
www.allitebooks.com

http://www.allitebooks.org

Learning QGIS
Second Edition

Use QGIS to create great maps and perform all the
geoprocessing tasks you need

Anita Graser

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

[FM-2]

Learning QGIS
Second Edition

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: September 2013

Second edition: December 2014

Production reference: 1031214

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78439-203-1

www.packtpub.com

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

[FM-3]

Credits

Author
Anita Graser

Reviewers
Tsompanopoulos Efstratios
(Stratos)

Min Feng

Daniela Pani

Cornelius Roth

Commissioning Editor
Amarabha Banerjee

Acquisition Editor
Larissa Pinto

Content Development Editor
Melita Lobo

Technical Editors
Tanvi Bhatt

Faisal Siddiqui

Copy Editors
Karuna Narayanan

Vikrant Phadkay

Project Coordinator
Sanchita Mandal

Proofreaders
Simran Bhogal

Maria Gould

Ameesha Green

Indexer
Priya Sane

Production Coordinators
Nilesh Bambardekar

Komal Ramchandani

Cover Work
Komal Ramchandani

www.allitebooks.com

http://www.allitebooks.org

[FM-4]

About the Author

Anita Graser studied Geomatics at FH Wr. Neustadt, Austria, where she graduated
with a Master's degree in 2010. During her studies, she gained hands-on experience
in the fields of geomarketing and transportation research. Since 2007, Anita has
been working as a geographic information systems (GIS) expert with the Dynamic
Transportation Systems group at the Austrian Institute of Technology, where she
focuses on analyzing and visualizing spatiotemporal data. Anita is a charter member
of OSGeo and PSC member of QGIS. She has been working with GIS since 2005,
and writes a popular blog on open source GIS at www.anitagraser.com.

I would like to say thanks to my family, partner, and coworkers for
their support and encouragement. Of course, I also want to thank the
whole QGIS community for their continued effort to provide the best
open source GIS experience possible, and everyone who made the
first edition of Learning QGIS such a great success.

www.allitebooks.com

www.anitagraser.com
http://www.allitebooks.org

[FM-5]

About the Reviewers

Tsompanopoulos Efstratios (Stratos) has been balancing between Geodesy
and GIS for the last 12 years. He is currently based in the Netherlands, working
as an office surveyor and GIS Administrator for one of the world's leading
surveying companies.

Stratos has a huge interest in GIS scripting and GIS databases and currently focuses
on creating and maintaining the GIS database of his company while developing tools
using Python. His future goals are to create comprehensive tools and several web
applications for his company in order to improve work procedures.

When he is not concerned with "geeky stuff," Stratos tries to spend a lot of time with
friends and family, listens to music, and travels as much as possible.

You can find more information about him at www.linkedin.com/in/
etsompanopoulos or contact him at stratos.tso@gmail.com.

Min Feng completed his PhD degree in Cartography and Geographic
Information Systems in 2008, and has worked at the Global Land Cover Facility
(GLCF) at the University of Maryland, the Chinese Academy of Sciences (CAS),
and United Nations Environment Programme (UNEP)'s Global Resource Information
Database (GRID). He has been engaged in global high-resolution land cover and
change research. He is an expert in high performance geospatial data processing,
geospatial model sharing, and integrated simulation. His work has been published
in top-ranking remote sensing and GIS journals. Feng is familiar with OGC/ISO
standards and open source tools and libraries. He is also capable of programming
using many languages, including C/C++, Java, Python, R, and IDL.

www.allitebooks.com

www.linkedin.com/in/etsompanopoulos
www.linkedin.com/in/etsompanopoulos
http://www.allitebooks.org

[FM-6]

Born in Sardinia, Daniela Pani has a first degree in marine geophysics; a PhD
in georesources geophysical exploration and a Diploma of the Imperial College
in Remote Sensing. She has written more than 50 scientific papers on her fields
of competence (RS, Geodesy, Geophysics, Cartography, GIS). In charge of two
university courses, she's participated in numerous oceanographic cruises for
seabed surveying, being part of the scientific groups for establishment of marine
parks and land use regulations. She works in the Space industry and is currently
a member of staff at the General Directorate of the Civil Protection for Sardinia.
Daniela is a popular national/international speleologist and geoconsultant for
a popular program on TV-RAI1.

Cornelius Roth holds a Master's degree in Geography and Geoinformatics
at the University of Salzburg. He is currently working at the Department of
Geoinformatics on research projects, helping them to use GIS-related methods
in emergency and air traffic management, open source GIS, and Open data.
Recently, he has also worked at the economic development agency BGL,
Bavaria, with strong focus on fostering companies when applying GIS methods
and services to support their business objectives. As a third pillar, he manages
e-learning courses for the UNIGIS distance learning network in Salzburg.

www.allitebooks.com

http://www.allitebooks.org

[FM-7]

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and
as a print book customer, you are entitled to a discount on the eBook copy. Get in touch
with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.com

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com
http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Table of Contents
Preface 1
Chapter 1: Getting Started with QGIS 5

Installing QGIS 5
Installing QGIS on Windows 6
Installing QGIS on Ubuntu 8

Running QGIS for the first time 9
Introducing the QGIS user interface 11
Summary 14

Chapter 2: Viewing Spatial Data 15
Loading vector data from files 16
Dealing with coordinate reference systems 19
Loading raster files 21

Georeferencing raster maps 21
Loading data from databases 24
Loading data from OGC Web Services 27
Styling raster layers 27
Styling vector layers 31

Creating point styles – an example of an airport style 31
Creating line styles – an example of river or road styles 33
Creating polygon styles – an example of a landmass style 35

Loading background maps 36
Summary 38

Chapter 3: Data Creation and Editing 39
Creating new vector layers 39
Working with feature selection tools 41
Editing vector geometries 44

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Using the measuring tools 46
Editing attributes 46

Editing attributes in the attribute table 46
Editing attributes in the feature form 48
Calculating new attribute values 51

Reprojecting and converting vector and raster data 52
Joining tabular data 54
Summary 56

Chapter 4: Spatial Analysis 57
Clipping rasters 57
Analyzing elevation / terrain data 59
Raster calculator 62
Converting between rasters and vectors 63
Accessing the raster and vector layer statistics 64
Creating a heatmap from points 66
Vector geoprocessing using Processing 68

Identifying features in the proximity of others 69
Raster sampling at point locations 71
Mapping density with hexagonal grids 73
Calculating area shares within a region 73

Automated geoprocessing with the graphical modeler 77
Leveraging the power of spatial databases 80
Summary 83

Chapter 5: Creating Great Maps 85
Advanced vector styling 85

Creating a graduated style with size scaling 86
Using categorized styles 88
Creating a rule-based style for road layers 89
Creating data-defined symbology 91

Labeling 93
Designing print maps 99

Creating a basic map 100
Adding advanced map items 103
Creating map series using the Atlas feature 107

Summary 108

Table of Contents

[iii]

Chapter 6: Extending QGIS with Python 109
Getting to know the Python console 109

Loading and exploring datasets 110
Styling layers 112
Filtering data 114
Creating a memory layer 114
Exporting map images 115

Creating custom geoprocessing scripts using Python 116
Writing our first processing script 117
Writing a script with vector layer output 117
Visualizing the script progress 119

Developing your first plugin 120
Creating the plugin template with Plugin Builder 120
Customizing the plugin GUI 123
Implementing the plugin functionality 124
Creating a custom map tool 125

Summary 127
Index 129

Preface
Welcome to Learning QGIS Second Edition. This book will introduce you to QGIS 2.6
and teach you how to perform core geospatial tasks using this popular open source
GIS. It takes you through six chapters, from the installation and setup of QGIS in the
first chapter to the essentials of viewing spatial data in the second chapter. The third
chapter covers data creation and editing followed by the fourth chapter that offers
an introduction to performing spatial analysis in QGIS. In the fifth chapter, you will
learn how to create great maps and how to prepare them for print, and the final
chapter shows you how you can extend QGIS using the Python scripting language.

What this book covers
Chapter 1, Getting Started with QGIS, covers the installation and configuration
of QGIS. You will also get to know the user interface and how to customize it.
By the end of this chapter, you will have QGIS running on your machine and
be ready to start with the tutorials.

Chapter 2, Viewing Spatial Data, covers how to view spatial data from different
data sources. QGIS supports many file and database formats as well as OGC
Web Services. We will first learn how we can load layers from these different
data sources. Then, we will take a look at the basics of styling both vector and
raster layers and create our first map. We will finish this chapter with an example
that shows you how to load background maps from online services.

Chapter 3, Data Creation and Editing, covers the creation of new vector layers. Then,
you will learn how to select features and take measurements before continuing with
editing feature geometries and attributes. We will also reproject vector and raster
data, and you will learn how to convert between different file formats before ending
this chapter with joining data from text files and spreadsheets to our spatial data.

Preface

[2]

Chapter 4, Spatial Analysis, covers raster processing and analysis tasks such as
clipping and terrain analysis. Then, you will learn how to convert between raster
and vector formats before continuing with common vector geoprocessing tasks, such
as generating heatmaps and calculating area shares within a region. Finally, we will
finish the chapter with an exercise in automating a geoprocessing workflow using
the QGIS Processing modeler.

Chapter 5, Creating Great Maps, covers important features that enable us to create
great maps. We will go into advanced vector styling, building on what we learned
in Chapter 2, Viewing Spatial Data. Then, we will cover labeling using examples of
labeling point locations as well as how to create more advanced road labels with
road shield graphics. You will also learn how to tweak labels manually. Finally,
we will get to know the print composer, and you will learn how to use it to create
printable maps and map books.

Chapter 6, Extending QGIS with Python, covers scripting QGIS with Python. We will
start with an introduction to the QGIS Python console. Then, we will go into more
advanced development of custom tools for the processing toolbox, and you will
learn how to create your own plugins.

Who this book is for
If you are a user, developer, or consultant who knows the basic functions and
processes of GIS but want to know how to use QGIS to achieve the results you are
used to from other GISes, this is the book for you. This book is not intended to be a
GIS textbook. You, the reader, are expected to be comfortable with core GIS concepts.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"Use [% $now %] to insert the current time stamp."

A block of code is set as follows:

("landcover@1" > 0 AND "landcover@1" <= 6) * 100
+ ("landcover@1" >= 7 AND "landcover@1" <= 10) * 101
+ ("landcover@1" >= 11) * 102

Preface

[3]

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

def initGui(self):
 # create the toolbar icon and menu entry
 icon_path = ':/plugins/MyFirstMapTool/icon.png'
 self.map_tool_action=self.add_action(
 icon_path,
 text=self.tr(u'My 1st Map Tool'),
 callback=self.map_tool_init,
 parent=self.iface.mainWindow())
 self.map_tool_action.setCheckable(True)

Any command-line input or output is written as follows:

sudo apt-get install qgis python-qgis qgis-plugin-grass

New terms and important words are shown in bold. Words that you see on
the screen, in menus or dialog boxes for example, appear in the text like this:
"You can increase your productivity by assigning shortcuts to the tools you
use regularly, by navigating to Settings | Configure shortcuts."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

www.packtpub.com/authors

Preface

[4]

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to have
the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the
code—we would be grateful if you would report this to us. By doing so, you can save
other readers from frustration and help us improve subsequent versions of this book.
If you find any errata, please report them by visiting http://www.packtpub.com/
submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list
of existing errata, under the Errata section of that title. Any existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/support

Getting Started with QGIS
In this chapter, we will install and configure the QGIS geographic information system.
We will also get to know the user interface and how to customize it. By the end of this
chapter, you will have QGIS running on your machine and be ready to start with
the tutorials.

Installing QGIS
QGIS runs on Windows, various Linux distributions, Unix, Mac OS X, and Android.
Also, the QGIS project provides ready-to-use packages as well as instructions to
build from the source code at http://download.qgis.org. We will cover how to
install QGIS on two systems: Windows and Ubuntu, as well as how to avoid the
most common pitfalls.

Further installation instructions for other supported operating systems
are available at http://www.qgis.org/en/site/forusers/
alldownloads.html.

Like many other open source projects, QGIS offers you a choice between a stable
release version and the cutting-edge developer version, also called master or testing.
QGIS master/testing will contain the latest and greatest developments, but be warned
that on some days, it might not work as reliably as you want it to. For the tutorials in
this book, we will use the QGIS 2.6 stable release.

http://download.qgis.org
http://www.qgis.org/en/site/forusers/alldownloads.html
http://www.qgis.org/en/site/forusers/alldownloads.html

Getting Started with QGIS

[6]

Installing QGIS on Windows
On Windows, we have two different options to install QGIS: the standalone installer
and the OSGeo4W installer. The standalone installer is one big file to download
(approximately 260 MB for the 64-bit version and 320 MB for the 32-bit version); it
contains a QGIS release and the Geographic Resources Analysis Support System
(GRASS) GIS in one package. The OSGeo4W installer is a small, flexible installation
tool that makes it possible to download and install QGIS and many more OSGeo
tools with all their dependencies. The main advantage of this over the standalone
installer is that it makes updating QGIS and its dependencies very easy. You can
always have access to both the current and the developer versions, if you chose
to, but of course, you are never forced to update. That is why I recommend that
you use OSGeo4W. You can download the 32-bit and 63-bit OSGeo4W installers
from http://osgeo4w.osgeo.org (or directly from http://download.osgeo.org/
osgeo4w/osgeo4w-setup-x86.exe for the 32-bit version or http://download.
osgeo.org/osgeo4w/osgeo4w-setup-x86_64.exe if you have a 64-bit version of
Windows). Download the version that matches your operating system and keep it!
In the future, whenever you want to change or update your system, just run it again.

Regardless of the installer you choose, make sure that you avoid
special characters such as German umlauts or letters from alphabets
other than the default Latin ones in the installation path, as they can
cause problems later on, for example, during plugin installation.

When the OSGeo4W installer starts, we get to choose between the Express Desktop,
Express Web-GIS, and Advanced installations. To install the QGIS release version,
we can simply select the Express Desktop option, and the next dialog box will list
the available desktop applications, such as QGIS, uDig, and GRASS GIS. We can
simply select QGIS, click on Next, and the download and installation will start
automatically. When the installation is finished, there will be desktop shortcuts
and start-menu entries for OSGeo4W and QGIS.

http://osgeo4w.osgeo.org
http://download.osgeo.org/osgeo4w/osgeo4w-setup-x86_64.exe
http://download.osgeo.org/osgeo4w/osgeo4w-setup-x86_64.exe

Chapter 1

[7]

If we want to install QGIS master/testing, we need to go through the Advanced
installation. This installation path offers many options, such as Download without
installing and Install from Local Directory, which can be used to download all
the necessary packages on one machine to later install them on machines without
Internet access. It's usually not necessary to change the default settings, but if your
machine is, for example, hidden behind a proxy, you will be able to specify it here.
After the installer fetches the latest package information from OSGeo's servers, we
get to pick the packages for installation. QGIS master/testing is listed in the desktop
category as qgis-dev. To select it for installation, click on the text that reads Skip,
and it will change and display the version number. The installer will automatically
select all the necessary dependencies (such as GDAL, SAGA, OTB, and GRASS),
so we don't have to worry about this. After clicking on Next, the download and
installation starts automatically, just like in the Express version. The dialog will
look like the following screenshot:

Getting Started with QGIS

[8]

If you try to run QGIS and get a pop up that says, The procedure entry point
<some-name> could not be located in the dynamic link library <dll-name>.dll,
it means that you are facing a common issue on Windows systems: a DLL conflict.
This error is easy to fix; just copy the DLL file mentioned in the error message from
C:\OSGeo4W\bin\ to C:\OSGeo4W\apps\qgis\bin\ (adjust the paths if necessary).

Installing QGIS on Ubuntu
On Ubuntu, the QGIS project provides packages for both the release and developer
versions. At the time of writing this book, the Ubuntu versions Precise, Saucy, and
Trusty, are supported, but you can find the latest information at http://qgis.org/
en/site/forusers/alldownloads.html#ubuntu. Be aware, though, that you can
only install one version at a time. The packages are not listed in the default Ubuntu
repositories. Therefore, we have to add the appropriate repositories to Ubuntu's
source list, which you can find at /etc/apt/sources.list. You can open the file
with any text editor.

Make sure that you have superuser rights, as you need them to save your edits.
One option is to use gedit, which is installed on Ubuntu by default. To edit the
sources.list file, use the following command:

sudo gedit /etc/apt/sources.list

Make sure that you add only one of the following four package-source options
to avoid conflicts due to incompatible packages. The specific lines that you have
to add to the source list depend on your Ubuntu version.

1. The first option, which is also the default one, is to install the current version.
To install the QGIS release on Trusty Tahr, add the following lines to your file:
deb http://qgis.org/debian trusty main
deb-src http://qgis.org/debian trusty main

If necessary, replace trusty with saucy or precise to fit your system.
For an updated list of supported Ubuntu versions, visit http://download.
qgis.org.

2. The second option is to install the QGIS master, which is currently available
for trusty, saucy, utopic, and precise. Add the following lines to your file:
deb http://qgis.org/debian-nightly trusty main
deb-src http://qgis.org/debian-nightly trusty main

The preceding versions depend on other packages such as GDAL and
proj4, which are available in the Ubuntu repositories. It is worth
mentioning that these packages are often quite old.

http://qgis.org/en/site/forusers/alldownloads.html#ubuntu
http://qgis.org/en/site/forusers/alldownloads.html#ubuntu
http://download.qgis.org
http://download.qgis.org

Chapter 1

[9]

3. The third option is to install the QGIS release version with updated
dependencies, which are provided by the ubuntugis repository.
Add the following lines to your file:
deb http://ppa.launchpad.net/ubuntugis/ubuntugis-unstable/ubuntu
trusty main
deb-src http://ppa.launchpad.net/ubuntugis/ubuntugis-unstable/
ubuntu trusty main

4. The fourth option is the QGIS master with updated dependencies.
Add the following lines to your file:
deb http://qgis.org/ubuntugis-nightly trusty main
deb-src http://qgis.org/ubuntugis-nightly trusty main
deb http://ppa.launchpad.net/ubuntugis/ubuntugis-unstable/
ubuntu trusty main

After choosing the repository, we will add the qgis.org repository's public key to our
apt keyring. This will avoid warnings that you might otherwise get when installing
from a non-default repository. Run the following command in the terminal:

gpg --keyserver keyserver.ubuntu.com --recv DD45F6C3

gpg --export --armor DD45F6C3 | sudo apt-key add –

By the time this book goes into print, the key information might
change. Refer to http://qgis.org/en/site/forusers/
alldownloads.html#ubuntu for the latest updates.

Finally, to install QGIS, run the following commands:

sudo apt-get update

sudo apt-get install qgis python-qgis qgis-plugin-grass

Running QGIS for the first time
When you install QGIS, you get two applications: QGIS Desktop and QGIS
Browser. If you are familiar with ArcGIS, you can think of QGIS Browser as similar
to ArcCatalog. It is a small application to preview spatial data and related metadata.
For the remainder of this book, we will focus on QGIS Desktop.

By default, QGIS uses the operating system's default language. To follow the
tutorials in this book, I advise you to change the language to English by going to
Settings | Options | Locale. On the first run, the way the toolbars are arranged
can hide some buttons. To be able to work efficiently, I suggest that you rearrange
the toolbars. I like to add some toolbars on the left and right screen borders to save
vertical screen estate—especially on wide screen displays.

http://qgis.org/en/site/forusers/alldownloads.html#ubuntu
http://qgis.org/en/site/forusers/alldownloads.html#ubuntu

Getting Started with QGIS

[10]

Additionally, we activate the file browser by going to View | Panels | Browser.
It provides us with a quick access to our spatial data. In the end, the QGIS window
on your screen should look similar to the following screenshot:

Next, we activate some must-have plugins by going to Plugins | Manage and Install
Plugins. Plugins are activated by ticking the checkboxes beside their names. To begin
with, I recommend the following:

• Coordinate Capture: This plugin is useful to pick coordinates in the map
• fTools: This plugin offers vector analysis and management tools
• GdalTools: This plugin offers raster analysis and management tools
• Processing: This plugin provides access to many useful raster and vector

analyses tools as well as a model builder for task automation

To make it easier to find specific plugins, we can filter the list of plugins using the Search
input field at the top of the window, which you can see in the following screenshot:

Chapter 1

[11]

Introducing the QGIS user interface
Now that we have set up QGIS, let's get accustomed to the interface! As we already
saw in the screenshot presented in the Running QGIS for the first time section, the
biggest area is reserved for the map. To the left of the map, there are the Layers and
Browser panels. In the following screenshot, you can see how the Layers panel looks
like once we have loaded some layers (which we will do in the upcoming chapter
Viewing Spatial Data). To the left of each layer entry, you can see a preview of the
layer style. Additionally, we can use layer groups to structure the layer list. The
Browser panel (shown in the following screenshot) provides us with a quick
access to our spatial data, as you will soon see in the following chapter.

Getting Started with QGIS

[12]

Below the map, we find important information such as (from left to right) the
current map Coordinates, map Scale, and the (currently inactive) project coordinate
reference system (CRS), for example, EPSG:4326 in the following screenshot:

Next, there are multiple toolbars to explore. If you arrange them as shown in the
previous section, the top row will look like this:

The first row contains the following toolbars:

• File: This toolbar contains the tools to create, open, save, and print projects
• Manage Layers: This toolbar contains the tools to add layers from the vector

or raster files, databases, web services, and text files or create new layers
• Database: Currently, this toolbar only contains DB Manager, but other

database-related tools (for example, the OfflineEditing plugin, which
allows us to edit offline and synchronize with databases) will appear
here when they are installed

• Help: Toolbar points to the option to download the user manual

The second row of toolbars looks like this:

The second row contains the following toolbars:

• Map Navigation: This contains the pan and zoom tools
• Attributes: These tools are used to identify, select, open attribute

tables, measure, and so on
• Label: These tools are used to add, configure, and modify labels

Chapter 1

[13]

On the left screen border, we will add the following toolbar:

• Raster: This toolbar includes histogram stretch, brightness,
and contrast control

• Vector: This currently only contains the Coordinate Capture tool,
but it will be filled by additional Python plugins

• Plugins: This is currently empty, but will be filled by additional Python plugins
• Web: This is currently empty, but will be filled by additional Python plugins

Finally, on the right screen border, we find the following toolbar:

• Digitizing: The tools in this toolbar enable editing, basic feature creation,
and editing

• Advanced Digitizing: This toolbar contains the undo/redo option,
advanced editing tools, the geometry-simplification tool, and so on

All digitizing tools are currently inactive. They will only turn active
once we start editing a vector layer.

Toolbars and panels can be activated and deactivated via the View menu's Panels
and Toolbars entries as well as by right-clicking on a menu or toolbar, which will
open a context menu with all the available toolbars and panels. All the tools on the
toolbars can also be accessed via the menu. If you deactivate the Manage Layers
toolbar, for example, you will still be able to add layers using the Layer menu.

Getting Started with QGIS

[14]

QGIS is highly customizable. You can increase your productivity by assigning
shortcuts to the tools you use regularly, by navigating to Settings | Configure
shortcuts. Similarly, if you find that you never use a certain toolbar button or menu
entry, you can hide it by navigating to Settings | Customization. For example, if
you don't have access to an Oracle Spatial database, you might want to hide the
associated buttons to remove the clutter and save the screen estate, as shown in
the following screenshot:

Summary
In this chapter, we installed QGIS and configured it by selecting useful defaults and
arranging the user-interface elements. Finally, we explored the panels, toolbars, and
menus that make up the QGIS user interface and learned how to customize them to
increase productivity. In the following chapter, we will use QGIS to view spatial
data from different data sources such as files, databases, and web services.

Viewing Spatial Data
In this chapter, we will cover how to view spatial data from different data
sources. QGIS supports many file and database formats as well as standardized
OGC (Open Geospatial Consortium) Web Services. We will first see how we can
load layers from these different data sources. We will then look into the basics of
styling both vector and raster layers and will create our first map, which you can
see in the following screenshot:

Viewing Spatial Data

[16]

We will finish this chapter with an example of loading background maps from
online services.

For the examples in this chapter, we will use the sample data
provided by the QGIS project, which is available for download from
download.osgeo.org/qgis/data/qgis_sample_data.zip
(21 MB). Download and unzip it.

Loading vector data from files
In this section, we will talk about loading vector data from GIS file formats, such as
Shapefiles, as well as from text files.

We can load vector files by navigating to Layer | Add vector layer and also using
the Add vector layer toolbar button. If you like shortcuts, use Ctrl + Shift + V. In
the Add vector layer dialog, we will find a drop-down list that allows us to specify
the encoding of the input file. This option is important if we are dealing with files
that contain special characters, such as German umlauts or letters from alphabets
different from the default Latin ones. The following screenshot shows the Add
vector layer dialog:

download.osgeo.org/qgis/data/qgis_sample_data.zip

Chapter 2

[17]

What we are most interested in now is the Browse button, which opens the
file-opening dialog. Note the file type filter drop-down list in the bottom-right
corner of the dialog. We can open it to see the list of the supported vector-file
types. This filter is useful to find specific files faster by hiding all the files of a
different type, but be aware that the filter settings are stored and will be applied
again the next time we open the file-opening dialog.

This can be a source of confusion if we try to find a different file later and it happens
to be hidden by the filter, so remember to check the filter settings if you are having
trouble locating a file.

We can load more than one file in one go by selecting multiple files at once
(holding down Ctrl on Windows/Ubuntu or Cmd on Mac). Let's give it a try.

1. First, we select alaska.shp and airports.shp from the shapefiles
sample data folder.

2. Next, we confirm our selection by clicking on Open, and we are taken
back to the Add vector layer dialog box.

3. After clicking on Open once more, the selected files are loaded. You will
notice that each vector layer is displayed in a random color, which is most
likely different from the color you see in the following screenshot. Don't
worry about this now. We'll deal with layer styles later in this chapter.

Even without using any spatial-analysis tools, these simple steps of visualizing
spatial datasets enable us to find, for example, the southernmost airport on the
Alaskan main land.

www.allitebooks.com

http://www.allitebooks.org

Viewing Spatial Data

[18]

There are multiple tricks that make loading data even faster; for
example, you can simply drag-and-drop files from the operating
system's file browser into QGIS.
Another way to quickly access your spatial data is using QGIS's
built-in file browser. If you set up QGIS as shown in Chapter 1, Getting
Started with QGIS, you'll find the browser on the left-hand side, just
below the layer list. Navigate to your data folder, and you can again
drag-and-drop files from the browser to the map.
Additionally, you can mark a folder as favorite by right-clicking on
the folder and selecting Add to favorites. This way, you can access
your data folders even faster, because they are added in the Favorites
section right at the top of the browser list.

Another popular source of spatial data are delimited text (CSV) files. QGIS can load
CSV files using the Add Delimited Text Layer option available via the menu entry
by going to Layers | Add Delimited Text Layer or the corresponding toolbar button.
Click on Browse and select elevp.csv from the sample data. CSV files come with
all kinds of delimiters. As you can see in the following screenshot, the plugin lets
you choose from the most common ones (Comma, Tab, and so on), but you can
also specify any other plain or regular expression delimiter:

Chapter 2

[19]

If your CSV file contains quotation marks such as "or ', you can use the Quote
option to have them removed. The Number of header lines to discard option allows
us to skip the extra lines at the beginning of the text file. The following field options
include the functionality to trim extra spaces from field values or redefine the
decimal separator to a comma. The spatial information itself can be provided either
in two columns that contain the coordinates of points X and Y or using the Well
known text (WKT) format. A WKT field can contain points, lines, or polygons.

WKT is a very useful and flexible format. For example, a line can be
specified by writing LINESTRING (30 10, 10 30, 40 40). If
you are unfamiliar with the concept, you can find an introduction with
examples at en.wikipedia.org/wiki/Well-known_text.

After clicking on OK, QGIS will prompt us to specify the layer's coordinate
reference system (CRS). We will talk about handling CRS next.

Dealing with coordinate reference systems
Whenever we load a data source, QGIS looks for usable CRS information, for
example, in the Shapefile's .prj file. If QGIS cannot find any usable information,
it will, by default, ask you to specify the CRS manually. This behavior can be
changed by going to Settings | Options | CRS to always use either the project
CRS or a default CRS.

The QGIS Coordinate Reference System Selector offers a filter that makes finding
the CRS easier. It can filter by name or ID (for example, the EPSG code). Just start
typing and watch how the list of potential CRSes gets shorter. There are actually
two separate lists: the upper one contains the CRSes that we recently used, while
the lower list is much longer and contains all the available CRSes. For the
elevp.csv file, we will select NAD27 / Alaska Albers.

If we want to check a layer's CRS, we can find this information in the layer
properties' General section, which can be accessed by going to Layer | Properties
or by double-clicking on the layer name in the layer list. If you think that QGIS
picked the wrong CRS or you made a mistake in specifying the CRS, you can
correct the CRS settings using Specify CRS. Note that this does not change the
underlying data or reproject it. We'll talk about reprojecting vectors and raster
files in Chapter 3, Data Creation and Editing.

In QGIS, we can create a map out of multiple layers even if each dataset is stored
with a different CRS. QGIS handles the necessary reprojections automatically by
enabling a mechanism called on-the-fly reprojection, which can be accessed by
going to Project | Project Properties, as seen in the following screenshot.

en.wikipedia.org/wiki/Well-known_text

Viewing Spatial Data

[20]

Alternatively, you can click on the CRS status button (with the globe symbol) in the
bottom-right corner of the QGIS window to open this dialog.

All layers are reprojected to the project CRS on the fly, which means that QGIS
calculates these reprojections dynamically and only for the purpose of rendering
the map. This also means that it can slow down your machine if you are working
with big datasets that have to be reprojected. The underlying data is not changed
and spatial analyses are not affected.

In some cases, you might have to specify a CRS that is not available in QGIS's
CRS database. You can add CRS definitions by going to Settings | Custom CRS.
Click on the Add new CRS button to create a new entry, type in a name for the
new CRS, and paste the proj4 definition string. This definition string is used by
the Proj4 projection engine to determine the correct coordinate transformation.
Just close the dialog by clicking on OK when you are done.

If you are looking for a specific projection proj4 definition, http://
spatialreference.org is a good source for this kind of information.

http://spatialreference.org
http://spatialreference.org

Chapter 2

[21]

Loading raster files
Loading raster files is not much different to loading vector files. Selecting
the Layer menu entry and then clicking on Add Raster Layer, clicking on the
Add Raster Layer button, or pressing the Ctrl + Shift + R shortcut will take you
directly to the file-opening dialog. Again, you can check the file type filter to
see a list of the supported file types.

Let's give it a try and load landcover.img from the raster sample data folder.
Similarly, just like vector files, you can load rasters by dragging them into QGIS
from the operating system or the built-in file browser.

Support for all these different vector and raster file types in QGIS
is handled by the powerful GDAL/OGR package. You can check the
full list of supported formats at www.gdal.org/formats_list.
html (for rasters) and www.gdal.org/ogr/ogr_formats.html
(for vectors).

Georeferencing raster maps
Some raster data sources, such as simple scanned maps, lack proper spatial
referencing, and we have to georeference them before we can use them in a GIS.
In QGIS, we can georeference rasters using the Georeferencer GDAL plugin,
which can be accessed by going to Raster | Georeferencer (enable it by going to
Plugins | Manage and Install Plugins if you cannot find it in the Raster menu).

The Georeferencer plugin covers the following use cases:

• We can create a world file for a raster file without altering the original raster.
• If we have a map image that contains points with known coordinates,

we can set ground control points (GCPs) and enter the known coordinates.
• Finally, if we don't know the coordinates of any points on the map, we

still have the chance to place GCPs manually using a second, already
georeferenced map of the same area. We can use objects that are visible
in both maps to pick points in the map that we want to georeference and
work out their coordinates from the reference map.

www.gdal.org/formats_list.html
www.gdal.org/formats_list.html
www.gdal.org/ogr/ogr_formats.html

Viewing Spatial Data

[22]

After loading a raster in Georeferencer by going to File | Open raster or using
the Open raster toolbar button, we are asked to specify the CRS of the ground-
control points we are planning to add. Next, we can start adding ground-control
points by going to Edit | Add point. We can use the pan and zoom tools to navigate,
and we can place GCPs by clicking on the map. We are then prompted to insert the
coordinates of the new point or pick them from the reference map in the main QGIS
window. The placed GCPs are displayed as red circles in both the Georeferencer
and the QGIS window, as you can see in the following screenshot:

Georeferencer shows a screenshot of the OCM Landscape map Thunderforest, Data OpenStreetMap
contributors (http://www.opencyclemap.org/?zoom=4&lat=61.39756&lon=-

155.34668&layers=00B00)

http://www.opencyclemap.org/?zoom=4&lat=61.39756&lon=-155.34668&layers=00B00
http://www.opencyclemap.org/?zoom=4&lat=61.39756&lon=-155.34668&layers=00B00

Chapter 2

[23]

After placing the GCPs, we can define the transformation algorithm by going
to Settings | Transformation Settings. Which algorithm you choose depends
on your input data and the level of geometric distortion you want to allow. The
most commonly used algorithms are polynomials 1 to 3. A first-order polynomial
transformation allows scaling, translation, and rotation only.

A second-order polynomial transformation can handle some curvature, and a
third-order polynomial transformation consequently allows for even higher
degrees of distortion. The thin-plate spline algorithm can handle local deformations
in the map and is therefore very useful when working with very low-quality map
scans. The projective transformation offers rotation and translation of coordinates.
The linear option, on the other hand, is only used to create world files, and as
mentioned earlier, this does not actually transform the raster.

The resampling method depends on your input data and the result you want to
achieve. Cubic resampling creates smooth results, but if you don't want to change
the raster values, choose the nearest neighbor method.

Before we can start the georeferencing process, we have to specify the output
filename and target CRS. Make sure that the Load in QGIS when done option
is active and activate the Use 0 for transparency when needed option to avoid
black borders around the output image. Then, we can close the Transformation
Settings dialog and go to File | Start Georeferencing. The georeferenced raster
will automatically be loaded into the main map window of QGIS. In the following
screenshot, you can see the result of applying a projective transformation using
the five specified GCPs:

Viewing Spatial Data

[24]

Loading data from databases
QGIS supports PostGIS, SpatiaLite, MSSQL, SQL Anywhere, and Oracle Spatial
databases. We will cover two open source options: SpatiaLite and PostGIS. Both
are available cross platform, just like QGIS.

SpatiaLite is the spatial extension for SQLite databases. SQLite is a self-contained,
serverless, zero-configuration, and transactional SQL database engine (www.sqlite.
org). This basically means that a SQLite database, and therefore, also a SpatiaLite
database, doesn't need a server installation and can be copied and exchanged just
like any ordinary file.

You can download an example database from www.gaia-gis.it/spatialite-2.3.1/
test-2.3.zip (4 MB). Unzip the file; you will be able to connect to it by going to
Layer | Add SpatiaLite Layer, using the Add SpatiaLite Layer toolbar button, or by
pressing Ctrl + Shift + L. Click on New to select the test-2.3.sqlite database file.
QGIS will save all connections and add them to the drop-down list at the top. After
clicking on Connect, you will see the list of layers stored in the database, as shown in
the following screenshot:

www.sqlite.org
www.sqlite.org
www.gaia-gis.it/spatialite-2.3.1/test-2.3.zip
www.gaia-gis.it/spatialite-2.3.1/test-2.3.zip

Chapter 2

[25]

Like with files, you can select one or more tables from the list and click on Add to load
them into the map. Additionally, you can use Set Filter to load only specific features.

Filters in QGIS use SQL-like syntax, for example, "Name" =
'EMILIA-ROMAGNA' to select only the region called EMILIA-ROMAGNA
or "Name" LIKE 'ISOLA%' to select all the regions that start with
ISOLA. The filter queries are passed on to the underlying data provider
(for example, SpatiaLite or OGR). The provider syntax for basic filter
queries is consistent over different providers but can vary when using
more exotic functions. You can read up on the details of OGR SQL at
http://www.gdal.org/ogr/ogr_sql.html.

PostGIS is the spatial extension for the PostgreSQL database system. Installing
and configuring the database is out of the scope of this book, but there are installers
for Windows and packages for many Linux distributions as well as for Mac.
(For details, visit http://www.postgresql.org/download/. To load data from
a PostGIS database, go Layers | Add PostGIS Layer, use the Add PostGIS Layer
toolbar button, or press Ctrl + Shift + D.

When using a database for the first time, click on New to establish a new database
connection. In the following dialog box, you can specify a name for the new
connection. Other fields that have to be filled in are as follows:

• Host: The server's IP address is inserted in this field. You can use
localhost if PostGIS is running locally.

• Port: The PostGIS default port is 5432. If you have trouble reaching a
database, it is recommended that you check the server's firewall settings
for this port.

• Database: This is the name of the PostGIS database you want to connect to.
• Username and Password: For convenience, you can tell QGIS to save them.

http://www.gdal.org/ogr/ogr_sql.html
http://www.postgresql.org/download/

Viewing Spatial Data

[26]

The following screenshot shows the dialog to create a new connection to a database
called postgis:

After the connection is established, you can load and filter tables, just like we
discussed for SpatiaLite.

Chapter 2

[27]

Loading data from OGC Web Services
More and more data providers offer access to their datasets via OGC-compliant web
services such as WMS, WCS, or WFS. QGIS supports these services out of the box.

If you want to learn more about the different OGC Web Services
available, visit http://live.osgeo.org/en/standards/
standards.html for an overview.

You can load WMS layers by going to Layer | Add WMS/WMTS Layer, by clicking
on the Add WMS/WMTS Layer button, or by pressing Ctrl + Shift + W. If you know
a WMS server, you can connect to it by clicking on New and filling in a name and the
URL. All other fields are optional. Don't worry if you don't know of any WMS server,
because we can simply click on Add default servers to get access information about
servers whose administrators collaborate with the QGIS project. One of these servers
is called Lizardtech server. Select Lizardtech server, or any of the other servers, from
the drop-down box, and click on Connect to see the list of layers available through
the server.

From the layer list, you can now select one or more layers for download. It is worth
noting that the order in which you select the layers matters, because the layers will
be combined on the server side, and QGIS will only receive the combined image as
the resultant layer. If you want to be able to use the layers separately, you have to
download them one by one. The data download starts once you click on Add. The
dialog will stay open so that you can add additional layers from the server.

Many WMS servers offer their layers in multiple, different CRSes. You can check
the list of available CRSes by clicking on the Change button at the bottom of the
dialog. This will open a CRS selector dialog, which is limited to the WMS server's
CRS capabilities.

Loading data from WCS or WFS servers works in the same way, but public servers
are rare and unreliable and therefore, no recommendation can be provided here.

Styling raster layers
After this introduction to data sources, we can now create our first map. We will build
the map from the bottom up by first loading some background rasters (hillshade and
land cover), which we will then overlay with point, line, and polygon layers.

http://live.osgeo.org/en/standards/standards.html
http://live.osgeo.org/en/standards/standards.html

Viewing Spatial Data

[28]

Let's start by loading land cover and hillshade from landcover.img and
SR_50M_alaska_nad.tif and then opening the Style section in layer properties
(by navigating to Layer | Properties or by double-clicking on the layer name).
QGIS tries to pick a reasonable default render type. The following style options
are available for raster layers:

• Multiband color: This style is used if the raster has several bands.
This is usually the case with satellite images with multiple bands.

• Paletted: This style is used if a single band raster comes with an
indexed palette.

• Singleband gray: If a raster has neither multiple bands nor an indexed
palette (this is the case, for example, with elevation-model rasters or
hillshade rasters), it will be rendered using the single band gray style.

• Singleband pseudocolor: Instead of being limited to gray, this style
allows us to render a raster band using a color map of our choice.

The SR_50M_alaska_nad.tif hillshade raster is loaded with Singleband gray
Render type, as you can see in the following screenshot. If we want to render
the hillshade raster in color instead of grayscale, we can change Render type
to Singleband pseudocolor. In the pseudocolor mode, we can create color maps
either manually or by selecting one of the premade color ramps. However,
let's stick to Singleband gray for hillshade for now.

Below the color settings, we will find a section with more advanced options that
control raster resampling, brightness, contrast, saturation, and hue—options you
probably know from image-processing software. By default, resampling is set to
the fast Nearest neighbour option. To get nice smooth results, we can change to
the Bilinear or Cubic method.

Click on Ok or Apply to confirm. In both cases, the map will be redrawn using
the new layer style. If you click on Apply, the Layer Properties dialog stays open,
and you can continue to fine-tune the layer style. If you click on Ok, the Layer
Properties dialog will be closed.

Chapter 2

[29]

The landcover.img raster is a good example of a paletted raster. Each cell value
is mapped to a specific color. To change a color, we can simply double-click on
the Color preview, and a color picker will open.

Viewing Spatial Data

[30]

The style section of a paletted raster looks like the following screenshot:

If we want to combine hillshade and land cover into one aesthetically-pleasing
background, we can use a combination of the Blending mode and layer Transparency.
Blending modes are another feature commonly found in image-processing software.
The main advantage of blending modes over transparency is that we can avoid the
usually dull, low-contrast look that results from combining rasters using transparency
alone. If you haven't had any experience with blending, take some time to try the
different effects. For this example, I used the Darken blending mode, as highlighted
in the previous screenshot, together with a global layer transparency of 50%, as shown
in the following screenshot:

Chapter 2

[31]

Styling vector layers
When we load vector layers, QGIS renders them using a default style and a random
color. Of course, we want to customize these styles to better reflect our data. In the
following exercises, we will style point, line, and polygon layers, and we will also
get accustomed to the most common vector-styling options.

Regardless of the layer's geometry type, we will always find a drop-down list with
the available style options in the upper-left corner of the Style dialog.

The following style options are available for vector layers:

• Single Symbol: This is the simplest option. When we use a Single Symbol
style, all points are displayed with the same symbol.

• Categorized: This is the style of choice if a layer contains points of
different categories, for example, a layer that contains locations of
different animal sightings.

• Graduated styles: These are great if we want to visualize numerical
values; for example, temperature measurements.

• Rule-based styles: This is the most advanced option. These styles are very
flexible, because they allow us to write multiple rules for one layer.

• Point displacement styles: This is only available for point layers. These
styles are useful if you need to visualize point layers with multiple points
at the same coordinates, for example, students of a school living at the
same address.

• Inverted polygons: Using this option, the defined symbology will be
applied to the area outside the polygon borders instead of filling the
area inside the polygon.

Creating point styles – an example of an
airport style
Let's get started with a point layer! Load airport.shp from our sample data.
In the upper-left corner of the Style dialog, below the drop-down list, we will
find the symbol preview. Below this, there is the list of symbol layers that shows
us the different layers that the symbol consists of. On the right-hand side, we will
find options for the symbol size and size units, color and transparency, as well as
rotation. Using the Data defined properties button, we can also tell QGIS to use
the feature's attribute values to define symbol shape, size, color, and so on. Finally,
the bottom-right area contains a preview area with saved symbols.

Viewing Spatial Data

[32]

Point layers are, by default, displayed using a simple circle symbol. We want to use
a symbol of an airplane instead. To change the symbol, select the Simple marker
entry in the symbol layers list on the left-hand side of the dialog. Notice how the
right-hand side of the dialog changes. We can now see the options available for
simple markers: Colors, Size, Rotation, Form, and so on. However, we are not
looking for circles, stars, or square symbols—we want an airplane. That's why we
need to change the Symbol layer type option from Simple marker to SVG marker.
Many of the options are similar, but at the bottom, we will now find a selection of
SVG images that we can choose from. Scroll through the list and pick the airplane
symbol, as shown in the following screenshot:

Chapter 2

[33]

Symbol layer types for point layers include the following:

• Simple marker: This includes geometric forms such as circles, stars,
and squares

• Font marker: This provides access to your symbol fonts
• SVG marker: Each QGIS installation comes with a collection of default

SVG symbols; add your own folders that contain SVG images by going
to Settings | Options | System | SVG Paths

• Ellipse marker: This includes customizable ellipses, rectangles, crosses,
and triangles, which are especially useful when combined with what we
set in the data-defined-settings option

• Vector Field marker: This is a customizable vector-field visualization tool

Creating line styles – an example of river or
road styles
In this exercise, we will create a river style for the majriver.shp file in our sample
data. The goal is to create a line style with two colors: a fill color for the center of the
line and an outline color. This technique is very useful because it can also be used
to create road styles.

To create such a style, we will combine two simple lines. The default symbol is
one simple line. Click on the green + symbol located below the symbol layers list
in the bottom-left corner to add another simple line. The lower line will be our
outline, and the upper one will be the fill. Select the upper simple line and change
the color to blue and the width to 0.3 millimeters. Next, select the lower simple line
and change its color to gray and the width to 0.6 millimeters, slightly wider than the
other line. Check the preview and click on Apply to test how the style looks when
applied to the river layer.

Viewing Spatial Data

[34]

You will notice that the style doesn't look perfect yet. This is because each line feature
is drawn separately, one after the other, and this leads to a rather disconnected
appearance. Luckily, this is easy to fix; we only need to enable the so-called symbol
levels. To do this, select the Line entry in the symbol layers list and tick the checkbox
in the Symbol Levels dialog of the Advanced section (the button in the lower-right
corner of the style dialog), as shown in the following screenshot. Click on Apply to
test the results.

Symbol layer types for line layers include the following:

• Simple line: This is a solid or dashed line
• Marker line: This line is made out of point markers located at line vertices

or at regular intervals

Whenever we create a symbol that we might want to reuse in other
maps, we can save it by clicking on the Save button under the symbol
layers list. We can assign a name to the new symbol, and after we save
it, it will be added to the saved symbols preview area on the right-
hand side.

Chapter 2

[35]

Creating polygon styles – an example of a
landmass style
In this exercise, we will create a style for the alaska.shp file. The goal is to create
a simple fill with a blue halo. Like in the previous river-style example, we will
combine two symbol layers to create this style: a Simple fill layer that defines the
main fill color (white) with a thin border (in gray) and an additional Simple line
outline layer for the (light blue) halo. The halo should have nice rounded corners.
To achieve these, change the Join style option of the Simple line symbol layer
to Round. Similar to the previous example, we will again enable symbol levels;
to prevent this landmass style from blocking out the background map, we will
select the Multiply blending mode, as shown in the following screenshot:

Symbol layer types for polygon layers include the following:

• Simple fill: This defines the fill and outline colors as well as the basic
fill styles

• Centroid fill: This allows us to put point markers at the center of polygons
• Line/Point pattern fill: This supports user-defined lines and point patterns

with flexible spacing

Viewing Spatial Data

[36]

• SVG fill: This fills the polygon using SVG patterns
• Gradient fill: This allows us to fill polygons with linear, radial,

or conical gradients
• Shapeburst fill: This is also known as a "buffered" gradient fill. It creates

a gradient that starts at the polygon border and flows towards the center.
The following screenshot shows a fixed-distance shading using the Shade
to a set distance option. If we select Shade whole shape instead, the
gradient will be drawn from the polygon border to the center.

• Outline: This makes it possible to outline areas using line styles

Loading background maps
Background maps are very useful for quick checks and to provide orientation,
especially if you don't have access to any other base layers. Adding background
maps is easy using the OpenLayers plugin. It provides access to satellite, street,
 and hybrid maps by Google, Yahoo!, and Bing, as well as different map types
by OpenStreetMap, Stamen, and Apple.

Chapter 2

[37]

To install the OpenLayers plugin, go to Plugins | Manage and Install Plugins.
Wait until the list of available plugins has finished loading. Use the filter to look for
the OpenLayers Plugin option, as shown in the following screenshot. Select it from
the list and click on Install plugin. This is going to take a moment. Once it's done,
you will see a short confirmation message. You can then close the installer, and the
OpenLayers Plugin option will be available through the Web menu.

Note that you have to be online to use these services. Another fact worth
mentioning is that all these services provide their maps only in Pseudo Mercator
(EPSG:3857). Your project CRS will automatically be changed to Pseudo Mercator
when you load a background map using the OpenLayers plugin option.

Background maps added using OpenLayers plugin are not
suitable for printing due to their low-resolution and alignment
issues in Print Composer.

www.allitebooks.com

http://www.allitebooks.org

Viewing Spatial Data

[38]

If you load the OCM Landscape layer, your map will look like the following
screenshot:

Summary
In this chapter, you learned how to load spatial data from files, databases, and web
services. You saw how QGIS handles coordinate reference systems and had your
first introduction to styling vector and raster layers, a topic we will cover in more
detail in Chapter 5, Creating Great Maps. We also installed our first Python plugin,
the OpenLayers plugin, and used it to load background maps into our project. In
the following chapter, we will go into more detail and learn how to create and edit
raster and vector data.

Data Creation and Editing
In this chapter, you will first create some new vector layers and learn how to
select features and take measurements. We will then continue with editing feature
geometries and attributes. Then, we will reproject vector and raster data, and before
we end this chapter, you will learn how to convert between different file formats
with joining data from text files and spreadsheets to our spatial data.

Creating new vector layers
In this exercise, we'll create a new layer from scratch. QGIS offers a wide range
of functionalities to create different layers. The New menu under Layer lists the
functions to create new Shapefile and SpatiaLite layers, but we can also create new
database tables using the DB Manager plugin. The interfaces differ slightly
to accommodate the features supported by each format.

Let's create a new shapefile to see how it works. A new Shapefile layer, which can
be accessed by going to Layer | New or by pressing Ctrl + Shift + N, opens the New
Vector Layer dialog with options for different geometry types, CRSes, and attributes.
The process itself is really fast because all the mandatory fields already have default
values. By default, it will create a new point layer with WGS84 CRS (unless specified
otherwise by going to Settings | Options | CRS) and one integer field called id.
We can simply click on OK and specify a filename. This creates a new Shapefile,
and the new Shapefile layer appears in the layer list.

Data Creation and Editing

[40]

Next, we also create one line and one polygon layer. We'll add some extra fields to
these layers. Besides integer fields, shapefiles also support text and decimal values.
To add a field, we only need to insert a name, select a type and width, and click on
Add to attributes list. For decimal numbers, we also have to define the Precision
value, which determines the number of digits after the comma. A Width value
of 3 with a Precision value of 1 will allow a value range from -99.9 to + 99.9. The
following screenshot shows the New Vector Layer dialog and the Attributes...
window for my example polygon layer:

All of the new layers are empty so far, but we will create some features now. If we
want to add features to a layer, we first have to enable editing for this layer. Editing
can be turned on and off either by going to Layer | Toggle editing or Toggle editing
in the layer name context menu or by clicking on the Toggle editing button in the
Digitizing toolbar. You will notice that the layer's icon in the layer list changes
to reflect whether editing is on or off. When we turn on editing for a layer, QGIS
automatically enables the digitizing tools suitable for the layer's geometry type.

Now, we can use the Add Feature tool in the editing toolbar to create new features.
To place a point, we can simply click on the map. We are then prompted to fill in the
attribute form, which you can see on the right-hand side of the previous screenshot,
and once we click on OK, the new feature is created. Like with points, we can create
new lines and polygons by placing nodes on the map. To finish a line or polygon,
we can simply right-click on the map. Create some features in each layer and then
save your changes. We can reuse these test layers in the upcoming exercises.

Chapter 3

[41]

New features and feature edits are saved permanently only after
clicking on the Save Layer Edits button in the Digitizing toolbar or
once we finish editing and confirm that we want to save them.

Working with feature selection tools
Selecting features is one of the core functions of any GIS, and it is useful to know
them before we venture into editing geometries and attributes. Depending on the
use case, selection tools come in many different flavors. QGIS offers three different
kinds of tools to select features—using the mouse, an expression, or another layer.

The first group of tools in the Attributes toolbar allows us to select features on the
map using the mouse. The following screenshot shows the Select Feature(s) tool.
We can select a single feature by clicking on it or select multiple features by drawing
a rectangle. The other tools can be used to select features by drawing different
shapes—polygons, freehand areas, or circles—around the features. All features
that intersect with the drawn shape are selected. Holding down the Ctrl key will
add the new selection to an existing one. Similarly, holding down Ctrl + Shift will
remove the new selection from the existing one.

The second type of select tool is called Select by Expression, and it is also available
in the Attribute toolbar. It selects features based on expressions that can contain
references and functions using feature attributes and/or geometry. The list of available
functions is pretty long, but we can use the search box to filter the list by name to find
the function we are looking for faster. On the right-hand side of the window, we find
Selected Function Help, which explains the functionality and how to use the function
in an expression. The Function List shows the layer attribute fields, and by clicking
on Load all unique values or Load 10 sample values, we can easily access their
content. Like with the mouse tools, we can choose between creating a new selection
or adding to or deleting from an existing selection. Additionally, we can choose to
only select features from within an existing selection.

Data Creation and Editing

[42]

Let's have a look at some example expressions that you can build on and use in your
own work:

• Using the lakes.shp file in our sample data, we can, for example,
select big lakes with an area bigger than 1,000 square miles using a simple
"AREA_MI" > 1000.0 attribute query or using geometry functions such as
$area > (1000.0 * 27878400). Note that the lakes.shp CRS uses square
feet, and we therefore have to multiply by 27,878,400 to convert from square
feet to square miles. The dialog will look like the following screenshot.

• We can also work with string functions, for example, to find lakes with long
names (such as length("NAMES") > 12) or lakes with names that contain
s or S (such as lower("NAMES") LIKE '%s%'); the string functions first
convert the names to lowercase and then looks for any appearance of s.

Chapter 3

[43]

The third type of tool is called Spatial Query and allows us to select features in one
layer based on their location relative to the features in a second layer. These tools can
be accessed by going to Vector | Research Tools | Select by location and Vector |
Spatial Query | Spatial Query. Enable it in Plugin Manager if you cannot find it in
the Vector menu. In general, we want to use the Spatial Query plugin as it supports
a variety of spatial operations such as crosses, equals, intersects, is disjoint,
overlaps, touches, and contains, depending on the layer geometry type.

Let's test the Spatial Query plugin using railroads.shp and pipelines.shp from
the sample data. For example, we might want to find all the railroad features that
cross a pipeline; we therefore select the railroads layer, the Crosses operation, and
the pipelines layer. After clicking on Apply, the plugin presents us with the query
results. There is a list of IDs of the result features on the right-hand side of the
window, as you can see in the following screenshot. Below this list, we can check
the Zoom to item checkbox and QGIS will zoom to the feature that belongs to the
selected ID. Additionally, the plugin offers buttons to directly save all the resulting
features to a new layer.

Data Creation and Editing

[44]

Editing vector geometries
Now that we know how to create and select features, we can have a closer look at the
other tools in the Digitizing and Advanced Digitizing toolbars. The basic Digitizing
toolbar—as shown in the following screenshot—contains tools to create and move
features and nodes, as well as to delete, copy, cut, and paste features as follows:

• With the Move Feature(s) tool, it is easy to move one or more features at
once by dragging them to the new location.

• Similarly, the Node Tool feature allows us to move one or more nodes of
the same feature. The first click activates the feature, while the second click
selects the node. Hold the mouse key down to drag the node to its new
location. Instead of moving only one node, we can also move an edge by
clicking-and-dragging the line. Finally, we can select and move multiple
nodes by holding down the Ctrl key.

• The Delete Selected, Cut Features, and Copy Features tools are only active if
one or more layer features are selected. Similarly, Paste Features only works
after a feature has been cut or copied.

The Advanced Digitizing toolbar offers very useful Undo and Redo functionalities
as well as additional tools for more involved geometry editing, as shown in the
following screenshot:

• Rotate Feature(s) enables us to rotate one or more selected features around
a central point.

• Using the Simplify Feature tool, we can simplify/generalize feature
geometries by simply clicking on the feature and pulling the tolerance
slider in the pop-up window.

Chapter 3

[45]

• The following tools can be used to modify polygons. They allow us to add
rings, also known as holes, into the existing polygons or add parts to them.
The Fill Ring tool is similar to Add Ring, but instead of just creating a hole,
it also creates a new feature that fills the hole. Of course, there are tools to
delete rings and parts as well.

• The Reshape Features tool can be used to alter the geometry of a feature by
either cutting out or adding pieces. You can control the behavior by starting
to draw the new form inside the original feature to add a piece or start
outside to cut out a piece, as shown in the following example diagram:

• The Offset Curve tool is only available for lines and allows us to displace a
line geometry by a given offset.

• The Split Features tool allows us to split one or more features into multiple
features along a cut line. Similarly, Split Parts allows us to split a feature into
multiple parts, which still belong to the same multipolygon or multipolyline.

• The Merge Selected Features tool enables us to merge multiple features
while keeping control over which feature's attributes will be available in
the output feature.

• Similarly, Merge Attributes of Selected Features lets us combine the
attributes of multiple features, but without merging them into one feature.
Instead, all the original features remain as they were, but the attribute
values are updated.

• Finally, Rotate Point Symbols is only available for point layers with the
Rotation field feature enabled (we will cover this feature in Chapter 5,
Creating Great Maps).

Data Creation and Editing

[46]

Using the measuring tools
Another core functionality of any GIS is the measurement tools. In QGIS, we find
the tools to measure lines, areas, and angles in the Attribute toolbar, as shown in
the following screenshot:

The measurements are updated continuously while we draw measurement lines,
areas, or angles. When we draw a line with multiple segments, the tool will show
the length of each segment as well as the total length of all the segments put together.
To stop measuring, we can just right-click. If we want to change the measurement
units from meters to feet or from degrees to radians, we can do this by going to
Settings | Options | Map Tools.

Editing attributes
There are three main use cases for attribute editing:

• First, we might want to edit the attributes of one specific feature,
for example, to fix a wrong name

• Second, we might want to edit the attributes of a group of features
• Third, we might want to change the attributes of all the features within a layer.

Editing attributes in the attribute table
All three use cases are covered by the functionality available through the attribute
table. We can access it by going to Layer | Open Attribute Table, the Open Attribute
Table button present in the Attributes toolbar, or in the layer name context menu.

Chapter 3

[47]

To change the attribute values, we always have to enable editing first. Then, we can
double-click on any cell in the attribute table to activate the input mode, as shown in
the upper dialog of the following screenshot:

Pressing the Enter key confirms the change, but to save the new value permanently,
we have to also click on the Save Edit(s) button or press Ctrl + S. Besides the classic
attribute table view, QGIS also supports a form view, which you can see in the lower
dialog of the previous screenshot. You can switch between these two views using the
buttons in the bottom-right corner of the attribute table dialog box.

Data Creation and Editing

[48]

In the attribute table, we also find tools to handle selections (from left
to right, starting at the third button): Delete selected features, Select
features using an expression, Unselect all, Move selection to top,
Invert selection, Pan map to the selected rows, Zoom map to the
selected rows, and Copy selected rows to clipboard. Another way to
select features in the attribute table is to click on the row number.
The next two buttons allow us to add and remove columns. When we
click on the Delete column button, we get a list of columns to choose
from. Similarly, the New column button brings up a dialog to specify
the name and data type of the new column.

Editing attributes in the feature form
Another option to edit the attributes of one feature is to open the attribute form
directly by clicking on the feature on the map using the Identify tool. By default,
the Identify tool displays the attribute values in the read mode, but we can enable
the Auto open form option in the Identify Results panel, as shown here:

Chapter 3

[49]

What you can see in the previous screenshot is the default feature-attributes form
that QGIS creates automatically, but we are not limited to this basic form. By going
to Layer Properties | Fields section, we can configure the look and feel of the form
in more detail. The Attribute editor layout options are (in an increasing level of
complexity) as follows:

• Autogenerate: This is the most basic option. You can assign a specific Edit
widget and Alias for each field; this will replace the default input field and
label in the form. For this example, we use the following edit widget types:

 ° Text Edit supports inserting one or more lines of text.
 ° Unique Values creates a drop-down list that allows the user to select

one of the values already used in the attribute table. If the Editable
option is activated, the drop-down list is replaced by a text edit
widget with autocompletion support.

 ° Range creates an edit widget for numeric values from a specific range.

For the complete list of available edit widget types, refer to the
user manual at http://docs.qgis.org/2.2/en/docs/
user_manual/working_with_vector/vector_properties.
html#fields-menu.

• Drag and drop designer: This allows further control of the form layout.
As you can see in the following screenshot, the designer enables us to create
tabs within the form and also makes it possible to change the order of the
form fields. The workflow is as follows:

1. Click on the plus button to add one or more tabs (for example,
a Region tab, as shown in the following screenshot).

2. On the left-hand side of the dialog, select the field you want to add
to the form.

3. On the right-hand side, select the tab to which you want to add
the field.

4. Press the button with the icon of an arrow pointing to the right to
add the selected field to the selected tab.

http://docs.qgis.org/2.2/en/docs/user_manual/working_with_vector/vector_properties.html#fields-menu
http://docs.qgis.org/2.2/en/docs/user_manual/working_with_vector/vector_properties.html#fields-menu
http://docs.qgis.org/2.2/en/docs/user_manual/working_with_vector/vector_properties.html#fields-menu

Data Creation and Editing

[50]

5. You can reorder the fields in the form using the up and down arrow
buttons or—as the name suggests—by dragging-and-dropping the
fields up or down.

• Provide ui-file: This is the most advanced option. It enables you to use a Qt
user interface designed using, for example, the Qt Designer software. This
allows a great deal of freedom in designing the form layout and behavior.

Creating .ui files is out of the scope of this book, but you can find
more information at http://docs.qgis.org/2.2/en/docs/
training_manual/create_vector_data/forms.html#hard-
fa-creating-a-new-form.

http://docs.qgis.org/2.2/en/docs/training_manual/create_vector_data/forms.html#hard-fa-creating-a-new-form
http://docs.qgis.org/2.2/en/docs/training_manual/create_vector_data/forms.html#hard-fa-creating-a-new-form
http://docs.qgis.org/2.2/en/docs/training_manual/create_vector_data/forms.html#hard-fa-creating-a-new-form

Chapter 3

[51]

Calculating new attribute values
If we want to change the attributes of multiple or all features in a layer, editing them
manually usually isn't an option. This is what Field calculator is good for. We can
access it using the Open field calculator button in the attribute table or by pressing
Ctrl + I. In Field calculator, we can choose to only update selected features or update
all the features in the layer. Besides updating an existing field, we can also create a
new field. The function list is the same one that we already explored when we selected
features by expression. We can use any of these functions to populate a new field or
update an existing one. Here are some example expressions that are used often:

• We can create an id column using the $rownum function, which populates a
column with the row numbers, as shown in the following screenshot:

Data Creation and Editing

[52]

• Another common use case is to calculate the line length or polygon area
using the $length and $area geometry functions, respectively

• Similarly, we can get point coordinates using $x and $y
• If we want to get the start or endpoint of a line, we can use xat(0) and

yat(0) respectively or xat(-1) and yat(-1) respectively

An alternative to the Field calculator—especially if you already know the
formula you want to use—is the field calculator bar, which you can find directly
in the Attribute table dialog right below the toolbar. In the following screenshot,
you can see an example that calculates the area of all the census areas: It uses a
CASE WHEN – THEN – END expression to check if the value of TYPE_2 is Census Area:

CASE WHEN TYPE_2 = 'Census Area' THEN $area / 27878400 END

Enter the formula and click on the Update All button to execute it:

Reprojecting and converting vector and
raster data
In Chapter 2, Viewing Spatial Data, we talked about CRS and the fact that QGIS offers
on-the-fly reprojection to display spatial datasets, which are stored in a different
CRS, in the same map. Still, in some cases, we might want to permanently reproject
a dataset, for example, to geoprocess it later on.

Chapter 3

[53]

In QGIS, reprojecting a vector or raster layer is done by simply saving it with a new
CRS. We can save a layer by going to Layer | Save as... or Save as… in the layer
name context menu. Pick a target file format and filename, and then click on the
Change button beside the CRS field to pick a new CRS.

Besides changing the CRS, the main use case of the Save vector/raster layer dialog,
as depicted in the following screenshot, is to convert between different file formats.
For example, we can load a Shapefile and export it as GeoJSON, Mapinfo MIF, CSV,
and so on, or the other way around.

The Save raster layer dialog is also a convenient way to clip/crop rasters by
a bounding box, as we can specify which extent we want to save.

Furthermore, the Save vector layer dialog features a Save only selected features
option, which will enable us to save only the selected features instead of all the
features of the layer (this option is only available if there are actually some selected
features in the layer).

Data Creation and Editing

[54]

Enabling Add saved file to map (currently only available in the
vector dialog) is very convenient because it saves us the effort of
going and loading the new file manually after it has been saved.

Joining tabular data
In many real-life situations, we get additional non-spatial data in the form of
spreadsheets or text files. The good news is that we can load XLS files by simply
dragging them into QGIS from the file browser or using Add Vector Layer. Don't
let the wording fool you! It really works without any geometry data in the file.
The file can even contain more than just one table. You will see the following
dialog box, which lets you choose which table(s) you want to load:

QGIS will automatically recognize the names and data types of columns in an
XLS table. It's quite easy to tell because numeric values are aligned to the right
in the attribute table, as shown in the following screenshot:

Chapter 3

[55]

We can also load tabular data from delimited text files, like we saw in Chapter 2,
Viewing Spatial Data, when we loaded a point layer from a delimited text file. To load
a delimited text file that only contains tabular data but no geometry information, we
just need to enable the No geometry (attribute table only) option.

After loading the tabular data from either the spreadsheet or text file, we can
continue to join this non-spatial data to a vector layer. To do this, we can navigate
to the vector Layer Properties | Joins. Here, we can add a new join by pressing the
green plus button. All we have to do is select the tabular Join layer and Join field
fields (of the tabular layer), which will contain values that match those in the Target
field field (of the vector layer). Additionally, we can—if we want to—choose which
fields are joined by enabling the Choose which fields are joined option and selecting
the desired subset of fields. For example, the settings shown in the following
screenshot will only add the some value field:

Data Creation and Editing

[56]

Once the join is added, we can see the extended attribute table and use the new
appended attributes (as shown in the following screenshot) for styling and labeling.
The way joins work in QGIS is that the join layer's attributes are appended to the
original layer's attribute table. The number of features in the original layer is not
changed. Whenever there is a match between the join and the target field, the
attribute value will be filled; otherwise, you'll see NULL entries.

You can save the joined layer permanently; just use Save as… to create the new file.

Summary
In this chapter, you learned how to create new layers from scratch. We used the
tools to create and edit feature geometries in different ways. Then, we went into
editing feature attributes of single features, feature selections, and whole layers.
Next, we reprojected both the vector and raster layers and also learned how to
convert between different file formats. Finally, we finished this chapter with layer
creation and editing by covering tabular data and learning how it can be loaded
into QGIS and how to join it to our spatial data.

In the following chapter, we will put our data to good use and learn how to
perform different kinds of spatial analysis on raster and vector data.

Spatial Analysis
In this chapter, we will start with raster processing and analysis tasks such as
clipping and terrain analysis. We will cover the essentials of converting between
the raster and vector formats and then continue with common vector geoprocessing
tasks such as generating heatmaps and calculating area shares within a region.
We will finish the chapter with an introduction to automating geoprocessing
workflows using the QGIS Processing modeler.

Clipping rasters
A common task in raster processing is clipping a raster with a polygon. This task
is well covered by the Clipper tool, which can be accessed by going to Raster |
Extraction | Clipper. This tool supports clipping to a specified extent or clipping
using a polygon mask layer as follows:

• The extent can be set manually or by selecting it in the map. To do this, we
can just click-and-drag the mouse to open a rectangle in the map area of the
main QGIS window.

• A mask layer can be any polygon layer that is currently loaded in the project
or any other polygon layer that can be specified using Select… right next
to the Mask layer drop-down list.

If we only want to clip a raster to a certain extent (the current map view
extent or any other), we can also use the raster Save as ... option, as
shown in Chapter 3, Data Creation and Editing.

Spatial Analysis

[58]

For a quick exercise, we will clip the hillshade raster (SR_50M_alaska_nad.tif)
using the Alaska shapefile (both from our sample data) as a mask layer. At the
bottom of the window, as shown in the following screenshot, we can see the
concrete gdalwarp command that QGIS uses to clip the raster. This is very
useful if you want to learn how to use GDAL.

In Chapter 2, Viewing Spatial Data, we already discussed that GDAL is
one of the libraries QGIS uses to read and process raster data. You can
find the documentation of gdalwarp and all the other GDAL utility
programs at http://www.gdal.org/gdal_utilities.html.

The default No data value option is the no data value used in the input data set or
0 if nothing is specified, but we can override this value if necessary. Another good
option is to create an output alpha band, which will set all the areas outside the
mask to transparent. This will add an additional band to the output raster; this
band controls the transparency of the rendered raster cells.

A common error source is to forget to add the file format extension to the output
file (in our example, .tif for GeoTiff). Similarly, you would get errors if you try
to overwrite an existing file. In this case, the best way to fix this is to either choose
a different filename or delete the existing file first.

http://www.gdal.org/gdal_utilities.html

Chapter 4

[59]

The resulting layer will be loaded automatically, since we enabled the Load into
canvas when finished option. QGIS should also automatically recognize the alpha
layer we created, and the raster areas that fall outside the Alaska land mass should
be transparent, as shown on the right-hand side of the previous screenshot. If, for
some reason, QGIS fails to automatically recognize the alpha layer, we can enable it
manually using the Transparency band option in the Transparency section of raster
layer properties, as shown in the following screenshot. This dialog box is also the
right place to specify any no data value that we might want to be used.

Analyzing elevation / terrain data
To use terrain-analysis tools, we need an elevation raster. If you don't have
any at hand, you can simply download a dataset from the NASA Shuttle Radar
Topography Mission (SRTM) at http://dwtkns.com/srtm/ or from any of the
other SRTM download services.

If you want to exactly replicate the results in the following exercise,
get the dataset called srtm_05_01.zip, which covers a small part
of Alaska.

http://dwtkns.com/srtm/

Spatial Analysis

[60]

Raster terrain analysis can be used to calculate the slope, aspect, hillshade, ruggedness
index, and relief from elevation rasters, as shown in the following screenshot. These
tools can be accessed by going to Raster | Terrain analysis, which comes with QGIS
by default, but we have to enable it in the plugin manager.

The terrain analysis plugin includes the following tools:

• Slope: This tool calculates the slope angle for each cell in degrees (based on
the first-order derivative estimation)

• Aspect: This tool calculates the exposition (in degrees, counter-clockwise,
starting with 0 for north)

• Hillshade: This tool creates a basic hillshade raster with lighted areas
and shadows

• Relief: This tool creates a shaded relief map with varying colors for different
elevation ranges

• Ruggedness Index: This tool calculates the ruggedness index for each cell
by summarizing the elevation changes within a 3 x 3 cell grid

An important element in all terrain analysis tools is the Z factor. The Z factor is used
if the x/y units are different from the z (elevation) unit. For example, if we tried to
create a relief from elevation data where x/y are in degrees and z is in meters, the
resulting relief would look grossly exaggerated. The values for the Z factor are
as follows:

• If x/y and z are either all in meters or all in feet, use the default z factor, 1.0
• If x/y are in degrees and z is in feet, use the z factor, 370,400
• If x/y are in degrees and z is in meters, use the z factor, 111,120

Chapter 4

[61]

Since the SRTM rasters are provided in WGS84 EPSG:4326, we need to use a Z factor
value of 111,120 in our exercise. Let's create a relief! The tool can calculate relief
color ranges automatically; we just need to click on Create automatically, as shown
in the following screenshot. Of course, we can still edit the elevation ranges' upper
and lower bounds as well as the colors.

While relief maps are three-banded rasters, which are primarily used for
visualization purposes, slope rasters are a common intermediate step in spatial
analysis workflows. We will now create a slope raster, which we can use in our
example workflow, in the following sections. The resulting slope raster will be
loaded in grayscale automatically, as shown in the following screenshot:

Spatial Analysis

[62]

Raster calculator
By going to Raster | Raster Calculator, we can create a new raster layer based
on the values in one or more rasters that are loaded in the current QGIS project.
All the available raster bands are presented in a list in the top-left corner of the
dialog in the raster_name@band_number form.

Continuing from our previous exercise in which we created a slope raster, we can,
for example, find areas at elevations above 1,000 meters and with a slope of less
than 5 degrees using the following expression (you might have to adjust the values
depending on the dataset you are using; check out the Accessing raster and vector
layer statistics section later in this chapter to learn how to find the minimum and
maximum values in your raster):

"srtm_05_01@1" > 1000 AND "slope_05_01@1" < 5

Cells that meet both criteria of high elevation and evenness will be assigned a value
of 1 in the resulting raster, while cells that fail to meet even one criterion will be set
to 0. The only bigger areas with a value of 1 are found in the southern part of the
raster layer. You can see a section of the resulting raster (displayed in black over
the relief layer) on the right-hand side of the following screenshot:

Chapter 4

[63]

Another typical use case is reclassifying a raster. For example, we might want to
reclassify the landcover.img raster in our sample data so that all the areas with a
landcover class from 1 to 5 get the value of 100, areas from 6 to 10 get the value of
101, and areas over 11 get a new value of 102. We will use the following code for this:

("landcover@1" > 0 AND "landcover@1" <= 6) * 100
+ ("landcover@1" >= 7 AND "landcover@1" <= 10) * 101
+ ("landcover@1" >= 11) * 102

The preceding raster-calculator expression has three parts that consist of a check
and a multiplication. For each cell, only one of the three checks can be true, and
true is represented as 1. Therefore, if a landcover cell has a value of 4, the first check
will be true, and the expression evaluates to 1*100 + 0*101 + 0*102 = 100.

Converting between rasters and vectors
Tools to convert between the raster and vector formats can be accessed by going to
Raster | Conversion; these tools are called Rasterize (Vector to raster) and Polygonize
(Raster to vector). Like the raster clipper tool we used earlier, this tool is also based on
GDAL and displays the command at the bottom of the dialog.

Polygonize converts a raster into a polygon layer; depending on the size of the raster,
the conversion can take some time. When the process is finished, QGIS will notify
us with a pop up. For a quick test, we can, for example, convert the reclassified
landcover raster to polygons. The resulting vector polygon layer contains multiple
polygon features with a single attribute that we named lc, which depends on the
original raster value, as shown in the following screenshot:

Spatial Analysis

[64]

The Rasterize tool is very similar to the Polygonize tool. The only difference is that
we get to specify the size of the resulting raster in pixels/cells. We can also specify
the attribute field, which will provide input for the raster cell value. The cat attribute
of our alaska.shp dataset is rather meaningless, but you get an idea of how the tool
works, as shown in the following screenshot:

Accessing the raster and vector layer
statistics
Whenever we get a new dataset, it is useful to examine the layer statistics to get a
feeling for the data.

Raster layer statistics are readily available in the Layer Properties dialog box,
specifically in the following tabs:

• Metadata: This shows the minimum and maximum cell values as well
as the mean and the standard deviation of the cell values

• Histogram: This presents the distribution of raster values

Chapter 4

[65]

For vector layers, we can get summary statistics using two tools that can be accessed
by going to Vector | Analysis Tools:

• Basics statistics: This is very useful for numeric fields. It calculates
parameters such as mean and median, min and max, the feature count n and
the number of unique values, and so on for all the features of a layer or for
the selected features only.

• List unique values: This is useful to get all the unique values of a certain field.

In both the tools, we can easily copy the results using Ctrl + C and paste them into a
text file or spreadsheet. The following screenshots show examples that explore the
contents of our airport sample dataset:

Spatial Analysis

[66]

Creating a heatmap from points
Heatmaps are a great way to visualize the distribution of points. To create them, QGIS
provides a simple-to-use Heatmap Plugin that we have to activate in Plugin Manager,
and then we can access it by going to Raster | Heatmap | Heatmap. The plugin offers
different Kernel shapes to choose from. The kernel is a moving window of a specific size
and shape; this window moves over an area of points to calculate their local density.
Additionally, the plugin allows us to control the output heatmap raster size in cells
(the Rows and Columns settings) as well as the cell size.

Radius determines the distance around each point at which the point
will have an influence. Therefore, smaller radius values result in
heatmaps that show finer smaller details, while larger values result in
smoother heatmaps with fewer details.

Additionally, Kernel shape controls the rate at which the influence of
a point decreases with increasing distance from the point. The kernel
shapes that are available in Heatmap Plugin are listed in the following
screenshot. For example, a Triweight kernel creates smaller hotspots
than the Epanechnikov kernel. For formal definitions of the kernel
functions, refer to http://en.wikipedia.org/wiki/Kernel_
(statistics).

The following screenshot shows how to create a heatmap of our airports.shp
sample with a kernel radius of 300,000 map units, which—in the case of our airport
data—are in feet:

http://en.wikipedia.org/wiki/Kernel_(statistics)
http://en.wikipedia.org/wiki/Kernel_(statistics)

Chapter 4

[67]

By default, the heatmap output will be rendered using the Singleband greygray
render type (with low values in black and high values in white). To change the style
to something similar to what you saw in the previous screenshot, you can perform
the following steps:

1. Change the heatmap raster layer render type to Singleband pseudocolor.
2. In Generate new color map section on the right-hand side of the dialog box,

select a color map you like, for example, the PuRd color map, as shown in
the following screenshot.

3. You can enter the Min and Max values for the color map manually or have
them computed by clicking on Load in the Load min/max values section.

4. Click on Classify to add the color map classes to the list on the left-hand
side of the dialog box.

5. Optionally, change the color of the first entry (for the value 0) to white (by
double-clicking on the color in the list) to get a smooth transition from the
white map background to our heatmap:

Spatial Analysis

[68]

Vector geoprocessing using Processing
The most comprehensive set of spatial analysis tools is accessible via the Processing
plugin, which we can also enable in the Plugin Manager. When the plugin is enabled,
we will find a Processing menu where we can activate the Toolbox, as shown in the
following screenshot. In the toolbox, it is easy to find spatial analysis tools by their
names, thanks to the dynamic Search box at the top. This makes finding tools in
the toolbox easier than in the vector or raster menu. Another advantage of getting
accustomed to the Processing tools is that they can be automated in Python and in
geoprocessing models.

Note that the preceding screenshot shows the advanced interface of the toolbox.
You can switch from the Simplified interface to the Advanced interface using the
drop-down button at the bottom of the toolbox. It is recommended that you use
the advanced version, as it exposes all the available algorithms and clearly displays
how individual tools are related to the different components such as GDAL/OGR
or GRASS.

In the upcoming sections, we will cover a selection of the available geoprocessing
tools and see how we can use the modeler to automate our tasks.

Chapter 4

[69]

Identifying features in the proximity of others
One common spatial analysis task is to identify features in the proximity of certain
other features. One example is to find all the airports near rivers. Using airports.
shp and majrivers.shp from our sample data, we can find airports within 5,000
feet of a river using a combination of the Fixed distance buffer and Select by
location tools, as shown in the following screenshot:

After buffering the airport point locations, the Select by location option selects
all the airport buffers that intersect a river. As a result, 14 out of the 76 airports
are selected. This information is displayed in the information area at the bottom
of the QGIS main window, as shown in the following screenshot:

Spatial Analysis

[70]

If you ever forget which settings you used or need to check whether you used the
correct input layer, you can go to Processing | History and log. The ALGORITHM
section lists all the algorithms we have been running as well as the used settings,
as shown in the following screenshot. This is also the right place to look for error
messages in the ERROR section.

The commands listed under ALGORITHM can also be used to call Processing
tools from the QGIS Python console by going to Plugins | Python Console. The
Python commands shown in the following screenshot run the buffer algorithm
(processing.runalg) and load the result into the map (processing.load):

Chapter 4

[71]

Raster sampling at point locations
Another common task is to sample a raster at specific point locations. Using
Processing, we can solve this problem using a GRASS tool called v.sample. To use
GRASS tools, make sure GRASS is installed and Processing is configured correctly by
going to Processing | Options and configuration. On an OSGeo4W default system,
the configuration will look like the following screenshot:

At the time of writing this book, the current stable release is GRASS
6.4. As shown in the preceding screenshot, there is already a GRASS
7.0 beta release, and Processing can be configured to use its algorithms
as well. In the toolbox, you will find the algorithms under GRASS
commands and GRASS GIS 7 commands, respectively.

Spatial Analysis

[72]

For this exercise, let's imagine that we want to sample the landcover layer at the
airport locations of our sample data. All we have to do is specify the vector layer
that contains the sample points and the raster layer that should be sampled. For this
example, we can leave all the other settings to their defaults. The tool will not only
sample the raster, it will also compare point attributes with the sampled raster value.
However, we don't need this comparison in our current example. The dialog box
will look like the following screenshot:

Chapter 4

[73]

Mapping density with hexagonal grids
Mapping the density of points using a hexagonal grid has become a quite popular
alternative to creating heatmaps. Processing offers us a fast way to create such an
analysis. There is already a premade script called Hex grid from layer bounds,
which we can use to first create a hexagonal grid that covers all the points in the
input layer. The dataset of populated places, popp.shp, is a good sample dataset
for this exercise. Once the grid is ready, we can run Count points in polygon to
calculate the statistics. The number of points will be stored in the NUMPOINTS
column if you use the settings shown in the following screenshot:

Calculating area shares within a region
Another spatial analysis task we often encounter is calculating area shares within
a certain region, for example, land cover shares along one specific river. Using
majrivers.shp and trees.shp, we can calculate the share of a wooded area in a
10,000-foot wide strip of land along the Susitna River. We will first define the
analysis region by selecting the river and buffering it.

Spatial Analysis

[74]

QGIS Processing will only apply buffers to the selected features
of the input layer. This default behavior can be changed by going
to Processing | Options and configuration and disabling the Use
only selected features option. For the following examples, leave the
option enabled.

To select the Susitna river, we use the Select by attribute tool. After running the
tool, you should see that the river lines are selected on the map. Then, we can use
the Fixed distance buffer tool to get the area within 5,000 feet along the river. Note
that the Dissolve result option should be set to Yes to ensure that the buffer result
is one continuous polygon, as shown in the following screenshot:

Chapter 4

[75]

Next, we calculate the size of the strip of land around our river. This can be done
using the Export/Add geometry columns tool, which adds the area and perimeter
to the attribute table. Then, we can calculate the Intersection between the area along
the river and the wooded areas in trees.shp, as shown in the following screenshot.
The result of this operation is a layer that contains only those wooded areas that are
within the river buffer.

Using the Dissolve tool, we can recombine all the areas from the intersection results
into one big polygon that represents the total wooded area around the river. Note
how we use the unique ID field, VEGDESC, to only combine areas with the same
vegetation so that we do not mix the deciduous and mixed trees.

Spatial Analysis

[76]

Finally, we can calculate the final share of wooded area using Advanced Python
field calculator. The value = $geom.area()/<area> formula divides the area
of the final polygon ($geom.area()) by the value in the area attribute (<area>),
which we created earlier by running Export/Add geometry columns. As shown
in the following screenshot, this calculation results in a wood share of 0.31601 for
Deciduous trees and 0.09666 for Mixed trees. Therefore, we can conclude that in
total, 41.27 percent of the land along Susitna river is wooded.

Chapter 4

[77]

Automated geoprocessing with the
graphical modeler
Using the graphical modeler, we can turn whole geoprocessing and analysis
workflows into automated models; we can then use these models to run complex
geoprocessing tasks that involve multiple different tools in one go. To create a
model, we will go to Processing | Graphical modeler to open the modeler where
we can select from different inputs and algorithms for our model.

Let's create a model that automates the creation of hexagonal heatmaps! By double-
clicking on the Vector layer entry in the Inputs list, we can add an input field for
the point layer. It's a good idea to use descriptive parameter names (for example,
hex cell size instead of just size for the parameter that controls the size of the
hexagonal grid cells) so that we can recognize which input is first and which is later
in the model. It is also useful to restrict the Shape type field where appropriate.
In our example, we will restrict the input to Point. This will enable Processing to
prefilter the available layers and present us only with layers of the correct type. The
second input we need is a Number field to specify the desired hexagonal cell size, as
shown in the following screenshot:

After adding the inputs, we can now continue creating the model by assembling the
algorithms. In the Algorithms section, we can use the filter at the top to narrow down
our search for the correct algorithm. To add an algorithm to the model, we will simply
double-click on the entry in the list of algorithms. This opens the algorithm dialog box
where we have to specify the inputs and further algorithm-specific parameters.

Spatial Analysis

[78]

In our example, we want to use the point vector layer as the input layer and
the number input hex cell size as the cellsize parameter. We can access the
available inputs through the drop-down list, as shown in the following screenshot.
Alternatively, it's also possible to hardcode parameters such as the cell size.

While adding the following algorithms, it is important to always choose the correct
input layer based on the previous processing step. We can verify the correct
workflow using the connections in the model diagram that the modeler draws
automatically. The final model will look like the following screenshot:

Chapter 4

[79]

To finish the model, we should enter a model name (for example, Create
hexagonal heatmap) and a group name (for example, my models). Processing will
use the group name to organize all the models we create. Once we have picked a
name and group, we can save the model and then run it. After closing the modeler,
we can run the saved models from the toolbox like any other tool. It is even possible
to use one model as a building block in another model.

Spatial Analysis

[80]

Another useful feature is that we can specify a layer style to be applied to the
processing results automatically. This default style can be set using Edit rendering
styles for outputs in the context menu of the created model in the toolbox, as shown
in the following screenshot:

Leveraging the power of spatial
databases
Another approach to geoprocessing is to use the functionality provided by spatial
databases such as PostGIS or SpatiaLite. In the Loading data from databases section
of Chapter 2, Viewing Spatial Data, we already discussed how to load data from a
SpatiaLite database. In this exercise, we will use SpatiaLite's built-in geoprocessing
function to perform spatial analysis directly in the database and visualize the results
in QGIS. We will use the same SpatiaLite database we already downloaded in
Chapter 2, Viewing Spatial Data, from www.gaia-gis.it/spatialite-2.3.1/test-
2.3.zip (4 MB).

www.gaia-gis.it/spatialite-2.3.1/test-2.3.zip
www.gaia-gis.it/spatialite-2.3.1/test-2.3.zip

Chapter 4

[81]

As an example, we will use SpatiaLite's spatial functions to get all the highways that
are within 1 km distance of the city of Firenze. To interact with the database, we will
use the DB Manager plugin; we can enable this plugin in Plugin Manager, and it
is available via the Database menu. If you followed the Loading data from databases
section of Chapter 2, Viewing Spatial Data, you will see test-2.3.sqlite listed under
SpatiaLite in the tree on the left-hand side of the DB Manager dialog box, as shown
in the following screenshot. If the database is not listed, please refer to the exercise
mentioned earlier to set up the database connection.

Next, we will open the SQL window using the corresponding toolbar button by
going to Database | SQL window or by pressing F2. The following SQL query will
select all the highways that are within 1 km distance of the city of Firenze:

SELECT *
FROM HighWays
WHERE PtDistWithin(
 HighWays.Geometry,
 (SELECT Geometry FROM Towns WHERE Name = 'Firenze'),
 1000
)

The SELECT Geometry FROM Towns WHERE Name = 'Firenze' subquery selects
the point geometry that represents the city of Firenze. This point is used in the
PtDistWithin function to test for each highway geometry if it is within a distance of
1,000 meters.

An introduction to SQL is out of the scope of this book, but you can
find a full tutorial on using SpatiaLite at http://www.gaia-gis.it/
gaia-sins/spatialite-cookbook/index.html. Additionally,
to get an overview of all the spatial functionality offered by SpatiaLite,
visit http://www.gaia-gis.it/gaia-sins/spatialite-sql-
4.2.0.html.

http://www.gaia-gis.it/gaia-sins/spatialite-cookbook/index.html
http://www.gaia-gis.it/gaia-sins/spatialite-cookbook/index.html
http://www.gaia-gis.it/gaia-sins/spatialite-sql-4.2.0.html
http://www.gaia-gis.it/gaia-sins/spatialite-sql-4.2.0.html

Spatial Analysis

[82]

When the query is entered, we can click on Execute (F5) to run the query. The query
results will be displayed in tabular form in the Result section below the SQL query
input area, as shown in the following screenshot:

To display the query results on the map, we need to activate the Load as new layer
option below the results table. Make sure that you select a suitable value for Column
with unique integer values (PK_UID in our case) and Geometry column (Geometry).
Once you have configured these settings, you can click on Load now! to load the
query result as a new map layer. As you can see in the preceding screenshot, only
one of the highways (represented by the wide blue line) is within 1 km of the city
of Firenze.

Chapter 4

[83]

While we used SpatiaLite in this example, the tools and workflows
presented in this chapter work just as well with PostGIS databases. It
is worth noting though that SpatiaLite and PostGIS often use slightly
different function names. Therefore, it is usually necessary to adjust
the SQL queries accordingly.

Summary
In this chapter, we covered various raster and vector geoprocessing and analysis
tools, and you learned how to apply them in common tasks. We saw how to use the
Processing toolbox to run individual tools and we also saw how to use the modeler
to create complex geoprocessing models from multiple tools. Using the modeler, we
can automate our workflows and increase our productivity, especially with respect
to reocurring tasks. Finally, we also took a quick look at how to leverage the power
of spatial databases to perform spatial analysis.

In the following chapter, we will learn how to bring all skills learned so far together
to create beautiful maps using advanced styles and print map composition features.

Creating Great Maps
In this chapter, we will cover the important features that enable us to create great
maps. We will first go into advanced vector styling, building on what we learned in
Chapter 2, Viewing Spatial Data. Then, you will learn how to label features by following
examples for point labels as well as more advanced road labels with road shield
graphics. We will also cover how to tweak labels manually. Finally, you will learn
about the print composer and how to use it to create printable maps and map books.
If you want to get an idea about what kind of maps you can create using QGIS, visit
the QGIS Map Showcase Flickr group at https://www.flickr.com/groups/qgis/;
this is dedicated to maps created with QGIS without any further postprocessing.

Advanced vector styling
This section introduces more advanced vector-styling features, building on the basics
we saw in Chapter 2, Viewing Spatial Data. We will see how to create detailed custom
visualizations using:

• Graduated styles
• Categorized styles
• Rule-based styles
• Data-defined styles

https://www.flickr.com/groups/qgis/

Creating Great Maps

[86]

Creating a graduated style with size scaling
Graduated styles are great to visualize distributions of numeric values in a
choropleth or a similar map. In our sample data, there is a climate.shp file; this
contains locations and mean temperature values that we can visualize using a
graduated style by simply selecting the T_F_MEAN value for the Column field
and clicking on Classify. We can pick an existing color ramp or create a new one
by scrolling down the list to the New color ramp… entry. Additionally, we can
reverse the order of the colors within a color ramp using the Invert option.

Graduated styles are available in different classification modes as follows:

• Equal Intervals: This mode creates classes by splitting them at equal
intervals between the maximum and minimum values found in the
specified column.

• Quantile (Equal Count): This mode creates classes so that each class contains
an equal number of features.

• Natural Breaks (Jenks): This mode uses the Jenks Natural Breaks algorithm
to create classes by reducing the variance within classes and maximizing the
variance between classes.

• Standard Deviation: This mode uses the column values' standard deviation
to create classes.

• Pretty Breaks: This mode is the only classification that doesn't strictly create
the specified number of classes. Instead, its main goal is to create class
boundaries that are round numbers.

Besides using color to distinguish between the different temperature values, we can
also use size. By setting Size scale field in the Advanced settings to T_F_MEAN,
as shown in the following screenshot, all the point symbols will be scaled so that
locations with higher mean temperatures are displayed with a bigger symbol.

Using Size scale field, we can make the size of point symbols or
the width of line symbols responsive to a certain attribute value.
Note that we can choose between scaling the area or the diameter
of a point symbol depending on the nature of the values. Similarly,
there is also a Rotation field option, which allows us to rotate point
symbols. The expected input is in degrees from 0 to 360, with 0
pointing towards the north.

Chapter 5

[87]

Besides the symbols that are drawn on the map, another important aspect of the
styling is the legend that goes with it. To customize the legend, we can define the
Label format as well as the number of decimal places that should be displayed. In
the Label Format string, %1 will be replaced by the lower limit of the class, and %2
will be replaced by the upper limit. You can change this string to suit your needs, for
example, from %1 to %2. If you activate the Trim option, excess trailing zeros will be
removed as well.

The following screenshot shows the results of using a Graduated renderer option,
with five classes using the Equal Interval classification mode and a Size scale
field option, as shown in the previous screenshot. Note the checkboxes beside each
symbol; they can be used to selectively hide/show the features that belong to the
corresponding class.

www.allitebooks.com

http://www.allitebooks.org

Creating Great Maps

[88]

Using categorized styles
Just as graduated styles are very useful to visualize numeric values, categorized
styles are great for text values or, more generally speaking, for all kinds of values on
a nominal scale. A good example of this kind of data can be found in the trees.shp
file in our sample data. For each area, there is a VEGDESC value that describes the
type of forest found there. Using a categorized style, we can easily generate a style
with one symbol for every unique value in the VEGDESC column, as shown in the
following screenshot. Once we click on OK, the style is applied to our trees layer,
and we can see the distribution of different tree types in the area.

Of course, every symbol is editable and can be customized. Just double-click on the
symbol preview to open the Symbol selector dialog, which allows us to select and
combine different symbols.

Chapter 5

[89]

Creating a rule-based style for road layers
With rule-based styles, we can create a layer style with a hierarchy of rules. Rules can
take anything into account, from attribute values to scale and geometry properties
such as area or length. In this example, we will create a rule-based renderer for the
ne_10m_roads.shp file from Natural Earth (you can download it from http://www.
naturalearthdata.com/downloads/10m-cultural-vectors/roads/). As you can
see in the following screenshot, our style will contain different road styles for major
and secondary highways; it will also contain scale-dependent styles:

As you can see in the preceding screenshot, at the first level of rules, we
distinguished between the roads of "type" = 'Major Highway' and those of "type"
= 'Secondary Highway'. The next level of rules handles scale dependence. To add
this second layer of rules, we can use the Refine current rules button and select Add
scales to rule. We simply input one or more scale values at which we want the rule
to be split.

Note that there are no symbols specified at the first rule level. If we
have symbols specified at the first level, the renderer would draw two
symbols over each other. While this can be useful in certain cases, we
don't want this effect now. Symbols can be deactivated in the Rule
properties, which can be accessed by double-clicking on the rule
or clicking on the edit button below the rule's tree view (the button
between the plus and minus buttons).

http://www.naturalearthdata.com/downloads/10m-cultural-vectors/roads/
http://www.naturalearthdata.com/downloads/10m-cultural-vectors/roads/

Creating Great Maps

[90]

In the following screenshot, we can see the rule-based renderer and the scale rules
in action. While the left-hand side shows wider, white roads with gray outlines for
secondary highways, the right-hand side shows a simplified version with thin
grey lines.

You can download the symbols used in this style by going to Settings | Style
Manager | Share | Import. The URL is https://raw.githubusercontent.com/
anitagraser/QGIS-resources/master/qgis1.8/symbols/osm_symbols.xml.
Paste the URL in the Location textbox and click on Fetch Symbols, then on Select
all, and finally on Import. The dialog will look like the following screenshot:

https://raw.githubusercontent.com/anitagraser/QGIS-resources/master/qgis1.8/symbols/osm_symbols.xml
https://raw.githubusercontent.com/anitagraser/QGIS-resources/master/qgis1.8/symbols/osm_symbols.xml

Chapter 5

[91]

Creating data-defined symbology
In the previous section, Creating a graduated style with size scaling, we already used
a simple form of data-defined symbology when we applied the size-scale field.
However, there is much more we can do. In each symbol layer's properties,
we find a Data defined properties button.

In this example, we will again use the ne_10m_roads.shp file from Natural Earth.
The following screenshot shows the Data defined properties dialog of a simple line
symbol layer. The available properties depend on the selected symbol layer type.

The configuration depicted in the previous screenshot creates a style where the line's
Pen width depends on the feature's scalerank, and the line Color depends on the
toll attribute. Let's look at the expressions more closely:

• CASE WHEN toll THEN 'red' END: This evaluates the toll value. If it is
zero, the default color is unchanged—and therefore, black—but if the value
is not zero (this means the feature is a toll road), the color is changed to red.

• 2.5 / scalerank: This computes the Pen width. Since a low-scale rank
should be represented by a wider line, we use a division operation instead
of multiplication.

Creating Great Maps

[92]

This is how the style looks:

In the previous example, you already saw that you can specify colors using color
names such as 'red', 'gold' and 'deepskyblue'. Another especially useful group
of functions for data-defined styles is the Color functions; there are functions for the
following color models:

• RGB: color_rgb(red, green, blue)
• HSL: color_hsl(hue, saturation, lightness)
• HSV: color_hsv(hue, saturation, value)
• CMYK: color_cmyk(cyan, magenta, yellow, black)

There are also functions to access the color ramps. Here are two examples of how to
use these functions:

• ramp_color('Reds', T_F_MEAN / 46): This returns a color from the Reds
color ramp, depending on the T_F_MEAN value. Since the second parameter
has to be a value between 0 and 1, we divide the T_F_MEAN value by the
maximum value, which is 46.

Since users can add new color ramps or change the existing ones, the
color ramps can vary between different QGIS installations. Therefore,
the ramp_color function might return different results if the style or
project file is used on a different computer.

Chapter 5

[93]

• color_rgba(0, 0, 180, scale_linear(T_F_JUL - T_F_JAN, 20, 70,
0, 255)): This computes the color depending on the difference between the
July and January temperatures, T_F_JUL - T_F_JAN. The difference value is
transformed into a value between 0 and 255 by the scale_linear function
according to the rule that says any value up to 20 will be translated to 0, any
value of 70 and above will be translated to 255, and anything in between
will be interpolated linearly. Bigger difference values result in darker colors
because of the higher alpha-parameter value.

The alpha component in RGBA, HSLA, HSVA, and CMYKA controls
the transparency of the color. It can take on an integer value from 0
(completely transparent) to 255 (opaque).

Labeling
We can activate labeling by going to Layer Properties | Labels, checking the Label
this layer with box, and selecting the attribute field that we want to use for the
labels. This is all we need to do to display labels with default settings. While default
labels are great for a quick preview, we would usually want to customize the labels if
we create visualizations for reports or standalone maps.

Using Expressions (the button that is right beside the attribute drop-down list),
we can format the label text to suit our needs. For example, the NAME field in our
sample airports.shp file contains text in uppercase. To display the airport names
in mixed case instead, we can set the title(NAME) expression; this will reformat the
name text in title case. We can also use multiple fields to create the label, for example,
combining name and elevation in brackets using the concatenation operator, ||,
as follows:

title(NAME) || ' (' || "ELEV" || ')'

Creating Great Maps

[94]

Note the use of simple quotation marks around text, such as ' (', and double
quotation marks around field names, such as "ELEV". The dialog will look like
the following screenshot:.

The big preview area titled Text/Buffer sample at the top of the dialog shows
a preview of the current settings. The background color can be adjusted to test
readability on different backgrounds. Under the preview area, we find the
following label settings:

• Text: Besides changing the font style, size, color, and transparency, we can
also modify letter spacing and word spacing as well as the blend mode,
which works like the layer-blending mode we covered in Chapter 2, Viewing
Spatial Data. Note the column of buttons on the right-hand side of every
setting. Clicking on these buttons will allow us to create the so-called
data-defined overrides. These can be used, for example, to define different
label colors or change the label size depending on an individual feature's
attribute value or expression.

Chapter 5

[95]

• Formatting: Here, we can enable multiline labels by specifying which
characters to wrap around. Additionally, we can control line height and
alignment. We can also add a symbol that displays the line's digitizing
direction to the label. Finally, the Formatted numbers option offers
a shortcut to format numeric values to a certain number of decimal places.
An alternative to wrapping texts around a certain character is the wordwrap
function that is available in expressions. It wraps the input string to a certain
maximum or minimum number of characters. The following screenshot
shows an example of wrapping a longer text to a maximum of 22 characters
per line:

• Buffer: We can adjust the buffer size, color, and transparency, as well as
the pen join style and blending mode. With transparency and blending,
we can improve label readability without blocking out the underlying
map too much.

Creating Great Maps

[96]

• Background: This allows us to add a background shape in the form of a
rectangle, square, circle, ellipsoid, or SVG. SVG backgrounds are great to
create effects such as highway shields.

• Shadow: This makes it possible to add a shadow to labels. We can control
everything from shadow direction to color, blur, size, and transparency.

• Placement: The available automatic label-placement options depend on the
layer geometry type.
For point layers, we can choose between the following:

 ° The flexible Around point option tries to find the best position for
labels by distributing them around the points without overlaps. As
you can see in the following screenshot, some labels are put in the
upper-right corner of their point symbol, while others appear at
different positions in the left (for example, Anchorage Intl (129))
or lower-right (for example, Bryant Ahp (345)) corner.

 ° The Offset from point option forces all the labels to a certain
position; for example, all labels can be placed above their point
symbols.

The following screenshot shows airport labels with a 50-percent transparent
Buffer and Drop Shadow placed using Around point and Label distance
of 1 mm:

For line layers, we can choose from the following:
 ° Parallel for straight labels that are rotated according to the line

orientation
 ° Curved for labels that follow the shape of the line
 ° Horizontal for labels that keep a horizontal orientation regardless

of the line orientation

For further fine-tuning, we can define whether the label should be placed
as per one of these options: Above line, On line, or Below line and how
far above and below using Label distance.

Chapter 5

[97]

The following example shows labels with road shields. You can download a
blank road-shield SVG from http://upload.wikimedia.org/wikipedia/
commons/c/c3/Blank_shield.svg. Note how only Interstates are labeled.
This can be achieved using the following labeling expression:
CASE WHEN "level" = 'Interstate' THEN name END

The labels are positioned using the Horizontal option. Additionally, Merge
connected lines to avoid duplicate labels (in the Rendering section) and
Suppress labeling of features smaller than are activated; for example, 5 mm
helps avoid clutter by not labeling pieces of road that are shorter than 5 mm
at the current scale.

To set up the road shield, go to the Background section and select the blank-
shield SVG from the folder you downloaded it to. To make sure that the label
fits nicely inside the shield, we will additionally specify the Size type field
as a buffer with a Size of 1 mm; this makes the shield a little bigger than the
label it contains.
If you click on Apply now, you will notice that the labels are not centered
perfectly inside the shields. To fix this, we will apply a small Offset in the
Y direction to the shield position, as shown in the following screenshot.
Additionally, it is recommended that you deactivate the Buffer label, as it
tends to block out parts of the shield, and we don't need it anyway.

http://upload.wikimedia.org/wikipedia/commons/c/c3/Blank_shield.svg
http://upload.wikimedia.org/wikipedia/commons/c/c3/Blank_shield.svg

Creating Great Maps

[98]

For polygon layers, the options are as follows:

 ° Offset from centroid uses the polygon centroid as an anchor and
works like Offset from point for point layers

 ° Around centroid works in a manner similar to Around point
 ° Horizontal places a horizontal label somewhere inside the polygon,

independent of the centroid
 ° Free fits a freely rotated label inside the polygon
 ° Using perimeter places the label on the polygon outline

• Rendering: This allows us to define scale-based visibility limits to display
labels only on certain scales and pixel-size-based visibility to hide labels for
small features. Here, we can also tell the labeling engine to show colliding
labels, which are normally hidden by default.

By default, QGIS avoids overlapping labels, but for debug purposes,
it can be useful to force Show all labels (including colliding labels)
using the options in the Rendering section.

The following screenshot shows lake labels (lakes.shp) using the Multiple lines
feature wrapping on the empty space character, Center Alignment, a Letter spacing
value of 2, and positioned using the Free option:

Chapter 5

[99]

Besides automatic label placement, we also have the option to use data-defined
placement to position labels exactly where we want them to be. In the labeling
toolbar, we will find tools to move and rotate labels by hand. They are only active
and available for layers that have data-defined placement set up for at least the X
and Y coordinates. To start using the tools, we can simply add three new columns,
label_x, label_y, and label_rot to, for example, the airports.shp file. Then,
we can specify these columns in the data-defined settings by pressing the buttons
beside Offset X, Y, and Rotation. We don't have to enter any values in the attribute
table right now. The labeling engine will check for values, and if it finds the attribute
fields empty, it will simply place the labels automatically. By specifying data-defined
placement, the labeling toolbar's tools are now available (note that the editing mode
has to be turned on), and we can use the tools to move and rotate any of the labels on
the map. The changes are written back to the attribute table. Try moving some labels,
especially where they are placed closely together, and watch how the automatically
placed labels adapt to your changes.

Designing print maps
In QGIS, print maps are designed in the print composer. A QGIS project can contain
multiple composers, so it makes sense to pick descriptive names. Compositions
are saved automatically whenever we save the project. To see a list of all the
compositions available in a project, go to Project | Composer Manager.

We can open a new composer by going to Project | New Print Composer or using
Ctrl + P. The composer window consists of the following:

• A preview area for the map composition; this area displays a blank page
at first

• Panels to configure Composition, Item properties, and Atlas generation,
as well as a Command history panel for quick undo and redo actions

• Toolbars to manage, save, and export compositions, navigate in the
preview area, as well as add and arrange different composer items

Once you have designed your print map the way you want it, you can save the
template to a composer template .qpt file by navigating to Composer | Save as
template and reuse it in other projects by navigating to Composer | Add Items
from Template.

Creating Great Maps

[100]

Creating a basic map
The Composition panel gives us access to the paper options such as size, orientation,
and number of pages. It is also the place to configure snapping behavior and
output resolution.

First, we add a map item to the paper using the Add new map button or by going
to Layout | Add Map and drawing the map rectangle onto the paper. Click on the
paper, keep the mouse button pressed down, and drag the rectangle open.
We can move, and resize the map using the mouse and the Select/Move item
tools. Alternatively, it is also possible to configure all the map settings in the
Item Properties panel.

The Item Properties panel content depends on the currently selected composition
item. If a map item is selected, we can adjust the map's Scale and Extents as well as
the Position and size tool of the map item itself. At a Scale value of 10,000,000, we can
more or less fit Alaska on an A4-size paper. To move the area that is displayed within
the map item, and change the map scale we can use the Move item content tool.

After the map looks like we want it to, we can add a scale bar using the Add new
scalebar button or by going to Layout | Add Scalebar and clicking on the map.
The Item Properties panel now displays the scalebar's properties, which are similar
to what you can see in the following screenshot. Since we can add multiple map
items to one composition, it is important to specify which map the scale belongs to.
The second main property is the scalebar style, which allows us to choose between
different scalebar types or a Numeric type for a simple textual representation such
as 1:10,000,000. Using the Units properties, we can convert the map units in feet or
meters to something more manageable, such as miles or kilometers. The Segments
properties control the number of segments and the size of a single segment in the
scalebar. Furthermore, the properties control the scalebar's color, font, background,
and so on.

Chapter 5

[101]

North arrows can be added to a composition using the Add Image button or by
going to Layout | Add image and clicking on the paper. To use one of the SVGs,
which are part of the QGIS installation, open the Search directories section in the
Item Properties panel. It might take a while for QGIS to load the previews of the
images in the SVG folder. You can pick a north arrow from the list of images or select
your own image by clicking on the button next to the Image source input. More map
decorations such as arrows or a rectangle, triangle, or ellipse shapes can be added
using the appropriate toolbar buttons such as Add Arrow, Add Rectangle, and
so on.

Creating Great Maps

[102]

Legends are another vital map element. We can use the Add new legend button or
go to Layout | Add legend to add a default legend with entries for all the currently
visible map layers. Legend entries can be reorganized (sorted or added to groups),
edited, and removed from the Legend items' properties. Using the Wrap text on
option, we can split long labels in multiple rows. The following screenshot shows the
context menu that allows you to change the style (Hidden, Group, or Subgroup) of
an entry. The corresponding font, size, and color are configurable in the Fonts section.

Additionally, the legend in this example is divided into three Columns, as shown in
the following screenshot. By default, QGIS tries to keep all the entries of one layer in
a single column, but we can override this behavior be enabling Split layers.

Chapter 5

[103]

To add text to the map, we can use the Add new label button or go to Layout |
Add label. Simple labels display all text using the same font. By enabling Render as
HTML, we can create more elaborate labels with headers, lists, different colors, and
highlights in bold or italics using the normal HTML notation, for example:

<h1>Alaska</h1><h1>Alaska</h1>
<p>The name <i>"Alaska"</i> means "the mainland".</p>
one list entryanother entry
<p style="font-size:70%;">[% format_date($now ,'yyyy-mm-dd')%]</p>

Labels can also contain expressions such as the following:

• [% $now %]: This inserts the current timestamp, which can be formatted
using the format_date function, as shown in the following screenshot

• [% $page %] of [% $numpages %]: This is used to insert page numbers in
compositions with multiple pages

Adding advanced map items
Other common map features are grids and frames. Every map item can have one
or more grids. Click on the + button in the Grids section to add a grid. The Interval
and Offset values have to be specified in map units. We can choose between the
following grid types:

• A normal Solid grid with customizable lines
• Crosses at the specified intervals with customizable styles
• Customizable Markers at the specified intervals
• Frame and annotation only will hide the grid while still displaying the

frame and coordinate annotations

Creating Great Maps

[104]

For Grid frame, we can select from the following frame styles:

• Zebra with customizable line and fill colors, as shown in the following
screenshot

• Interior ticks, Exterior ticks, or Interior and exterior ticks for tick marks
that point inside the map, outside, or in both the directions

• Line border for a simple line frame

Using Draw coordinates, we can label the grid with the corresponding coordinates.
The labels can be aligned horizontally or vertically and placed inside or outside the
frame, as shown in the following screenshot:

Chapter 5

[105]

Maps that show an area close up are often accompanied by a second map that tells
the reader where the area is located in a larger context. To create such an overview
map, we will add a second map item and add an overview by clicking on the + button
in the Overviews section. By setting Map frame, we can define which detail map's
extent should be highlighted. By pressing the + button again, we can add additional
map frames to the overview map. The following screenshot shows an example
with two detail maps, both of which are added to an overview map. To distinguish
between the two maps, the overview highlights are color-coded (by changing the
overview's frame style) to match the colors of the frames of the detail maps.

Every map item in a composition can display a different combination
of layers. Generally, map items in a composer are synced with the
map in the main QGIS window. So, if we turn a layer off in the main
window, it gets removed from the print composer map as well.
However, we can stop this automatic synchronization by enabling
Lock layers for a map item in the map item's properties.

Creating Great Maps

[106]

To add additional details to the map, the composer also offers the possibility to
add an attribute table to the composition using the Add attribute table button or
by going to Layout | Add attribute table. By enabling Show only features visible
within a map, we can filter the table and display only the relevant results. Additional
filter expressions can be set using the Filter with option. Sorting (for example, by
name, as shown in the following screenshot) and renaming of columns is possible via
the Attributes button. The table-styling options can be accessed in the Appearance
section to, for example, create a header line with bold and centered text.

Even more advanced content can be added using the Add html frame button.
We can point the item's URL reference to any HTML page on our local machines
or online, and the content (text and images as displayed in a web browser) will
be displayed on the composer page.

Chapter 5

[107]

Creating map series using the Atlas feature
With the print composer's Atlas feature, we can create a series of maps using one
print composition. The tool will create one output (can be image files, PDFs, or PDF
pages) for every feature in the so-called Coverage layer.

Atlas can control and update multiple map items within one composition. To enable
Atlas for a map item, we have to enable the Controlled by atlas option in the Item
properties of the map item. Using the Fixed scale option in the Controlled by atlas
section, all maps will be rendered using the same scale. If we need more flexible
output, we can switch to the Margin around feature option instead, which zooms
to every Coverage layer feature and renders it in addition to the specified margin-
surrounding area.

To finish the configuration, we will switch to the Atlas generation panel. As
mentioned earlier, Atlas will create one map for every feature in the layer configured
in the Coverage layer dropdown. Features in the Coverage layer can be displayed
like regular features or can be hidden by enabling Hidden coverage layer. Adding
an expression to the Feature filtering option or enabling the Sort by option makes it
possible to further fine-tune the results. The Output field can be one image or PDF
for each Coverage layer feature, or you can make it a multipage PDF by enabling
Single file export when possible, before going to Composer | Export as PDF.

Creating Great Maps

[108]

Once these configurations are set, we can preview the map series by enabling the
preview atlas button, which you can see in the upper-left corner of the following
screenshot. The arrow buttons next to the preview button are used to navigate
between the Atlas maps.

Summary
In this chapter, we had a closer look into how we can create some more complex maps
using advanced vector-layer styles such as the categorized or rule-based style. We
also covered the automatic and manual feature-labeling options available in QGIS.
This chapter also showed you how to create printable maps using print composer,
and it introduced the Atlas functionality to create map books. Congratulations! In
the chapters so far, you learned how to install and use QGIS to create, edit, and
analyze spatial data and how to present it in an effective manner. In the following
chapter, we will have a look at expanding the QGIS functionality using Python.

Extending QGIS with Python
This chapter is an introduction to scripting QGIS with Python. Of course, a full-blown
Python tutorial is out of the scope of this book. The examples here, therefore, assume
a minimum proficiency when working with Python. Python is a very accessible
programming language even if you are just getting started, and it has gained a lot
of popularity in both the open source and proprietary GIS worlds, for example,
ESRI's ArcPy or PyQGIS. QGIS currently supports Python 2.7, and at the time of
writing this book, there is no Python 3 support. We will start with an introduction
to the QGIS Python console before we go into more advanced development of custom
tools for the Processing toolbox, and you will learn how to create your own plugins.

Getting to know the Python console
The most direct way to interact with the QGIS API is through the Python console,
which can be opened by going to Plugins | Python Console. As you can see in the
following screenshot the, Python Console is displayed within a new panel below
the map:

Extending QGIS with Python

[110]

Our access point to interact with the application, project, and data is the iface object.
To get a list of all the functions available for iface, type help(iface). Alternatively,
this information is also available online in the API documentation at http://qgis.
org/api/classQgisInterface.html.

Loading and exploring datasets
One of the first things we want to do is to load some data. For example, to load
a vector layer, we will use the addVectorLayer() function of iface:

v_layer = iface.addVectorLayer('C:/Users/Anita/Geodaten/qgis_sample_
data/shapefiles/airports.shp','airports','ogr')

When we execute this command, airports.shp is loaded using the ogr driver
and added to the map under the airports layer name. Additionally, this function
returns the created layer object. Using this layer object, which we stored in v_layer,
we can access the vector layer functions, such as name(), which returns the layer
name as it is displayed in the Layers list:

v_layer.name()
Output –
u'airports'

(The u in front of the airports layer name shows that the name is returned as a
Unicode string.) Of course, the next logical step is to look at the layer's features.
The number of features can be accessed using featureCount():

v_layer.featureCount()
Output –
76L

This shows us that the airport layer contains 76 features. The L in the end shows
that it's a numerical value of type long. In our next step, we will access these
features. This is possible using the getFeatures() function, which will return
a QgsFeatureIterator object. With a simple for loop, we can then print out
attributes() of all the features in our layer:

my_features = v_layer.getFeatures()
for feature in my_features:
 print feature.attributes()
Output -
[1, u'US00157', 78.0, u'Airport/Airfield', u'PA', u'NOATAK' ...
[2, u'US00229', 264.0, u'Airport/Airfield', u'PA', u'AMBLER'...
[3, u'US00186', 585.0, u'Airport/Airfield', u'PABT', u'BETTL...
...

http://qgis.org/api/classQgisInterface.html
http://qgis.org/api/classQgisInterface.html

Chapter 6

[111]

When using the preceding code snippet, it is worth noting that the
Python syntax requires proper indentation. This means that, for
example, the content of the for loop has to be indented as shown in
the preceding code. If Python encounters such errors, it will raise an
IndentationError.

You might have noticed that attributes() shows us the attribute values,
but we don't know the field names yet. To get these names, we use:

for field in v_layer.dataProvider().fields():
 print field.name()
Output-
cat
NA3
ELEV
F_CODE
IKO
NAME
USE

Once we know the field names, we can access specific feature attributes, for example,
NAME:

for feature in v_layer.getFeatures():
 print feature.attribute('NAME')
Output-
NOATAK
AMBLER
BETTLES
...

A quick solution to, for example, sum up the elevation values is:

sum([feature.attribute('ELEV') for feature in v_layer.getFeatures()])
Output-
22758.0

In the previous example, we took advantage of the fact that Python
allows us to create a list by writing a for loop inside square brackets.
This is called list comprehension, and you can read more about it at
https://docs.python.org/2/tutorial/datastructures.
html#list-comprehensions.

https://docs.python.org/2/tutorial/datastructures.html#list-comprehensions
https://docs.python.org/2/tutorial/datastructures.html#list-comprehensions

Extending QGIS with Python

[112]

Loading raster data is very similar to loading vector data and is done using
addRasterLayer():

r_layer = iface.addRasterLayer('C:/Users/Anita/Geodaten/qgis_sample_
data/raster/SR_50M_alaska_nad.tif','hillshade')
r_layer.name()
Output –
u'hillshade'

To get the raster layer's size in pixels, we can use the width() and height() functions:

r_layer.width(), r_layer.height()
Output –
(1754, 1394)

If we want to know more about the raster values, we will use the layer's data provider
object, which provides access to the raster band statistics. It's worth noting that we
have to use bandStatistics(1) instead of bandStatistics(0) to access the statistics
of a single-band raster, such as our hillshade layer, for the maximum value:

r_layer.dataProvider().bandStatistics(1).maximumValue
Output –
251.0

Other values that can be accessed like this are, for example, minimumValue,
range, stdDev, and sum. For a full list, use:

help(r_layer.dataProvider().bandStatistics(1))

Styling layers
Since we now know how to load data, we can continue to style the layers.
The simplest option is to load a premade style (the .qml file):

v_layer.loadNamedStyle('C:/temp/planes.qml')

You can create planes.qml by saving the airport style we created in
Chapter 2, Viewing Spatial Data, (just go to Layer Properties | Style |
Save Style | QGIS Layer Style File), or you can use any other style
you like.

Of course, we can also create a style in code. Let's have a look at a basic
single-symbol renderer. We will create a simple symbol with one layer,
for example, a yellow diamond:

from PyQt4.QtGui import QColor

Chapter 6

[113]

symbol = QgsMarkerSymbolV2()
symbol.symbolLayer(0).setName('diamond')
symbol.symbolLayer(0).setSize(10)
symbol.symbolLayer(0).setColor(QColor('#ffff00'))
v_layer.rendererV2().setSymbol(symbol)

A much more advanced approach is to create a rule-based renderer. We discussed
the basics of rule-based renderers in Chapter 5, Creating Great Maps. The following
example creates two rules: one for civil-use airports and one for all the other airports.
Each rule in this example has a name, a filter expression, and a symbol color.
Note how the rules are appended to the renderer's root rule:

from PyQt4.QtGui import QColor
rules = [['Civil','USE LIKE \'%Civil%\'','green'], ['Other','USE NOT
LIKE \'%Civil%\'','red']]
symbol = QgsSymbolV2.defaultSymbol(v_layer.geometryType())
renderer = QgsRuleBasedRendererV2(symbol)
root_rule = renderer.rootRule()
for label, expression, color_name in rules:
 rule = root_rule.children()[0].clone()
 rule.setLabel(label)
 rule.setFilterExpression(expression)
 rule.symbol().setColor(QColor(color_name))
 root_rule.appendChild(rule)
root_rule.removeChildAt(0)
v_layer.setRendererV2(renderer)

Due to the length of this script, I recommend that you use the Python Console
editor, which you can open by clicking on the Show editor button, as shown in
the following screenshot:

Extending QGIS with Python

[114]

To run the script, click on the Run script button at the bottom of the editor toolbar.

If you are interested in reading more about styling vector layers, I
would recommend Joshua Arnott's post at http://snorf.net/
blog/2014/03/04/symbology-of-vector-layers-in-qgis-
python-plugins/.

Filtering data
To filter vector layer features programmatically, we can specify a subset string.
This is the same as defining a Feature subset query by going to Layer Properties |
General. For example, we can choose to display airports only if their name starts
with A:

v_layer.setSubsetString("NAME LIKE 'A%'")

To remove the filter, just set an empty subset string:

v_layer.setSubsetString("")

Creating a memory layer
A great way to create a temporary vector layer is to use the so-called memory layers.
Memory layers are a good option for temporary analysis output or visualizations.
They exist within a QGIS session and are destroyed when QGIS is closed. In the
following example, we will create a memory layer and add a polygon feature to it.

Basically, a memory layer is a QgsVectorLayer like any other layer; however, the
provider (the third parameter) is not "ogr" like in the previous example of loading
a file, but "memory". Instead of a file path, the first parameter is a definition string
that specifies the geometry type, the CRS, and the attribute table fields (in this case,
one integer field called MYNUM and one string field called MYTXT):

mem_layer = QgsVectorLayer("Polygon?crs=epsg:4326&field=MYNUM:integer&
field=MYTXT:string", "temp_layer", "memory")
if not mem_layer.isValid():
 raise Exception("Failed to create memory layer")

Once we have created the QgsVectorLayer object, we can start adding features to
its data provider:

mem_layer_provider = mem_layer.dataProvider()
my_polygon = QgsFeature()
my_polygon.setGeometry(QgsGeometry.fromRect(QgsRectang
le(16,48,17,49)))

http://snorf.net/blog/2014/03/04/symbology-of-vector-layers-in-qgis-python-plugins/
http://snorf.net/blog/2014/03/04/symbology-of-vector-layers-in-qgis-python-plugins/
http://snorf.net/blog/2014/03/04/symbology-of-vector-layers-in-qgis-python-plugins/

Chapter 6

[115]

my_polygon.setAttributes([10,"hello world"])
mem_layer_provider.addFeatures([my_polygon])
QgsMapLayerRegistry.instance().addMapLayer(mem_layer)

Note how we first created a blank QgsFeature parameter to which we then added
geometry and attributes using setGeometry() and setAttributes(), respectively.
When we add the layer to QgsMapLayerRegistry, the layer is rendered on the map.

Exporting map images
The simplest option to save the current map is to use the scripting equivalent of
Project | Save as image. This will export the current map to an image file of the
same resolution as the map area in the QGIS application window:

iface.mapCanvas().saveAsImage('C:/temp/simple_export.png')

When we want to have more control over the size and resolution of the exported
image, we will need a few more lines of code. The following example show how we
can create our own QgsMapRendererCustomPainterJob object and configure it to
our liking using custom QgsMapSettings for size (width and height), resolution
(dpi), map extent, and map layers:

from PyQt4.QtGui import QImage, QPainter
from PyQt4.QtCore import QSize
configure the output image
width = 800
height = 600
dpi = 92
img = QImage(QSize(width, height), QImage.Format_RGB32)
img.setDotsPerMeterX(dpi / 25.4 * 1000)
img.setDotsPerMeterY(dpi / 25.4 * 1000)
get the map layers and extent
layers = [layer.id() for layer in iface.legendInterface().layers()]
extent = iface.mapCanvas().extent()
configure map settings for export
mapSettings = QgsMapSettings()
mapSettings.setMapUnits(0)
mapSettings.setExtent(extent)
mapSettings.setOutputDpi(dpi)
mapSettings.setOutputSize(QSize(width, height))
mapSettings.setLayers(layers)
mapSettings.setFlags(QgsMapSettings.Antialiasing | QgsMapSettings.
UseAdvancedEffects | QgsMapSettings.ForceVectorOutput |
QgsMapSettings.DrawLabeling)
configure and run painter

Extending QGIS with Python

[116]

p = QPainter()
p.begin(img)
mapRenderer = QgsMapRendererCustomPainterJob(mapSettings, p)
mapRenderer.start()
mapRenderer.waitForFinished()
p.end()
save the result
img.save("C:/temp/custom_export.png","png")

Creating custom geoprocessing scripts
using Python
In Chapter 4, Spatial Analysis, we already used the existing tools in the Processing
toolbox to analyze our data, but we are not limited to these tools. We can expand
processing with our own scripts. The advantages of processing scripts over normal
Python scripts, like the ones we saw in the previous section, are:

• Processing automatically generates a graphical user interface for the script
to configure the script's parameters

• Processing scripts can be used in the Graphical modeler to create
geoprocessing models

A good resource to learn how to write custom scripts for processing is to have a
look at the existing scripts in the Scripts section in the Processing Toolbox. As the
following screenshot shows, you can access the source code of all the existing scripts
through the context menu entry Edit script:

Chapter 6

[117]

Writing our first processing script
We will create our first simple script that fetches some layer information. To get
started, double-click on the Create new script entry by navigating to Scripts | Tools.
This will open an empty editor dialog. The following screenshot shows the editor
with a short script that prints the input layer's name to the Python Console:

The first line defines that our script will be put into the Learning QGIS group of scripts,
as shown in the following screenshot. The double hashes, ##, are the Processing syntax.
They indicate that the line contains Processing-specific information rather than Python
code. The script name is created from the filename you chose when saving the script.
For this example, I saved the script as my_first_script.py. The second line defines
the script input, in this case, a vector layer. In the following line, we use Processing's
getObject() function to get access to the input layer object, and finally, the layer
name is printed to the Python Console. You can either run the script directly from
within the editor by clicking on the Run algorithm button or by double-clicking on
the entry in the Processing Toolbox:

Writing a script with vector layer output
Of course, in most cases, we don't want to just output something in the Python
Console. That is why the following example shows how to create a vector layer.
More specifically, the script creates square polygons around input points. The numeric
size input parameter controls the size of the squares in the output vector layer.
The default size that will be displayed in the automatically generated dialog is
setto 1000000:

##Learning QGIS=group
##input_layer=vector

Extending QGIS with Python

[118]

##size=number 1000000
##squares=output vector
from qgis.core import *
from processing.core.VectorWriter import VectorWriter
get the input layer and its fields
my_layer = processing.getObject(input_layer)
fields = my_layer.dataProvider().fields()
create the output vector writer with the same fields
writer = VectorWriter(squares, None, fields, QGis.WKBPolygon, my_
layer.crs())
create output features
feat = QgsFeature()
for input_feature in my_layer.getFeatures():
 # copy attributes from the input point feature
 attributes = input_feature.attributes()
 feat.setAttributes(attributes)
 # create square polygons
 point = input_feature.geometry().asPoint()
 xmin = point.x() - size/2
 ymin = point.y() - size/2
 square = QgsRectangle(xmin,ymin,xmin+size,ymin+size)
 feat.setGeometry(QgsGeometry.fromRect(square))
 writer.addFeature(feat)
del writer

In this script, we used VectorWriter to write the output vector layer. The
parameters used to create VectorWriter are fileName, encoding, fields,
geometryType, and crs. The available geometry types are QGis.WKBPoint,
QGis.WKBLineString, QGis.WKBPolygon,QGis.WKBMultiPoint, and QGis.
WKBMultiLineString, and QGis.WKBMultiPolygon. You can also get this list
of geometry types by typing VectorWriter.TYPE_MAP in the Python Console.

Note how we used the fields of the input layer (my_layer.dataProvider().
fields()) input to create the VectorWriter. This ensures that the output layer
has the same fields (attribute table columns) as the input layer. Similarly, for
each feature in the input layer, we copied its attribute values (input_feature.
attributes()) to the corresponding output feature.

Chapter 6

[119]

After running the script, the resulting layer will be loaded into QGIS and listed
using the output parameter name; in this case, the layer is called squares. The
following screenshot shows the automatically generated input dialog as well as
the output of the script when applied to the airports from our sample dataset:

Visualizing the script progress
Especially when executing complex scripts that take a while to finish, it is a good
practice to display the progress of the script execution in a progress bar. To add a
progress bar to the previous script, we can add the following lines of code before
and inside the for loop, which loops through the input features:

i = 0
n = my_layer.featureCount()
for input_feature in my_layer.getFeatures():
 progress.setPercentage(int(100*i/n))
 i+=1

Note that we initialized the counter i before the loop and increased it inside the
loop after updating the progress bar using progress.setPercentage().

Extending QGIS with Python

[120]

Developing your first plugin
When you want to implement interactive tools or very specific graphical user
interfaces, it is time to look into plugin development. In the previous exercises,
we already introduced the QGIS Python API. Therefore, we can now focus on the
necessary steps to get your first QGIS plugin started. A great thing about creating
plugins for QGIS is that there is a plugin for this! It's called Plugin Builder. And
while you are at it, also install Plugin Reloader, which is a very useful plugin for
developers because it lets you quickly reload your plugin without having to restart
QGIS every time you make changes to the code. When you have installed both
plugins, your Plugins toolbar will look like this:

Before we can get started, you also need to install Qt Designer, which is the
application we will use to design the user interface. If you are using Windows,
I suggest that you install WinPython (http://winpython.sourceforge.net/),
which provides Qt Designer and Spyder (an integrated development environment
for Python). On Ubuntu, you can install Qt Designer using sudo apt-get install
qt4-designer. On Mac, you can get the Qt Creator installer, which includes Qt
Designer, from http://qt-project.org/downloads.

Creating the plugin template with Plugin Builder
Plugin Builder will create all the files we need for our plugin. Just start Plugin
Builder and input the class name (one word in CamelCase, that is, each word starts
with an uppercase letter with no spaces between the words) as well as Plugin name,
a short Description, and Module name (the Python module name for the plugin).
Also fill in the Text for the menu item field. When you hover your mouse over the
input fields in the QGIS Plugin Builder dialog box, it displays help information,
as shown in the following screenshot:

http://winpython.sourceforge.net/
http://qt-project.org/downloads

Chapter 6

[121]

Since we are only planning to create the first plugin for learning purposes, we can
skip the Optional Items section at the bottom of the dialog. If you later create a
plugin that you might want to share with other users on the QGIS plugin repository,
you should also fill in these items to provide future users of your plugin with details
regarding where to find information about the plugin or where to report issues.

Once you click on OK, you're asked to select a folder to store the plugin. You can
save it directly to the QGIS plugin folder ~\.qgis2\python\plugins QGIS plugin
folder on Windows or ~/.qgis2/python/plugins on Linux and Mac. When you
have selected the plugin folder, it displays a confirmation Plugin Builder Results
dialog, which confirms the location of your plugin folder as well as the location of
your QGIS plugin folder.

Extending QGIS with Python

[122]

As mentioned earlier, I saved the plugin directly to the QGIS plugin folder, as you
can see in the following screenshot. If you saved it in a different location, you can
now move the plugin folder into the QGIS plugins folder to make sure that QGIS
can find and load it.

One thing we still have to do is to prepare the icon for the plugin toolbar. This
requires us to compile the resources.qrc file, which Plugin Builder created
automatically, to turn the icon into usable Python code. This is done on the command
line. On Windows, I suggest that you use the OSGeo4W Shell, because it makes sure
that the environment variables are set in a way that the necessary tools can be found.
Navigate to the plugin folder and run:

pyrcc4 -o resources_rc.py resources.qrc

You can replace the default icon (icon.png) image to add your own
plugin icon. Afterwards, you just have to recompile resources_
rc.qrc, as shown earlier.

Restart QGIS and you should now see your plugin listed in the Plugin Manager, as
shown here:

Chapter 6

[123]

Activate your plugin in the Plugin manager and you should see it listed in the
Plugins menu. When you start your plugin, it will display a blank dialog that is
just waiting for you to customize it.

Customizing the plugin GUI
To customize the blank default plugin dialog, we will now use Qt Designer. You find
the dialog file in the plugin folder; in my case, it is called my_first_plugin_dialog_
base.ui (derived from the module name I specified in Plugin Builder). When you
open your plugin .ui file in Qt Designer, you will see a blank dialog. Now you can
start adding widgets by dragging-and-dropping them from the Widget Box on the
left-hand side of the Qt Designer window. In the following screenshot, you can see
that I added a Label and a drop-down list widget (listed as Combo Box in Widget
Box). You can change the label text to Layer by double-clicking on the default label
text. Additionally, it is a good practice to assign descriptive names to the widget
objects, for example, I renamed the combo box to layerCombo, as you can see in the
following screenshot:

Once you have made the changes to the plugin dialog, you can save them. Then, you
can go back to QGIS. In QGIS, you can then configure the plugin reloader by clicking
on the Choose a plugin to be reloaded button in the Plugins toolbar and selecting
your plugin. If you now click on the Reload Plugin button and then start your
plugin, your new plugin dialog will be displayed.

Extending QGIS with Python

[124]

Implementing the plugin functionality
As you have certainly noticed, the combobox layer is still empty. To populate
the combobox with a list of the loaded layers, we need to add a few lines of code
in my_first_plugin.py (located in the plugin folder). More specifically, we will
expand the run() method:

def run(self):
 """Run method that performs all the real work"""
 # show the dialog
 self.dlg.show()
 # clear the combo box to list only current layers
 self.dlg.layerCombo.clear()
 # get the layers and add them to the combo box
 layers = QgsMapLayerRegistry.instance().mapLayers().values()
 for layer in layers:
 if layer.type() == QgsMapLayer.VectorLayer:
 self.dlg.layerCombo.addItem(layer.name(), layer)
 # Run the dialog event loop
 result = self.dlg.exec_()
 # See if OK was pressed
 if result:
 # Check which layer was selected
 index = self.dlg.layerCombo.currentIndex()
 layer = self.dlg.layerCombo.itemData(index)
 # Display information about the layer
 QMessageBox.information(self.iface.mainWindow(),"Learning
QGIS","%s has %d features." %(layer.name(),layer.featureCount()))

You also have to add the following import line at the top of the script to avoid
NameErrors concerning QgsMapLayerRegistry and QMessageBox:

from qgis.core import *
from PyQt4.QtGui import QMessageBox

Once you have made the changes to my_first_plugin.py, you can save the file and
use the Reload Plugin button in QGIS to reload your plugin. If you start your plugin
now, the combobox will be populated with a list of all the layers in the current QGIS
project, and when you click on OK, you will see a message box that displays the
number of features in the selected layer.

Chapter 6

[125]

Creating a custom map tool
While the previous exercise showed how to create a custom GUI that enables the
user to interact with QGIS, in this exercise, we will go one step further and implement
our own custom map tool similar to the default Identify tool. This means that the
user can click on the map and the tool reports which feature on the map was clicked.

To this end, we will create another default plugin template called MyFirstMapTool.
For this tool, we do not need to create a dialog. Instead, we have to write a bit more
code than we did in the previous example. First, we create our custom map tool
class, which we call IdentifyFeatureTool. Besides the __init__() constructor,
this tool has one function called canvasReleaseEvent(), which defines the actions
of the tool when the mouse button is released (that is, when you let go of the mouse
button after pressing it down):

class IdentifyFeatureTool(QgsMapToolIdentify):
 def __init__(self, canvas):
 QgsMapToolIdentify.__init__(self, canvas)
 def canvasReleaseEvent(self, mouseEvent):
 print "canvasReleaseEvent"
 # get features at the current mouse position
 results = self.identify(mouseEvent.x(),mouseEvent.y(),
 self.TopDownStopAtFirst, self.VectorLayer)
 if len(results) > 0:
 # signal that a feature was identified
 self.emit(SIGNAL("geomIdentified"),
 results[0].mLayer, results[0].mFeature)

You can paste the preceding code at the end of the my_first_map_tool.py file.
Of course, we now have to put our new map tool to good use. In the initGui()
function, we replace the run() method with a new map_tool_init() function.
Additionally, we define that our map tool is checkable; this means that the user
can click on the tool icon to activate it and click on it again to deactivate it:

def initGui(self):
 # create the toolbar icon and menu entry
 icon_path = ':/plugins/MyFirstMapTool/icon.png'
 self.map_tool_action=self.add_action(
 icon_path,
 text=self.tr(u'My 1st Map Tool'),
 callback=self.map_tool_init,
 parent=self.iface.mainWindow())
 self.map_tool_action.setCheckable(True)

Extending QGIS with Python

[126]

The new map_tool_init() function takes care of activating or deactivating our
map tool when the button is clicked. During activation, it creates an instance of
our custom IdentifyFeatureTool and the following line connects the map tool's
geomIdentified signal to the do_something() function, which we will discuss in
a moment. Similarly, when the map tool is deactivated, we disconnect the signal
and restore the previous map tool:

def map_tool_init(self):
 # this function is called when the map tool icon is clicked
 print "maptoolinit"
 canvas = self.iface.mapCanvas()
 if self.map_tool_action.isChecked():
 # when the user activates the tool
 self.prev_tool = canvas.mapTool()
 self.map_tool_action.setChecked(True)
 self.map_tool = IdentifyFeatureTool(canvas)
 QObject.connect(self.map_tool, SIGNAL("geomIdentified"),
 self.do_something)
 canvas.setMapTool(self.map_tool)
 QObject.connect(canvas,SIGNAL("mapToolSet(QgsMapTool *)"),
 self.map_tool_changed)
 else:
 # when the user deactivates the tool
 QObject.disconnect(canvas, SIGNAL("mapToolSet(QgsMapTool *)"
),self.map_tool_changed)
 canvas.unsetMapTool(self.map_tool)
 print "restore prev tool %s" %(self.prev_tool)
 canvas.setMapTool(self.prev_tool)

Our new custom do_something() function is called when our map tool was used
to successfully identify a feature. For this example, we simply print the feature's
attributes to the Python Console. Of course, you can get creative here and add your
desired custom functionality:

def do_something(self, layer, feature):
 print feature.attributes()

Finally, we also have to handle the case when the user switches to a different map
tool. This is similar to the case of the user deactivating our tool in the map_tool_
init() function:

def map_tool_changed(self):
 print "maptoolchanged"
 canvas = self.iface.mapCanvas()
 QObject.disconnect(canvas, SIGNAL("mapToolSet(QgsMapTool *)"),
 self.map_tool_changed)

Chapter 6

[127]

 canvas.unsetMapTool(self.map_tool)
 self.map_tool_action.setChecked(False)

You also have to add the following import line at the top of the script to avoid errors
concerning QObject, QgsMapTool, and others:

from qgis.core import *
from qgis.gui import *
from PyQt4.QtCore import *

When you are ready, you can reload the plugin and try it. You should have the
Python Console open to be able to follow the plugin's outputs. The first thing you
will see when you activate the plugin in the toolbar is that it prints maptoolinit to
the console. Then, if you click inside the map, it will print canvasReleaseEvent,
and if you click on a feature, it will also display the feature's attributes. Finally, if
you change to another map tool (for example, to the Pan Map tool), it will print
maptoolchanged to the console and the icon in the plugin toolbar will be unchecked.

Summary
In this chapter, we covered different ways to extend QGIS using Python scripting.
We started with the Python Console, which offers a direct interactive way to
interact with the QGIS Python API. We also used the editor that is part of the
Python Console panel and provides a better way to work on longer scripts that
contain loops or even multiple class and function definitions. Next, we applied our
knowledge of PyQGIS to develop custom tools for the Processing Toolbox. These
tools profit from Processing's automatic GUI-generation capabilities, and they can
be used in the Graphical modeler to create geopreocessing models. Last but not
least, we developed a basic plugin based on a Plugin Builder template.

With this information, you can now start your own PyQGIS experiments. There
are multiple web and print resources that you can use to learn more about QGIS
Python scripting. For the updated QGIS API documentation, check out http://
qgis.org/api/. If you are interested in more PyQGIS recipes, have a look at
the PyQGIS Developer Cookbook at http://docs.qgis.org/testing/en/docs/
pyqgis_developer_cookbook and QGIS Cookbook, Packt Publishing, which will be
out soon. For a more in-depth look into PyQGIS, with further examples, tips, and an
introduction to writing stand-alone applications using PyQGIS, I recommend Gary
Sherman's book, The PyQGIS Programmer's Guide, Locate Press.

http://qgis.org/api/
http://qgis.org/api/
http://docs.qgis.org/testing/en/docs/pyqgis_developer_cookbook
http://docs.qgis.org/testing/en/docs/pyqgis_developer_cookbook

Index
A
addRasterLayer() function 112
addVectorLayer() function 110
Advanced Digitizing toolbar 44
advanced map items

adding 103-106
advanced vector styling

about 85
categorized styles, using 88
data-defined symbology, creating 91
graduated style, creating with size

scaling 86, 87
rule-based style, creating for road

layers 89, 90
area shares

calculating, within region 73-75
Atlas feature

used, for creating map series 107
Attribute editor layout options

Autogenerate 49
Drag and drop designer 49
Provide ui-file 50

attributes
editing 46
editing, in attribute table 46, 47
editing, in feature form 48-50

attribute table
attributes, editing in 46, 47

attribute values
calculating 51, 52

automated geoprocessing
with graphical modeler 77-79

B
background maps

loading 36-38
Background settings, labeling 96
blank road-shield SVG

download link 97
Buffer settings, labeling 95

C
canvasReleaseEvent() function 125
categorized styles

about 88
using 88

color models
about 92
CMYK 92
HSL 92
HSV 92
RGB 92

color_rgba function 93
Coordinate Capture plugin 10
coordinate reference system (CRS)

about 12
dealing with 19, 20

custom geoprocessing scripts
creating, Python used 116

custom map tool
creating 125-127

[130]

D
data

filtering 114
loading, from databases 24-26
loading, from OGC Web Services 27

databases
data, loading from 24-26

data-defined symbology
creating 91-93

datasets
exploring 110-112
loading 110-112

DB Manager plugin 81
delimited text (CSV) files 18
density

mapping, with hexagonal grids 73

E
elevation data

analyzing 59-61
example database, SpatiaLite

URL 24
example, of airport style 31-33
example, of landmass style 35, 36

F
feature form

attributes, editing in 48-50
features

identifying, in proximity of others 69, 70
feature selection tools

working with 41-43
files

vector data, loading from 16-19
first-order polynomial transformation 23
first plugin

developing 120
first processing script

writing 117
Formatting settings, labeling 95
frames 103
fTools plugin 10
functions, iface

URL 110

G
GdalTools plugin 10
GDAL utility programs

URL 58
Geographic Resources Analysis Support

System (GRASS) 6
geoprocessing scripts

first processing script, writing 117
script progress, visualizing 119
script, writing with vector layer

output 117, 118
Georeferencer plugin

about 21
use cases 21

getFeatures() function 110
getObject() function 117
graduated style

creating, with size scaling 86, 87
modes 86

graphical modeler
automated geoprocessing, using

with 77-79
grids 103
ground control points (GCPs) 21

H
heatmap

creating, from points 66, 67
height() function 112
hexagonal grids

density, mapping with 73
highway shields 96

K
kernel functions

URL 66

L
labeling 93, 94
label settings

Background 96
Buffer 95
Formatting 95

[131]

Placement 96
Rendering 98
Shadow 96
Text 94

layer groups 11
layers

styling 112, 113
legends

about 102
customizing 87

letter spacing 94
linear option 23
line height and alignment 95
line styles

creating 33, 34
example 33, 34

list comprehension
URL 111

M
map images

exporting 115
map series

creating, Atlas feature used 107
map_tool_init() function 126
master 5
measuring tools

using 46
memory layer

about 114
creating 114, 115

Merge Selected Features tool 45
modes, graduated style

Equal Intervals 86
Natural Breaks (Jenks) 86
Pretty Breaks 86
Quantile (Equal Count) 86
Standard Deviation 86

multiline labels 95
Multiple lines feature

using 98, 99

N
Natural Earth

download link 89

new vector layers
creating 39, 40

Node Tool feature 44
north arrows

about 101
adding, to map 101

O
Offset Curve tool 45
OGC (Open Geospatial Consortium) 15
OGC Web Services

data, loading from 27
URL 27

OGR SQL
URL 25

on-the-fly reprojection 19
OSGeo4W installers

URL 6
overview map 105

P
Placement settings, for line layers

Curved 96
Horizontal 96
Parallel 96

Placement settings, for point layers
Around point option 96
Offset from point option 96

Placement settings, for polygon layers
about 98
Around centroid 98
Free 98
Horizontal 98
Offset from centroid 98
Using perimeter 98

Placement settings, labeling 96
plugin

custom map tool, creating 125, 126
plugin functionality, implementing 124
plugin GUI, customizing 123
plugin template, creating with Plugin

Builder 120-123
Plugin Builder

about 120
plugin template, creating with 120-123

[132]

plugin functionality
implementing 124

plugin GUI
customizing 123

Plugin Reloader 120
plugin template

creating, with Plugin Builder 120-123
point locations

raster, sampling at 71
points

heatmap, creating from 66, 67
point styles

creating 31-33
example, of airport style 31-33

Polygonize (Raster to vector) 63
polygon styles

creating 35
example, of landmass style 35, 36

PostGIS 25
power, of spatial databases

leveraging 80-83
print maps

about 99
advanced map items, adding 103-106
basic map, creating 100-103
Composition panel 100
designing 99
Item Properties panel 100
legends, adding 102
map series, creating with Atlas feature 107
narrow arrows, adding 101

Processing plugin
about 10
used, for vector geoprocessing 68

processing scripts
advantages, over normal Python

scripts 116
Python console

about 109, 110
data, filtering 114
datasets, exploring 110-112
datasets, loading 110-112
layers, styling 112, 113
map images, exporting 115
memory layer, creating 114, 115

Q
QGIS

about 109
installing 5
installing, on Ubuntu 8, 9
installing, on Windows 6-8
running, for first time 9, 10
URL 5

QGIS Browser 9
QGIS Desktop 9
QGIS Map Showcase Flickr group

URL 85
QGIS project

URL 16
QGIS user interface

about 11-13
Advanced Digitizing 13
Attributes 12
Database menu 12
Digitizing 13
Help menu 12
Label 12
Manage Layers menu 12
Map Navigation menu 12
Plugins 13
Raster 13
Vector 13
Web 13

Qt Designer
about 120
URL 120

R
radius 66
ramp_color function 92
raster calculator 62, 63
raster data

converting 52, 53
reprojecting 52, 53

raster files
loading 21
raster maps, georeferencing 21-23

Rasterize (Vector to raster) 63

[133]

raster layers
styling 27-30

raster layer statistics
accessing 64, 65
Histogram 64
Metadata 64

raster maps
georeferencing 21-23

rasters
and vectors, converting between 63
clipping 57-59
sampling, at point locations 71
URL 21

region
area shares, calculating within 73-75

Rendering settings, labeling 98
resampling method 23
Reshape Features tool 45
Rotate Feature(s) 44
rule-based style

creating, for road layers 89, 90

S
script

writing, with vector layer output 117, 118
script progress

visualizing 119
second-order polynomial transformation 23
Shadow settings, labeling 96
Shapefiles 16
Shuttle Radar Topography Mission (SRTM)

URL 59
Simplify Feature tool 44
spatial functionality, SpatiaLite

URL 81
SpatiaLite

about 24
URL 24, 81

SpatiaLite database
URL 80

Spatial Query 43
Split Features tool 45
style options, raster layers

about 28
Multiband color 28

Paletted 28
Singleband gray 28
Singleband pseudocolor 28

style options, vector layers
about 31
Categorized 31
Graduated styles 31
Inverted polygons 31
Point displacement styles 31
Rule-based styles 31
Single Symbol 31

supported operating systems, QGIS
URL 5

supported Ubuntu versions
URL 8

symbol layer types, for line layers
Marker line 34
Simple line 34

symbol layer types, for point layers
Ellipse marker 33
Font marker 33
Simple marker 33
SVG marker 33
Vector Field marker 33

symbol layer types, for polygon layers
Centroid fill 35
Gradient fill 36
Line/Point pattern fill 35
Outline 36
Shapeburst fill 36
Simple fill 35
SVG fill 36

T
tabular data

joining 54-56
terrain analysis plugin, tools

Aspect 60
Hillshade 60
Relief 60
Ruggedness Index 60
Slope 60

terrain data
analyzing 59-61

testing 5

[134]

Text settings, labeling 94
thin-plate spline algorithm 23
third-order polynomial transformation 23

U
Ubuntu

QGIS, installing on 8, 9
URL 8

V
vector data

converting 52, 53
loading, from files 16-19
reprojecting 52, 53

vector geometries
editing 44, 45

vector geoprocessing, Processing
plugin used

about 68
area shares, calculating within region 73-75
density, mapping with hexagonal grids 73
features, identifying in proximity of

others 69, 70
raster, sampling at point locations 71

vector layer output
script, writing with 117, 118

vector layers
line styles, creating 33, 34

point styles, creating 31-33
polygon styles, creating 35, 36
styling 31

vector layer statistics
accessing 64, 65
Basics statistics 65
List unique values 65

vectors
and rasters, converting between 63
URL 21

W
widget types

URL 49
width() function 112
Windows

QGIS, installing on 6-8
WinPython

URL 120
WKT

about 19
URL 19

word spacing 94

Z
Z factor

values 60

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Getting Started with QGIS
	Installing QGIS
	Installing QGIS on Windows
	QGIS on Ubuntu

	Running QGIS for the first time
	Introducing the QGIS user interface
	Summary

	Chapter 2: Viewing Spatial Data
	Loading vector data from files
	Dealing with coordinate reference systems
	Loading raster files
	Georeferencing raster maps

	Loading data from databases
	Loading data from OGC Web Services
	Styling raster layers
	Styling vector layers
	Creating point styles – an example of an airport style
	Creating line styles – an example of river or road styles
	Creating polygon styles – an example of a landmass style

	Loading background maps
	Summary

	Chapter 3: Data Creation and Editing
	Creating new vector layers
	Working with feature selection tools
	Editing vector geometries
	Using the measuring tools
	Editing attributes
	Editing attributes in the attribute table
	Editing attributes in the feature form
	Calculating new attribute values

	Reprojecting and converting vector and raster data
	Joining tabular data
	Summary

	Chapter 4: Spatial Analysis
	Clipping rasters
	Analyzing elevation / terrain data
	Raster calculator
	Converting between rasters and vectors
	Accessing the raster and vector layer statistics
	Creating a heatmap from points
	Vector geoprocessing using Processing
	Identifying features in the proximity of others
	Raster sampling at point locations
	Mapping density with hexagonal grids
	Calculating area shares within a region

	Automated geoprocessing with the graphical modeler
	Leveraging the power of spatial databases
	Summary

	Chapter 5: Creating Great Maps
	Advanced vector styling
	Creating a graduated style with size scaling
	Using categorized styles
	Creating a rule-based style for road layers
	Creating data-defined symbology

	Labeling
	Designing print maps
	Creating a basic map
	Adding advanced map items
	Creating map series using the Atlas feature

	Summary

	Chapter 6: Extending QGIS with Python
	Getting to know the Python console
	Loading and exploring datasets
	Styling layers
	Filtering data
	Creating a memory layer
	Exporting map images

	Creating custom geoprocessing scripts using Python
	Writing our first processing script
	Writing a script with vector layer output
	Visualizing the script progress

	Developing your first plugin
	Creating the plugin template with Plugin Builder
	Customizing the plugin GUI
	Implementing the plugin functionality
	Creating a custom map tool

	Summary

	Index

