeper into various methods 
of data processing and cleaning. Subsequent chapters cover the popular predictive 
modelling algorithms like linear regression, logistic regression, clustering, decision 
trees, and so on. Each chapter broadly covers four aspects of the particular  
model—math behind the model, different types of the model, implementing  
the model in Python, and interpreting the results. 

Statistics/math involved in the model is clearly explained. Understanding this 
helps one implement the model in any other programming language. The book also 
teaches you how to interpret the results from the predictive model and suggests 
different techniques to fine tune the model for better results. Wherever required, 
the author compares two different models and explains the benefits of each of the 
models. It will help a data scientist narrow down to the right algorithm that can be 
used to solve a specific problem. In addition, this book exposes the readers to various 
Python libraries and guides them with the best practices while handling different 
datasets in Python.  

I am confident that this book will guide you to implement predictive modelling 
algorithms using Python and prepare you to work on challenging business problems 
involving data. I wish this book and its author Ashish Kumar every success.

Pradeep Gulipalli
Co-founder and Head of India Operations - Tiger Analytics
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Preface
Social media and the Internet of Things have resulted in an avalanche of data. The 
data is powerful but not in its raw form; it needs to be processed and modelled and 
Python is one of the most robust tools we have out there to do so. It has an array of 
packages for predictive modelling and a suite of IDEs to choose from. Learning to 
predict who would win, lose, buy, lie, or die with Python is an indispensable skill  
set to have in this data age.

This book is your guide to get started with Predictive Analytics using Python as the 
tool. You will learn how to process data and make predictive models out of them. A 
balanced weightage has been given to both the statistical and mathematical concepts 
and implementing them in Python using libraries, such as pandas, scikit-learn, and 
NumPy. Starting with understanding the basics of predictive modelling, you will see 
how to cleanse your data of impurities and make it ready for predictive modelling. 
You will also learn more about the best predictive modelling algorithms, such as 
linear regression, decision trees, and logistic regression. Finally, you will see what 
the best practices in predictive modelling are, as well as the different applications of 
predictive modelling in the modern world.

What this book covers
Chapter 1, Getting Started with Predictive Modelling, talks about aspects, scope, and 
applications of predictive modelling. It also discusses various Python packages 
commonly used in data science, Python IDEs, and the methods to install these  
on systems.

Chapter 2, Data Cleaning, describes the process of reading a dataset, getting a bird's 
eye view of the dataset, handling the missing values in the dataset, and exploring the 
dataset with basic plotting using the pandas and matplotlib packages in Python. The 
data cleaning and wrangling together constitutes around 80% of the modelling time.
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Chapter 3, Data Wrangling, describes the methods to subset a dataset, concatenate 
or merge two or more datasets, group the dataset by categorical variables, split 
the dataset into training and testing sets, generate dummy datasets using random 
numbers, and create simulations using random numbers.

Chapter 4, Statistical Concepts for Predictive Modelling, explains the basic statistics 
needed to make sense of the model parameters resulting from the predictive models. 
This chapter deals with concepts like hypothesis testing, z-tests, t-tests, chi-square 
tests, p-values, and so on followed by a discussion on correlation.

Chapter 5, Linear Regression with Python, starts with a discussion on the mathematics 
behind the linear regression validating the mathematics behind it using a simulated 
dataset. It is then followed by a summary of implications and interpretations of 
various model parameters. The chapter also describes methods to implement linear 
regression using the stasmodel.api and scikit-learn packages and handling various 
related contingencies, such as multiple regression, multi-collinearity, handling 
categorical variables, non-linear relationships between predictor and target variables, 
handling outliers, and so on.

Chapter 6, Logistic Regression with Python, explains the concepts, such as odds ratio, 
conditional probability, and contingency tables leading ultimately to detailed 
discussion on mathematics behind the logistic regression model (using a code that 
implements the entire model from scratch) and various tests to check the efficiency of 
the model. The chapter also describes the methods to implement logistic regression 
in Python and drawing and understanding an ROC curve.

Chapter 7, Clustering with Python, discusses the concepts, such as distances, the 
distance matrix, and linkage methods to understand the mathematics and logic 
behind both hierarchical and k-means clustering. The chapter also describes the 
methods to implement both the types of clustering in Python and methods to fine 
tune the number of clusters.

Chapter 8, Trees and Random Forests with Python, starts with a discussion on 
topics, such as entropy, information gain, gini index, and so on. To illustrate the 
mathematics behind creating a decision tree followed by a discussion on methods 
to handle variations, such as a continuous numerical variable as a predictor variable 
and handling a missing value. This is followed by methods to implement the 
decision tree in Python. The chapter also gives a glimpse into understanding and 
implementing the regression tree and random forests.

Chapter 9, Best Practices for Predictive Modelling, entails the best practices to be 
followed in terms of coding, data handling, algorithms, statistics, and business 
context for getting good results in predictive modelling.
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Appendix, A List of Links, contains a list of sources which have been directly or 
indirectly consulted or used in the book. It also contains the link to the folder  
which contains datasets used in the book.

What you need for this book
In order to make the best use of this book, you will require the following:

• All the datasets that have been used to illustrate the concepts in various 
chapters. These datasets can be downloaded from this URL: https://goo.
gl/zjS4C6. There is a sub-folder containing required datasets for  
each chapter.

• Your computer should have any of the Python distribution installed. 
The examples in the book have been worked upon in IPython Notebook. 
Following the examples will be much easier if you use IPython Notebook. 
This comes with Anaconda distribution that can be installed from  
https://www.continuum.io/downloads.

• The Python packages which are used widely, for example, pandas, 
matplotlib, scikit-learn, NumPy, and so on, should be installed. If you  
install Anaconda these packages will come pre-installed.

• One of the best ways to use this book will be to take the dataset used to 
illustrate concepts and flow along with the chapter. The concepts will be 
easier to understand if the reader works hands on on the examples.

• A basic aptitude for mathematics is expected. It is beneficial to understand 
the mathematics behind the algorithms before applying them.

• Prior experience or knowledge of coding will be an added advantage.  
But, not a pre-requisite at all.

• Similarly, knowledge of statistics and some algorithms will be beneficial,  
but is not a pre-requisite.

• An open mind curious to learn the tips and tricks of a subject that is going to 
be an indispensable skillset in the coming future.

https://goo.gl/zjS4C6
https://goo.gl/zjS4C6
https://www.continuum.io/downloads
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Who this book is for
If you wish to learn the implementation of predictive analytics algorithms using 
Python libraries, then this is the book for you. If you are familiar with coding in 
Python (or some other programming/statistical/scripting language) but have never 
used or read about predictive analytics algorithms, this book will also help you.  
The book will be beneficial to and can be read by any data science enthusiasts.  
Some familiarity with Python will be useful to get the most out of this book  
but it is certainly not a pre-requisite.

Conventions
In this book, you will find a number of styles of text that distinguish between 
different kinds of information. Here are some examples of these styles, and an 
explanation of their meaning.

A typical code snippet would look as follows:

def closest_station(lat, longi):
    stations = np.array([[41.995, -87.933],
                         [41.786, -87.752]])
    loc = np.array([lat, longi])
    deltas = stations - loc[None, :]
    dist2 = (deltas**2).sum(1)
    return np.argmin(dist2)

The outputs of the code snippets are generally shown as the screenshots. This is how 
a screenshot looks:
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New terms and important words are shown in bold. Words that you see on  
the screen, for example, in menus or dialog boxes, appear in the text like this:  
"The plot of Monthly Income and Monthly Expense for a group of 400 people."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

URLs are shown as below:

https://pypi.python.org/pypi/pip

A lot of tables have been used to summarize the results of mathematical discussions 
and illustrate certain concepts.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about 
this book—what you liked or may have disliked. Reader feedback is important for  
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, 
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing 
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to 
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased 
from your account at http://www.packtpub.com. If you purchased this book 
elsewhere, you can visit http://www.packtpub.com/support and register to have 
the files e-mailed directly to you.

https://pypi.python.org/pypi/pip 
www.packtpub.com/authors
http://www.PacktPub.com
http://www.PacktPub.com/support
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Downloading the color images of this book
We also provide you with a PDF file that has color images of the 
screenshots/diagrams used in this book. The color images will help you 
better understand the changes in the output. You can download this file 
from: http://www.packtpub.com/sites/default/files/downloads/
LearningPredictiveAnalyticswithPython_ColorImages.pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes 
do happen. If you find a mistake in one of our books—maybe a mistake in the text or 
the code—we would be grateful if you would report this to us. By doing so, you can 
save other readers from frustration and help us improve subsequent versions of this 
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the erratasubmissionform link, 
and entering the details of your errata. Once your errata are verified, your submission 
will be accepted and the errata will be uploaded on our website, or added to any list of 
existing errata, under the Errata section of that title. Any existing errata can be viewed 
by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. 
At Packt, we take the protection of our copyright and licenses very seriously. If you 
come across any illegal copies of our works, in any form, on the Internet, please 
provide us with the location address or website name immediately so that we can 
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected  
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you 
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with 
any aspect of the book, and we will do our best to address it.

http://www.packtpub.com/sites/default/files/downloads/LearningPredictiveAnalyticswithPython_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/LearningPredictiveAnalyticswithPython_ColorImages.pdf
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/support
mailto:copyright@packtpub.com
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Getting Started with 
Predictive Modelling

Predictive modelling is an art; its a science of unearthing the story impregnated 
into silos of data. This chapter introduces the scope and application of predictive 
modelling and shows a glimpse of what could be achieved with it, by giving some 
real-life examples.

In this chapter, we will cover the following topics in detail:

• Introducing predictive modelling
• Applications and examples of predictive modelling
• Installing and downloading Python and its packages
• Working with different IDEs for Python

Introducing predictive modelling
Did you know that Facebook users around the world share 2,460,000 pieces of 
content every minute of the day? Did you know that 72-hours worth of new video 
content is uploaded on YouTube in the same time and, brace yourself, did you know 
that everyday around 2.5 exabytes (10^18) of data is created by us humans? To give 
you a perspective on how much data that is, you will need a million 1 TB (1000 GB) 
hard disk drives every day to store that much data. In a year, we will outgrow the US 
population and will be north of five times the UK population and this estimation is 
by assuming the fact that the rate of the data generation will remain the same, which 
in all likelihoods will not be the case.
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The breakneck speed at which the social media and Internet of Things have grown 
is reflected in the huge silos of data humans generate. The data about where we 
live, where we come from, what we like, what we buy, how much money we spend, 
where we travel, and so on. Whenever we interact with a social media or Internet 
of Things website, we leave a trail, which these websites gleefully log as their data. 
Every time you buy a book at Amazon, receive a payment through PayPal, write a 
review on Yelp, post a photo on Instagram, do a check-in on Facebook, apart from 
making business for these websites, you are creating data for them.

Harvard Business Review (HBR) says "Data is the new oil" and that "Data Scientist 
is the sexiest job of the 21st century". So, why is the data so important and how  
can we realize the full potential of it? There are broadly two ways in which the  
data is used:

• Retrospective analytics: This approach helps us analyze history and glean 
out insights from the data. It allows us to learn from mistakes and adopt 
best practices. These insights and learnings become the torchbearer for the 
purpose of devising better strategy. Not surprisingly, many experts have 
been claiming that data is the new middle manager.

• Predictive analytics: This approach unleashes the might of data. In short, 
this approach allows us to predict the future. Data science algorithms take 
historical data and spit out a statistical model, which can predict who will 
buy, cheat, lie, or die in the future.

Let us evaluate the comparisons made with oil in detail:

• Data is as abundant as oil used to be, once upon a time, but in contrast to 
oil, data is a non-depleting resource. In fact, one can argue that it is reusable, 
in the sense that, each dataset can be used in more than one way and also 
multiple number of times.

• It doesn't take years to create data, as it takes for oil.
• Oil in its crude form is worth nothing. It needs to be refined through a 

comprehensive process to make it usable. There are various grades of this 
process to suit various needs; it's the same with data. The data sitting in silos 
is worthless; it needs to be cleaned, manipulated, and modelled to make use 
of it. Just as we need refineries and people who can operate those refineries, 
we need tools that can handle data and people who can operate those tools. 
Some of the tools for the preceding tasks are Python, R, SAS, and so on, and 
the people who operate these tools are called data scientists.
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A more detailed comparison of oil and data is provided in the following table:

Data Oil
It's a non-depleting resource and also 
reusable.

It's a depleting resource and non-reusable.

Data collection requires some 
infrastructure or system in place. Once 
the system is in place, the data generation 
happens seamlessly.

Drilling oil requires a lot of infrastructure. 
Once the infrastructure is in place, one can 
keep drawing the oil until the stock dries up.

It needs to be cleaned and modelled. It needs to be cleaned and processed.
The time taken to generate data varies 
from fractions of second to months and 
years.

It takes decades to generate.

The worth and marketability of different 
kinds of data is different.

The worth of crude oil is same everywhere. 
However, the price and marketability of 
different end products of refinement is 
different.

The time horizon for monetization of data 
is smaller after getting the data.

The time horizon for monetizing oil is longer 
than that for data.

Scope of predictive modelling
Predictive modelling is an ensemble of statistical algorithms coded in a statistical tool, 
which when applied on historical data, outputs a mathematical function (or equation). It 
can in-turn be used to predict outcomes based on some inputs (on which the model 
operates) from the future to drive a goal in business context or enable better decision 
making in general.

To understand what predictive modelling entails, let us focus on the phrases 
highlighted previously.

Ensemble of statistical algorithms
Statistics are important to understand data. It tells volumes about the data. How is 
the data distributed? Is it centered with little variance or does it varies widely? Are 
two of the variables dependent on or independent of each other? Statistics helps 
us answer these questions. This book will expect a basic understanding of basic 
statistical terms, such as mean, variance, co-variance, and correlation. Advanced 
terms, such as hypothesis testing, Chi-Square tests, p-values, and so on will be 
explained as and when required. Statistics are the cog in the wheel called model.
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Algorithms, on the other hand, are the blueprints of a model. They are responsible 
for creating mathematical equations from the historical data. They analyze the data, 
quantify the relationship between the variables, and convert it into a mathematical 
equation. There is a variety of them: Linear Regression, Logistic Regression, 
Clustering, Decision Trees, Time-Series Modelling, Naïve Bayes Classifiers, Natural 
Language Processing, and so on. These models can be classified under two classes:

• Supervised algorithms: These are the algorithms wherein the historical 
data has an output variable in addition to the input variables. The model 
makes use of the output variables from historical data, apart from the input 
variables. The examples of such algorithms include Linear Regression, 
Logistic Regression, Decision Trees, and so on.

• Un-supervised algorithms: These algorithms work without an  
output variable in the historical data. The example of such  
algorithms includes clustering.

The selection of a particular algorithm for a model depends majorly on the kind 
of data available. The focus of this book would be to explain methods of handling 
various kinds of data and illustrating the implementation of some of these models.

Statistical tools
There are a many statistical tools available today, which are laced with inbuilt 
methods to run basic statistical chores. The arrival of open-source robust tools like R 
and Python has made them extremely popular, both in industry and academia alike. 
Apart from that, Python's packages are well documented; hence, debugging is easier.

Python has a number of libraries, especially for running the statistical, cleaning, 
and modelling chores. It has emerged as the first among equals when it comes to 
choosing the tool for the purpose of implementing preventive modelling. As the  
title suggests, Python will be the choice for this book, as well.

Historical data
Our machinery (model) is built and operated on this oil called data. In general,  
a model is built on the historical data and works on future data. Additionally,  
a predictive model can be used to fill missing values in historical data by 
interpolating the model over sparse historical data. In many cases, during modelling 
stages, future data is not available. Hence, it is a common practice to divide the 
historical data into training (to act as historical data) and testing (to act as future 
data) through sampling.



Chapter 1

[ 5 ]

As discussed earlier, the data might or might not have an output variable. However, 
one thing that it promises to be is messy. It needs to undergo a lot of cleaning and 
manipulation before it can become of any use for a modelling process.

Mathematical function
Most of the data science algorithms have underlying mathematics behind them. In 
many of the algorithms, such as regression, a mathematical equation (of a certain 
type) is assumed and the parameters of the equations are derived by fitting the data 
to the equation.

For example, the goal of linear regression is to fit a linear model to a dataset and find 
the equation parameters of the following equation:

0 1 1 2 2. . ....... .n nY X X Xα β β β= + + + +

The purpose of modelling is to find the best values for the coefficients. Once  
these values are known, the previous equation is good to predict the output.  
The equation above, which can also be thought of as a linear function of Xi's  
(or the input variables), is the linear regression model.

Another example is of logistic regression. There also we have a mathematical 
equation or a function of input variables, with some differences. The defining 
equation for logistic regression is as follows:

( * )

1
1 1

a b x

a b x a b x
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e e

+ ∗
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Here, the goal is to estimate the values of a and b by fitting the data to this equation. 
Any supervised algorithm will have an equation or function similar to that of the 
model above. For unsupervised algorithms, an underlying mathematical function  
or criterion (which can be formulated as a function or equation) serves the purpose. 
The mathematical equation or function is the backbone of a model.

Business context
All the effort that goes into predictive analytics and all its worth, which accrues to 
data, is because it solves a business problem. A business problem can be anything 
and it will become more evident in the following examples:

• Tricking the users of the product/service to buy more from you by increasing 
the click through rates of the online ads
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• Predicting the probable crime scenes in order to prevent them by aggregating 
an invincible lineup for a sports league

• Predicting the failure rates and associated costs of machinery components
• Managing the churn rate of the customers

The predictive analytics is being used in an array of industries to solve business 
problems. Some of these industries are, as follows:

• Banking
• Social media
• Retail
• Transport
• Healthcare
• Policing
• Education
• Travel and logistics
• E-commerce
• Human resource

By what quantum did the proposed solution make life better for the business, is all 
that matters. That is the reason; predictive analytics is becoming an indispensable 
practice for management consulting.

In short, predictive analytics sits at the sweet spot where statistics, algorithm, 
technology and business sense intersect. Think about it, a mathematician, a 
programmer, and a business person rolled in one.

Knowledge matrix for predictive modelling
As discussed earlier, predictive modelling is an interdisciplinary field sitting at the 
interface and requiring knowledge of four disciplines, such as Statistics, Algorithms, 
Tools, Techniques, and Business Sense. Each of these disciplines is equally 
indispensable to perform a successful task of predictive modelling.

These four disciplines of predictive modelling carry equal weights and can be better 
represented as a knowledge matrix; it is a symmetric 2 x 2 matrix containing four 
equal-sized squares, each representing a discipline.
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Fig. 1.1: Knowledge matrix: four disciplines of predictive modelling

Task matrix for predictive modelling
The tasks involved in predictive modelling follows the Pareto principle. Around 80% 
of the effort in the modelling process goes towards data cleaning and wrangling, 
while only 20% of the time and effort goes into implementing the model and getting 
the prediction. However, the meaty part of the modelling that is rich with almost 
80% of results and insights is undoubtedly the implementation of the model. This 
information can be better represented as a matrix, which can be called a task matrix 
that will look something similar to the following figure:

Fig. 1.2: Task matrix: split of time spent on data cleaning and modelling and their final contribution to the 
model
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Many of the data cleaning and exploration chores can be automated because  
they are alike most of the times, irrespective of the data. The part that needs a  
lot of human thinking is the implementation of a model, which is what makes  
the bulk of this book.

Applications and examples of predictive 
modelling
In the introductory section, data has been compared with oil. While oil has been 
the primary source of energy for the last couple of centuries and the legends of 
OPEC, Petrodollars, and Gulf Wars have set the context for the oil as a begrudged 
resource; the might of data needs to be demonstrated here to set the premise for the 
comparison. Let us glance through some examples of predictive analytics to marvel 
at the might of data.

LinkedIn's "People also viewed" feature
If you are a frequent LinkedIn user, you might be familiar with LinkedIn's  
"People also viewed" feature.

What it does?
Let's say you have searched for some person who works at a particular organization 
and LinkedIn throws up a list of search results. You click on one of them and you 
land up on their profile. In the middle-right section of the screen, you will find a 
panel titled "People Also Viewed"; it is essentially a list of people who either work at 
the same organization as the person whose profile you are currently viewing or the 
people who have the same designation and belong to same industry.

Isn't it cool? You might have searched for these people separately if not for this 
feature. This feature increases the efficacy of your search results and saves your time.

How is it done?
Are you wondering how LinkedIn does it? The rough blueprint is as follows:

• LinkedIn leverages the search history data to do this. The model underneath 
this feature plunges into a treasure trove of search history data and looks at 
what people have searched next after finding the correct person they were 
searching for.
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• This event of searching for a particular second person after searching for a 
particular first person has some probability. This will be calculated using 
all the data for such searches. The profiles with the highest probability of 
being searched (based on the historical data) are shown in the "People Also 
Viewed" section.

• This probability comes under the ambit of a broad set of rules called 
Association Rules. These are very widely used in Retail Analytics where we 
are interested to know what a group of products will sell together. In other 
words, what is the probability of buying a particular second product given 
that the consumer has already bought the first product?

Correct targeting of online ads
If you browse the Internet, which I am sure you must be doing frequently, you must 
have encountered online ads, both on the websites and smartphone apps. Just like 
the ads in the newspaper or TV, there is a publisher and an advertiser for online ads 
too. The publisher in this case is the website or the app where the ad will be shown 
while the advertiser is the company/organization that is posting that ad.

The ultimate goal of an online ad is to be clicked on. Each instance of an ad display 
is called an impression. The number of clicks per impression is called Click Through 
Rate and is the single most important metric that the advertisers are interested in. 
The problem statement is to determine the list of publishers where the advertiser 
should publish its ads so that the Click Through Rate is the maximum.

How is it done?
• The historical data in this case will consist of information about people who 

visited a certain website/app and whether they clicked the published ad or 
not. Some or a combination of classification models, such as Decision Trees, 
and Support Vector Machines are used in such cases to determine whether a 
visitor will click on the ad or not, given the visitor's profile information.

• One problem with standard classification algorithms in such cases is that the 
Click Through Rates are very small numbers, of the order of less than 1%. 
The resulting dataset that is used for classification has a very sparse positive 
outcome. The data needs to be downsampled to enrich the data with positive 
outcomes before modelling.

The logistical regression is one of the most standard classifiers for situations with 
binary outcomes. In banking, whether a person will default on his loan or not can be 
predicted using logistical regression given his credit history.
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Santa Cruz predictive policing
Based on the historical data consisting of the area and time window of the occurrence 
of a crime, a model was developed to predict the place and time where the next 
crime might take place.

How is it done?
• A decision tree model was created using the historical data. The prediction of 

the model will foretell whether a crime will occur in an area on a given date 
and time in the future.

• The model is consistently recalibrated every day to include the crimes that 
happened during that day.

The good news is that the police are using such techniques to predict the crime 
scenes in advance so that they can prevent it from happening. The bad news is that 
certain terrorist organizations are using such techniques to target the locations that 
will cause the maximum damage with minimal efforts from their side. The good 
news again is that this strategic behavior of terrorists has been studied in detail and 
is being used to form counter-terrorist policies.

Determining the activity of a smartphone user 
using accelerometer data
The accelerometer in a smartphone measures the acceleration over a period of time 
as the user indulges in various activities. The acceleration is measured over the three 
axes, X, Y, and Z. This acceleration data can then be used to determine whether the 
user is sleeping, walking, running, jogging, and so on.

How is it done?
• The acceleration data is clustered based on the acceleration values in the 

three directions. The values of the similar activities cluster together.
• The clustering performs well in such cases if the columns contributing the 

maximum to the separation of activities are also included while calculating 
the distance matrix for clustering. Such columns can be found out using a 
technique called Singular Value Decomposition.



Chapter 1

[ 11 ]

Sport and fantasy leagues
Moneyball, anyone? Yes, the movie. The movie where a statistician turns the fortunes 
of a poorly performing baseball team, Oak A, by developing an algorithm to select 
players who were cheap to buy but had a lot of latent potential to perform.

How was it done?
• Bill James, using historical data, concluded that the older metrics used to rate 

a player, such as stolen balls, runs batted in, and batting average were not 
very useful indicators of a player's performance in a given match. He rather 
relied on metrics like on-base percentage and sluggish percentage to be a 
better predictor of a player's performance.

• The chief statistician behind the algorithms, Bill James, compiled the data 
for performance of all the baseball league players and sorted them for these 
metrics. Surprisingly, the players who had high values for these statistics also 
came at cheaper prices.

This way, they gathered an unbeatable team that didn't have individual stars who 
came at hefty prices but as a team were an indomitable force. Since then, these 
algorithms and their variations have been used in a variety of real and fantasy 
leagues to select players. The variants of these algorithms are also being used by 
Venture Capitalists to optimize and automate their due diligence to select the 
prospective start-ups to fund.

Python and its packages – download and 
installation
There are various ways in which one can access and install Python and its packages. 
Here we will discuss a couple of them.

Anaconda
Anaconda is a popular Python distribution consisting of more than 195 popular 
Python packages. Installing Anaconda automatically installs many of the packages 
discussed in the preceding section, but they can be accessed only through an 
IDE called Spyder (more on this later in this chapter), which itself is installed on 
Anaconda installation. Anaconda also installs IPython Notebook and when you click 
on the IPython Notebook icon, it opens a browser tab and a Command Prompt.
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Anaconda can be downloaded and installed from the following web 
address: http://continuum.io/downloads

Download the suitable installer and double click on the .exe file and it will install 
Anaconda. Two of the features that you must check after the installation are:

• IPython Notebook
• Spyder IDE

Search for them in the "Start" icon's search, if it doesn't appear in the list of programs 
and files by default. We will be using IPython Notebook extensively and the codes in 
this book will work the best when run in IPython Notebook.

IPython Notebook can be opened by clicking on the icon. Alternatively, you can 
use the Command Prompt to open IPython Notebook. Just navigate to the directory 
where you have installed Anaconda and then write ipython notebook, as shown in 
the following screenshot:

Fig. 1.3: Opening IPython Notebook

On the system used for this book, Anaconda was installed in the C:\
Users\ashish directory. One can open a new Notebook in IPython by 
clicking on the New Notebook button on the dashboard, which opens up. 
In this book, we have used IPython Notebook extensively.

Standalone Python
You can download a Python version that is stable and is compatible to the OS on 
your system. The most stable version of Python is 2.7.0. So, installing this version is 
highly recommended. You can download it from https://www.python.org/ and 
install it.

http://continuum.io/downloads
https://www.python.org/
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There are some Python packages that you need to install on your machine before 
you start predictive analytics and modelling. This section consists of a demo of 
installation of one such library and a brief description of all such libraries.

Installing a Python package
There are several ways to install a Python package. The easiest and the most effective 
is the one using pip. As you might be aware, pip is a package management system 
that is used to install and manage software packages written in Python. To be able to 
use it to install other packages, pip needs to be installed first.

Installing pip
The following steps demonstrate how to install pip. Follow closely!

1. Navigate to the webpage shown in the following screenshot. The URL 
address is https://pypi.python.org/pypi/pip:

Downloading pip from the Python's official website

https://pypi.python.org/pypi/pip
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2. Download the pip-7.0.3.tar.gz file and unzip in the folder where Python 
is installed. If you have Python v2.7.0 installed, this folder should be C:\
Python27:

Unzipping the .zar file for pip in the correct folder

3. On unzipping the previously mentioned file, a folder called pip-7.0.3 is 
created. Opening that folder will take you to the screen similar to the one in 
the preceding screenshot.

4. Open the CMD on your computer and change the current directory to the 
current directory in the preceding screenshot that is C:\Python27\pip-
7.0.3 using the following command:
cd C:\Python27\pip-7.0.3.

5. The result of the preceding command is shown in the following screenshot:

Navigating to the directory where pip is installed

6. Now, the current directory is set to the directory where setup file for pip 
(setup.py) resides. Write the following command to install pip:
python setup.py install
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7. The result of the preceding command is shown in the following screenshot:

Installing pip using a command line

Once pip is installed, it is very easy to install all the required Python packages to  
get started.

Installing Python packages with pip
The following are the steps to install Python packages using pip, which we just 
installed in the preceding section:

1. Change the current directory in the command prompt to the directory where 
the Python v2.7.0 is installed that is: C:\Python27.

2. Write the following command to install the package:
pip install package-name

3. For example, to install pandas, you can proceed as follows:

Installing a Python package using a command line and pip

4. Finally, to confirm that the package has installed successfully, write the 
following command:
python  -c "import pandas"

5. The result of the preceding command is shown in the following screenshot:

Checking whether the package has installed correctly or not
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If this doesn't throw up an error, then the package has been installed successfully.

Python and its packages for predictive 
modelling
In this section, we will discuss some commonly used packages for predictive 
modelling.

pandas: The most important and versatile package that is used widely in data science 
domains is pandas and it is no wonder that you can see import pandas at the 
beginning of any data science code snippet, in this book, and anywhere in general. 
Among other things, the pandas package facilitates:

• The reading of a dataset in a usable format (data frame in case of Python)
• Calculating basic statistics
• Running basic operations like sub-setting a dataset, merging/concatenating 

two datasets, handling missing data, and so on

The various methods in pandas will be explained in this book as and when we  
use them.

To get an overview, navigate to the official page of pandas here: 
http://pandas.pydata.org/index.html

NumPy: NumPy, in many ways, is a MATLAB equivalent in the Python 
environment. It has powerful methods to do mathematical calculations and 
simulations. The following are some of its features:

• A powerful and widely used a N-d array element
• An ensemble of powerful mathematical functions used in linear algebra, 

Fourier transforms, and random number generation
• A combination of random number generators and an N-d array elements 

is used to generate dummy datasets to demonstrate various procedures, a 
practice we will follow extensively, in this book

To get an overview, navigate to official page of NumPy at 
http://www.NumPy.org/

http://pandas.pydata.org/index.html
http://www.NumPy.org/
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matplotlib: matplotlib is a Python library that easily generates high-quality 2-D 
plots. Again, it is very similar to MATLAB.

• It can be used to plot all kind of common plots, such as histograms, stacked 
and unstacked bar charts, scatterplots, heat diagrams, box plots, power 
spectra, error charts, and so on

• It can be used to edit and manipulate all the plot properties such as title, axes 
properties, color, scale, and so on

To get an overview, navigate to the official page of matplotlib at: 
http://matplotlib.org

IPython: IPython provides an environment for interactive computing.

It provides a browser-based notebook that is an IDE-cum-development environment 
to support codes, rich media, inline plots, and model summary. These notebooks and 
their content can be saved and used later to demonstrate the result as it is or to save 
the codes separately and execute them. It has emerged as a powerful tool for web 
based tutorials as the code and the results flow smoothly one after the other in this 
environment. At many places in this book, we will be using this environment.

To get an overview, navigate to the official page of IPython here 
http://ipython.org/

Scikit-learn: scikit-learn is the mainstay of any predictive modelling in Python. 
It is a robust collection of all the data science algorithms and methods to implement 
them. Some of the features of scikit-learn are as follows:

• It is built entirely on Python packages like pandas, NumPy, and matplotlib
• It is very simple and efficient to use
• It has methods to implement most of the predictive modelling techniques, 

such as linear regression, logistic regression, clustering, and Decision Trees
• It gives a very concise method to predict the outcome based on the model 

and measure the accuracy of the outcomes

To get an overview, navigate to the official page of scikit-learn 
here: http://scikit-learn.org/stable/index.html

Python packages, other than these, if used in this book, will be situation based and 
can be installed using the method described earlier in this section.

http://matplotlib.org
http://ipython.org/
http://scikit-learn.org/stable/index.html
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IDEs for Python
The IDE or the Integrated Development Environment is a software that provides 
the source-code editor cum debugger for the purpose of writing code. Using these 
software, one can write, test, and debug a code snippet before adding the snippet in 
the production version of the code.

IDLE: IDLE is the default Integrated Development Environment for Python  
that comes with the default implementation of Python. It comes with the  
following features:

• Multi-window text-editor with auto-completion, smart-indent, syntax,  
and keyword highlighting

• Python shell with syntax highlighting

IDLE is widely popular as an IDE for beginners; it is simple to use and works well 
for simple tasks. Some of the issues with IDLE are bad output reporting, absence of 
line numbering options, and so on. As a result, advanced practitioners move on to 
better IDEs.

IPython Notebook: IPython Notebook is a powerful computational environment 
where code, execution, results, and media can co-exist in one single document.  
There are two components of this computing environment:

• IPython Notebook: Web applications containing code, executions, plots,  
and results are stored in different cells; they can be saved and edited as  
and when required

• Notebook: It is a plain text document meant to record and distribute the 
result of a computational analysis

The IPython documents are stored with an extension .ipynb in the directory where 
it is installed on the computer.

Some of the features of IPython Notebook are as follows:

• Inline figure rendering of the matplotlib plots that can be saved in multiple 
formats(JPEG, PNG).

• Standard Python syntax in the notebook can be saved as a Python script.
• The notebooks can be saved as HTML files and .ipynb files. These notebooks 

can be viewed in browsers and this has been developed as a popular tool for 
illustrated blogging in Python. A notebook in IPython looks as shown in the 
following screenshot:
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An Ipython Notebook

Spyder: Spyder is a powerful scientific computing and development environment for 
Python. It has the following features:

• Advanced editing, auto-completion, debugging, and interactive testing
• Python kernel and code editor with line numbering in the same screen
• Preinstalled scientific packages like NumPy, pandas, scikit-learn, matplotlib, 

and so on.
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• In some ways, Spyder is very similar to RStudio environment where text 
editing and interactive testing go hand in hand:

The interface of Spyder IDE

In this book, IPython Notebook and Spyder have been used extensively. IDLE 
has been used from time to time and some people use other environments, such 
as Pycharm. Readers of this book are free to use such editors if they are more 
comfortable with them. However, they should make sure that all the required 
packages are working fine in those environments.
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Summary
The following are some of the takeaways from this chapter:

• Social media and Internet of Things have resulted in an avalanche of data.
• Data is powerful but not in its raw form. The data needs to be processed  

and modelled.
• Organizations across the world and across the domains are using data to 

solve critical business problems. The knowledge of statistical algorithms, 
statisticals tool, business context, and handling of historical data is vital to 
solve these problems using predictive modelling.

• Python is a robust tool to handle, process, and model data. It has an array of 
packages for predictive modelling and a suite of IDEs to choose from.

Let us enter the battlefield where Python is our weapon. We will start using it from 
the next chapter. In the next chapter, we will learn how to read data in various cases 
and do a basic processing.
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Data Cleaning
Without any further ado, lets kick-start the engine and start our foray into the world 
of predictive analytics. However, you need to remember that our fuel is data. In 
order to do any predictive analysis, one needs to access and import data for the 
engine to rev up.

I assume that you have already installed Python and the required packages with an 
IDE of your choice. Predictive analytics, like any other art, is best learnt when tried 
hands-on and practiced as frequently as possible. The book will be of the best use if 
you open a Python IDE of your choice and practice the explained concepts on your 
own. So, if you haven't installed Python and its packages yet, now is the time. If not 
all the packages, at-least pandas should be installed, which are the mainstay of the 
things that we will learn in this chapter.

After reading this chapter, you should be familiar with the following topics:

• Handling various kind of data importing scenarios that is importing various 
kind of datasets (.csv, .txt), different kind of delimiters (comma, tab, pipe), 
and different methods (read_csv, read_table)

• Getting basic information, such as dimensions, column names,  
and statistics summary

• Getting basic data cleaning done that is removing NAs and blank spaces, 
imputing values to missing data points, changing a variable type, and so on

• Creating dummy variables in various scenarios to aid modelling
• Generating simple plots like scatter plots, bar charts, histograms, box plots, 

and so on

From now on, we will be using a lot of publicly available datasets to illustrate 
concepts and examples. All the used datasets have been stored in a Google Drive 
folder, which can be accessed from this link: https://goo.gl/zjS4C6.

https://goo.gl/zjS4C6
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This folder is called "Datasets for Predictive Modelling with 
Python". This folder has a subfolder dedicated to each chapter 
of the book. Each subfolder contains the datasets that were 
used in the chapter.
The paths for the dataset used in this book are paths on my 
local computer. You can download the datasets from these 
subfolders to your local computer before using them. Better 
still, you can download the entire folder, at once and save it 
somewhere on your local computer.

Reading the data – variations and 
examples
Before we delve deeper into the realm of data, let us familiarize ourselves with a few 
terms that will appear frequently from now on.

Data frames
A data frame is one of the most common data structures available in Python. Data 
frames are very similar to the tables in a spreadsheet or a SQL table. In Python 
vocabulary, it can also be thought of as a dictionary of series objects (in terms of 
structure). A data frame, like a spreadsheet, has index labels (analogous to rows)  
and column labels (analogous to columns). It is the most commonly used pandas 
object and is a 2D structure with columns of different or same types. Most of the 
standard operations, such as aggregation, filtering, pivoting, and so on which can 
be applied on a spreadsheet or the SQL table can be applied to data frames using 
methods in pandas.

The following screenshot is an illustrative picture of a data frame. We will learn more 
about working with them as we progress in the chapter:



Chapter 2

[ 25 ]

Fig. 2.1 A data frame

Delimiters
A delimiter is a special character that separates various columns of a dataset from 
one another. The most common (one can go to the extent of saying that it is a default 
delimiter) delimiter is a comma (,). A .csv file is called so because it has comma 
separated values. However, a dataset can have any special character as its delimiter 
and one needs to know how to juggle and manage them in order to do an exhaustive 
and exploratory analysis and build a robust predictive model. Later in this chapter, 
we will learn how to do that.

Various methods of importing data in 
Python
pandas is the Python library/package of choice to import, wrangle, and manipulate 
datasets. The datasets come in various forms; the most frequent being in the .csv 
format. The delimiter (a special character that separates the values in a dataset) in a 
CSV file is a comma. Now we will look at the various methods in which you can read 
a dataset in Python.
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Case 1 – reading a dataset using the read_csv 
method
Open an IPython Notebook by typing ipython notebook in the command line.

Download the Titanic dataset from the shared Google Drive folder (any of .xls or 
.xlsx would do). Save this file in a CSV format and we are good to go. This is a very 
popular dataset that contains information about the passengers travelling on the 
famous ship Titanic on the fateful sail that saw it sinking. If you wish to know more 
about this dataset, you can go to the Google Drive folder and look for it.

A common practice is to share a variable description file with the dataset describing 
the context and significance of each variable. Since this is the first dataset we are 
encountering in this book, here is the data description of this dataset to get a feel of 
how data description files actually look like:

VARIABLE DESCRIPTIONS:
pclass          Passenger Class
                (1 = 1st; 2 = 2nd; 3 = 3rd)
survival        Survival
                (0 = No; 1 = Yes)
name            Name
sex             Sex
age             Age
sibsp           Number of Siblings/Spouses Aboard
parch           Number of Parents/Children Aboard
ticket          Ticket Number
fare            Passenger Fare
cabin           Cabin
embarked        Port of Embarkation
                (C = Cherbourg; Q = Queenstown; S = 
Southampton)
boat            Lifeboat
body            Body Identification Number
home.dest       Home/Destination

The following code snippet is enough to import the dataset and get you started:

 import pandas as pd
 data = pd.read_csv('E:/Personal/Learning/Datasets/Book/titanic3.csv')
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The read_csv method
The name of the method doesn't unveil its full might. It is a kind of misnomer in 
the sense that it makes us think that it can be used to read only CSV files, which is 
not the case. Various kinds of files, including .txt files having delimiters of various 
kinds can be read using this method.

Let's learn a little bit more about the various arguments of this method in order to 
assess its true potential. Although the read_csv method has close to 30 arguments, 
the ones listed in the next section are the ones that are most commonly used.

The general form of a read_csv statement is something similar to:

pd.read_csv(filepath, sep=', ', dtype=None, header=None, 
skiprows=None, index_col=None, skip_blank_lines=TRUE, na_filter=TRUE)

Now, let us understand the significance and usage of each of these arguments one  
by one:

• filepath: filepath is the complete address of the dataset or file that you 
are trying to read. The complete address includes the address of the directory 
in which the file is stored and the full name of the file with its extension. 
Remember to use a forward slash (/) in the directory address. Later in this 
chapter, we will see that the filepath can be a URL as well.

• sep: sep allows us to specify the delimiter for the dataset to read. By default, 
the method assumes that the delimiter is a comma (,). The various other 
delimiters that are commonly used are blank spaces ( ), tab (|), and are called 
space delimiter or tab demilited datasets. This argument of the method also 
takes regular expressions as a value.

• dtype: Sometimes certain columns of the dataset need to be formatted to 
some other type, in order to apply certain operations successfully. One 
example is the date variables. Very often, they have a string type which 
needs to be converted to date type before we can use them to apply date-
related operations. The dtype argument is to specify the data type of the 
columns of the dataset. Suppose, two columns a and b, of the dataset need to 
be formatted to the types int32 and float64; it can be achieved by passing 
{'a':np.float64, 'b'.np.int32} as the value of dtype. If not specified, it 
will leave the columns in the same format as originally found.

• header: The value of a header argument can be an integer or a list. 
Most of the times, datasets have a header containing the column names. 
The header argument is used to specify which row to be used as the header. 
By default, the first row is the header and it can be represented as header 
=0. If one doesn't specify the header argument, it is as good as specifying 
header=0. If one specifies header=None, the method will read the data 
without the header containing the column names.
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• names: The column names of a dataset can be passed off as a list using this 
argument. This argument will take lists or arrays as its values. This 
argument is very helpful in cases where there are many columns and the 
column names are available as a list separately. We can pass the list of 
column names as a value of this argument and the column names in the list 
will be applied.

• skiprows: The value of a skiprows argument can be an integer or a list. 
Using this argument, one can skip a certain number of rows specified as the 
value of this argument in the read data, for example skiprows=10 will read 
in the data from the 11th row and the rows before that will be ignored.

• index_col: The value of an index_col argument can be an integer or a 
sequence. By default, no row labels will be applied. This argument allows 
one to use a column, as the row labels for the rows in a dataset.

• skip_blank_lines: The value of a skip_blank_lines argument takes 
Boolean values only. If its value is specified as True, the blank lines are 
skipped rather than interpreting them as NaN (not allowed/missing values; 
we shall discuss them in detail soon) values. By default, its value is set  
to False.

• na_filter: The value of a na-filter argument takes Boolean values only. 
It detects the markers for missing values (empty strings and NA values) 
and removes them if set to False. It can make a significant difference while 
importing large datasets.

Use cases of the read_csv method
The read_csv method can be put to a variety of uses. Let us look at some such  
use cases.

Passing the directory address and filename as variables
Sometimes it is easier and viable to pass the directory address and filename as 
variables to avoid hard-coding. More importantly so, when one doesn't want to 
hardcode the full address of the file and intend to use this full address many times. 
Let us see how we can do so while importing a dataset.

import pandas as pd
path = 'E:/Personal/Learning/Datasets/Book'
filename = 'titanic3.csv'
fullpath = path+'/'+filename
data = pd.read_csv(fullpath)
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For such cases, alternatively, one can use the following snippet that uses the  
path.join method in an os package:

import pandas as pd
import os
path = 'E:/Personal/Learning/Datasets/Book'
filename = 'titanic3.csv'
fullpath = os.path.join(path,filename)
data = pd.read_csv(fullpath)

One advantage of using the latter method is that it trims the lagging or leading white 
spaces, if any, and gives the correct filename.

Reading a .txt dataset with a comma delimiter
Download the Customer Churn Model.txt dataset from the Google Drive folder 
and save it on your local drive. To read this dataset, the following code snippet  
will do:

import pandas as pd
data = read_csv('E:/Personal/Learning/Datasets/Book/Customer Churn 
Model.txt')

As you can see, although it's a text file, it can be read easily using the read_csv 
method without even specifying any other argument of the method.

Specifying the column names of a dataset from a list
We just read the Customer Churn Model.txt file in the last segment with the 
default column names. But, what if we want to rename some or all of the column 
names? Or, what if the column names are not there already and we want to assign 
names to columns from a list (let's say, available in a CSV file).

Look for a CSV file called Customer Churn Columns.csv in the Google Drive and 
download it. I have put English alphabets as placeholders for the column names in 
this file. We shall use this file to create a list of column names to be passed on to the 
dataset. You can change the names in the CSV files, if you like, and see how they are 
incorporated as column names.

The following code snippet will give the name of the column names of the dataset 
we just read:

import pandas as pd
data = pd.read_csv('E:/Personal/Learning/Datasets/Book/Customer Churn 
Model.txt')
data.columns.values
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If you run it on one of the IDEs, you should get the following screenshot as  
the output:

Fig. 2.2: The column names in the Customer Churn Model.txt dataset

This basically lists all the column names of the dataset. Let us now go ahead and 
change the column names to the names we have in the Customer Churn Columns.
csv file.

data_columns = pd.read_csv('E:/Personal/Learning/Predictive Modeling 
Book/Book Datasets/Customer Churn Columns.csv')
data_column_list = data_columns['Column_Names'].tolist()
data=pd.read_csv('E:/Personal/Learning/Predictive Modeling Book/Book 
Datasets/Customer Churn Model.txt',header=None,names=data_column_list)
data.columns.values

The output after running this snippet should look like the following screenshot (if 
you haven't made any changes to the values in the Customer Churn Columns.csv 
file):

Fig. 2.3: The column names in the Customer Churn Columnsl.txt dataset which have been passed  
to the data frame data

The key steps in this process are:

• Sub-setting the particular column (containing the column names) and 
converting it to a list—done in the second line

• Passing the header=None and names=name of the list containing  
the column names(data_column_list in this case) in the  
read_csv method

If some of the terms, such as sub-setting don't make sense now, just remember that  
it is an act of selecting a combination of particular rows or columns of the dataset. 
We will discuss this in detail in the next chapter.
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Case 2 – reading a dataset using the open 
method of Python
pandas is a very robust and comprehensive library to read, explore, and manipulate 
a dataset. But, it might not give an optimal performance with very big datasets as it 
reads the entire dataset, all at once, and blocks the majority of computer memory. 
Instead, you can try one of the Python's file handling methods—open. One can read 
the dataset line by line or in chunks by running a for loop over the rows and delete 
the chunks from the memory, once they have been processed. Let us look at some of 
the use case examples of the open method.

Reading a dataset line by line
As you might be aware that while reading a file using the open method, we can 
specify to use a particular mode that is read, write, and so on. By default, the method 
opens a file in the read-mode. This method can be useful while reading a big dataset, 
as this method reads data line-by-line (not at once, unlike what pandas does). You 
can read datasets into chunks using this method.

Let us now go ahead and open a file using the open method and count the number of 
rows and columns in the dataset:

data=open('E:/Personal/Learning/Predictive Modeling Book/Book 
Datasets/Customer Churn Model.txt','r')
cols=data.next().strip().split(',')
no_cols=len(data.next().strip().split(','))

A couple of points about this snippet:

• 'r' has been explicitly mentioned and hence the file will be opened in the 
read mode. To open it in the write mode, one needs to pass 'w' in place of 
'r'.

• The next method navigates the computer memory to the line next to the 
header. The strip method is used to remove all the trailing and leading 
blank spaces from the line. The split method breaks down a line into 
chunks separated by the argument provided to the split method. In this 
case, it is ','.
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Finding the number of the rows is a bit tedious, but here lies the key trick to reading 
a huge file in chunks:

counter=0

main_dict={}
for col in cols:
    main_dict[col]=[]

Basically, we are doing the following two tasks in the preceding code snippet:

• Defining a counter variable that will increment its value by 1 on passing 
each line and hence will count the number of rows/lines at the end of  
the loop

• Defining a dictionary called main_dict with column names as the keys and 
the values in the columns as the values of the dictionary

Now, we are all set to run a for loop over the lines in the dataset to determine the 
number of rows in the dataset:

for line in data:
    values = line.strip().split(',')
    for i in range(len(cols)):
        main_dict[cols[i]].append(values[i])
    counter += 1

print "The dataset has %d rows and %d columns" % (counter,no_cols)

The explanation of the code-snippet is as follows:

1. Running a for loop over the lines in the dataset and splitting the lines in the 
values by ','. These values are nothing but the values contained in each 
column for that line (row).

2. Running a second for loop over the columns for each line and appending 
the column values to the main_dict dictionary, which we defined in the 
previous step. So, for each key of the main_dict dictionary, all the column 
values are appended together. Each key of the main_dict becomes the 
column name of the dataset, while the values of each key in the dictionary 
are the values in each column.

3. Printing the number of rows and columns of the dataset that are contained in 
counter and no_cols respectively.
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The main_dict dictionary, in a way, contains all the information in the dataset; 
hence, it can be converted to a data frame, as we have read already in this chapter 
that a dictionary can be converted to a data frame using the DataFrame method in 
pandas. Let us do that:

import pandas as pd
df=pd.DataFrame(main_dict)
print df.head(5)

This process can be repeated after a certain number of lines, say 10000 lines, for a 
large file; it can be read in and processed in chunks.

Changing the delimiter of a dataset
Earlier in this chapter, we said that juggling and managing delimiters is a great skill 
to master. Let us see one example of how we can change the delimiter of a dataset.

The Customer Churn Model.txt has comma (',') as a delimiter. It looks something 
similar to the following screenshot:

Fig. 2.4: A chunk of Customer Churn Model.txt dataset with default delimiter comma (',')

Note that, any special character can be a delimiter. Let us change the delimiter to a 
'slash t' ('/t'):

infile='E:/Personal/Learning/Datasets/Book/Customer Churn Model.txt'
outfile='E:/Personal/Learning/Datasets/Book/Tab Customer Churn Model.
txt'
with open(infile) as infile1:
  with open(outfile,'w') as outfile1:
    for line in infile1:
      fields=line.split(',')
      outfile1.write('/t'.join(fields))
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This code snippet will generate a file called Tab Customer Churn Model.txt in 
the specified directory. The file will have a '/t' delimiter and will look something 
similar to the following screenshot:

Fig. 2.5: A chunk of Tab Customer Churn Model.txt with changed delimiter ('/t')

The code snippet can be explained as follows:

1. Creating two variables called infile and outfile. The infile variable is 
the one whose delimiter we wish to change and outfile is the one in which 
we will write the results after changing the delimiter.

2. The infile is opened in the read mode, while outfile is opened in the 
write mode.

3. The lines in the infile are split based on the existing delimiter that is ',' 
and the chunks are called fields. Each line will have several fields (equal to 
the number of columns).

4. The lines in the outfile are created by joining the fields of each line 
separated by the new delimiter of our choice that is '/t'.

5. The file is written into the directory specified in the definition of the outfile.

To demonstrate this, the read_csv method, as described earlier, can be used to read 
datasets that have a delimiter other than a comma, we will try to read the dataset 
with a '/t' delimiter, we just created:

import pandas as pd
data=pd.read_csv('E:/Personal/Learning/Predictive Modeling Book/Book 
Datasets/Tab Customer Churn Model.txt',sep='/t')

Case 3 – reading data from a URL
Several times, we need to read the data directly from a web URL. This URL 
might contain the data written in it or might contain a file which has the data. For 
example, navigate to this website, http://winterolympicsmedals.com/ which 
lists the medals won by various countries in different sports during the Winter 
Olympics. Now type the following address in the URL address bar: http://
winterolympicsmedals.com/medals.csv.

http://winterolympicsmedals.com/
http://winterolympicsmedals.com/medals.csv
http://winterolympicsmedals.com/medals.csv
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A CSV file will be downloaded automatically. If you choose to download it 
manually, saving it and then specifying the directory path for the read_csv method 
is a time consuming process. Instead, Python allows us to read such files directly 
from the URL. Apart from the significant saving in time, it is also beneficial to loop 
over the files when there are many such files to be downloaded and read in.

A simple read_csv statement is required to read the data directly from the URL:

import pandas as pd
medal_data=pd.read_csv('http://winterolympicsmedals.com/medals.csv')

Alternatively, to work with URLs to get data, one can use a couple of Python 
packages, which we have not used till now, that is csv and urllib. The readers 
can go to the documentation of the packages to learn more about these packages. It 
is sufficient to know that csv provides a range of methods to handle the CSV files, 
while urllib is used to navigate and access information from the URL. Here is how 
it can be done:

import csv
import urllib2

url='http://archive.ics.uci.edu/ml/machine-learning-databases/iris/
iris.data'
response=urllib2.urlopen(url)
cr=csv.reader(response)

for rows in cr:
  print rows

The working of the preceding code snippet can be explained in the following  
two points:

1. The urlopen method of the urllib2 library creates a response that can be 
read in using the reader method of the csv library.

2. This instance is an iterator and can be iterated over its rows.

The csv module is very helpful in dealing with CSV files. It can be used to read the 
dataset row by row, or in other words, iterate over the dataset among other things.  
It can be used to write to CSV files as well.

Case 4 – miscellaneous cases
Apart from the standard cases described previously, there are certain less frequent 
cases of data file handling that might need to be taken care of. Let's have a look at 
two of them.
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Reading from an .xls or .xlsx file
Go to the Google Drive and look for .xls and .xlsx versions of the Titanic dataset. 
They will be named titanic3.xls and titanic3.xlsx. Download both of them 
and save them on your computer. The ability to read Excel files with all its sheets is a 
very powerful technique available in pandas. It is done using a read_excel method, 
as shown in the following code:

import pandas as pd
data=pd.read_excel('E:/Personal/Learning/Predictive Modeling Book/Book 
Datasets/titanic3.xls','titanic3')

import pandas as pd
data=pd.read_excel('E:/Personal/Learning/Predictive Modeling Book/Book 
Datasets/titanic3.xlsx','titanic3')

It works with both, .xls and .xlsx files. The second argument of the read_excel 
method is the sheet name that you want to read in.

Another available method to read a delimited data is read_table. The read_table 
is exactly similar to read_csv with certain default arguments for its definition. In 
some sense, read_table is a more generic form of read_csv.

Writing to a CSV or Excel file
A data frame can be written in a CSV or an Excel file using a to_csv or to_excel 
method in pandas. Let's go back to the df data frame that we created in Case 2 – 
reading a dataset using the open method of Python. This data frame can be exported to a 
directory in a CSV file, as shown in the following code:

df.to_csv('E:/Personal/Learning/Predictive Modeling Book/Book 
Datasets/Customer Churn Model.csv'

Or to an Excel file, as follows:

df.to_excel('E:/Personal/Learning/Predictive Modeling Book/Book 
Datasets/Customer Churn Model.csv'

Basics – summary, dimensions, and 
structure
After reading in the data, there are certain tasks that need to be performed to get the 
touch and feel of the data:

• To check whether the data has read in correctly or not
• To determine how the data looks; its shape and size
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• To summarize and visualize the data
• To get the column names and summary statistics of numerical variables

Let us go back to the example of the Titanic dataset and import it again. The head() 
method is used to look at the first first few rows of the data, as shown:

import pandas as pd
data=pd.read_csv('E:/Personal/Learning/Datasets/Book/titanic3.csv')
data.head()

The result will look similar to the following screenshot:

Fig. 2.6: Thumbnail view of the Titanic dataset obtained using the head() method

In the head() method, one can also specify the number of rows they want to see.  
For example, head(10) will show the first 10 rows.

The next attribute of the dataset that concerns us is its dimension, that is the  
number of rows and columns present in the dataset. This can be obtained by  
typing data.shape.

The result obtained is (1310,14), indicating that the dataset has 1310 rows  
and 14 columns.

As discussed earlier, the column names of a data frame can be listed using data.
column.values, which gives the following output as the result:

Fig. 2.7: Column names of the the Titanic dataset

Another important thing to do while glancing at the data is to create summary 
statistics for the numerical variables. This can be done by:

data.describe()
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We get the following result:

Fig. 2.8: Summary statistics for the numerical variables in the Titanic dataset

Knowing the type each column belongs to is the key to determine their behavior 
under some numerical or manipulation operation. Hence, it is of critical importance 
to know the type of each column. This can be done as follows:

data.dtypes

We get the following result from the preceding code snippet:

Fig. 2.9: Variable types of the columns in the Titanic dataset

Handling missing values
Checking for missing values and handling them properly is an important step in the 
data preparation process, if they are left untreated they can:

• Lead to the behavior between the variables not being analyzed correctly
• Lead to incorrect interpretation and inference from the data
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To see how; move up a few pages to see how the describe method is explained. 
Look at the output table; why are the counts for many of the variables different 
from each other? There are 1310 rows in the dataset, as we saw earlier in the section. 
Why is it then that the count is 1046 for age, 1309 for pclass, and 121 for body. This 
is because the dataset doesn't have a value for 264 (1310-1046) entries in the age 
column, 1 (1310-1309) entry in the pclass column, and 1189 (1310-121) entries in 
the body column. In other words, these many entries have missing values in their 
respective columns. If a column has a count value less than the number of rows in 
the dataset, it is most certainly because the column contains missing values.

Checking for missing values
There are a multitude of in-built methods to check for missing values. Let's go 
through some of them. Suppose you wish to find the entries that have missing values 
in a column of a data frame. It can be done as follows for the body column of the 
data data frame:

pd.isnull(data['body'])

This will give a series indicating True in the cells with missing values and False for 
non-missing values. Just the opposite can be done as follows:

pd.notnull(data['body'])

The result will look something similar to the following screenshot:

Fig. 2.10: The notnull method gives False for missing values and True for non-missing values
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The number of entries with missing values can be counted for a particular column 
to verify whether our calculation earlier about the number of missing entries was 
correct or not. This can be done as follows:

pd.isnull(data['body']).values.ravel().sum()

The result we get is 1189. This is the same number of missing entries from the body 
column as we have calculated in the preceding paragraph. In the preceding one-
liner, the values (True/False; 1/0 in binary) have been stripped off the series and 
have been converted into a row (using the ravel method) to be able to sum them 
up. The sum of 1/0 values (1 for missing values and 0 for non-missing) gives the 
number of total missing values.

The opposite of isnull is notnull. This should give us 121 as the result:

pd.nottnull(data['body']).values.ravel().sum()

Before we dig deeper into how to handle missing data, let's see what constitutes the 
missing data and how missing values are generated and propagated.

What constitutes missing data?
Nan is the default keyword for a missing value in Python. None is also considered as 
a missing value by the isnull and notnull functions.

How missing values are generated and propagated
There are various ways in which a missing values are incorporated in the datatset:

• Data extraction: While extracting data from a database, the missing values 
can be incorporated in the dataset due to various incompatibilities between 
the database server and the extraction process. In this case, the value is 
actually not missing but is being shown as missing because of the various 
incompatibilities. This can be corrected by optimizing the extraction process.

• Data collection: It might be the case that at the time of collection, certain 
data points are not available or not applicable and hence can't be entered 
into the database. Such entries become missing values and can't be obtained 
by changing the data extraction process because they are actually missing. 
For example, in case of a survey in a village, many people might not want 
to share their annual income; this becomes a missing value. Some datasets 
might have missing values because of the way they are collected. A time 
series data will have data starting from the relevant time and before that  
time it will have missing values.
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Any numerical operator on a missing value propagates the missing value to the 
resultant variable. For example, while summing the entries in two columns, if one of 
them has a missing value in one of the entries, the resultant sum variable will also 
have a missing value.

Treating missing values
There are basically two approaches to handle missing values: deletion and 
imputation. Deletion means deleting the entire row with one or more missing  
entries. Imputation means replacing the missing entries with some values based  
on the context of the data.

Deletion
One can either delete a complete row or column. One can specify when to delete 
an entire row or column (when any of the entries are missing in a row or all of the 
entries are missing in a row). For our dataset, we can write something, as shown:

data.dropna(axis=0,how='all')

The statement when executed will drop all the rows (axis=0 means rows, axis=1 
means columns) in which all the columns have missing values (the how parameter 
is set to all). One can drop a row even if a single column has a missing value. One 
needs to specify the how method as 'any' to do that:

data.dropna(axis=0,how='any')

Imputation
Imputation is the method of adding/replacing missing values with some other 
values such as 0, a string, or mean of non-missing values of that variable. There are 
several ways to impute a missing value and the choice of the best method depends 
on the context of the data.

One method is to fill the missing values in the entire dataset with some number or 
character variable. Thus, it can be done as follows:

data.fillna(0)

This will replace the missing values anywhere in the dataset with the value 0.  
One can impute a character variable as well:

data.fillna('missing')
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The preceding statement will impute a missing string in place of NaN, None, blanks, 
and so on. Another way is to replace the missing values in a particular column only 
is as shown below.

If you select the body column of the data by typing data['body'], the result will be 
something similar to the following screenshot:

Fig. 2.11: The values in the body column of the Titanic dataset without imputation for missing values

One can impute zeros to the missing values using the following statement:

data['body'].fillna(0)

But after imputing 0 to the missing values, we get something similar to the  
following screenshot:

Fig. 2.12: The values in the body column of the Titanic dataset after imputing 0 for missing values
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A common imputation is with the mean or median value of that column. This 
basically means that the missing values are assumed to have the same values as 
the mean value of that column (excluding missing values, of course), which makes 
perfect sense. Let us see how we can do that using the fillna method. Let us have a 
look at the age column of the dataset:

data['age']

Fig. 2.13: The values in the age column of the Titanic dataset without imputation for missing values

As shown in the preceding screenshot, some of the entries in the age column have 
missing values. Let us see how we can impute them with mean values:

data['age'].fillna(data['age'].mean())

The output looks something similar to the following screenshot:

Fig. 2.14: The values in the age column of the Titanic dataset after imputing mean for missing values
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As you can see, all the NaN values have been replaced with 29.881135, which is the 
mean of the age column.

One can use any function in place of mean, the most commonly used functions 
are median or some defined calculation using lambda. Apart from that, there are 
two very important methods in fillna to impute the missing values: ffill and 
backfill. As the name suggests, ffill replaces the missing values with the nearest 
preceding non-missing value while the backfill replaces the missing value with the 
nearest succeeding non-missing value. It will be clearer with the following example:

data['age'].fillna(method='ffill')

Fig. 2.15: The result of using ffill method of imputation on the age column of the Titanic dataset

As it can be seen, the missing value in row number 1297 is replaced with the value in 
row number 1296.

With the backfill statement, something similar happens:

data['age'].fillna(method='backfill')

Fig. 2.16: The result of using backfill method of imputation
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As it can be seen, the missing value in row number 1297 is replaced with the value in 
row number 1298.

Creating dummy variables
Creating dummy variables is a method to create separate variable for each  
category of a categorical variable., Although, the categorical variable contains  
plenty of information and might show a causal relationship with output variable,  
it can't be used in the predictive models like linear and logistic regression without 
any processing.

In our dataset, sex is a categorical variable with two categories that are male and 
female. We can create two dummy variables out of this, as follows:

dummy_sex=pd.get_dummies(data['sex'],prefix='sex')

The result of this statement is, as follows:

Fig. 2.17: Dummy variable for the sex variable in the Titanic dataset

This process is called dummifying, the variable creates two new variables that take 
either 1 or 0 value depending on what the sex of the passenger was. If the sex was 
female, sex_female would be 1 and sex_male would be 0. If the sex was male, 
sex_male would be 1 and sex_female would be 0. In general, all but one dummy 
variable in a row will have a 0 value. The variable derived from the value (for that 
row) in the original column will have a value of 1.

These two new variables can be joined to the source data frame, so that they can be 
used in the models. The method to that is illustrated, as follows:

column_name=data.columns.values.tolist()
column_name.remove('sex')
data[column_name].join(dummy_sex)
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The column names are converted to a list and the sex is removed from the list before 
joining these two dummy variables to the dataset, as it will not make sense to have a 
sex variable with these two dummy variables.

Visualizing a dataset by basic plotting
Plots are a great way to visualize a dataset and gauge possible relationships between 
the columns of a dataset. There are various kinds of plots that can be drawn. For 
example, a scatter plot, histogram, box-plot, and so on.

Let's import the Customer Churn Model dataset and try some basic plots:

import pandas as pd
data=pd.read_csv('E:/Personal/Learning/Predictive Modeling Book/Book 
Datasets/Customer Churn Model.txt')

While plotting any kind of plot, it helps to keep these things in mind:

• If you are using IPython Notebook, write % matplotlib inline in the input 
cell and run it before plotting to see the output plot inline (in the output cell).

• To save a plot in your local directory as a file, you can use the savefig 
method. Let's go back to the example where we plotted four scatter plots in a 
2x2 panel. The name of this image is specified in the beginning of the snippet, 
as a figure parameter of the plot. To save this image one can write the 
following code:

figure.savefig('E:/Personal/Learning/Predictive Modeling Book/Book 
Datasets/Scatter Plots.jpeg')

As you can see, while saving the file, one can specify the local directory to save the 
file and the name of the image and the format in which to save the image (jpeg in 
this case).

Scatter plots
We suspect the Day Mins and Day Charge to be highly correlated, as the calls are 
generally charged based on their duration. To confirm or validate our hypothesis, we 
can draw a scatter plot between Day Mins and Day Charge. To draw this scatter plot, 
we write something similar to the following code:

data.plot(kind='scatter',x='Day Mins',y='Day Charge')
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The output looks similar to the following figure where the points lie on a straight  
line confirming our suspicion that they are (linearly) related. As we will see later in 
the chapter on linear regression, such a situation will give a perfect linear fit for the 
two variables:

Fig. 2.18: Scatter plot of Day Charge versus Day Mins

The same is the case when we plot Night Mins and Night Charge against one 
another. However, when we plot Night Calls with Night Charge or Day Calls  
with Day Charge, we don't get to see much of a relationship.

Using the matplotlib library, we can get good quality plots and with a lot of 
flexibility. Let us see how we can plot multiple plots (in different panels) in the  
same image:

import matplotlib.pyplot as plt
figure,axs = plt.subplots(2, 2,sharey=True,sharex=True)
data.plot(kind='scatter',x='Day Mins',y='Day Charge',ax=axs[0][0])
data.plot(kind='scatter',x='Night Mins',y='Night Charge',ax=axs[0][1])
data.plot(kind='scatter',x='Day Calls',y='Day Charge',ax=axs[1][0])
data.plot(kind='scatter',x='Night Calls',y='Night Charge',ax=axs[1]
[1])

Downloading the example code
You can download the example code files for all Packt books you have 
purchased from your account at http://www.packtpub.com. If you 
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

http://www.PacktPub.com
http://www.PacktPub.com/support
http://www.PacktPub.com/support
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Here, we are plotting four graphs in one image in a 2x2 panel using the subplots 
method of the matplotlib library. As you can see in the preceding snippet, we 
have defined the panel to be 2x2 and set sharex and sharey parameters to be True. 
For each plot, we specify their location by passing appropriate values for the ax 
parameter in the plot method. The result looks similar to the following screenshot:

Fig. 2.19: Four plots in a 2x2 panel using the subplots method

Histograms
Plotting histograms is a great way to visualize the distribution of a numerical 
variable. Plotting a histogram is a method to understand the most frequent ranges 
(or bins as they are called) in which the variable lies. One can also check whether the 
variable is normally distributed or skewed on one side.

Let's plot a histogram for the Day Calls variable. We can do so by writing the 
following code:

import matplotlib.pyplot as plt
plt.hist(data['Day Calls'],bins=8)
plt.xlabel('Day Calls Value')
plt.ylabel('Frequency')
plt.title('Frequency of Day Calls')

The first line of the snippet is of prime importance. There we specify the variable 
for which we have to plot the histogram and the number of bins or ranges we want. 
The bins parameters can be passed as a fixed number or as a list of numbers to 
be passed as bin-edges. Suppose, a numerical variable has a minimum value of 1 
and a maximum value of 1000. While plotting histogram for this variable, one can 
either specify bins=10 or 20, or one can specify bins=[0,100,200,300,…1000] or 
[0,50,100,150,200,…..,1000].
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The output of the preceding code snippet appears similar to the following snapshot:

Fig. 2.20: Histogram of the Day Calls variable

Boxplots
Boxplots are another way to understand the distribution of a numerical variable.  
It specifies something called quartiles.

If the numbers in a distribution with 100 numbers are arranged in an 
increasing order; the 1st quartile will occupy the 25th position, the 3rd 
quartile will occupy the 75th position, and so on. The median will be the 
average of the 50th and 51st terms. (I hope you brush up on some of the 
statistics you have read till now because we are going to use a lot of it, but 
here is a small refresher). Median is the middle term when the numbers 
in the distribution are arranged in the increasing order. Mode is the one 
that occurs with the maximum frequency, while mean is the sum of all the 
numbers divided by their total count.

Plotting a boxplot in Python is easy. We need to write this to plot a boxplot for  
Day Calls:

import matplotlib.pyplot as plt
plt.boxplot(data['Day Calls'])
plt.ylabel('Day Calls')
plt.title('Box Plot of Day Calls')
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The output looks similar to the following snapshot:

Fig. 2.21: Box Plot for the Day Calls variable

The blue box is of prime importance. The lower-horizontal edge of the box specifies 
the 1st quartile, while the upper-horizontal edge specifies the 3rd quartile. The 
horizontal line in the red specifies the median value. The difference in the 1st and 
3rd quartile values is called the Inter Quartile Range or IQR. The lower and upper 
horizontal edges in black specify the minimum and maximum values respectively.

The boxplots are important plots because of the following reasons:

• Boxplots are potent tools to spot outliers in a distribution. Any value that is 
1.5*IQR below the 1st quartile and is 1.5*IQR above the 1st quartile can be 
classified as an outlier.

• For a categorical variable, boxplots are a great way to visualize and compare 
the distribution of each category at one go.

There are a variety of other types of plots that can be drawn depending on the 
problem at hand. We will learn about them as and when needed. For exploratory 
analysis, these three types are enough to provide us enough evidence to further 
or discard our initial hypotheses. These three types can have multiple variations 
and together with the power of looping and panel-wise plotting, we can make the 
plotting; hence, the data exploration process is very efficient.
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Summary
The main learning outcomes of this chapter are summarized as follows:

• Various methods and variations in importing a dataset using pandas: 
read_csv and its variations, reading a dataset using open method in Python, 
reading a file in chunks using the open method, reading directly from a URL, 
specifying the column names from a list, changing the delimiter of a dataset, 
and so on.

• Basic exploratory analysis of data: observing a thumbnail of data, shape, 
column names, column types, and summary statistics for numerical variables

• Handling missing values: The reason for incorporation of missing values, 
why it is important to treat them properly, how to treat them properly by 
deletion and imputation, and various methods of imputing data.

• Creating dummy variables: creating dummy variables for categorical 
variables to be used in the predictive models.

• Basic plotting: scatter plotting, histograms and boxplots; their meaning and 
relevance; and how they are plotted.

This chapter is a head start into our journey to explore our data and wrangle it to 
make it modelling-worthy. The next chapter will go deeper in this pursuit whereby 
we will learn to aggregate values for categorical variables, sub-set the dataset, merge 
two datasets, generate random numbers, and sample a dataset.

Cleaning, as we have seen in the last chapter takes about 80% of the modelling time, 
so it's of critical importance and the methods we are learning will come in handy in 
the pursuit of that goal.
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Data Wrangling
I assume that by now you are at ease with importing datasets from various sources 
and exploring the look and feel of the data. Handling missing values, creating 
dummy variables and plots are some tasks that an analyst (predictive modeller) does 
with almost all the datasets to make them model-worthy. So, for an aspiring analyst 
it will be better to master these tasks, as well.

Next in the line of items to master in order to juggle data like a pro is data wrangling. 
Put simply, it is just a fancy word for the slicing and dicing of data. If you compare 
the entire predictive modelling process to a complex operation/surgery to be 
performed on a patient, then the preliminary analysis with a stethoscope and 
diagnostic checks on the patient is the data cleaning and exploration process,  
zeroing down on the ailing area and deciding which body part to operate on is  
data wrangling, and performing the surgery/operation is the modelling process.

Surgery/operation Predictive modelling
Diagnostic checks/asking questions to fill 
missing pieces of information/discarding 
trivial information

Data exploration/Data cleaning

Zeroing down on specific body part/sourcing 
required pieces like blood, catheter

Data wrangling

Operating the area Modelling the data



Data Wrangling

[ 54 ]

A surgeon can vouch for the fact that zeroing down on a specific body part is the 
most critical piece of the puzzle to crack down before one gets to the root of the 
ailment. The same is the case with data wrangling. The data is not always at one 
place or in one table, maybe the information you need for your model is scattered 
across different datasets. What does one do in such cases? One doesn't always 
need the entire data. Many a times, one needs only a column or a few rows or a 
combination of a few rows and columns. How to do all this jugglery? This is the crux 
of this chapter. Apart from this, the chapter tries to provide the reader with all the 
props needed in their tryst with predictive modelling.

At the end of the chapter, the reader should be comfortable with the  
following functions:

• Sub-set a dataset: Slicing and dicing data, selecting few rows and columns 
based on certain conditions that is similar to filtering in Excel

• Generating random numbers: Generating random numbers is an important 
tool while performing simulations and creating dummy data frames

• Aggregating data: A technique that helps to group the data by categories in 
the categorical variable

• Sampling data: This is very important before venturing into the actual 
modelling; dividing a dataset between training and testing data is essential

• Merging/appending/concatenating datasets: This is the solution of the 
problem that arises when the data required for the purpose of modelling is 
scattered over different datasets

We will be using a variety of public datasets in this chapter. Another good  
way of demonstrating these concepts is to use dummy datasets created using 
random numbers. In fact, random numbers are used heavily for this purpose.  
We will be using a mix of both public datasets and dummy datasets, created  
using random numbers.

Let us now kick-start the chapter by learning about subsetting a dataset. As it 
unfolds, one will realize how ubiquitous and indispensable this is.

Subsetting a dataset
As discussed in the introductory section, the task of subsetting a dataset can entail 
a lot of things. Let us look at them one by one. In order to demonstrate it, let us first 
import the Customer Churn Model dataset, which we used in the last chapter:

import pandas as pd
data=pd.read_csv('E:/Personal/Learning/Predictive Modeling Book/Book 
Datasets/Customer Churn Model.txt')
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Selecting columns
Very frequently, an analyst might come across situations wherein only a handful of 
columns among a vast number of columns are useful and are required in the model. 
It then becomes important, to select particular columns. Let us see how to do that.

If one wishes to select the Account Length variable of the data frame we just 
imported, one can simply write:

account_length=data['Account Length']
account_length.head()

The square bracket ([ ]) syntax is used to subset a column of a data frame. One just 
needs to type the appropriate column name in the square brackets. Selecting one 
column returns a Series object (an object similar to a data frame) consisting of the 
values of the selected column. The output of the preceding snippet is as follows:

Fig. 3.1: First few entries of the Account Length column

The fact that this process returns a series can be confirmed by typing type(account_
length), this will return something similar to the following output, as a result:

Selecting multiple columns can be accomplished in a similar fashion. One just needs 
to add an extra square bracket to indicate that it is a list of column names that they 
are selecting and not just one column.

If one wants to select Account Length, VMail Message, and Day Calls, one can 
write the code, as follows:

Subdata = data[['Account Length','VMail Message','Day Calls']]
subdata.head()
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The output of the preceding snippet should be similar to the following screenshot:

Fig. 3.2: First few entries of the Account Length and VMail Message columns

Unlike in the case of selecting a single column, selecting multiple columns throws up 
a data frame, as the result:

type(subdata)

One can also create a list of required columns and pass the list name as the parameter 
inside the square bracket to subset a data frame. The following code snippet will give 
the same result, as shown in Fig. 3.3, in the next section:

wanted_columns=['Account Length','VMail Message','Day Calls']
subdata=data[wanted]
subdata.head()

In some cases, one might want to delete or remove certain columns from the dataset 
before they proceed to modelling. The same approach, as taken in the preceding 
section, can be taken in such cases.

This approach of subsetting columns from data frames works fine when the list of 
columns is relatively small (3-5 columns). After this, the time consumed in typing 
column names warrants some more efficient methods to do this. The trick is to 
manually create a list to complement (a list not containing the elements that are 
present in the other set) the bigger list and create the bigger list using looping. The 
complement list of a big table will always be small; hence, we need to make the 
method a tad bit efficient. 
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Let us have a look at the following code snippet to observe how to implement this:

wanted=['Account Length','VMail Message','Day Calls']
column_list=data.columns.values.tolist()
sublist=[x for x in column_list if x not in wanted]
subdata=data[sublist]
subdata.head()

The sublist as expected contains all the column names except the ones listed in the 
wanted list, as shown in the following screenshot:

Fig. 3.3: Column names of the subdata data frame

In the third line of the preceding code snippet, a list comprehension has been used. 
It is a convenient method to run for loops over lists and get lists as output. Many of 
you, who have experience with Python, will know of this. For others, it is not rocket 
science; just a better way to run for loops.

Selecting rows
Selecting rows is similar to selecting columns, in the sense that the same square 
bracket is used, but instead of column names the row number or indices are used. 
Let us see some examples to know how to select a particular number of rows from a 
data frame:

• If one wants to select the first 50 rows of the data frame, one can just write:
data[1:50]

• It is important to note that one needs to pass a range of numbers to subset  
a data frame over rows. To select 50 rows starting from 25th column, we  
will write:
data[25:75]

• If the lower limit is not mentioned, it denotes that the upper limit is the 
starting row of the data, which is row 1 in most cases. Thus, data[:50] is 
similar to data[1:50].

In the same way, if the upper limit is not mentioned, it is assumed to be the last 
row of the dataset. To select all the rows except the first 50 rows, we will write 
data[51:].
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A variety of permutations and combinations can be performed on these rules to fetch 
the row that one needs.

Another important way to subset a data frame by rows is conditional or Boolean 
subsetting. In this method, one filters the rows that satisfy certain conditions. The 
condition can be either an inequality or a comparison written inside the square 
bracket. Let us see a few examples of how one can go about implementing them:

• Suppose, one wants to filter the rows that have clocked Total Mins to be 
greater than 500. This can be done as follows:
data1=data[data['Total Mins']>500]
data1.shape

• The newly created data frame, after filtering, has 2720 rows compared to 3333 
in the unfiltered data frame. Clearly, the balance rows have been filtered by 
the condition.

• Let us have a look at another example, where we provide equality as a 
condition. Let us filter the rows for which the state is VA:
data1=data[data['State']=='VA']
data1.shape

• This data frame contains only 77 rows, while the rest get filtered.
• One can combine multiple conditions, as well, using AND (&) and OR (|) 

operators. To filter all the rows in the state VA that have Total Mins greater 
than 500, we can write:
data1=data[(data['Total Mins']>500) & (data['State']=='VA')]
data1.shape

• This data frame contains only 64 rows; it's lesser than the previous data 
frame. It also has two conditions, both of which must be satisfied to get 
filtered. The AND operator has a subtractive effect.

• To filter all the rows that are either in state VA or have Total Mins greater 
than 500, we can write the following code:
data1=data[(data['Total Mins']>500) | (data['State']=='VA')]
data1.shape

• This data frame has 2733 rows, which is greater than 2720 rows obtained 
with just one filter of Total Mins being greater than 500. The OR operator  
has an additive affect.
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Selecting a combination of rows and columns
This is the most used form of subsetting a dataset. Earlier in this chapter we selected 
three columns of this dataset and called the sub-setted data frame a subdata. What if 
we wish to look at specific rows of that sub-setted data frame? How can we do that? 
We just need another square bracket adjacent to the one already existing.

Let's say, we need to look at the first 50 rows of that sub-setted data frame. We can 
write a snippet, as shown:

subdata_first_50=data[['Account Length','VMail Message','Day Calls']]
[1:50]
subdata_first_50

We can use the already created subdata data frame and subset it for the first 50 rows 
by typing:

subdata[1:50] or subdata[:50]

Alternatively, one can subset the columns using the list name as explained earlier 
and then subset for rows.

Another effective (but a little unstable, as its behavior changes based on the version 
of Python installed) method to select both rows and columns together is the .ix 
method. Let's see how to use this method.

Basically, in the .ix method, we can provide row and column indices (in a lay  
man's term, row and column numbers) inside the square bracket. The syntax  
can be summarized, as follows:

• The data frame name is appended with ix
• Inside the square bracket, specify the row number (range) and column 

number (range) in that order

Now, let's have a look at a few examples:

• Selecting the first 100 rows of the first 5 columns:

data.ix[1:100,1:6]
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The output looks similar to the following screenshot:

Fig. 3.4: First 100 rows of the first 5 columns

• Selecting all rows from the first five columns:
data.ix[:,1:6] 

• Selecting first 100 rows from all the columns:

data.ix[1:100,:]

The row and column numbers/name can be passed off as a list, as well. Let's have a 
look at how it can be done:

• Selecting the first 100 rows from the 2nd, 5th, and 7th columns:

data.ix[1:100,[2,5,7]]

The output looks similar to the following screenshot:

Fig. 3.5: First 100 rows of the 2nd, 5th and 7th columns

• Selecting the 1st, 2nd and 5th rows from the 2nd, 5th and 7th columns:

data.ix[[1,2,5],[2,5,7]]
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The output looks similar to the following screenshot:

Fig. 3.6: 1st, 2nd and 5th rows of the 2nd, 5th and 7th columns

Instead of row and column indices or numbers, we can also write corresponding 
column names, as shown in the following example:

data.ix[[1,2,5],['Area Code','VMail Plan','Day Mins']]

Creating new columns
Many times during the analysis, we are required to create a new column based on 
some calculation or modification of the existing columns containing a constant value 
to be used in the modelling. Hence, the knowledge of creating new columns becomes 
an indispensable tool to learn. Let's see how to do that.

Suppose, in the Customer Churn Model dataset, we want to calculate the total 
minutes spent during the day, evening, and night. This requires summing up the 3 
columns, which are Day Mins, Eve Mins, and Night Mins. It can be done, as shown 
in the following snippet:

data['Total Mins']=data['Day Mins']+data['Eve Mins']+data['Night 
Mins']
data['Total Mins'].head() 

The output of the snippet is, as follows:

Fig. 3.7: First few entries of the new Total Mins column
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Generating random numbers and their 
usage
Random numbers are just like any other number in their property except for the 
fact that they assume a different value every time the call statement to generate 
a random number is executed. Random number generating methods use certain 
algorithms to generate different numbers every time, which are beyond the scope 
of this book. However, after a finitely large period, they might start generating the 
already generated numbers. In that sense, these numbers are not truly random and 
are sometimes called pseudo-random numbers.

In spite of them actually being pseudo-random, these numbers can be assumed to 
be random for all practical purposes. These numbers are of critical importance to 
predictive analysts because of the following points:

• They allow analysts to perform simulations for probabilistic  
multicase scenarios

• They can be used to generate dummy data frames or columns of a data frame 
that are needed in the analysis

• They can be used for the random sampling of data

Various methods for generating random 
numbers
The method used to deal with random number is called random and is found in 
the numpy library. Let's have a look at the different methods of generating random 
numbers and their usage.

Let's start by generating a random integer between 1 and 100. This can be done,  
as follows:

import numpy as np
np.random.randint(1,100)

If you run the preceding snippet, it will generate a random number between 1 and 
100. When I ran it, it gave me 43 as the result. It might give you something else.

To generate a random number between 0 and 1, we can write something similar to 
the following code:

import numpy as np
np.random.random()
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These methods allow us to generate one random number at a time. What if we 
wanted to generate a list of numbers, all lying within a given interval and generated 
randomly. Let's define a function that can generate a list of n random numbers lying 
between a and b.

All one needs to do is define a function, wherein an empty list is created and the 
randomly generated numbers are appended to the list. The recipe to do that is  
shown in the following code snippet:

def randint_range(n,a,b):
    x=[]
    for i in range(n):
        x.append(np.random.randint(a,b))
    return x

After defining this function we can generate, let's say, 10 numbers lying between 2 
and 1000, as shown:

rand_int_gen(10,2,1000)

On the first run, it gives something similar to the following output:

Fig. 3.8: 10 random integers between 2 and 1000

The randrange method is an important method to generate random numbers and 
is in a way an extension to the randint method, as it provides a step argument in 
addition to the start and stop argument in the case of randint function.

To generate three random numbers between 0 and 100, which are all multiples of 5, 
we can write:

import random
for i in range(3):
    print random.randrange(0,100,5) 

You should get something similar to the following screenshot, as a result (the actual 
numbers might change):
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Another related useful method is shuffle, which shuffles a list or an array in 
random order. It doesn't generate a random number, per se, but nevertheless it is 
very useful. Lets see how it works. Lets generate a list of consecutive 100 integers 
and then shuffle the list:

a=range(100)
np.random.shuffle(a)

The list looks similar to the following screenshot before and after the shuffle:

The choice method is another important technique that might come in very handy 
in various scenarios including creating simulations, depending upon selecting a 
random item from a list of items. The choice method is used to pick an item at 
random from a given list of items.

To see an example of how this method works, let's go back to the data frame that we 
have been using all along in this chapter. Let's import that data again and get the list 
of column names, using the following code snippet:

import pandas as pd
data=pd.read_csv('E:/Personal/Learning/Predictive Modeling Book/Book 
Datasets/Customer Churn Model.txt')
column_list=data.columns.values.tolist()

To select one column name from the list, at random, we can write it similar to the 
following example:

np.random.choice(column_list)

This should result in one column name being chosen at random from the list of the 
column names. I got Day Calls for my run. Of course, one can loop over the choice 
method to get multiple items, as we did for the randint method.
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Seeding a random number
At the onset of this section on random numbers, we discussed how random numbers 
change their values on every execution of their call statement. They repeat their 
values but only after a very large period. Sometimes, we need to generate a set 
of random numbers that retain their value. This can be achieved by seeding the 
generation of random numbers. Basically, the particular instance of generating a 
random number is given a seed (sort of a key), which when used can regenerate the 
same set of random numbers. Let's see this with an example:

np.random.seed(1)
for i in range(5):
    print np.random.random()

In the first line, we set the seed as 1 and then generated 5 random numbers.  
The output looks something similar to this:

Fig. 3.9: Five random numbers generated through random method with seed 1

If one removes the seed and then generates random numbers, one will get different 
random numbers. Let's have a look:

for i in range(5):
    print np.random.random()

By running the preceding code snippet, one indeed gets different random numbers, 
as shown in the following output screenshot:

Fig. 3.10: Five random number generated through random method without seed 1
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However, if one brings back the seed used to generate random numbers, we can get 
back the same numbers. If we try running the following snippet, we will have to 
regenerate the numbers, as shown in the first case:

np.random.seed(1)
for i in range(5):
    print np.random.random()

Generating random numbers following 
probability distributions
If you have taken a probability class in your school or college, you might have heard 
of probability distributions. There are two concepts that you might want to refresh.

Probability density function
For a random variable, it is just the count of times that the random variable attains a 
particular value x or the number of times that the value of the random variable falls 
in a given range (bins). This gives the probability of attaining a particular value by 
the random variable. Histograms plot this number/probability on the y axis and it 
can be identified as the y axis value of a distribution plot/histogram:

PDF = Prob(X=x)

Cumulative density function
For a random variable, it is defined as the probability that the random variable is less 
than or equal to a given value x. It is the total probability that the random variable is 
less than or equal to a given value. For a given point on the x axis, it is calculated as 
the area enclosed by the frequency distribution curve between by values less than x. 
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Mathematically, it is defined as follows:

CDF(x) = Prob(X<=x)

Value of Random
Variable
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y
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Fig. 3.11: CDF is the area enclosed by the curve till that value of random variable. PDF is the frequency/
probability of that particular value of random variable.

There are various kinds of probability distributions that frequently occur, including 
the normal (famously known as the Bell Curve), uniform, poisson, binomial, 
multinomial distributions, and so on.

Many of the analyses require generating random numbers that follow a particular 
probability distribution. One can generate random numbers in such a fashion using 
the same random method of the numpy library.

Let's see how one can generate two of the most commonly used distributions,  
which are normal and uniform distributions.

Uniform distribution
A uniform distribution is defined by its endpoints—the start and stop points.  
Each of the points lying in between these endpoints are supposed to occur with  
the same (uniform) probability and hence the name of the distribution. 
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If the start and stop points are a and b, each point between a and b would occur with 
a frequency of 1/(b-a):

Value of Random
Variable

1/(b-a)

a b
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y

Fig. 3.12: In a uniform distribution, all the random variables occur with the same  
(uniform) frequency/probability

As the uniform distribution is defined by its start and stop points, it is essential 
to know these points while generating random numbers following a uniform 
distribution. Thus, these points are taken as input parameters for the uniform 
function that is used to generate a random number following a uniform distribution. 
The other parameter of this function is the number of random numbers that one 
wants to generate.

To generate 100 random numbers lying between 1 and 100, one can write  
the following:

import numpy as np
randnum=np.random.uniform(1,100,100)

To check whether it indeed follows the uniform distribution, let's plot a histogram of 
these numbers and see whether they occur with the same probability or not. This can 
be done using the following code snippet:

import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
a=np.random.uniform(1,100,100)
b=range(1,101)
plt.hist(a)
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The output that we get is not what we expected. It doesn't have the same probability 
for all the numbers, as seen in the following output:

Fig. 3.13: Histogram of 100 random numbers between 1 and 100 following uniform distribution

The reason for this is that 100 is a very small number, given the range (1-100), 
to showcase the property of the uniform distribution. We should try generating 
more random numbers and then see the results. Try generating around a million 
(1,000,000) numbers by changing the parameter in the uniform function, and then 
see the results of the preceding code snippet. 
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It should look something like the following:

Fig. 3.14: The kind of plot expected for uniform distribution, all the numbers occur with  
the same frequency/probability

If you observe the preceding plot properly, each bin that contains 10 numbers occurs 
roughly with a frequency of 100,000 (and hence a probability of 100000/1000000=1/10). 
This means that each number occurs with a probability of 1/10*1/10=1/100, which is 
equal to the probability that we would have expected from a set of numbers following 
the uniform distribution between 1 and 100 (1/(100-1)=1/99).

Normal distribution
Normal distribution is the most common form of probability distribution arising 
from everyday real-life situations. Thus, the exam score distribution of students in 
a class would roughly follow the normal distribution as would the heights of the 
students in the class. An interesting behavior of all the probability distributions 
is that they tend to follow/align to a normal distribution as the sample size of the 
numbers increase. In a sense, one can say that a normal distribution is the most 
ubiquitous and versatile probability distribution around.

The parameters that define a normal distribution are the mean and standard 
deviation. A normal distribution with a 0 mean and 1 standard deviation is called 
a standard normal distribution. The randn function of the random method is used 
to generate random numbers following a normal distribution. It returns random 
numbers following a standard normal distribution.
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To generate 100 such numbers, one simply writes the following:

import numpy as np
a=np.random.randn(100)

To take a look at how random these values actually are, let's plot them against a list 
of integers:

import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
a=np.random.randn(100)
b=range(1,101)
plt.plot(b,a)

The output looks something like the following image. The numbers are  
visibly random.

Fig. 3.15: A plot of 100 random numbers following normal distribution
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One can pass a list defining the shape of the expected array. If one passes, let's say, 
(2,4) as the input, one would get a 2 x 4 array of numbers following a standard 
normal distribution:

import numpy as np
a=np.random.randn(2,4)

If no numbers are specified, it generates a single random number from the standard 
normal distribution.

To get numbers following normal distributions (with mean and standard deviation 
other than 0 and 1, let's say, mean 1.5 and standard deviation 2.5), one can write 
something like the following:

import numpy as np
a=2.5*np.random.randn(100)+1.5

The preceding calculation holds because the standard normal distribution S is 
created from a normal distribution X, with mean μ and standard deviation σ,  
using the following formula:

( ) /S X µ σ= −

Let's generate enough random numbers following a standard normal distribution 
and plot them to see whether they follow the shape of a standard normal distribution 
(a bell curve). This can be done using the following code snippet:

import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
a=np.random.randn(100000)
b=range(1,101)
plt.hist(a)
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The output would look something like this, which roughly looks like a bell curve  
(if one joins the top points of all the bins to form a curvilinear line):

Fig. 3.16: Histogram of 100000 random numbers following standard normal distribution.

Using the Monte-Carlo simulation to find the 
value of pi
Till now, we have been learning about various ways to generate random numbers. 
Let's now see an application of random numbers. In this section, we will use random 
numbers to run something called Monte-Carlo simulations to calculate the value  
of pi. These simulations are based on repeated random sampling or the generation  
of numbers.
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Geometry and mathematics behind the calculation 
of pi
Consider a circle of radius r unit circumscribed inside a square of side 2r units such 
that the circle's diameter and the square's sides have the same dimensions:

2r

r

Fig. 3.17: A circle of radius r circumscribed in a square of side 2r

What is the probability that a point chosen at random would lie inside the circle? 
This probability would be given by the following formulae:

( )
( )

/

/ 2 2
/ 4

Prob point lying insidethecircle Area of circle Area of square

p pi r r r r
p pi

=

= ∗ ∗ ∗

=

Thus, we find out that the probability of a point lying inside the circle is pi/4. The 
purpose of the simulation is to calculate this probability and use this to estimate the 
value of pi. The following are the steps to be implemented to run this simulation:

1. Generate points with both x and y coordinates lying between 0 and 1.
2. Calculate x*x + y*y. If it is less than 1, it lies inside the circle. If it is greater 

than 1, it lies outside the circle.
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3. Calculate the total number of points that lie inside the circle. Divide it by the 
total number of points generated to get the probability of a point lying inside 
the circle.

4. Use this probability to calculate the value of pi.
5. Repeat the process for a sufficient number of times, say, 1,000 times and 

generate 1,000 different values of pi.
6. Take an average of all the 1,000 values of pi to arrive at the final value of pi.

Let's see how one can implement these steps in Python. The following code snippet 
would do just this:

pi_avg=0
pi_value_list=[]
for i in range(100):
    value=0
    x=np.random.uniform(0,1,1000).tolist()
    y=np.random.uniform(0,1,1000).tolist()
    for j in range(1000):
            z=np.sqrt(x[j]*x[j]+y[j]*y[j])
            if z<=1:
                value+=1
    float_value=float(value)
    pi_value=float_value*4/1000
    pi_value_list.append(pi_value)
    pi_avg+=pi_value
    
pi=pi_avg/100
print pi
ind=range(1,101)
fig=plt.plot(ind,pi_value_list)
fig
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The preceding snippet generates 1,000 random points to calculate the probability  
of a point lying inside the circle and then repeats this process 100 times to get at the 
final averaged value of pi. These 100 values of pi have been plotted and they look  
as follows:

Fig. 3.18: Values of pi over 100 simulations of 1000 points each

The final averaged value of pi comes out to be 3.14584 in this run. As we increase 
the number of runs, the accuracy increases. One can easily wrap the preceding 
snippet in a function and pass the number of runs as an input for the easy 
comparison of pi values as an increasing number of runs are passed to this  
function. The following code snippet is a function to do just this:

def pi_run(nums,loops):
    pi_avg=0
    pi_value_list=[]
    for i in range(loops):
        value=0
        x=np.random.uniform(0,1,nums).tolist()
        y=np.random.uniform(0,1,nums).tolist()
        for j in range(nums):
            z=np.sqrt(x[j]*x[j]+y[j]*y[j])
            if z<=1:
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                value+=1
        float_value=float(value)
        pi_value=float_value*4/nums
        pi_value_list.append(pi_value)
        pi_avg+=pi_value
    
    pi=pi_avg/loops
    ind=range(1,loops+1)
    fig=plt.plot(ind,pi_value_list)
    return (pi,fig)

To call this function, write pi_run(1000,100), and it should give you a similar 
result as was given previously with the hardcoded numbers. This function would 
return both the averaged value of pi as well as the plot.

Generating a dummy data frame
One very important use of generating random numbers is to create a dummy  
data frame, which will be used extensively in this book to illustrate concepts  
and examples.

The basic concept of this is that the array/list of random numbers generated through 
the various methods described in the previous sections can be passed as the columns 
of a data frame. The column names and their descriptions are passed as the keys and 
values of a dictionary.

Let's see an example where a dummy data frame contains two columns, A and B, 
which have 10 random numbers following a standard normal distribution and 
normal distribution, respectively.

To create such a data frame, one can run the following code snippet:

import pandas as pd
d=pd.DataFrame({'A':np.random.randn(10),'B':2.5*np.random.
randn(10)+1.5})
d
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The following screenshot is the output of the code:

Fig. 3.19: A dummy data frame containing 2 columns – one having numbers following standard  
normal distribution, the second having random numbers following normal distribution with mean 1.5 and 

standard deviation 2.5

Categorical/string variables can also be passed as a list to be part of a dummy  
data frame. Let's go back to our example of the Customer Churn Model data and 
use the column names as the list to be passed. This can be done as described in the 
following snippet:

import pandas as pd
data = pd.read_csv('E:/Personal/Learning/Datasets/Book/Customer Churn 
Model.txt') 
column_list=data.columns.values.tolist()
a=len(column_list)
d=pd.DataFrame({'Column_Name':column_list,'A':np.random.
randn(a),'B':2.5*np.random.randn(a)+1.5})
d
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The output of the preceding snippet is as follows:

Fig. 3.20: Another dummy data frame. Similar to the one above but with one extra column which has column  
names of the data data frame

The index can also be passed as one of the parameters of this function. By default,  
it gives a range of numbers starting from 0 as the index. If we want something  
else as the index, we can specify it in the index parameter as shown in the  
following example:

import pandas as pd
d=pd.DataFrame({'A':np.random.randn(10),'B':2.5*np.random.randn(10)+1.
5},index=range(10,20))
d

The output of the preceding code looks like the following:

Fig. 3.21: Passing indices to the dummy data frame



Data Wrangling

[ 80 ]

Grouping the data – aggregation, 
filtering, and transformation
In this section, you will learn how to aggregate data over categorical variables. 
This is a very common practice when the data consists of categorical variables. This 
analysis enables us to conduct a category-wise analysis and take further decisions 
regarding the modelling.

To illustrate the concepts of grouping and aggregating data better, let's create a 
simple dummy data frame that has a rich mix of both numerical and categorical 
variables. Let's use whatever we have explored till now about random numbers to 
create this data frame, as shown in the following snippet:

import numpy as np
import pandas as pd
a=['Male','Female']
b=['Rich','Poor','Middle Class']
gender=[]
seb=[]
for i in range(1,101):
    gender.append(np.random.choice(a))
    seb.append(np.random.choice(b))
height=30*np.random.randn(100)+155
weight=20*np.random.randn(100)+60
age=10*np.random.randn(100)+35
income=1500*np.random.randn(100)+15000

df=pd.DataFrame({'Gender':gender,'Height':height,'Weight':weight,'Age'
:age,'Income':income,'Socio-Eco':seb})
df.head()

The output data frame df looks something as follows:

Fig. 3.22: The resulting dummy data frame df containing 6 columns
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As we can see from the preceding code snippet, the shape of the data frame  
is 100x6.

Grouping can be done over a categorical variable using the groupby function. The 
column name of the categorical variable needs to be specified for this. Suppose that 
we wish to group the data frame based on the Gender variable. This can be done by 
writing the following:

df.groupby('Gender')

If you run the preceding snippet on your IDE, you will get the following output 
indicating that a groupby object has been created:

Fig. 3.23: Prompt showing that the groupby object has been created

The groupby function doesn't split the original data frame into several groups, 
instead it creates a groupby object that has two attributes, which are name and group.

These attributes can be accessed by following the name of the groupby object 
with '.', followed by the name of the attribute. For example, to access the group 
attribute, one can write the following:

grouped = df.groupby('Gender')
grouped.groups

The following is the output:

Fig. 3.24: Two groups based on gender
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The numbers indicate the row numbers that belong to that particular group.

One important feature of these attributes is that they are iterable, and the same 
operation can be applied to each group just by looping. This comes in very handy 
when the number of groups are large and one needs results of the operation 
separately for each group.

Let's perform a simple operation to illustrate this. Let's try to print the name and 
groups in the groupby object that we just created. This can be done as follows:

grouped=df.groupby('Gender')
for names,groups in grouped:
    print names
    print groups

This prints the name of the group followed by the entire data for this group.  
The output looks something like the following:

Fig. 3.25.1: Name and the data in the group with gender female

Here is the second group as a part of the output:

Fig. 3.25.2: Name and the data in the group with gender male
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A single group can be selected by writing the following:

grouped.get_group('Female')

This would generate only the first of the two groups, as shown in the  
preceding screenshot.

A data frame can be grouped over more than one categorical variable as well. As in 
this case, the data frame can be grouped over both Gender and Soci-Eco by writing 
something like the following:

grouped=df.groupby(['Gender','Socio-Eco'])

This should create six groups from a combination of two categories of Gender and 
three categories of the Socio-Eco variable. This can be checked by checking the 
length of the groupby object as follows:

len(grouped)

It indeed returns six. To look at how these groups look, let's run the same iteration 
on the group attributes as we did earlier:

grouped=df.groupby(['Gender','Socio-Eco'])
for names,groups in grouped:
    print names
    print groups

The code gives six groups' names and their entire data as the output. There would be 
six of such groups in total.

The first group looks like the following:

Fig. 3.26.1: Name and the data in the group with gender female and Socio_Eco Middle Class
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The second group looks like the following:

Fig. 3.26.2: Name and the data in the group with gender female and Socio_Eco Middle Class

Aggregation
There are various aggregations that are possible on a data frame, such as sum, mean, 
describe, size, and so on. The aggregation basically means applying a function to 
all the groups all at once and getting a result from that particular group.

Let's see the sum function. We just need to write the following code snippet to see 
how it works:

grouped=df.groupby(['Gender','Socio-Eco'])
grouped.sum()

We gets the following table as the result:

Fig. 3.27: Sum of each column for different groups

To get the number of rows in each group (or calculate the size of each group), we can 
write something similar to the following code snippet:

grouped=df.groupby(['Gender','Socio-Eco'])
grouped.size()
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This results in a table, as shown in the following screenshot:

Fig. 3.28: Size of each group

One can use the describe function to get the summary statistics for each group 
separately. The syntax is exactly the same as it is for the earlier two functions:

grouped=df.groupby(['Gender','Socio-Eco'])
grouped.describe()

This output looks similar to the following table:

Fig. 3.29: All the summary statistics of each column for different groups
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The groupby objects behave similar to an individual data frame, in the sense that one 
can select columns from these groupby objects just as we do from the data frames:

grouped=df.groupby(['Gender','Socio-Eco'])
grouped_income=grouped['Income']

One can apply different functions to different columns. The aggregate method used 
to do this is shown in the following snippet. With the following snippet, one can 
calculate sum of Income, mean of Age, and standard deviation of Height, as shown:

grouped=df.groupby(['Gender','Socio-Eco'])
grouped.aggregate({'Income':np.sum,'Age':np.mean,'Height':np.std})

The output of the preceding snippet looks similar to the following table:

Fig. 3.30: Selected summary statistics of selected columns for different groups

We can also define a function using the lambda method of defining a calculation in 
Python. Suppose you don't want the mean of age but the ratio of mean and standard 
deviation for height. You can define the formula for this ratio using the lambda 
method, illustrated as follows:

grouped=df.groupby(['Gender','Socio-Eco'])
grouped.aggregate({'Age':np.mean,'Height':lambda x:np.mean(x)/
np.std(x)})
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Rather than applying different functions to different columns, one can apply several 
functions to all the columns at the same time, as shown:

grouped.aggregate([np.sum, np.mean, np.std])

The output of the code snippet contains the result of all the three functions applied 
on all the columns of the groupby object, as seen in the following screenshot:

Fig. 3.31: More than one selected summary statistics of selected columns for different groups

Filtering
One important operation that can be applied on the groupby objects is filter. We 
can filter elements based on the properties of groups. Suppose we want to choose 
elements from the Age column that are a part of the group wherein the sum of Age is 
greater than 700. This filtering can be done by writing the following snippet:

grouped['Age'].filter(lambda x:x.sum()>700)
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The output contains the row numbers that are part of the group where the sum of 
Age is greater than 700. The output is, as follows:

Fig. 3.32: The rows left after filtering it for elements, which are part of groups, where the sum of  
ages is greater than 700

Transformation
One can use the transform method to mathematically transform all the elements in 
a numerical column. Suppose, we wish to calculate the standard normal values for 
all the elements in the numerical columns of our data frame; this can be done in a 
manner as shown:

zscore = lambda x: (x - x.mean()) / x.std()
grouped.transform(zscore)
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The output contains standard normal values for all the numerical columns in the 
data frame, as shown in the following screenshot:

Fig. 3.33: Result of applying a lambda defined function on the columns of groups

The transform method comes in handy in a lot of situations. For example, it can be 
used to fill the missing values with the mean of the non-missing values, as shown:

f = lambda x: x.fillna(x.mean()
grouped.transform(f)

Miscellaneous operations
In many situations, one needs to select the nth row of each group of a groupby object, 
most often the first and the last row. This can be easily done once the groupby object 
is created. Let's see how:

• The first row of each group can be selected by writing the following  
code snippet:
grouped.head(1)

• While the last row of each group can be selected by writing the following 
code snippet:

grouped.tail(1)
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The result of the former, is as shown:

Fig. 3.34: First few rows of the grouped element

In general, we can use the nth function to get the nth row from a group,  
as illustrated:

grouped=df.groupby('Gender')
grouped.nth(1)

This gives the following result:

Fig. 3.35: First rows of each group

One can use any number (of course, less than the number of rows in each group)  
as the argument for the nth function.

It is always a good practice to sort the data frame for the relevant columns  
before creating the groupby object from the data frame. Suppose, you want to  
look at the youngest male and female members of this data frame. 
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This can be done by sorting the data frame, creating a groupby object, and then 
taking the first element of each group:

df1=df.sort(['Age','Income'])
grouped=df1.groupby('Gender')
grouped.head(1)

The output has two rows containing the details of the two youngest members from 
the two groups:

Fig. 3.36: Sorting by the age column before grouping by gender and then selecting the first row from each group 
can give you the oldest/youngest guy in the group

The oldest members can be identified in the same way by typing grouped.tail(1).

Random sampling – splitting a dataset in 
training and testing datasets
Splitting the dataset in training and testing the datasets is one operation every 
predictive modeller has to perform before applying the model, irrespective of the 
kind of data in hand or the predictive model being applied. Generally, a dataset is 
split into training and testing datasets. The following is a description of the two types 
of datasets:

• The training dataset is the one on which the model is built. This is the one 
on which the calculations are performed and the model equations and 
parameters are created.

• The testing dataset is used to check the accuracy of the model. The model 
equations and parameters are used to calculate the output based on the 
inputs from the testing datasets. These outputs are used to compare the 
model efficiency in the light of the actuals present in the testing dataset.
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This will become clearer from the following image:

Training data

Testing data

Model = M = f(X1, X2, X3)

Actual
output

Model
output

Compare Y and M 

X1 X2 X3 Y

X1 X2 X3 Y M

Fig. 3.37: Concept of sampling: Training and Testing data

Generally, the training and testing datasets are split in the ratio of 75:25 or 80:20. 
There are various ways to split the data into two halves. The crudest way that comes 
to mind is taking the first 75/80 percent rows as the training dataset and the rest as 
the testing dataset, or taking the first 25/20 percent rows as the testing and the rest 
as the training dataset. However, the problem with this approach is that it might 
bias the two datasets for a variety of reasons. The earlier rows might come from a 
different source or were observed during different scenarios. These situations might 
bias the model results from the two datasets. The rows should be chosen to avoid 
this bias. The most effective way to do that is to select the rows at random. Let us  
see a few methods to divide a dataset into training and testing datasets.

One way is to create as many standard normal random numbers, as there are  
rows in the dataset and then filter them for being smaller than a certain value.  
This filter condition is then used to partition the data in two parts. Let us see  
how it can be done.
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Method 1 – using the Customer Churn Model
Let us use the same Customer Churn Model data that we have been using 
frequently. Let us go ahead and import it, as shown:

import pandas as pd
data = pd.read_csv('E:/Personal/Learning/Datasets/Book/Customer Churn 
Model.txt')
len(data)

There are 3333 rows in the dataset. Next, we will generate random numbers and 
create a filter on which to partition the data:

a=np.random.randn(len(data))
check=a<0.8
training=data[check]
testing=data[~check]

The rows where the value of the random number is less than 0.8 becomes a part of 
the training variable, while the one with a value greater than 0.8 becomes a part of 
the testing dataset.

Let us check the lengths of the two datasets to see in what ratio the dataset has been 
divided. A 75:25 split between training and testing datasets would be ideal:

len(training)
len(testing)

The length of training dataset is 2635 while that of the testing dataset is 698; thus, 
resulting in a split very close to 75:25.

Method 2 – using sklearn
Very soon we will be introduced to a very powerful Python library used extensively 
for the purpose of modelling, scikit-learn or sklearn. This sklearn library has 
inbuilt methods to split a dataset in a training and testing dataset. Let's have a look at 
the procedure:

from sklearn.cross_validation import train_test_split
train, test = train_test_split(data, test_size = 0.2)

The test size specifies the size of the testing dataset: 0.2 means that 20 percent of the 
rows of the dataset should go to testing and the remaining 80 percent to training. 
If we check the length of these two (train and test), we can confirm that the split is 
indeed 80-20 percent.
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Method 3 – using the shuffle function
Another method involves using the shuffle function in the random method.  
The data is read in line by line, which are shuffled randomly and then assigned  
to training and testing datasets in designated proportions, as shown:

import numpy as np
with open('E:/Personal/Learning/Datasets/Book/Customer Churn Model.
txt','rb') as f:
    data=f.read().split('\n')
np.random.shuffle(data)
train_data = data[:3*len(data)/4]
test_data = data[len(data)/4:]

In some cases, mostly during data science competitions like Kaggle, we would be 
provided with separate training and testing datasets to start with.

Concatenating and appending data
All the required information to build a model doesn't always come from a single 
table or data source. In many cases, two datasets need to be joined/merged to get 
more information (read new column/variable). Sometimes, small datasets need to be 
appended together to make a big dataset which contains the complete picture. Thus, 
merging and appending are important components of an analyst's armor.

Let's learn each of these methods one by one. For illustrating these methods, we 
will be using a lot of new interesting datasets. The one we are going to use first is a 
dataset about the mineral contents of wine; we will have separate datasets for red 
and white wine. Each sample represents a different sample of red or white wine.

Let us import this dataset and have a look at it. The delimiter for this dataset is ;  
(a semi-colon), which needs to be taken care of:

import pandas as pd
data1=pd.read_csv('E:/Personal/Learning/Predictive Modeling Book/Book 
Datasets/Merge and Join/winequality-red.csv',sep=';')
data1.head()
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The output of this input snippet is similar to the following screenshot:

Fig. 3.38: First few entries of the wine quality-red dataset

The column names are as follows:

data1.columns.values

Fig. 3.39: Column names of the wine quality-red dataset

The size of the dataset is can be found out using the following snippet:

data1.shape

The output is 1599x12 implying that the dataset has 1599 rows.

Let us import the second dataset which is very similar to the preceding dataset 
except that the data points are collected for white wine:

import pandas as pd
data2=pd.read_csv('E:/Personal/Learning/Predictive Modeling Book/Book 
Datasets/Merge and Join/winequality-white.csv',sep=';')
data2.head()

The output of this input snippet looks similar to the following screenshot:

Fig. 3.40: First few entries of the winequality-white dataset
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As we can see, this dataset looks very similar to the preceding dataset. Let us  
confirm this by getting the column names for this dataset. They should be the  
same as the preceding array of column names:

Fig. 3.41: Column names of the winequality-white dataset

The size of the dataset is, as follows:

data2.shape

4898x12, this means that the dataset has 4898 rows.

So, we can see that the data1 and data2 are very similar (in terms of column names 
and column types) except the row numbers in the two datasets. These are ideal 
circumstances to append two datasets along the horizontal axis (axis=0).

In Python, the horizontal axis is denoted by axis=0 and the 
vertical axis is denoted by axis=1.

Let us append these two datasets along axis=0. This can be done using the concat 
method of pandas library. After appending the datasets, the row numbers of the final 
dataset should be the same as the row numbers of both the datasets.

This can be accomplished as follows:

wine_total=pd.concat([data1,data2],axis=0)

Let us check the number of rows of the appended dataset wine_total:

wine_total.shape

The output is 6497x12. It indicates that the final appended dataset has 6497 
(6497=1599+4898) rows. One can see that the row numbers in the appended  
dataset is the sum of row numbers of the individual datasets.
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Let us have a look at the final dataset just to ensure everything looks fine. While 
appending over axis=0, the two datasets are just stacked over one another. In this 
case, data1 will be stacked over data2 dataset. So, the first few rows of the final 
dataset wine_total will look similar to the first few rows of the first dataset data1. 
Let us check that:

wine_total.head()

The output looks similar to the following screenshot:

Fig. 3.42: First few entries of the final dataset obtained from appending data1 and data2

The preceding output is the same as the first few rows of the data1.

This concat method can be used to scramble data that is taken a few rows from here 
and there and stacking them over one another. The concat method takes more than 
two datasets also as an argument. The datasets are stacked over one another in order 
of appearance. If the datasets are data1, data2, and data3, in that order, then data1 
will be stacked over data2 which will be stacked over data3.

Let us look at an example of such scrambling. We will use the data1 dataset (coming 
from winequality-red.csv) and take 50 rows from head, middle, and tail to create 
three different data frames. These data frames will be then stacked over one another 
to create a final dataset:

data1_head=data1.head(50)
data1_middle=data1[500:550]
data1_tail=data.tail(50)
wine_scramble=pd.concat([data1_middle,data1_head,data1_tail],axis=0)
wine_scramble

The output dataset will contain 150 rows, as confirmed by the following snippet:

wine_scramble.shape

This returns 150x12 as the output.
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The output dataset wine_scramble looks similar to the following screenshot:

Fig. 3.43: First few rows of the scrambled data frame with rows from the data1_middle at the top

Since, the order of the appended dataset is data1_middle, data1_head, data1_tail, 
the rows contained in the data1_middle come at the top followed by the data1_
head and data1_tail rows.

If you change the order of the stacking, the view of the appended dataset will 
change. Let's try that:

data1_head=data1.head(50)
data1_middle=data1[500:550]
data1_tail=data.tail(50)
wine_scramble=pd.concat([data1_head,data1_middle,data1_tail],axis=0)
wine_scramble

The output looks similar to the following screenshot, wherein, as expected the rows 
in the data1_head appear at the top:

Fig. 3.44: First few rows of the scrambled data frame with rows from the data1_head at the top

Let's see another scenario where the concat function comes as a savior. Suppose, 
you have to deal with the kind of data that comes in several files containing similar 
data. One example of such a scenario is the daily weather data of a city where the 
same metrics are tracked everyday but the data for each day is stored in a separate 
file. Many a time, when we do analysis of such files, we are required to append them 
into a single consolidated file before running any analyses or models.
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I have curated some data that has these kind of properties to illustrate the method of 
consolidation into a single file. Navigate to the Chapter 3 folder in the Google Drive 
and then to the lotofdata folder. You will see 332 CSV files, each named with its 
serial number. Each CSV file contains pollutant measure levels at different points of 
time in a single day. Each CSV file represents a day worth of pollutant measure data.

Let us go ahead and import the first file and have a look at it. Looking at one file 
will be enough, as the others will be very similar to this (exactly similar except the 
number of rows and the data points):

data=pd.read_csv('E:/Personal/Learning/Predictive Modeling Book/Book 
Datasets/Merge and Join/lotofdata/001.csv')
data.head()

The one feature of this data is that it is very sparse and it contains a lot of missing 
values that would be visible once we look at the output of the preceding code 
snippet. The sparseness doesn't affect the analyses in this case because the dataset 
has sufficient rows with non-missing values. Even 100 rows with non-missing values 
should give us a good picture of the pollutant levels for a day. However, for the 
same reason, appending such a dataset becomes all the more important so that we 
have a significant amount of data with the non-missing values for our analyses.

Let us look at the first CSV file of the lot and the output of the preceding snippet:

Fig. 3.45: First few entries of the first file out of 332 CSV files

The size of the dataset is 1461x4 indicating that there are 1,461 rows and four 
columns. The name of the columns are Date, sulfate, nitrate, and ID. ID would be 
1 for the first dataset, 2 for the 2nd, and so on. The number of rows in the other CSV 
files should be in the same range while the number of rows with non-missing values 
might vary.
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Let us now move towards our goal of this discussion that is to demonstrate how to 
consolidate such small and similar files in a single file. To be able to do so, one needs 
to do the following in that sequence:

1. Import the first file.
2. Loop through all the files.
3. Import them one by one.
4. Append them to the first file.
5. Repeat the loop.

Let us now look at the code snippet, which will achieve this:

import pandas as pd
filepath='E:/Personal/Learning/Predictive Modeling Book/Book Datasets/
Merge and Join/lotofdata'
data_final=pd.read_csv('E:/Personal/Learning/Predictive Modeling Book/
Book Datasets/Merge and Join/lotofdata/001.csv')
for i in range(1,333):
    if i<10:
        filename='0'+'0'+str(i)+'.csv'
    if 10<=i<100:
        filename='0'+str(i)+'.csv'
    if i>=100:
        filename=str(i)+'.csv'
        
    file=filepath+'/'+filename
    data=pd.read_csv(file)
    
    data_final=pd.concat([data_final,data],axis=0)

In the code snippet, the read_csv is taking a file variable that consists of filepath 
and filename variables. The if condition takes care of the changing filenames (three 
conditions arise – first, when filename contains a single non-zero digit; second, when 
the filename contains two non-zero digits, and third, when the filename contains all 
the three non-zero digits).

The first file is imported and named as data_final. The subsequent files are 
imported and appended to data_final. The for loop runs over all the 332 files 
wherein the importing and appending of the files occur.

The size of the data_final data frame is 773548x4 rows, indicating that it has 
7,73,548 rows because it contains the rows from all the 332 files.
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If one looks at the last rows of the data_final data frame, one can confirm that all 
the files have been appended if the ID column contains 332 as value. This means that 
the last few rows come from the 332nd file.

Fig. 3.46: Last few entries of the data_final data frame. They have ID as 332 indicating that  
they come from the 332nd CSV file.

The ID column indeed contains 332 observations, confirming that all the 332 files 
have been successfully appended.

Another way to confirm whether all the rows from all the files have been successfully 
appended or not, one can sum up the row numbers of each file and compare them 
to the row numbers of the final appended data frame. They should be equal if they 
have been appended successfully.

Let us check. We can use the same code as the preceding one, for this process with 
some minor tweaks. Let us see how:

import pandas as pd
filepath='E:/Personal/Learning/Predictive Modeling Book/Book Datasets/
Merge and Join/lotofdata'
data_final=pd.read_csv('E:/Personal/Learning/Predictive Modeling Book/
Book Datasets/Merge and Join/lotofdata/001.csv')
data_final_size=len(data_final)
for i in range(1,333):
    if i<10:
        filename='0'+'0'+str(i)+'.csv'
    if 10<=i<100:
        filename='0'+str(i)+'.csv'
    if i>=100:
        filename=str(i)+'.csv'
        
    file=filepath+'/'+filename
    data=pd.read_csv(file)
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    data_final_size+=len(data)
    
    
    data_final=pd.concat([data_final,data],axis=0)
print data_final_size

Here, we are summing-up the row numbers of all the files (in the line highlighted) 
and the summed-up number is printed in the last line. The output is 773,548; it 
confirms that the final data frame has the same number of rows as the sum of  
rows in all the files.

Merging/joining datasets
Merging or joining is a mission critical step for predictive modelling and, more often 
than not, while working on actual problems, an analyst will be required to do it. 
The readers who are familiar with relational databases know how there are multiple 
tables connected by a common key column across which the required columns are 
scattered. There can be instances where two tables are joined by more than one key 
column. The merges and joins in Python are very similar to a table merge/join in a 
relational database except that it doesn't happen in a database but rather on the local 
computer and that these are not tables, rather data frames in pandas. For people 
familiar with Excel, you can find similarity with the VLOOKUP function in the sense 
that both are used to get an extra column of information from a sheet/table joined by 
a key column.

There are various ways in which two tables/data frames can be merged/joined. The 
most commonly used ones are Inner Join, Left Join, Right Join, and so on. We will go 
in to detail and understand what each of these mean. But before that, let's go ahead 
and perform a simple merge to get a feel of how it is done.

We will be using a different dataset to illustrate the concept of merge and join. 
These datasets can be found in the Google Drive folder in Merge and the Join/
Medals folder. The main dataset Medals.csv contains details of medals won by 
individual players at different Olympic events. The two subsidiary datasets contain 
details of the nationality and sports of the individual player. What if we want to 
see the nationality or sport played by the player together with all the other medal 
information for each player? The answer is to merge both the datasets and to get the 
relevant columns. In data science parlance, merging, joining, and mapping are used 
synonymously; although, there are minor technical differences.
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Let us import all of them and have a cursory look at them:

import pandas as pd
data_main=pd.read_csv('E:/Personal/Learning/Predictive Modeling Book/
Book Datasets/Merge and Join/Medals/Medals.csv')
data_main.head()

The Medals.csv looks similar to the following screenshot:

Fig. 3.47: First few entries of the Medals dataset

As we can see, this is the information about the Olympic Year in which the  
medals were won, details of how many Gold, Silver, and Bronze medals were won 
and the Age of the player. There are 8,618 rows in the dataset. One more thing one 
might be interested to know about this dataset is how many unique athletes are there 
in the dataset, which will come in handy later when we learn and apply different 
kinds of joins:

a=data_main['Athlete'].unique().tolist()
len(a)

The output of this snippet is 6956, which means that there are many athletes for 
whom we have records in the datasets. The other entries come because many  
athletes may have participated in more than one Olympics.

Let us now import the Athelete Country Map.csv and have a look at it:

country_map=pd.read_csv('E:/Personal/Learning/Predictive Modeling 
Book/Book Datasets/Merge and Join/Medals/Athelete_Country_Map.csv')
country_map.head()
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The output data frame looks similar to the following screenshot, with two columns: 
Athlete and Country:

Fig. 3.48: First few entries of the Athelete_Country_Map dataset

There are 6,970 rows in this dataset. If you try to find out the unique number of 
athletes in this data frame, it will still be 6,956. The 14 extra rows come from the fact 
that some players have played for two countries in different Olympics and have won 
medals. Search for Aleksandar Ciric and you will find that he has played for both 
Serbia and Serbia and Montenegro.

(Disclaimer: This might not be the actual case and this might be an 
issue with the mapping file, which can be taken care of by removing 
duplicate values, as we would show later in this chapter).

You can do this by using the following code snippet:

country_map[country_map['Athlete']=='Aleksandar Ciric']

Fig. 3.49: Subsetting the country_map data frame for Aleksandar Ciric

Let us finally import the Athelete Sports Map.csv and have a look at it:

sports_map=pd.read_csv('E:/Personal/Learning/Predictive Modeling Book/
Book Datasets/Merge and Join/Medals/Athelete_Sports_Map.csv')
sports_map.head()
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The sports_map data frame looks as shown in the following screenshot:

Fig. 3.50: First few entries of the Athelete_Sports_Map dataset

There are 6,975 rows in this dataset because, yes you guessed it right, there are very 
few athletes in this mapping data frame who have played more than one game and 
have won medals. Watch out for athletes, such as Chen Jing, Richard Thompson 
and Matt Ryan who have played more than one game.

This can be done by writing a code, such as the following snippet:

sports_map[(sports_map['Athlete']=='Chen Jing') | (sports_
map['Athlete']=='Richard Thompson') | (sports_map['Athlete']=='Matt 
Ryan')]

The output looks similar to the following screenshot:

Fig. 3.51: Subsetting the sports_map data frame for athletes Richard Thompson and Matt Ryan



Data Wrangling

[ 106 ]

Let's now merge the data_main and country_map data frames to get the country for 
all the athletes. There is a merge method in pandas, which facilitates this:

import pandas as pd
merged=pd.merge(left=data_main,right=country_map,left_
on='Athlete',right_on='Athlete')
merged.head()

The output looks, as follows. It has a country column as expected:

Fig. 3.52: First few entries of the merged data frame. It has a country column.

The length of the merged data frame is 8,657, which is more than the total number 
of rows (8,618) in the data_main data frame. This is because when we join these two 
data frames without any specified conditions, an inner join is performed wherein the 
join happens based on the common key-values present in both the data frames. Also, 
we saw that some athletes have played for two countries and the entries for such 
athletes will be duplicated for such athletes. If you look at Aleksandar Ciric in the 
merged data frame, you will find something similar to this:

merged[merged['Athlete']=='Aleksandar Ciric']

Fig. 3.53 Subsetting the merged data frame for athlete Aleksandar Ciric

The problem is not with the type of join but with the kind of mapping file we have. 
This mapping file is one-many and hence the number increases because for each key 
multiple rows are created in such a case.
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To rectify this issue, one can remove the duplicate entries from the country_map 
data frame and then perform the merge with data_main. Let's do that. This can be 
done using the drop_duplicates method, as shown:

country_map_dp=country_map.drop_duplicates(subset='Athlete')

The length of the country_map_dp is 6,956 rows, which is the same as the number of 
unique athletes. Let us now merge this with data_main.

merged_dp=pd.merge(left=data_main,right=country_map_dp,left_
on='Athlete',right_on='Athlete')
len(merged_dp)

The number of rows in the merged_dp is indeed 8,618, which is the actual number of 
rows in the data_main.

The next step is to merge sports_map with the merged_dp to get the country and 
sports along with other details in the same data frame.

We have seen similar issue of increase in the number of rows for sports_map, as was 
the case for country_map data frame. To take care of that, let's remove the duplicates 
from the sports_map before merging it with merged_dp:

sports_map_dp=sports_map.drop_duplicates(subset='Athlete')
len(sports_map_dp)

The length of the sports_map_dp is 6,956, which is the same as the number of rows 
in the data_main data frame, as expected.

The next step is to merge this with the merge_pd data frame to get the sports played 
by the athlete in the final merged table:

merged_final=pd.merge(left=merged_dp,right=sports_map_dp,left_
on='Athlete',right_on='Athlete')
merged_final.head()

Fig. 3.54: First few entries of the merged_final dataset. The duplicates from country_map were  
deleted before the merge
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As we can see, the Sport column is present in the merged_final data frame after the 
merge. The merged_final data frame has 8,618 rows as expected.

Let us now look at various kinds of merge/joins that we can apply to two data 
frames. Although you would come across many kinds of joins in different texts, it is 
sufficient to know the concept behind the three of them—Inner Join, Left Join, and 
Right Join. If you consider the two tables/data frames as sets, then these joins can be 
well represented by Venn Diagrams.

Inner Join
The characteristics of the Inner Join are as follows:

• Returns a data frame containing rows, which have a matching value in both 
the original data frames being merged.

• The number of rows will be equal to the minimum of the row numbers of the 
two data frames. If data frame A containing 100 rows is being merged with 
data frame B having 80 rows, the merged data frame will have 80 rows.

• The Inner Join can be thought of as an intersection of two sets, as illustrated 
in the following figure:

Inner Join

A B

Fig. 3.55: Inner Join illustrated via a Venn diagram

Left Join
The characteristics of the Left Join are, as follows:

• Returns a data frame containing rows, which contains all the rows from  
the left data frame irrespective of whether it has a match in the right data 
frame or not.
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• In the final data frame, the rows with no matches in the right data frame will 
return NAs in the columns coming from right data frame.

• The number of rows will be equal to the number of rows in the left data 
frame. If data frame A containing 100 rows is being merged with data frame 
B having 80 rows, the merged data frame would have 100 rows.

• The Left Join can be thought of as the set containing the entire left data frame, 
as illustrated in the following figure:

Left Join

A B

Fig. 3.56: Left Join illustrated via a Venn Diagram

Right Join
The characteristics of the Right Join are as follows:

• Returns a data frame containing rows, which contains all the rows from the 
right data frame irrespective of whether it has a match in the left data frame 
or not.

• In the final data frame, the rows with no matches in the left data frame will 
return NAs in the columns coming from left data frame.

• The number of rows will be equal to the number of rows in the left data 
frame. If data frame A containing 100 rows is being merged with data frame 
B having 80 rows, the merged data frame will have 80 rows
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• The Right Join can be thought of as the set containing the entire right data 
frame, as illustrated in the following figure:

Right Join

A B

Fig. 3.57: Right Join illustrated via a Venn diagram

The comparison between join type and set operation is summarized in the  
following table:

Join type Set operation
Inner Join Intersection
Left Join Set A (left data frame)
Right Join Set B (right data frame)
Outer Join Union

Let us see some examples of how different kinds of mappings actually work. For 
that, a little data preparation is needed. Currently, both our mapping files contain 
matching entries for all the rows in the actual data frame data_main. So, we can't 
see the effects of different kind of merges. Let's create a country and sports mapping 
file which doesn't have the information for some of the athletes and let's see how 
it reflects in the merged table. This can be done by creating a new data frame that 
doesn't have country/sports information for some of the athletes, as shown in the 
following code:

country_map_dlt=country_map_dp[(country_map_dp['Athlete']<>'Michael 
Phelps') & (country_map_dp['Athlete']<>'Natalie Coughlin') & (country_
map_dp['Athlete']<>'Chen Jing')
                    & (country_map_dp['Athlete']<>'Richard Thompson') 
& (country_map_dp['Athlete']<>'Matt Ryan')]
len(country_map_dlt)
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Using this snippet, we have created a country_map_dlt data frame that doesn't have 
country mapping for five athletes, that is Michael Phelps, Natalie Coughlin, Chen 
Jing, Richard Thompson, and Matt Ryan. The length of this data frame is 6,951; it is 
five less than the actual mapping file, indicating that the information for five athletes 
has been removed.

Let's do the same for sports_map as well as the data_main data frame using the 
following snippets:

sports_map_dlt=sports_map_dp[(sports_map_dp['Athlete']<>'Michael 
Phelps') & (sports_map_dp['Athlete']<>'Natalie Coughlin') & (sports_
map_dp['Athlete']<>'Chen Jing')
                    & (sports_map_dp['Athlete']<>'Richard Thompson') & 
(sports_map_dp['Athlete']<>'Matt Ryan')]
len(sports_map_dlt)

data_main_dlt=data_main[(data_main['Athlete']<>'Michael 
Phelps') & (data_main['Athlete']<>'Natalie Coughlin') & (data_
main['Athlete']<>'Chen Jing')
                    & (data_main['Athlete']<>'Richard Thompson') & 
(data_main['Athlete']<>'Matt Ryan')]
len(data_main_dlt)

The length of data_main_dlt becomes 8,605 because the data_main contains 
multiple rows for an athlete.

An example of the Inner Join
One example of Inner join would be to merge data_main data frame with  
country_map_dlt. This can be done using the following snippet:

merged_inner=pd.merge(left=data_main,right=country_map_
dlt,how='inner',left_on='Athlete',right_on='Athlete')
len(merged_inner)

This merge should give us information for the athletes who are present in  
both the data frames. As the country_map_dlt doesn't contain information about 
five athletes present in data_main, these five athletes wouldn't be a part of the 
merged table.

The length of the merged_inner comes out to be 8,605 (similar to data_main_dlt) 
indicating that it doesn't contain information about those five athletes.



Data Wrangling

[ 112 ]

An example of the Left Join
One example of Left Join would be to merge data_main data frame with  
country_map_dlt. This can be done using the following snippet:

merged_left=pd.merge(left=data_main,right=country_map_
dlt,how='left',left_on='Athlete',right_on='Athlete')
len(merged_left)

This merge should give us the information about all the athletes that are present in 
the left data frame (data_main) even if they aren't present in the right data frame 
(country_map_dlt). So, the merged_left data frame should contain 8,618 rows 
(similar to the data_main) even if the country_map_dlt doesn't contain information 
about five athletes present in data_main. These five athletes will have a NaN value 
in the Country column.

The length of merged_left indeed comes out to be 8,618. Let's check the merged_
left for an athlete whose information is not present in the country_map_dlt. It 
should contain NaN for the Country column:

merged_left_slt=merged_left[merged_left['Athlete']=='Michael Phelps']
merged_left_slt

The output is similar to the following screenshot. It indeed contains NaN for Michael 
Phelps' Country because it doesn't have a mapping in country_map_dlt:

Fig. 3.58: Merged_left data frame sub-setted for Michael Phelps contains NaN values, as expected

An example of the Right Join
One example of Right Join will be to merge data frame data_main with  
country_map_dlt. This can be done using the following snippet:

merged_right=pd.merge(left=data_main_dlt,right=country_map_
dp,how='right',left_on='Athlete',right_on='Athlete')
len(merged_right)



Chapter 3

[ 113 ]

This should contain the NaN values for the columns coming from data_main_dlt, in 
the rows where there is no athlete information in data_main_dlt.

As shown in the following table:

Fig. 3.59: merged_right data frame sub-setted for Michael Phelps contains NaN values, as expected

There will be one row created for each athlete who is not there in the data_main_dlt 
but is present in the country_map_dp. Hence, there will be five extra rows, one for 
each deleted athlete. The number of rows in the merged_right is thus equal to 8,610.

There are other joins like Outer Joins, which can be illustrated as the Union of two 
data frames. The Outer join would contain rows from both the data frames, even if 
they are not present in the other. It will contain NaN for the columns which it can't get 
values for. It can be easily performed setting the how parameter of the merge method 
to outer.

Summary of Joins in terms of their length
The effect of these joins can be more effectively explained if we summarize the 
number of samples present in the data frames that were used for merging and in the 
resultant data frames.

The first table provides the number of samples present in the data frames that were 
used for merging. All these data frames have been defined earlier in this section of 
the chapter:

Data frame Length (# rows)
data_main 8618
data_main_dlt 8605
country_map_dp 6956
country_map_dlt 6951
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This table provides the number of samples present in the merged data frames:

Merged data frame Components Length
merged_inner data_main with 

country_map_dlt
8605

merged_left data_main with 
country_map_dlt

8618

merged_right data_main_dlt with 
country_ma_dp

8610

Summary
Quite a long chapter! Isn't it? But, this chapter will form the core of anything you 
learn and implement in data-science. Let us wrap-up the chapter by summarizing the 
key takeaways from the chapter:

• Data can be sub-setted in a variety of ways: by selecting a column, selecting 
few rows, selecting a combination of rows and columns; using .ix method 
and [ ] method, and creating new columns.

• Random numbers can be generated in a number of ways. There are many 
methods like randint(), raandarrange() in the random library of numpy. 
There are also methods like shuffle and choice to randomly select an 
element out of a list. Randn() and uniform() are used to generate random 
numbers following normal and uniform probability distributions. Random 
numbers can be used to run simulations and generate dummy data frames.

• The groupby() method creates a groupby element on which aggregate, 
transform, and filter operations can be applied. This is a good method to 
summarize data for each categorical variable at once.

• A data must be split between training and testing datasets before a modelling 
is performed. The training dataset is the one on which the model equations 
are developed. The testing dataset is used to test the performance of the 
model comparing the actual result (present in testing dataset) to the model 
output. There are various ways to perform this split. One can use choice  
and shuffle. Scikit-learn has a readymade method for this.
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• Two datasets can be merged just like two tables in a relational database. 
There are various kind of joins—Inner, Left, Right, Outer, and so on. These 
joins can be understood better if the datasets are assumed analogous to sets. 
Inner Join is then Intersection, Outer Join is Union, and Left and Right joins 
are entire left and right data frame.

Wrangling data and bringing it in the form you desire is a big challenge before 
one proceeds to modelling. But, once done, it opens up a plethora of insights and 
information to be discovered using predictive models. As Bob Marley said, "If it is 
easy, it won't be amazing; if it is amazing, it won't be easy."
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Statistical Concepts for 
Predictive Modelling

There are a few statistical concepts, such as hypothesis testing, p-values,  
normal distribution, correlation, and so on without which grasping the concepts  
and interpreting the results of predictive models becomes very difficult. Thus, 
it is very critical to understand these concepts, before we delve into the realm of 
predictive modelling.

In this chapter, we will be going through and learning these statistical concepts  
so that we can use them in the upcoming chapters. This chapter will cover the 
following topics:

• Random sampling and central limit theorem: Understanding the concept 
of random sampling through an example and illustrating the central limit 
theorem's application through an example. These two concepts form the 
backbone of hypothesis testing.

• Hypothesis testing: Understanding the meaning of the terms, such as null 
hypothesis, alternate hypothesis, confidence intervals, p-value, significance 
level, and so on. A step-by-step guide to implement a hypothesis test, 
followed by an example.

• Chi-square testing: Calculation of chi-square statistic. A description of usage 
of chi-square tests with a couple of examples.

• Correlation: The meaning and significance of correlations between two 
variables, the meaning and significance of correlation coefficients and 
calculating and visualizing the correlation between variables of a dataset.
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Random sampling and the central limit 
theorem
Let's try to understand these two important statistical concepts using an example. 
Suppose one wants to find the average age of one state of India, lets say Tamil Nadu. 
Now, the safest and brute-force way of doing this will be to gather age information 
from each citizen of Tamil Nadu and calculate the average for all these ages. But, 
going to each citizen and asking their age or asking them to tell their age by some 
method will take a lot of infrastructure and time. It is such a humongous task that 
census, which attempts to do just that, happens once a decade and what will happen 
if you decided to do so in a non-census year?

The statisticians face such issues all the time. The answer lies in random sampling. 
Random sampling means that you take a group of 1000 individuals (or 10000, 
depending on your capacity, obviously the more the merrier) and calculate the 
average for this group. You call this A1. Getting to this is easier as 1000 or 10000 
is within your reach. Then you select a second group of 1000 or 10000 people and 
calculate their average. You call this A2. You do this 100 times or 1000 times and call 
them A3, A4,…, A100 or A3, A4,…, A1000.

Then according to the most fundamental theorem in statistics called the central  
limit theorem:

• The average of A1, A2,…, A100 will be a good estimator of the average age 
of the residents of Tamil Nadu. If Am is the estimated average age of the 
residents of Tamil Nadu, then it is given by:

1 2 100 /100Am A A A= + + +……

• If the number of such samples is sufficiently large, then the distribution of 
these averages will roughly follow a normal distribution. In other words,  
A1, A2,…, A100 will be normally distributed.

Now, the thing is that we are no more interested in finding the exact value of the 
average age, but we are settling for an estimator of the same. In such a case, we will 
have to make do with defining a range of values in which the actual value might lie. 
Since we have assumed a normal distribution for the average age values of these 
groups, we can apply all the properties of a normal distribution to quantify the 
chances of this average age being greater or lesser than a certain number.
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Hypothesis testing
The concept we just discussed in the preceding section is used for a very important 
technique in statistics, called hypothesis testing. In hypothesis testing, we assume a 
hypothesis (generally related to the value of the estimator) called null hypothesis and 
try to see whether it holds true or not by applying the rules of a normal distribution. 
We have another hypothesis called alternate hypothesis.

Null versus alternate hypothesis
There is a catch in deciding what will be the null hypothesis and what will be the 
alternate hypothesis. The null hypothesis is the initial premise or something that we 
assume to be true as yet. The alternate hypothesis is something we aren't sure about 
and are proposing as an alternate premise (almost often contradictory to the null 
hypothesis) which might or might not be true.

So, when someone is doing a quantitative research to calibrate the value of an 
estimator, the known value of the parameter is taken as the null hypothesis while 
the new found value (from the research) is taken as the alternate hypothesis. In 
our case of finding the mean age of Tamil Nadu, we can say that based on the rich 
demographic dividend of India, a researcher can claim that the mean age should be 
less than 35. This can serve as the null hypothesis. If a new agency claims otherwise 
(that it is greater than 35), then it can be termed as the alternate hypothesis.

Z-statistic and t-statistic
Assume that the value of the parameter assumed in the null hypothesis is Ao. Take 
a random sample of 100 or 1000 people or occurrences of the event and calculate 
the mean of the parameter, such as mean age, mean delivery time for pizza, mean 
income, and so on. We can call it Am. According to the central limit theorem,  
the distribution of population means that random samples will follow a  
normal distribution.

The Z-statistic is calculated to convert a normally distributed variable (the 
distribution of population mean of age) to a standard normal distribution. This 
is because the probability values for a variable following the standard normal 
distribution can be obtained from a precalculated table. The Z-statistic is given  
by the following formula:

( ) / ( / )Z Am Ao nσ= −
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In the preceding formula, the σ stands for the standard deviation of the population/
occurrences of events and n is the number of people in the sample.

Now, there can be two cases that can arise:

• Z- test (normal distribution): The researcher knows the standard deviation 
for the parameter from his/her past experience. A good example of this is the 
case of pizza delivery time; you will know the standard deviation from past 
experiences:

( ) / ( / )Z Am Ao nσ= −

Ao (from the null hypothesis) and n are known. Am is calculated from the 
random sample. This kind of test is done when the standard deviation is 
known and is called the z-test because the distribution follows the normal 
distribution and the standard-normal value obtained from the preceding 
formula is called the Z-value.

• t-test (Student-t distribution): The researcher doesn't know the standard 
deviation of the population. This might happen because there is no such data 
present from the historical experience or the number of people/event is very 
small to assume a normal distribution; hence, the estimation of mean and 
standard deviation by the formula described earlier. An example of such a 
case is a student's marks in an exam, age of a population, and so on. In this 
case, the mean and standard deviation become unknown and the expression 
assumes a distribution other than normal distribution and is called a 
Student-t distribution. The standard value in this case is called t-value  
and the test is called t-test.

Standard distribution can also be estimated once the mean is estimated, if 
the number of samples is large enough. Let us call the estimated standard 
distribution S; then the S is estimated as follows:

2( ) / ( 1)S Ai Ao n= ∑ − −

The t-statistic is calculated as follows:

( ) / ( / )t Am Ao S n= −
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The difference between the two cases, as you can see, is the distribution they follow. 
The first one follows a normal distribution and calculates a Z-value. The second 
one follows a Student-t distribution and calculates a t-value. These statistics that is 
Z-statistics and t-statistics are the parameters that help us test our hypothesis.

Confidence intervals, significance levels, and 
p-values
Let us go back a little in the last chapter and remind ourselves about the cumulative 
probability distribution.

P2

P1

P2

Z1 Z2

P1

Fig. 4.1: A typical normal distribution with p-values

Let us have a look to the preceding figure, it shows a standard normal distribution. 
Suppose, Z1 and Z2 are two Z-statistics corresponding to two values of random 
variable and p1 and p2 are areas enclosed by the distribution curve to the right of 
those values. In other words, p1 is the probability that the random variable will take 
a value lesser than or equal to Z1 and p2 is the probability that the random variable 
will take a value greater than Z2.

If we represent the random variable by X, then we can write:

( 1) 1
( 2) 2
P X Z p
P X Z p

< =
< =
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Also, since the sum of all the exclusive probabilities is always 1, we can write:

( 1) 1 1
( 2) 1 2
P X Z p
P X Z p

> = −
> = −

For well-defined distributions, such as the normal distribution, one can define an 
interval in which the value of the random variable will lie with a confidence level 
(read probability). This interval is called the confidence interval. For example, for a 
normal distribution with mean μ and standard deviation σ, the value of the random 
variable will lie in the interval [μ-3σ, μ+3σ] with 99% probability. For any estimator 
(essentially a random variable) that follows a normal distribution, one can define 
a confidence interval if we decide on the confidence (or probability) level. One can 
think of confidence intervals as thresholds of the accepted values to hold a null 
hypothesis as true. If the value of the estimator (random variable) lies in this range,  
it will be statistically correct to say that the null hypothesis is correct.

To define a confidence interval, one needs to define a confidence (or probability 
level). This probability needs to be defined by the researcher depending on the 
context. Lets call this p. Instead of defining this probability p, one generally defines 
(1-p) that is called level of significance. Let us represent it by ß. This represents the 
probability that the null hypothesis won't be true. This is defined by the user for  
each test and is usually of the order of 0.01-0.1.

An important concept to learn here is the probability value or just a p-value of a 
statistic. It is the probability that the random variable assumes, it's a value greater 
than the Z-value or t-value:

( )p value P X Z− = >
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β

P

Z

β

P

Fig. 4.2: A typical normal distribution with p-values and significance level

Now, this Z-value and the p-value has been obtained assuming that the null 
hypothesis is true. So, for the null hypothesis to be accepted, the Z-value has to lie 
outside the area enclosed by ß. In other words, for the null hypothesis to be true, the 
p-value has to be greater than the significance level, as shown in the preceding figure.

To summarize:

• Accept the null hypothesis and reject the alternate hypothesis if p-value>ß
• Accept the alternate hypothesis and reject the null hypothesis if p-value<ß

Different kinds of hypothesis test
Due to the symmetry and nature of the normal distribution, there are three kinds of 
possible hypothesis tests:

• Left-tailed
• Right-tailed
• Two-tailed
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Left-tailed: This is the case when the alternate hypothesis is a "less-than" type.  
The hypothesis testing is done on the left tail of the distribution and hence the  
name. In this case, for:

• Accepting a null hypothesis and rejecting an alternate hypothesis the 
p-value>ß or Z>Zß

• Accepting an alternate hypothesis and rejecting a null hypothesis the 
p-value<ß or Z<Zß

  Z < Zβ
  β > P - value
Reject Null Hypothesis

  Z > Zβ
  β < P - value
Accept Null Hypothesis
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Fig. 4.3: Left-tailed hypothesis testing

Right-tailed: This is the case when the alternate hypothesis is of greater than type.  
The hypothesis testing is done on the right tail of the distribution, hence the name.  
In this case, for:

• Accepting a null hypothesis and rejecting an alternate hypothesis the 
p-value>ß or Z<Zß
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• Accepting an alternate hypothesis and rejecting a null hypothesis the 
p-value<ß or Z>Zß
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Fig. 4.4: Right-tailed hypothesis testing

Two-tailed: This is the case when the alternate hypothesis has an inequality—less 
than or more than is not mentioned. It is just an OR operation over both kind of tests. 
If either of the left- or right-tailed tests reject the null hypothesis, then it is rejected. 
The hypothesis testing is done on both the tails of the distribution; hence, the name.

A step-by-step guide to do a hypothesis test
So how does one accept one hypothesis and reject the other? There has to be a  
logical way to do this. Let us summarize and put to use whatever we have learned 
till now in this section, to make a step-by-step plan to do a hypothesis test. Here is  
a step-by-step guide to do a hypothesis test:

1. Define your null and alternate hypotheses. The null hypothesis is something 
that is already stated and is assumed to be true, call it Ho. Also, assume that 
the value of the parameter in the null hypothesis is Ao.
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2. Take a random sample of 100 or 1000 people/occurrences of events and 
calculate the value of estimator (for example, mean of the parameter that is 
mean age, mean delivery time for pizza, mean income, and so on). You can 
call it Am.

3. Calculate the standard normal value or Z-value as it is called using  
this formula:

( ) / ( / )Z Am Ao nσ= −

In the preceding formula, σ is the standard deviation of the population or 
occurrences of events and n is the number of people in the sample.

The probability associated with the Z-value calculated in step 3 is compared with  
the significance level of the test to determine whether null hypothesis will be 
accepted or rejected.

An example of a hypothesis test
Let us see an example of hypothesis testing now. A famous pizza place claims  
that their mean delivery time is 20 minutes with a standard deviation of 3 minutes. 
An independent market researcher claims that they are deflating the numbers for 
market gains and the mean delivery time is actually more. For this, he selected a 
random sample of 64 deliveries over a week and found that the mean is 21.2 minutes. 
Is his claim justified or the pizza place is correct in their claim? Assume a significance 
level of 5%.

First things first, let us define a null and alternate hypothesis:

: 20( )
: 20( )
3, 64 24, 0.05

Ho Do What the pizza guy claims
Ha Do what researcher claims

n and Dmσ β

=
>

= = = =

Let us calculate the Z-value:

( ) ( )21.2 20 / 3 / 64 3.2Z = − =
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When we see the standard normal table for this Z-value, we find out that this value 
has an area of .9993 to the left of it; hence, the area to the right is 1-.99931, which is 
less than 0.05.

Hence, p-value<ß. Thus, the null hypothesis is rejected. This can be summarized in 
the following figure:

P - value < B
Null Hypothesis Rejected 

=0.05  Z=3.2
             P-value

β
=1-.9993
=0.0007

Fig. 4.5: Null Hypothesis is rejected because p-value<significance level

Hence, the researcher's claim that the mean delivery time is more than 20 minutes is 
statistically correct.

Chi-square tests
The chi-square test is a statistical test commonly used to compare observed data with 
the expected data assuming that the data follows a certain hypothesis. In a sense, this 
is also a hypothesis test. You assume one hypothesis, which your data will follow 
and calculate the expected data according to that hypothesis. You already have the 
observed data. You calculate the deviation between the observed and expected data 
using the statistics defined in the following formula:

2( ) ( ) /chi squarevalue g O E E− = ∑ −

Where O is the observed value and E is the expected value while the summation is 
over all the data points.
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The chi-square test can be used to do the following things:

• Show a causal relationship or independence between one input and output 
variable. We assume that they are independent and calculate the expected 
values. Then we calculate the chi-square value. If the null hypothesis 
is rejected, it suggests a relationship between the two variables. The 
relationship is not just by chance but statistically proven.

• Check whether the observed data is coming from a fair/unbiased source. 
If the observed data is more skewed towards one extreme, compared to the 
expected data, then it is not coming from a fair source. But, if it is very close 
to the expected value then it is.

• Check whether a data is too good to be true. As, it is a random experiment 
and we don't expect the values to toe the assumed hypothesis. If they do toe 
the assumed hypothesis, then the data has probably been tampered to make 
it look good and is too good to be true.

Let us create a hypothetical experiment where a coin is tossed 10 times. How many 
times do you expect it to turn heads or tails? Five, right? Now, what if we do this 
experiment 1000 times and record the scores (number of heads and tails). Suppose 
we observed heads 553 times and a tails in the rest of the trials:

: 0.5
: 0.5

Ho The proportionof head and tail is
Ha The proportion is not

Head Tail

Observed 553 447

Expected 1000*0.5=500 1000*0.5=500

Let us calculate the chi-square value:

2 2(553 500) (447 500) / 500 11.236g  = − + − = 
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This chi-square value is compared to the value on a chi-square distribution for a 
given degree of freedom and a given significance level. The degrees of freedom is  
the number of categories -1. In this case, it is 2-1=1. Let us assume a significance  
level of 0.05.

The chi-square distribution looks a little different than the normal distribution.  
It also has a peak but has a much longer tail than the normal distribution and is  
only on one side. As the degree of freedom increases, they start looking similar  
to a normal distribution:

Fig. 4.6: Chi-square distribution with different degrees of freedom

When we look at the chi-square distribution table for a degree of freedom 1 and a 
significance level of 0.05, we get a value of 3.841. At a significance level of 0.01, we 
get 6.635. In both the cases, the chi-square statistic is greater than the value from the 
chi-square distribution, meaning that the chi-square statistic lies on the right of the 
value from the distribution table. 
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Hence, the null hypothesis is rejected. That means that the coin is not fair.

Significance Chi square
level        value
=0.05   =11.236
Value
=3.841

Value at significance level < Chi square value
Null hypothesis is rejected

Fig. 4.7: Null hypothesis is rejected because the value of the chi-square statistic at the significance level is less 
than the value of the chi-square statistic

Let us look at another example where we want to prove that the gender of a student 
and the subjects they choose are independent.

Suppose, in a group of students, the following table represents the number of boys 
and girls who have taken Maths, Arts, and Commerce, as their main subjects.

The observed number of boys and girls in each subject is as shown in the  
following table:

Maths Arts Commerce Total
Boys 68 52 90 200
Girls 28 37 35 100
Total 96 89 125 300
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If the choice of the subjects is irrespective of the gender, then the expected number of 
boys and girls taking different subjects is, as follows:

Maths Arts Commerce Total
Boys (200/300)*96=64 (200/300)*89=59.3 (200/300)*125=83.3 200
Girls (100/300)*96=32 (100/300)*89=29.7 (100/300)*125=41.7 100
Total 96 89 125 300

The deviation element is calculated for each cell using the (O-E)2/E formula:

Maths Arts Commerce
Boys (68-64)2/64 (52-59.3)2/59.3 (90-83.3)2/83.3
Girls (28-32)2/32 (37-29.7)2/29.7 (35-41.7)2/41.7

On calculating and summing up all the values, the chi-square value comes out to  
be 5.05. The degree of freedom is the number of categories-1, which amounts to 
[(3x2)-1=5]. Let us assume a significance level of 0.05.

Looking at the chi-square distribution, one can find out that for a 5-degree freedom 
chi-square distribution, the value of the chi-square statistic at a significance level of 
0.05 is 11.07.

The calculated chi-square statistic < chi-square statistic (at significance level=0.05).

Since, the chi-square statistic lies on the left of the value at the significance level,  
the null hypothesis can't be rejected. Hence, the choice of subjects is independent  
of the gender.



Statistical Concepts for Predictive Modelling

[ 132 ]

Correlation
Another statistical idea which is very basic and important while finding a relation 
between two variables is called correlation. In a way, one can say that the concept of 
correlation is the premise of predictive modelling, in the sense that the correlation is 
the factor relying on which we say that we can predict outcomes.

A good correlation between two variables suggests that there is a sort of dependence 
between them. If one is changed, the change will be reflected in the other as well. 
One can say that a good correlation certifies a mathematical relation between two 
variables and due to this mathematical relationship, we might be able to predict 
outcomes. This mathematical relation can be anything. If x and y are two variables, 
which are correlated, then one can write:

( )Y f x=

If f is a linear function, then a and b are linearly correlated. If f is an exponential 
function, then a and b are exponentially correlated:

:Linear correlation y ax b= +

( ): expExponential correlation y a b= +

The degree of correlation between the two variables x and y is quantified by the 
following equation:

( ) ( ) ( )( )
( ) ( )2 2

x xm y ym
correlationcoefficient h

x xm y ym∗

∑ − ∗ −
=

∑ − ∑ −

Where xm and ym are mean values of x and y

A few points to note about the correlation coefficient are as follows:

• The value of the correlation coefficient can range from -1 to 1, that is -1<h<1.
• A positive correlation coefficient means that there is a direct relationship 

between the two variables; if one variable increases, the other variable will 
also increase and if one decreases the other will decrease as well.



Chapter 4

[ 133 ]

• A positive correlation coefficient means that there is an inverse relationship 
between the two variables; if one variable increases, the other variable will 
decrease and if one decreases the other will increase.

• The more the value of the correlation coefficient, the stronger the relation 
between the two variables.

Although, a strong correlation suggests that there is some kind of a relationship  
that can be leveraged to predict one based on the other; it doesn't imply that its 
relation with the other variable is the only factor explaining this, there can be several 
others. Hence, the most often used quote related to correlation is, "Correlation doesn't 
imply causation."

Let us try to understand this concept better by looking at a dataset and trying to 
find the correlation between the variables. The dataset that we will be looking at 
is a very popular dataset about various costs incurred on advertising by different 
mediums and the sales for a particular product. We will be using it later to explore 
the concepts of linear regression. Let us import the dataset and calculate the  
correlation coefficients:

import pandas as pd
advert=pd.read_csv('E:/Personal/Learning/Predictive Modeling Book/Book 
Datasets/Linear Regression/Advertising.csv')
advert.head()

Fig. 4.8: Dummy dataset
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Let us try to find out the correlation between the advertisement costs on TV and the 
resultant sales. The following code will do the job:

import numpy as np
advert['corrn']=(advert['TV']-np.mean(advert['TV']))*(advert['Sales']-
np.mean(advert['Sales']))
advert['corrd1']=(advert['TV']-np.mean(advert['TV']))**2
advert['corrd2']=(advert['Sales']-np.mean(advert['Sales']))**2
corrcoeffn=advert.sum()['corrn']
corrcoeffd1=advert.sum()['corrd1']
corrcoeffd2=advert.sum()['corrd2']
corrcoeffd=np.sqrt(corrcoeffd1*corrcoeffd2)
corrcoeff=corrcoeffn/corrcoeffd
corrcoeff

In this code snippet, the formula written above has been converted to code. The 
value of the correlation coefficient comes out to be 0.78 indicating that there is a 
descent in positive correlation between TV-advertisement costs and sales; it implies 
that if the TV-advertisement cost is increased, as a result sales will increase.

Let us convert the preceding calculation to a function, so that we can calculate all the 
pairs of correlation coefficients very fast just by replacing the variable names. One 
can do that using the following snippet wherein a function is defined to parameterize 
the name of the data frame and the column names for which the correlation 
coefficient is to be calculated:

def corrcoeff(df,var1,var2):
    df['corrn']=(df[var1]-np.mean(df[var1]))*(df[var2]-np.
mean(df[var2]))
    df['corrd1']=(df[var1]-np.mean(df[var1]))**2
    df['corrd2']=(df[var2]-np.mean(df[var2]))**2
    corrcoeffn=df.sum()['corrn']
    corrcoeffd1=df.sum()['corrd1']
    corrcoeffd2=df.sum()['corrd2']
    corrcoeffd=np.sqrt(corrcoeffd1*corrcoeffd2)
    corrcoeff=corrcoeffn/corrcoeffd
    return corrcoeff
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This function can be used to calculate correlation coefficient for any two variables of 
any data frame.

For example, to calculate the correlation between TV and Sales columns of the 
advert data frame, we can write it as follows:

& ( , ' ', ' ') 0.78
& ( , ' ', ' ') 0.57

TV Sales corrcoeff advert TV Sales
Radio Sales corrcoeff advert Radio Sales

We can summarize the pair-wise correlation coefficients between the variables in the 
following table:

TV Radio Newspaper Sales
TV 1 0.05 0.06 0.78
Radio 0.05 1 0.35 0.57
Newspaper 0.06 0.35 1 0.23
Sales 0.78 0.57 0.23 1

This table is called Correlation Matrix. As you can see, it is a symmetric matrix 
because the correlation between TV and Sales will be the same as that between 
Sales and TV. Along the diagonal, all the entries are 1 because, by definition, the 
correlation of a variable with itself will always be 1. As can be seen, the strongest 
correlation can be found between TV advertisement cost and sales.

Let us see the nature of this correlation by plotting TV and Sales variables of the 
advert data frame. We can do this using the following code snippet:

import matplotlib.pyplot as plt
%matplotlib inline
plt.plot(advert['TV'],advert['Sales'],'ro')
plt.title('TV vs Sales')
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The result is similar to the following plot:

Fig. 4.9: Scatter plot of TV vs Sales

Looking at this plot, we can see that the points are more or less compact and not 
scattered far away and as the TV advertisement cost increases, the sales also increase. 
This is the characteristic of two variables that are positively correlated. This is 
supported by a strong correlation coefficient of 0.78.

Let us plot the variables and see how they are distributed to corroborate their 
correlation coefficient. For Radio and Sales, this can be plotted as follows:

import matplotlib.pyplot as plt
%matplotlib inline
plt.plot(advert['Radio '],advert['Sales'],'ro')
plt.title('Radio vs Sales')
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The plot we get is as shown in the following figure:

Fig. 4.10: Scatter plot of Radio vs Sales

For Radio and Sales, the points are a little more scattered than TV versus Sales and 
this is corroborated by the fact that the correlation coefficient for this pair (0.57) is 
less than that for TV and Sales (0.78).

For plotting Newspaper vs Sales data, we can write something similar to the 
following code:

import matplotlib.pyplot as plt
%matplotlib inline
plt.plot(advert['Newspaper'],advert['Sales'],'ro')
plt.title('Newspaper vs Sales')
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The output plot looks similar to the following figure:

Fig. 4.11: Scatter plot of Newspaper vs Sales

For Newspaper and Sales, the points are way more scattered than in the case of TV 
and Sales and Radio and Sales. This is further strengthened by a small correlation 
coefficient of 0.23 between Newspaper and Sales, compared to 0.78 between TV and 
Sales, and 0.57 between Radio and Sales.
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Summary
In this chapter, we skimmed through the basic concepts of statistics. Here is a brief 
summary of the concepts we learned:

• Hypothesis testing is used to test the statistical significance of a hypothesis. 
The one which already exists or is assumed to be true is a null hypothesis, 
the one which someone is not sure about or is being proposed as an alternate 
premise is an alternate hypothesis.

• One needs to calculate a statistic and the associated p-value to conduct t 
he test.

• Hypothesis testing (p-values) is used to test the significance of the estimates 
of the coefficients calculated by the model.

• The chi-square test is used to test the causal relationship between a  
predictor and an input variable. It can also be used to check whether  
the data is fair or fake.

• The correlation coefficient can range from -1 to 1. The closer it is to the 
extremes, the stronger is the relationship between the two variables.

Linear regression is part of the family of algorithms called supervised algorithms as 
the dataset on which they are built has an output variable. In a sense, one can say 
that this output variable governs or supervises the development of the model and 
hence the name. More on this is covered in the next chapter.
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Linear Regression  
with Python

If you have mastered the content of the last two chapters, implementing  
predictive models will be a cake walk. Remember the 80-20% split between the  
data cleaning + wrangling and modelling? Then what is the need of dedicating  
a full chapter to illustrate the model? The reason is not about running a predictive 
model; it is about understanding the mathematics (algorithms) that goes behind 
the ready-made methods which we will be using to implement these algorithms. 
It is about interpreting the swathe of results these models spew after the model 
implementation and making sense of them in the context. Thus, it is of utmost 
importance to understand the mathematics behind the algorithms and the result 
parameters of these models.

With this chapter onwards, we will deal with one predictive modelling algorithm in 
each chapter. In this chapter, we will discuss a technique called linear regression. It 
is the most basic and generic technique to create a predictive model out of a historical 
dataset with an output variable.

The agenda of this chapter is to thoroughly understand the mathematics behind 
linear regression and the results generated by it by illustrating its implementation  
on various datasets. The broad agenda of this chapter is, as follows:

• The maths behind the linear regression: How does the model work? How 
is the equation of the model created based on the dataset? What are the 
assumptions for this calculation?
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• Implementing linear regression with Python: There are a couple of ready-
made methods to implement linear regression in Python. Instead of using 
these ready-made methods, one can write one's own Python code snippet for 
the entire calculation with custom inputs. However, as linear regression is a 
regularly used algorithm, the use of ready-made methods is quite common. 
Its implementation from scratch is generally used to illustrate the maths 
behind the algorithm.

• Making sense of result parameters: There will be tons of result parameters, 
such as slope, co-efficient, p-values, and so on. It is very important to 
understand what each parameter means and the range their values lie in,  
for the model to be an efficient model.

• Model validation: Any predictive model needs to be validated. One common 
method of validating is splitting the available dataset into training and 
testing datasets, as discussed in the previous chapter. The training dataset 
is used to develop the model while the testing is used to compare the result 
predicted by the model to the actual values.

• Handling issues related to linear regression: Issues, such as multi-
collinearity, handling categorical variables, non-linear relationships, and so 
on come up while implementing a linear regression; these need to be taken 
care of to ensure an efficient model.

Before we kick-start the chapter, let's discuss what a model means and entails. A 
mathematical/statistical/predictive model is nothing but a mathematical equation 
consisting of input variables yielding an output when values of the input variables 
are provided. For example, let us, for a moment, assume that the price (P) of a house 
is linearly dependent upon its size (S), amenities (A), and availability of transport (T). 
The equation will look like this:

1 2 3P a S a A a T= ∗ + ∗ + ∗

This is called the model and the variables a1, a2, and a3 are called the variable 
coefficients. The variable P is the predicted output while the S, A, and T are input 
variables. Here, S, A, and T are known but a1, a2, and a3 are not. These parameters 
are estimated using the historical input and output data. Once, the value of these 
parameters is found, the equation (model) becomes ready for testing. Now, S, A, and 
T can be numerical, binary, categorical, and so on; while P can also be numerical, 
binary, or categorical and it is this need to tackle various types of variables that gives 
rise to a large number of models.
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Understanding the maths behind linear 
regression
Let us assume that we have a hypothetical dataset containing information about the 
costs of several houses and their sizes (in square feet):

Size (square feet) X Cost (lakh INR) Y
1500 45
1200 38
1700 48
800 27

There are two kinds of variables in a model:

• The input or predictor variable, the one which helps predict the value of 
output variable

• The output variable, the one which is predicted

In this case, cost is the output variable and the size is the input variable. The output 
and the input variables are generally referred as Y and X respectively.

In the case of linear regression, we assume that Y (Cost) is a linear function of X (Size) 
and to estimate Y, we write:

CoseY X or t Sizeα β α β= + ∗ = + ∗

Where Ye is the estimated or predicted value of Y based on our linear equation.

The purpose of linear regression is to find statistically significant values of a and ß, 
which minimize the difference between Y and Ye. If we are able to determine the 
values of these two parameters satisfying these conditions, then we will have an 
equation which we can predict the values of Y, given the value of X.

So, to summarize, linear regression (like any other supervised algorithm) requires 
historical data with one output variable and one or more than one input variables to 
make a model/equation, using which output variables can be calculated/predicted 
if the input variable is present. In the preceding case, if we find the value of a=2 and 
ß=.3, then the equation will be:

2 .03eY X= +
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Using this equation, we can find the cost of a home of any size. For a 900 square feet 
house, the cost will be:

2 900 .03 29eY units= + ∗ =

The next question that we can ask is how do we estimate a and ß. We use a method 
called least square sum of the difference between Y and Ye. The difference between 
the Y and Ye can be represented as e:

( )ee Y Y= −

Thus, the objective is to minimize ( )( )22( )Y Ye Y Xα β∑ − = ∑ − + ∗ ; the summation is 
over all the data points.

We can also minimize: 2 2 2 2
1 2e e e en∑ = + +…… , where n is the number of data points.

Using calculus, we can show that the values of the unknown parameters are  
as follows:

( )( ) ( )2/Xi Xm Yi Ym Xi Xm
Ym Xm

β
α β
= ∑ − − ∑ −

= − ∗

where Xm – mean of X values and Ym-mean of Y values

If you are interested to know how these formulae come up, you can go through 
the following information box, which describes the derivation. The steps for this 
derivation can be summarized, as follows:

• Take partial derivatives of e2 with respect to all the variable coefficients and 
equate them to 0 (at maxima or minima, the derivative of a function is 0). 
This will give us as many equations, as there are variables:
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∂
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∑
where S= (Y-Ye), Y-actual value of Y, Ye-estimated/predicted value of Y= a+ ß*X
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• Solve these equations to get the values of the variable coefficients:
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Almost all the statistical tools have ready-made programs to calculate the coefficients 
a and ß. However, it is still very important to understand how they are calculated 
behind the curtain.

Linear regression using simulated data
For the purpose of linear regression, we write that 

eY Xα β= + ∗ ; whereas Y will 
rarely be perfectly linear and would have an error component or residual and we 
write Y X Kα β= + ∗ + .

In the above example, K is the error component or residual. It is a random variable 
and is assumed to be normally distributed.
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Fitting a linear regression model and checking its 
efficacy
Let us simulate the data for the X and Y variables and try to look at how the 
predicted values (Ye) differ from the actual value (Y).

For X, we generate 100 normally distributed random numbers with mean 1.5 and 
standard deviation 2.5 (you can take any other number of your choice and try). 
For predicted value(Ye),we assume an intercept of 2 and a slope of .3 and we write 
Ye =2+.3*x. Later, we will calculate the values of a and ß using the preceding data 
and see how that changes the efficacy of the model. For the actual value, we add a 
residual term (res) that is nothing but a random variable distributed normally with 
mean 0 and a standard deviation of .5.

The following is the code snippet to generate these numbers and convert these three 
columns in a data frame:

import pandas as pd
import numpy as np
x=2.5*np.random.randn(100)+1.5
res=.5*np.random.randn(100)+0
ypred=2+.3*x
yact=2+.3*x+res
xlist=x.tolist()
ypredlist=ypred.tolist()
yactlist=yact.tolist()
df=pd.DataFrame({'Input_Variable(X)':xlist,'Predicted_Output(ypred)':y
predlist,'Actual_Output(yact)':yactlist})
df.head()

The resultant data frame df output looks similar to the following table:

Fig. 5.1: Dummy dataset
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Let us now plot both, the actual output (yact) and predicted output (ypred) against 
the input variable (x) for the sake of comparing yact and ypred and see what the 
difference between them is. This ultimately answers the bigger question, as to how 
accurately the proposed equation has been able to predict the value of the output:

import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
%matplotlib inline
x=2.5*np.random.randn(100)+1.5
res=.5*np.random.randn(100)+0
ypred=2+.3*x
yact=2+.3*x+res
plt.plot(x,ypred)
plt.plot(x,yerr,'ro')

plt.title('Actual vs Predicted')

The output of the snippet looks similar to the following screenshot. The red dots are 
the actual values (yact) while the blue line is the predicted value (ypred):

Fig. 5.2: Plot of Actual vs Predicted values from the dummy dataset
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Let us add a line representing the mean of the actual values for a better perspective 
of the comparison. The line in green represents the mean of the actual values:

Fig. 5.3: Plot of Actual vs. Predicted values from the dummy dataset with mean actual value

This could be achieved by the following code snippet that is obtained by a little 
tweaking of the preceding code snippet:

import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
%matplotlib inline
x=2.5*np.random.randn(100)+1.5
res=.5*np.random.randn(100)+0
ypred=2+.3*x
yact=2+.3*x+res
ymean=np.mean(yact)
yavg=[ymean for i in range(1,len(xlist)+1)]
plt.plot(x,ypred)
plt.plot(x,yact,'ro')
plt.plot(x,yavg)
plt.title('Actual vs Predicted')
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Now, the question to be asked is why we chose to plot the mean value of the yact. 
This is because in the case when we don't have any predictor model, our best bet  
is to go with the mean value of the observed value and say that this will be the 
predicted value.

Another point to think about is how to judge the efficacy of our model. If you pass 
any data containing two variables—one input and one output, the statistical program 
will generate some values of alpha and beta. But, how do we understand that these 
values are giving us a good model?

Fig. 5.4: Actual vs. Predicted vs. Fitted (Regressed) line from the dummy dataset (a picture to always keep in 
mind whenever you think of R2)

In case, there is no model and the total variability is explained as the Total Sum of 
Squares or SST:

( )2SST yact yavg= ∑ −

Now, this total error is composed of two terms—one which is the difference between 
the regression value and the mean value, this is the difference which the model seeks 
to explain and is called Regression Sum of Squares or SSR:

2( )SSR ypred yavg= ∑ −
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The unexplained random term, let us call it, Difference Sum of Squares or SSD is:

2( )SSD yact ypred= ∑ −

As you can see, in the preceding figure or you can guess intuitively that:

SST SSR SSD= +

Where, SSR is the difference explained by the model; SSD is the difference not 
explained by the model and is random; SST is the total error.

The more the share of SSR in SST, the better the model is. This share is quantified by 
something called R2 or R-squared or coefficient of determination

2 /R SSR SST=

Since SST>SSR, the value of R2 can range from 0 to 1. The closer it is to 1, the better 
the model. A model with R2=0.9 will be compared to a model with R2=0.6, all the 
other factors remaining the same. That being said, a good R2 alone doesn't mean 
that the model is a very efficient one. There are many other factors that we need to 
analyze before we come to that conclusion. But, R2 is a pretty good indicator that a 
linear regression model will be effective.

Let us see what the value of R2 is for the dataset that we created in the preceding 
section. When we perform a linear regression, the R2 value will be calculated 
automatically. Nevertheless, it is great to have an understanding of how it  
is calculated.

In the following code snippet, SSR and SST have been calculated according to the 
formulae described in the preceding section and have been divided to calculate R2:

df['SSR']=(df['Predicted_Output(ypred)']-ymean)**2
df['SST']=(df['Actual_Output(yact)']-ymean)**2
SSR=df.sum()['SSR']
SST=df.sum()['SST']
SSR/SST

The value of R2 comes out to be 0.57, suggesting that ypred provides a decent 
prediction of the yact. In this case, we have randomly assumed some values for a 
and ß. a=2, ß=.3. This might or might not be the best values of a, ß. We have seen 
earlier that a least sum of square methods is used to find an optimum value for a, ß. 
Let us use these formulae to calculate a+ß*X and see if there is an improvement in R2 
or not. Hopefully, there will be.
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Finding the optimum value of variable coefficients
Let us go back to the data frame df that we created a few pages back. The Input_
Variable(X)column is the predictor variable using which the (a, ß) model will be 
derived. The Actual_Output(yact) variable, as the name suggests, is the actual 
output variable. Using these two variables, we will calculate the values of a and ß, 
according to the formulae described previously.

One thing to be cautious about while working with random numbers is that they 
might not produce the same result, most of the times. It is very likely that you will 
get a number different than what is mentioned in this text and it is alright as long as 
you grasp the underlying concept.

To calculate the coefficients, we will create a few more columns in the df data frame 
that is already defined, as we did while calculating the value of R2. Just to reiterate, 
here are the formulas again:

( )( ) ( )2/Xi Xm Yi Ym Xi Xmβ = ∑ − − ∑ −

Ym Xmα β= − ∗

We write the following code snippet to calculate these values:

xmean=np.mean(df['Input_Variable(X)'])
ymean=np.mean(df['Actual_Output(yact)'])
df['beta']=(df['Input_Variable(X)']-xmean)*(df['Actual_Output(yact)']-
ymean)
df['xvar']=(df['Input_Variable(X)']-xmean)**2
betan=df.sum()['beta']
betad=df.sum()['xvar']
beta=betan/betad

alpha=ymean-(betan/betad)*xmean
beta,alpha

If you go through the code carefully, you will find out that betan and betad are 
the numerators and denominators of the formula to calculate beta. Once, beta is 
calculated, getting alpha is a cakewalk. The snippet outputs the value of alpha and 
beta. For my run, I got the following values:

1.982, 0.318α β= =
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As we can see, the values are a little different from what we had assumed earlier, 
that is a=2 and β=.3. Let us see how the value of R2 changes if we use the values 
predicted by the model consisting of these parameters. The equation for the model 
can be written as:

mod 1.98 0.31y el x= + ∗

Let us create a new column in our df data frame to accommodate the values 
generated by this equation and call this ymodel. To do that we write the following 
code snippet:

df['ymodel']=beta*df['Input_Variable(X)']+alpha

Let us calculate the value of R2 based on this column and see whether it has 
improved or not. To calculate that, we can reuse the code snippet we wrote earlier  
by replacing the Predicted_Output(ypred) variable with ymodel variable:

df['SSR']=(df['ymodel']-ymean)**2
df['SST']=(df['Actual_Output(yact)']-ymean)**2
SSR=df.sum()['SSR']
SST=df.sum()['SST']
SSR/SST

The value of new R2 comes out to be 0.667, a decent improvement from the value of 
0.57 when we assumed the values for a and β.

Let us also plot this new result derived from the model equation against the actual 
and our earlier assumed model, just to get a better visual understanding. We will 
introduce one more line to represent the model equation we just created:

%matplotlib inline
plt.plot(x,ypred)
plt.plot(x,df['ymodel'])
plt.plot(x,yact,'ro')
plt.plot(x,yavg)
plt.title('Actual vs Predicted vs Model')

The graph looks similar to the following figure. As we can see, the ymodel and ypred 
are more or less overlapping, as the values of a and β are not very different.
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Legend: Blue line –ypred, green line – ymodel, red line – ymean, red dots -x

Fig. 5.5: Actual vs Predicted vs Fitted line from the dummy dataset where model coefficients have been 
calculated rather than assumed

Making sense of result parameters
Apart from the R2 statistic, there are other statistics and parameters that one needs to 
look at in order to do the following:

1. Select some variables and discard others for the model.
2. Assess the relationship between the predictor and output variable and check 

whether a predictor variable is significant in the model or not.
3. Calculate the error in the values predicted by the selected model.

Let us now see some of the statistics which helps to address the issues  
discussed earlier.

p-values
One thing to realize here is that the calculation of a and β are estimates and not the 
exact calculations. Whether their values are significant or not need to be tested using 
a hypothesis test.
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The hypothesis tests whether the value of β is non-zero or not; in other words whether 
there is a sufficient correlation between X and yact. If there is, the β will be non-zero.

In the equation, y=a+β*x, if we put β=0, there will be no relation between y and x. 
Hence the hypothesis test is defined, as shown in the following:

: 0
: 0

Null hypothesis Ho
AlternateHypothesis Ha

β
β

− =
− ◊

So, whenever a regression task is performed and β is calculated, there will be 
an accompanying t-statistic and a p-value corresponding to this hypothesis test, 
calculated automatically by the program. Our task is to assume a significance level 
of our choice and compare this with the p-value. It will be a two-tailed test and if the 
p-value is less than the chosen significance level, then the null hypothesis that β=0  
is rejected.

If p-value for the t-statistic is less than the significance level, then the null-hypothesis 
is rejected and β is taken to be significant and non-zero. The values of p-value larger 
than the significance level demonstrate that β is not very significant in explaining the 
relationship between the two variables. As we see in the case of multiple regression 
(multiple input variables/predictors), this fact can be used to weed out unwanted 
columns from the model. The higher the p-value, the less significant they are to the 
model and the less significant ones can be weeded out first.

F-statistics
When one moves from a simple linear regression to a multiple regression, there will 
be multiple βs and each of them will be an estimate. In such a case, apart from testing 
the significance of the individual variables in the model by checking the p-values 
associated with their estimation, it is also required to check whether, as a group all 
the predictors are significant or not. This can be done using the following hypothesis:

1 2 3: 0
: 0

n

i

Null hypothesis Ho
AlternateHypothesis Ha Oneof the is not equal to

β β β β
β

− = = = = =
−

……

The statistic that is used to test this hypothesis is called the F-statistic and is defined 
as follows:

( )
( )

/
/ 1

SST SSD p
F statistic

SSD n p
−

− =
− −
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Where SST and SSD have been defined earlier as:

( ) ( )2 2SST yact yavg SSD yact ypred= ∑ − = ∑ −

where n=number of rows in the dataset; p- number of predictor variables in the model

The F-statistics follows the F-distribution. There will be a p-value that is associated 
with this F-statistic. If this p-value is small enough (smaller than the significance 
level chosen), the null hypothesis can be rejected.

The significance of F-statistic is as follows:

• p-values are about individual relationships between one predictor and one 
outcome variable. In case of more than one predictor variable, one predictor's 
relationship with the output might get changed due to the presence of other 
variables. The F-statistics provides us with a way to look at the partial change 
in the associated p-value because of the addition of a new variable.

• When the number of predictors in the model is very large and all the βi 
are very close to 0, the individual p-values associated with the predictors 
might give very small values. In such a case, if we rely solely on individual 
p-values, we might incorrectly conclude that there is a relationship between 
the predictors and the outcome, when it is not there actually. In such cases, 
we should look at the p-value associated with the F-statistic.

Residual Standard Error
Another concept to learn is the concept of Residual Standard Error (RSE). It is 
defined as:

( )21
1 mod
2

n
iRSE yact y el

n == ∗∑ −
−  and ( )21 modn

iSSD yact y el== ∑ −

So, RSE can be written as 
1
2

RSE SSD
n

= ∗
−  for a simple linear regression model.

Where n=number of data points. In general, 
1
1

RSE SSD
n p

= ∗
− −  where p=number of 

predictor variables in the model.
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The RSE is an estimate of the standard deviation of the error term (res). This is the 
error that is inevitable even if the model coefficients are known correctly. This may 
be the case because the model lacks something else, or may be another variable in  
the model (we have just looked at one variable regression till now, but in most of  
the practical scenarios we have to deal with multiple regression, where there  
would be more than one input variable. In multiple regressions, values of the RSE 
generally go down, as we add more variables that are more significant predictors of 
the output variable).

The RSE for a model can be calculated using the following code snippet. Here, we are 
calculating the RSE for the data frame we have used for the model, df:

df['RSE']=(df['Actual_Output(yact)']-df['ymodel'])**2
RSEd=df.sum()['RSE']
RSE=np.sqrt(RSEd)/98
RSE

The value of the RSE comes out to be 0.46 in this case. As you might have guessed, 
the smaller the RSE, the better the model is. Again, the benchmark to compare this 
error is the mean of the actual values, yact. As we have seen earlier, this value is 
ymean=2.53. So, we will observe an error of 0.46 over 2.53 that amounts to around an 
18% error.

Implementing linear regression with 
Python
Let's now go ahead and try to make a simple linear regression model and see what 
are the issues that we face and how can they be resolved to make the model more 
robust. We will use the advertising data that we used earlier for illustrating  
the correlation.

The following two methods implement linear regression in Python:

• The ols method and the statsmodel.formula.api library
• The scikit-learn package

Let's implement a simple linear regression using the first method and then build 
upon a multiple-linear regression model. We will then also look at how the second 
method is used to do the same.
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Linear regression using the statsmodel library
Let's first import the Advertising data, as shown:

import pandas as pd
advert=pd.read_csv('E:/Personal/Learning/Predictive Modeling Book/Book 
Datasets/Linear Regression/Advertising.csv')
advert.head()

To reiterate, this dataset contains data about the advertising budget spent on TV, 
Radio, and Newspapers, for a particular product and the resulting sales. We will 
expect a positive correlation between such advertising costs and sales. We have 
already seen that there is a good correlation between TV advertising costs and sales. 
Let's see whether it is present or not. If yes, how does the relationship look like and 
to do that we write the following code:

import statsmodels.formula.api as smf
model1=smf.ols(formula='Sales~TV',data=advert).fit()
model1.params

In this code snippet, we have assumed a linear relationship between advertising 
costs on TV and sales. We have also created a best fit using the least sum of square 
method. This snippet will output the values for model parameters that is a and β. 
The following is the output:

In the notation that we have been using, a is the intercept and β is the slope. Thus:

7.03 0.047a and β= =

The equation for the model will be:

7.032 0.047Sales TV= + ∗

The equation implies that an increase of 100 units in advertising costs will increase 
the sale by four units.
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If you remember, we learnt that the values of these parameters are estimates and 
there will be a p-value associated to these. If the p-values are very small, then it 
can be accepted that these parameters have a non-zero value and are statistically 
significant in the model. Let's have a look at the p-values for these parameters:

model1.pvalues

As it can be seen, the p-values are very small; hence, the parameters are significant.

Let's also check another important indicator of the model efficacy and that is R2. As 
we saw earlier, there is a ready-made method for doing this. This can be done by 
typing the following code line:

model1.rsquared

The value comes out to be 0.61.

If we want the entire important model parameters at one go, we can take a look at 
the model summary by writing this snippet:

model1.summary()

The result is as follows:

Fig. 5.6: Model 1 Summary
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As we can see, the F-statistic for this model is very high and the associated p-value is 
negligible, suggesting that the parameter estimates for this model were all significant 
and non-zero.

Let's now predict the values of sales based on the equation we just derived. This can 
be done using the following snippet:

sales_pred=model1.predict(pd.DataFrame(advert['TV']))
sales_pred

This equation basically calculates the predicted sales value for each row based on the 
model equation using TV costs. One can plot sales_pred against the TV advertising 
costs to find the line of best fit. Let's do that:

import matplotlib.pyplot as plt
%matplotlib inline
advert.plot(kind='scatter', x='TV', y='Sales')
plt.plot(pd.DataFrame(advert['TV']),sales_pred,c='red',linewidth=2)

We get the following plot as the output. The red line is the line of best fit (obtained 
from the model). The blue dots represent the actual data present:

Fig. 5.7: Line of best fit (obtained from the model) and the scatter plot of actual data
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Now, let's calculate the RSE term for our prediction using the following code snippet:

advert['sales_pred']=0.047537*advert['TV']+7.03
advert['RSE']=(advert['Sales']-advert['sales_pred'])**2
RSEd=advert.sum()['RSE']
RSE=np.sqrt(RSEd/198)
salesmean=np.mean(advert['Sales'])
error=RSE/salesmean
RSE,salesmean,error

The output consists of three numbers, first of which is RSE=3.25, second is 
salesmean (mean of actual sales) = 14.02 and error is their ratio, which is equal 
to 0.23. Thus, on an average this model will have 23%, even if the coefficients are 
correctly predicted. This is a significant amount of errors and we would like to bring 
it down by some means. Also, the R2 value of 0.61 can be improved upon. One thing 
we can try is to add more columns in the model, as predictors and see whether it 
improves the result or not.

Multiple linear regression
When linear regression involves more than one predictor variable, then it is called 
multiple linear regression. The nature of the model remains the same (linear),  
except that there might be separate slope (β) coefficients associated with each  
of the predictor variables. The model will be represented, as follows:

1 1 2 2 3 3mod n ny el X X X Xα β β β β= + + + +……

Each βi will be estimated using the same least sum of squares method; hence, would 
have a p-value associated with the estimation. The smaller the p-value associated 
with a variable, the more the significance of that variable to the model. The variables 
with large p-values should be eliminated from the model as they aren't good 
predictors of the output variable.

While the multiple regression gives us with the possibility of using more variables 
as predictors; hence, it increases the efficiency of the model. It also increases the 
complexity of the process of model building, as the selection of the variables to be 
kept and discarded in the model becomes tedious.

With this simple dataset of three predictor variables, there can be seven possible 
models. They are as follows:

• Model 1: Sales~TV
• Model 2: Sales~Newspaper
• Model 3: Sales~Radio
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• Model 4: Sales~TV+Radio
• Model 5: Sales~TV+Newspaper
• Model 6: Sales~Newspaper+Radio
• Model 7: Sales~TV+Radio+Newspaper

For a model with p possible predictor variables, there can be 2p-1 possible models; 
hence, as the number of predictors increases, the selection becomes tedious.

It would have been a tedious task to choose from so many possible models. 
Thankfully, there are a few guidelines to filter some of these and then navigate 
towards the most efficient one. The following are the guidelines:

• Keep the variables with low p-values and eliminate the ones with high 
p-values

• Inclusion of a variable to the model should ideally increase the value of R2 
(although it is not a very reliable indicator of the same and looking at the 
adjusted R2 is preferred. The concept of adjusted R2 and why it is a better 
indicator than R2 will be explained later in this chapter).

Based on these guidelines, there are two kinds of approaches to select the predictor 
variables to go in the final model:

• Forward selection: In this approach, we start with a null model without any 
predictor and then start adding predictor variables one by one. The variable 
whose addition results into a model with the lowest residual sum of squares 
will be added first to the model. If the p-value for the variable is small 
enough and the value of the adjusted R2 goes up; the predictor variable is 
included in the model. Otherwise, it is not included in the model.

• Backward selection: In this approach, one starts with a model that has all the 
possible predictor variables in the model and discards some of them. If the 
p-value of a predictor variable is large and the value of the adjusted R2 goes 
up, the predictor variable is discarded from the model. Otherwise, it remains 
a part of the model.

Many of the statistical programs, including the Python, give us an option to  
select from the two preceding approaches while implementing a linear  
regression. The statistical program then implements the linear regression  
using the selected approach.

For now, let us manually add a few variables and see how it changes the model 
parameters and efficacy, so that we can get a better glimpse of what goes on behind 
the curtain when these approaches are implemented by the statistical program.
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We have already seen one model assuming a linear relationship between sales and 
TV advertising costs. We can ignore the other models consisting of single variables 
(that is newspaper and radio, as they have a small correlation compared to TV). Let 
us now try to add more variables to the model we already have and see how the 
parameters and efficacy change.

Let us try adding the newspaper variable to the model using the following  
code snippet:

import statsmodels.formula.api as smf
model2=smf.ols(formula='Sales~TV+Newspaper',data=advert).fit()
model2.params

The following are the results:

Fig. 5.8: Model 2 coefficients and p-values

The p-values for the coefficients are very small, suggesting that all the estimates are 
significant. The equation for this model will be:

5.77 0.046 0.04Sales TV Newspaper= + ∗ + ∗

The values of R2 and adjusted R2 are 0.646 and 0.642, which is just a minor 
improvement from the value obtained in the earlier model.

The values can be predicted using the following snippet:

sales_pred=model2.predict(advert[['TV','Newspaper']])
sales_pred

To calculate the RSE, we modify the snippet a little:

import numpy as np
advert['sales_pred']=5.77 + 0.046*advert['TV'] + 
0.04*advert['Newspaper']
advert['RSE']=(advert['Sales']-advert['sales_pred'])**2
RSEd=advert.sum()['RSE']
RSE=np.sqrt(RSEd/197)
salesmean=np.mean(advert['Sales'])
error=RSE/salesmean
RSE,salesmean,error
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The value of RSE comes out to be 3.12 (22%), not very different from the model with 
only TV. The number 197 comes from the (n-p-1) term in the formula for RSE, where 
n=200, p=2 for the current model. The following table is the model summary:

Fig. 5.9: Model 2 Summary

Although as the F-statistic decreases, the associated p-value also decreases. But, it 
is just a marginal improvement to the model, as we can see in the adj. R2 value. So, 
adding newspaper didn't improve the model significantly.

Let's try adding radio to the model instead of the newspaper. Radio had the second 
best correlation with the Sales variable in the correlation matrix we created earlier 
in the chapter. Thus, one expects some significant improvement in the model upon 
its addition to the model. Let's see if that happens or not:

import statsmodels.formula.api as smf
model3=smf.ols(formula='Sales~TV+Radio',data=advert).fit()
model3.params

The output parameters and the associated p-values of this model are, as follows:

Fig. 5.10: Model 2 coefficients and p-values

The model can be represented as the following:

2.92 0.045 0.18Sales TV Radio= + ∗ + ∗
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The values can be predicted based on the preceding model using the  
following snippet:

sales_pred=model3.predict(advert[['TV','Radio']])
sales_pred

The model summary looks something similar to the following screenshot:

Fig. 5.11: Model 3 summary

One thing to observe here is that the R2 value has improved considerably due to the 
addition of radio to the model. Also, the F-statistic has increased significantly from 
the last model indicating a very efficient model.

The RSE can be calculated using the same method described previously. The value 
for this model comes out to be 1.71 (around 12%),which is much better than the 23% 
and 22% in the previous model.

Thus, we can conclude that radio is a great addition to the model and TV and radio 
advertising costs have been able to describe the sales very well and this model itself 
is a very efficient model. But, can we improve it a bit further by combining all three 
predictor variables?

The last thing that we should try is, all the predictor variables together by using the 
following code:

import statsmodels.formula.api as smf
model4=smf.ols(formula='Sales~TV+Radio+Newspaper',data=advert).fit()
model4.params
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The estimates of the coefficients and the associated p-values for this model will be  
as follows:

Fig. 5.12: Model 4 coefficients and p-values

The p-values for the coefficients are very small, suggesting that all the estimates are 
significant. The equation for this model will be:

2.93 0.045 0.18 0.01Sales TV Radio Newspaper= + ∗ + ∗ − ∗

The values of sales can be predicted using the following snippet:

sales_pred=model4.predict(advert[['TV','Radio','Newspaper']])
sales_pred

The summary of the model is shown in the following table:

Fig. 5.13: Model 4 summary

The most striking feature of this model is that the estimate of the coefficients is 
very similar to that in the previous model. The intercept, coefficient for TV, and the 
coefficient for Radio are more or less the same. The values of R2 and adj-R2 are also 
similar to the previous model.
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The value of RSE can be calculated in a similar way, as before. The value comes out 
to 2.57 (18%), which is more than the previous model.

Other things to note about this model are the following:

• There is a small negative coefficient for the newspaper. When we considered 
only TV and newspaper in the model, the coefficient of the newspaper was 
significantly positive. Something affected the coefficient of the newspaper 
when it became a part of the model in presence of TV and radio.

• For this model, the F-statistic has decreased considerably to 570.3 from 
859.6 in the previous model. This suggests that the partial benefit of adding 
newspaper to the model containing TV and radio is negative.

• The value of RSE increases on addition of newspaper to the model.

All these point in the direction that the model actually became a little less efficient on 
addition of newspaper to the previous model. What is the reason?

Multi-collinearity
Multi-collinearity is the reason for the sub-optimal performance of the model when 
newspaper was added to the final model. Multi-collinearity alludes to the correlation 
between the predictor variables of the model.

These are some of the signs of a common problem encountered during a regression 
called multi-collinearity. Go back a few pages to the correlation matrix that we 
created for this dataset and you will find that there is a significant correlation of 0.35 
between radio and newspaper. This means that the expense on Newspaper is related 
to that on the Radio. This relationship between the predictor variable increases the 
variability of the co-efficient estimates of the related predictor variables.

The t-statistic for these coefficients is calculated by dividing the mean value by the 
variability (or error). As this error goes up, the value of t-statistic goes down and 
the value of p-value increases. Thus, the chances that the null hypothesis for the 
hypothesis test associated with the F-statistic will be accepted are increased. This 
decreases the significance of the variable in the model.

( ) ( )0 /m mt statistic SEβ β− = −

Where βm=mean of estimates of β, SE(βm)=variability in the estimate of β.

Thus collinearity is an issue that needs to be taken care of. For highly correlated 
predicted variables, we need to do a deep-dive with these variables and see whose 
inclusion in the model makes the model more efficient.
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It is a good practice to identify the pair of predictor variables with high correlation, 
using the correlation matrix and check the pairs of multi-collinearity effect on  
the model. The culprit variables should be removed from the model. The VIF  
is a method to tackle this issue.

Variance Inflation Factor
A fool-proof way to detect this menace called multi-collinearity is a statistic called 
Variance Inflation Factor (VIF). It is a method to quantify the rise in the variability 
of the coefficient estimate of a particular variable because of high correlation between 
two or more than two predictor variables. The VIF needs to be calculated for each 
of the variables and if the value is very high for a particular variable, then that 
predictor needs to be eliminated from the model. Some statistical processes calculate 
VIF when fed with the option to do so. The following process goes under the hood 
for calculation of VIF:

1. Write Xi as a linear function of other predictor variables:

1 1 2 2 1 1 1 1i i i i i n nX a X a X a X a X a X− − + += + + + + + +…… …… ……

2. Calculate the coefficient of determination for this model and call it Ri
2.  

The VIF for Xi is given by:

2

1
1

VIF
Ri

=
−

3. If the VIF=1, then the variables are not correlated. If 1<VIF<5, then the 
variables are moderately correlated with other predictor variables and can 
still be part of the model. If VIF>5, then variables are highly correlated and 
need to be eliminated from the model.

Let us write a short snippet to calculate the VIF to understand the calculation better:

model=smf.ols(formula='Newspaper~TV+Radio',data=advert).fit()
rsquared=model.rsquared 
VIF=1/(1-rsquared)
VIF

This will give a VIF for the Newspaper. By changing the formula in the snippet,  
we can calculate the VIF for the other variables. The following are the values:

Newspaper Radio TV
1.14 1.14 1.04
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The newspaper and TV have almost the same VIF, indicating that they are correlated 
to just one another and not the TV.

In this case, radio and newspaper are correlated. However, the model with TV and 
radio, as predictor variables, are far superior to the model with TV and newspaper 
as the predictor variables. The model with the all the three variables as predictors 
doesn't improve the model much. In fact, it increases the variability and the 
F-statistic. It will be a decent choice to drop the newspaper variable from the  
model and pick model 3 as the best candidate for the final model:

Model validation
Any predictive model needs to be validated to see how it is performing on different 
sets of data, whether the accuracy of the model is constant over all the sources of 
similar data or not. This checks the problem of over-fitting, wherein the model fits 
very well on one set of data but doesn't fit that well on another dataset. One common 
method is to validate a model train-test split of the dataset. Another method is k-fold 
cross validation, about which we will learn more in the later chapter.

Training and testing data split
Ideally, this step should be done right at the onset of the modelling process so that 
there are no sampling biases in the model; in other words, the model should perform 
well even for a dataset that has the same predictor variables, but their means and 
variances are very different from what the model has been built upon. This can 
happen because the dataset on which the model is built (training) and the one on 
which it is applied (testing) can come from different sources. A more robust way to 
do this is a process called the k-fold cross validation, about which we will read in 
detail in a little while.

Let's see how we can split the available dataset in the training and testing dataset 
and apply the model to the testing dataset to get other results:

import numpy as np
a=np.random.randn(len(advert))
check=a<0.8
training=advert[check]
testing=advert[~check]

The ratio of split between training and testing datasets is 80:20; in other words,  
160 rows of the advert dataset will be in training and 40 rows in testing.
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Let's create a model on training the data and test the model performance on the 
testing data. Let us create the only model that works best (we have found it already), 
the one with TV and radio variables, as predictor variables:

import statsmodels.formula.api as smf
model5=smf.ols(formula='Sales~TV+Radio',data=training).fit()
model5.summary()

Fig. 5.14: Model 5 coefficients and p-values

Most of the model parameters, such as intercept, coefficient estimates, and R2 are 
very similar. The difference in F-statistics can be attributed to a smaller dataset.  
The smaller the dataset, the larger the value of SSD and the smaller the value of 
the (n-p-1) term in F-statistic formula; both contribute towards the decrease in the 
F-statistic value.

The model can be written, as follows:

2.86 0.04 0.17Sales TV Radio+ ∗ + ∗∼
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Let us now predict the sales values for the testing dataset:

sales_pred=model5.predict(training[['TV','Radio']])
sales_pred

The value of RSE for this prediction on the testing dataset can be calculated using the 
following snippet:

import numpy as np
testing['sales_pred']=2.86 + 0.04*testing['TV'] + 
0.17*testing['Radio']
testing['RSE']=(testing['Sales']-testing['sales_pred'])**2
RSEd=testing.sum()['RSE']
RSE=np.sqrt(RSEd/51)
salesmean=np.mean(testing['Sales'])
error=RSE/salesmean
RSE,salesmean,error

The value of RSE comes out to be 2.54 over a sales mean (in the testing data) of 14.80 
amounting to an error of 17%.

We can see that the model doesn't generalize very well on the testing dataset, as the 
RSE for the same model is different in the two cases. It implies some degree of over 
fitting when we tried to build the model based on the entire dataset. The RSE with 
the training-testing split, albeit a bit more, is more reliable and replicable.

Summary of models
We have tried four models previously. Let us summarize the major results from each 
of the models, at one place:

Name Definition R2/Adj-R2 F-statistic  F-statistic 
(p-value)

RSE

Model 1 Sales ~ TV 0.612/0.610 312.1 1.47e-42 3.25 (23%)

Model 2 Sales ~ TV+Newspaper 0.646/0.642 179.6 3.95e-45 3.12(22%)

Model 3 Sales ~ TV+Radio 0.897/0.896 859.6 4.83e-98 1.71(12%)

Model 4 Sales ~ TV+Radio+Newspaper 0.897/0.896 570.3 1.58e-96 1.80(13%)

Guide for selection of variables
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To summarize, for a good linear model, the predictor variables should be chosen 
based on the following criteria:

• R2: R2 will always increase when you add a new predictor variable to the 
model. However, it is not a very reliable check of the increased efficiency of 
the model. Rather, for an efficient model, we should check the adjusted-R2. 
This should increase on adding a new predictor variable.

• p-values: The lower the p-value for the estimate of the predictor variable,  
the better it is to add the predictor variable to the model.

• F-statistic: The value of the F-statistic for the model should increase after 
the addition of a new predictor variable for a predictor variable to be an 
efficient addition to the model. The increase in the F-statistic is a proxy to 
the improvement in the model brought upon solely by the addition of that 
particular variable. Alternatively, the p-value associated with the F-statistic 
should decrease on the addition of a new predictor variable.

• RSE: The value of RSE for the new model should decrease on the addition of 
the new predictor variable.

• VIF: To take care of the issues arising due to multi-collinearity one needs to 
eliminate the variables with large values of VIF.

Linear regression with scikit-learn
Let's now re-implement the linear regression model using the scikit-learn 
package. This method is more elegant as it has more in-built methods to perform 
the regular processes associated with regression. For example, you might remember 
from the last chapter that there is a separate method for splitting the dataset into 
training and testing datasets:

from sklearn.linear_model import LinearRegression
from sklearn.cross_validation import train_test_split
feature_cols = ['TV', 'Radio']
X = advert[feature_cols]
Y = advert['Sales']
trainX,testX,trainY,testY = train_test_split(X,Y, test_size = 0.2)
lm = LinearRegression()
lm.fit(trainX, trainY)

We split the advert dataset into train and test dataset and built the model on TV and 
radio variables from the test dataset. The following are the parameters of the model:

print lm.intercept_
print lm.coef_
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The result is as follows: Intercept – 2.918, TV coefficient – 0.04, Radio  
coefficient – 0.186

A better way to look at the coefficients is to use the zip method to write the variable 
name and coefficient together. The required snippet and the output are mentioned in 
the following code:

zip(feature_cols, lm.coef_)
[('TV', 0.045706061219705982), ('Radio', 0.18667738715568111)]

The value of R2 is calculated by typing the following code:

lm.score(trainX, trainY)

The value comes out to be around 0.89, very close to the value obtained by the 
method used earlier.

The model can be used to predict the value of sales using TV and radio variables 
from the test dataset, as follows:

lm.predict(testX)

Feature selection with scikit-learn
As stated before, many of the statistical tools and packages have in-built methods to 
conduct a variable selection process (forward selection and backward selection). If 
it is done manually, it will consume a lot of time and selecting the most important 
variables will be a tedious task compromising the efficiency of the model.

One advantage of using the scikit-learn package for regression in Python is 
that it has this particular method for feature selection. This works more or less like 
backward selection (not exactly) and is called Recursive Feature Elimination (RFE). 
One can specify the number of variables they want in the final model.

The model is first run with all the variables and certain weights are assigned to all 
the variables. In the subsequent iterations, the variables with the smallest weights  
are pruned from the list of variables till the desired number of variables is left.

Let us see how one can do a feature selection in scikit-learn:

from sklearn.feature_selection import RFE
from sklearn.svm import SVR
feature_cols = ['TV', 'Radio','Newspaper']
X = advert[feature_cols]
Y = advert['Sales']
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estimator = SVR(kernel="linear")
selector = RFE(estimator,2,step=1)
selector = selector.fit(X, Y)

We use the methods named RFE and SVR in-built in scikit-learn. We indicate that 
we want to estimate a linear model and the number of desired variables in the model 
to be two.

To get the list of selected variables, one can write the following code snippet:

selector.support_

It results in an array mentioning whether the variables in X have been selected for 
the model or not. True means that the variable has been selected, while False means 
otherwise. In this case, the result is as follows:

Fig. 5.15: Result of feature selection process

In our case, X consists of three variables: TV, radio, and newspaper. The preceding 
array suggests that TV and radio have been selected for the model, while the 
newspaper hasn't been selected. This concurs with the variable selection we had 
done manually.

This method also returns a ranking, as described in the following example:

selector.ranking_

Fig. 5.16: Result of feature selection process

All the selected variables will have a ranking of 1 while the subsequent ones will be 
ranked in descending order of their significance. A variable with rank 2 will be more 
significant to the model than the one with a rank of 3 and so on.

Handling other issues in linear 
regression
So far in this chapter, we have learnt:

• How to implement a linear regression model using two methods
• How to measure the efficiency of the model using model parameters
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However, there are other issues that need to be taken care of while dealing with 
data sources of different types. Let's go through them one by one. We will be using a 
different (simulated) dataset to illustrate these issues. Let's import it and have a look 
at it:

import pandas as pd
df=pd.read_csv('E:/Personal/Learning/Predictive Modeling Book/Book 
Datasets/Linear Regression/Ecom Expense.csv')
df.head()

We should get the following output:

Fig. 5.17: Ecom Expense dataset

The preceding screenshot is a simulated dataset from any-commerce website. It 
captures the information about several transactions done on the website. A brief 
description of the column names of the dataset is, as follows:

• Transaction ID: Transaction ID for the transaction
• Age: Age of the customer
• Items: Number of items in the shopping cart (purchased)
• Monthly Income: Monthly disposable income of the customer
• Transaction Time: Total time spent on the website during the transaction
• Record: How many times the customer has shopped with the website in  

the past
• Gender: Gender of the customer
• City Tier: Tier of the city
• Total Spend: Total amount spent in the transaction

The output variable is the Total Spend variable. The others are potential predictor 
variables and we suspect that the Total Spend is linearly related to all these 
predictor variables.
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Handling categorical variables
Until now, we have assumed that the predictor variables can only be quantitative or 
numerical, but we know from real-life experiences that most of the times the dataset 
contains a categorical or qualitative variable and many of the times these variables 
will have a significant impact on the value of the output. However, the question is 
how to process these variables, so as to use them in the model?

We can't assign them values, such as 0, 1, 2, and so on, and then use them in the 
model, as it will give undue weightage to the categories because of the numbers 
assigned to them. Most of the time it might give a wrong result and will change,  
as the number assigned to a particular category changes.

In the data frame we just imported, Gender and City Tier are the categorical 
variables. In Chapter 2, Data Cleaning, we learnt how to create dummy variables from 
a categorical variable. That was exactly for this purpose. Let's see how it works and 
why it is required.

A linear regression is of the form:

1 1 2 2 3 3mod n ny el X X X X dα β β β β= + + + + +……

Where one or more of the Xi's can be categorical. Let's say Xm is that variable. For 
such a variable, we can define another dummy variable (if it has only two categories 
as in the case of Gender), such that:

1,
0,

Xg if customer ismale
if customer is female

=
=

The model then becomes:

1 1 2 2 3 3

mod 1 1 2 2 3 3 ,
mod ,n n

y el X X X g nXn d if customer ismale
y el X X X X d if customer is female

α β β β β β
α β β β β

= + + + + + +
= + + + + +

…… ……
……

If there are three levels in the categorical variable, then one needs to define two 
variables as compared to 1 when there were two levels in the categorical variable. 
For example, City Tier variable has three levels in our dataset.

For this, we can define two variables, such that:

1 21, 1 2, 2
0, 1 0, 2
t tX if City isTier X if City isTier
if City is notTier if City is notTier
= =

=
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The model then becomes:

1 1 2 2 3 3 1 1

1 1 2 2 3 3 2 2

1 1 2 2 3 3

mod . , 1
mod . , 2
mod . , 3

t t n n

t t n n

n n

y el X X X X X d if customer is fromtier city
y el X X X X X d if customer is fromtier city
y el X X X X d if customer is fromtier city

α β β β β β
α β β β β β
α β β β β

= + + + + + + +

= + + + + + + +
= + + + + + +

… ……
… ……
…

Note that one doesn't have to create the third variable. This is 
because of the nature in which these variables are defined. If a 
customer doesn't belong to tier 1 or tier 2 city, then he will certainly 
belong to a tier 3 city. Hence, no one variable is required for one of 
the levels. In general, for categorical variables having n levels, one 
should create (n-1) dummy variables.

The process of creating dummy variables has been already enumerated in  
Chapter 2, Data Cleaning. Let's now create the dummy variables for both our 
categorical variables and then add them to our data frame, as shown:

dummy_gender=pd.get_dummies(df['Gender'],prefix='Sex')
dummy_city_tier=pd.get_dummies(df['City Tier'],prefix='City')

Let's see how they look and whether they satisfy the conditions we have defined 
earlier or not. This is how the dummy_city_tier looks:

Fig. 5.18: City Tier dummy variables
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The dummy_gender looks similar to the following table:

Fig. 5.19: Gender dummy variables

Now, we have these dummy variables created but they are not a part of the main 
data frame yet. Let's attach these new variables to the main data frame so that they 
can be used in the model:

column_name=df.columns.values.tolist()
df1=df[column_name].join(dummy_gender)
column_name1=df1.columns.values.tolist()
df2=df1[column_name1].join(dummy_city_tier)
df2

Fig. 5.20: Ecom Expense dataset with dummy variables

There are five new columns in the data frame, two from the Gender dummy 
variables and three from the City Tier dummy variables.

If you compare it with the entire dataset, the City_Tier_1 has value 1 if the City_Tier 
has value Tier 1, the City_Tier_2 has value 1 if the City_Tier has value Tier 2 and 
the City_Tier_3 has value 1 if the City_Tier has value Tier 3. All the other dummy 
variables in that particular row will have values 0. This is what we wanted.
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Let's see how to include these dummy variables in the model and how to assess  
their coefficients.

For the preceding dataset, let's assume a linear relationship between the output 
variable Total Spend and the predictor variables: Monthly Income and 
Transaction Time, and both set of dummy variables:

from sklearn.linear_model import LinearRegression
feature_cols = ['Monthly Income','Transaction Time','City_Tier 
1','City_Tier 2','City_Tier 3','Sex_Female','Sex_Male']
X = df2[feature_cols]
Y = df2['Total Spend']
lm = LinearRegression()
lm.fit(X,Y)

The model parameters can be found out, as follows:

print lm.intercept_
print lm.coef_
zip(feature_cols, lm.coef_)

The following is the output we get:

Fig. 5.21: Coefficients of the model

The R2 for this model can be found out by writing the following:

lm.score(X,Y)

The value comes out to be 0.19, which might be because we haven't used the other 
variables and the output might be related to them as well. We need to fine-tune the 
model by suitably transforming some of the variables and adding them to the model. 
For example, if you add Record variable to the model, the R2 jumps to 0.91 (try that 
on your own). It is a good dataset to play with.

The model can be written, as follows:

Total_Spend=3655.72 + 0.12*Transaction Time + 0.15*Monthly Income + 119*City_Tier 
1-16*City_Tier 2 - 102*City_Tier 3-94*Sex_Female+94*Sex_Male



Chapter 5

[ 179 ]

The RSE can be calculated, as follows:

import numpy as np
df2['total_spend_pred']=3720.72940769 + 0.12*df2['Transaction 
Time']+0.15*df2['Monthly Income']+119*df2['City_Tier 1']-16*df2['City_
Tier 2']
-102*df2['City_Tier 3']-94*df2['Sex_Female']+94*df2['Sex_Male']
df2['RSE']=(df2['Total Spend']-df2['total_spend_pred'])**2
RSEd=df2.sum()['RSE']
RSE=np.sqrt(RSEd/2354)
salesmean=np.mean(df2['Total Spend'])
error=RSE/salesmean
RSE,salesmean,error

The RSE comes out to be 2519 over a Total Spend mean of 6163, amounting to an 
error of around 40%, suggesting that there is a scope for improvement in the model.

However, the purpose of this section is to illustrate how the dummy variables are 
used in building a model and assessed in the final model.

As we can see, there are different coefficients for different dummy variables. For City 
Tier, City_Tier_1 has 119, City_Tier_2 has -16 and City_Tier_3 has -102. This means 
that on an average, everything else being same, a customer from a Tier 1 city will 
spend more than someone from Tier 2 and Tier 3 city. Someone from a Tier 2 city 
will spend less than someone from Tier 3. If we take City_Tier_1 as the baseline, the 
Total Spend is lesser by 135 units for a customer from Tier 2 city, while it is lesser by 
222 units for a customer from Tier 3 city.

For different Gender and City Tier, the model will be reduced to following for 
different cases:

Gender City Tier Model
Male 1 Total_Spend=3655.72 + 0.12*Transaction Time + 

0.15*Monthly Income + 119*City_Tier 1 +94*Sex_Male
Male 2 Total_Spend=3655.72 + 0.12*Transaction Time + 

0.15*Monthly Income -16*City_Tier 2 +94*Sex_Male
Male 3 Total_Spend=3655.72 + 0.12*Transaction Time + 

0.15*Monthly Income - 102*City_Tier 3 +94*Sex_Male
Female 1 Total_Spend=3655.72 + 0.12*Transaction Time + 

0.15*Monthly Income + 119*City_Tier 1 - 94*Sex_Female
Female 2 Total_Spend=3655.72 + 0.12*Transaction Time + 

0.15*Monthly Income -16*City_Tier 2 - 94*Sex_Female
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One of the three dummy variables can be converted to baseline by masking it. 
Remember, we said earlier that only (n-1) dummy variables are needed for a 
categorical variable with n levels. However, here you are seeing three dummy 
variable for City Tier (three levels) and two dummy variables for Gender (two levels). 
This is just because it is easier to understand this way. There is only n-1 variables 
required for n-level categorical variables.

We can use (n-1) variables by masking one of the variables from the list of dummy 
variables going into the model. This masked variable will then become the baseline 
for the coefficients associated with these dummy variables.

Let's do that and see how the coefficients change:

dummy_gender=pd.get_dummies(df['Gender'],prefix='Sex').iloc[:, 1:]
dummy_city_tier=pd.get_dummies(df['City Tier'],prefix='City').iloc[:, 
1:]
column_name=df.columns.values.tolist()
df3=df[column_name].join(dummy_gender)
column_name1=df3.columns.values.tolist()
df4=df3[column_name1].join(dummy_city_tier)
df4

It is the same process of converting categorical variables to dummy variables, but  
we are masking the first variable from the resulting list using the iloc method  
of subsetting.

The resulting data frame has one dummy variable for Gender and two for City Tier 
and is similar to the following screenshot:

Fig. 5.22: Ecom expense dataset with only (n-1) dummy variables

Let's now use these variables into the model and see how the coefficients change:

from sklearn.linear_model import LinearRegression
feature_cols = ['Monthly Income','Transaction Time','City_Tier 
2','City_Tier 3','Sex_Male']
X = df2[feature_cols]
Y = df2['Total Spend']
lm = LinearRegression()
lm.fit(X,Y)
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The variables and their coefficients can be obtained in the same way as earlier.  
They are as follows:

print lm.intercept_
print lm.coef_
zip(feature_cols, lm.coef_)

Fig. 5.23: Coefficients of the model

As one might observe, the coefficients of City_Tier_2 and City_Tier_3 variables 
along with that of the Sex_Male variables have changed while that of all the others 
remain the same. The change in the coefficient doesn't change the model as such,  
but just the account for the absence of the baseline dummy variable. The new 
coefficient for City_Tier_2 is -136, which can be thought of as its coefficient when  
the City_Tier_1 has a coefficient of 0 (we saw earlier it has a coefficient of 119):

Variable Coefficient earlier Coefficient later
City_Tier_1 120 0
City_Tier_2 -16 -136 (-16-120)
City_Tier_3 -102 -222(-102-120)
Sex_Male 94 188 (94-(-94))
Sex_Female -94 0

Transforming a variable to fit non-linear 
relations
Sometimes the output variable doesn't have a direct linear relationship with the 
predictor variable. They have a non-linear relationship. These relationships could 
be simple functions like quadratic, exponential, logarithm, or complex ones such as 
polynomials. In such cases, transforming the variable comes in very handy.
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The following is a rough guideline about how to go about it:

• Plot a scatter plot of the output variable with each of the predictor  
variables. This can be thought of as a scatter plot matrix similar to  
the correlation matrix.

• If the scatter plot assumes more or less a linear shape for a predictor variable 
then it is linearly related to the output variable.

• If the scatter plot assumes a characteristic shape of any of the non-linear 
shapes for a predictor variable then transform that particular variable by 
applying that function.

Let's illustrate this with one example. We will use the Auto.csv dataset for this. 
This dataset contains information about miles per gallon (mpg) and horsepower for 
a number of car models and much more. The mpg is the predictor variable and is 
considered to be highly dependent on the horsepower of a car model.

Let's import the dataset and have a look at it before proceeding further:

import pandas as pd
data = pd.read_csv('E:/Personal/Learning/Predictive Modeling Book/Book 
Datasets/Linear Regression/Auto.csv')
data.head()

This is how the dataset looks:

Fig. 5.24: Auto dataset

It has 406 rows and 9 columns. Some of the variables have NA values and it makes 
sense to drop the NA values before using them.

Now, let's plot a scatter plot between the horsepower and the mpg variables to see 
whether they exhibit a linear shape or some non-linear shape:

import matplotlib.pyplot as plt
%matplotlib inline
data['mpg']=data['mpg'].dropna()
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data['horsepower']=data['horsepower'].dropna()
plt.plot(data['horsepower'],data['mpg'],'ro')
plt.xlabel('Horsepower')
plt.ylabel('MPG (Miles Per Gallon)')

As can be seen in the output, the relationship doesn't seem to have a linear shape but 
rather assumes a non-linear shape; it is most probably an exponential or quadratic 
kind of relationship.

However, for the sake of comparison, let's try and fit a linear model for the 
relationship between mpg and horsepower first and then compare it with the  
scatter plot.

We are assuming that the model is:

0 1.mpg c a horsepower= +

While it looks like that the model is something similar to:

2
0 1.mpg c a horsepower= +

2
0 1 2. .mpg c a horsepower a horsepower= + +

Fig. 5.25: Scatterplot of MPG vs Horsepower



Linear Regression with Python

[ 184 ]

The following code snippet will fit a linear model between horsepower and mpg 
variables. The NA values need to be dropped from the variables before they can 
be used in the model. Also simultaneously, let us create a model assuming a linear 
relationship between mpg and square of horsepower:

import numpy as np
from sklearn.linear_model import LinearRegression
X=data['horsepower'].fillna(data['horsepower'].mean())
Y=data['mpg'].fillna(data['mpg'].mean())
lm=LinearRegression()
lm.fit(X[:,np.newaxis],Y)

The linear regression method by default requires that X be an array of two 
dimensions. Using np.newaxis, we are creating a new dimension for it to  
function properly.

The line of best fit can be plotted by the following snippet:

import matplotlib.pyplot as plt
%matplotlib inline
plt.plot(data['horsepower'],data['mpg'],'ro')
plt.plot(X,lm.predict(X[:,np.newaxis]),color='blue')

The plot looks similar to the following graph. The blue line is the line of the best fit:

Fig. 5.26:The line of best fit (from the linear model) and the scatterplot

The R2 for this model can be obtained using the following snippet:

lm1.score(X[:,np.newaxis],Y)
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The value comes out to be 0.605.

Let's now calculate the RSE for this model in a different manner:

RSEd=(Y-lm.predict(X[:,np.newaxis]))**2
RSE=np.sqrt(np.sum(RSEd)/389)
ymean=np.mean(Y)
error=RSE/ymean
RSE,error

Here, we are using the predict method to calculate the predicted value from the 
model instead of writing them explicitly.

The value of RSE for this model comes out to be 5.14, which over a mean value of 
23.51 gives an error of 21%.

If the model is of the form mpg = co+a1.horsepower2, then it can be fitted after 
transforming the horsepower variable, as shown in the following snippet:

import numpy as np
from sklearn.linear_model import LinearRegression
X=data['horsepower'].fillna(data['horsepower'].
mean())*data['horsepower'].fillna(data['horsepower'].mean())
Y=data['mpg'].fillna(data['mpg'].mean())
lm=LinearRegression()
lm.fit(X[:,np.newaxis],Y)

The R2 value for this model comes out to be around 0.51 and there is a scope of 
improvement in this model. The RSE can be calculated in the same manner,  
as shown in the preceding section using the following code snippet:

type(lm.predict(X[:,np.newaxis]))
RSEd=(Y-lm.predict(X[:,np.newaxis]))**2
RSE=np.sqrt(np.sum(RSEd)/390)
ymean=np.mean(Y)
error=RSE/ymean
RSE,error,ymean

The value of RSE for this model comes out to be 10.51, which over a mean value  
of 23.51 gives an error of 45%. The RSE increased when we transformed the  
variable exponentially.

Thus, we need to look at some other method to fit this seemingly non-linear data. 
What about polynomial fits that are, as follows:

2
0 1 2: . .Model mpg c a horsepower a horsepower= + +
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This can be fitted using the PolynomialFeatures method in the scikit-learn 
library. In this model, we are assuming a polynomial relationship between mpg  
and horsepower:

from sklearn.preprocessing import PolynomialFeatures
from sklearn import linear_model
X=data['horsepower'].fillna(data['horsepower'].mean())
Y=data['mpg'].fillna(data['mpg'].mean())
poly = PolynomialFeatures(degree=2)
X_ = poly.fit_transform(X[:,np.newaxis])
clf = linear_model.LinearRegression()
clf.fit(X_, Y)

The PolynomialFeatures method used in this method automatically generates the 
powers (up to the specified degree) of the X variable using its transform feature. 
In this case, the R2 value comes out to be 0.688. The R2 value increased considerably 
when we introduced the polynomial regression.

The coefficients for this model come out to be, as follows:

print clf.intercept_
print clf.coef_

Fig. 5.27: Model coefficients

The model can be written as:

255.02 0.43 0.001mpg horsepower horsepower= − ∗ + ∗

Let us increase the degree and see whether it increases the R2 further or not. One just 
needs to change the degree from 2 to 5.

from sklearn.preprocessing import PolynomialFeatures
from sklearn import linear_model
X=data['horsepower'].fillna(data['horsepower'].mean())
Y=data['mpg'].fillna(data['mpg'].mean())
poly = PolynomialFeatures(degree=5)
X_ = poly.fit_transform(X[:,np.newaxis])
clf = linear_model.LinearRegression()
clf.fit(X_, Y)
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The model in this case will be:

2 3 4 5
0 1 2 3 4 5. . . . .mpg c a horsepower a horsepower a horsepower a horsepower a horsepower= + + + + +

The R2 for this model comes out to be 0.70. After that degree, an increase in degree 
doesn't improve the value of R2.

The model coefficients can be found, as follows:

print clf.intercept_
print clf.coef_

Fig. 5.28: Model coefficients

2 3 4 540.69 4 . 7.54 6.19 2.32 3.14mpg horsepower horsepower horsepower horsepower horsepower= − + ∗ + ∗ − ∗ − ∗ +

The reader can try the models of higher degrees as well and see how the coefficients 
change and whether it improves the model further (minimizing the error). The 
reader can also try to plot the results after the polynomial fit to see how it has 
improved the results.

Handling outliers
Outliers are the points in the dataset that are way out of the league of the other 
points. If a scatterplot of the concerned variable is drawn, the outliers can be easily 
identified, as they lay significantly away from the other data points.

The outliers need to be removed or properly treated before using the dataset for 
modelling. The outliers can distort the model and reduce its efficacy even if they are 
less in number, compared to the size of the dataset. As low as 1% outlier data is also 
capable enough to distort the model. It is actually not the number of outlier points 
but the degree to which it is different from an average point that determines the 
degree of distortion.
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Let us look at a scatterplot of a dataset that has outliers:

Fig. 5.29: A dataset with outliers. Outliers in the encircled region

As we can see, the points in the encircled region lie away from where the majority of 
the points lie. These points lying in the encircled regions are outliers.

Let's now see how it affects the modelling process. To illustrate that, let's look at 
the result of a linear regression model built upon the dataset with outliers. We will 
then compare this result to the results of a linear regression model derived from the 
dataset from which the outliers have been removed.

The best fit line for the model developed from the dataset with outliers looks similar 
to the following screenshot:
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Fig. 5.30: Best fit line for the linear regression model developed over dataset with outliers

The model summary for this model is, as follows:

Fig. 5.31: Summary of the linear regression model developed over dataset with outliers
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Let's now remove the outliers from the data and run the same linear regression 
model to check whether there is an improvement in the model or not.

The data without the outliers looks similar to the following screenshot:

Fig. 5.32: The dataset after removing outliers

The best fit line for the model developed from the dataset without outliers looks  
as follows:

Fig. 5.33: Best fit line for the linear regression model developed over dataset without outliers
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The model summary for this model is as follows:

Fig. 5.34: Summary of the linear regression model developed over the dataset without outliers

As we can see, the model has improved significantly especially in the terms of R2 and 
F-statistic and the associated p-values. The model coefficients have also changed.

The following table is a comparison between the two models in terms of  
the parameters:

Parameter Model w/o outliers Model with outlier
R2 0.739 0.253
F-statistic 560.7 70.61
Coefficient 2.004 2.289
Intercept 0.3241 0.279
RSE 19.5% 41.4%

As it can be seen in the preceding comparison table, the model without outliers is 
better than the model with outliers in all the aspects. Thus, it is essentials to check for 
outliers in variables of the dataset and remove them from the dataset before using it 
for modelling.



Linear Regression with Python

[ 192 ]

The following are the ways in which one can identify outliers in the dataset:

• Plotting a scatter plot of the concerned variable.
• Boxplots are potent tools to spot outliers in a distribution. Any value 1.5*IQR 

below the 1st quartile and 1.5*IQR above the 1st quartile can be classified as 
an outlier. The difference in the 1st and 3rd quartile values is called the Inter 
Quartile Range (IQR).

• Another method is to calculate the error (the difference between the actual 
value and the value predicted from the model) and set a cut-off for the error. 
Anything outside this cut-off will be an outlier.

Other considerations and assumptions for 
linear regression
There are certain assumptions and considerations that need to be taken into account 
before finalizing on the model. Here are some of these.

Residual plots: The residual is the difference between the actual value and the 
predicted value of the output variable. A plot of the residuals plotted against the 
predictor variable should be randomly (normally with mean zero and constant 
variance) distributed and shouldn't have an identifiable shape. If the residual follows 
a characteristic curve, then it means that these errors can be predicted, which means 
something is wrong with the model and there is a scope for improvement. The error 
term for a fair estimate should be random and that's why if the residual plot shows a 
characteristic pattern there is a reason to improvise upon the model.

Ideally, the points in a residual plot should be:

• Symmetrically distributed or tending to cluster towards the middle of  
the plot

• There are no clear patterns in the plot

The non-ideal residual plots having characteristic shapes are observed because of 
one of the following reasons:

• Non-linear relationship
• Presence of outliers
• Very large Y-axis datapoint
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This can be taken care of by transforming the variable or removing the outlier:

Fig. 5.35: What residual plot should look like vs. what residual plot shouldn't look like

Non-constant variance of error terms: The error term associated with the model is 
assumed to have a constant variance and several calculations, standard errors, and 
confidence intervals. Hypothesis tests rely upon this assumption.
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This problem is called heteroscedasticity and can be identified by a funnel shaped 
pattern in the residual plot. Transforming the output variable using a concave 
function, such as sqrt(Y) or log(Y) generally solves the problem.

High leverage points: In contrast to outliers, which have high values for the output 
variables, the high leverage points have a very high value of predictor variables. 
Such a value can distort the model. For a model with single predictor, it is easy to 
identify this issue. It can be done in the same way, as in the case of outliers.

It is difficult to do so in case of multiple regressions, where there are more than 
one predictor variable. In this case, a variable can have a value which brings a 
considerable change in the output variable compared to the same change in another 
variable; such points are called high leverage points. These need to be removed 
and sometimes, their removal increases the efficiency of the model more than the 
removal of the outlier.

To identify high leverage points in such cases, one calculates something called 
leverage statistics, which is defined as:

( )
( )

2

2
1

'
xi xm

Leverage
n x i xm

−
= +

∑ −

Where:

• xi: This is the value of the ith row of predictor variable x
• xm: This is the mean of the predictor variable x

The denominator is summed over all the variables for that particular row.

The rows with high values of leverage statistics are ruled out of the dataset before 
kicking off the modelling process.

Summary
This chapter marks the beginning of the introduction to the algorithms, which are the 
backbone of predictive modelling. These algorithms are converted into mathematical 
equations based on the historical data. These equations are the predictive models.

In this chapter, we discussed the simplest and the most widely used predictive 
modelling technique called linear regression.
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Here is a list of things that we learned in this chapter:

• Linear regression assumes a linear relationship between an output variable 
and one or more predictor variables. The one with a single predictor variable 
is called a simple linear regression while the one with multiple variables is 
called multiple linear regression.

• The coefficients of the linear relationship (model) are estimated using the 
least sum of squares method.

• In Python, statsmodel.api and scikit-learn are the two methods to 
implement Python.

• The coefficient of determination, R2, is a good way to gauge the efficiency of 
the model in explaining the error between the predicted value and the actual 
value. The more the value of R2, the lesser the error and the better the model.

• The model parameters, such as p-values associated with the estimates of the 
co-efficients, F-statistic, and RSE should be analyzed to further assess the 
efficiency of the model.

• Multi-collinearity is an issue that arises when two of the input variables in a 
multiple regression model are highly correlated. This increases the variability 
of the coefficient estimates of the correlated variables. Variance Inflation 
Factor or VIF statistic can be used to select variables getting affected due to 
multi-collinearity. Variables with a very high VIF should be removed from 
the model.

• A dataset can be broken into training and testing data before starting the 
modelling process, in order to validate the model. K-fold cross validation 
(about which we will learn more later) is another popular method.

• scikit-learn has inbuilt methods for variable selection which will take a lot 
of time, if done manually.

• Categorical variables can be included in the model by converting them into 
dummy variables.

• Some variables might need to be transformed before they are fit into a linear 
function. Sometimes, a variable might exhibit polynomial relationship with 
its predictor variable.

The linear regression is the simplest of all the predictive models. But after going 
through this chapter, we should be able to appreciate the complexities involved in 
the process. There can be multiple variations and the fine-tuning of the model is an 
elaborate process.
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However, there's nothing to be worried about. We have gathered all the armor we 
need to implement a linear regression and understanding the model coefficients and 
parameters. The variations and kind of data shouldn't deter us in our endeavor. We 
need to fine tune the model using the methods discussed in this chapter.
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Logistic Regression  
with Python

In the previous chapter, we learned about linear regression. We saw that linear 
regression is one of the most basic models that assumes that there is a linear 
relationship between a predictor variable and an output variable.

In this chapter, we will be discussing the details of logistic regression. We will be 
covering the following topics in this chapter:

• Math behind logistic regression: Logistic regression relies on concepts 
such as conditional probability and odds ratio. In this chapter, we will 
understand what they mean and how they are applied. We will also see 
how the odds ratio is transformed to establish a linear relationship with the 
predictor variable. We will analyze the final logistic regression equation and 
understand the meaning of each term and coefficient.

• Implementing logistic regression with Python: Similar to what we did in 
the last chapter, we will take a dataset and implement a logistic regression 
model on it to understand the various nuances of logistic regression. We will 
use both the statsmodel.api and scikit-learn modules for doing this.

• Model validation: The model, once developed, needs to be validated to 
assess the accuracy and efficiency of the model. We will see how a k-fold cross 
validation works to validate a model. We will also understand concepts such 
as Sensitivity, Specificity, and the Receiver Operating Characteristic (ROC) 
curve and see how they are used for model validation.
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Linear regression versus logistic 
regression
One thing to note about the linear regression model is that the output variable is 
always a continuous variable. In other words, linear regression is a good choice 
when one needs to predict continuous numbers. However, what if the output 
variable is a discrete number. What if we want to classify our records in two or more 
categories? Can we still extend the assumptions of a linear relationship and try to 
classify the records?

As it happens, there is a separate regression model that takes care of a situation 
where the output variable is a binary or categorical variable rather than a continuous 
variable. This model is called logistic regression. In other words, logistic regression 
is a variation of linear regression where the output variable is a binary or categorical 
variable. The two regressions are similar in the sense that they both assume a linear 
relationship between the predictor and output variables. However, as we will see 
soon, the output variable needs to undergo some transformation in the case of 
logistic regression.

A few scenarios where logistic regression can be applied are as follows:

• To predict whether a random customer will buy a particular product 
or not, given his details such as income, gender, shopping history, and 
advertisement history

• To predict whether a team will win or lose a match, given the match and 
team details such as weather, form of players, stadium, and hours spent  
in training

Note how the output variable in both the cases is a binary or  
categorical variable.

The following table contains a comparison of the two models:

Linear regression Logistic regression
Predictor variables Continuous numeric/categorical Continuous numeric/categorical
Output variables Continuous numeric Categorical 
Relationship Linear Linear (with some 

transformations)
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Before we delve into implementing and assessing the model, it is of critical 
importance to understand the mathematics that makes the foundation of the 
algorithm. Let us try to understand some mathematical concepts that make the 
backbone of the logistic regression model.

Understanding the math behind logistic 
regression
Imagine a situation where we have a dataset from a supermarket store about the 
gender of the customer and whether that person bought a particular product or 
not. We are interested in finding the chances of a customer buying that particular 
product, given their gender. What comes to mind when someone poses this question 
to you? Probability anyone? Odds of success?

What is the probability of a customer buying a product, given he is a male? What is 
the probability of a customer buying that product, given she is a female? If we know 
the answers to these questions, we can make a leap towards predicting the chances 
of a customer buying a product, given their gender.

Let us look at such a dataset. To do so, we write the following code snippet:

import pandas as pd
df=pd.read_csv('E:/Personal/Learning/Predictive Modeling Book/Book 
Datasets/Logistic Regression/Gender Purchase.csv')
df.head()

Fig. 6.1: Gender and Purchase dataset

The first column mentions the gender of the customer and the second column 
mentions whether that particular customer bought the product or not. There are a 
total of 511 rows in the dataset, as can be found out by typing df.shape.
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Contingency tables
A contingency table is basically a representation of the frequency of observations 
falling under various categories of two or more variables. It comes in a matrix 
form and essentially contains the frequency of occurrences for the combination of 
categories of two or more variables.

Let us create a contingency table for the dataset we just imported and get a sense 
of how such a table actually looks. Creating a contingency table in Python is very 
simple and can be done in a single line using the crosstab method in the pandas 
library. One can actually create a crosstab object and use it for other purposes  
such as adding row/column sums. Here, we are creating a contingency table for  
the Gender and Purchase variables:

contingency_table=pd.crosstab(df['Gender'],df['Purchase'])
contingency_table

Fig. 6.2: Contingency table between Gender and Purchase variables

The interpretation of this table is simple. It implies that there are 106 females who 
didn't purchase that product, while 159 bought it. Similarly, 125 males didn't buy 
that particular product, but 121 did. Let us now find the total number of males and 
females for the purpose of calculating probabilities. The sum can be found out by 
simple manual addition. However, for the purpose of demonstrating how to do it in 
Python, let us do it using a code snippet:

contingency_table.sum(axis=1)
contingency_table.sum(axis=0)

Fig. 6.3: Totals across the rows and columns of the contingency table
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Rather than calculating numbers, one can calculate the proportions as well. In our 
case, we will try to calculate the proportion of males and females who purchased 
and who didn't purchase a particular product. The whole calculation can be done 
programmatically also using the following code snippet:

contingency_table.astype('float').div(contingency_table.
sum(axis=1),axis=0)

The result of the snippet looks as follows:

Fig. 6.4: The contingency table for Gender and Purchase in percentage format

Creating a contingency table is a first step towards exploring the data that has a 
binary outcome variable and categorical predictor variable.

Conditional probability
Remember the questions we asked at the beginning of this section? What is 
the probability of a customer buying a product, given he is a male? What is the 
probability of a customer buying that product, given she is a female? These  
questions are the reasons behind something called conditional probability.

Conditional probability basically defines the probability of a certain event 
happening, given that a certain related event is true or has already happened.  
Look at the questions above. They perfectly fit the description for conditional 
probability. The conditional probability of a purchase, given the customer is  
male, is denoted as follows:

)\(Probability Purchase Male

It is calculated by the following formula:

( / ) Total number of purchasesbymalesProbability Purchase Male
Total number of males in the group

=
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Now, when we know the required numbers and formulae, let us calculate the 
probabilities we were interested in before:

( / ) 121/ 246 0.49
( / ) 125 / 246 1 0.49 0.51
( / ) 159 / 265 0.60
( / ) 106 / 265 1 0.60 0.40

Probability Purchase Male
Probability Not Purchase Male
Probability Purchase Female
Probability Not Purchase Male

= =
= = − =

= =
= = − =

This concept comes in very handy in understanding many of the predictive models, 
as it is the building block of many of them.

Odds ratio
This is the correct time to introduce a very important concept called odds ratio.  
The odds ratio is a ratio of odds of success (purchase in this case) for each group 
(male and female in this case).

Odds of success for a group are defined as the ratio of probability of successes 
(purchases) to the probability of failures (non-purchases). In our case, the odds  
of the purchase for the group of males and females can be defined as follows:

/ (1 )
/ (1 )

m m

f f

Oddsof purchasebymales P P
Oddsof purchaseby females P P

= −

= −

Here, Pm=probability of purchase by males and Pf=probability of purchase by females.

For the preceding contingency table given:

121/ 246, 159 / 265
(121/ 246) / (125 / 246) 121/125

/ (1 ) (159 / 265) / (106 / 265) 159 /106

mP Pf
Oddsof purchasebymales
Oddsof purchaseby females Pf Pf

= =
= =
= − = =
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As it is obvious from the calculations above, the odds of the success for a particular 
group can easily be written as follows:

/

/
sm fm

sf ff

Oddsof success for males N N
Oddsof success for females N N

=

=

Here, Ns=number of successes in that group and Nf=number of failures in that group.

A few points to be noted about the odds of an event are as follows:

• If the odds of success for a group is more than 1, then it is more likely for that 
group to be successful. The higher the odds, the better the chances of success.

• If the odds of success is less than 1, then then it is more likely to get a failure. 
The lower the odds, the higher the chances of failure.

• The odds can range from 0 to infinity.

In our case, the odds of success is greater than 1 for females and less than 1 for males. 
Thus, we can conclude that females have a better chance of success (purchase), in this 
case, than males.

One better way to determine which group has better odds of success is by calculating 
odds ratios for each group. The odds ratio is defined as follows:

1/ 2
/ (1 )
/ (1 )
/
/

Odds ratio Odd of success inGroup Oddsof success in group
Pm PmOdds ratio
Pf Pf
Nsm NfmOdds ratio
Nsf Nff

=
−

=
−

=

In the preceding example we have seen:

( ) /
(121/125) / (159 /106) 0.64

( ) /
(159 /106) / (121/125) 1.54

Odds ratio for males Oddsof success for males Oddsof success for females

Odds ratio for males Oddsof Purchase for female Oddsof purchase bymales

=
= =
=
= =  
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Actually,

( 1) 1/ ( 2)Odds ratio forGroup Odds ratio forGroup=

There are a couple of important things to note about the odds ratio:

• The more the odds ratio, the more the chances of success from that group.  
In our case, the female group has an odds ratio of 1.54, which means that it  
is more probable to get success (purchase) from a female customer than a 
male customer.

• If the odds ratio=1, then there is no association between the two variables. If 
odds ratio>1, then the event is more likely to happen in Group 1. If the odds 
ratio<1, then the event is more likely to happen in Group 2.

• Also, the odds ratio for one group can be obtained by taking the reciprocal of 
the odds ratio of the other group.

Moving on to logistic regression from linear 
regression
If you remember, the equation for a simple linear regression model was as follows:

Y a b X= + ∗

In this case, Y was a continuous variable whose value can range from –infinity to 
+infinity. The X was either a continuous or a dummy categorical variable and hence 
it also ranged from –infinity to +infinity. So, the ranges of variables on both the sides 
of the equation matched.

However, when we move to logistic regression, the Y variable can take only discrete 
values, 0 or 1, as the outcome variable is a binary variable. However, predicting 0 
or 1 using an equation similar to linear regression is not possible. What if we try 
to predict the probabilities associated with the two events rather than the binary 
outcomes? Predicting the probabilities will be feasible as their range spans  
from 0 to 1.
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Earlier, we calculated the conditional probability of a customer purchasing a 
particular product, given he is male or female. These are the probabilities we are 
thinking of predicting. In the case demonstrated above, there was only one predictor 
variable, so it was very easy. However, as the number of predictor variables increase, 
these conditional probabilities will become more and more difficult to calculate. 
However, anyways, predicting probability is a better choice than predicting 0 or 1. 
Hence, for logistic regression, something like the following suits better:

P a b X= + ∗

Here P=conditional probability of success/failure given the X variable

Even with this new equation, the problem of non-matching ranges on both the sides 
of the equation persists. The P ranges from 0 to 1, while X ranges from –infinity to 
+infinity. What if we replace the P with odds, that is, P/1-P. We have seen earlier that 
the odds can range from 0 to +infinity. So, the proposed equation becomes:

/1P P a b X− = + ∗

Where P=conditional probability of success/failure given the X variable

Still the LHS of the equation ranges from 0 to +infinity, while the RHS ranges 
from –infinity to +infinity. How to get rid of this? We need to transform one side of 
the equation so that the ranges on both the sides match. What if we take a natural 
logarithm of the odds (LHS of the equation)? Then, the range on the LHS also 
becomes –infinity to +infinity.

So, the final equation becomes as follows:

log( /1 )P P a b X− = + ∗  

Here, P=conditional probability of success/failure given the X variable.

The term loge(Odds) is called logit.

The base of the logarithm is e (e=2.73) as we have taken a 
natural logarithm.
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The transformation can be better understood if we look at the plot of a logarithmic 
function. For a base greater than 1, the plot of a logarithmic function is shown  
as follows:

Fig. 6.5: The plot of a logarithmic curve for a base>1

The summary of the ranges of odds and the corresponding ranges of the loge(Odds) 
can be summarized as follows:

Range of Odds Range of loge(Odds)
0 to 1 -infinity to 0
1 to +infinity 0 to +infinity

The evolution of the transformations that lead from linear to logistic regression can 
be summarized as follows. The range on the RHS of the equation is always –infinity 
to +infinity while we transform the LHS to match it:

Transformation (LHS) Range of LHS Range of LHS

Y Y= 0 or Y= 1 Infinity<X<+infinity

P (Probability) 0<P<1 Infinity<X<+infinity

P/1-P (Odds) 0<P/1-P<+infinity Infinity<X<+infinity

log(P/1-P) -infinity<log(P/1-P)<+infinity Infinity<X<+infinity

The final equation we have for logistic regression is as follows:

( )

log( /1 )

1
1

1 1

a b X

a b X

a b X a b X

P P a b X
P e
P
eP
e e

+ ∗

+ ∗

+ ∗ − + ∗

− = + ∗

=
−

= =
+ +
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The final equation can be used to calculate the probability, given the value of X, a, 
and b:

• If a+b*X is very small, then P approaches 0
• If a+b*X is very large, then P approaches 1
• If a+b*X is ), then P=0.5

For a multiple logistic regression, the equation can be written as follows:

1 1 2 2 3 3

1 1 2 2 3 3

( )

log( /1 )
1

1

n n

a b X b X b X bn Xn

P P a b X b X b X b X

P
e− + ∗ + ∗ + ∗ + + ∗

− = + ∗ + ∗ + ∗ + + ∗

=
+ …

…………………

If we replace (X1, X2, X3,…,Xn) with Xi' and (b1, b2, b3,----,bn) with bi', the equation 
can be rewritten as follows:

( )

1
1 1

a b Xi

a b Xi a b Xi

eP
e e

′+ ∗

′ ′+ ∗ − + ∗= =
+ +

Estimation using the Maximum Likelihood 
Method
The variables a and bi are estimated using the Maximum Likelihood Method (MLE).

For a multivariate data having multiple variables and n observations, the likelihood 
(L) or the joint probability is defined as follows:

( ) ( )
( )

1 3 2

1, 1 1, 0

1 1

1

n n

n n

i y i y

L P P P P P

Pi Pi
= = = =

= ∗ ∗ ∗ − ∗ −

= ∗ −∏ ∏
… …

Here, Pi is the probability associated with the ith observation. When the outcome 
variable is positive (or 1), we take Pi for multiplying; when it is negative (or 0), we 
take (1-Pi) for multiplying in the likelihood function:

As we have seen already, the defining equation for logistic regression is as follows: 

( )
1

1 1

a b Xi

a b Xi a b Xi

ePi
e e

+ ∗

+ ∗ − + ∗
= =

+ +
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Also, assume that the output variable is Y1, Y2, Y3,…,Yn, all of which can take the 
value 0 or 1. For one predictor variable, the best estimate to predict the probability of 
the success is the mean value of all Yi's:

[ ]i m iE Y Y P= =
Here, E[Yi] = Ym is the mean of Yi's.

Hence, the equation above can be rewritten as follows:

( )

( ) ( )1

1
1 1

1/
1 1

a b Xi

i m a b Xi a b X

a b Xi
n
i a b Xi a b Xi

eP Y
e e

eYi n
e e

+ ∗

+ ∗ − + ∗

+ ∗

= + ∗ − + ∗

= = =
+ +

= ∑ = =
+ +

Thus, the equation for Likelihood becomes as follows:

1 1
1 1

1 1

a b Xi n a b Xi n
n i i
i a b Xi a b Xi

e Yi e YiL
e e

′ ′+ ∗ + ∗
= =

= ′ ′+ ∗ + ∗

   ∑ ∑
= ∏ ∗ −   + +   

Taking log on both the sides:

( )1 1 1
1 1

a b Xi a b Xi
n
i a b Xi a b Xi

e elogL Yi log Yi log
e e

+ ∗ + ∗

= + ∗ + ∗

    
= ∑ ∗ + − ∗ −    + +    

To estimate the MLE of bi's, we equate the derivative of logL to 0:

(log ) / 0U d L dXi= =

d(logL)/dXi is the partial derivative of logL with respect to each Xi (variable).

This equation is called the Score function and there would be as many such 
equations as there are variables in the dataset.

Another related calculation is that of the Fisher Information and it is given as the 
second derivative of logL:

/Fischer Information I dU dL= =
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The Fisher Information is useful because its inverse gives the variance associated 
with the estimate of the bi. In the case of multiple variables, we will get a covariance 
matrix. It is also used to decide whether the values found with the help of setting 
the derivative to 0 were maxima or minima. These many equations will be difficult 
to solve analytically and there are numerical methods such as Newton-Raphson 
methods to do the same.

Let us go a little deeper into the mathematics behind calculating the coefficients 
using the maximum likelihood estimate. The following are the steps in this process:

1. Define a function that calculates the probability for each observation, given 
the data (predictor variables).

2. Define a likelihood function that multiplies Pi's and (1-Pi)'s for each 
observation, depending on whether the outcome is 1 or 0. Calculate the 
likelihood.

3. Use the Newton-Raphson method to calculate the roots. In the  
Newton-Raphson method, one starts with a value of the root and  
updates it using the following equation for a number of times until  
it stops improving:

( ) ( )1 \ 'Xn Xn f X f X+ = −

Likelihood function:

( ) ( ) ( )( )
1, 1 1, 0

| 1
i i

N N

i i
i y i y

L X P P x P x
= = = =

= −∏ ∏

Log likelihood function:

( ) ( ) ( )( )
1, 1 0, 0

| log 1
i i

N N

i i
i y i y

L X P P x log P x
= = = =

= + −∑ ∑
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The derivative of the Log likelihood function is as follows:

( ) ( )

( )

( ) ( )

1
1 0

1 1
1 0

1

1

1 1
1

1

1 1

0

i i

i i

N N
i i i i

b i i
i i ii i
y y

N N

i i i i
i i
y y

N

i i i i i
i
N

i i i i
i

P p P p
L x x

P P

p x Px

y P y P x

y x Px

= =
= =

= =
= =

=

=

− −
∇ = −

−

= − −

= − − −  

= − =

∑ ∑

∑ ∑

∑

∑

The second derivative of the Log likelihood function is as follows:

( )

1

1
1

b

N

i b i
i
N

T
i i i

i
T

H L
b

x P

x P P x

XWX

=

=

∂
= ∇
∂

= − ∇

= − −

=

∑

∑

Partial derivatives have been taken with respect to the variable coefficients.

According to the Newton-Raphson method:

( ) ( )\
\

1 '
( ) ( )

Xn Xn f X f X
X f X f X
+ = −

∆ =
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In this case, Newton-Raphson method translates to the following:

( ) ( )
( ) T

f X first derivationof log likelihood function X Y P
f X XWX

= = −

=

 Here, W is a diagonal matrix containing the product of probabilities in the diagonal.

( ) 1, ( )THence X XWX X Y P
−

∆ = −

Here, we are solving for variable coefficients, that is, a and b. According to the 
Newton-Raphson method, if we calculate the multiplication above enough number 
of times, starting with an initial approximate value of variable coefficients (we 
assume 0 in this case), we will get the optimum values of coefficients. To help 
better understand the calculation behind the logistic regression, let us implement 
the mathematics behind the logistic regression using Python code. Let us build the 
logistic regression model from scratch.

Building the logistic regression model from scratch
The following are the steps to implement the mathematics behind the logistic 
regression. Before we start using the in-built methods in Python as a black box to 
implement logistic regression, let us create a code that can do all the computation 
and throw up coefficients and likelihoods as the results just the same way as a built 
in method in Python would. Each of the step has been defined as a separate Python 
function:

# Step 1: defining the likelihood function
def likelihood(y,pi):
    import numpy as np
    ll=1
    ll_in=range(1,len(y)+1)
    for i in range(len(y)):
        ll_in[i]=np.where(y[i]==1,pi[i],(1-pi[i]))
        ll=ll*ll_in[i]
    return ll
# Step 2: calculating probability for each observation
def logitprob(X,beta):
    import numpy as np
    rows=np.shape(X)[0]
    cols=np.shape(X)[1]
    pi=range(1,rows+1)



Logistic Regression with Python

[ 212 ]

    expon=range(1,rows+1)
    for i in range(rows):
        expon[i]=0
        for j in range(cols):
            ex=X[i][j]*beta[j]
            expon[i]=ex+expon[i]
        with np.errstate(divide='ignore', invalid='ignore'):
            pi[i]=np.exp(expon[i])/(1+np.exp(expon[i]))
    return pi
# Step 3: Calculate the W diagonal matrix
def findW(pi):
    import numpy as np
    W=np.zeros(len(pi)*len(pi)).reshape(len(pi),len(pi))
    for i in range(len(pi)):
        print i
        W[i,i]=pi[i]*(1-pi[i])
        W[i,i].astype(float)
    return W
# Step 4: defining the logistic function
def logistic(X,Y,limit):
    import numpy as np
    from numpy import linalg
    nrow=np.shape(X)[0]
    bias=np.ones(nrow).reshape(nrow,1)
    X_new=np.append(X,bias,axis=1)
    ncol=np.shape(X_new)[1]
    beta=np.zeros(ncol).reshape(ncol,1)
    root_diff=np.array(range(1,ncol+1)).reshape(ncol,1)
    iter_i=10000
    while(iter_i>limit):
        print iter_i, limit
        pi=logitprob(X_new,beta)
        print pi
        W=findW(pi)
        print W
        print X_new
        print (Y-np.transpose(pi))
        print np.array((linalg.inv(np.matrix(np.transpose(X_new))*np.
matrix(W)*np.matrix(X_new)))*(np.transpose(np.matrix(X_new))*np.
matrix(Y-np.transpose(pi)).transpose()))
        print beta
        print type(np.matrix(np.transpose(Y-np.transpose(pi)))) 
        print np.matrix(Y-np.transpose(pi)).transpose().shape
        print np.matrix(np.transpose(X_new)).shape
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        root_diff=np.array((linalg.inv(np.matrix(np.transpose(X_
new))*np.matrix(W)*np.matrix(X_new)))*(np.transpose(np.matrix(X_
new))*np.matrix(Y-np.transpose(pi)).transpose()))
        beta=beta+root_diff
        iter_i=np.sum(root_diff*root_diff)
        ll=likelihood(Y,pi)
        print beta
        print beta.shape
    return beta
# Testing the model
import numpy as np
X=np.array(range(10)).reshape(10,1)
Y=[0,0,0,0,1,0,1,0,1,1]
bias=np.ones(10).reshape(10,1)
X_new=np.append(X,bias,axis=1)

# Running logistic Regression using our function
a=logistic(X,Y,0.000000001)
ll=likelihood(Y,logitprob(X,a))
Coefficient of X = 0.66 , Intercept = -3.69
# From stasmodel.api
import statsmodels.api as sm
logit_model=sm.Logit(Y,X_new)
result=logit_model.fit()
print result.summary()
Coefficient of X = 0.66, Intercept = -3.69

Isn't this cool?! We have been able to match the exact values for the variable 
coefficient and intercept. Run these codes in your Python IDE one by one and see 
what each snippet throws up as an output. Each of them is a separate function so 
you will have to give inputs to make them run. Compare it with the calculations 
performed above and see how the steps in the calculations have been implemented.

In Python, scikit-learn performs these calculations under the hood and throws up 
the estimates for the coefficients when asked to run a logistic regression.

Making sense of logistic regression 
parameters
As with the linear regression, there are various parameters that are thrown up  
by a logistic regression model, which can be assessed for variable selection and 
model accuracy.
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Wald test
As in the case of linear regression, here also, we are estimating the values of the 
coefficients. There is a hypothesis test associated with each estimation. Here, we  
test the significance of the coefficients bi's:

: : 0
: : 0

Null Hypothesis Ho bi
AlternateHypothesis Ha bi

=
<>

The Wald statistic is defined as follows:

( 0) / ( )imWald statistic b sd bi= −

Here, bim=mean of bi and sd(bi)=standard error in estimation of bi.

The standard error comes from the Fisher Information covariance matrix. The Wald 
statistic assumes a standard normal distribution and, hence, we can perform a z-test 
over it. As we will see in the output of a logistic regression, there will be a p-value 
associated with the estimation of each bi. This p-value comes from this z-test. The 
smaller the p-value, the more the significance of that variable.

Likelihood Ratio Test statistic
The Likelihood Ratio Test statistic is the ratio of the (null) hypothesized value of the 
parameter to the MSE (alternate) values of the parameters.

The definition of the hypothesis test is the same as above:

: 0
: 0

Null Hypothesis bi
AlternateHypothesis bi

=
<>

LR statistic is given by:

( ) ( )

2log( / )
2 log( / )\ \

\2 \(

LR valueof bi given Ho valueof bi given Ha
bi Ho bi Ha

log bi Ho log bi Ha

= −
= −

= − −  
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To calculate the value of bi|Ho and bi|Ha, we need to fit two different models and 
calculate the values of bi for each model.

If the proposed model is

( ) 1 1 2 2 3 3/1 n nlog P P a b X b X b X b X− = + ∗ + ∗ + ∗ + + ∗……………

If we are testing LR statistic for b1, then Ho would give rise to the following model:

( ) 2 2 3 3: /1 n nHo log P P a b X b X b X− = + ∗ + ∗ + + ∗………………

Also, Ha would give rise to the following model:

( ) 1 1 2 2 3 3: /1 n nHa log P P a b X b X b X b X− = + ∗ + ∗ + ∗ + + ∗………………

The significance of the values of bi's is defined by the value of the LR statistic. The 
LR statistic follows a chi-square distribution with degrees of freedom equal to the 
difference in the degrees of freedom in two cases. If the p-value associated with this 
statistic is very small, then the alternate hypothesis is true, that is, the value of bi is 
significant and non-zero.

Both the models need to be fit and the MLE value of bi is calculated for bi from both 
the models. Then, a log of the ratio of the two values of bi gives the LR statistic.

Chi-square test
For large datasets (large n), a LR test reduces to a chi-square test with a degree of 
freedom equal to the number of parameters being estimated. This is the reason 
pairwise chi-square tests are often performed between the predictor and the outcome 
variable, in order to decide whether they are independent of each other or have some 
association. This is sometimes used for variable selection for the model. The variables 
for which there is an association between them and the outcome variable are better 
predictors of the outcome variable. If the null hypothesis for a predictor variable is 
rejected, then more often than not, it should be made a part of the model.
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Implementing logistic regression with 
Python
We have understood the mathematics that goes behind the logistic regression 
algorithm. Now, let's take one dataset and implement a logistic regression model 
from scratch. The dataset we will be working with is from the marketing department 
of a bank and has data about whether the customers subscribed to a term deposit, 
given some information about the customer and how the bank has engaged and 
reached out to the customers to sell the term deposit.

Let us import the dataset and start exploring it:

import pandas as pd
bank=pd.read_csv('E:/Personal/Learning/Predictive Modeling Book/Book 
Datasets/Logistic Regression/bank.csv',sep=';')
bank.head()

The dataset looks as follows:

Fig. 6.6: A glimpse of the bank dataset

There are 4119 records and 21 columns. The column names are as follows:

bank.columns.values

Fig. 6.7: The columns of the bank dataset

The details of each column are mentioned in the Data Dictionary file present in the 
Logistic Regression folder of the Google Drive folder. The type of the column 
can be found out as follows:

bank.dtypes
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Fig. 6.8: The column types of the bank dataset

Processing the data
The y column is the outcome variable recording yes and no. yes for customers who 
bought the term deposit and no for those who didn't. Let us start by converting yes-
no to 0-1 so that they can be used in modelling. This can be done as follows:

bank['y']=(bank['y']=='yes').astype(int)

The preceding code snippet converts yes to 1 and no to 0. The astype method 
converts the True/False to integer (0/1).

The education column of the dataset has many categories and we need to reduce the 
categories for a better modelling. The education column has the following categories:

bank['education'].unique()

Fig. 6.9: The categories of the education column in the bank dataset

The basic category has been repeated three times probably to capture 4, 6, and 9 
years of education. Let us club these three together and call them basic. Also, let us 
modify the categories so that they look better:

import numpy as np
bank['education']=np.where(bank['education'] =='basic.9y', 'Basic', 
bank['education'])
bank['education']=np.where(bank['education'] =='basic.6y', 'Basic', 
bank['education'])
bank['education']=np.where(bank['education'] =='basic.4y', 'Basic', 
bank['education'])
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bank['education']=np.where(bank['education'] =='university.degree', 
'University Degree', bank['education'])
bank['education']=np.where(bank['education'] =='professional.course', 
'Professional Course', bank['education'])
bank['education']=np.where(bank['education'] =='high.school', 'High 
School', bank['education'])
bank['education']=np.where(bank['education'] =='illiterate', 
'Illiterate', bank['education'])
bank['education']=np.where(bank['education'] =='unknown', 'Unknown', 
bank['education'])

After the change, this is how the categories look:

Fig. 6.10: The column types of the bank dataset

Data exploration
First of all, let us find out the number of people who purchased the term deposit and 
those who didn't:

bank['y'].value_counts()

Fig. 6.11: Total number of yes's and no's in the bank dataset

There are 3668 no's and 451 yes's in the outcome variables.

As you might have observed, there are many numerical variables in the dataset.  
Let us get a sense of the numbers across the two classes such as yes or no:

bank.groupby('y').mean()

Fig. 6.12: The mean of the numerical variables for yes's and no's
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A few points to note from the preceding output are as follows:

• The average age of customers who bought the term deposit is higher than 
that of the customers who didn't.

• The pdays (days since the customer was last contacted) is understandably 
lower for the customers who bought it. The lower the pdays, the better the 
memory of the last call and hence the better chances of a sale.

• Surprisingly, campaigns (number of contacts or calls made during the 
current campaign) are lower for customers who bought the term deposit.

We can calculate categorical means for other categorical variables such as education 
and marital status to get a more detailed sense of our data. The categorical means for 
education looks as follows:

bank.groupby('education').mean()

Fig. 6.13: The mean of the numerical variables for different categories of education

Data visualization
Let us visualize our data to get a much clearer picture of the data and significant 
variables. Let us start with a histogram of education with separate bars for customers 
who bought the term deposit and the customers who didn't.
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The tabular data for Education Level and whether they purchased the deposit or not 
would look like as follows:

Fig. 6.14: Tabular data for Education Level and Purchase

The same data can be plotted as a bar chart using the code snippet as follows:

       %matplotlib inline
pd.crosstab(bank.education,bank.y).plot(kind='bar')
plt.title('Purchase Frequency for Education Level')
plt.xlabel('Education')
plt.ylabel('Frequency of Purchase')

Fig. 6.15: Bar chart for Education Level and Frequency of Purchase
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As is evident in the preceding plot, the frequency of purchase of the deposit depends 
a great deal on the Education Level. Thus, the Education Level can be a good 
predictor of the outcome variable.

Let us draw a stacked bar chart of the marital status and the purchase of term 
deposit. Basically, the chart will represent the proportion of the customers who 
bought the customers from each marital status. It looks as follows:

table=pd.crosstab(bank.marital,bank.y)
table.div(table.sum(1).astype(float), axis=0).plot(kind='bar', 
stacked=True)
plt.title('Stacked Bar Chart of Marital Status vs Purchase')
plt.xlabel('Marital Status')
plt.ylabel('Proportion of Customers')

Fig. 6.16: The bar chart for the Marital Status and Proportion of Customers

The frequency of the purchase of the deposit is more or less the same for each marital 
status; hence, it might not be very helpful in predicting the outcome.

Let us plot the bar chart for the Frequency of Purchase against each day of the 
week to see whether this can be a good predictor of the outcome:

%matplotlib inline
import matplotlib.pyplot as plt
pd.crosstab(bank.day_of_week,bank.y).plot(kind='bar')
plt.title('Purchase Frequency for Day of Week')
plt.xlabel('Day of Week')
plt.ylabel('Frequency of Purchase')



Logistic Regression with Python

[ 222 ]

The plot (the frequency of the positive outcomes) varies depending on the month of 
the year; hence, it might be a good predictor of the outcome:

Fig. 6.17: The bar chart for Month of the Year and Frequency of Purchase

The Histogram of Age variable looks as follows, suggesting that the most of the 
customers of the bank in this dataset are in the age range of 30-40:

import matplotlib.pyplot as plt
bank.age.hist()
plt.title('Histogram of Age')
plt.xlabel('Age')
plt.ylabel('Frequency')

Fig. 6.18 The bar chart for customer's Age and Frequency of Purchase
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Another bar chart of Poutcome and the frequency of purchase shows that the 
Poutcome might be an important predictor of the outcome:

Fig. 6.19: The bar chart for Poutcome and Frequency of Purchase

Several other charts can be plotted to gauge which variables are more significant and 
which ones are not in order to predict the outcome variable.

Creating dummy variables for categorical 
variables
There are many categorical variables in the dataset and they need to be converted 
to dummy variables before they can be used for modelling. We know the process 
of converting a categorical variable into a dummy variable. However, since there 
are many categorical variables, it would be time-efficient to automate the process 
using a for loop. The following code snippet will create dummy variables for each 
categorical variables and join these dummy variables to the bank data frame:

cat_vars=['job','marital','education','default','housing','loan','cont
act','month','day_of_week','poutcome']
for var in cat_vars:
    cat_list='var'+'_'+var
    cat_list = pd.get_dummies(bank[var], prefix=var)
    bank1=bank.join(cat_list)
    bank=bank1
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The actual categorical variable needs to be removed once the dummy variables have 
been created. We have done something like this earlier in this book:

cat_vars=['job','marital','education','default','housing','loan','cont
act','month','day_of_week','poutcome']
bank_vars=bank.columns.values.tolist()
to_keep=[i for i in bank_vars if i not in cat_vars]

Let us subset the bank data frame to keep only the columns present in the  
to_keep list:

bank_final=bank[to_keep]
bank_final.columns.values

Fig. 6.20: Column names after creating dummy variables for categorical variables

The outcome variable is y and all the other variables are predictor variables.  
The X predictor and the Y outcome variable can be created using the code  
snippet as follows:

bank_final_vars=bank_final.columns.values.tolist()
Y=['y']
X=[i for i in bank_final_vars if i not in Y ]
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Feature selection
Before implementing the model, let us perform a feature selection to decide the 
significant variables that can predict the outcome with great accuracy. We have the 
freedom to select as many as variables as we can. Let us select 12 columns. This can 
be done as follows, which is similar to that done in the chapter on linear regression:

from sklearn import datasets
from sklearn.feature_selection import RFE
from sklearn.linear_model import LogisticRegression

model = LogisticRegression()

rfe = RFE(model, 12)
rfe = rfe.fit(bank_final[X],bank_final[Y] )
print(rfe.support_)
print(rfe.ranking_)

The output of the preceding code snippet are two arrays. One contains the support 
and the other contains the ranking. The columns that have True in the support array 
are selected for the model, or the columns that have the value 1 in the rank array are 
selected for the model. If we want to include more (than 12) columns in the model, 
we can select the columns with the rank 2 onwards:

Fig. 6.21: The outcome of feature selection process. The columns with True/1 in the respective positions should 
be selected for the final model

The columns that are selected using this method are as follows:

'previous', 'euribor3m', 'job_entrepreneur', 'job_self-employed', 
'poutcome_success', 'poutcome_failure', 'month_oct', 'month_
may','month_mar', 'month_jun', 'month_jul', 'month_dec'
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Next, we will try to fit a logistic regression model using the preceding selected 
variables as predictor variables, with the y as the outcome variable:

cols=['previous', 'euribor3m', 'job_entrepreneur', 'job_self-
employed', 'poutcome_success', 'poutcome_failure', 'month_oct', 
'month_may',
    'month_mar', 'month_jun', 'month_jul', 'month_dec'] 
X=bank_final[cols]
Y=bank_final['y']

Implementing the model
Let's first use the stasmodel.api method to run the logistic regression model as 
shown in the following code snippet:

import statsmodels.api as sm
logit_model=sm.Logit(Y,X)
result=logit_model.fit()
print result.summary()

Fig. 6.22: The summary of the logistic regression model with selected variables



Chapter 6

[ 227 ]

One advantage of this method is that p-values are calculated automatically in the 
result summary. The scikit-learn method doesn't have this facility, but is more 
powerful for calculation-intensive tasks such as prediction, calculating scores, and 
advanced functions such as feature selection. The statsmodel.api method can be 
used while exploring and fine-tuning the model, while the scikit-learn method 
can be used in the final model used to predict the outcome.

The summary of the model looks as shown in the preceding screenshot. For 
each variable, the coefficient value has been estimated, and corresponding to 
each estimation, there is a std error and p-value. This p-value corresponds to the 
hypothesis testing of the Wald statistics, and the lower the p-value, the more the 
significance of the variable in the model. For most of the variables in this model,  
the p-values are very less and, hence, most of them are significant to the model.

We will be using the scikit-learn method to fit the model as is shown in the 
following code snippet:

from sklearn import linear_model
clf = linear_model.LogisticRegression()
clf.fit(X, Y)

The accuracy of this model can be calculated as follows:

clf.score(X,Y)

The value comes out to be .902. The mean value of the outcome is .11, meaning that 
the outcome is positive (1) around 11% of the time and negative around 89% of the 
time. So, even by predicting 0 for all the rows, one could have achieved an accuracy 
rate of 89%. Our model takes this accuracy to 90.2. For a little bit of enhancement, 
maybe, we can try reducing the number of columns, training-testing split, and cross 
validation to increase this score.
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For this method, one can get the value of the coefficients using the following  
code snippet:

import numpy as np
pd.DataFrame(zip(X.columns, np.transpose(clf.coef_)))

Fig. 6.23: Coefficients for the variables in the model

The variable coefficients indicate the change in the log (odds) for a unit change in 
the variable. The coefficient for the previous variable is 0.37. This implies that, if the 
previous variable increases by 1, the log(odds) will increase by 0.37 and, hence, the 
probability of the purchase will change accordingly.

Model validation and evaluation
The preceding logistic regression model is built on the entire data. Let us now split 
the data into training and testing sets, build the model using the training set, and 
then check the accuracy using the testing set. The ultimate goal is to see whether it 
improves the accuracy of the prediction or not:

from sklearn.cross_validation import train_test_split
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_
size=0.3, random_state=0)

The preceding code snippet creates testing and training datasets for a predictor 
and also outcome variables. Let us now build a logistic regression model over the 
training set:

from sklearn import linear_model
from sklearn import metrics
clf1 = linear_model.LogisticRegression()
clf1.fit(X_train, Y_train)



Chapter 6

[ 229 ]

The preceding code snippet creates the model. If you remember the equation behind 
the model, you will know that the model predicts probabilities and not the classes 
(binary output, that is, 0 or 1). One needs to select a threshold over these probabilities 
to classify them into two categories. Something of this sort: if the probability is less 
than the threshold, then it is a 0 outcome, and if it is greater than the threshold, then 
it is a 1 outcome.

Let us see how we can get those probabilities and classifications:

probs = clf1.predict_proba(X_test)

This gives the probability of a negative and positive outcome for each row of  
the data:

Fig. 6.24: Predicted probability values for each observation

The second column provides the probability of a positive outcome (purchase of a 
deposit outcome in our case). By default, if this probability is more than 0.5, then the 
observation is categorized as a positive outcome, and as a negative outcome if it is 
less than that.

The default outcome for predicting the class can be found out using the following 
code snippet:

predicted = clf1.predict(X_test)

The output is an array consisting of 0 and 1. In the default case, it categorizes 
probabilities less than 0.5 as 0, and more than that as 1. One can use different  
cutoffs for this as well. One can change it to 0.15 or 0.20 depending upon the 
situation. In our case, we have seen that only 10% of the customers buy the product; 
hence, probability=0.10 can be a good threshold. If an observation has a probability 
of more than 0.10, we can classify it as a positive outcome (a customer will buy the 
product). An observation with the probability less than 0.10 will be classified as a 
negative outcome.
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The changing of threshold values can be done using the following code snippet:

import pandas as pd
import numpy as np
prob=probs[:,1]
prob_df=pd.DataFrame(prob)
prob_df['predict']=np.where(prob_df[0]>=0.10,1,0)
prob_df.head() 

The number of positive and negative responses will change with the threshold 
values. The percentage of positive outcomes with three different threshold 
probabilities are mentioned as follows:

Threshold % Positive outcome
0.10 28%
0.15 18%
0.05 65%

Let us check the accuracy of this model using the following code snippet:

print metrics.accuracy_score(Y_test, predicted)

This model has the same accuracy of 90.21% as the previous model.

Cross validation
Cross validation is performed on a dataset while predicting to check how well the 
model will generalize its results on an independent dataset.

Cross validation is required to deal with an issue common with the predictive 
models. The models are developed based on one set of data, and most of the model 
parameters are calculated using the criterion of the most optimal fit with the data on 
which the model is being built. This leads to a problem called overfitting, wherein 
the model fits the given (training) data very well, but doesn't reproduce the good 
fitting with some other (testing) dataset. This problem is more severe in the case of 
datasets with less observations.

Splitting up a dataset in the training and testing dataset is the simplest way to do 
cross validation. This is called a holdout method, wherein the training set and testing 
set are randomly chosen.
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The most popular way to perform a cross validation is using something called as 
k-fold cross validation. It is done as follows:

1. Divide the data set into k partitions.
2. One partition is used as the test set, while the other k-1 partitions together 

are used as the training set.
3. The process in (2) is repeated k times with a different partition as the testing 

dataset and the rest of them as the training dataset in each iteration.
4. For each iteration, the model accuracy is calculated and averaged out over 

the iterations. The averaged value is the value of the model accuracy.
5. If the accuracy of the model doesn't vary much and the average accuracy 

remains closer to the accuracy numbers calculated for the model before,  
then it can be confirmed that the model generalizes well.

Each observation gets to be part of the testing dataset exactly once, while each row 
becomes part of the training dataset exactly k-1 times. One advantage of this method 
is that each of the observations get to be part of either testing or training dataset 
at least once; hence, it leads to a better generalization. K=10 is generally the norm, 
but can be changed according to the situation. In scikit-learn, there is a separate 
method to perform cross validation which can be done very easily:

from sklearn.cross_validation import cross_val_score
scores = cross_val_score(linear_model.LogisticRegression(), X, Y, 
scoring='accuracy', cv=8)
print scores
print scores.mean()

The preceding code snippet basically runs an 8-fold cross validation method and 
calculates the accuracy for each of the iterations. The average accuracy is also 
printed:

Fig. 6.25: The accuracy for each run (fold) of the model during cross validation

The average accuracy remains very close to the accuracy we have observed before; 
hence, we can conclude that the model generalizes well.
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Model validation
Once the model has been built and evaluated, the next step is to validate the model. 
In the case of logistic regression models or classification models in general, we 
basically validate the model by comparing the actual class with the predicted class. 
There are various ways to do this, but the most famous and widely used is the 
Receiver Operating Characteristic (ROC) curve.

The ROC curve
An ROC curve is a graphical tool to understand the performance of a classification 
model. For a logistic regression model, a prediction can either be positive or 
negative. Also, this prediction can either be correct or incorrect.

There are four categories in which the predictions of a logistic regression model  
can fall:

Actual/predicted Positive Negative
Positive True Positive (TP):

• Correct positive 
prediction

• Actually positive and 
prediction is also positive

True Negative (TN):
• Correct negative 

prediction
• Actually negative 

and prediction is also 
negative

Negative False Positive (FP):
• Incorrect positive 

prediction
• Actually negative and 

prediction is positive

False Negative (FN):
• Incorrect negative 

prediction
• Actually positive and 

prediction is negative

So, True Positives are the ones that are actually positive, and the model has also 
predicted a positive outcome for them. False Positives are false successes. These are 
actually failures, but the model is predicting them as successes. False Negatives are 
actually successes, but the model predicts them as failures.

Let us state some totals in terms of these categories:

• The total number of actual positive = TP+FN
• The total number of actual negative = TN+FP
• The total number of correct predictions = TP+TN
• The total number of incorrect predictions = FP+FN
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Aware of these terms, we can now understand the terms that are the constituents of a 
ROC curve. These terms are as follows:

Sensitivity (True Positive Rate): This is the proportion of the positive outcomes that 
are identified as such (as positives) by the model:

/ ( )Sensitivity TP TP FN= +

Specificity (True Negative Rate): This is the proportion of the negative outcomes 
that are identified as such (as negatives) by the model:

/ ( )Specificity TN TN FP= +

Sensitivity wards off against False Positive, while the Specificity does the  
same against False Negative. A perfect model will be 100% sensitive and  
also 100% specific.

An ROC curve is a plot of True Positive Rate vs False Positive Rate where False 
Positive Rate=FP/(TN+FP) =1-Specificity.

As we saw earlier, the number of positive and negative outcomes change as we 
change the threshold of probability values to classify a probability value as a positive 
or negative outcome. Thus, the Sensitivity and Specificity will change as well.

An ROC curve has the following important properties:

• Any increase in Sensitivity will decrease the Specificity
• The closer the curve is to the left and upper border of the quadrant, the better 

the model prediction
• The closer the curve is to the diagonal line, the worse the model prediction is
• The larger the area under the curve, the better the prediction

The following are the steps in plotting an ROC curve:

1. Define several probability thresholds and calculate Sensitivity and 
1-Specificity for each threshold.

2. Plot Sensitivity and 1-Specificity points obtained in this way.

Let us plot the ROC curve for the model we built earlier in this chapter by following 
the steps described above. Later, we will see how to do it using the built-in methods 
in scikit-learn.
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This is the model that we ran and calculated the probabilities for each observation:

from sklearn.cross_validation import train_test_split
from sklearn import linear_model
from sklearn import metrics
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_
size=0.3, random_state=0)
clf1 = linear_model.LogisticRegression()
clf1.fit(X_train, Y_train)
probs = clf1.predict_proba(X_test)

Each probability value is then compared to a threshold probability, and categorized 
as 1 (positive outcome) if it is greater than threshold probability and 0 if less than 
threshold probability. It can be done using the following code snippet (we have 
chosen a threshold probability of 0.05 in this case):

prob=probs[:,1]
prob_df=pd.DataFrame(prob)
prob_df['predict']=np.where(prob_df[0]>=0.05,1,0)
prob_df['actual']=Y_test
prob_df.head()

The resulting data frame looks as follows:

Fig. 6.26: Predicted and actual outcomes for the bank dataset

Confusion matrix
The result of how many correct and incorrect predictions were made can be 
summarized using what is called a confusion matrix. A confusion matrix is just 
a tabular representation to state the number of TPs, TNs, FPs, and FNs. Once we 
have a data frame in such a format, we can calculate the confusion matrix using the 
crosstab statement as follows:

confusion_matrix=pd.crosstab(prob_df['actual'],prob_df['predict'])
confusion_matrix
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The confusion matrix in this case is as follows:

At p=0.05:

Predict

actual

0

1

0 1

413

15

701

107

TN
413

FN
15

FP
701

TP
107

Sensitivity

1-Specificity

=107/
(107+15)
=0.87

=701/
(413+701)
=0.62

Fig. 6.27.1: Confusion matrix at p=0.05

At p=0.10:

Predict

actual

0

1

0 1

847

46

267

76

TN
847

FN
46

FP
267

TP
76

Sensitivity

1-Specificity

=76/
(76+46)
=0.62

=267/
(267+847)
=0.23

Fig. 6.27.2: Confusion matrix at p=0.10

The Sensitivity and Specificity are calculated at various other probability threshold 
levels and then the Sensitivity and (1-Specificity) are plotted against each other. The 
Sensitivity and (1-Specificity) or FPR at different threshold probability values are 
summarized as follows:

Threshold p Sensitivity (1-Specificity)
0.05 0.87 0.62
0.10 0.62 0.23
0.07 0.67 0.27
0.12 0.59 0.17
0.20 0.50 0.12
0.25 0.41 0.07
0.04 0.95 0.76



Logistic Regression with Python

[ 236 ]

As one can observe, as the threshold of the probability increases, both the Sensitivity 
and the FPR (1-Specificity) decreases. Now, we have the Sensitivity and Specificity 
at different threshold probabilities. We can make use of this data to plot our ROC 
curve. A diagonal (y=x) line is a good benchmark for an ROC curve. If the ROC  
curve lies above the diagonal line, then the model is considered a better predictor 
than a random guess (represented by a diagonal line). An ROC curve lying below  
the diagonal line indicates that the model is a worse predictor compared to a  
random guess.

Let us plot our ROC curve and also the diagonal line and see whether the ROC  
curve lies above the diagonal line or below. This can be done using the following 
code snippet:

import matplotlib.pyplot as plt
%matplotlib inline
Sensitivity=[1,0.95,0.87,0.62,0.67,0.59,0.5,0.41,0]
FPR=[1,0.76,0.62,0.23,0.27,0.17,0.12,0.07,0]
plt.plot(FPR,Sensitivity,marker='o',linestyle='--',color='r')
x=[i*0.01 for i in range(100)]
y=[i*0.01 for i in range(100)]
plt.plot(x,y)
plt.xlabel('(1-Specificity)')
plt.ylabel('Sensitivity')
plt.title('ROC Curve')

The ROC curve looks as follows:

Fig. 6.28: The ROC curve drawn without using the scikit-learn methods
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The curve in red is the ROC curve, while the blue line is the benchmark diagonal 
line. The ROC curve lies above the diagonal line and, hence, the model is a better 
predictor than a random guess. However, there can be many ROC curves lying 
above the diagonal line. How to determine one ROC curve is better than the other? 
This is determined by calculating the area enclosed under the ROC curves. The more 
the area enclosed by the ROC curve, the better it is. The area under the curve can lie 
between 0 and 1. The closer it is to 1, the better it is.

Let us now see how we can draw an ROC curve and calculate the area under 
the curve using the methods built in scikit-learn. This can be done using the 
following code snippet. Make sure you install the ggplot package before running 
this snippet:

from sklearn import metrics
from ggplot import *

prob = clf1.predict_proba(X_test)[:,1]
fpr, sensitivity, _ = metrics.roc_curve(Y_test, prob)

df = pd.DataFrame(dict(fpr=fpr, sensitivity=sensitivity))
ggplot(df, aes(x='fpr', y='sensitivity')) +\
    geom_line() +\
    geom_abline(linetype='dashed')

Fig. 6.29: The ROC curve drawn using the scikit-learn methods
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The area under the curve can be found out as follows:

auc = metrics.auc(fpr,sensitivity)
auc

The area under the curve comes out to be 0.76, which is pretty good. The area under 
the curve can be plotted using the following code snippet:

ggplot(df, aes(x='fpr', ymin=0, ymax='sensitivity')) +\
    geom_area(alpha=0.2) +\
    geom_line(aes(y='sensitivity')) +\
    ggtitle("ROC Curve w/ AUC=%s" % str(auc))

The plot looks as follows:

Fig. 6.30: The area under the ROC curve drawn using the scikit-learn methods
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Summary
A logistic regression is a versatile technique used widely in the cases where the 
variable to be predicted is a binary (or categorical) variable. This chapter dives deep 
into the math behind the logistics regression and the process to implement it using 
the scikit-learn and statsmodel api modules. It is important to understand 
the math behind the algorithm so that the model is not used as a black box without 
knowing what is going on behind the hood. To recap, the following are the main 
takeaways from the chapter:

• Linear regression wouldn't be an appropriate model to predict binary 
variables as the predictor variables can range from -infinity to +infinity, 
while the binary variable would be 0 or 1.

• The odds of a certain event happening is the probability of that event 
happening divided by the probability of that event not happening. The 
higher the odds, the higher are the chances of the event happening. The  
odds can range from 0 to infinity.

• The final equation for the logistic regression is:

( /1 ) 1 1 2 2 3 3log P P a b X b X b X bn Xn− = + ∗ + ∗ + ∗ + + ∗……………

• The variable coefficients are calculated using the maximum Log-likelihood 
estimate. The roots of the equation are often calculated using the Newton-
Raphson method.

• Each coefficient estimate has a Wald statistic and p-value associated to it.  
The smaller the p-value, the more significant the variable coefficient is to  
the model.

• The model can be validated using the k-fold cross validation technique, 
wherein the logistic regression model is run k-times using the testing and 
training data derived from the overall dataset.

• The model predicts the probability for each observation. A threshold 
probability value is defined to categorize the probability values as  
0 (failures) and 1 (successes).

• Sensitivity measures what proportion of successes were actually identified 
as successes, while Specificity measures what proportion of failures were 
actually identified as failures.
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• An ROC curve is a plot of Sensitivity vs (1-Specificity). A diagonal (y=x) line 
is a good benchmark for the ROC curve. If the curve lies above the diagonal 
line, the model is better than a random guess. If the curve lies below, then the 
model is worse than a random guess.

It will do wonders for your understanding of logistic regression if you take a dataset 
and try implementing a logistic regression model on it. In the next chapter, we will 
learn about an unsupervised algorithm called Clustering or Segmentation that is 
used widely in marketing and natural sciences.
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Clustering with Python
In the previous two chapters, we discussed and understood two important 
algorithms used in predictive analytics, namely, linear regression and logistic 
regression. Both of them are very widely used. They are supervised algorithms. If 
you stress your memory a tad bit and have thoroughly read the previous chapters 
of the book, you would remember that a supervised algorithm is one where 
the historical value of an output variable is known from the data. A supervised 
algorithm uses this value to train and build the model to forecast the value of an 
output variable for a dataset in future. An unsupervised algorithm, on the other 
hand, doesn't have the luxury or constraints (different perspectives of looking at it) 
of the output variable. It uses the values of the predictor variables instead to build  
a model.

Clustering—the algorithm that we are going to discuss in this chapter—is an 
unsupervised algorithm. Clustering or segmentation, as the name suggests, 
categorizes entries in clusters or segments in which the entries are more similar to 
each other than the entries outside the cluster. The properties of such clusters are 
then identified and treated separately. Once the clusters are defined, one can identify 
the properties of the cluster and define plans or strategy separately for each cluster. 
This results in efficient strategizing and planning for each cluster.

The broad focus of this chapter will be clustering and segmentation and by the end 
of this chapter, you would be able to learn the following:

• Math behind the clustering algorithms: This section will talk about 
the various kinds of measures of similarity or dissimilarity between 
observations. The similarity or dissimilarity is measured in something  
called distances. We will look at different types of distances and create 
distance metrics.
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• Different types of clustering algorithms: This section has information about 
two kinds of clustering algorithms, namely, hierarchical clustering and 
k-means clustering. The details of the two algorithms will be illustrated  
using tables and code simulations.

• Implementing clustering using Python: This section will deal with 
implementing k-means clustering algorithm on a dataset from scratch, 
analyzing and making sense of the output, generating plots showing the 
clusters, and making contextual sense of the clusters.

• Fine-tuning the clustering: In this section, we will cover topics such as 
finding the optimum number of clusters and calculating a few statistics to 
check the efficiency of the clustering we performed.

Introduction to clustering – what, why,  
and how?
Now let us discuss the various aspects of clustering in greater detail.

What is clustering?
Clustering basically means the following:

• Creating a group with a high similarity among the members of clusters
• Creating a group with a significant distinction or dissimilarity between the 

members of two different clusters

The clustering algorithms work on calculating the similarity or dissimilarity between 
the observations to group them in clusters.

How is clustering used?
Let us look at the plot of Monthly Income and Monthly Expense for a group of 
400 people. As one can see, there are visible clusters of people whose earnings and 
expenses are different from people from other clusters, but are very similar to the 
people in the cluster they belong to:



Chapter 7

[ 243 ]

Fig. 7.1: Illustration of clustering plotting Monthly Income vs Monthly Expense

In the preceding plot, the visible clusters of the people can be identified based on 
their income and expense levels, as follows:

• 1 (low income, low expense): The cluster marked as 1 has low income and 
low expense levels

• 2 (medium income, less expense): The cluster marked as 2 has a medium 
level of income, but spend less—only a little higher than the people in the 
cluster 1 with low income

• 3 (medium income, medium or high expense): The cluster marked as 3 also 
has medium levels of income, almost the same range as cluster 2, but they 
spend more than cluster 2

• 4 (high income, high expense): The cluster marked as 4 has a high level of 
income and a high level of expense

This analysis can be very helpful if, let's say, an organization is trying to target 
potential customers for their different range of products. Once the clusters are 
known, the organization can target different clusters for different ranges of their 
products. Maybe, they can target the cluster 4 to sell their premium products and 
cluster 1 and 2 to sell their low-end products. This results in higher conversion rates 
for the advertisement campaigns.
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This was one of the illustrations of how clustering can be advantageous. This was a 
very simple case with just the two attributes of the potential customers, and we were 
able to plot it on a 2D graph and look at the clusters. However, this is not the case 
for most of the time. We need to define some generalized metric for the similarity or 
dissimilarity of the observations. Also, we will discuss this in detail later in  
this chapter.

Some of the properties of a good cluster can be listed as follows:

• Clusters should be identifiable and significant in size so that they can be 
classified as one.

• Points within a cluster should be compactly placed within themselves and 
there should be minimum overlap with points in the other clusters.

• Clusters should make business sense. The observations in the same cluster 
should exhibit similar properties when it comes to the business context.

Why do we do clustering?
Clustering can have a variety of applications. The following are some of the cases 
where clustering is used:

• Clustering and segmentation are the bread and butter of the marketing 
professionals. The advent of digital marketing has made clustering 
indispensable. The goal here is to find customers who think, behave, and 
make decisions on similar lines and reach out to them and persuade them in 
a fashion tailor-made for them. Think of Facebook and sponsored posts. How 
do they use the demography, age group, and your preferences data to show 
you the most relevant posts?

• Remember those taxonomy charts in Biology books from high school? Well, 
that is one of the most widely used applications of clustering—a particular 
type called hierarchical clustering. The clustering, in this case, happens on 
the basis of the similarity between sequences of amino acids between the two 
genus/species.

• Clustering is used in seismology to find the expected epicenter of 
earthquakes and identify earthquake-prone zones.

• Clustering is also used to impute values to the missing elements in a dataset. 
Remember that we imputed the missing values with the mean of the rest of 
the observations. To start with, some forms of clustering require calculating 
or assuming the centroid of the clusters. These can be used to impute  
missing values.
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• Clustering is used in urban planning to group together houses according to 
their geography, value, and amenities. It can also be used to identify a spot 
for public amenities such as public transport stops, mobile signal towers,  
and so on.

Mathematics behind clustering
Earlier in this chapter, we discussed how a measure of similarity or dissimilarity is 
needed for the purpose of clustering observations. In this section, we will see what 
those measures are and how they are used.

Distances between two observations
If we consider each observation as a point in an n-dimensional space, where n is 
the number of columns in the dataset, one can calculate the mathematical distance 
between the points. The lesser the distance, the more similar they are. The points that 
are less distant to each other will be clubbed together.

Now, there are many ways of calculating distances and different algorithms use 
different methods of calculating distance. Let us see the different methods with a few 
examples. Let us consider a sample dataset of 10 observations with three variables, 
each to illustrate the distance better. The following dataset contains percentage 
marks obtained by 10 students in English, Maths, and Science:

Student English Maths Science
1 0.12 0.49 0.21
2 0.21 0.81 0.79
3 0.73 0.30 0.99
4 0.55 0.03 0.17
5 0.15 0.83 0.25
6 0.24 0.37 0.63
7 0.20 0.82 0.85
8 0.17 0.92 0.45
9 0.26 0.16 0.31
10 0.15 0.47 0.23

Table 7.1: Percentage marks obtained by 10 students in English, Maths, and Science
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Euclidean distance
This is the most commonly used definition of the distance. Let us denote each 
observation as Xi. Then, the Euclidean distance between the two points, Xi and Xj, 
for a dataset having n-columns, is defined as follows:

( ) ( ) ( )2 2 2

. .1 .1 .2 .2 . .i j i j i j i n j nD X X X X X X= − + − + + −……

For our dataset, the Euclidean distance between the student 1 and 2 is calculated  
as follows:

( ) ( ) ( )2 2 2
1.2 0.12 0.21 0.49 0.81 0.21 0.79 0.67S = − + − + + − =……

Thus, the Euclidian distance between the student 1 and 2 comes out to be 0.67.

Manhattan distance
Manhattan distance is defined as follows:

( ). .1 .1 .2 .2 . .| | | | | |i j i j i j i n j nD X X X X X X= − + − + + −……

Minkowski distance
Minkowski distance is defined as follows:

( ) ( ) ( )( ). .1 .1 .2 .2 . .| | | | | | 1/
P P P

i j i j i j i n j nD X X X X X X p= − + − + + −……

where p>=1

The distance matrix
Once we have defined the distance between the two points, we can calculate 
the distance between any two points and store them as a matrix. This matrix 
representing the distance between any two points (observations) in the dataset is 
called a distance matrix. A distance matrix has certain properties as follows:

• All the diagonal elements in a distance matrix have a value 0 as they 
represent the distance of the point from itself, that is, Di,i=0 for all i's.
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• For a dataset with n observations, we get a nxn distance matrix.
• A distance matrix is a symmetric matrix as the distance between the two 

points is the same, irrespective of the order of the points. The distance 
between point 1 and point 2 is the same as the difference between point 2  
and point 1. This implies Di,j = Dj,I for all i's and j's.

For our dataset containing information about the marks of 10 students, it would 
be a 10x10 matrix. If we decide to calculate the matrix for Euclidean distances, the 
distance matrix will look as follows:

 1 2 3 4 5 6 7 8 9 10
1 0.00 0.67 1.01 0.63 0.33 0.45 0.72 0.49 0.37 0.04
2 0.67 0.00 0.76 1.06 0.55 0.47 0.06 0.36 0.81 0.66
3 1.01 0.76 0.00 0.88 1.08 0.62 0.76 1.00 0.84 0.97
4 0.63 1.06 0.88 0.00 0.89 0.65 1.10 1.01 0.35 0.60
5 0.33 0.55 1.08 0.89 0.00 0.60 0.60 0.23 0.68 0.35
6 0.45 0.47 0.62 0.65 0.60 0.00 0.50 0.58 0.38 0.41
7 0.72 0.06 0.76 1.10 0.60 0.50 0.00 0.41 0.85 0.71
8 0.49 0.36 1.00 1.01 0.23 0.58 0.41 0.00 0.78 0.50
9 0.37 0.81 0.84 0.35 0.68 0.38 0.85 0.78 0.00 0.34
10 0.04 0.66 0.97 0.60 0.35 0.41 0.71 0.50 0.34 0.00

Table 7.2: Distance matrix for marks information for 10 students

Each element of this matrix has been calculated in the same way as we calculated 
S1,2, only that the different rows are used for calculation. One can observe that 
these two properties stated above are satisfied. The diagonal elements are all 0. 
Interpreting a distance matrix is simple. The value in the 2nd row and the 1st column 
gives the distance between the 2nd and the 1st student (or the 1st and the 2nd 
student), and so on. So, D1,3=1.01, D2,5 = 0.55, D6,8 = 0.58, and so on.

Normalizing the distances
These distances can sometimes be misleading if the variables are not in the same 
numerical range. What happens in such cases is that the variables having larger 
numerical values start influencing the distance more than the variables having 
smaller numerical values. This gives undue importance to the variables with  
large numerical values and subdues the importance of the ones with small  
numerical values.
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The following dataset has the data of the Monthly Income, Monthly Expense, and 
Education Level for 10 customers. Look at the 1 and 9 customers. The difference in 
their monthly income is 1758. The difference in the monthly expense is 7707. Also, 
the difference in the education level is just 3. The contribution of the education 
level in distance becomes insignificant compared to the contribution of the other 
two variables even though, actually, the difference of 3 in the education level might 
matter more. This creates a problem as the distance is not a reliable measure of 
similarity anymore and can give rise to incorrect clustering.

Let us look at the following datasheet:

Fig. 7.2: Monthly Income, Monthly Expense and Education Levels

The solution to this problem is normalizing the values of the variables to bring them 
in the same numerical range. The normalization entails the numerical transformation 
of each value so that they come in the same numerical range. The following method 
is used to normalize values. This method uses the min and max values and the 
transformation is defined as follows:

( ) ( )/i i min max minZ X X X - X= −

Note that Xi is the value of the variables, Xmin is the minimum value of the  
variable, Xmax is the maximum value of the variable, and Zi is the normalized  
value of the variable.

The preceding dataset shows us how to normalize using the preceding equation;  
the datasheet looks as shown:
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Fig. 7.3: Monthly Income, Monthly Expense, and Education Levels after normalization

Linkage methods
While clustering the observations using the distances, one needs to link two or more 
points or clusters to form a new cluster or grow an already existing cluster. The 
distance between two clusters can be defined in many ways; for example, it can be 
the minimum distance between two points in two clusters, the maximum distance 
between two such points, or the distance between the centroids of the two clusters. 
The two clusters having the minimum distance between each other are clubbed 
together. Corresponding to each definition of the distance between the two  
clusters, there is a linkage method. Some of these linkage methods are shown  
in the following sections.

Single linkage
• The distance between two clusters is the minimum distance between a point 

in cluster 1 and cluster 2
• Two clusters having the smallest distance between them are combined  

as follows:

( ) ( )( ), ,d Cm Cn min d i j=

Here, Cm and Cn are two clusters; i and j are are points in the m and n clusters.
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Compete linkage
• The distance between two clusters is the maximum distance between a point 

in cluster 1 and cluster 2
• Two clusters having the smallest distance between them are combined  

as follows:

( ) ( )( ), ,d Cm Cn max d i j=

Here, Cm and Cn are two clusters; i and j are points in the m and n clusters.

Average linkage
• The distance between two clusters is the average distance between a point in 

cluster 1 and cluster 2
• Two clusters having the smallest distance between them are combined  

as follows:

( ) ( )( ), ,d Cm Cn avg d i j=

Here, Cm and Cn are two clusters; i and j are points in the m and n clusters.

Centroid linkage
• The distance between two clusters is the distance between the centroid 

(mean) of all the points in cluster 1 and the centroid (mean) of all the points 
in cluster 2

• Two clusters having the smallest distance between them are combined  
as follows:

( ) ( ) ( )( ), ,d Cm Cn d centroid Cm centroid Cn=

Here, Cm and Cn are two clusters.

Ward's method
A cluster that minimizes the increase in the combined error sum of the square 
of ANOVA is joined to an already existing cluster to form a new joined cluster. 
ANOVA is a statistical method to check whether there is more variation within the 
cluster or in the overall dataset. The smallest increase in the ANOVA error term 
shows that the elements of the newly joined clusters are more similar to each other 
than elements in other clusters.
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Hierarchical clustering
Hierarchical clustering is an agglomerative method of clustering, wherein we start 
with each point as a separate cluster and then agglomerate them in a single cluster 
based on the similarity between observations.

For a dataset with N observations and NxN distance matrix, a hierarchical cluster can 
be created using the following steps:

1. Start with each observation as a cluster so that you have N clusters to  
start with.

2. Find the smallest distance in the distance matrix. Join the two observations 
having the smallest distance to form a cluster.

3. Recompute the distances between all the old clusters and the new clusters.  
If one follows a single linkage method, the distance between two clusters is 
the minimum distance between two points on the two clusters.

4. Repeat the steps 2 and 3 until you are left with a single cluster of all  
the N observations.

Let us take the distance matrix we created earlier in this chapter and follow the 
above steps to create a hierarchical cluster. The distance matrix, as we have seen 
before, looks like this:

Fig. 7.4: Distance matrix for the students' marks
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Iteration 1:

Fig. 7.5: The first iteration of clustering

Iteration 2:

Fig. 7.6: The second iteration of clustering

Iteration 3:

Fig. 7.7: The third iteration of clustering
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Iteration 4:

Fig. 7.8: The fourth iteration of clustering

Next, iterations can be performed in a similar manner. Here we used a single linkage 
method. If we use a different linkage method, the clustering would take a different 
shape. The hierarchical clusters can be best understood using a hierarchical tree 
depicting when and where the two or more points/clusters joined to form a  
bigger cluster.

For the distance matrix used above and the single method of linkage, one would get 
the following tree structure:

Fig. 7.9: A tree using a single linkage method
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While using Ward's method, one gets a tree as shown in the following figure:

Fig. 7.10: A tree using Ward's linkage method

The tree formed using a single linkage can be interpreted as follows:

• The #1 and #10 observations are joined to form a cluster at first, followed by 
a cluster formed by #2 and #7.

• The #5 and #8 observations form a different cluster that later joins the cluster 
formed by #1 and #10.

• This bigger cluster containing #1, #10, #5, and #8 is joined by the cluster 
containing #2 and #7, and so on

• The observations that joined earlier to form a cluster are more similar to each 
other. So, (#1, #10), (#2, #7), and (#5, #8) are similar to each other.

Hierarchical clusters produce efficient and analyzable results when the number of 
observations in the dataset is relatively less. As the number of observations increase, 
the trees resulting from the hierarchical clusters become messier and more difficult to 
analyze. In such cases, it is better to try another method of clustering.

K-means clustering
K-means clustering is another unsupervised algorithm to cluster a number of 
observations. It is different from the hierarchical cluster in the sense that here the 
number of desired clusters and the centroid of the clusters need to be defined prior 
to the model formation. The centroid of the clusters keep updating based on the 
observations assigned to that cluster. The output consists of an array containing the 
cluster number to which each observation belongs to.
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A step-by-step detail of the k-means clustering algorithm is as follows:

1. Decide the number of clusters and assign the cluster centroid for each cluster. 
The number of clusters can be decided based on the business context. The 
cluster centroids can be passed manually (based on the business context or 
some prior information), or the randomly chosen observations can serve as 
the cluster centroids to start with.

2. Calculate the distance of each observation from each cluster. Assign the 
observation to the cluster from which its distance is the least. The distance  
of an observation from a cluster is defined.

3. Recalculate the cluster centroid using the mean of the observations in the 
cluster. The following formula defines the update of the cluster centroids:

1

1 ci

m
vi Xm

ci =

= ∑

Here, ci=number of observations in the clusters, and Xm=observation vector 
whose length is equal to the number of columns in the observation. A cluster 
centroid is also as long as the observation vector or the number of columns in 
the observation.

4. Repeat the steps starting from step 2.
5. Stop if none of the observations were reassigned from one cluster to another.

None of the observations are being reassigned; that means that all the 
observations are already in the correct clusters and their distance to a  
cluster centroid can't be reduced further.

The goal of this algorithm is to attain a configuration of cluster centers and cluster 
observation so that the overall J squared error function or J-score is minimized:

( )2
1 1

c ci

i j
J Xj Vi

= =

= −∑ ∑
Here, c=number of clusters, ci=number of points in the cluster, and Vi=centroid of the ith cluster.

The J squared error function can be understood as the sum of the squared distance of 
points from their respective cluster centroids. A smaller value of J squared function 
implies tightly packed and homogeneous clusters. This also implies that most of the 
points have been placed in the right clusters.
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Let us try the k-means clustering algorithm for clustering some random numbers 
between 0 and 1. The Python library and Scipy have some inbuilt methods to perform 
the algorithm and return a list defining which observation belongs to which cluster:

1. Define a set of observations consisting of random numbers ranging from  
0 to 1. In this case, we have defined an observation set of 30x3:
Import numpy as np
obs=np.random.random(90).reshape(30,3)
obs

The output of the code looks as follows:

Fig. 7.11: A 30x3 array of random numbers between 0 and 1

2. Decide that we want two clusters (no hard and fast rule, you can try  
with three clusters also). Select two observations at random to make  
them cluster centroids:
c1=np.random.choice(range(len(obs)))
c2=np.random.choice(range(len(obs)))
clust_cen=np.vstack([obs[c1],obs[c2]])
clust_cen

The output of the code looks as follows:

Fig. 7.12: Selecting two rows (out of 30) at random to be initial cluster centers

The two rows in the clust_cen array correspond to the two  
cluster centroids.

3. With the number of clusters and cluster centroids defined, one is ready to 
implement the k-means clustering. This can be done using the cluster 
method of Scipy:
from scipy.cluster.vq import vq
vq(obs,clust_cen)
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Fig. 7.13: Cluster label and distance from cluster centers for each observation

The first array gives us the information as to which cluster the observation 
belongs to. The first observation belongs to cluster c2, the second observation 
belongs to c1, the third belongs to c2, the fourth to c1, and so on.
The second array gives the distance of the observation from the final cluster 
centroid. Hence, the first observation is at a distance of 0.33 units from the 
centroid of the cluster c2, the second observation is at a distance of 0.43 from 
the centroid of the cluster c1, and so on.

4. Find the cluster centroid for the two clusters. This is done using the kmeans 
method in Scipy:

from scipy.cluster.vq import kmeans
kmeans(obs,clust_cen)

The output of the code looks as follows:

Fig. 7.14: The final cluster centers and the value of the squared error function or J-score

The two rows in the array correspond to the two final cluster centroids. The 
centroid of the first cluster is at (0.524, 0.837, 0.676). The number at the end is 
the value of the squared error function or J-score, which we seek to minimize. 
Its value comes out to be 0.35.
K-means also works if one provides just the number of required clusters and 
not the cluster centroids. If only the required number of clusters is provided, 
then the method will randomly select that many observations at random 
from the observation set to become a cluster centroid. Thus, we could have 
also written the following:

from scipy.cluster.vq import kmeans
kmeans(obs,2)
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Implementing clustering using Python
Now, as we understand the mathematics behind the k-means clustering  
better, let us implement it on a dataset and see how to glean insights from the 
performed clustering.

The dataset we will be using for this is about wine. Each observation represents a 
separate sample of wine and has information about the chemical composition of that 
wine. Some wine connoisseur painstakingly analyzed various samples of wine to 
create this dataset. Each column of the dataset has information about the composition 
of one chemical. There is one column called quality as well, which is based on the 
ratings given by the professional wine testers.

The prices of wines are generally decided by the ratings given by the professional 
testers. However, this can be very subjective and certainly there is a scope for a 
more logical process to wine prices. One approach is to cluster them based on their 
chemical compositions and quality and then price the similar clusters together based 
on the desirable components present in the wine clusters.

Importing and exploring the dataset
Let us import and have a look at this dataset:

import pandas as pd
df=pd.read_csv('E:/Personal/Learning/Predictive Modeling Book/Book 
Datasets/Clustering/wine.csv',sep=';')
df.head()

The output looks as follows:

Fig. 7.15: The first few observations of the wine dataset

As one can observe, it has 12 columns as follows:

Fig. 7.16: The column names of the wine dataset
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There are 1599 observations in this dataset.

Let us focus on the quality variable for a while and plot a histogram to see the 
number of wine samples in each quality type:

import matplotlib.pyplot as plt
% matplotlib inline
plt.hist(df['quality'])

The code shows the following output:

Fig. 7.17: The histogram of wine quality. The majority of samples have been rated 6 or 7 for quality

As it is evident from the plot, more than 75% of the samples were assigned the 
quality of 5 and 6. Also, let's look at the mean of the various chemical compositions 
across samples for the different groups of the wine quality:

df.groupby('quality').mean()

The code shows the following output:

Fig. 7.18: The mean values of all the numerical columns for each value of quality
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Some observations based on this table are as follows:

• The lesser the volatile acidity and chlorides, the higher the wine quality
• The more the sulphates and citric acid content, the higher the wine quality
• The density and pH don't vary much across the wine quality

Next, let's proceed with clustering these observations using k-means.

Normalizing the values in the dataset
As discussed above, normalizing the values is important to get the clustering right. 
This can be achieved by applying the following formula to each value in the dataset:

( ) ( )/i i min max minZ X X X X= − −

To normalize our dataset, we write the following code snippet:

df_norm = (df - df.min()) / (df.max() - df.min())
df_norm.head() 

This results in a data frame with normalized values for entire data frame as follows:

Fig. 7.19 Normalized wine dataset

Hierarchical clustering using scikit-learn
Hierarchical clustering or agglomerative clustering can be implemented using the 
AgglomerativeClustering method in scikit-learn's cluster library as shown in 
the following code. It returns a label for each row denoting which cluster that row 
belongs to. The number of clusters needs to be defined in advance. We have used the 
ward method of linkage:

from sklearn.cluster import AgglomerativeClustering
ward = AgglomerativeClustering(n_clusters=6, linkage='ward').fit(df_
norm)
md=pd.Series(ward.labels_)
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We can plot a histogram of cluster labels to get a sense of how many rows belong to a 
particular cluster:

import matplotlib.pyplot as plt
% matplotlib inline
plt.hist(md)
plt.title('Histogram of Cluster Label')
plt.xlabel('Cluster')
plt.ylabel('Frequency')

The plot looks as follows. The observations are more uniformly distributed across the 
cluster except Cluster 2 that has more observations than the others:

Fig. 7.20: The histogram of Cluster Labels. Samples are more-or-less uniformly distributed across clusters

It also outputs the children for each non-leaf node. This would be an array with the 
shape (number of non-leaf nodes, 2) as there would be two immediate children for 
any non-leaf node:

ward.children_

The code shows the following output:

Fig. 7.21: The child array containing two child elements for each non-leaf node
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K-Means clustering using scikit-learn
Let us randomly choose 6 as the required number of clusters for now as there  
were that many groups of quality in the dataset. Then, to cluster the observations, 
one needs to write the following code snippet:

from sklearn.cluster import KMeans
from sklearn import datasets
model=KMeans(n_clusters=6)
model.fit(df_norm)

The preceding snippet fits the k-means clustering model to the wine dataset. To 
know which observation belongs to which of the clusters, one can call the labels_ 
parameter of the model. It returns an array depicting the cluster the row belongs to:

model.labels_

The output of the code is as follows:

Fig. 7.22: Cluster labels for each row

For better observation, let us make this array part of the data frame so that we can 
look at the cluster each row belongs to, in the same data frame:

md=pd.Series(model.labels_)
df_norm['clust']=md
df_norm.head()

The output of the code shows the following datasheet:

Fig. 7.23: The wine dataset with a clust column depicting the cluster the row belongs to

The last column clust of the data frame denotes the cluster to which that particular 
observation belongs. The 1st, 2nd, 3rd, and 5th observations belong to the 3rd cluster 
(counting starts from 0), while the 4th observation belongs to the 2nd cluster.

The final cluster's centroids for each cluster can be found out as follows:

model.cluster_centers_
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Note that each cluster centroid would have 12 coordinates as there are 12 variables in 
the dataset.

The dataset is as follows:

Fig. 7.24: Cluster centroids for each of the six clusters

The J-score can be thought of as the sum of the squared distance between points and 
cluster centroid for each point and cluster. For an efficient cluster, the J-score should 
be as low as possible. The value of the J-score can be found as follows:

model.inertia_

The value comes out to be 186.56.

Let us plot a histogram for the clust variable to get an idea of the number of 
observations in each cluster:

import matplotlib.pyplot as plt
% matplotlib inline
plt.hist(df_norm['clust'])
plt.title('Histogram of Clusters')
plt.xlabel('Cluster')
plt.ylabel('Frequency')
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The code shows the following output:

Fig. 7.25: The histogram of cluster labels

As can be observed, the number of wine samples is more uniformly (or rather 
normally) distributed in this case when compared to the distribution based on the 
wine quality. This is an improvement from the classification based on the wine 
quality as it provides us with better segregated and identifiable clusters.

Interpreting the cluster
This clustering can be used to price the wine samples in the same cluster similarly 
and target the customers who prefer the particular ingredient of wine by marketing 
them as a different brand having that ingredient as its specialty.

Let us calculate the mean of the composition for each cluster and each component.  
If you observe the output table, it is exactly similar to the six cluster centroids  
observed above. This is because the cluster centroids are nothing but the mean  
of the coordinates of all the observations in a particular cluster:

df_norm.groupby('clust').mean()
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Fig. 7.26: The mean of all the numerical columns for different clusters

The wine quality and taste mainly depends on the quantity of acid, alcohol, and 
sugar. A few examples of how the information on clustering can be used for efficient 
marketing and pricing are as follows:

• People from cooler regions prefer wines with higher volatile acid content.  
So, clusters 2 and 5 can be marketed in cooler (temperature-wise) markets.

• Some people might prefer wine with higher alcohol content, and the wine 
samples from clusters 3 and 5 can be marketed to them.

• Some connoisseurs trust others' judgment more and they might like to go 
with professional wine testers' judgments. These kinds of people should  
be sold the wine samples from clusters 3 and 5 as they have high  
mean quality.

More information from the wine industry can be combined with this result to form a 
better marketing and pricing strategy.

Fine-tuning the clustering
Deciding the optimum value of K is one of the tough parts while performing a 
k-means clustering. There are a few methods that can be used to do this.

The elbow method
We earlier discussed that a good cluster is defined by the compactness between  
the observations of that cluster. The compactness is quantified by something called 
intra-cluster distance. The intra-cluster distance for a cluster is essentially the sum of 
pair-wise distances between all possible pairs of points in that cluster.
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If we denote intra-cluster distance by W, then for a cluster k intra-cluster, the distance 
can be denoted by:

( )
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Generally, the normalized intra-cluster distance is used, which is given by:
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Here Xi and Xj are points in the cluster, Mk is the centroid of the cluster, Nk is the 
number of points in the centroid, and K is the number of clusters.

Wk' is actually a measure of the variance between the points in the same cluster. 
Since it is normalized, its value would range from 0 to 1. As one increases the 
number of clusters, the value of Wk' increases marginally until a certain point post 
of this marginal increase stops. At this point, we get an elbow in the curve and this 
gives us the correct number of the cluster as shown in the following graph:

Fig. 7.27: Elbow method to find the correct K



Chapter 7

[ 267 ]

As shown in the preceding plot for a hypothetical dataset, the percentage variance 
explained by the clusters peaks at k=4, post which the marginal increase stops. This 
encircled point in the preceding graph is called the elbow that gives the name to the 
method. The correct number of clusters in this case is then 4.

Silhouette Coefficient
Silhouette Coefficient for an observation in the dataset quantifies how tightly the 
point is bound to the other points in the same cluster and how loosely the point 
is bound to points in the nearest neighbor cluster. The Silhouette Coefficient is 
calculated using the mean intra-cluster distance (b) and the mean nearest-cluster 
distance (a) for each sample:

( ) ( ) ( )/ ,Silhouettecoefficient S b a max a b= −

Let us have a look at the following example to understand the concept of the 
Silhouette Coefficient better:

Fig. 7.28: Illustrating a silhouette coefficient

Let us look at the preceding situation for the point (observation) marked X.  
It has two nearby clusters, A and B; A being relatively closer to X than B. The  
mean intra-cluster distance of X from the points in A is denoted by a. The mean 
intra-cluster distance of X from the points in the next nearest cluster (B in this case) is 
denoted by b. The intra-cluster distance is simply defined as the sum of the distances 
of the point marked X from all the points in a given cluster.
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The Silhouette Coefficient, S, can be rewritten as follows:

( )1 / ,
0,

( / ) 1,

a b if a b
S if a b
b a if a b

− <

= =
− >

The value of the Silhouette Coefficient ranges from -1 to 1. A value close to -1 means 
that a is (very) large than b implying that the point is more similar to the neighboring 
cluster (B) than the current cluster (A) and is wrongly placed in the current cluster. 
A value close to 1 means that a is (very) smaller than b and hence a point is placed in 
the correct cluster.

Overall the silhouette coefficient of the entire dataset is a mean of the silhouette 
coefficients of each sample. The value of the Silhouette Coefficient is affected by the 
number of clusters. The Silhouette Coefficients can be used to decide the optimum 
number of clusters as follows:

1. Start with two clusters. Calculate the mean silhouette coefficient for  
each cluster.

2. Calculate the mean silhouette coefficients of the entire dataset (average over 
all the clusters).

3. Check whether the mean silhouette coefficient of any of the clusters is less 
than the overall mean silhouette coefficient of the dataset. If this is the case, 
the number of clusters is suboptimal or a bad pick. If it is not the case, then it 
is a potential candidate for being the optimum number of clusters.

4. Repeat the steps 1 to 3 for different numbers of clusters (untill n=6 to 10 or a 
suitable number derived from the context or elbow method). 

5. Decide on one of the potential candidates identified in the steps 3 and 4 to be 
the optimum number of clusters.

The elbow method and silhouette coefficients can be used to fine-tune the clustering 
once it has been run assuming some arbitrary number of clusters. The actual 
clustering can then be performed once the optimum number of clusters is known. 
The results from these methods coupled with the business context should give an 
idea about the number of clusters to be used.
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Summary
In this chapter, we learned the following:

• Clustering is an unsupervised predictive algorithm to club similar data 
points together and segregate the dissimilar points from each other. This 
algorithm finds the usage in marketing, taxonomy, seismology, public policy, 
and data mining.

• The distance between two observations is one of the criteria on which the 
observations can be clustered together.

• The distance between all the points in a dataset is best represented by an nxn 
symmetric matrix called a distance matrix.

• Hierarchical clustering is an agglomerative mode of clustering wherein 
we start with n clusters (equal to the number of points in the dataset) that 
are agglomerated into a lesser number of cluster based on the linkages 
developed over distance matrix.

• K-means clustering algorithm is a widely used mode of clustering wherein 
the number of clusters need to be stated in advance before performing the 
clustering. K-means clustering method outputs a label for each row of data 
depicting the cluster it belongs to. It also outputs the cluster centers. K-means 
method is easier to analyze and make sense of.

• Deciding the number of clusters (k) for the k-means clustering is an 
important task. The elbow method and silhouette coefficient method are 
some of the methods that can help us to decide the optimum number of k.

In the current chapter, we dealt with an unsupervised algorithm that is very widely 
used. Next, we will learn about a classification supervised algorithm. It is called a 
decision tree. It is a great set of algorithms to classify and predict data.
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Trees and Random Forests 
with Python

Clustering, discussed in the last chapter, is an unsupervised algorithm. It is now time 
to switch back to a supervised algorithm. Classification is a class of problems that 
surfaces quite frequently in predictive modelling and in various forms. Accordingly, 
to deal with all of them, a family of classification algorithms is used.

A decision tree is a supervised classification algorithm that is used when the target 
variable is a discrete or categorical variable (having two or more than two classes) 
and the predictor variables are either categorical or numerical variables. A decision 
tree can be thought of as a set of if-then rules for a classification problem where the 
target variables are discrete or categorical variables. The if-then rules are represented 
as a tree.

A decision tree is used when the decision is based on multiple-staged criteria and 
variables. A decision tree is very effective as a decision making tool as it has a 
pictorial output that is easier to understand and implement compared to the output 
of the other predictive models.

Decision trees and related classification algorithms will be the theme running 
throughout this chapter. At the end of this chapter, the reader will be able to get a 
basic understanding of the concept of a decision tree, the mathematics behind it, the 
implementation of decision trees and Python, and the efficiency of the classification 
performed through the model.
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We will cover the following topics in depth:

• Introducing decision trees
• Understanding the mathematics behind decision trees
• Implementing a decision tree
• Understanding and implementing regression trees
• Understanding and implementing random forests

Introducing decision trees
A tree is a data structure that might be used to state certain decision rules because 
it can be represented in such a way as to pictorially illustrate these rules. A tree has 
three basic elements: nodes, branches, and leaves. Nodes are the points from where 
one or more branches come out. A node from where no branch originates is a leaf. A 
typical tree looks as follows:

Fig. 8.1: A representation of a decision tree with its basic elements—node, branches, and leaves
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A tree, specifically a decision tree, starts with a root node, proceeds to the decision 
nodes, and ultimately to the terminal nodes where the decision rules are made. All 
nodes, except the terminal node, represent one variable and the branches represent 
the different categories (values) of that variable. The terminal node represents the 
final decision or value for that route.

A decision tree
To understand what decision trees look like and how to make sense of them, let us 
consider an example. Consider a situation where one wants to predict whether a 
particular Place will get a Bumper, Moderate, or a Meagre Harvest of a crop based 
on information about the Rainfall, Terrain, availability of groundwater, and usage of 
fertilizers. Consider the following dataset for that situation:

Fig. 8.2 A simulated dataset containing information about the Harvest type and conditions such as the Rainfall, 
Terrain, Usage of Fertilizers, and Availability of Groundwater
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For a while, let us forget how these trees are constructed and focus on interpreting  
a tree and how it becomes handy in classification problems. For illustrative  
purposes, let us assume that the final decision tree looks as follows (we will  
learn the mathematics behind it later):

Fig. 8.3: A representational decision tree based on the above dataset

There are multiple decisions one can make using this decision tree:

• If Terrain is Plain and Rainfall is High, then the harvest will be Bumper
• If Terrain is Plain, Rainfall is Low, and Groundwater is Yes (present), then 

the harvest will be Moderate
• If Terrain is Plain, Rainfall is Low, and Groundwater is No (present), then the 

harvest will be Meagre
• If Terrain is Hills and Rainfall is High, then the harvest will be Moderate
• If Terrain is Hills and Rainfall is Low, then the harvest will be Meagre
• If Terrain is Plateau, Groundwater is Yes, and Fertilizer is Yes (present),  

then the harvest will be Bumper
• If Terrain is Plateau, Groundwater is Yes, and Fertilizer is No (present),  

then the harvest will be Moderate
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• If Terrain is Plateau, Groundwater is No, and Fertilizer is Yes (present),  
then the harvest will be Meagre

• If Terrain is Plateau, Groundwater is No, and Fertilizer is No (present),  
then the harvest will be Meagre

A decision tree, or the decisions implied by it, can also be represented as disjunction 
statements. For example, the conditions for the harvest being Bumper can be written 
as a combination of AND and OR operators (or disjunctions), as follows:

( )
' '
' ' ' '

( ' ' ' ' ' ')

Harvest Bumper
Terrain Plains Rainfall High
Terrain Plateau Groundwater Yes Fertilizers Yes

==

== ==

== == ==

∩
∪ ∩ ∩

In the same way, the conditions for a Moderate harvest can be summarized using 
disjunctions as follows:

( )
( )

' '
' ' ' ' ' '

( ' ' ' '
( ' ' ' ' ' ')

Harvest Moderate
Terrain Plains Rainfall Low Groundwater Yes

Terrain Hills Rainfall High
Terrain Plateau Groundwater Yes Fertilizers No

==

== == ==

== ==

== == ==

∩ ∩

∪ ∩
∪ ∩ ∩

In the preceding example, we have used only categorical variables as the predictor 
variables. However, there is no such restriction. The numerical variables can very 
well be used as predictor variables. However, the numerical variables are not the 
most preferred variables for a decision tree, as they lose some information while  
they are categorized into groups to be used in a decision tree algorithm.

A decision tree is advantageous because it is easier to understand and doesn't require 
a lot of data cleaning in the sense that it is not influenced by missing values and 
outliers that much.

Understanding the mathematics behind 
decision trees
The main goal in a decision tree algorithm is to identify a variable and classification 
on which one can give a more homogeneous distribution with reference to the target 
variable. The homogeneous distribution means that similar values of the target 
variable are grouped together so that a concrete decision can be made.
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Homogeneity
In the preceding example, the first goal would be to find a parameter (out of four: 
Terrain, Rainfall, Groundwater, and Fertilizers) that results in a better homogeneous 
distribution of the target variable within those categories.

Without any parameter, the count of harvest type looks as follows:

Bumper Moderate Meagre
4 9 7

Let us calculate, for each parameter, how the split on that parameter affects the 
homogeneity of the target variable split:

Fig. 8.4: Splitting the predictor and the target variables into categories to see their effect  
on the homogeneity of the dataset

If one observes carefully, the classification done on the Rainfall parameter is more 
homogeneous than that done on the Terrain parameter. Homogeneity means 
more similar things together or, in other words, fewer dissimilar things together. 
Homogeneity can be understood as follows: for Low rainfall, the harvest is 
distributed as 0%, 71%, and 29% across Bumper, Meagre, and Moderate, and it 
is a more homogeneous classification than 0% (Bumper), 50% (Meagre), and 50% 
(Moderate) for hilly terrains. This is because Low rainfall was able to group more 
of the Meagre rainfall (71%) together than the classes in the Terrain parameter. 
For the Fertilizers and Groundwater parameters, the highest homogeneity that 
can be achieved is 67%. Thus, the rainfall is the most suited to classify the target 
variable; that is, the Harvest type. This can be refined more as we add more variables 
(parameters) for the classification.
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To understand it even better, let us look at the following pictures. Which one is more 
homogeneous? Which one can represent a node where a concrete decision (about the 
type of dot: bold or normal) can be made? Definitely C, because it has only one type 
of dot. B is the next best choice as, in this case, the decision of the dot type is skewed 
more towards the bold dots (compared to A) than the normal dots.

Making these classifications more and more homogeneous, so that they can be 
identified as concrete decisions, is the ultimate goal in decision tree algorithms. 
Identifying the variable that results in the best homogeneous classification can be 
done in many ways. There are multiple algorithms available to do this. Let us take a 
look at some of them.

Entropy
The entropy technique takes cues from information theory. The premise is that 
more homogeneous or pure nodes require less information to be represented. One 
example of information can be an encrypted signal that has to be transmitted. If the 
constituents of the message are more homogeneous, it will consume fewer bits. The 
configuration that requires less information is always preferred.

The impurity or heterogeneity of a node can be measured using something called 
entropy. One interpretation of entropy (from information theory) is the minimum 
number of bits required to encode the classification of an arbitrary member of the set. 
The change (reduction) in non-desirable entropy can be measured with information 
gain. In the case of a decision tree, the nodes whose addition results in information 
gain should be added to the configuration.

Entropy is defined as follows:

( ) 2i iEntropy S p log p= ∑−
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Here, the summation is over different categories of the target variable. Pi is the 
proportion (over the total number of observations) of the ith particular category of the 
target variable.

Entropy ranges from 0 to log2c, c being the number of categories present in the target 
variable. The entropy will be 0 when the observations are perfectly homogeneous, 
while it will be log2c when the observations are perfectly heterogeneous. The entropy 
reaches the maximum value (log2c) when all the pi's are equal. The entropy reaches 
the minimum value (0) when one pi is equal to 1 and all the others are 0. If pi=1, the 
receiver of the information will know with certainty what classification an arbitrary 
member should belong to, so that there will be no information required and, thus, 
the entropy will be 0.

In the preceding example, we have three categories of target variables; hence, the 
entropy can range from 0 to log23 (1.58). We have three categories of the target 
variable, namely, Bumper, Meagre, and Moderate with proportions 4/20, 9/20,  
and 7/20. Thus, the entropy can be calculated as follows:

2 2 2((4 / 20) (4 / 20) (9 / 20) (9 / 20) (7 / 20) (7 / 20)
( 0.46 0.51 0.53) 1.5

S Log Log Log= − ∗ + ∗ + ∗
= − − − − =

When the target variables are perfectly homogeneously distributed, the entropy will 
be 0. Suppose that all the observations had Bumper, Meagre, or Moderate as a target 
variable, then the entropy would be as follows:

2 2 2 2((20 / 20) (20 / 20) (0) (0 / 20) (0) (0 / 20) 0( 1 0)S log log log remember log= − ∗ + ∗ + ∗ = =

On the other hand, if the classification is perfectly heterogeneous (that is, when each 
category of the target variable has equal number of observations) then the entropy 
reaches its maximum value.

A plot of entropy versus pi takes up the shape of an inverted U with a maxima in the 
middle. A plot of entropy versus the pi for a binary classification looks as follows:
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Fig. 8.5: A plot of entropy versus the proportions

As you can see in the preceding picture, the entropy increases with an increase 
in pi, reaches a maximum at the point where all the pi's are equal, and then starts 
decreasing as the pi increases after that.

Information gain
The entropy (S=1.5) we calculated is the entropy of the system at the beginning. This 
reduces as we introduce variables as nodes in the system. This reduction reflects as 
an Information Gain. Let us see how information gains are calculated for different 
variables. The information gain for a particular variable V is defined as follows:

( , ) ( / ). ( )v c cinformationGain S V S V V Entropy V= −∑

Sv is the total entropy for the node variable V, c stands for the categories in the 
node variable, Vc is the number of total observation with the category c of the node 
variable, V is the total number of observations, and Entropy(Vc) is the entropy of the 
system having observations with the category c of the node variable. Summation is 
over the categories of the variable.

Let us calculate the information gain based on using the Terrain variable as a node.
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For this, let us calculate the entropy for different categories of the Terrain variable. 
Entropy is always calculated keeping the target variable in mind. For each category 
of the particular variable, we need to count how many target variables of each kind 
are present: 

2 2 2

2 2 2

2 ,1 ,3
((2 / 6) (2 / 6) (1/ 6) (1/ 6) (3 / 6) (3 / 6) 1.45

2 ,3 ,3
((2 / 8) (2 / 8) (3 / 8) (3 / 8) (3 / 8) (3 / 8

plains

Plateau

Terrain Plains Bumper Meagre Moderate
S Log Log Log
Terrain Plateau Bumper Meagre Moderate
S Log Log Log

= →
= − ∗ + ∗ + ∗ =

= →
= − ∗ + ∗ + ∗

2 2 2

) 1.56
2 ,1 ,3

((0 / 6) (0 / 6) (3 / 6) (3 / 6) (3 / 6) (3 / 6) 1Hills

Terrain Hills Bumper Meagre Moderate
S Log Log Log

=
= →

= − ∗ + ∗ + ∗ =

Now, we can calculate the information gain as follows:

( ) ( )
( ) ( ) ( )

( , ) 1.5 6 / 20 8 / 20

1.5 6 / 20 1.45 8 / 20 1.56 6 / 20 1 1.5 1.36 0.14
Plain Plateau HillsInformationGain S V S S S= − ∗ + ∗ +∗  

= − ∗ + ∗ + ∗ = − =  

The preceding calculation can be summarized in a tree-branch as follows:

Plains

Terrain

Hills
Plateau

[2B,1M,3Mo]
S =-((2/6)*log2(2/6)Plains

+(1/6)*log2(1/6)
+(3/6)*log2(3/6)=1.45

[0B,3M,3Mo]
S =-((0/6)*log2(0/6)Hills

+(3/6)*log2(3/6)
+(3/6)*log2(3/6)=1

[2B,3M,3Mo]
S =-((2/6)*log2(2/6)Plateau

+(3/8)*log2(3/8)
+(3/8)*log2(3/8)=1.56

Fig. 8.6: The calculation of information gain for the Terrain variable
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Similarly, the information gain for the Rainfall variable can be calculated as 0.42, that 
for the Fertilizers variable can be calculated as 0.36, and that for Groundwater can be 
calculated as 0.16:

Parameter Information Gain
Terrain 0.14
Rainfall 0.42
Fertilizers 0.36
Groundwater 0.16

The variable that provides the maximum information gain is chosen to be the node. 
In this case, the Rainfall variable is chosen as it results in the maximum information 
gain of 0.42.

ID3 algorithm to create a decision tree
The tree keeps growing by selecting the next variable that results in the maximum 
information gain as a subnode branching out from this node (Rainfall in this case). 
A node should be chosen separately for each branch of the previous node. The 
variables already used for the split still qualify to be considered for being a node. It 
is a recursive process that stops when the node is totally homogeneous (pure), or it 
reaches the maximum possible depth (the number of observations in the dataset) of 
the tree.

This algorithm using entropy and information gain is called ID3 algorithm, and can 
be summarized as follows:

1. Calculate the initial entropy of the system based on the target variable.
2. Calculate the information gains for each candidate variable for a  

node. Select the variable that provides the maximum information gain as a 
decision node.

3. Repeat step 2 for each branch (value) of the node (variable) identified in  
step 2. The newly identified node is termed as leaf node.

4. Check whether the leaf node classifies the entire data perfectly. If not, repeat 
the steps from step 2 onwards. If yes, stop.
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Apart from the ID3 algorithm involving entropy and information gain, there 
are other algorithms that can be used to decide which variable should be chosen 
as a subnode. Some of them are Gini index method, Chi-Square Automatic 
Interaction Detector (CHAID) method, and Reduction in Variance method. All 
these algorithms are useful and might give better results than the others in specific 
scenarios. A summary of all these methods is available in the following table:

Method Properties
Gini index This can be used only if the target variable is a binary variable. 

Classification and Regression Trees (CART), a famous 
classification technique, uses Gini index method.

CHAID This uses the chi-square statistic to find the statistical significance 
of the difference between a parent node and a subnode. It can 
handle more than two categories of the target variable.

Reduction in Variance This is used to handle a continuous numerical variable as the 
target variable in decision tree creation. It calculates the variance 
at each node and takes a weighted average of the variances to 
decide the subnode.

To give an idea about the nitty-gritty of these methods, a couple of them such as Gini 
index and Reduction in Variance have been explained in detail.

Gini index
Gini method works only when the target variable is a binary variable. This method is 
used by the famous CART algorithm.

Gini is defined as the sum of the square of proportions of categories of the target 
variable for the particular category of the node variable. Suppose the node variable, 
for which we are trying to look for a subnode, has two categories C1 and C2. C1 has 
2 yes's and 8 no's (out of the total 10 observations with C1 as the value of the node 
variable), while C2 has 6 yes's and 4 no's (the total of 8 yes's and 12 no's). Gini for each 
category is calculated as follows:

2 2
1

2 2
2

(0.2) (0.8) 0.68

(0.6) (0.4) 0.52
C

C

Gini
Gini

= + =

= + =

Then, Gini index for a variable is calculated by taking a weighted average over  
the categories:

( ) ( )10 / 20 0.68 10 / 20 0.52 0.60Gini index = ∗ + ∗ =
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Gini index is calculated for all the candidate variables. A variable with a higher Gini 
index is selected to create the subnode.

Reduction in Variance
In the Reduction in Variance method, the target variable is supposed to be a 
numerical variable. Let's consider the same example that we considered for 
understanding the Gini index method. To convert the target variable (yes and no) to a 
numerical variable, let's transform yes to 1 and no to 0 (resulting in 8 1's and 12 0's).

( )
( ) ( )

( )
( ) ( )

2 2

2 2

8 1 12 0 / 20 0.4

8 1 0.4 12 0 0.4 / 20 0.24

1 1 2 8 0 /10 0.2

1 2 1 0.2 8 0 0.2 /10 0.16

Mean for root node

Variance for root node

Mean for categoryC of variable

Variance for categoryC of variable

Mean for categoryC

= ∗ + ∗ =

 = ∗ − + ∗ − = 
= ∗ + ∗ =

 = ∗ − + ∗ − = 
( )

( ) ( )
( ) ( )

2 2

2 1 6 4 0 /10 0.6

2 6 1 0.6 4 0 0.6 /10 0.24

10 / 20 0.16 10 / 20 0.24 0.20

of variable

Variance for categoryC of variable

Weighted variance for thevariable

= ∗ + ∗ =

 = ∗ − + ∗ − = 
= ∗ + ∗ =

The weighed variance is calculated for each variable. The variable with the smallest 
weighted variance is chosen to be the node.

Pruning a tree
As we have seen earlier, a decision tree keeps growing by adding subnodes to the 
parent node until the data is perfectly classified or totally homogeneous. An extreme 
case is that of a decision tree that has as many nodes as there are observations in the 
dataset. This happens rarely, but a more common phenomenon is over-fitting, where 
the tree over-learns a given training dataset, but doesn't perform that well with other 
similar datasets. A small tree will lose out on accuracy as it might miss out on some 
important variables, decreasing its accuracy.
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A common strategy to overcome this situation is to first allow the tree to grow until 
the nodes have the minimum number of instances under them and then prune the 
tree to remove the branches or nodes that don't provide a lot of classification power 
to the tree. This procedure is called pruning a decision tree and can be done in both a 
bottom-up and top-down fashion. The following are a few methods that are used to 
do this:

• Reduced error pruning: It is a naïve top-down approach for pruning a tree. 
Starting from the terminal nodes or the leaves, each node is replaced with 
its most popular category. If the accuracy of the tree is not affected, the 
replacements are put into effect.

• Cost complexity pruning: This method generates a set of trees, T0, T1,…,Tn, 
where T0 is the unpruned tree and Tn is just the root node. The Ti tree is 
created by replacing a subtree of the Ti-1 tree with one of the leaf nodes 
(selecting the leaf node is done using either of the algorithms explained 
above). The subtree to be replaced is chosen as follows:

1. Define an error rate for a decision tree T over a dataset D as err(T,D).
2. The number of terminal nodes or leaves in a decision tree T is given 

by leaves (T). A decision tree T from which a subtree t has been 
pruned is denoted by prune(T,t). 

3. Define a function M, where M=[err(prune(T,t),D)-err(T,D)]/
[|leaves(T)|-|leaves(prune(T,t))|].

4. Calculate M for all the candidate subtrees.
5. The subtree that minimizes the M is chosen for removal.

Handling a continuous numerical variable
Earlier in the discussion, we mentioned that continuous numerical variables can 
also be used as a predictor variable while creating a decision tree. However, the 
algorithms we have discussed to choose a subnode and grow the tree, all require a 
categorical variable. How do we then use continuous numerical variables to create a 
decision tree?

The answer is by defining thresholds for the continuous numerical variable, based 
on which the variable will be categorized in several classes dynamically. How do we 
define such a threshold for a numerical variable? To answer these questions, let us 
suppose that the harvest dataset used earlier has the information about Temperature, 
as well. Let us look at the first 10 observations for such a dataset (showing only the 
Temperature and Harvest variables):
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Temp(0C) 35 27 12 51 46 38 4 22 29 17

Harvest Bumper Moderate Meagre Meagre Meagre Bumper Meagre Moderate Moderate Meagre

To find the appropriate thresholds that can be used to divide Temperature  
into categories for the sake of creating a decision tree, the following steps can  
be performed:

1. Sort the dataset based on Temperature (the numerical variable) in ascending 
order. The sorted dataset will look as shown in the following table:

Temp(0C) 4 12 17 22 27 29 35 38 35 46 51

Harvest Meagre Meagre Meagre Moderate Moderate Moderate Bumper Bumper Bumper Meagre Meagre

2. Mark the Temperature ranges where the Harvest type transitions from 
one category to another. For example, in the 17-22 range, the Harvest type 
changes from Meagre to Moderate. Similarly, in the 29-35 range, the Harvest 
type transitions from Moderate to Bumper, and in the 35-46 range, Harvest 
transitions from Bumper to Meagre.

3. Corresponding to each transition in Harvest, there will be one threshold. In 
this case, there are three transitions so there will be three thresholds. Let us 
call these c1, c2, and c3.

4. The thresholds of Temperature for these transitions are nothing but the 
average of the Temperature range over which the transition occurs. Thus, 
c1=(17+22)/2=19.5, c2=(29+35)/2=32, and c3=(35+46)/2=40.5.

5. Corresponding to each of the thresholds, there will be a separate category of 
Temperature. Thus, the 3 categories of the Temperature will be as follows: 
Temperature>19.5, Temperature>32, and Temperature>40.5.

This method works because it has already been proved that such ranges where the 
target variable transitions from one category to an other provide the thresholds for 
continuous numerical variables that maximize the information gain.

Handling a missing value of an attribute
One of the advantages of using a decision tree is that it can handle missing values of 
an attribute. In many situations in real life where decision trees are used, one faces 
a situation where the data points of an attribute are missing. For example, consider 
a situation where one wants to predict a patient condition based on a number of 
laboratory results. What if some of the laboratory results of some of the tests are not 
available for some of the patients? How do we handle such a situation?
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Let us consider the first 10 observations of the dataset we used above, albeit with a 
few missing values:

Place Rainfall Terrain Fertilizers Groundwater Harvest
P1 High Plains Yes Yes Bumper
P2 Low No Yes Meagre
P3 Low Plateau No Yes Moderate
P4 High Plateau No Yes Moderate
P5 High Plains Yes No Bumper
P6 Low Hills No No Meagre
P7 Low Plateau No No Meagre
P8 Mild Plateau No No Meagre
P9 High Hills Yes Yes Moderate
P10 Mild  Yes Yes Bumper

Some of the approaches that can be used to handle the missing values while creating 
a decision tree are as follows:

• Assign the most common (highest frequency) category of that variable to 
the missing value. In the preceding case, the Terrain variable has a missing 
value. The most common category of the Terrain variable is Plateau. So, the 
missing value will be replaced by Plateau.

• Assign the most common (highest frequency) category of that variable 
among all the observations that have the same class of the target variable 
to the missing value. For the first blank Harvest class is Meagre. The most 
common class for the Harvest==Meagre is Plateau. So, we will replace the 
blank with Plateau. For the second blank, the Harvest type is Bumper. The 
most common class for the Harvest==Bumper is Plain. So, we will replace the 
blank with Plain.

Once the missing values have been replaced, the usual decision tree algorithms can 
be applied steadfastly.



Chapter 8

[ 287 ]

Implementing a decision tree with  
scikit-learn
Now, when we are sufficiently aware of the mathematics behind decision trees, let us 
implement a simple decision tree using the methods in scikit-learn. The dataset 
we will be using for this is a commonly available dataset called the iris dataset 
that has information about flower species and their petal and sepal dimensions. 
The purpose of this exercise will be to create a classifier that can classify a flower as 
belonging to a certain species based on the flower petal and sepal dimensions.

To do this, let's first import the dataset and have a look at it:

import pandas as pd
data=pd.read_csv('E:/Personal/Learning/Predictive Modeling Book/My 
Work/Chapter 7/iris.csv')
data.head()

The datasheet looks as follows:

Fig. 8.7: The first few observations of the iris dataset

Sepal-length, Sepal-width, Petal-length, and Petal-width are the dimensions of the 
flower while the Species denotes the class the flower belongs to. There are actually 
three classes of species here that can be looked at as follows:

data['Species'].unique()
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The output will be three categories of the species as follows:

Fig. 8.8: The categories of the species in the iris dataset

The purpose of this exercise will be to classify the flowers as belonging to one of the 
three species based on the dimensions. Let us see how we can do this.

Let us first get the predictors and the target variables separated:

colnames=data.columns.values.tolist()
predictors=colnames[:4]
target=colnames[4]

The first four columns of the dataset are termed predictors and the last one, that is, 
species is termed as the target variable.

Next, let's split the dataset into training and testing data:

Import numpy as np
data['is_train'] = np.random.uniform(0, 1, len(data) <= .75
train, test = data[data['is_train']==True], data[data['is_
train']==False]

In the first line, we are basically creating as many uniformly distributed random 
numbers between 0 and 1 as there are observations in the dataset. If the random 
number is less than or equal to .75, that observation goes to the training dataset; 
otherwise the observation goes to the testing dataset.

We have everything ready to create a decision tree now. As we have seen earlier, 
there are several methods to create nodes and subnodes. This method can be 
specified while invoking the DecisionTreeClassifier method of the  
sklearn library:

from sklearn.tree import DecisionTreeClassifier
dt = DecisionTreeClassifier(criterion='entropy',min_samples_split=20, 
random_state=99)
dt.fit(train[predictors], train[target])
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The min_samples_split specifies the minimum number of observations required to 
split a node into a subnode. By default, it is set to 2, which can be troublesome and 
can lead to over-fitting as a tree in such case can keep growing until it can find at 
least two observations. In this case, we have specified it to be 20. Our decision tree is 
now ready. Let us now test the result of our decision tree by using it for prediction 
over the testing dataset:

preds=dt.predict(test[predictors])
pd.crosstab(test['Species'],preds,rownames=['Actual'],colnames=['Pred
ictions'])

In the first line of the preceding code snippet, the decision tree is used to predict the 
class (species) for the flowers in the test dataset using the flower dimensions. The 
second line creates a table comparing the Actual species and the Predicted species. 
The table looks as follows:

Fig. 8.9: Comparing the Actual and Predicted categories

This table can be interpreted as follows: all the actual setosas were actually  
classified correctly as setosas. Out of the total 13 versicolors, 11 were classified 
correctly and 2 were classified wrongly as virginicas. Out of the total 12 virginicas,  
11 were classified correctly while 1 was classified wrongly as versicolor. This 
accuracy rate is pretty good.

Visualizing the tree
In scikit-learn, there are the following four steps to visualize a tree:

1. Creating a .dot file from the Decision Tree Classifier model that is fit for  
the data.
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2. In Python, this can be done using the export_graphviz module in the 
sklearn package. A .dot file contains information necessary to draw a 
tree. This information includes the entropy value (or Gini) at that node, the 
number of observations in that node, the condition referring to that node, 
and the node number pointing to another node number denoting which 
node is connected next to which one. For example, 2->3 and 3->4 means that 
node 2 is connected to 3, 3 is connected to 4, and so on. You can specify the 
directory name where you want to create the .dot file:
from sklearn.tree import export_graphviz
with open('E:/Personal/Learning/Predictive Modeling Book/My Work/
Chapter 7/dtree2.dot', 'w') as dotfile:
    export_graphviz(dt, out_file = dotfile, feature_names = 
predictors)
dotfile.close()

3. Take a look at the .dot file after it is created to have a better idea. It looks  
as follows:

Fig. 8.10: Information inside a .dot file

4. Rendering a .dot file into a tree:

This can be done using the system module of the os package that is used to 
run the cmd commands from within Python. This is done as follows:

from os import system
system("dot -Tpng /E:/Personal/Learning/Predictive Modeling Book/
My Work/Chapter 7/dtree2.dot -o /E:/Personal/Learning/Predictive 
Modeling Book/My Work/Chapter 7/dtree2.png")
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Fig. 8.11: The decision tree

This is how the tree looks like. The left arrow from the node ascribes to True and 
the right arrow to False for the condition given in the node. Each node has several 
important pieces of information such as the entropy at that node (remember, the less,  
the better), the number of samples (observations) at that node, and the number of 
samples in each species flower (under the heading value).

The tree is read as follows:

• If Petal Length<=2.45, then the flower species is setosa.
• If Petal Length>2.45, then check Petal Width. If Petal Length<=4.95, then the 

species is versicolor. If Petal Length > 4.95, then there is 1 versicolor and 2 
virginica, and further classification is not possible.

• If Petal Length>2.45, then check Petal Width. If Petal Length<=4.85, then there 
is 1 versicolor and 2 virginica, and further classification is not possible. If 
Petal Length>4.85, then the species is virginica.

Some other observations from the tree are as follows:

• The maximum depth (the number of levels) of the tree is 3. In 3 leaves, 
the tree has been able to identify categories, which will make the dataset 
homogeneous.

• Sepal dimensions don't seem to be playing any role in the tree formation or, 
in other words, in the classification of these flowers into one of the species.
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• There is a terminal node at the 1st level itself. If Petal Length<=2.45, one gets 
only the setosa species of flowers.

• The value in each node denotes the number of observations belonging  
to the three species (setosa, versicolor, and virginica in that order) at that  
node. Thus, the terminal node in the 1st level has 34 setosas, 0 versicolors, 
and 0 virginicas.

Cross-validating and pruning the decision 
tree
The tree might have grown very complex even after putting the min_samples_split 
of 20. There is a parameter of DecisionTreeClassifier that can be used to check 
the maximum depth to which the tree grows. This is called max_depth. Let us use 
this parameter and also the cross validation accuracy score to get an optimum depth 
of the tree. We are actually pruning the tree to get to an optimum depth where it 
neither overfits nor underfits the dataset.

We will do cross validation over the entire dataset. If you remember, cross validation 
splits the dataset into training and testing sets on its own and does this a number of 
times to generalize the results of the model.

Let us cross validate our decision tree:

X=data[predictors]
Y=data[target]
dt1.fit(X,Y)
dt1 = DecisionTreeClassifier(criterion='entropy',max_depth=5, min_
samples_split=20, random_state=99)

In these lines, we just assigned predictor variables to X and the target variable to 
Y. We have created a new decision tree that is very similar to the tree we created 
previously, except that it has an additional parameter, namely, max_depth=5.

The next step is to import the cross validation methods in sklearn and perform the 
cross validation:

from sklearn.cross_validation import KFold
crossvalidation = KFold(n=X.shape[0], n_folds=10, shuffle=True, 
random_state=1)
from sklearn.cross_validation import cross_val_score
score = np.mean(cross_val_score(dt1, X, Y, scoring='accuracy', 
cv=crossvalidation, n_jobs=1))
score
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We have chosen to do a 10-fold cross validation, and the score is the mean of the 
accuracy score obtained from each fold. The score in this comes out to be 0.933. This 
score signifies the accuracy of the classification.

If we vary the max_depth from 1 to 10, this is how the mean accuracy score varies:

As you can observe, for max_depth => 4, the score remains almost constant. The 
maximum score is obtained when max_depth = 3. Hence, we will choose to grow 
our tree to only three levels from the root node.

Let us now do a feature importance test to determine which of the variables in the 
preceding dataset are actually important for the model. This can be easily done  
as follows:

dt1.feature_importances_

Fig. 8.12: Feature importance scores of the variables in the iris dataset

The higher the values, the higher the feature importance. Hence, we conclude that 
the Petal width and Petal length are important features (in ascending order of 
importance) to predict the flower species using this dataset.

Understanding and implementing 
regression trees
An algorithm very similar to decision trees is regression tree. The difference  
between the two is that the target variable in the case of a regression tree is a 
continuous numerical variable, unlike decision trees where the target variable  
is a categorical variable.
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Regression tree algorithm
Regression trees are particularly useful when there are multiple features in the 
training dataset that interact in complicated and non-linear ways. In such cases, a 
simple linear regression or even the linear regression with some tweaks will not be 
feasible or produces a very complex model that will be of little use. An alternative to 
non-linear regression is to partition the dataset into smaller nodes/local partitions 
where the interactions are more manageable. We keep partitioning until the point 
where the non-linear interactions are non-existent or the observations in that 
partition/node are very similar to each other. This is called recursive partition.

A regression tree is similar to a decision tree because the algorithm behind them 
is more or less the same; that is, the node is split into subnodes based on certain 
criteria. The criterion of a split, in this case, is the maximum Reduction in Variance; 
as we discussed earlier, this approach is used when the target variable is a 
continuous numerical variable. The nodes are partitioned based on this criterion 
unless met by a stopping criterion. This process is called recursive partitioning. One 
of the common stopping criteria is the one we described above for the decision tree. 
The depth (level of nodes) after which the accuracy of the model stops improving is 
generally the stopping point for a regression tree. Also, the predictor variables that 
are continuous numerical variables are categorized into classes using the approach 
described earlier.

Once a leaf (terminal) node is decided, a local model is fit for all the observations 
falling under that node. The local model is nothing but the average of the output 
values of all the observations falling under that leaf node. If the observations (x1,y1), 
(x2,y2), (x3,y3),……, and (xn,yn) fall under the leaf node l, then the output value, y, for 
this node is given by:

A stepwise summary of the regression tree algorithm is as follows:

1. Start with a single node, that is, all the observations, calculate the mean,  
and then the variance of the target variable.

2. Calculate the reduction in variance caused by each of the variables that are 
potential candidates for being the next node, using the approach described 
earlier in this chapter. Choose the variable that provides the maximum 
reduction in the variance as the node.

3. For each leaf node, check whether the maximum reduction in the variance 
provided by any of the variables is less than a set threshold, or the number 
of observations in a given node is less than a set threshold. If one of these 
criterions is satisfied, stop. If not, repeat step 2.
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Some advantages of using the regression tree are as follows:

• It can take care of non-linear and complicated relations between  
predictor and target variables. Non-linear models often become difficult  
to comprehend, while the regression trees are simple to implement  
and understand.

• Even if some of the attributes of an observation or an entire observation is 
missing, the observation might not be able to reach a leaf node, but we can 
still get an output value for that observation by averaging the output values 
available at the terminal subnode of the observation.

• Regression trees are also very useful for feature selection; that is, selecting 
the variables that are important to make a prediction. The variables that are a 
part of the tree are important variables to make a prediction.

Implementing a regression tree using Python
Let us see an implementation of the regression trees in Python on a commonly used 
dataset called Boston. This dataset has information about housing and median 
prices in Boston. Most of the predictor variables are continuous numerical variables. 
The target variable, the median price of the house, is also a continuous numerical 
variable. The purpose of fitting a regression tree is to predict these prices:

Let us take a look at the dataset and then see what the variables mean:

import pandas as pd
data=pd.read_csv('E:/Personal/Learning/Predictive Modeling Book/My 
Work/Chapter 7/Boston.csv')
data.head()

Fig. 8.13: A look at the Boston dataset
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Here is a brief data dictionary describing the meaning of all the columns in  
the dataset:

• CRIM: This is the per-capita crime rate by town
• ZN: This is the proportion of residential land zoned for lots 

over 25,000 sq.ft
• INDUS: This is the proportion of non-retail business acres per 

town
• CHAS: The is the Charles River dummy variable (1 if the tract 

bounds river; 0 otherwise)
• NOX: This is the nitric oxide concentration (parts per 10 

million)
• RM: This is the average number of rooms per dwelling
• AGE: This is the proportion of owner-occupied units built 

prior to 1940
• DIS: This is the weighted distance to five Boston employment 

centers
• RAD: This is the index of accessibility to radial highways
• TAX: This is the full-value property tax rate per $10,000
• PTRATIO: This is the pupil-teacher ratio by town
• B: 1000(Bk - 0.63)^2: Here, Bk is the proportion of blacks by 

town
• LSTAT: This is the % of lower status of the population
• MEDV: This is the median value of owner-occupied homes in 

$1000s

Let us perform the required preprocessing before we build the regression tree model. 
In the following code snippet, we just assign the first 13 variables of the preceding 
dataset as predictor variables and the last one (MEDV) as the target variable:

colnames=data.columns.values.tolist()
predictors=colnames[:13]
target=colnames[13]
X=data[predictors]
Y=data[target]

Let us now build the regression tree model:

from sklearn.tree import DecisionTreeRegressor
regression_tree = DecisionTreeRegressor(min_samples_split=30,min_
samples_leaf=10,random_state=0)
regression_tree.fit(X,Y)
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The min_samples_split specifies the minimum number of observations required 
in a node for it to be qualified for a split. The min_samples_leaf specifies the 
minimum number of observations required to classify a node as a leaf.

Let us now use the model to make some predictions on the same dataset and see how 
close they are to the actual value of the target variable:

reg_tree_pred=regression_tree.predict(data[predictors])
data['pred']=reg_tree_pred
cols=['pred','medv']
data[cols]

Fig. 8.14: Comparing the actual and predicted values of the target variable

One point to observe here is that many of the observations have the same predicted 
values. This was expected because, if you remember, the output of a regression 
model is nothing but an average of the output of all the observations falling under a 
particular node. Thus, all the observations falling under the same node will have the 
same predicted output value.

Let us now cross-validate our model and see how accurate the cross-validated  
model is:

from sklearn.cross_validation import KFold
from sklearn.cross_validation import cross_val_score
import numpy as np
crossvalidation = KFold(n=X.shape[0], n_folds=10,shuffle=True, random_
state=1)
score = np.mean(cross_val_score(regression_tree, X, Y,scoring='mean_
squared_error', cv=crossvalidation,n_jobs=1))
score
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In this case, the score we are interested in looking at is the mean squared error. A 
mean of the score in this comes out to be 20.10. The cross_val_predict module can 
be used, just like the cross_val_score module, to predict the values of the output 
variable from the cross-validated model.

Let us now have a look at the other outputs of the regression tree that can be useful. 
One important attribute of a regression tree is the feature importance of various 
variables. The importance of a feature is measured by the total reduction it has 
brought to the variance. The feature importance for the variables of a regression  
tree can be calculated as follows:

regression_tree.feature_importances_

Fig. 8.15: Feature importance scores for regression tree on the Boston dataset

The higher the value of the feature importance for a variable, the more important 
it is. In this case, the three most important variables are age, lstat, and rm, in 
ascending order of importance.

A regression tree can be drawn in the same way as the decision tree to understand 
the results and predictions better.

Understanding and implementing random 
forests
Random forests is a predictive algorithm falling under the ambit of ensemble 
learning algorithms. Ensemble learning algorithms consist of a combination of 
various independent models (similar or different) to solve a particular prediction 
problem. The final result is calculated based on the results from all these 
independent models, which is better than the results of any of the  
independent models.

There are two kinds of ensemble algorithm, as follows:

• Averaging methods: Several similar independent models are created (in 
the case of decision trees, it can mean trees with different depths or trees 
involving a certain variable and not involving the others, and so on.) and the 
final prediction is given by the average of the predictions of all the models.
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• Boosting methods: The goal here is to reduce the bias of the combined 
estimator by sequentially building it from the base estimators. A powerful 
model is created using several weak models.

Random forest, as the name implies, is a collection of classifier or regression trees. A 
random forest algorithm creates trees at random and then averages the predictions 
(random forest is an averaging method of ensemble learning) of these trees.

Random forest is an easy-to-use algorithm for both classification and regression 
prediction problems and doesn't come with all the prerequisites that other 
algorithms have. Random forest is sometimes called the leatherman of all algorithms 
because one can use it to model any kind of dataset and find a decent result.

Random forest doesn't need a cross-validation. Instead, it uses something called 
Bagging. Suppose we want n observations in our training dataset T. Also, let's say 
there are m variables in the dataset. We decide to grow S trees in our forest. Each tree 
will be grown from a separate training dataset. So, there will be S training datasets. 
The training datasets are created by sampling n observations randomly with a 
replacement (n times). So, each dataset can have duplicate observations as well, and 
some of the observations might be missing from all the S training datasets. These 
datasets are called bootstrap samples or simply bags. The observations that are not 
part of a bag are out of the bag observation for that bag or sample.

The random forest algorithm
The following is a stepwise algorithm for a random forest:

1. Take a random sample of size n with a replacement.
2. Take a random sample of the predictor variables without a replacement.
3. Construct a regression tree using the predictors chosen in the random sample 

in step 2. Let it grow as much as it can. Do not prune the tree.
4. Pass the outside of the bag observations for this bootstrap sample through 

the current tree. Store the value or class assigned to each observation through 
this process.

5. Repeat steps 1 to 4 for a large number of times or the number of times 
specified (this is basically the number of trees one wants in the forest).

6. The final predicted value for an observation is the average of the predicted 
values for that observation over all the trees. In the case of a classifier, the 
final class will be decided by a majority of votes; that is, the class that gets 
predicted by the maximum number of trees gets to be the final prediction for 
that observation.
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Implementing a random forest using Python
Let us fit a random forest on the same dataset and see whether there is some 
improvement in the error rate of the prediction:

from sklearn.ensemble import RandomForestRegressor
rf = RandomForestRegressor(n_jobs=2,oob_score=True,n_estimators=10)
rf.fit(X,Y)

The parameters in RandomForestRegressor have their significance. The n_jobs is 
used to specify the parallelization of the computing and signifies the number of jobs 
running parallel for both fit and predict. The oob_score is a binary variable. Setting 
it to True means that the model has done an out-of-the-box sampling to make the 
predictions. The n_estimators specifies the number of trees our random forest will 
have. It has been chosen to be 10 just for illustrative purposes. One can try a higher 
number and see whether it improves the error rate or not.

The predicted values can be obtained using the oob_prediction attribute of the 
random forest:

rf.oob_prediction_
Let us now make the predictions a part of the data frame and have a 
look at it. 
data['rf_pred']=rf.oob_prediction_
cols=['rf_pred','medv']
data[cols].head()

The output of the preceding code snippet looks as follows:

Fig. 8.16: Comparing the actual and predicted values of the target variable
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The next step is to calculate a mean squared error for the prediction. For a regression 
tree, we specified the cross-validation scoring method to be a mean squared error; 
hence, we were able to obtain a mean squared error for the regression tree from 
the cross-validation score. In the case of random forest, as we noted earlier, a cross 
validation is not needed. So, to calculate a mean squared error, we can use the oob 
predicted values and the actual values as follows:

data['rf_pred']=rf.oob_prediction_
data['err']=(data['rf_pred']-data['medv'])**2
sum(data['err'])/506

The mean squared error comes out to be 16.823, which is less than 20.10 obtained 
from the regression tree with cross-validation.

Another attribute of the random forest regressor is oob_score, which is similar to 
the coefficient of the determination (or R2) used in the linear regression.

The oob_score for a random forest can be obtained by writing the following one 
liner: rf.oob_score_

The oob_score for this random forest comes out at 0.83.

Why do random forests work?
Random forests do a better job of making predictions because they average the 
outputs from an ensemble of trees. This maximizes the variance reduction. Also, 
taking a random sample of the predictors to create a tree makes the tree independent 
of the other trees (as they are not necessarily using the same predictors, even if using 
similar datasets).

Random forest is one of the algorithms where all the variables of a dataset are 
optimally utilized. In most machine learning algorithms, we select a bunch of 
variables that are the most important for an optimal prediction. However, in the case 
of random forest, because of the random selection of the variables and also because 
the final outputs in a tree are calculated at the local partitions where some of the 
variables that are not important globally might become significant, each variable is 
utilized to its full potential. Thus, the entire data is more optimally used. This helps 
in reducing the bias arising out of dependence on only a few of the predictors.
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Important parameters for random forests
The following are some of the important parameters for random forests that help in 
fine-tuning the results of the random forest models:

• Node size: The trees in random forests can have very few observations in 
their leaf node, unlike the decision or regression trees. The trees in a random 
forest are allowed to grow without pruning. The goal is to reduce the bias as 
much as possible. This can be specified by the min_samples_leaf parameter 
of the RandomForestRegressor.

• Number of trees: The number of trees in a random forest is generally set to a 
large number around 500. It also depends on the number of observations and 
columns in the dataset. This can be specified by the n_estimators parameter 
of the RandomForestRegressor.

• Number of predictors sampled: This is an important tuning parameter 
determining how the tree grows independently and unbiased. Generally, it 
should range between 2 to 5.

Summary
In this chapter on the decision trees, we first tried to understand the structure and 
the meaning of a decision tree. This was followed by a discussion on the mathematics 
behind creating a decision tree. Apart from implementing a decision tree in Python, 
the chapter also discussed the mathematics of related algorithms such as regression 
trees and random forests. Here is a brief summary of the chapter:

• A decision tree is a classification algorithm used when the predictor variables 
are either categorical or continuous numerical variables.

• Splitting a node into subnodes so that one gets a more homogeneous 
distribution (similar observations together), is the primary goal while  
making a tree.

• There are various methods to decide which variable should be used to split 
the node. These methods include information gain, Gini, and maximum 
reduction in variance methods.
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• The method of building a regression tree is very similar to a decision tree. 
However, the target variable in the case of a regression tree is a continuous 
numerical variable, unlike the decision tree where it is a categorical variable.

• Random forest is an algorithm coming under the ambit of ensemble methods. 
In ensemble methods, a lot of models are fitted over the same dataset. The 
final prediction is a combination (average or maximum votes) of the outputs 
from these models.

• In the case of random forests, the models are all decision or regression trees. 
A random forest is more accurate than a single decision or a regression tree 
because the averaging of outputs maximizes the variance reduction.

In the next and final chapter, we will go through some best practices in predictive 
modeling to get optimal results.
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Best Practices for  
Predictive Modelling

As we have seen in all the chapters on the modelling techniques, a predictive model 
is nothing but a set of mathematical equations derived using a few lines of codes. In 
essence, this code together with a slide-deck highlighting the high-level results from 
the model constitute a project. However, the user of our solution is more interested 
in finding a solution for the problem he is facing in the business context. It is the 
responsibility of the analyst or the data scientist to offer the solution in a way that is 
user-friendly and maximizes output or insights.

There are some general guidelines that can be followed for the optimum results in a 
predictive modelling project. As predictive modelling comprises a mix of computer 
science techniques, algorithms, statistics, and business context capabilities, the 
best practices in the predictive modelling are a total of the best practices in the 
aforementioned individual fields.

In this chapter, we will be learning about the best practices adopted in the field of 
predictive modelling to get the optimum results. The major headings under which  
all the best practices in the field of predictive analytics/modelling can be clubbed are 
as follows:

• Code: This makes the code legible, reproducible, elegant, and parametric.
• Data handling: This makes sure the data is read correctly without any loss. 

Also, it makes preliminary guesses about the data.
• Algorithms: This explains the math underlying the selected algorithm in a 

lucid manner and illustrates how the selected algorithm fits the best for the 
problem in the business context. In brief, it answers as to why this is the most 
suited algorithm for the given problem.
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• Statistics: This applies the statistical tests relevant to the business context  
and interprets their result; it interprets the statistical output parameters  
of the algorithms or models and documents their implications in the  
business context.

• Business context/communication: This clearly states the key insights 
unearthed from the analysis, the improvement or change the model has 
brought and what are its implications in the business context, and the key 
action items for the business.

The following are some of the best practices or conventional wisdom amassed over 
the decade-long existence of predictive modelling.

Best practices for coding
When one uses Python for predictive modelling, one needs to write small snippets 
of code. To ensure that one gets the maximum out of their code snippets and that the 
work is reproducible, one should be aware of and aspire to follow the best practices 
in coding. Some of the best practices for coding are as follows.

Commenting the codes
There is a tradeoff between the elegance and understandability of a code snippet. As 
a code snippet becomes more elegant, its understandability by a new user (other than 
the author of the snippet) decreases. Some of the users are interested only in the end 
results, but most of the users like to understand what is going on behind the hood 
and want to have a good understanding of the code.

For the code snippet to be understandable by a new person or the user of the code, 
it is a common practice to comment on the important lines, if not all the lines, and 
write the headings for the major chunks of the code. Some of the properties of a 
comment are as follows:

• The code should be succinct, brief, and preferably a one-liner.
• The comment should be part of the code, but shouldn't be executable unlike 

the other parts of the code. In Python, a line can be commented by appending 
a hash # in front of the line.

Some of the reasons to prefer a commented code are as follows:

• Commenting can also be used for testing the code and trying small 
modifications in a considerably large code snippet.

• Transferring the understanding of the code to a new person is an integral 
part of the process of knowledge transfers in the project management.
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The following is an example of a well-commented code snippet clearly stating the 
objective of the code in the header and the purpose of each line in the comments. 
This code has already been used in the Chapter 3, Data Wrangling. You can revisit this 
for more context and then try to understand the code with comments. Most likely, it 
would be easier to understand with the comments:

# appending 333 similar datasets to form a bigger dataset

import pandas as pd          # importing pandas library
filepath='E:/Personal/Learning/Predictive Modeling Book/Book Datasets/
Merge and Join/lotofdata' # defining filepath variable as the folder
# which has all the small datasets
data_final=pd.read_csv('E:/Personal/Learning/Predictive Modeling Book/
Book Datasets/Merge and Join/lotofdata/001.csv') # initialising the
# data-final data frame with the first dataset of the lot
data_final_size=len(data_final)    # initializing the data_final_size 
variable which counts the number of rows in the data_final data frame
for i in range(1,333):             # defining a loop over all the 333 
files
    if i<10:
        filename='0'+'0'+str(i)+'.csv' # the files are named as 001.
csv, 101.csv etc. Accordingly, 3 conditions arise for the filename
        # variable. i<10 requires appending 2 zeros at the beginning.
    if 10<=i<100:
        filename='0'+str(i)+'.csv' # i<100 requires appending 1 zeros 
at the beginning.
    if i>=100:
        filename=str(i)+'.csv'     # i>=100 requires appending no 
zeros at the beginning.

    file=filepath+'/'+filename     # defining the file variable by 
appending filepath and filename variable. file variable contains a new
    # file in every iteration
    data=pd.read_csv(file)         # file is read as data frame called 
data
    data_final_size+=len(data)     # data_final_size variable is 
updated by adding the length of the currently read file

    data_final=pd.concat([data_final,data],axis=0)  # concatanating/
appending data to the data_final data frame on the axis=0 i.e. on rows
print data_final_size                               # printing the 
final_data_size variable containing the number of rows in the final
# data frame
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The same code looks as follows in the IPython Notebook:

Fig. 9.1: An example of a well-commented code

Defining functions for substantial individual 
tasks
Any code implements a set of tasks. Many of these talks are an important part of the 
overall task at hand, but can be segregated from the main code. These tasks can be 
defined separately as functions parameterizing all the possible inputs required for 
the particular task. These functions can then be used with the particular inputs, and 
the output can be used in the implementation of the main task.

The functions are useful because of a variety of reasons, as follows:

• Functions are also useful when the same task needs to be performed a large 
number of times with just a minor change in the inputs.

• Defining separate functions makes the code legible and easier to understand 
and follow. In the absence of a function, the code becomes cluttered and 
difficult to follow.

• If the task performed by the function is a calculation, transformation,  
or aggregation, then it can be easily applied across columns using the  
apply method.

• Debugging also becomes difficult if they are not present. These functions 
can be tested on their own. If they work fine, then we know that the error is 
somewhere else.

Let us now see a few examples of a function defined to implement small tasks.
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Example 1
This function takes a positive integer greater than 2 as an input and creates a 
Fibonacci sequence with as many members in the sequence as the positive integer:

  def fib(n):
  a,b=1,2
  count=3
  fib_list=[1,2]
  while(count<=n):
    a,b=b,a+b
    count=count+1
    fib_list.append(b)
  return fib_list

Example 2
This function calculates the distance of a particular place (defined by latitude and 
longitude) from a list of possible stations and finds the station that is the closest to 
the given place. This function can take an array consisting of latitude and longitude 
and calculate the distances from possible stations for each location. It can also be 
applied to a column of data consisting of latitude and longitude in each row to find 
the closest station for each location (defined by latitude and longitude):

def closest_station(lat, longi,stations):
    loc = np.array([lat, longi])
    deltas = stations - loc[None, :]
    dist2 = (deltas**2).sum(1)
    return np.argmin(dist2)

An example of the list of stations can be a list of two possible stations containing the 
latitude and longitudes for both the stations as follows:

    stations = np.array([[41.995, -87.933],
                         [41.786, -87.752]])

Example 3
A function can work without any input as well. These functions will perform 
some task, but will not necessarily return an output. They perform some sort of 
transformation or manipulation. Functions can also be defined to implement several 
repetitive tasks at once; for example, applying the same conversion to all the columns 
of a dataset.
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One example of defining such a function is to define a function to convert several 
columns of a dataset at once to a desired data type. This is a very common and 
widely used data preparation step used in almost all the predictive modelling 
projects because the data type of some of the columns need to be changed to  
facilitate a particular operation or calculation in the business context.

In the following example, a hypothetical dataset called datafile is opened as a 
dictionary so that it can be read line by line and sub settled easily over columns. The 
dataset has columns Date, Latitude, Longitude, NumA1, and NumA2 that need to be 
converted to date, float, float, int, and int data types, respectively. A dictionary 
consisting of the column names and the required data type of the column name is 
defined. Each column is then converted to the required data type and the resultant 
line is appended to the final dataset called data:

def load_data():
    data = []
    for line in csv.DictReader(open("..../datafile.csv")):
        for name, converter in {"Date" : date,
                                "Latitude" : float, "Longitude" : 
float,
                                "NumA1" : int, "NumA2" : int}.items():
            line[name] = converter(line[name])
        data.append(line)
    return data

As one can see, these small tasks are significant on their own so that they are 
identified as a separate subtask, but in the larger picture, they are a part of the  
larger task and can be used later for further analyses.

Avoid hard-coding of variables as much as 
possible
One of the most essential guidelines to follow while writing a legible and an  
easy-to-debug code is to create variables and avoid hard-coding as much as possible.

Some of the benefits of avoiding hard-coding can be listed as follows:

• Hard-coding makes it difficult to spot the error and debug the code. If a 
variable is created, one needs to check for the error at just one place, that is, 
the place where the variable has been defined. If not, one has to go through 
the entire code, spot the places where the hard-coding has been used and 
check for error at all those places.
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• Also, once defined, a variable can be used at multiple places in the code. 
Making a change in the script also becomes easier as the variable-related 
change needs to be done only once if the variable is defined.

The following code is one example of defining a variable and avoiding hard-coding. 
Here, we are defining a variable for a particular directory path and a couple of files. 
We can use these variables for subsequent usage such as reading one of the files. If 
one of the inputs, such as the directory path, needs to be changed, it can be done by 
making a change only at one place, that is, where it is defined:

import pandas as pd
import os
filepath='E:\Personal\Learning\Predictive Modeling Book\Book Datasets\
Interesting Datasets'
filename1='chopstick-effectiveness.csv'
filename2='pigeon-racing.csv'

df1=pd.read_csv(os.path.join(filepath,filename1))
df2=pd.read_csv(os.path.join(filepath,filename2))

df1.head()
df2.head()

Some parameters, which need to be changed regularly, should always be defined as 
a variable. Some codes need to be run repeatedly with a change only in one of the 
variables. In such cases also, defining a variable comes in very handy.

Version control
While developing the code, the changes and improvements are suggested  
phase-wise and not all at once. It is not possible to write in one sitting, a perfectly 
working code with no scope for improvement. However, the intermediate code 
might be used for demonstrative (the proof of concept or POC; before a project starts 
officially, evidence is needed to prove that the concept can be put into reality) and 
testing purposes. Hence, there is a need to follow a version control.

It essentially means saving a copy of the old code, making a copy of it, renaming it, 
and making changes to the new copy. The new copy is the new version of the code. 
This new copy can be released as the latest production version once it is tested after 
making the changes and has started running without error. Until then, the latest but 
one version of the code should be used as the production version. Version control 
can be done manually or by using version controlling tools such as GitHub and  
so on.
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Using standard libraries, methods, and 
formulas
As far as possible, try to use a function or method, if it already exists, to perform a 
particular task in the production version of the code. For better understanding of 
how the method works, one can deconstruct the method and try building it up from 
scratch (as we have done for the logistic regression algorithm in this book) on their 
own, but this should be a part of the exploratory work. In the production version, 
already existing methods should be used.

For example, to calculate correlation, one should use the already existing formula 
and not reinvent the wheel from scratch. Another example is the groupby 
functionality in pandas to split the dataset into groups based on the different 
categories of a categorical variable. This saves time and also increases the elegance of 
the code snippet. There are an ample number of libraries to choose from to perform 
tasks in Python. One should choose a library that performs well and is stable over a 
range of IDEs, interpreters, and OSs.

Best practices for data handling
Data cleaning and manipulation constitutes the framework of any analytics project. 
To ensure that this important step is executed efficiently, the following best practices 
should be executed:

• After importing the dataset, one should ensure that the dataset (all the 
variables and rows) has been read correctly. This means reading all the 
variables in their correct or required format. Sometimes, due to some 
limitation on the data or the IDE side, some variables are read wrongly  
and they need to be formatted to the correct format.

• For example, if a variable reports some numerical ID (let's say 10-digits 
long), many a times it would be read and displayed in a scientific notation. 
However, this would be wrong as it is an ID and shouldn't be displayed 
in a scientific notation. Sometimes, a variable containing long strings are 
truncated. These issues should be taken care of before performing any 
operation on the data.

• After every data manipulation step such as transposing a dataset, creating 
and joining dummy variables to the dataset, merging two datasets, creating 
a new variable, or changing the format type of a variable, one should look 
at the resultant dataset to see whether the manipulation has taken place 
correctly or not.
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• As far as possible, data shouldn't be deleted from a dataset. This should be 
kept in mind while dealing with missing values. If some of the values in a 
row are missing, imputing values should be the preferred choice. Deleting 
the entire row should be avoided.

• Basic plots, namely, histograms and scatter plots should be created for all the 
numerical variables to see the general outlook and behavior of that variable. 
This helps in spotting some obvious trends, outliers, potential modifications, 
and so on. The pair-wise scatter plot of all the numerical variables can also 
be tried if the number of variables is manageable. This plot is called scatter 
plot matrix and is very useful to spot relationships, if any, among any two 
variables. Category-wise histograms are also used to get a good sense of 
distribution of a variable over different categories.

Best practices for algorithms
The choice of which algorithm to deploy to answer a business question depends on 
a variety of parameters, and there is no one good answer. The choice of algorithm 
generally depends on the nature of the predictor and output variables; also, the 
overarching nature of the business problem at hand—whether it is a numerical 
prediction, classification, or an aggregation problem. Based on these preliminary 
criteria, one can shortlist a few existing methods to apply on the dataset.

Each method will have its own pros and cons, and the final decision should be taken 
keeping in mind the business context. The decision for the best-suited algorithm is 
usually taken based on the following two requirements:

• Sometimes, the user of the result is interested only in the accuracy of the 
results. In such cases, the choice of the algorithm is done based on the 
accuracy of the algorithms. All the qualifying models are run and the one 
with the maximum accuracy is finalized.

• At other times, the user is interested in knowing the details of the algorithms 
as well. In such cases, the complexity of the algorithm also becomes a 
concern. The selected algorithms shouldn't be too complex to explain  
to the user and should also be decently accurate.
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The following table summarizes the algorithms that should be chosen depending 
upon the type of predictor and outcome variables and the question needed to be 
answered in the business context:

Type of variables Business contexts/
questions

Algorithm/Model

A continuous numerical 
variable as an output 
variable; a mix of categorical 
and numerical variables as 
predictor variables.

To answer quantifiable 
questions such as how 
many, how much, and  
so on.

Linear regression, polynomial 
regression, and regression 
tree.

A binary or categorical 
variable as an output 
variable; a mix of categorical 
and numerical variables as 
predictor variables.

Classification problems. 
To answer questions with 
yes/no, fail/success, and 
0/1 answers.

Logistic regression.

No output variable; a mix of 
categorical and numerical 
variables as predictor 
variables.

Grouping/aggregation 
and targeted marketing. To 
answer what data points 
are similar to each other? 
How many such groups 
can be created? These 
groups are earlier  
non-existent. 

Clustering and segmentation.

A categorical or numerical 
variable as an output 
variable; a mix of categorical 
and numerical variables as 
predictor variables.

Classification problems. 
Classifying data points into 
already existing groups. 

Decision Trees, k-Nearest 
Neighbor, Bayes' Classifier, 
Support Vector Machines, and 
so on.

Best practices for statistics
Statistics are an integral part of any predictive modelling assignment. Statistics are 
important because they help us gauge the efficiency of a model. Each predictive 
model generates a set of statistics, which suggests how good the model is and how 
the model can be fine-tuned to perform better. The following is a summary of the 
most widely reported statistics and their desired values for the predictive models 
described in this book:
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Algorithms Statistics/Parameter The desired value of statistics
Linear regression R2, p-values, F-statistic,  

and Adj. R2
High Adj. R2, low F-statistic, 
and low p-value

Logistic regression Sensitivity, specificity, Area 
Under the Curve (AUC), and 
KS statistic

High AUC (proximity to 1)

Clustering Intra-cluster distance and 
silhouette coefficient

High intra-cluster distance 
and high silhouette coefficient 
(proximity to 1)

Decision trees 
(classification)

AUC and KS statistics High AUC (proximity to 1)

While reporting the results of a predictive model, the value of these statistics and 
its meaning in the business context should be stated explicitly. A brief and lucid 
explanation of the relevance and significance of the statistic is appreciated. Report 
the best values (most optimum value attainable) of these statistics. The model should 
be fine-tuned based on the value of these statistics until the point that they can't be 
further improved.

Apart from these statistics, there are various statistical tests that can be performed 
over the dataset to test certain hypothesis about the data before fitting any predictive 
model to it. These tests include Z-test, t-test, chi-square test, ANOVA, and so on. 
If such tests have been performed, the results (value and significance) and their 
implications should be clearly stated.

Best practices for business contexts
This is the meatiest part of the report created for a predictive modeling project. 
Some users of the report will navigate directly to this section as they are primarily 
interested in the overall effect of the project. Thus, it is imperative to mention the 
highlights and most important findings of the project in this section. This is different 
from reporting the statistics, which is in a way the raw output of the predictive 
model. In this section, we will focus on the following:

• Findings and insights of the analyses
• Major problems identified
• Major results from the model
• The accuracy or efficiency of the model
• Action steps for the user to solve the business problem, and so on
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If it is a customer segmentation problem, mention the names and characteristics 
of the segments identified along with the statistical summary for each segment. 
Recommend a plan to maximize sales and revenue (or whatever the business 
objective might be) for each of the segments.

If it is a regression/prediction/forecasting problem, mention the accuracy of the 
results along with a summary of the results. For example, the expected number of 
house sales in the coming year is around t (say 900K), according to the model. The 
accuracy of the model is a% (say 98.5%).

Don't write in paragraphs. Write in bullet points. Add relevant plots and graphs to 
summarize the results.

Tables are a great way to summarize a lot of information in a small space. Use a lot of 
them. Screenshots are also a great way to show results as they are quite widely used. 
Assumptions, if any, should be clearly stated.

Summary
What are the do's and don'ts of a predictive modelling project? This chapter dealt 
with these pressing questions and listed a number of best practices to make a 
predictive modelling project successful. Following are the important points:

• Codes should be well-commented, modular, version-controlled, generalized, 
and not have hard-coded values.

• Data should be observed carefully after every import and manipulation  
in order to check for any errors that might creep in while performing  
these operations.

• The choice of the algorithm is guided by the nature of the predictor  
and outcome variable. The ultimate selection of the algorithm depends  
upon whether the user prioritizes accuracy or the understandability of  
the algorithm.

• While reporting the results of a predictive model, the most optimum value  
of the important statistics and their relevance should be clearly stated.

• Main business questions should be clearly answered. Major finding should 
be reported clearly. Some actionable recommendations for the findings 
should be given. All the assumptions should be stated.

As a practitioner of any discipline, one should strive to follow the best practices, to 
get the best result and impact. The same stands true for predictive modelling as well.
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A List of Links
The following is a list of links that have been referenced throughout the chapters  
in this book:

• Link to the datasets used in the book:
 ° https://goo.gl/zjS4C6

• Info on predictive modelling:
 ° http://aci.info/2014/07/12/the-data-explosion-in-2014-

minute-by-minute-infographic/

 ° http://www.bbc.com/news/business-26383058

• UCI Machine Learning Library of datasets: 
 ° http://archive.ics.uci.edu/ml/

• Scikit-learn official website:
 ° http://scikit-learn.org/stable/

• Pandas documentation:
 ° http://pandas.pydata.org/pandas-docs/stable/tutorials.

html

• An Introduction to Statistical Learning:
 ° http://www-bcf.usc.edu/~gareth/ISL/ISLR%20First%20

Printing.pdf

• Analytics Vidhya blog:
 ° http://www.analyticsvidhya.com/

• Kaggle blog:
 ° http://blog.kaggle.com/

https://goo.gl/zjS4C6
http://aci.info/2014/07/12/the-data-explosion-in-2014-minute-by-minute-infographic/
http://aci.info/2014/07/12/the-data-explosion-in-2014-minute-by-minute-infographic/
http://www.bbc.com/news/business-26383058
http://archive.ics.uci.edu/ml/ 
http://scikit-learn.org/stable/
http://pandas.pydata.org/pandas-docs/stable/tutorials.html
http://pandas.pydata.org/pandas-docs/stable/tutorials.html
http://www-bcf.usc.edu/~gareth/ISL/ISLR%20First%20Printing.pdf
http://www-bcf.usc.edu/~gareth/ISL/ISLR%20First%20Printing.pdf
http://www.analyticsvidhya.com/
http://blog.kaggle.com/
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• Hierarchical clustering PPT, San Jose State University:
 ° http://goo.gl/p4kSxv

• Decision tree learning material, Carnegie Mellon University:
 ° http://www.cs.cmu.edu/afs/cs/project/theo-20/www/mlbook/

ch3.pdf

• Biostatistics Course BIOST 515, Washington University:
 ° http://courses.washington.edu/b515/l13.pdf

 ° http://courses.washington.edu/b515/l12.pdf

• Scipy documentation:
 ° http://www.scipy.org/docs.html

• Matplotlib documentation:

 ° http://matplotlib.org/

http://goo.gl/p4kSxv
http://www.cs.cmu.edu/afs/cs/project/theo-20/www/mlbook/ch3.pdf
http://www.cs.cmu.edu/afs/cs/project/theo-20/www/mlbook/ch3.pdf
http://courses.washington.edu/b515/l13.pdf
http://courses.washington.edu/b515/l12.pdf
http://www.scipy.org/docs.html 
http://matplotlib.org/
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