
[1]

www.allitebooks.com

http://www.allitebooks.org

Learning QGIS
Third Edition

The latest guide to using QGIS 2.14 to create great
maps and perform geoprocessing tasks with ease

Anita Graser

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Learning QGIS
Third Edition

Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: September 2013

Second edition: December 2014

Third edition: March 2016

Production reference: 1030316

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78588-033-9

www.packtpub.com

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

Credits

Author
Anita Graser

Reviewer
Cornelius Roth

Commissioning Editor
Veena Pagare

Acquisition Editor
Larissa Pinto

Content Development Editor
Prashanth G. Rao

Technical Editor
Tanmayee Patil

Copy Editor
Vikrant Phadke

Project Coordinator
Bijal Patel

Proofreader
Safis Editing

Indexer
Mariammal Chettiyar

Production Coordinator
Arvindkumar Gupta

Cover Work
Arvindkumar Gupta

www.allitebooks.com

http://www.allitebooks.org

About the Author

Anita Graser studied geomatics at the University of Applied Sciences Wiener
Neustadt, Austria, from where she graduated with a master's degree in 2010.
During her studies, she gained hands-on experience in the fields of geo-marketing
and transportation research. Since 2007, she has been working as a geographic
information systems (GIS) expert with the dynamic transportation systems group
at the Austrian Institute of Technology (AIT), where she focuses on analyzing and
visualizing spatio-temporal data. Anita serves on the OSGeo board of directors and
the QGIS project steering committee. She has been working with GIS since 2005,
provides QGIS training courses, and writes a popular blog on open source GIS
at anitagraser.com.

I would like to say thanks to my family, partner, and coworkers for
their support and encouragement. Of course, I also want to thank the
whole QGIS community for their continued efforts to provide the
best open source GIS experience possible and everyone who made
the previous editions of Learning QGIS such great successes.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewer

Cornelius Roth holds a master's degree in geography and geoinformatics at the
University of Salzburg. He is currently working at the Department of Geoinformatics
on research projects, helping them use GIS-related methods in emergency and air
traffic management, open source GIS, and open data.

Recently, he has also worked at the economic development agency BGL, Bavaria,
with a strong focus on fostering companies when applying GIS methods and services
to support their business objectives. As a third pillar, Cornelius manages e-learning
courses for the UNIGIS distance learning network in Salzburg.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

eBooks, discount offers, and more
Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.com
and as a print book customer, you are entitled to a discount on the eBook copy. Get in
touch with us at customercare@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

www.allitebooks.com

www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
http://www.allitebooks.org

[i]

Table of Contents
Preface v
Chapter 1: Getting Started with QGIS 1

Installing QGIS 1
Installing QGIS on Windows 2
Installing on Ubuntu 8

Running QGIS for the first time 10
Introducing the QGIS user interface 12
Finding help and reporting issues 16
Summary 16

Chapter 2: Viewing Spatial Data 17
Loading vector data from files 18
Dealing with coordinate reference systems 21
Loading raster files 23

Georeferencing raster maps 24
Loading data from databases 27
Loading data from OGC web services 29
Styling raster layers 32
Styling vector layers 35

Creating point styles – an example of an airport style 36
Creating line styles – an example of river or road styles 39
Creating polygon styles – an example of a landmass style 42

Loading background maps 45
Dealing with project files 48
Summary 49

Chapter 3: Data Creation and Editing 51
Creating new vector layers 51
Working with feature selection tools 53

Selecting features with the mouse 54

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Selecting features with expressions 54
Selecting features using spatial queries 55

Editing vector geometries 57
Using basic digitizing tools 57
Using advanced digitizing tools 58
Using snapping to enable topologically correct editing 59

Using measuring tools 60
Editing attributes 60

Editing attributes in the attribute table 60
Editing attributes in the feature form 62

Creating a feature form using autogenerate 63
Designing a feature form using drag and drop designer 63
Designing a feature form using a .ui file 64

Calculating new attribute values 65
Reprojecting and converting vector and raster data 67
Joining tabular data 68

Setting up a join in Layer Properties 69
Checking join results in the attribute table 70

Using temporary scratch layers 70
Checking for topological errors and fixing them 71

Finding errors with the Topology Checker 72
Fixing invalid geometry errors 74

Adding data to spatial databases 76
Summary 77

Chapter 4: Spatial Analysis 79
Analyzing raster data 79

Clipping rasters 79
Analyzing elevation/terrain data 81
Using the raster calculator 84

Combining raster and vector data 86
Converting between rasters and vectors 86
Accessing raster and vector layer statistics 87
Computing zonal statistics 90
Creating a heatmap from points 92

Vector and raster analysis with Processing 94
Finding nearest neighbors 95
Converting between points, lines, and polygons 96
Identifying features in the proximity of other features 98
Sampling a raster at point locations 101
Mapping density with hexagonal grids 103

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[iii]

Calculating area shares within a region 104
Batch-processing multiple datasets 107
Automated geoprocessing with the graphical modeler 108
Documenting and sharing models 112

Leveraging the power of spatial databases 113
Selecting by location in SpatiaLite 113
Aggregating data in SpatiaLite 115

Summary 116
Chapter 5: Creating Great Maps 117

Advanced vector styling 117
Creating a graduated style 118
Creating and using color ramps 121
Using categorized styles for nominal data 123
Creating a rule-based style for road layers 124
Creating data-defined symbology 126
Creating a dynamic heatmap style 128
Creating a 2.5D style 129
Adding live layer effects 130
Working with different styles 131

Labeling 133
Customizing label text styles 135
Controlling label formatting 135
Configuring label buffers, background, and shadows 136
Controlling label placement 136

Configuring point labels 137
Configuring line labels 137
Configuring polygon labels 137

Placing labels manually 138
Controlling label rendering 139

Designing print maps 141
Creating a basic map 141

Adding a scalebar 143
Adding a North arrow image 144

Adding a legend 144
Adding explanatory text to the map 145
Adding map grids and frames 146
Creating overview maps 148
Adding more details with attribute tables and HTML frames 149
Creating a map series using the Atlas feature 150

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[iv]

Presenting your maps online 151
Exporting a web map 151
Creating map tiles 153
Exporting a 3D web map 154

Summary 156
Chapter 6: Extending QGIS with Python 157

Adding functionality using actions 157
Configuring your first Python action 158
Opening files using actions 160
Opening a web browser using actions 160

Getting to know the Python Console 161
Loading and exploring datasets 161
Styling layers 164
Filtering data 166
Creating a memory layer 167
Exporting map images 168

Creating custom geoprocessing scripts using Python 169
Writing your first Processing script 170
Writing a script with vector layer output 171
Visualizing the script progress 173

Developing your first plugin 173
Creating the plugin template with Plugin Builder 174
Customizing the plugin GUI 178
Implementing plugin functionality 179
Creating a custom map tool 180

Summary 183
Index 185

[v]

Preface
Welcome to the third edition of Learning QGIS. This book aims to introduce you to
QGIS 2.14 and show you how to perform core geospatial tasks using this popular
open source GIS. It takes you through six chapters from QGIS installation and setup
in the first chapter, to the essentials of viewing spatial data in the second chapter.
The third chapter covers data creation and editing, followed by the fourth chapter,
which offers an introduction to performing spatial analysis in QGIS. In the fifth
chapter, you will learn how to create great maps and how to prepare them for
print, and the final chapter shows you how you can extend QGIS using the Python
scripting language.

What this book covers
Chapter 1, Getting Started with QGIS, covers the installation and configuration of
QGIS. We will also see the user interface and how to customize it. By the end of
this chapter, you will have QGIS running on your machine and be ready to start
with the tutorials.

Chapter 2, Viewing Spatial Data, covers how to view spatial data from different data
sources. QGIS supports many file and database formats as well as OGC web services.
We will first see how we can load layers from these different data sources. Then, we
will look into the basics of styling both vector and raster layers and will create our
first map. We will finish this chapter with an example for loading background maps
from online services.

Preface

[vi]

Chapter 3, Data Creation and Editing, covers how to create and manipulate spatial
datasets. We will cover how to select features and take measurements before we
continue with editing feature geometries and attributes. We will then reproject vector
and raster data and learn how to convert between different file formats. Furthermore,
we will join data from text files and spreadsheets to our spatial data. We will also
explore the use of temporary scratch layers, learn how to fix common topological
errors, and finally, how to load data into spatial databases.

Chapter 4, Spatial Analysis, covers raster processing and analyses tasks such as
clipping and terrain analysis. Then we cover converting between raster and vector
formats before we continue with common vector geoprocessing tasks such as
generating heatmaps and calculating area shares within a region. Finally, we will
finish the chapter with exercises in automating geoprocessing workflows using the
QGIS Processing modeler and leveraging the power of spatial databases for analysis.

Chapter 5, Creating Great Maps, covers important features that enable us to create
great maps. We will go into advanced vector styling, building on what we learned
in Chapter 2, Viewing Spatial Data. Then, we will cover labeling using examples of
labeling point locations as well as creating more advanced road labels with road
shield graphics. We will also cover how to tweak labels manually. We will get to
know the print composer and how to use it to create printable maps and map books.
Finally, we will cover solutions to present your maps on the Web.

Chapter 6, Extending QGIS with Python, covers scripting QGIS with Python. We will
start with an introduction to actions before we get started with the QGIS Python
Console and more advanced development of custom tools for the Processing toolbox.
Finally, we will cover how to create our own plugins.

What you need for this book
To follow the exercises in this book, you need QGIS 2.14. QGIS installation is covered
in the first chapter and download links for the exercise data are provided in the
respective chapters.

Who this book is for
If you are a user, developer, or consultant and want to know how to use QGIS to
achieve the results you are used to from other GIS, this is the book for you. This book
is not intended to be a GIS textbook. You, the reader, are expected to be comfortable
with core GIS concepts.

Preface

[vii]

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"use [% $now %] to insert the current time stamp".

A block of code is set as follows:

(landcover@1 > 0 AND landcover@1 <= 6) * 100
+ (landcover@1 >= 7 AND landcover@1 <= 10) * 101
+ (landcover@1 >= 11) * 102

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

def initGui(self):
 # create the toolbar icon and menu entry
 icon_path = ':/plugins/MyFirstMapTool/icon.png'
 self.map_tool_action=self.add_action(
 icon_path,
 text=self.tr(u'My 1st Map Tool'),
 callback=self.map_tool_init,
 parent=self.iface.mainWindow())
 self.map_tool_action.setCheckable(True)

Any command-line input or output is written as follows:

sudo apt-get install qgis python-qgis qgis-plugin-grass

New terms and important words are shown in bold. Words that you see on the
screen, for example, in menus or dialog boxes, appear in the text like this: "To add
text to the map, we can use the Add new label button or go to Layout | Add label".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

[viii]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it
helps us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for this book from your account at
http://www.packtpub.com. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have the files e-mailed directly
to you.

You can download the code files by following these steps:

1. Log in or register to our website using your e-mail address and password.
2. Hover the mouse pointer on the SUPPORT tab at the top.
3. Click on Code Downloads & Errata.
4. Enter the name of the book in the Search box.
5. Select the book for which you're looking to download the code files.
6. Choose from the drop-down menu where you purchased this book from.
7. Click on Code Download.

Once the file is downloaded, please make sure that you unzip or extract the folder
using the latest version of:

• WinRAR / 7-Zip for Windows
• Zipeg / iZip / UnRarX for Mac
• 7-Zip / PeaZip for Linux

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support

Preface

[ix]

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/
diagrams used in this book. The color images will help you better understand the
changes in the output. You can download this file from https://www.packtpub.
com/sites/default/files/downloads/Learning_QGIS_Third_Edition_
ColorImages.pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

https://www.packtpub.com/sites/default/files/downloads/Learning_QGIS_Third_Edition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Learning_QGIS_Third_Edition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Learning_QGIS_Third_Edition_ColorImages.pdf
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

[1]

Getting Started with QGIS
In this chapter, we will install and configure the QGIS geographic information
system. We will also get to know the user interface and how to customize it. By the
end of this chapter, you will have QGIS running on your machine and be ready to
start with the tutorials.

Installing QGIS
QGIS runs on Windows, various Linux distributions, Unix, Mac OS X, and Android.
The QGIS project provides ready-to-use packages as well as instructions to build
from the source code at http://download.qgis.org. We will cover how to install
QGIS on two systems, Windows and Ubuntu, as well as how to avoid the most
common pitfalls.

Further installation instructions for other supported operating
systems are available at http://www.qgis.org/en/site/
forusers/alldownloads.html.

Like many other open source projects, QGIS offers you a choice between different
releases. For the tutorials in this book, we will use the QGIS 2.14 LTR version. The
following options are available:

• Long-term release (LTR): The LTR version is recommended for corporate
and academic use. It is currently released once per year in the end of
February. It receives bug fix updates for at least a year, and the features
and user interface remain unchanged. This makes it the best choice for
training material that should not become outdated after a few months.

http://download.qgis.org
http://www.qgis.org/en/site/forusers/alldownloads.html
http://www.qgis.org/en/site/forusers/alldownloads.html

Getting Started with QGIS

[2]

• Latest release (LR): The LR version contains newly developed and tested
features. It is currently released every four months (except when an LTR
version is released instead). Use this version if you want to stay up to date
with the latest developments, including new features and user interface
changes, but are not comfortable with using the DEV version.

• Developer version (DEV, master, or testing): The cutting-edge DEV version
contains the latest and greatest developments, but be warned that on some
days, it might not work as reliably as you want it to.

You can find more information about the releases as well as the
schedule for future releases at http://www.qgis.org/en/site/
getinvolved/development/roadmap.html#release-schedule.
For an overview of the changes between releases, check out the visual
change logs at http://www.qgis.org/en/site/forusers/
visualchangelogs.html.

Installing QGIS on Windows
On Windows, we have two different options to install QGIS, the standalone installer
and the OSGeo4W installer:

• The standalone installer is one big file to download (approximately 280 MB);
it contains a QGIS release, the Geographic Resources Analysis Support
System (GRASS) GIS, as well as the System for Automated Geoscientific
Analyses (SAGA) GIS in one package.

• The OSGeo4W installer is a small, flexible installation tool that makes it
possible to download and install QGIS and many more OSGeo tools with all
their dependencies. The main advantage of this installer over the standalone
installer is that it makes updating QGIS and its dependencies very easy. You
can always have access to both the current release and the developer versions
if you choose to, but, of course, you are never forced to update. That is why
I recommend that you use OSGeo4W. You can download the 32-bit and
64-bit OSGeo4W installers from http://osgeo4w.osgeo.org (or directly
from http://download.osgeo.org/osgeo4w/osgeo4w-setup-x86.exe
for the 32-bit version or http://download.osgeo.org/osgeo4w/osgeo4w-
setup-x86_64.exe if you have a 64-bit version of Windows). Download
the version that matches your operating system and keep it! In the future,
whenever you want to change or update your system, just run it again.

http://www.qgis.org/en/site/getinvolved/development/roadmap.html#release-schedule
http://www.qgis.org/en/site/getinvolved/development/roadmap.html#release-schedule
http://www.qgis.org/en/site/forusers/visualchangelogs.html
http://www.qgis.org/en/site/forusers/visualchangelogs.html
http://osgeo4w.osgeo.org
http://download.osgeo.org/osgeo4w/osgeo4w-setup-x86.exe
http://download.osgeo.org/osgeo4w/osgeo4w-setup-x86_64.exe
http://download.osgeo.org/osgeo4w/osgeo4w-setup-x86_64.exe

Chapter 1

[3]

Regardless of the installer you choose, make sure that you
avoid special characters such as German umlauts or letters from
alphabets other than the default Latin ones (for details, refer to
https://en.wikipedia.org/wiki/ISO_basic_Latin_
alphabet) in the installation path, as they can cause problems
later on, for example, during plugin installation.

When the OSGeo4W installer starts, we get to choose between Express Desktop
Install, Express Web-GIS Install, and Advanced Install. To install the QGIS
LR version, we can simply select the Express Desktop Install option, and the
next dialog will list the available desktop applications, such as QGIS, uDig, and
GRASS GIS. We can simply select QGIS, click on Next, and confirm the necessary
dependencies by clicking on Next again. Then the download and installation will
start automatically. When the installation is complete, there will be desktop shortcuts
and start menu entries for OSGeo4W and QGIS.

To install QGIS LTR (or DEV), we need to go through the Advanced Install option,
as shown in the following screenshot:

https://en.wikipedia.org/wiki/ISO_basic_Latin_alphabet
https://en.wikipedia.org/wiki/ISO_basic_Latin_alphabet

Getting Started with QGIS

[4]

This installation path offers many options, such as Download Without Installing
and Install from Local Directory, which can be used to download all the necessary
packages on one machine and later install them on machines without Internet access.
We just select Install from Internet, as shown in this screenshot:

When selecting the installation Root Directory, as shown in the following screenshot,
avoid special characters such as German umlauts or letters from alphabets other
than the default Latin ones in the installation path (as mentioned before), as they can
cause problems later on, for example, during plugin installation:

Chapter 1

[5]

Then you can specify the folder (Local Package Directory) where the setup process
will store the installation files as well as customize Start menu name. I recommend
that you leave the default settings similar to what you can see in this screenshot:

In the Internet connection settings, it is usually not necessary to change the default
settings, but if your machine is, for example, hidden behind a proxy, you will be able
to specify it here:

Getting Started with QGIS

[6]

Then we can pick the download site. At the time of writing this book, there is only one
download server available, anyway, as you can see in the following screenshot:

After the installer fetches the latest package information from OSGeo's servers, we
get to pick the packages for installation. QGIS LTR is listed in the desktop category
as qgis-ltr (and the DEV version is listed as qgis-dev). To select the LTR version
for installation, click on the text that reads Skip, and it will change and display the
version number, as shown in this screenshot:

Chapter 1

[7]

As you can see in the following screenshot, the installer will automatically select all
the necessary dependencies (such as GDAL, SAGA, OTB, and GRASS), so we don't
have to worry about this:

After you've clicked on Next, the download and installation starts automatically,
just as in the Express version.

You have probably noticed other available QGIS packages called qgis-ltr-dev
and qgis-rel-dev. These contain the latest changes (to the LTR and LR versions,
respectively), which will be released as bug fix versions according to the release
schedule. This makes these packages a good option if you run into an issue with a
release that has been fixed recently but the bug fix version release is not out yet.

If you try to run QGIS and get a popup that says, The procedure entry
point <some-name> could not be located in the dynamic link library
<dll-name>.dll, it means that you are facing a common issue on
Windows systems—a DLL conflict. This error is easy to fix; just copy
the DLL file mentioned in the error message from C:\OSGeo4W\bin\
to C:\OSGeo4W\apps\qgis\bin\ (adjust the paths if necessary).

Getting Started with QGIS

[8]

Installing on Ubuntu
On Ubuntu, the QGIS project provides packages for the LTR, LR, and DEV versions.
At the time of writing this book, the Ubuntu versions Precise, Trusty, Vivid, and
Wily are supported, but you can find the latest information at http://www.qgis.
org/en/site/forusers/alldownloads.html#debian-ubuntu. Be aware, however,
that you can install only one version at a time. The packages are not listed in the
default Ubuntu repositories. Therefore, we have to add the appropriate repositories
to Ubuntu's source list, which you can find at /etc/apt/sources.list. You can
open the file with any text editor. Make sure that you have super user rights, as you
will need them to save your edits. One option is to use gedit, which is installed in
Ubuntu by default. To edit the sources.list file, use the following command:

sudo gedit /etc/apt/sources.list

Downloading the example code
You can download the example code files for this book from your
account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support
and register to have the files e-mailed directly to you.

Make sure that you add only one of the following package-source options to avoid
conflicts due to incompatible packages. The specific lines that you have to add to the
source list depend on your Ubuntu version:

1. The first option, which is also the default one, is to install the LR version. To
install the QGIS LR release on Trusty, add the following lines to your file:
deb http://qgis.org/debian trusty main

deb-src http://qgis.org/debian trusty main

If necessary, replace trusty with precise, vivid, or wily to
fit your system. For an updated list of supported Ubuntu versions,
check out http://www.qgis.org/en/site/forusers/
alldownloads.html#debian-ubuntu.

2. The second option is to install QGIS LTR by adding the following lines to
your file:
deb http://qgis.org/debian-ltr trusty main

deb-src http://qgis.org/debian-ltr trusty main

http://www.qgis.org/en/site/forusers/alldownloads.html#debian-ubuntu
http://www.qgis.org/en/site/forusers/alldownloads.html#debian-ubuntu
http://www.packtpub.com
http://www.packtpub.com/support
http://www.qgis.org/en/site/forusers/alldownloads.html#debian-ubuntu
http://www.qgis.org/en/site/forusers/alldownloads.html#debian-ubuntu

Chapter 1

[9]

3. The third option is to install QGIS DEV by adding these lines to your file:
deb http://qgis.org/debian-nightly trusty main

deb-src http://qgis.org/debian-nightly trusty main

The preceding versions depend on other packages such
as GDAL and proj4, which are available in the Ubuntu
repositories. It is worth mentioning that these packages
are often quite old.

4. The fourth option is to install QGIS LR with updated dependencies, which are
provided by the ubuntugis repository. Add these lines to your file:
deb http://qgis.org/ubuntugis trusty main

deb-src http://qgis.org/ubuntugis trusty main

deb http://ppa.launchpad.net/ubuntugis/ubuntugis-unstable/
ubuntu trusty main

5. The fifth option is QGIS LTR with updated dependencies. Add these lines to
your file:
deb http://qgis.org/ubuntugis-ltr trusty main

deb-src http://qgis.org/ubuntugis-ltr trusty main

deb http://ppa.launchpad.net/ubuntugis/ubuntugis-unstable/
ubuntu trusty main

6. The sixth option is the QGIS master with updated dependencies. Add these
lines to your file:
deb http://qgis.org/ubuntugis-nightly trusty main

deb-src http://qgis.org/ubuntugis-nightly trusty main

deb http://ppa.launchpad.net/ubuntugis/ubuntugis-unstable/
ubuntu trusty main

To follow the tutorials in this book, it is recommended that you install
QGIS 2.14 LTR with updated dependencies (the fifth option).

After choosing the repository, we will add the qgis.org repository's public key to
our apt keyring. This will avoid the warnings that you might otherwise get when
installing from a non-default repository. Run the following command in the terminal:

sudo apt-key adv --keyserver keyserver.ubuntu.com --recv-key
3FF5FFCAD71472C4

Getting Started with QGIS

[10]

By the time this book goes to print, the key information might have
changed. Refer to http://www.qgis.org/en/site/forusers/
alldownloads.html#debian-ubuntu for the latest updates.

Finally, to install QGIS, run the following commands:

sudo apt-get update

sudo apt-get install qgis python-qgis qgis-plugin-grass

Running QGIS for the first time
When you install QGIS, you will get two applications: QGIS Desktop and QGIS
Browser. If you are familiar with ArcGIS, you can think of QGIS Browser as
something similar to ArcCatalog. It is a small application used to preview spatial data
and related metadata. For the remainder of this book, we will focus on QGIS Desktop.

By default, QGIS will use the operating system's default language. To follow the
tutorials in this book, I advise you to change the language to English by going to
Settings | Options | Locale.

On the first run, the way the toolbars are arranged can hide some buttons. To be
able to work efficiently, I suggest that you rearrange the toolbars (for the sake of
completeness, I have enabled all toolbars in Toolbars, which is in the View menu). I
like to place some toolbars on the left and right screen borders to save vertical screen
estate, especially on wide-screen displays.

Additionally, we will activate the file browser by navigating to View | Panels |
Browser Panel. It will provide us with quick access to our spatial data. At the end,
the QGIS window on your screen should look similar to the following screenshot:

http://www.qgis.org/en/site/forusers/alldownloads.html#debian-ubuntu
http://www.qgis.org/en/site/forusers/alldownloads.html#debian-ubuntu

Chapter 1

[11]

Next, we will activate some must-have plugins by navigating to Plugins | Manage
and Install Plugins. Plugins are activated by ticking the checkboxes beside their
names. To begin with, I will recommend the following:

• Coordinate Capture: This plugin is useful for picking coordinates in the map
• DB Manager: This plugin helps you manage the SpatiaLite and PostGIS

databases
• fTools: This plugin offers vector analysis and management tools
• GdalTools: This plugin offers raster analysis and management tools
• Processing: This plugin provides access to many useful raster and vector

analysis tools, as well as a model builder for task automation

Getting Started with QGIS

[12]

To make it easier to find specific plugins, we can filter the list of plugins using the
Search input field at the top of the window, which you can see in the following
screenshot:

Introducing the QGIS user interface
Now that we have set up QGIS, let's get accustomed to the interface. As we
have already seen in the screenshot presented in the Running QGIS for the first time
section, the biggest area is reserved for the map. To the left of the map, there are the
Layers and Browser panels. In the following screenshot, you can see how the Layers
Panel looks once we have loaded some layers (which we will do in the upcoming
Chapter 2, Viewing Spatial Data). To the left of each layer entry, you can see a preview
of the layer style. Additionally, we can use layer group to structure the layer list. The
Browser Panel (on the right-hand side in the following screenshot) provides us with
quick access to our spatial data, as you will soon see in the following chapter:

Chapter 1

[13]

Below the map, we find important information such as (from left to right)
the current map Coordinate, map Scale, and the (currently inactive) project
coordinate reference system (CRS), for example, EPSG:4326 in this screenshot:

Next, there are multiple toolbars to explore. If you arrange them as shown in the
previous section, the top row contains the following toolbars:

• File: This toolbar contains the tools needed to Create, Open, Save,
and Print projects

• Map Navigation: This toolbar contains the pan and zoom tools
• Attributes: These tools are used to identify, select, open attribute tables, measure,

and so on, and looks like this:

The second row contains the following toolbars:

• Label: These tools are used to add, configure, and modify labels
• Plugins: This currently only contains the Python Console tool, but will be

filled in by additional Python plugins
• Database: Currently, this toolbar only contains DB Manager, but other

database-related tools (for example, the OfflineEditing plugin, which allows
us to edit offline and synchronize with databases) will appear here when
they are installed

www.allitebooks.com

http://www.allitebooks.org

Getting Started with QGIS

[14]

• Raster: This toolbar includes histogram stretch, brightness, and contrast control
• Vector: This currently only contains the Coordinate Capture tool, but it will

be filled in by additional Python plugins
• Web: This is currently empty, but it will also be filled in by additional

Python plugins
• Help: This toolbar points to the option for downloading the user manual and

looks like this:

On the left screen border, we place the Manage Layers toolbar. This toolbar contains
the tools for adding layers from the vector or raster files, databases, web services, and text
files or create new layers:

Finally, on the right screen border, we have two more toolbars:

• Digitizing: The tools in this toolbar enable editing, basic feature creation,
and editing

• Advanced Digitizing: This toolbar contains the Undo/Redo option,
advanced editing tools, the geometry-simplification tool, and so on,
which look like this:

All digitizing tools (except the Enable advanced digitizing tools
button) are currently inactive. They will turn active only once we
start editing a vector layer.

Chapter 1

[15]

Toolbars and panels can be activated and deactivated via the View menu's Panels
and Toolbars entries, as well as by right-clicking on a menu or toolbar, which will
open a context menu with all the available toolbars and panels. All the tools on the
toolbars can also be accessed via the menu. If you deactivate the Manage Layers
Toolbar, for example, you will still be able to add layers using the Layer menu.

As you might have guessed by now, QGIS is highly customizable. You can increase
your productivity by assigning shortcuts to the tools you use regularly, which you
can do by going to Settings | Configure Shortcuts. Similarly, if you realize that
you never use a certain toolbar button or menu entry, you can hide it by going to
Settings | Customization. For example, if you don't have access to an Oracle Spatial
database, you might want to hide the associated buttons to remove clutter and save
screen estate, as shown in the following screenshot:

Getting Started with QGIS

[16]

Finding help and reporting issues
The QGIS community offers a variety of different community-based support options.
These include the following:

• GIS StackExchange: One of the most popular support channels is http://
gis.stackexchange.com/. It's a general-purpose GIS question-and-answer
site. If you use the tag qgis, you will see all QGIS-related questions and
answers at http://gis.stackexchange.com/questions/tagged/qgis.

• Mailing lists: The most important mailing list for user questions is qgis-
user. For a full list of available mailing lists and links to sign up, visit
http://www.qgis.org/en/site/getinvolved/mailinglists.html#qgis-
mailinglists. To comfortably search for existing mailing list threads, you
can use Nabble (http://osgeo-org.1560.x6.nabble.com/Quantum-GIS-
User-f4125267.html).

• Chat: A lot of developer communication runs through IRC. There is a #qgis
channel on www.freenode.net. You can visit it using, for example, the web
interface at http://webchat.freenode.net/?channels=#qgis.

Before contacting the community support, it's
recommended to first take a look at the documentation
at http://docs.qgis.org.

If you prefer commercial support, you can find a list of companies that provide
support and custom development at http://www.qgis.org/en/site/forusers/
commercial_support.html#qgis-commercial-support.

If you find a bug, please report it because the QGIS developers can only fix the bugs
that they are aware of. For details on how to report bugs, visit http://www.qgis.org/
en/site/getinvolved/development/bugreporting.html.

Summary
In this chapter, we installed QGIS and configured it by selecting useful defaults and
arranging the user interface elements. Then we explored the panels, toolbars, and
menus that make up the QGIS user interface, and you learned how to customize
them to increase productivity. In the following chapter, we will use QGIS to view
spatial data from different data sources such as files, databases, and web services in
order to create our first map.

http://gis.stackexchange.com/
http://gis.stackexchange.com/
http://gis.stackexchange.com/questions/tagged/qgis
http://www.qgis.org/en/site/getinvolved/mailinglists.html#qgis-mailinglists
http://www.qgis.org/en/site/getinvolved/mailinglists.html#qgis-mailinglists
http://osgeo-org.1560.x6.nabble.com/Quantum-GIS-User-f4125267.html
http://osgeo-org.1560.x6.nabble.com/Quantum-GIS-User-f4125267.html
www.freenode.net
http://webchat.freenode.net/?channels=#qgis
http://docs.qgis.org
http://www.qgis.org/en/site/forusers/commercial_support.html#qgis-commercial-support
http://www.qgis.org/en/site/forusers/commercial_support.html#qgis-commercial-support
http://www.qgis.org/en/site/getinvolved/development/bugreporting.html
http://www.qgis.org/en/site/getinvolved/development/bugreporting.html

[17]

Viewing Spatial Data
In this chapter, we will cover how to view spatial data from different data sources.
QGIS supports many file and database formats as well as standardized Open
Geospatial Consortium (OGC) Web Services. We will first cover how we can load
layers from these different data sources. We will then look into the basics of styling
both vector and raster layers and will create our first map, which you can see in the
following screenshot:

We will finish this chapter with an example of loading background maps from
online services.

Viewing Spatial Data

[18]

For the examples in this chapter, we will use the sample data
provided by the QGIS project, which is available for download
from http://qgis.org/downloads/data/qgis_sample_
data.zip (21 MB). Download and unzip it.

Loading vector data from files
In this section, we will talk about loading vector data from GIS file formats, such as
shapefiles, as well as from text files.

We can load vector files by going to Layer | Add Layer | Add Vector Layer and also
using the Add Vector Layer toolbar button. If you like shortcuts, use Ctrl + Shift + V.
In the Add vector layer dialog, which is shown in the following screenshot, we find a
drop-down list that allows us to specify the encoding of the input file. This option is
important if we are dealing with files that contain special characters, such as German
umlauts or letters from alphabets different from the default Latin ones.

What we are most interested in now is the Browse button, which opens the
file-opening dialog. Note the file type filter drop-down list in the bottom-right corner
of the dialog. We can open it to see a list of supported vector file types. This filter
is useful to find specific files faster by hiding all the files of a different type, but be
aware that the filter settings are stored and will be applied again the next time you
open the file opening dialog. This can be a source of confusion if you try to find a
different file later and it happens to be hidden by the filter, so remember to check the
filter settings if you are having trouble locating a file.

http://qgis.org/downloads/data/qgis_sample_data.zip
http://qgis.org/downloads/data/qgis_sample_data.zip

Chapter 2

[19]

We can load more than one file in one go by selecting multiple files at once (holding
down Ctrl on Windows/Ubuntu or cmd on Mac). Let's give it a try:

1. First, we select alaska.shp and airports.shp from the shapefiles sample
data folder.

2. Next, we confirm our selection by clicking on Open, and we are taken back
to the Add vector layer dialog.

3. After we've clicked on Open once more, the selected files are loaded. You
will notice that each vector layer is displayed in a random color, which is
most likely different from the color that you see in the following screenshot.
Don't worry about this now; we'll deal with layer styles later in this chapter.

Even without us using any spatial analysis tools, these simple steps of visualizing
spatial datasets enable us to find, for example, the southernmost airport on the
Alaskan mainland.

There are multiple tricks that make loading data even faster; for
example, you can simply drag and drop files from the operating
system's file browser into QGIS.
Another way to quickly access your spatial data is by using QGIS's
built-in file browser. If you have set up QGIS as shown in Chapter 1,
Getting Started with QGIS, you'll find the browser on the left-hand side,
just below the layer list. Navigate to your data folder, and you can
again drag and drop files from the browser to the map.
Additionally, you can mark a folder as favorite by right-clicking on it
and selecting Add as a favorite. In this way, you can access your data
folders even faster, because they are added in the Favorites section right
at the top of the browser list.

Viewing Spatial Data

[20]

Another popular source of spatial data is delimited text (CSV) files. QGIS can load
CSV files using the Add Delimited Text Layer option available via the menu entry
by going to Layer | Add Layer | Add Delimited Text Layer or the corresponding
toolbar button. Click on Browse and select elevp.csv from the sample data. CSV
files come with all kinds of delimiters. As you can see in the following screenshot,
the plugin lets you choose from the most common ones (Comma, Tab, and so on),
but you can also specify any other plain or regular-expression delimiter:

If your CSV file contains quotation marks such as, " or ', you can use the Quote
option to have them removed. The Number of header lines to discard option allows
us to skip any potential extra lines at the beginning of the text file. The following
Field options include functionality for trimming extra spaces from field values or
redefine the decimal separator to a comma. The spatial information itself can be
provided either in the two columns that contain the coordinates of points X and Y,
or using the Well known text (WKT) format. A WKT field can contain points, lines,
or polygons. For example, a point can be specified as POINT (30 10), a simple line
with three nodes would be LINESTRING (30 10, 10 30, 40 40), and a polygon
with four nodes would be POLYGON ((30 10, 40 40, 20 40, 10 20, 30 10)).

Chapter 2

[21]

Note that the first and last coordinate pair in a polygon has to
be identical.
WKT is a very useful and flexible format. If you are unfamiliar
with the concept, you can find a detailed introduction with
examples at http://en.wikipedia.org/wiki/Well-
known_text.

After we've clicked on OK, QGIS will prompt us to specify the layer's coordinate
reference system (CRS). We will talk about handling CRS next.

Dealing with coordinate reference
systems
Whenever we load a data source, QGIS looks for usable CRS information, for example,
in the shapefile's .prj file. If QGIS cannot find any usable information, by default, it
will ask you to specify the CRS manually. This behavior can be changed by going to
Settings | Options | CRS to always use either the project CRS or a default CRS.

The QGIS Coordinate Reference System Selector offers a filter that makes finding a
CRS easier. It can filter by name or ID (for example, the EPSG code). Just start typing
and watch how the list of potential CRS gets shorter. There are actually two separate
lists; the upper one contains the CRS that we recently used, while the lower list is
much longer and contains all the available CRS. For the elevp.csv file, we select
NAD27 / Alaska Albers. With the correct CRS, the elevp layer will be displayed as
shown in this screenshot:

http://en.wikipedia.org/wiki/Well-known_text
http://en.wikipedia.org/wiki/Well-known_text

Viewing Spatial Data

[22]

If we want to check a layer's CRS, we can find this information in the layer
properties' General section, which can be accessed by going to Layer | Properties
or by double-clicking on the layer name in the layer list. If you think that QGIS has
picked the wrong CRS or if you have made a mistake in specifying the CRS, you
can correct the CRS settings using Specify CRS. Note that this does not change the
underlying data or reproject it. We'll talk about reprojecting vectors and raster files in
Chapter 3, Data Creation and Editing.

In QGIS, we can create a map out of multiple layers even if each dataset is stored
with a different CRS. QGIS handles the necessary reprojections automatically by
enabling a mechanism called on the fly reprojection, which can be accessed by going
to Project | Project Properties, as shown in the following screenshot. Alternatively,
you can click on the CRS status button (with the globe symbol and the EPSG code
right next to it) in the bottom-right corner of the QGIS window to open this dialog:

Chapter 2

[23]

All layers are reprojected to the project CRS on the fly, which means that QGIS
calculates these reprojections dynamically and only for the purpose of rendering the
map. This also means that it can slow down your machine if you are working with
big datasets that have to be reprojected. The underlying data is not changed and
spatial analyses are not affected. For example, the following image shows Alaska in
its default NAD27 / Alaska Albers projection (on the left-hand side), a reprojection
on the fly to WGS84 EPSG:4326 (in the middle), and Web Mercator EPSG:3857 (on
the right-hand side). Even though the map representation changes considerably, the
analysis results for each version are identical since the on the fly reprojection feature
does not change the data.

In some cases, you might have to specify a CRS that is not available in the QGIS CRS
database. You can add CRS definitions by going to Settings | Custom CRS. Click
on the Add new CRS button to create a new entry, type in a name for the new CRS,
and paste the proj4 definition string in the Parameters input field. This definition
string is used by the Proj4 projection engine to determine the correct coordinate
transformation. Just close the dialog by clicking on OK when you are done.

If you are looking for a specific projection proj4 definition,
http://spatialreference.org is a good source for this
kind of information.

Loading raster files
Loading raster files is not much different from loading vector files. Going to Layer |
Add Layer | Add Raster Layer, clicking on the Add Raster Layer button, or pressing
the Ctrl + Shift + R shortcut will take you directly to the file-opening dialog. Again,
you can check the file type filter to see a list of supported file types.

http://spatialreference.org

Viewing Spatial Data

[24]

Let's give it a try and load landcover.img from the raster sample data folder.
Similarly to vector files, you can load rasters by dragging them into QGIS from the
operating system or the built-in file browser. The following screenshot shows the
loaded raster layer:

Support for all of these different vector and raster file types in
QGIS is handled by the powerful GDAL/OGR package. You can
check out the full list of supported formats at www.gdal.org/
formats_list.html (for rasters) and http://www.gdal.org/
ogr_formats.html (for vectors).

Georeferencing raster maps
Some raster data sources, such as simple scanned maps, lack proper spatial
referencing, and we have to georeference them before we can use them in a GIS. In
QGIS, we can georeference rasters using the Georeferencer GDAL plugin, which
can be accessed by going to Raster | Georeferencer. (Enable it by going to Plugins |
Manage and Install Plugins if you cannot find it in the Raster menu).

The Georeferencer plugin covers the following use cases:

• We can create a world file for a raster file without altering the original raster.
• If we have a map image that contains points with known coordinates, we can

set ground control points (GCPs) and enter the known coordinates.
• Finally, if we don't know the coordinates of any points on the map, we

still have the chance to place GCPs manually using a second, and already
georeferenced, map of the same area. We can use objects that are visible in
both maps to pick points on the map that we want to georeference and work
out their coordinates from the reference map.

www.gdal.org/formats_list.html
www.gdal.org/formats_list.html
http://www.gdal.org/ogr_formats.html
http://www.gdal.org/ogr_formats.html

Chapter 2

[25]

After loading a raster into Georeferencer by going to File | Open raster or using the
Open raster toolbar button, we are asked to specify the CRS of the ground control
points that we are planning to add. Next, we can start adding ground control points
by going to Edit | Add point. We can use the pan and zoom tools to navigate, and
we can place GCPs by clicking on the map. We are then prompted to insert the
coordinates of the new point or pick them from the reference map in the main QGIS
window. The placed GCPs are displayed as red circles in both Georeferencer and the
QGIS window, as you can see in the following screenshot:

Georeferencer shows a screenshot of the OCM Landscape map © Thunderforest, Data © OpenStreetMap
contributors (http://www.opencyclemap.org/?zoom=4&lat=62.50806&lon=-145.01953&layers=0B000)

After placing the GCPs, we can define the transformation algorithm by going
to Settings | Transformation Settings. Which algorithm you choose depends
on your input data and the level of geometric distortion you want to allow. The
most commonly used algorithms are polynomial 1 to 3. A first-order polynomial
transformation allows scaling, translation, and rotation only.

Viewing Spatial Data

[26]

A second-order polynomial transformation can handle some curvature, and a
third-order polynomial transformation consequently allows for even higher degrees
of distortion. The thin-plate spline algorithm can handle local deformations in the
map and is therefore very useful while working with very low-quality map scans.
Projective transformation offers rotation and translation of coordinates. The linear
option, on the other hand, is only used to create world files, and as mentioned
earlier, this does not actually transform the raster.

The resampling method depends on your input data and the result you want to
achieve. Cubic resampling creates smooth results, but if you don't want to change
the raster values, choose the nearest neighbor method.

Before we can start the georeferencing process, we have to specify the output
filename and target CRS. Make sure that the Load in QGIS when done option
is active and activate the Use 0 for transparency when needed option to avoid
black borders around the output image. Then, we can close the Transformation
Settings dialog and go to File | Start Georeferencing. The georeferenced raster
will automatically be loaded into the main map window of QGIS. In the following
screenshot, you can see the result of applying projective transformation using the
five specified GCPs:

Chapter 2

[27]

Loading data from databases
QGIS supports PostGIS, SpatiaLite, MSSQL, and Oracle Spatial databases.
We will cover two open source options: SpatiaLite and PostGIS. Both are
available cross-platform, just like QGIS.

SpatiaLite is the spatial extension for SQLite databases. SQLite is a self-contained,
server-less, zero-configuration, and transactional SQL database engine (www.sqlite.
org). This basically means that a SQLite database, and therefore also a SpatiaLite
database, doesn't need a server installation and can be copied and exchanged just
like any ordinary file.

You can download an example database from www.gaia-gis.it/
spatialite-2.3.1/test-2.3.zip (4 MB). Unzip the file; you will be able to
connect to it by going to Layer | Add Layer | Add SpatiaLite Layer, using the Add
SpatiaLite Layer toolbar button, or by pressing Ctrl + Shift + L. Click on New to
select the test-2.3.sqlite database file. QGIS will save all the connections and add
them to the drop-down list at the top. After clicking on Connect, you will see a list of
layers stored in the database, as shown in this screenshot:

As with files, you can select one or more tables from the list and click on Add to load
them into the map. Additionally, you can use Set Filter to only load specific features.

www.sqlite.org
www.sqlite.org
www.gaia-gis.it/spatialite-2.3.1/test-2.3.zip
www.gaia-gis.it/spatialite-2.3.1/test-2.3.zip

Viewing Spatial Data

[28]

Filters in QGIS use SQL-like syntax, for example,
"Name" = 'EMILIA-ROMAGNA' to select only the region called
EMILIA-ROMAGNA or "Name" LIKE 'ISOLA%' to select all regions
whose names start with ISOLA. The filter queries are passed on to the
underlying data provider (for example, SpatiaLite or OGR). The provider
syntax for basic filter queries is consistent over different providers but
can vary when using more exotic functions. You can read the details of
OGR SQL at http://www.gdal.org/ogr_sql.html.

In Chapter 4, Spatial Analysis, we will use this database to explore how we can take
advantage of the spatial analysis capabilities of SpatiaLite.

PostGIS is the spatial extension of the PostgreSQL database system. Installing and
configuring the database is out of the scope of this book, but there are installers for
Windows and packages for many Linux distributions as well as for Mac (for details,
visit http://www.postgresql.org/download/). To load data from a PostGIS
database, go to Layers | Add Layer | Add PostGIS Layer, use the Add PostGIS
Layer toolbar button, or press Ctrl + Shift + D.

When using a database for the first time, click on New to establish a new database
connection. This opens the dialog shown in the following screenshot, where you can
create a new connection, for example, to a database called postgis:

http://www.gdal.org/ogr_sql.html
http://www.postgresql.org/download/

Chapter 2

[29]

The fields that have to be filled in are as follows:

• Name: Insert a name for the new connection. You can use any name you like.
• Host: The server's IP address is inserted in this field. You can use localhost

if PostGIS is running locally.
• Port: The PostGIS default port is 5432. If you have trouble reaching a

database, it is recommended that you check the server's firewall settings
for this port.

• Database: This is the name of the PostGIS database that you want to
connect to.

• Username and Password: For convenience, you can tell QGIS to save these.

After the connection is established, you can load and filter tables, just as we
discussed for SpatiaLite.

Loading data from OGC web services
More and more data providers offer access to their datasets via OGC-compliant web
services such as Web Map Services (WMS), Web Coverage Services (WCS), or Web
Feature Services (WFS). QGIS supports these services out of the box.

If you want to learn more about the different OGC web services
available, visit http://live.osgeo.org/en/standards/
standards.html for an overview.

http://live.osgeo.org/en/standards/standards.html
http://live.osgeo.org/en/standards/standards.html

Viewing Spatial Data

[30]

You can load WMS layers by going to Layer | Add WMS/WMTS Layer, clicking
on the Add WMS/WMTS Layer button, or pressing Ctrl + Shift + W. If you know
a WMS server, you can connect to it by clicking on New and filling in a name and
the URL. All other fields are optional. Don't worry if you don't know of any WMS
servers, because you can simply click on the Add default servers button to get access
information about servers whose administrators collaborate with the QGIS project.
One of these servers is called Lizardtech server. Select Lizardtech server or any of
the other servers from the drop-down box, and click on Connect to see the list of
layers available through the server, as shown here:

From the layer list, you can now select one or more layers for download. It is worth
noting that the order in which you select the layers matters, because the layers will
be combined on the server side and QGIS will only receive the combined image as
the resultant layer. If you want to be able to use the layers separately, you will have
to download them one by one. The data download starts once you click on Add. The
dialog will stay open so that you can add more layers from the server.

Chapter 2

[31]

Many WMS servers offer their layers in multiple, different CRS. You can check out
the list of available CRS by clicking on the Change button at the bottom of the dialog.
This will open a CRS selector dialog, which is limited to the WMS server's CRS
capabilities.

Loading data from WCS or WFS servers works in the same way, but public servers
are quite rare. One of the few reliable public WFS servers is operated by the city of
Vienna, Austria. The following screenshot shows how to configure the connection
to the data.wien.gv.at WFS, as well as the list of available datasets that is loaded
when we click on the Connect button:

The main advantage of using a WFS rather than a WMS is that
the Web Feature Service returns vector features, including all
their attributes, instead of only an image of a map. Of course,
this also means that WFS layers usually take longer to download
and cause more load on the server.

Viewing Spatial Data

[32]

Styling raster layers
After this introduction to data sources, we can create our first map. We will build
the map from the bottom up by first loading some background rasters (hillshade and
land cover), which we will then overlay with point, line, and polygon layers.

Let's start by loading a land cover and a hillshade from landcover.img and
SR_50M_alaska_nad.tif, and then opening the Style section in the layer properties
(by going to Layer | Properties or double-clicking on the layer name). QGIS
automatically tries to pick a reasonable default render type for both raster layers.
Besides these defaults, the following style options are available for raster layers:

• Multiband color: This style is used if the raster has several bands. This is
usually the case with satellite images with multiple bands.

• Paletted: This style is used if a single-band raster comes with an indexed
palette.

• Singleband gray: If a raster has neither multiple bands nor an indexed
palette (this is the case with, for example, elevation model rasters or
hillshade rasters), it will be rendered using this style.

• Singleband pseudocolor: Instead of being limited to gray, this style allows
us to render a raster band using a color map of our choice.

The SR_50M_alaska_nad.tif hillshade raster is loaded with Singleband gray
Render type, as you can see in the following screenshot. If we want to render
the hillshade raster in color instead of grayscale, we can change Render type to
Singleband pseudocolor. In the pseudocolor mode, we can create color maps either
manually or by selecting one of the premade color ramps. However, let's stick to
Singleband gray for the hillshade for now.

Chapter 2

[33]

The Singleband gray renderer offers a Black to white Color gradient as well as a
White to black gradient. When we use the Black to white gradient, the minimum
value (specified in Min) will be drawn black and the maximum value (specified
in Max) will be drawn in white, with all the values in between in shades of gray.
You can specify these minimum and maximum values manually or use the Load
min/max values interface to let QGIS compute the values.

Note that QGIS offers different options for computing the values from
either the complete raster (Full Extent) or only the currently visible part
of the raster (Current Extent). A common source of confusion is the
Estimate (faster) option, which can result in different values than those
documented elsewhere, for example, in the raster's metadata. The obvious
advantage of this option is that it is faster to compute, so use it carefully!

www.allitebooks.com

http://www.allitebooks.org

Viewing Spatial Data

[34]

Below the color settings, we find a section with more advanced options that control
the raster Resampling, Brightness, Contrast, Saturation, and Hue—options that you
probably know from image processing software. By default, resampling is set to the
fast Nearest neighbour option. To get nicer and smoother results, we can change to
the Bilinear or Cubic method.

Click on OK or Apply to confirm. In both cases, the map will be redrawn using the
new layer style. If you click on Apply, the Layer Properties dialog stays open, and
you can continue to fine-tune the layer style. If you click on OK, the Layer Properties
dialog is closed.

The landcover.img raster is a good example of a paletted raster. Each cell value
is mapped to a specific color. To change a color, we can simply double-click on the
Color preview and a color picker will open. The style section of a paletted raster
looks like what is shown in the following screenshot:

Chapter 2

[35]

If we want to combine hillshade and land cover into one aesthetically pleasing
background, we can use a combination of Blending mode and layer Transparency.
Blending modes are another feature commonly found in image processing software.
The main advantage of blending modes over transparency is that we can avoid
the usually dull, low-contrast look that results from combining rasters using
transparency alone. If you haven't had any experience with blending, take some time
to try the different effects. For this example, I used the Darken blending mode, as
highlighted in the previous screenshot, together with a global layer transparency of
50 %, as shown in the following screenshot:

Styling vector layers
When we load vector layers, QGIS renders them using a default style and a random
color. Of course, we want to customize these styles to better reflect our data. In the
following exercises, we will style point, line, and polygon layers, and you will also
get accustomed to the most common vector styling options.

Regardless of the layer's geometry type, we always find a drop-down list with the
available style options in the top-left corner of the Style dialog. The following style
options are available for vector layers:

• Single Symbol: This is the simplest option. When we use a Single Symbol
style, all points are displayed with the same symbol.

• Categorized: This is the style of choice if a layer contains points of different
categories, for example, a layer that contains locations of different animal
sightings.

• Graduated: This style is great if we want to visualize numerical values, for
example, temperature measurements.

• Rule-based: This is the most advanced option. Rule-based styles are very
flexible because they allow us to write multiple rules for one layer.

• Point displacement: This option is available only for point layers. These
styles are useful if you need to visualize point layers with multiple points
at the same coordinates, for example, students of a school living at the
same address.

Viewing Spatial Data

[36]

• Inverted polygons: This option is available for polygon layers only. By using
this option, the defined symbology will be applied to the area outside the
polygon borders instead of filling the area inside the polygon.

• Heatmap: This option is available only for point layers. It enables us to create
a dynamic heatmap style.

• 2.5D: This option is available only for polygon layers. It enables us to create
extruded polygons in 2.5 dimensions.

Creating point styles – an example of an
airport style
Let's get started with a point layer! Load airport.shp from your sample data. In
the top-left corner of the Style dialog, below the drop-down list, we find the symbol
preview. Below this, there is a list of symbol layers that shows us the different layers
the symbol consists of. On the right-hand side, we find options for the symbol size
and size units, color and transparency, as well as rotation. Finally, the bottom-right
area contains a preview area with saved symbols.

Point layers are, by default, displayed using a simple circle symbol. We want to
use a symbol of an airplane instead. To change the symbol, select the Simple marker
entry in the symbol layers list on the left-hand side of the dialog. Notice how the
right-hand side of the dialog changes. We can now see the options available for
simple markers: Colors, Size, Rotation, Form, and so on. However, we are not
looking for circles, stars, or square symbols—we want an airplane. That's why we
need to change the Symbol layer type option from Simple marker to SVG marker.
Many of the options are still similar, but at the bottom, we now find a selection of
SVG images that we can choose from. Scroll through the list and pick the airplane
symbol, as shown in the following screenshot:

Chapter 2

[37]

Before we move on to styling lines, let's take a look at the other symbol layer types
for points, which include the following:

• Simple marker: This includes geometric forms such as circles, stars,
and squares

• Font marker: This provides access to your symbol fonts
• SVG marker: Each QGIS installation comes with a collection of default SVG

symbols; add your own folders that contain SVG images by going to Settings
| Options | System | SVG Paths

• Ellipse marker: This includes customizable ellipses, rectangles, crosses,
and triangles

• Vector Field marker: This is a customizable vector-field visualization tool
• Geometry Generator: This enables us to manipulate geometries and even

create completely new geometries using the built-in expression engine

Viewing Spatial Data

[38]

Simple marker layers can have different geometric forms, sizes, outlines, and angles
(orientation), as shown in the following screenshot, where we create a red square
without an outline (using the No Pen option):

Font marker layers are useful for adding letters or other symbols from fonts that
are installed on your computer. This screenshot, for example, shows how to add
the yin-and-yang character from the Wingdings font:

Chapter 2

[39]

Ellipse marker layers make it possible to draw different ellipses, rectangles, crosses,
and triangles, where both the width and height can be controlled separately. This
symbol layer type is especially useful when combined with data-defined overrides,
which we will discuss later. The following screenshot shows how to create an ellipse
that is 5 millimeters long, 2 millimeters high, and rotated by 45 degrees:

Creating line styles – an example of river or
road styles
In this exercise, we create a river style for the majriver.shp file in our sample data.
The goal is to create a line style with two colors: a fill color for the center of the line
and an outline color. This technique is very useful because it can also be used to
create road styles.

To create such a style, we combine two simple lines. The default symbol is one
simple line. Click on the green + symbol located below the symbol layers list in
the bottom-left corner to add another simple line. The lower line will be our outline
and the upper one will be the fill. Select the upper simple line and change the color to
blue and the width to 0.3 millimeters. Next, select the lower simple line and change
its color to gray and width to 0.6 millimeters, slightly wider than the other line.
Check the preview and click on Apply to test how the style looks when applied to
the river layer.

Viewing Spatial Data

[40]

You will notice that the style doesn't look perfect yet. This is because each
line feature is drawn separately, one after the other, and this leads to a rather
disconnected appearance. Luckily, this is easy to fix; we only need to enable the
so-called symbol levels. To do this, select the Line entry in the symbol layers list and
tick the checkbox in the Symbol Levels dialog of the Advanced section (the button
in the bottom-right corner of the style dialog), as shown in the following screenshot.
Click on Apply to test the results.

Before we move on to styling polygons, let's take a look at the other symbol layer
types for lines, which include the following:

• Simple line: This is a solid or dashed line
• Marker line: This line is made up of point markers located at line vertices or

at regular intervals
• Geometry Generator: This enables us to manipulate geometries and even

create completely new geometries using the built-in expression engine.

Chapter 2

[41]

A common use case for Marker line symbol layers are train track symbols; they often
feature repeating perpendicular lines, which are abstract representations of railway
sleepers. The following screenshot shows how we can create a style like this by
adding a marker line on top of two simple lines:

Another common use case for Marker line symbol layers is arrow symbols. The
following screenshot shows how we can create a simple arrow by combining Simple
line and Marker line. The key to creating an arrow symbol is to specify that Marker
placement should be last vertex only. Then we only need to pick a suitable arrow
head marker and the arrow symbol is ready.

Viewing Spatial Data

[42]

Whenever we create a symbol that we might want to reuse in other
maps, we can save it by clicking on the Save button under the
symbol preview area. We can assign a name to the new symbol,
and after we save it, it will be added to the saved symbols preview
area on the right-hand side.

Creating polygon styles – an example of a
landmass style
In this exercise, we will create a style for the alaska.shp file. The goal is to create a
simple fill with a blue halo. As in the previous river style example, we will combine
two symbol layers to create this style: a Simple fill layer that defines the main fill
color (white) with a thin border (in gray), and an additional Simple line outline
layer for the (light blue) halo. The halo should have nice rounded corners. To achieve
these, change the Join style option of the Simple line symbol layer to Round. Similar
to the previous example, we again enable symbol levels; to prevent this landmass
style from blocking out the background map, we select the Multiply blending mode,
as shown in the following screenshot:

Chapter 2

[43]

Before we move on, let's take a look at the other symbol layer types for polygons,
which include the following:

• Simple fill: This defines the fill and outline colors as well as the basic fill styles
• Centroid fill: This allows us to put point markers at the centers of polygons
• Line/Point pattern fill: This supports user-defined line and point patterns

with flexible spacing
• SVG fill: This fills the polygon using SVGs
• Gradient fill: This allows us to fill polygons with linear, radial,

or conical gradients
• Shapeburst fill: This creates a gradient that starts at the polygon border and

flows towards the center
• Outline: Simple line or Marker line: This makes it possible to outline areas

using line styles
• Geometry Generator: This enables us to manipulate geometries and even

create completely new geometries using the built-in expression engine.

A common use case for Point pattern fill symbol layers is topographic symbols for
different vegetation types, which typically consist of a Simple fill layer and Point
pattern fill, as shown in this screenshot:

Viewing Spatial Data

[44]

When we design point pattern fills, we are, of course, not restricted to simple
markers. We can use any other marker type. For example, the following screenshot
shows how to create a polygon fill style with a Font marker pattern that shows
repeating alien faces from the Webdings font:

As an alternative to simple fills with only one color, we can create Gradient fill symbol
layers. Gradients can be defined by Two colors, as shown in the following screenshot,
or by a Color ramp that can consist of many different colors. Usually, gradients run
from the top to the bottom, but we can change this to, for example, make the gradient
run from right to left by setting Angle to 270 degrees, as shown here:

Chapter 2

[45]

The Shapeburst fill symbol layer type, also known as a "buffered" gradient fill, is
often used to style water areas with a smooth gradient that flows from the polygon
border inwards. The following screenshot shows a fixed-distance shading using the
Shade to a set distance option. If we select Shade whole shape instead, the gradient
will be drawn all the way from the polygon border to the center.

Loading background maps
Background maps are very useful for quick checks and to provide orientation,
especially if you don't have access to any other base layers. Adding background
maps is easy with the help of the QuickMapServices plugin. It provides access to
satellite, street, and hybrid maps by different providers.

Viewing Spatial Data

[46]

To install the QuickMapServices plugin, go to Plugins | Manage and Install
Plugins. Wait until the list of available plugins has finished loading. Use the filter to
look for the QuickMapServices option, as shown in the following screenshot. Select
it from the list and click on Install plugin. This is going to take a moment. Once it's
done, you will see a short confirmation message. You can then close the installer, and
the QuickMapServices plugin will be available through the Web menu.

Note that you have to be online to use these services.

Another fact worth mentioning is that all of these services provide their maps only
in Pseudo Mercator (EPSG: 3857). You should change your project CRS to Pseudo
Mercator when using background maps from QuickMapServices, particularly if the
map contains labels that would otherwise show up distorted.

Background maps added using the QuickMapServices plugin
are not suitable for printing due to their low resolution.

Chapter 2

[47]

If you load the OSM TF Landscape layer, your map will look like what is shown in
this screenshot:

An alternative to the QuickMapServices plugin is OpenLayers
Plugin, which provides very similar functionality but offers
fewer different background maps.

Viewing Spatial Data

[48]

Dealing with project files
QGIS project files are human-readable XML files with the filename ending with .qgs.
You can open them in any text editor (such as Notepad++ on Windows or gedit on
Ubuntu) and read or even change the file contents.

When you save a project file, you will notice that QGIS creates a second file with
the same name and a .qgs~ ending, as shown in the next screenshot. This is a
simple backup copy of the project file with identical content. If your project file gets
corrupted for any reason, you can simply copy the backup file, remove the ~ from the
file ending, and continue working from there.

By default, QGIS stores the relative path to the datasets in the project file. If you
move a project file (without its associated data files) to a different location, QGIS
won't be able to locate the data files anymore and will therefore display the following
Handle bad layers dialog:

If you are working with data files that are stored on a network drive rather
than locally on your machine, it can be useful to change from storing
relative paths to storing absolute paths instead. You can change this
setting by going to Project | Project Properties | General.

Chapter 2

[49]

To fix the layers, you need to correct the path in the Datasource column. This can
be done by double-clicking on the path text and typing in the correct path, or by
pressing the Browse button at the bottom of the dialog and selecting the new file
location in the file dialog that opens up.

A comfortable way to copy QGIS projects to other computers or share
QGIS projects and associated files with other users is provided by the
QConsolidate plugin. This plugin collects all the datasets used in the
project and saves them in one directory, which you can then move
around easily without breaking any paths.

Summary
In this chapter, you learned how to load spatial data from files, databases, and
web services. We saw how QGIS handles coordinate reference systems and had an
introduction to styling vector and raster layers, a topic that we will cover in more
detail in Chapter 5, Creating Great Maps. We also installed our first Python plugin, the
QuickMapServices plugin, and used it to load background maps into our project.
Finally, we took a look at QGIS project files and how to work with them efficiently.
In the following chapter, we will go into more detail and see how to create and edit
raster and vector data.

[51]

Data Creation and Editing
In this chapter, we will first create some new vector layers and explain how to
select features and take measurements. We will then continue with editing feature
geometries and attributes. After that, we will reproject vector and raster data and
convert between different file formats. We will also discuss how to join data from
text files and spreadsheets to our spatial data and how to use temporary scratch
layers for quick editing work. Moreover, we will take a look at common geometry
topology issues and how to detect and fix them, before we end this chapter on how
to add data to spatial databases.

Creating new vector layers
In this exercise, we'll create a new layer from scratch. QGIS offers a wide range
of functionalities to create different layers. The New menu under Layer lists the
functions needed to create new Shapefile and SpatiaLite layers, but we can also
create new database tables using the DB Manager plugin. The interfaces differ
slightly in order to accommodate the features supported by each format.

Let's create some new Shapefiles to see how it works:

1. New Shapefile layer, which can be accessed by going to Layer | Create
Layer or by pressing Ctrl + Shift + N, opens the New Vector Layer dialog
with options for different geometry types, CRS, and attributes.

 ° Creating a new Shapefile is really fast because all the mandatory
fields already have default values. By default, the tool will create
a new point layer in WGS84 (EPSG:4326) CRS (unless specified
otherwise in Settings | Options | CRS) and one integer field
called id.

Data Creation and Editing

[52]

2. Leaving everything at the default values, we can simply click on OK and
specify a filename. This creates a new Shapefile, and the new point layer
appears in the layer list.

3. Next, we also create one line and one polygon layer. We'll add some extra
fields to these layers. Besides integer fields (for whole numbers only),
Shapefiles also support strings (for text), decimal numbers (also referred to as
real), and dates (in ISO 8601 format, that is, 2016-12-24 for Christmas eve 2016).

4. To add a field, we only need to insert a name, select a type and width, and
click on Add to fields list.

For decimal numbers, we also have to define the Precision value,
which determines the number of digits after the comma. A Length
value of 3 with a Precision value of 1 will allow a value range
from -99.9 to +99.9.

5. The left-hand side of the following screenshot shows the New Vector Layer
dialog that was used to create my example polygon layer, which I called
new_polygons:

Chapter 3

[53]

6. All the new layers are empty so far, but we will create some features now. If we
want to add features to a layer, we first have to enable editing for that particular
layer. Editing can be turned on and off by any one of these ways: going to Layer
| Toggle editing, using Toggle editing in the layer name context menu, or
clicking on the Toggle editing button in the Digitizing toolbar.

You will notice that the layer's icon in the layer list changes to
reflect whether editing is on or off. When we turn on editing
for a layer, QGIS automatically enables the digitizing tools
suitable for the layer's geometry type.

7. Now, we can use the Add Feature tool in the editing toolbar to create new
features. To place a point, we can simply click on the map. We are then
prompted to fill in the attribute form, which you can see on the right-hand
side of the previous screenshot, and once we click on OK, the new feature
is created.

8. As with points, we can create new lines and polygons by placing nodes on
the map. To finish a line or polygon, we simply right-click on the map. Create
some features in each layer and then save your changes. We can reuse these
test layers in upcoming exercises.

New features and feature edits are saved permanently only after
we've clicked on the Save Layer Edits button in the Digitizing
toolbar, or once we have finished editing and confirmed that we
want to save the changes.

Working with feature selection tools
Selecting features is one of the core functions of any GIS, and it is useful to know
them before we venture into editing geometries and attributes. Depending on the use
case, selection tools come in many different flavors. QGIS offers three different kinds
of tools to select features using the mouse, an expression, or another layer.

Data Creation and Editing

[54]

Selecting features with the mouse
The first group of tools in the Attributes toolbar allows us to select features on the
map using the mouse. The following screenshot shows the Select Feature(s) tool. We
can select a single feature by clicking on it, or select multiple features by drawing a
rectangle. The other tools can be used to select features by drawing different shapes
(polygons, freehand areas, or circles) around the features. All features that intersect
with the drawn shape are selected.

Selecting features with expressions
The second type of select tool is called Select by Expression, and it is also available
in the Attribute toolbar. It selects features based on expressions that can contain
references and functions that use feature attributes and/or geometry. The list of
available functions in the center of the dialog is pretty long, but we can use the
search box at the top of the list to filter it by name and find the function we are
looking for faster. On the right-hand side of the window, we find the function help,
which explains the functionality and how to use the function in an expression. The
function list also shows the layer attribute fields, and by clicking on all unique or 10
samples, we can easily access their content. We can choose between creating a new
selection or adding to or deleting from an existing selection. Additionally, we can
choose to only select features from within an existing selection. Let's take a look at
some example expressions that you can build on and use in your own work:

• Using the lakes.shp file in our sample data, we can, for example, select
lakes with an area greater than 1,000 square miles by using a simple
"AREA_MI" > 1000.0 attribute query, as shown in the following screenshot.
Alternatively, we can use geometry functions such as $area > (1000.0 *
27878400). Note that the lakes.shp CRS uses feet, and therefore we have to
multiply by 27,878,400 to convert square feet to square miles.

Chapter 3

[55]

• We can also work with string functions, for example, to find lakes with long
names (such as length("NAMES") > 12) or lakes with names that contain s
or S (such as lower("NAMES") LIKE '%s%'); this function first converts the
names to lowercase and then looks for any appearance of s.

Selecting features using spatial queries
The third type of tool is called Spatial Query and allows us to select features in one
layer based on their location relative to features in a second layer. These tools can
be accessed by going to Vector | Research Tools | Select by location and Vector |
Spatial Query | Spatial Query. Enable it in Plugin Manager if you cannot find it in
the Vector menu. In general, we want to use the Spatial Query plugin as it supports
a variety of spatial operations such as Crosses, Equals, Intersects, Is disjoint,
Overlaps, Touches, and Contains, depending on the layer geometry type.

Data Creation and Editing

[56]

Let's test the Spatial Query plugin using railroads.shp and pipelines.shp from
the sample data. For example, we might want to find all railroad features that cross
a pipeline; therefore, we select the railroads layer, the Crosses operation, and the
pipelines layer. After we've clicked on Apply, the plugin presents us with the
query results. There is a list of IDs of the result features on the right-hand side of
the window, as you can see in the next screenshot. Below this list, we can check the
Zoom to item box, and QGIS will zoom into the feature that belongs to the selected
ID. Additionally, the plugin offers buttons for direct saving of all the resulting
features to a new layer:

Chapter 3

[57]

Editing vector geometries
Now that we know how to create and select features, we can take a closer look at the
other tools in the Digitizing and Advanced Digitizing toolbars.

Using basic digitizing tools
This is the basic Digitizing toolbar:

The Digitizing toolbar contains tools that we can use to create and move features
and nodes as well as delete, copy, cut, and paste features, as follows:

• The Add Feature tool allows us to create new features by placing feature
nodes on the map, which are connected by straight lines.

• Similarly, the Add Circular String tool allows us to create features where
consecutive nodes are connected by curved lines.

• With the Move Feature(s) tool, it is easy to move one or more features at
once by dragging them to the new location.

• Similarly, the Node Tool feature allows us to move one or more nodes of
the same feature. The first click activates the feature, while the second click
selects the node. Hold the mouse key down to drag the node to its new
location. Instead of moving only one node, we can also move an edge by
clicking and dragging the line. Finally, we can select and move multiple
nodes by holding down the Ctrl key.

• The Delete Selected, Cut Features, and Copy Features tools are active only if
one or more layer features are selected. Similarly, Paste Features works only
after a feature has been cut or copied.

Data Creation and Editing

[58]

Using advanced digitizing tools
The Advanced Digitizing toolbar offers very useful Undo and Redo functionalities
as well as additional tools for more involved geometry editing, as shown in the
following screenshot:

The Advanced Digitizing tools include the following:

• Rotate Feature(s) enables us to rotate one or more selected features around a
central point.

• Using the Simplify Feature tool, we can simplify/generalize feature
geometries by simply clicking on the feature and specifying a desired
tolerance in the pop-up window, as shown in the following screenshot,
where you can see the original geometry on the left-hand side and the
simplified geometry on the right-hand side:

• The following tools can be used to modify polygons. They allow us to add
rings, also known as holes, into existing polygons or add parts to them. The
Fill Ring tool is similar to Add Ring, but instead of just creating a hole, it
also creates a new feature that fills the hole. Of course, there are tools to
delete rings and parts well.

• The Reshape Features tool can be used to alter the geometry of a feature by
either cutting out or adding pieces. You can control the behavior by starting
to draw the new form inside the original feature to add a piece, or by starting
outside to cut out a piece, as shown in this example diagram:

Chapter 3

[59]

• The Offset Curve tool is only available for lines and allows us to displace a
line geometry by a given offset.

• The Split Features tool allows us to split one or more features into multiple
features along a cut line. Similarly, Split Parts allows us to split a feature into
multiple parts that still belong to the same multipolygon or multipolyline.

• The Merge Selected Features tool enables us to merge multiple features
while keeping control over which feature's attributes will be available in the
output feature.

• Similarly, Merge Attributes of Selected Features also lets us combine the
attributes of multiple features but without merging them into one feature.
Instead, all the original features remain as they were; the attribute values
are updated.

• Finally, Rotate Point Symbols is available only for point layers with the
Rotation field feature enabled (we will cover this feature in Chapter 5,
Creating Great Maps).

Using snapping to enable topologically
correct editing
One of the challenges of digitizing features by hand is avoiding undesired gaps or
overlapping features. To make it easier to avoid these issues, QGIS offers a snapping
functionality. To configure snapping, we go to Settings | Snapping options. The
following screenshot shows how to enable snapping for the Current layer. Similarly,
you can choose snapping modes for All layers or the Advanced mode, where you
can control the settings for each layer separately. In the example shown in the
following screenshot, we enable snapping To vertex. This means that digitizing tools
will automatically snap to vertices/nodes of existing features in the current layer.
Similarly, you can enable snapping To segment or To vertex and segment. When
snapping is enabled during digitizing, you will notice bold cross-shaped markers
appearing whenever you go close to a vertex or segment that can be snapped to:

Data Creation and Editing

[60]

Using measuring tools
Another core functionality of any GIS is provided by measurement tools. In QGIS,
we find the tools needed to measure lines, areas, and angles in the Attribute toolbar,
as shown in this screenshot:

The measurements are updated continuously while we draw measurement lines,
areas, or angles. When we draw a line with multiple segments, the tool shows the
length of each segment as well as the total length of all the segments put together.
To stop measuring, we can just right-click. If we want to change the measurement
units from meters to feet or from degrees to radians, we can do this by going to
Settings | Options | Map Tools.

Editing attributes
There are three main use cases of attribute editing:

• First, we might want to edit the attributes of a specific feature, for example,
to fix a wrong name

• Second, we might want to edit the attributes of a group of features
• Third, we might want to change the attributes of all features within a layer

Editing attributes in the attribute table
All three use cases are covered by the functionality available through the attribute
table. We can access it by going to Layer | Open Attribute Table, using the Open
Attribute Table button present in the Attributes toolbar, or in the layer name
context menu.

1. To change an attribute value, we always have to enable editing first.

Chapter 3

[61]

2. Then, we can double-click on any cell in the attribute table to activate the
input mode, as shown in the upper dialog of the following screenshot,
where I am editing NAME_2 of the first feature:

3. Pressing the Enter key confirms the change, but to save the new value
permanently, we also have to click on the Save Edit(s) button or press
Ctrl + S.

Besides the classic attribute table view, QGIS also supports a form view, which you
can see in the lower dialog of the previous image. You can switch between these two
views using the buttons in the bottom-right corner of the attribute table dialog.

Data Creation and Editing

[62]

In the attribute table, we also find tools for handling selections (from left
to right, starting at the fourth button): Delete selected features, Select
features using an expression, Unselect all, Move selection to top, Invert
selection, Pan map to the selected rows, Zoom map to the selected
rows, and Copy selected rows to clipboard. Another way to select
features in the attribute table is by clicking on the row number.
The next two buttons allow us to add and remove columns. When we
click on the Delete column button, we get a list of columns to choose
from. Similarly, the New column button brings up a dialog that we can
use to specify the name and data type of the new column.

Editing attributes in the feature form
Another option to edit the attributes of one feature is to open the attribute form
directly by clicking on the feature on the map using the Identify tool. By default,
the Identify tool displays the attribute values in read mode, but we can enable
the Auto open form option in the Identify Results panel, as shown here:

What you can see in the previous screenshot is the default feature attributes form
that QGIS creates automatically, but we are not limited to this basic form. By going
to Layer Properties | Fields section, we can configure the look and feel of the form
in greater detail. The Attribute editor layout options are (in an increasing level of
complexity) autogenerate, Drag and drop designer, and providing a .ui file. These
options are described in detail as follows.

Chapter 3

[63]

Creating a feature form using autogenerate
Autogenerate is the most basic option. You can assign a specific Edit widget and
Alias for each field; this will replace the default input field and label in the form. For
this example, we use the following edit widget types:

• Text Edit supports inserting one or more lines of text.
• Unique Values creates a drop-down list that allows the user to select one of

the values that have already been used in the attribute table. If the Editable
option is activated, the drop-down list is replaced by a text edit widget with
autocompletion support.

• Range creates an edit widget for numerical values from a specific range.

For the complete list of available Edit widget types, refer to
the user manual at http://docs.qgis.org/2.2/en/
docs/user_manual/working_with_vector/vector_
properties.html#fields-menu.

Designing a feature form using drag and drop
designer
This allows more control over the form layout. As you can see in the next screenshot,
the designer enables us to create tabs within the form and also makes it possible to
change the order of the form fields. The workflow is as follows:

1. Click on the plus button to add one or more tabs (for example, a Region tab,
as shown in the following screenshot).

2. On the left-hand side of the dialog, select the field that you want to add to
the form.

3. On the right-hand side, select the tab to which you want to add the field.
4. Click on the button with the icon of an arrow pointing to the right to add the

selected field to the selected tab.

http://docs.qgis.org/2.2/en/docs/user_manual/working_with_vector/vector_properties.html#fields-menu
http://docs.qgis.org/2.2/en/docs/user_manual/working_with_vector/vector_properties.html#fields-menu
http://docs.qgis.org/2.2/en/docs/user_manual/working_with_vector/vector_properties.html#fields-menu

Data Creation and Editing

[64]

5. You can reorder the fields in the form using the up and down arrow buttons
or, as the name suggests, by dragging and dropping the fields up or down:

Designing a feature form using a .ui file
This is the most advanced option. It enables you to use a Qt user interface designed
using, for example, the Qt Designer software. This allows a great deal of freedom in
designing the form layout and behavior.

Creating .ui files is out of the scope of this book, but you
can find more information about it at http://docs.qgis.
org/2.2/en/docs/training_manual/create_vector_
data/forms.html#hard-fa-creating-a-new-form.

http://docs.qgis.org/2.2/en/docs/training_manual/create_vector_data/forms.html#hard-fa-creating-a-new-form
http://docs.qgis.org/2.2/en/docs/training_manual/create_vector_data/forms.html#hard-fa-creating-a-new-form
http://docs.qgis.org/2.2/en/docs/training_manual/create_vector_data/forms.html#hard-fa-creating-a-new-form

Chapter 3

[65]

Calculating new attribute values
If we want to change the attributes of multiple or all features in a layer, editing
them manually usually isn't an option. This is what the Field calculator is good for.
We can access it using the Open field calculator button in the attribute table, or by
pressing Ctrl + I. In the Field calculator, we can choose to update only the selected
features or update all the features in the layer. Besides updating an existing field, we
can also create a new field. The function list is the same one that we explored when
we selected features by expression. We can use any of the functions and variables in
this list to populate a new field or update an existing one. Here are some example
expressions that are often used:

• We can create a sequential id column using the @row_number variable, which
populates a column with row numbers, as shown in the following screenshot:

• Another common use case is calculating a line's length or a polygon's area
using the $length and $area geometry functions, respectively

• Similarly, we can get point coordinates using $x and $y
• If we want to get the start point or end point of a line, we can use $x_at(0)

and $y_at(0), or $x_at(-1) and $y_at(-1), respectively

Data Creation and Editing

[66]

An alternative to the Field calculator—especially if you already know the formula
you want to use—is the field calculator bar, which you can find directly in the
Attribute table dialog right below the toolbar. In the next screenshot, you can see an
example that calculates the area of all census areas (use the New Field button to add
a Decimal number field called CENSUSAREA first). This example uses a CASE WHEN –
THEN – END expression to check whether the value of TYPE_2 is Census Area:

CASE WHEN TYPE_2 = 'Census Area' THEN $area / 27878400 END

An alternative solution would be to use the if() function instead.
If you use the CENSUSAREA attribute as the third parameter
(which defines the value that is returned if the condition evaluates
to false), the expression will only update those rows in which
TYPE_2 is Census Area and leave the other rows unchanged:

if(TYPE_2 = 'Census Area', $area / 27878400,
CENSUSAREA)

Alternatively, you can use NULL as a third parameter which will
overwrite all rows where TYPE_2 does not equal Census Area
with NULL:

if(TYPE_2 = 'Census Area', $area / 27878400, NULL)

Enter the formula and click on the Update All button to execute it:

Since it is not possible to directly change a field data type in a Shapefile or SpatiaLite
attribute table, the field calculator and calculator bar are also used to create new
fields with the desired properties and then populate them with the values from the
original column.

Chapter 3

[67]

Reprojecting and converting vector and
raster data
In Chapter 2, Viewing Spatial Data, we talked about CRS and the fact that QGIS offers
on the fly reprojection to display spatial datasets, which are stored in different CRS,
in the same map. Still, in some cases, we might want to permanently reproject a
dataset, for example, to geoprocess it later on.

In QGIS, reprojecting a vector or raster layer is done by simply saving it with a new
CRS. We can save a layer by going to Layer | Save as... or using Save as… in the
layer name context menu. Pick a target file format and filename, and then click on the
Select CRS button beside the CRS drop-down field to pick a new CRS.

Besides changing the CRS, the main use case of the Save vector/raster layer dialog,
as depicted in the following screenshot, is conversion between different file formats.
For example, we can load a Shapefile and export it as GeoJSON, MapInfo MIF, CSV,
and so on, or the other way around.

Data Creation and Editing

[68]

The Save raster layer dialog is also a convenient way to clip/crop rasters by a
bounding box, since we can specify which Extent we want to save.

Furthermore, the Save vector layer dialog features a Save only selected features
option, which enables us to save only selected features instead of all features of the
layer (this option is active only if there are actually some selected features in the layer).

Enabling Add saved file to map is very convenient because it
saves us the effort of going and loading the new file manually
after it has been saved.

Joining tabular data
In many real-life situations, we get additional non-spatial data in the form of
spreadsheets or text files. The good news is that we can load XLS files by simply
dragging them into QGIS from the file browser or using Add Vector Layer. Don't let
the wording fool you! It really works without any geometry data in the file. The file
can even contain more than one table. You will see the following dialog, which lets
you choose which table (or tables) you want to load:

QGIS will automatically recognize the names and data types of columns in an XLS
table. It's quite easy to tell because numerical values are aligned to the right in the
attribute table, as shown in this screenshot:

Chapter 3

[69]

We can also load tabular data from delimited text files, as we saw in Chapter 2,
Viewing Spatial Data, when we loaded a point layer from a delimited text file. To load
a delimited text file that contains only tabular data but no geometry information, we
just need to enable the No geometry (attribute table only) option.

Setting up a join in Layer Properties
After loading the tabular data from either the spreadsheet or text file, we can
continue to join this non-spatial data to a vector layer (for instance, our airports.
shp dataset, as shown in the following example). To do this, we go to the vector's
Layer Properties | Joins section. Here, we can add a new join by clicking on the
green plus button. All we have to do is select the tabular Join layer and Join field
(of the tabular layer), which will contain values that match those in the Target
field (of the vector layer). Additionally, we can—if we want to—select a subset of
the fields to be joined by enabling the Choose which fields are joined option. For
example, the settings shown in the following screenshot will add only the some
value field. Additionally, we use a Custom field name prefix instead of using the
entire join layer name, which would be the default option.

Data Creation and Editing

[70]

Checking join results in the attribute table
Once the join is added, we can see the extended attribute table and use the new
appended attributes (as shown in the following screenshot) for styling and labeling.
The way joins work in QGIS is as follows: the join layer's attributes are appended
to the original layer's attribute table. The number of features in the original layer is
not changed. Whenever there is a match between the join and the target field, the
attribute value is filled in; otherwise, you see NULL entries.

You can save the joined layer permanently using Save as… to create the new file.

Using temporary scratch layers
When you just want to quickly draw some features on the map, temporary scratch
layers are a great way of doing that without having to worry about file formats and
locations for your temporary data. Go to Layer | Create Layer | New Temporary
Scratch Layer... to create a new temporary scratch layer. As you can see in the
following screenshot, all we need to do to configure this temporary layer is pick a
Type for the geometry, a Layer name, and a CRS. Once the layer is created, we can
add features and attributes as we would with any other vector layer:

Chapter 3

[71]

As the name suggests, temporary scratch layers are temporary. This means that they
will vanish when you close the project.

If you want to preserve the data of your temporary layers, you
can either use Save as... to create a file or install the Memory
Layer Saver plugin, which will make layers with memory data
providers (such as temporary scratch layers) persistent so that they
are restored when a project is closed and reopened. The memory
provider data is saved in a portable binary format that is saved
with the .mldata extension alongside the project file.

Checking for topological errors and
fixing them
Sometimes, the data that we receive from different sources or data that results from
a chain of spatial processing steps can have problems. Topological errors can be
particularly annoying, since they can lead to a multitude of different problems when
using the data for analysis and further spatial processing. Therefore, it is important
to have tools that can check data for topological errors and to know ways to fix
discovered errors.

Data Creation and Editing

[72]

Finding errors with the Topology Checker
In QGIS, we can use the Topology Checker plugin; it is installed by default and is
accessible via the Vector menu Topology Checker entry (if you cannot find the menu
entry, you might have to enable the plugin in Plugin Manager). When the plugin is
activated, it adds a Topology Checker Panel to the QGIS window. This panel can be
used to configure and run different topology checks and will list the detected errors.

To see the Topology Checker in action, we create a temporary scratch layer
with polygon geometries and digitize some polygons, as shown in the following
screenshot. Make sure you use snapping to create polygons that touch but don't
overlap. These could, for example, represent a group of row houses. When the
polygons are ready, we can set up the topology rules we want to check for. Click
on the Configure button in Topology Checker Panel to open the Topology Rule
Settings dialog. Here, we can manage all the topology rules for our project data.
For example, in the following screenshot, you can see the rules we might want to
configure for our polygon layer, including these:

• Polygons must not overlap each other
• There must not be gaps between polygons
• There shouldn't be any duplicate geometries

Chapter 3

[73]

Once the rules are set up, we can close the settings dialog and click on the Validate All
button in Topology Checker Panel to start running the topology rule checks. If you
have been careful while creating the polygons, the checker will not find any errors and
the status at the bottom of Topology Checker Panel will display this message: 0 errors
were found. Let's change that by introducing some topology errors.

For example, if we move one vertex so that two polygons end up overlapping each
other and then click on Validate All, we get the error shown in the next screenshot.
Note that the error type and the affected layer and feature are displayed in
Topology Checker Panel. Additionally, since the Show errors option is enabled, the
problematic geometry part is highlighted in red on the map:

Of course, it is also possible to create rules that describe the relationship between
features in different layers. For example, the following screenshot shows a point and
a polygon layer where the rules state that each point should be inside a polygon and
each polygon should contain a point:

Data Creation and Editing

[74]

Selecting an error from the list of errors in the panel centres the map on the
problematic location so that we can start fixing it, for example, by moving
the lone point into the empty polygon.

Fixing invalid geometry errors
Sometimes, fixing all errors manually can be a lot of work. Luckily, certain errors
can be addressed automatically. For example, the common error of self-intersecting
polygons, which cause invalid geometry errors (as illustrated in the following
screenshot), is often the result of intersecting polygon nodes or edges. These issues
can often be resolved using a buffer tool (for example, Fixed distance buffer in
the Processing Toolbox, which we will discuss in more detail in Chapter 4, Spatial
Analysis) with the buffer Distance set to 0. Buffering will, for example, fix the self-
intersecting polygon on the left-hand side of the following screenshot by removing
the self-intersecting nodes and constructing a valid polygon with a hole (as depicted
on the right-hand side):

Chapter 3

[75]

Another common issue that can be fixed automatically is so-called sliver polygons.
These are small, and often quite thin, polygons that can be the result of spatial
processes such as intersection operations. To get rid of these sliver polygons, we can
use the v.clean tool with the Cleaning tool option set to rmarea (meaning "remove
area"), which is also available through the Processing Toolbox. In the example
shown in this screenshot, the Threshold value of 10000 tells the tool to remove all
polygons with an area less than 10,000 square meters by merging them with the
neighboring polygon with the longest common boundary:

For a thorough introduction and more details on the Processing Toolbox,
refer to Chapter 4, Spatial Analysis.

Data Creation and Editing

[76]

Adding data to spatial databases
In Chapter 2, Viewing Spatial Data, we saw how to view data from spatial databases.
Of course, we also want to be able to add data to our databases. This is where the DB
Manager plugin comes in handy. DB Manager is installed by default, and you can
find it in the Database menu (if DB Manager is not visible in the Database menu,
you might need to activate it in Plugin Manager).

The Tree panel on the left-hand side of the DB Manager dialog lists all available
database connections that have been configured so far. Since we have added a
connection to the test-2.3.sqlite SpatiaLite database in Chapter 2, Viewing Spatial
Data, this connection is listed in DB Manager, as shown in the next screenshot.

To add new data to this database, we just need to select the connection from the list
of available connections and then go to Table | Import layer/file. This will open
the Import vector layer dialog, where we can configure the import settings, such as
the name of the Table we want to create as well as additional options, including the
input data CRS (the Source SRID option) and table CRS (the Target SRID option).
By enabling these CRS options, we can reproject data while importing it. In the
example shown in the following screenshot, we import urban areas from a Shapefile
and reproject the data from EPSG:4326 (WGS84) to EPSG:32632 (WGS 84 / UTM
zone 32N), since this is the CRS used by the already existing tables:

Chapter 3

[77]

A handy shortcut for importing data into databases is by directly
dragging and dropping files from the main window Browser panel
to a database listed in DB Manager. This even works for multiple
selected files at once (hold down Ctrl on Windows/Ubuntu or cmd
on Mac to select more than one file in the Browser panel). When
you drop the files onto the desired database, an Import vector layer
dialog will appear, where you can configure the import.

Summary
In this chapter, you learned how to create new layers from scratch. We used a
selection of tools to create and edit feature geometries in different ways. Then,
we went into editing attributes of single features, feature selections, and whole
layers. Next, we reprojected both vector and raster layers, and you learned how
to convert between different file formats. We also covered tabular data and how it
can be loaded and joined to our spatial data. Furthermore, we explored the use of
temporary scratch layers and discussed how to check for topological errors in our
data and fix them. We finished this chapter with an example of importing new data
into a database.

In the following chapter, we will put our data to good use and see how to perform
different kinds of spatial analysis on raster and vector data. We will also take a
closer look at the Processing Toolbox, which has made its first appearance in
this chapter. You will learn how to use the tools and combine them to create
automated workflows.

[79]

Spatial Analysis
In this chapter, we will use QGIS to perform many typical geoprocessing and
spatial analysis tasks. We will start with raster processing and analysis tasks such
as clipping and terrain analysis. We will cover the essentials of converting between
raster and vector formats, and then continue with common vector geoprocessing
tasks, such as generating heatmaps and calculating area shares within a region. We
will also use the Processing modeler to create automated geoprocessing workflows.
Finally, we will finish the chapter with examples of how to use the power of spatial
databases to analyze spatial data in QGIS.

Analyzing raster data
Raster data, including but not limited to elevation models or remote sensing
imagery, is commonly used in many analyses. The following exercises show
common raster processing and analysis tasks such as clipping to a certain extent or
mask, creating relief and slope rasters from digital elevation models, and using the
raster calculator.

Clipping rasters
A common task in raster processing is clipping a raster with a polygon. This task is
well covered by the Clipper tool located in Raster | Extraction | Clipper. This tool
supports clipping to a specified extent as well as clipping using a polygon mask
layer, as follows:

• Extent can be set manually or by selecting it in the map. To do this, we just
click and drag the mouse to open a rectangle in the map area of the main
QGIS window.

• A mask layer can be any polygon layer that is currently loaded in the project
or any other polygon layer, which can be specified using Select…, right next
to the Mask layer drop-down list.

Spatial Analysis

[80]

If we only want to clip a raster to a certain extent (the current map
view extent or any other), we can also use the raster Save as...
functionality, as shown in Chapter 3, Data Creation and Editing.

For a quick exercise, we will clip the hillshade raster (SR_50M_alaska_nad.tif)
using the Alaska Shapefile (both from our sample data) as a mask layer. At the
bottom of the window, as shown in the following screenshot, we can see the concrete
gdalwarp command that QGIS uses to clip the raster. This is very useful if you also
want to learn how to use GDAL.

In Chapter 2, Viewing Spatial Data, we discussed that GDAL is one of the
libraries that QGIS uses to read and process raster data. You can find
the documentation of gdalwarp and all other GDAL utility programs
at http://www.gdal.org/gdal_utilities.html.

The default No data value is the no data value used in the input dataset or 0 if
nothing is specified, but we can override it if necessary. Another good option
is to Create an output alpha band, which will set all areas outside the mask to
transparent. This will add an extra band to the output raster that will control the
transparency of the rendered raster cells.

http://www.gdal.org/gdal_utilities.html

Chapter 4

[81]

A common source of error is forgetting to add the file format
extension to the Output file path (in our example, .tif for GeoTIFF).
Similarly, you can get errors if you try to overwrite an existing file. In
such cases, the best way to fix the error is to either choose a different
filename or delete the existing file first.

The resulting layer will be loaded automatically, since we have enabled the Load
into canvas when finished option. QGIS should also automatically recognize the
alpha layer that we created, and the raster areas that fall outside the Alaska landmass
should be transparent, as shown on the right-hand side in the previous screenshot. If,
for some reason, QGIS fails to automatically recognize the alpha layer, we can enable
it manually using the Transparency band option in the Transparency section of the
raster layer's properties, as shown in the following screenshot. This dialog is also the
right place to specify any No data value that we might want to be used:

Analyzing elevation/terrain data
To use terrain analysis tools, we need an elevation raster. If you don't have
any at hand, you can simply download a dataset from the NASA Shuttle Radar
Topography Mission (SRTM) using http://dwtkns.com/srtm/ or any of the
other SRTM download services.

If you want to replicate the results in the following exercise exactly,
then get the dataset called srtm_05_01.zip, which covers a small
part of Alaska.

http://dwtkns.com/srtm/

Spatial Analysis

[82]

Raster Terrain Analysis can be used to calculate Slope, Aspect, Hillshade,
Ruggedness Index, and Relief from elevation rasters. These tools are available
through the Raster Terrain Analysis plugin, which comes with QGIS by default, but
we have to enable it in the Plugin Manager in order to make it appear in the Raster
menu, as shown in the following screenshot:

Terrain Analysis includes the following tools:

• Slope: This tool calculates the slope angle for each cell in degrees (based on
the first-order derivative estimation).

• Aspect: This tool calculates the exposition (in degrees and counterclockwise,
starting with 0 for north).

• Hillshade: This tool creates a basic hillshade raster with lighted areas
and shadows.

• Relief: This tool creates a shaded relief map with varying colors for different
elevation ranges.

• Ruggedness Index: This tool calculates the ruggedness of a terrain, which
describes how flat or rocky an area is. The index is computed for each cell
using the algorithm presented by Riley and others (1999) by summarizing the
elevation changes within a 3 x 3 cell grid.

The results of terrain analysis steps depend on the resolution of
the input elevation data. It is recommendable to use small scale
elevation data, with for example, 30 meters x/y resolution,
particularly when computing ruggedness.

Chapter 4

[83]

An important element in all terrain analysis tools is the Z factor. The Z factor is
used if the x/y units are different from the z (elevation) unit. For example, if we
try to create a relief from elevation data where x/y are in degrees and z is in meters,
the resulting relief will look grossly exaggerated. The values for the z factor are
as follows:

• If x/y and z are either all in meters or all in feet, use the default z factor, 1.0
• If x/y are in degrees and z is in feet, use the z factor 370,400
• If x/y are in degrees and z is in meters, use the z factor 111,120

Since the SRTM rasters are provided in WGS84 EPSG:4326, we need to use a Z factor
of 111,120 in our exercise. Let's create a relief! The tool can calculate relief color
ranges automatically; we just need to click on Create automatically, as shown in the
following screenshot. Of course, we can still edit the elevation ranges' upper and
lower bounds as well as the colors by double-clicking on the respective list entry:

www.allitebooks.com

http://www.allitebooks.org

Spatial Analysis

[84]

While relief maps are three-banded rasters, which are primarily used for
visualization purposes, slope rasters are a common intermediate step in spatial
analysis workflows. We will now create a slope raster that we can use in our example
workflow through the following sections. The resulting slope raster will be loaded in
grayscale automatically, as shown in this screenshot:

Using the raster calculator
With the Raster calculator, we can create a new raster layer based on the values in
one or more rasters that are loaded in the current QGIS project. To access it, go to
Raster | Raster Calculator. All available raster bands are presented in a list in the
top-left corner of the dialog using the raster_name@band_number format.

Continuing from our previous exercise in which we created a slope raster, we can,
for example, find areas at elevations above 1,000 meters and with a slope of less than
5 degrees using the following expression:

"srtm_05_01@1" > 1000 AND "slope@1" < 5

You might have to adjust the values depending on the dataset you
are using. Check out the Accessing raster and vector layer statistics
section later in this chapter to learn how to find the minimum and
maximum values in your raster.

Chapter 4

[85]

Cells that meet both criteria of high elevation and evenness will be assigned a value
of 1 in the resulting raster, while cells that fail to meet even one criterion will be set
to 0. The only bigger areas with a value of 1 are found in the southern part of the
raster layer. You can see a section of the resulting raster (displayed in black over the
relief layer) to the right-hand side of the following screenshot:

Another typical use case is reclassifying a raster. For example, we might want to
reclassify the landcover.img raster in our sample data so that all areas with a
landcover class from 1 to 5 get the value 100, areas from 6 to 10 get 101, and areas
over 11 get a new value of 102. We will use the following code for this:

("landcover@1" > 0 AND "landcover@1" <= 6) * 100
+ ("landcover@1" >= 7 AND "landcover@1" <= 10) * 101
+ ("landcover@1" >= 11) * 102

Spatial Analysis

[86]

The preceding raster calculator expression has three parts, each consisting of a check
and a multiplication. For each cell, only one of the three checks can be true, and true
is represented as 1. Therefore, if a landcover cell has a value of 4, the first check will
be true and the expression will evaluate to 1*100 + 0*101 + 0*102 = 100.

Combining raster and vector data
Some analyses require a combination of raster and vector data. In the following
exercises, we will use both raster and vector datasets to explain how to convert
between these different data types, how to access layer and zonal statistics, and
finally how to create a raster heatmap from points.

Converting between rasters and vectors
Tools for converting between raster and vector formats can be accessed by going
to Raster | Conversion. These tools are called Rasterize (Vector to raster) and
Polygonize (Raster to vector). Like the raster clipper tool that we used before, these
tools are also based on GDAL and display the command at the bottom of the dialog.

Polygonize converts a raster into a polygon layer. Depending on the size of the
raster, the conversion can take some time. When the process is finished, QGIS will
notify us with a popup. For a quick test, we can, for example, convert the reclassified
landcover raster to polygons. The resulting vector polygon layer contains multiple
polygonal features with a single attribute, which we name lc; it depends on the
original raster value, as shown in the following screenshot:

Chapter 4

[87]

Using the Rasterize tool is very similar to using the Polygonize tool. The only
difference is that we get to specify the size of the resulting raster in pixels/cells. We
can also specify the attribute field, which will provide input for the raster cell value,
as shown in the next screenshot. In this case, the cat attribute of our alaska.shp
dataset is rather meaningless, but you get the idea of how the tool works:

Accessing raster and vector layer statistics
Whenever we get a new dataset, it is useful to examine the layer statistics to get an
idea of the data it contains, such as the minimum and maximum values, number of
features, and much more. QGIS offers a variety of tools to explore these values.

Raster layer statistics are readily available in the Layer Properties dialog,
specifically in the following tabs:

• Metadata: This tab shows the minimum and maximum cell values as well as
the mean and the standard deviation of the cell values.

Spatial Analysis

[88]

• Histogram: This tab presents the distribution of raster values. Use the
mouse to zoom into the histogram to see the details. For example, the
following screenshot shows the zoomed-in version of the histogram
for our landcover dataset:

For vector layers, we can get summary statistics using two tools in Vector |
Analysis Tools:

• Basics statistics is very useful for numerical fields. It calculates parameters
such as mean and median, min and max, the feature count n, the number
of unique values, and so on for all features of a layer or for selected
features only.

• List unique values is useful for getting all unique values of a certain field.

Chapter 4

[89]

In both tools, we can easily copy the results using Ctrl + C and paste them in a text
file or spreadsheet. The following image shows examples of exploring the contents of
our airports sample dataset:

Spatial Analysis

[90]

An alternative to the Basics statistics tool is the Statistics Panel, which you can
activate by going to View | Panels | Statistics Panel. As shown in the following
screenshot, this panel can be customized to show exactly those statistics that you
are interested in:

Computing zonal statistics
Instead of computing raster statistics for the entire layer, it is sometimes necessary
to compute statistics for selected regions. This is what the Zonal statistics plugin
is good for. This plugin is installed by default and can be enabled in the Plugin
Manager.

For example, we can compute elevation statistics for areas around each airport using
srtm_05_01.tif and airports.shp from our sample data:

1. First, we create the analysis areas around each airport using the Vector |
Geoprocessing Tools | Buffer(s) tool and a buffer size of 10,000 feet.

Chapter 4

[91]

2. Before we can use the Zonal statistics plugin, it is important to notice that
the buffer layer and the elevation raster use two different CRS (short for
Coordinate Reference System). If we simply went ahead, the resulting
statistics would be either empty or wrong. Therefore, we need to reproject
the buffer layer to the raster CRS (WGS84 EPSG:4326, for details on how to
change a layer CRS, see Chapter 3, Data Creation and Editing, in the Reprojecting
and converting vector and raster data section).

3. Now we can compute the statistics for the analysis areas using the Zonal
Statistics tool, which can be accessed by going to Raster | Zonal statistics.
Here, we can configure the desired Output column prefix (in our example,
we have chosen elev, which is short for elevation) and the Statistics to
calculate (for example, Mean, Minimum, and Maximum), as shown in the
following screenshot:

Spatial Analysis

[92]

4. After you click on OK, the selected statistics are appended to the polygon
layer attribute table, as shown in the following screenshot. We can see that
Big Mountain AFS is the airport with the highest mean elevation among the
four airports that fall within the extent of our elevation raster:

Creating a heatmap from points
Heatmaps are great for visualizing a distribution of points. To create them, QGIS
provides a simple-to-use Heatmap Plugin, which we have to activate in the Plugin
Manager, and then we can access it by going to Raster | Heatmap | Heatmap.
The plugin offers different Kernel shapes to choose from. The kernel is a moving
window of a specific size and shape that moves over an area of points to calculate
their local density. Additionally, the plugin allows us to control the output heatmap
raster size in cells (using the Rows and Columns settings) as well as the cell size.

Radius determines the distance around each point at which the
point will have an influence. Therefore, smaller radius values result
in heatmaps that show finer and smaller details, while larger values
result in smoother heatmaps with fewer details.
Additionally, Kernel shape controls the rate at which the influence of
a point decreases with increasing distance from the point. The kernel
shapes that are available in the Heatmap plugin are listed in the
following screenshot. For example, a Triweight kernel creates smaller
hotspots than the Epanechnikov kernel. For formal definitions of
the kernel functions, refer to http://en.wikipedia.org/wiki/
Kernel_(statistics).

http://en.wikipedia.org/wiki/Kernel_(statistics)
http://en.wikipedia.org/wiki/Kernel_(statistics)

Chapter 4

[93]

The following screenshot shows us how to create a heatmap of our airports.shp
sample with a kernel radius of 300,000 layer units, which in the case of our airport
data is in feet:

By default, the heatmap output will be rendered using the Singleband gray
render type (with low raster values in black and high values in white). To change
the style to something similar to what you saw in the previous screenshot, you can
do the following:

1. Change the heatmap raster layer render type to Singleband pseudocolor.
2. In the Generate new color map section on the right-hand side of the dialog,

select a color map you like, for example, the PuRd color map, as shown in the
next screenshot.

3. You can enter the Min and Max values for the color map manually, or have
them computed by clicking on Load in the Load min/max values section.

When loading the raster min/max values, keep an eye on the
settings. To get the actual min/max values of a raster layer, enable
Min/max, Full Extent, and Actual (slower) Accuracy. If you only
want the min/max values of the raster section that is currently
displayed on the map, use Current Extent instead.

Spatial Analysis

[94]

4. Click on Classify to add the color map classes to the list on the left-hand side
of the dialog.

5. Optionally, we can change the color of the first entry (for value 0) to white
(by double-clicking on the color in the list) to get a smooth transition from
the white map background to our heatmap.

Vector and raster analysis with
Processing
The most comprehensive set of spatial analysis tools is accessible via the Processing
plugin, which we can enable in the Plugin Manager. When this plugin is enabled,
we find a Processing menu, where we can activate the Toolbox, as shown in the
following screenshot. In the toolbox, it is easy to find spatial analysis tools by their
name thanks to the dynamic Search box at the top. This makes finding tools in the
toolbox easier than in the Vector or Raster menu. Another advantage of getting
accustomed to the Processing tools is that they can be automated in Python and in
geoprocessing models.

Chapter 4

[95]

In the following sections, we will cover a selection of the available geoprocessing
tools and see how we can use the modeler to automate our tasks.

Finding nearest neighbors
Finding nearest neighbors, for example, the airport nearest to a populated place, is a
common task in geoprocessing. To find the nearest neighbor and create connections
between input features and their nearest neighbor in another layer, we can use the
Distance to nearest hub tool.

As shown in the next screenshot, we use the populated places as Source points layer
and the airports as the Destination hubs layer. The Hub layer name attribute will
be added to the result's attribute table to identify the nearest feature. Therefore,
we select NAME to add the airport name to the populated places. There are two
options for Output shape type:

• Point: This option creates a point output layer with all points of the source
point layer, with new attributes for the nearest hub feature and the distance
to it

• Line to hub: This option creates a line output layer with connections
between all points of the source point layer and their corresponding
nearest hub feature

Spatial Analysis

[96]

It is recommended that you use Layer units as Measurement unit to avoid potential
issues with wrong measurements:

Converting between points, lines, and
polygons
It is often necessary to be able to convert between points, lines, and polygons, for
example, to create lines from a series of points, or to extract the nodes of polygons and
create a new point layer out of them. There are many tools that cover these different
use cases. The following table provides an overview of the tools that are available in
the Processing toolbox for conversion between points, lines, and polygons:

To points To lines To polygons
From points Points to path Convex hull

Concave hull
From lines Extract nodes Lines to polygons

Convex hull
From polygons Extract nodes

Polygon centroids
(Random points
inside a polygon)

Polygons to lines

Chapter 4

[97]

In general, it is easier to convert more complex representations to simpler ones
(polygons to lines, polygons to points, or lines to points) than conversion in the other
direction (points to lines, points to polygons, or lines to polygons). Here is a short
overview of these tools:

• Extract nodes: This is a very straightforward tool. It takes one input layer
with lines or polygons and creates a point layer that contains all the input
geometry nodes. The resulting points contain all the attributes of the original
line or polygon feature.

• Polygon centroids: This tool creates one centroid per polygon or
multipolygon. It is worth noting that it does not ensure that the centroid falls
within the polygon. For concave polygons, multipolygons, and polygons
with holes, the centroid can therefore fall outside the polygon.

• Random points inside polygon: This tool creates a certain number of points
at random locations inside the polygon.

• Points to path: To be able to create lines from points, the point layer needs
attributes that identify the line (Group field) and the order of points in the
line (Order field), as shown in this screenshot:

Spatial Analysis

[98]

• Convex hull: This tool creates a convex hull around the input points or lines.
The convex hull can be imagined as an area that contains all the input points
as well as all the connections between the input points.

• Concave hull: This tool creates a concave hull around the input points. The
concave hull is a polygon that represents the area occupied by the input points.
The concave hull is equal to or smaller than the convex hull. In this tool, we
can control the level of detail of the concave hull by changing the Threshold
parameter between 0 (very detailed) and 1 (which is equivalent to the convex
hull). The following screenshot shows a comparison between convex and
concave hulls (with the threshold set to 0.3) around our airport data:

• Lines to polygon: Finally, this tool can create polygons from lines that
enclose an area. Make sure that there are no gaps between the lines.
Otherwise, it will not work.

Identifying features in the proximity of other
features
One common spatial analysis task is to identify features in the proximity
of certain other features. One example would be to find all airports near rivers.
Using airports.shp and majrivers.shp from our sample data, we can find
airports within 5,000 feet of a river by using a combination of the Fixed distance
buffer and Select by location tools. Use the search box to find the tools in the
Processing Toolbox. The tool configurations for this example are shown in the
following screenshot:

Chapter 4

[99]

After buffering the airport point locations, the Select by location tool selects all the
airport buffers that intersect a river. As a result, 14 out of the 76 airports are selected.
This information is displayed in the information area at the bottom of the QGIS main
window, as shown in this screenshot:

Spatial Analysis

[100]

If you ever forget which settings you used or need to check whether you have used
the correct input layer, you can go to Processing | History. The ALGORITHM
section lists all the algorithms that we have been running as well as the used settings,
as shown in the following screenshot:

The commands listed under ALGORITHM can also be used to call Processing tools
from the QGIS Python console, which can be activated by going to Plugins | Python
Console. The Python commands shown in the following screenshot run the buffer
algorithm (processing.runalg) and load the result into the map (processing.load):

Chapter 4

[101]

Sampling a raster at point locations
Another common task is to sample a raster at specific point locations. Using
Processing, we can solve this problem with a GRASS tool called v.sample. To
use GRASS tools, make sure that GRASS is installed and Processing is configured
correctly under Processing | Options and configuration. On an OSGeo4W default
system, the configuration will look like what is shown here:

At the time of writing this book, GRASS 7.0.3RC1 is available in
OSGeo4W. As shown in the previous screenshot, there is also support for
the previous GRASS version 6.x, and Processing can be configured to use
its algorithms as well. In the toolbox, you will find the algorithms under
GRASS GIS 7 commands and GRASS commands (for GRASS 6.x).

Spatial Analysis

[102]

For this exercise, let's imagine we want to sample the landcover layer at the airport
locations of our sample data. All we have to do is specify the vector layer containing
the sample points and the raster layer that should be sampled. For this example,
we can leave all other settings at their default values, as shown in the following
screenshot. The tool not only samples the raster but also compares point attributes
with the sampled raster value. However, we don't need this comparison in our
current example:

Chapter 4

[103]

Mapping density with hexagonal grids
Mapping the density of points using a hexagonal grid has become quite a popular
alternative to creating heatmaps. Processing offers us a fast way to create such an
analysis. There is already a pre-made script called Hex grid from layer bounds,
which is available through the Processing scripts collection and can be downloaded
using the Get scripts from on-line scripts collection tool. As you can see in the
following screenshot, you just need to enable the script by ticking the checkbox and
clicking OK:

Then, we can use this script to create a hexagonal grid that covers all points in the
input layer. The dataset of populated places (popp.shp), is a good sample dataset
for this exercise. Once the grid is ready, we can run Count points in polygon to
calculate the statistics. The number of points will be stored in the NUMPOINTS
column if you use the settings shown in the following screenshot:

Spatial Analysis

[104]

Calculating area shares within a region
Another spatial analysis task we often encounter is calculating area shares within
a certain region, for example, landcover shares along one specific river. Using
majrivers.shp and trees.shp, we can calculate the share of wooded area in a
10,000-foot-wide strip of land along the Susitna River:

1. We first define the analysis region by selecting the river and buffering it.

QGIS Processing will only apply buffers to the selected features
of the input layer. This default behavior can be changed under
Processing | Options and configuration by disabling the Use
only selected features option. For the following examples,
please leave the option enabled.

To select the Susitna River, we use the Select by attribute tool. After running
the tool, you should see that our river of interest is selected and highlighted.

2. Then we can use the Fixed distance buffer tool to get the area within 5,000
feet along the river. Note that the Dissolve result option should be enabled
to ensure that the buffer result is one continuous polygon, as shown in the
following screenshot:

Chapter 4

[105]

3. Next, we calculate the size of the strip of land around our river. This can be
done using the Export/Add geometry columns tool, which adds the area and
perimeter to the attribute table.

4. Then, we can calculate the Intersection between the area along the river
and the wooded areas in trees.shp, as shown in the following screenshot.
The result of this operation is a layer that contains only those wooded areas
within the river buffer.

5. Using the Dissolve tool, we can recombine all areas from the intersection
results into one big polygon that represents the total wooded area around the
river. Note how we use the Unique ID field VEGDESC to only combine areas
with the same vegetation in order not to mix deciduous and mixed trees.

Spatial Analysis

[106]

6. Finally, we can calculate the final share of wooded area using the Advanced
Python field calculator. The formula value = $geom.area()/<area>
divides the area of the final polygon ($geom.area()) by the value in the
area attribute (<area>), which we created earlier by running Export/Add
geometry columns. As shown in the following screenshot, this calculation
results in a wood share of 0.31601 for Deciduous and 0.09666 for Mixed
Trees. Therefore, we can conclude that in total, 41.27 percent of the land
along the Susitna River is wooded:

Chapter 4

[107]

Batch-processing multiple datasets
Sometimes, we want to run the same tool repeatedly but with slightly different
settings. For this use case, Processing offers the Batch Processing functionality.
Let's use this tool to extract some samples from our airports layer using the
Random extract tool:

1. To access the batch processing functionality, right-click on the Random
extract tool in the toolbox and select Execute as batch process. This will
open the Batch Processing dialog.

2. Next, we configure the Input layer by clicking on the ... button and selecting
Select from open layers, as shown in the following screenshot:

3. This will open a small dialog in which we can select the airports layer and
click on OK.

4. To automatically fill in the other rows with the same input layer, we can
double-click on the table header of the corresponding column (which reads
Input layer).

5. Next, we configure the Method by selecting the Percentage of selected
features option and again double-clicking on the respective table header
to auto-fill the remaining rows.

6. The next parameter controls the Number/percentage of selected features.
For our exercise, we configure 10, 20, and 30 percent.

7. Last but not least, we need to configure the output files in the Extracted
(random) column. Click on the ... button, which will open a file dialog. There,
you can select the save location and filename (for example, extract) and
click on Save.

Spatial Analysis

[108]

8. This will open the Autofill settings dialog, which helps us to automatically
create distinct filenames for each run. Using the Fill with parameter values
mode with the Number/percentage of selected features parameter will
automatically append our parameter values (10, 20, and 30, respectively) to
the filename. This will result in extract10, extract20, and extract30, as
shown in the following screenshot:

9. Once everything is configured, click on the Run button and wait for all the
batch instructions to be processed and the results to be loaded into the project.

Automated geoprocessing with the graphical
modeler
Using the graphical modeler, we can turn entire geoprocessing and analysis
workflows into automated models. We can then use these models to run complex
geoprocessing tasks that involve multiple different tools in one go. To create a
model, we go to Processing | Graphical modeler to open the modeler, where we can
select from different Inputs and Algorithms for our model.

Chapter 4

[109]

Let's create a model that automates the creation of hexagonal heatmaps!

1. By double-clicking on the Vector layer entry in the Inputs list, we can add an
input field for the point layer. It's a good idea to use descriptive parameter
names (for example, hex cell size instead of just size for the parameter
that controls the size of the hexagonal grid cells) so that we can recognize
which input is first and which is later in the model. It is also useful to restrict
the Shape type field wherever appropriate. In our example, we restrict the
input to Point layers. This will enable Processing to pre-filter the available
layers and present us only the layers of the correct type.

2. The second input that we need is a Number field to specify the desired
hexagonal cell size, as shown in this screenshot:

3. After adding the inputs, we can now continue creating the model by
assembling the algorithms. In the Algorithms section, we can use the filter
at the top to narrow down our search for the correct algorithm. To add an
algorithm to the model, we simply double-click on the entry in the list of
algorithms. This opens the algorithm dialog, where we have to specify the
inputs and further algorithm-specific parameters.

Spatial Analysis

[110]

4. In our example, we want to use the point vector layer as the input layer
and the number input hex cell size as the cellsize parameter. We can access
the available inputs through the drop-down list, as shown in the following
screenshot. Alternatively, it's possible to hardcode parameters such as the cell
size by typing the desired value in the input field:

While adding the following algorithms, it is important to always
choose the correct input layer based on the previous processing
step. We can verify the workflow using the connections in the
model diagram that the modeler draws automatically.

Chapter 4

[111]

5. The final model will look like this:

6. To finish the model, we need to enter a model name (for example, Create
hexagonal heatmap) and a group name (for example, Learning QGIS).
Processing will use the group name to organize all the models that we create
into different toolbox groups. Once we have picked a name and group, we
can save the model and then run it.

7. After closing the modeler, we can run the saved models from the toolbox like
any other tool. It is even possible to use one model as a building block for
another model.

Spatial Analysis

[112]

Another useful feature is that we can specify a layer style that needs to be applied
to the processing results automatically. This default style can be set using Edit
rendering styles for outputs in the context menu of the created model in the
toolbox, as shown in the following screenshot:

Documenting and sharing models
Models can easily be copied from one QGIS installation to another and shared with
other users. To ensure the usability of the model, it is a good idea to write a short
documentation. Processing provides a convenient Help editor; it can be accessed
by clicking on the Edit model help button in the Processing modeler, as shown
in this screenshot:

Chapter 4

[113]

By default, the .model files are stored in your user directory. On Windows, it is
C:\Users\<your_user_name>\.qgis2\processing\models, and on Linux
and OS X, it is ~/.qgis2/processing/models.

You can copy these files and share them with others. To load a model from a file,
use the loading tool by going to Models | Tools | Add model from file in the
Processing Toolbox.

Leveraging the power of spatial
databases
Another approach to geoprocessing is to use the functionality provided by spatial
databases such as PostGIS and SpatiaLite. In the Loading data from databases section
of Chapter 2, Viewing Spatial Data, we discussed how to load data from a SpatiaLite
database. In this exercise, we will use SpatiaLite's built-in geoprocessing functions
to perform spatial analysis directly in the database and visualize the results in QGIS.
We will use the same SpatiaLite database that we downloaded in Chapter 2, Viewing
Spatial Data, from www.gaia-gis.it/spatialite-2.3.1/test-2.3.zip (4 MB).

Selecting by location in SpatiaLite
As an example, we will use SpatiaLite's spatial functions to get all highways that are
within 1 km distance from the city of Firenze:

1. To interact with the database, we use the DB Manager plugin, which can be
enabled in the Plugin Manager and is available via the Database menu.

If you have followed the Loading data from databases section in Chapter 2,
Viewing Spatial Data, you will see test-2.3.sqlite listed under
SpatiaLite in the tree on the left-hand side of the DB Manager dialog,
as shown in the next screenshot. If the database is not listed, refer to the
previously mentioned section to set up the database connection.

2. Next, we can open a Query tab using the SQL window toolbar button, by
going to Database | SQL window, or by pressing F2. The following SQL
query will select all highways that are within 1 km distance from the city
of Firenze:
SELECT *
FROM HighWays
WHERE PtDistWithin(
 HighWays.Geometry,

www.gaia-gis.it/spatialite-2.3.1/test-2.3.zip

Spatial Analysis

[114]

 (SELECT Geometry FROM Towns WHERE Name = 'Firenze'),
 1000
)

The SELECT Geometry FROM Towns WHERE Name = 'Firenze' subquery
selects the point geometry that represents the city of Firenze. This point is
then used in the PtDistWithin function to test for each highway geometry
and check whether it is within a distance of 1,000 meters.

An introduction to SQL is out of the scope of this book, but you can find
a thorough tutorial on using SpatiaLite at http://www.gaia-gis.it/
gaia-sins/spatialite-cookbook/index.html. Additionally, to
get an overview of all the spatial functionalities offered by SpatiaLite,
visit http://www.gaia-gis.it/gaia-sins/spatialite-sql-
4.2.0.html.

3. When the query is entered, we can click on Execute (F5) to run the query. The
query results will be displayed in a tabular form in the result section below
the SQL query input area, as shown in the following screenshot:

http://www.gaia-gis.it/gaia-sins/spatialite-cookbook/index.html
http://www.gaia-gis.it/gaia-sins/spatialite-cookbook/index.html
http://www.gaia-gis.it/gaia-sins/spatialite-sql-4.2.0.html
http://www.gaia-gis.it/gaia-sins/spatialite-sql-4.2.0.html

Chapter 4

[115]

4. To display the query results on the map, we need to activate the Load as
new layer option below the results table. Make sure you select the correct
Geometry column (Geometry).

5. Once you have configured these settings, you can click on Load now! to
load the query result as a new map layer. As you can see in the preceding
screenshot, only one of the highways (represented by the wide blue line) is
within 1 km of the city of Firenze.

Aggregating data in SpatiaLite
Another thing that databases are really good at is aggregating data. For example, the
following SQL query will count the number of towns per region:

SELECT Regions.Name, Regions.Geometry, count(*) as Count
FROM Regions
JOIN Towns
 ON Within(Towns.Geometry,Regions.Geometry)
GROUP BY Regions.Name

This can be used to create a new layer of regions that includes a Count attribute. This
tells the number of towns in the region, as shown in this screenshot:

Spatial Analysis

[116]

Although we have used SpatiaLite in this example, the tools and
workflow presented here work just as well with PostGIS databases.
It is worth noting, however, that SpatiaLite and PostGIS often use
slightly different function names. Therefore, it is usually necessary
to adjust the SQL queries accordingly.

Summary
In this chapter, we covered various raster and vector geoprocessing and
analysis tools and how to apply them in common tasks. We saw how to use the
Processing toolbox to run individual tools as well as the modeler to create complex
geoprocessing models from multiple tools. Using the modeler, we can automate our
workflows and increase our productivity, especially with respect to recurring tasks.
Finally, we also had a quick look at how to leverage the power of spatial databases to
perform spatial analysis.

In the following chapter, we will see how to bring all our knowledge together to
create beautiful maps using advanced styles and print map composition features.

[117]

Creating Great Maps
In this chapter, we will cover the important features that enable us to create great
maps. We will first go into advanced vector styling, building on what we covered
in Chapter 2, Viewing Spatial Data. Then, you will learn how to label features by
following examples for point labels as well as more advanced road labels with road
shield graphics. We will also cover how to tweak labels manually. Then, you will
get to know the print composer and how to use it to create printable maps and map
books. Finally, we will explain how to create web maps directly in QGIS to present
our results online.

If you want to get an idea about what kind of map you can
create using QGIS, visit the QGIS Map Showcase Flickr group at
https://www.flickr.com/groups/qgis/, which is dedicated
to maps created with QGIS without any further postprocessing.

Advanced vector styling
This section introduces more advanced vector styling features, building on the
basics that we covered in Chapter 2, Viewing Spatial Data. We will cover how
to create detailed custom visualizations using the following features:

• Graduated styles
• Categorized styles
• Rule-based styles
• Data-defined styles
• Heatmap styles
• 2.5D styles
• Layer effects

https://www.flickr.com/groups/qgis/

Creating Great Maps

[118]

Creating a graduated style
Graduated styles are great for visualizing distributions of numerical values in
choropleth or similar maps. The graduated renderer supports two methods:

• Color: This method changes the color of the feature according to the
configured attribute

• Size: This method changes the symbol size for the feature according to the
configured attribute (this option is only available for point and line layers)

In our sample data, there is a climate.shp file that contains locations and mean
temperature values. We can visualize this data using a graduated style by simply
selecting the T_F_MEAN value for the Column field and clicking on Classify. Using
the Color method, as shown in the following screenshot, we can pick a Color ramp
from the corresponding drop-down list. Additionally, we can reverse the order of the
colors within the color ramp using the Invert option:

Graduated styles are available in different classification modes, as follows:

• Equal Interval: This mode creates classes by splitting at equal intervals
between the maximum and minimum values found in the specified column.

• Quantile (Equal Count): This mode creates classes so that each class contains
an equal number of features.

Chapter 5

[119]

• Natural Breaks (Jenks): This mode uses the Jenks natural breaks algorithm to
create classes by reducing variance within classes and maximizing variance
between classes.

• Standard Deviation: This mode uses the column values' standard deviation
to create classes.

• Pretty Breaks: This mode is the only classification that doesn't strictly create
the specified number of classes. Instead, its main goal is to create class
boundaries that are round numbers.

We can also manually edit the class values by double-clicking on the values in the
list and changing the class bounds. A more convenient way to edit the classes is the
Histogram view, as shown in the next screenshot. Switch to the Histogram tab and
click on the Load values button in the bottom-right corner to enable the histogram.
You can now edit the class bounds by moving the vertical lines with your mouse.
You can also add new classes by adding a new vertical line, which you can do by
clicking on empty space in the histogram:

Besides the symbols that are drawn on the map, another important aspect of the
styling is the legend that goes with it. To customize the legend, we can define
Legend Format as well as the Precision (that is, the number of decimal places) that
should be displayed. In the Legend Format string, %1 will be replaced by the lower
limit of the class and %2 by the upper limit. You can change this string to suit your
needs, for example, to this: from %1 to %2. If you activate the Trim option, excess
trailing zeros will be removed as well.

Creating Great Maps

[120]

When we use the Size method, as shown in the following screenshot, the dialog
changes a little, and we can now configure the desired symbol sizes:

The next screenshot shows the results of using a Graduated renderer option with
five classes using the Equal Interval classification mode. The left-hand side shows
the results of the Color method (symbol color changes according to the T_F_MEAN
value), while the right-hand side shows the results of the Size method (symbol size
changes according to the T_F_MEAN value).

Note the checkboxes besides each symbol. They can be used
to selectively hide or show the features belonging to the
corresponding class.

Chapter 5

[121]

Creating and using color ramps
In the previous example, we used an existing color ramp to style our layer. Of
course, we can also create our own color ramps. To create a new color ramp, we
can scroll down the color ramp list to the New color ramp… entry. There are four
different color ramp types, which we can chose from:

• Gradient: With this type, we can create color maps with two or more colors.
The resulting color maps can be smooth gradients (using the Continuous
type option) or distinct colors (using the Discrete type option), as shown in
the following screenshot:

• Random: This type allows us to create a gradient with a certain number of
random colors

• ColorBrewer: This type provides access to the ColorBrewer color schemes

Creating Great Maps

[122]

• cpt-city: This type provides access to a wide variety of preconfigured color
schemes, including schemes for typography and bathymetry, as shown in
this screenshot:

To manage all our color ramps and symbols, we can go to Settings | Style Manager.
Here, we can add, delete, edit, export, or import color ramps and styles using
the corresponding buttons on the right-hand side of the dialog, as shown in the
following screenshot:

Chapter 5

[123]

Using categorized styles for nominal data
Just as graduated styles are very useful for visualizing numeric values, categorized
styles are great for text values or—more generally speaking—all kinds of values on a
nominal scale. A good example for this kind of data can be found in the trees.shp
file in our sample data. For each area, there is a VEGDESC value that describes the
type of forest found there. Using a categorized style, we can easily generate a style
with one symbol for every unique value in the VEGDESC column, as shown in the
following screenshot. Once we click on OK, the style is applied to our trees layer in
order to visualize the distribution of different tree types in the area:

Of course, every symbol is editable and can be customized. Just double-click on the
symbol preview to open the Symbol selector dialog, which allows you to select and
combine different symbols.

Creating Great Maps

[124]

Creating a rule-based style for road layers
With rule-based styles, we can create a layer style with a hierarchy of rules.
Rules can take into account anything from attribute values to scale and geometry
properties such as area or length. In this example, we will create a rule-based
renderer for the ne_10m_roads.shp file from Natural Earth (you can download it
from http://www.naturalearthdata.com/downloads/10m-cultural-vectors/
roads/). As you can see here, our style will contain different road styles for major
and secondary highways as well as scale-dependent styles:

As you can see in the preceding screenshot, on the first level of rules, we distinguish
between roads of "type" = 'Major Highway' and those of "type" = 'Secondary
Highway'. The next level of rules handles scale-dependence. To add this second
layer of rules, we can use the Refine selected rules button and select Add scales to
rule. We simply input one or more scale values at which we want the rule to be split.

Note that there are no symbols specified on the first rule level. If we
had symbols specified on the first level as well, the renderer would
draw two symbols over each other. While this can be useful in certain
cases, we don't want this effect right now. Symbols can be deactivated
in Rule properties, which is accessible by double-clicking on the rule
or clicking on the edit button below the rule's tree view (the button
between the plus and minus buttons).

http://www.naturalearthdata.com/downloads/10m-cultural-vectors/roads/
http://www.naturalearthdata.com/downloads/10m-cultural-vectors/roads/

Chapter 5

[125]

In the following screenshot, we can see the rule-based renderer and the scale rules
in action. While the left-hand side shows wider white roads with grey outlines for
secondary highways, the right-hand side shows the simpler symbology with thin
grey lines:

You can download the symbols used in this style by going to Settings
| Style Manager, clicking on the sharing button in the bottom-right
corner of the dialog, and selecting Import. The URL is https://raw.
githubusercontent.com/anitagraser/QGIS-resources/
master/qgis1.8/symbols/osm_symbols.xml. Paste the URL in
the Location textbox, click on Fetch Symbols, then click on Select all,
and finally click on Import. The dialog will look like what is shown in
the following screenshot:

https://raw.githubusercontent.com/anitagraser/QGIS-resources/master/qgis1.8/symbols/osm_symbols.xml
https://raw.githubusercontent.com/anitagraser/QGIS-resources/master/qgis1.8/symbols/osm_symbols.xml
https://raw.githubusercontent.com/anitagraser/QGIS-resources/master/qgis1.8/symbols/osm_symbols.xml

Creating Great Maps

[126]

Creating data-defined symbology
In previous examples, we created categories or rules to define how features are
drawn on a map. An alternative approach is to use values from the layer attribute
table to define the styling. This can be achieved using a QGIS feature called Data
defined override. These overrides can be configured using the corresponding
buttons next to each symbol property, as described in the following example.

In this example, we will again use the ne_10m_roads.shp file from Natural Earth.
The next screenshot shows a configuration that creates a style where the line's Pen
width depends on the feature's scalerank and the line Color depends on the toll
attribute. To set a data-defined override for a symbol property, you need to click on
the corresponding button, which is located right next to the property, and choose
Edit. The following two expressions are used:

• CASE WHEN toll = 1 THEN 'red' ELSE 'lightgray' END: This
expression evaluates the toll value. If it is 1, the line is drawn in red;
otherwise, it is drawn in gray.

• 2.5 / scalerank: This expression computes Pen width. Since a low scale
rank should be represented by a wider line, we use a division operation
instead of multiplication.

When data-defined overrides are active, the corresponding buttons are highlighted
in yellow with an ε sign on them, as shown in the following screenshot:

Chapter 5

[127]

In this example, you have seen that you can specify colors using color names such
as 'red', 'gold', and 'deepskyblue'. Another especially useful group of functions
for data-defined styles is the Color functions. There are functions for the following
color models:

• RGB: color_rgb(red, green, blue)
• HSL: color_hsl(hue, saturation, lightness)
• HSV: color_hsv(hue, saturation, value)
• CMYK: color_cmyk(cyan, magenta, yellow, black)

There are also functions for accessing the color ramps. Here are two examples of how
to use these functions:

• ramp_color('Reds', T_F_MEAN / 46): This expression returns a color
from the Reds color ramp depending on the T_F_MEAN value. Since the
second parameter has to be a value between 0 and 1, we divide the
T_F_MEAN value by the maximum value, 46.

Since users can add new color ramps or change existing ones,
the color ramps can vary between different QGIS installations.
Therefore, the ramp_color function may return different results
if the style or project file is used on a different computer.

• color_rgba(0, 0, 180, scale_linear(T_F_JUL - T_F_JAN, 20, 70,
0, 255)): This expression computes the color depending on the difference
between the July and January temperatures, T_F_JUL - T_F_JAN. The
difference value is transformed into a value between 0 and 255 by the
scale_linear function according to the following rule: any value up to 20
will be translated to 0, any value of 70 and above will be translated to 255,
and anything in between will be interpolated linearly. Bigger difference
values result in darker colors because of the higher alpha parameter value.

The alpha component in RGBA, HSLA, HSVA, and CMYKA
controls the transparency of the color. It can take on an integer
value from 0 (completely transparent) to 255 (opaque).

Creating Great Maps

[128]

Creating a dynamic heatmap style
In Chapter 4, Spatial Analysis, you learned how to create a heatmap raster. However,
there is a faster, more convenient way to achieve this look if you want a heatmap
only for displaying purposes (and not for further spatial analysis)—the Heatmap
renderer option.

The following screenshot shows a Heatmap renderer set up for our populated places
dataset, popp.shp. We can specify a color ramp that will be applied to the resulting
heatmap values between 0 and the defined Maximum value. If Maximum value is
set to Automatic, QGIS automatically computes the highest value in the heatmap.
As in the previously discussed heatmap tool, we can define point weights as well as
the kernel Radius (for an explanation of this term, check out Creating a heatmap from
points in Chapter 4, Spatial Analysis). The final Rendering quality option controls the
quality of the rendered output with coarse, big raster cells for the Fastest option and
a fine-grained look when set to Best:

Chapter 5

[129]

Creating a 2.5D style
If you want to create a pseudo-3D look, for example, to style building blocks or to
create a thematic map, try the 2.5D renderer. The next screenshot shows the current
configuration options that include controls for the feature's Height (in layer units),
the viewing Angle, and colors. Since this renderer is still being improved at the time
of writing this book, you might find additional options in this dialog when you see it
for yourself.

Once you have configured the 2.5D renderer to your liking, you can switch to
another renderer to, for example, create classified or graduated versions of symbols.

Creating Great Maps

[130]

Adding live layer effects
With layer effects, we can change the way our symbols look even further. Effects can
be added by enabling the Draw effects checkbox at the bottom of the symbol dialog,
as shown in the following screenshot. To configure the effects, click on the Star
button in the bottom-right corner of the dialog. The Effect Properties dialog offers
access to a wide range of Effect types:

• Blur: This effect creates a blurred, fuzzy version of the symbol.
• Colorise: This effect changes the color of the symbol.
• Source: This is the original unchanged symbol.
• Drop Shadow: This effect creates a shadow.
• Inner Glow: This effect creates a glow-like gradient that extends inwards,

starting from the symbol border.
• Inner Shadow: This effect creates a shadow that is restricted to the inside of

the symbol.
• Outer Glow: This effect creates a glow that radiates from the symbol outwards.
• Transform: This effect can be used to transform the symbol. The available

transformations include reflect, shear, scale, rotate, and translate:

Chapter 5

[131]

As you can see in the previous screenshot, we can combine multiple layer effects and
they are organized in effect layers in the list in the bottom-left corner of the Effect
Properties dialog.

Working with different styles
When we create elaborate styles, we might want to save them so that we can reuse
them in other projects or share them with other users. To save a style, click on the
Style button in the bottom-left corner of the style dialog and go to Save Style |
QGIS Layer Style File…, as shown in the following screenshot. This will create a
.qml file, which you can save anywhere, copy, and share with others. Similarly, to
use the .qml file, click on the Style button and select Load Style:

We can also save multiple different styles for one layer. For example, for our airports
layer, we might want one style that displays airports using plane symbols and
another style that renders a heatmap. To achieve this, we can do the following:

1. Configure the plane style.
2. Click on the Style button and select Add to add the current style to the list of

styles for this layer.

Creating Great Maps

[132]

3. In the pop-up dialog, enter a name for the new style, for example, planes.
4. Add another style by clicking on Style and Add and call it heatmap.
5. Now, you can change the renderer to Heatmap and configure it. Click on the

Apply button when ready.
6. In the Style button menu, you can now see both styles, as shown in the

next screenshot. Changing from one style to the other is now as simple as
selecting one of the two entries from the list at the bottom of this menu:

Finally, we can also access these layer styles through the layer context menu Styles
entry in the Layers Panel, as shown in the following screenshot. This context menu
also provides a way to copy and paste styles between layers using the Copy Style
and Paste Style entries, respectively. Furthermore, this context menu provides a
shortcut to quickly change the symbol color using a color wheel or by picking a color
from the Recent colors section:

Chapter 5

[133]

Labeling
We can activate labeling by going to Layer Properties | Labels, selecting Show
labels for this layer, and selecting the attribute field that we want to Label with.
This is all we need to do to display labels with default settings. While default labels
are great for a quick preview, we will usually want to customize labels if we create
visualizations for reports or standalone maps.

Using Expressions (the button that is right beside the attribute drop-down list),
we can format the label text to suit our needs. For example, the NAME field in our
sample airports.shp file contains text in uppercase. To display the airport names in
mixed case instead, we can set the title(NAME) expression, which will reformat the
name text in title case. We can also use multiple fields to create a label, for example,
combining the name and elevation in brackets using the concatenation operator (||),
as follows:

title(NAME) || ' (' || "ELEV" || ')'

Creating Great Maps

[134]

Note the use of simple quotation marks around text, such as ' (', and double
quotation marks around field names, such as "ELEV". The dialog will look like
what is shown in this screenshot:

The big preview area at the top of the dialog, titled Text/Buffer sample, shows
a preview of the current settings. The background color can be adjusted to test
readability on different backgrounds. Under the preview area, we find the different
label settings, which will be described in detail in the following sections.

Chapter 5

[135]

Customizing label text styles
In the Text section (shown in the previous screenshot), we can configure the text
style. Besides changing Font, Style, Size, Color, and Transparency, we can also
modify the Spacing between letters and words, as well as Blend mode, which works
like the layer blending mode that we covered in Chapter 2, Viewing Spatial Data.

Note the column of buttons on the right-hand side of every setting. Clicking on
these buttons allows us to create data-defined overrides, similar to those that we
discussed at the beginning of the chapter when we talked about advanced vector
styling. These data-defined overrides can be used, for example, to define different
label colors or change the label size depending on an individual feature's attribute
value or an expression.

Controlling label formatting
In the Formatting section, which is shown in the following screenshot, we can enable
multiline labels by specifying a Wrap on character. Additionally, we can control
Line height and Alignment. Besides the typical alignment options, the QGIS labeling
engine also provides a Follow label placement option, which ensures that multiline
labels are aligned towards the same side as the symbol the label belongs to:

Finally, the Formatted numbers option offers a shortcut to format numerical values
to a certain number of Decimal places.

Creating Great Maps

[136]

An alternative to wrapping text on a certain character is the wordwrap function,
available in expressions. It wraps the input string to a certain maximum or minimum
number of characters. The following screenshot shows an example of wrapping a
longer piece of text to a maximum of 22 characters per line:

Configuring label buffers, background, and
shadows
In the Buffer section, we can adjust the buffer Size, Color, and Transparency, as well
as Pen join style and Blend mode. With transparency and blending, we can improve
label readability without blocking out the underlying map too much, as shown in the
following screenshot.

In the Background section, we can add a background shape in the form of a
rectangle, square, circle, ellipsoid, or SVG. SVG backgrounds are great for creating
effects such as highway shields, which we will discuss shortly.

Similarly, in the Shadow section, we can add a shadow to our labels. We can control
everything from shadow direction to Color, Blur radius, Scale, and Transparency.

Controlling label placement
In the Placement section, we can configure which rules should be used to determine
where the labels are placed. The available automatic label placement options depend
on the layer geometry type.

Chapter 5

[137]

Configuring point labels
For point layers, we can choose from the following:

• The flexible Around point option tries to find the best position for labels
by distributing them around the points without overlaps. As you can see
in the following screenshot, some labels are put in the top-right corner of
their point symbol while others appear at different positions on the left (for
example, Anchorage Intl (129)) or right (for example, Big Lake (135)) side.

• The Offset from point option forces all labels to a certain position; for
example, all labels can be placed above their point symbol.

The following screenshot shows airport labels with a 50 percent transparent Buffer
and Drop Shadow, placed using Around point. The Label distance is 1 mm.

Configuring line labels
For line layers, we can choose from the following placement options:

• Parallel for straight labels that are rotated according to the line orientation
• Curved for labels that follow the shape of the line
• Horizontal for labels that keep a horizontal orientation, regardless of the

line orientation

For further fine-tuning, we can define whether the label should be placed Above
line, On line, or Below line, and how far above or below it should be placed using
Label distance.

Configuring polygon labels
For polygon layers, the placement options are as follows:

• Offset from centroid uses the polygon centroid as an anchor and works like
Offset from point for point layers

• Around centroid works in a manner similar to Around point

Creating Great Maps

[138]

• Horizontal places a horizontal label somewhere inside the polygon,
independent of the centroid

• Free fits a freely rotated label inside the polygon
• Using perimeter places the label on the polygon's outline

The following screenshot shows lake labels (lakes.shp) using the Multiple lines
feature wrapping on the empty space character, Center Alignment, a Letter spacing
of 2, and positioning using the Free option:

Placing labels manually
Besides automatic label placement, we also have the option to use data-defined
placement to position labels exactly where we want them to be. In the labeling
toolbar, we find tools for moving and rotating labels by hand. They are active
and available only for layers that have set up data-defined placement for at least
X and Y coordinates:

1. To start using the tools, we can simply add three new columns, label_x,
label_y, and label_rot to, for example, the airports.shp file. We don't
have to enter any values in the attribute table right now. The labeling engine
will check for values, and if it finds the attribute fields empty, it will simply
place the labels automatically.

2. Then, we can specify these columns in the label Placement section. Configure
the data-defined overrides by clicking on the buttons beside Coordinate X,
Coordinate Y, and Rotation, as shown in the following screenshot:

Chapter 5

[139]

3. By specifying data-defined placement, the labeling toolbar's tools are now
available (note that the editing mode has to be turned on), and we can use
the Move label and Rotate label tools to manipulate the labels on the map.
The changes are written back to the attribute table.

4. Try moving some labels, especially where they are placed closely together,
and watch how the automatically placed labels adapt to your changes.

Controlling label rendering
In the Rendering section, we can define Scale-based visibility limits to display
labels only at certain scales and Pixel size-based visibility to hide labels for small
features. Here, we can also tell the labeling engine to Show all labels for this layer
(including colliding labels), which are normally hidden by default.

The following example shows labels with road shields. You can download a blank
road shield SVG from http://upload.wikimedia.org/wikipedia/commons/c/c3/
Blank_shield.svg. Note how only Interstates are labeled. This can be achieved
using the Data defined Show label setting in the Rendering section with the
following expression:

"level" = 'Interstate'

http://upload.wikimedia.org/wikipedia/commons/c/c3/Blank_shield.svg
http://upload.wikimedia.org/wikipedia/commons/c/c3/Blank_shield.svg

Creating Great Maps

[140]

The labels are positioned using the Horizontal option (in the Placement section).
Additionally, Merge connected lines to avoid duplicate labels and Suppress
labeling of features smaller than are activated; for example, 5 mm helps avoid
clutter by not labeling pieces of road that are shorter than 5 mm in the current scale.

To set up the road shield, go to the Background section and select the blank shield
SVG from the folder you downloaded it in. To make sure that the label fits nicely
inside the shield, we additionally specify the Size type field as a buffer with a
Size of 1 mm. This makes the shield a little bigger than the label it contains.

If you click on Apply now, you will notice that the labels are not centered perfectly
inside the shields. To fix this, we apply a small Offset in the Y direction to the shield
position, as shown in the following screenshot. Additionally, it is recommended that
you deactivate any label buffers as they tend to block out parts of the shield, and we
don't need them anyway.

Chapter 5

[141]

Designing print maps
In QGIS, print maps are designed in the print composer. A QGIS project can contain
multiple composers, so it makes sense to pick descriptive names. Composers
are saved automatically whenever we save the project. To see a list of all the
compositions available in a project, go to Project | Composer Manager.

We can open a new composer by going to Project | New Print Composer or using
Ctrl + P. The composer window consists of the following:

• A preview area for the map composition displaying a blank page when a
new composer is created

• Panels for configuring Composition, Item properties, and Atlas generation,
as well as a Command history panel for quick undo and redo actions

• Toolbars to manage, save, and export compositions; navigate in the preview
area; as well as add and arrange different composer items

Once you have designed your print map the way you want it, you can save the
template to a composer template .qpt file by going to Composer | Save as template
and reuse it in other projects by going to Composer | Add Items from Template.

Creating a basic map
In this example, we will create a basic map with a scalebar, a north arrow, some
explanatory text, and a legend.

When we start the print composer, we first see the Composition panel on
the right-hand side. This panel gives us access to paper options such as size,
orientation, and number of pages. It is also the place to configure snapping
behavior and output resolution.

First, we add a map item to the paper using the Add new map button, or by going to
Layout | Add Map and drawing the map rectangle on the paper. Click on the paper,
keep the mouse button pressed down, and drag the rectangle open. We can move
and resize the map using the mouse and the Select/Move item tools. Alternatively, it
is possible to configure all the map settings in the Item properties panel.

Creating Great Maps

[142]

The Item properties panel's content depends on the currently selected composition
item. If a map item is selected, we can adjust the map's Scale and Extents as well as
the Position and size tool of the map item itself. At a Scale of 10,000,000 (with the
CRS set to EPSG:2964), we can more or less fit a map of Alaska on an A4-size paper,
as shown in the following screenshot. To move the area that is displayed within the
map item and change the map scale, we can use the Move item content tool.

Chapter 5

[143]

Adding a scalebar
After the map looks like what we want it to, we can add a scalebar using the Add
new scalebar button or by going to Layout | Add Scalebar and clicking on the
map. The Item properties panel now displays the scalebar's properties, which are
similar to what you can see in the next screenshot. Since we can add multiple map
items to one composition, it is important to specify which map the scale belongs to.
The second main property is the scalebar style, which allows us to choose between
different scalebar types, or a Numeric type for a simple textual representation, such
as 1:10,000,000. Using the Units properties, we can convert the map units in feet or
meters to something more manageable, such as miles or kilometers. The Segments
properties control the number of segments and the size of a single segment in the
scalebar. Further, the properties control the scalebar's color, font, background,
and so on.

Creating Great Maps

[144]

Adding a North arrow image
North arrows can be added to a composition using the Add Image button or by
going to Layout | Add image and clicking on the paper. To use one of the SVGs
that are part of the QGIS installation, open the Search directories section in the Item
properties panel. It might take a while for QGIS to load the previews of the images
in the SVG folder. You can pick a North arrow from the list of images or select your
own image by clicking on the button next to the Image source input. More map
decorations, such as arrows or rectangle, triangle, and ellipse shapes can be added
using the appropriate toolbar buttons: Add Arrow, Add Rectangle, and so on.

Adding a legend
Legends are another vital map element. We can use the Add new legend button or go
to Layout | Add legend to add a default legend with entries for all currently visible
map layers. Legend entries can be reorganized (sorted or added to groups), edited,
and removed from the legend items' properties. Using the Wrap text on option, we
can split long labels on multiple rows. The following screenshot shows the context
menu that allows us to change the style (Hidden, Group, or Subgroup) of an entry.
The corresponding font, size, and color are configurable in the Fonts section.

Chapter 5

[145]

Additionally, the legend in this example is divided into three Columns, as you can
see in the bottom-right section of the following screenshot. By default, QGIS tries to
keep all entries of one layer in a single column, but we can override this behavior by
enabling Split layers.

Adding explanatory text to the map
To add text to the map, we can use the Add new label button or go to Layout |
Add label. Simple labels display all text using the same font. By enabling Render as
HTML, we can create more elaborate labels with headers, lists, different colors, and
highlights in bold or italics using normal HTML notation. Here is an example:

<h1>Alaska</h1>
<p>The name <i>"Alaska"</i> means "the mainland".</p>
one list entryanother entry
<p style="font-size:70%;">[% format_date($now ,'yyyy-mm-dd')%]</p>

Creating Great Maps

[146]

Labels can also contain expressions such as these:

• [% $now %]: This expression inserts the current timestamp, which can
be formatted using the format_date function, as shown in the following
screenshot

• [% $page %] of [% $numpages %]: This expression can be used to insert
page numbers in compositions with multiple pages

Adding map grids and frames
Other common features of maps are grids and frames. Every map item can have one
or more grids. Click on the + button in the Grids section to add a grid. The Interval
and Offset values have to be specified in map units. We can choose between the
following Grid types:

• A normal Solid grid with customizable lines
• Crosses at specified intervals with customizable styles
• Customizable Markers at specified intervals
• Frame and annotation only will hide the grid while still displaying the frame

and coordinate annotations

For Grid frame, we can select from the following Frame styles:

• Zebra, with customizable line and fill colors, as shown in the following
screenshot

• Interior ticks, Exterior ticks, or Interior and exterior ticks for tick marks
pointing inside the map, outside it, or in both directions

• Line border for a simple line frame

Chapter 5

[147]

Using Draw coordinates, we can label the grid with the corresponding coordinates.
The labels can be aligned horizontally or vertically and placed inside or outside the
frame, as shown here:

Creating Great Maps

[148]

Creating overview maps
Maps that show an area close up are often accompanied by a second map that tells
the reader where the area is located in a larger context. To create such an overview
map, we add a second map item and an overview by clicking on the + button in the
Overviews section. By setting the Map frame, we can define which detail map's
extent should be highlighted. By clicking on the + button again, we can add more
map frames to the overview map. The following screenshot shows an example
with two detail maps both of which are added to an overview map. To distinguish
between the two maps, the overview highlights are color-coded (by changing the
overview Frame style) to match the colors of the frames of the detail maps.

Every map item in a composition can display a different combination
of layers. Generally, map items in a composer are synced with the
map in the main QGIS window. So, if we turn a layer off in the main
window, it is removed from the print composer map as well. However,
we can stop this automatic synchronization by enabling Lock layers for
a map item in the map item's properties.

Chapter 5

[149]

Adding more details with attribute tables and
HTML frames
To insert additional details into the map, the composer also offers the possibility of
adding an attribute table to the composition using the Add attribute table button or
by going to Layout | Add attribute table. By enabling Show only features visible
within a map, we can filter the table and display only the relevant results. Additional
filter expressions can be set using the Filter with option. Sorting (by name for
example, as shown in the following screenshot) and renaming of columns is possible
via the Attributes button. To customize the header row with bold and centered text,
go to the Fonts and text styling section and change the Table heading settings.

Even more advanced content can be added using the Add html frame button. We
can point the item's URL reference to any HTML page on our local machines or
online, and the content (text and images as displayed in a web browser) will be
displayed on the composer page.

Creating Great Maps

[150]

Creating a map series using the Atlas feature
With the print composer's Atlas feature, we can create a series of maps using one
print composition. The tool will create one output (which can be image files, PDFs,
or multiple pages in one PDF) for every feature in the so-called Coverage layer.

Atlas can control and update multiple map items within one composition. To enable
Atlas for a map item, we have to enable the Controlled by atlas option in the Item
properties of the map item. When we use the Fixed scale option in the Controlled
by atlas section, all maps will be rendered using the same scale. If we need a more
flexible output, we can switch to the Margin around feature option instead, which
zooms to every Coverage layer feature and renders it in addition to the specified
margin surrounding area.

To finish the configuration, we switch to the Atlas generation panel. As mentioned
before, Atlas will create one map for every feature in the layer configured in
the Coverage layer dropdown. Features in the coverage layer can be displayed
like regular features or hidden by enabling Hidden coverage layer. Adding an
expression to the Feature filtering option or enabling the Sort by option makes it
possible to further fine-tune the results. The Output field can be one image or PDF
for each coverage layer feature, or you can create a multipage PDF by enabling
Single file export when possible before going to Composer | Export as PDF.

Once these configurations are finished, we can preview the map series by enabling
the Preview Atlas button, which you can see in the top-left corner of the following
screenshot. The arrow buttons next to the preview button are used to navigate
between the Atlas maps.

Chapter 5

[151]

Presenting your maps online
Besides print maps, web maps are another popular way of publishing maps. In this
section, we will use different QGIS plugins to create different types of web map.

Exporting a web map
To create web maps from within QGIS, we can use the qgis2web plugin, which we
have to install using the Plugin Manager. Once it is installed, go to Web | qgis2web
| Create web map to start it. qgis2web supports the two most popular open source
web mapping libraries: OpenLayers 3, and Leaflet.

The following screenshot shows an example of our airports dataset. In this example,
we are using the Leaflet library (as configured in the bottom-left corner of the
following screenshot) because at the time of writing this book, only Leaflet supports
SVG markers:

1. In the top-left corner, you can configure which layers from your project
should be displayed on the web map, as well as the Info popup content,
which is displayed when the user clicks on or hovers over a feature
(depending on the Show popups on hover setting).

2. In the bottom-right corner, you can pick a background map for your web
map. Pick one and click on the Update preview button to see the result.

Creating Great Maps

[152]

3. In the bottom-left corner, you can further configure the web map. All
available settings are documented in the Help tab, so the content is not
reproduced here. Again, don't forget to click on the Update preview button
when you make changes.

When you are happy with the configuration, click on the Export button. This
will save the web map at the location specified as the Export folder and open the
resulting web map in your web browser. You can copy the contents in the Export
folder to a web server to publish the map.

Chapter 5

[153]

Creating map tiles
Another popular way to share maps on the Web is map tiles. These are basically just
collections of images. These image tiles are typically 256 × 256 pixels and are placed
side by side in order to create an illusion of a very large, seamless map image. Each
tile has a z coordinate that describes its zoom level and x and y coordinates that
describe its position within a square grid for that zoom level. On zoom level 0 (z0),
the whole world fits in one tile. From there on, each consecutive zoom level is related
to the previous one by a power of 4. This means z0 contains 1 tile, z1 contains 4 tiles,
and z2 contains 16 tiles, and so on.

In QGIS, we can use the QTiles plugin, which has to be installed using the Plugin
Manager, to create map tiles for our project. Once it is installed, you can go to
Plugins | QTiles to start it. The following screenshot shows the plugin dialog where
we can configure the Output location, the Extent of the map that we want to export
as tiles, as well as the Zoom levels we want to create tiles for.

Creating Great Maps

[154]

When you click on OK, the plugin will create a .zip file containing all tiles. Using
map tiles in web mapping libraries is out of the scope of this book. Please refer to the
documentation of your web mapping library for instructions on how to embed the
tiles. If you are using Leaflet, for example, you can refer to https://switch2osm.
org/using-tiles/getting-started-with-leaflet for detailed instructions.

Exporting a 3D web map
To create stunning 3D web maps, we need the Qgis2threejs plugin, which we can
install using the Plugin Manager.

For example, we can use our srtm_05_01.tif elevation dataset to create a
3D view of that part of Alaska. The following screenshot shows the configuration
of DEM Layer in the Qgis2threejs dialog. By selecting Display type as Map canvas
image, we furthermore define that the current map image (which is shown on the
right-hand side of the dialog) will be draped over the 3D surface:

https://switch2osm.org/using-tiles/getting-started-with-leaflet
https://switch2osm.org/using-tiles/getting-started-with-leaflet

Chapter 5

[155]

Besides creating a 3D surface, this plugin can also label features. For example, we can
add our airports and label them with their names, as shown in the next screenshot.
By setting Label height to Height from point, we let the plugin determine
automatically where to place the label, but of course, you can manually override this
by changing to Fixed value or one of the feature attributes.

If you click on Run now, the plugin will create the export and open the 3D map in
your web browser. On the first try, it is quite likely that the surface looks too flat.
Luckily, this can be changed easily by adjusting the Vertical exaggeration setting in
the World section of the plugin configuration. The following example was created
with a Vertical exaggeration of 10:

Qgis2threejs exports all files to the location specified in the Output HTML file path.
You can copy the contents in that folder on a web server to publish the map.

Creating Great Maps

[156]

Summary
In this chapter, we took a closer look at how we can create more complex maps
using advanced vector layer styles, such as categorized or rule-based styles. We also
covered the automatic and manual feature labeling options available in QGIS. This
chapter also showed you how to create printable maps using the print composer and
introduced the Atlas functionality for creating map books. Finally, we created web
maps, which we can publish online.

Congratulations! In the chapters so far, you have learned how to install and use
QGIS to create, edit, and analyze spatial data and how to present it in an effective
manner. In the following and final chapter, we will take a look at expanding QGIS
functionality using Python.

[157]

Extending QGIS with Python
This chapter is an introduction to scripting QGIS with Python. Of course, a
full-blown Python tutorial would be out of scope for this book. The examples here
therefore assume a minimum proficiency of working with Python. Python is a very
accessible programming language even if you are just getting started, and it has
gained a lot of popularity in both the open source and proprietary GIS world, for
example, ESRI's ArcPy or PyQGIS. QGIS currently supports Python 2.7, but there
are plans to support Python 3 in the upcoming QGIS 3.x series. We will start with an
introduction to actions and then move on to the QGIS Python Console, before we go
into more advanced development of custom tools for the Processing Toolbox and an
explanation of how to create our own plugins.

Adding functionality using actions
Actions are a convenient way of adding custom functionality to QGIS. Actions are
created for specific layers, for example, our populated places dataset, popp.shp.
Therefore, to create actions, we go to Layer Properties | Actions. There are different
types of actions, such as the following:

• Generic actions start external processes; for example, you run command-line
applications such as ogr2ogr

ogr2ogr is a command-line tool that can be used to convert
file formats and, at the same time, perform operations such
as spatial or attribute selections and reprojecting.

• Python actions execute Python scripts

Extending QGIS with Python

[158]

• Open actions open a file using your computer's configured default
application, that is, your PDF viewing application for .pdf files or your
browser for websites

• Operating system (Mac, Windows, and Unix) actions work like generic
actions but are restricted to the respective operating system

Configuring your first Python action
Click on the Add default actions button on the right-hand side of the dialog to add
some example actions to your popp layer. This is really handy to get started with
actions. For example, the Python action called Selected field's value will display the
specified attribute's value when we use the action tool. All that we need to do before
we can give this action a try is update it so that it accesses a valid attribute of our
layer. For example, we can make it display the popp layer's TYPE attribute value in a
message box, as shown in the next screenshot:

1. Select the Selected field's value action in Action list.
2. Edit the Action code at the bottom of the dialog. You can manually enter the

attribute name or select it from the drop-down list and click on Insert field.
3. To save the changes, click on Update selected action:

Chapter 6

[159]

To use this action, close the Layer Properties dialog and click on the drop-down
arrow next to the Run Feature Action button. This will expand the list of available
layer actions, as shown in the following screenshot:

Click on the Selected field's value entry and then click on a layer feature. This will
open a pop-up dialog in which the action will output the feature's TYPE value. Of
course, we can also make this action output more information, for example, by
extending it to this:

QtGui.QMessageBox.information(None, "Current field's value",
"Type: [% "TYPE" %] \n[% "F_CODEDESC" %]")

This will display the TYPE value on the first line and the F_CODEDESC value on the
second line.

Extending QGIS with Python

[160]

Opening files using actions
To open files directly from within QGIS, we use the Open actions. If you added the
default actions in the previous exercise, your layer will already have an Open file
action. The action is as simple as [% "PATH" %] for opening the file path specified in
the layer's path attribute. Since none of our sample datasets contain a path attribute,
we'll add one now to test this feature. Check out Chapter 3, Data Creation and Editing,
if you need to know the details of how to add a new attribute. For example, the
paths added in the following screenshot will open the default image viewer and PDF
viewer application, respectively:

While the previous example uses absolute paths stored in the attributes, you can also
use relative paths by changing the action code so that it completes the partial path
stored in the attribute value; for example, you can use C:\temp\[% "TYPE" %].png
to open .png files that are named according to the TYPE attribute values.

Opening a web browser using actions
Another type of useful Open action is opening the web browser and accessing
certain websites. For example, consider this action:

http://www.google.com/search?q=[% "TYPE" %]

It will open your default web browser and search for the TYPE value using Google,
and this action:.

https://en.wikipedia.org/w/index.php?search=[% "TYPE" %]

will search on Wikipedia.

Chapter 6

[161]

Getting to know the Python Console
The most direct way to interact with the QGIS API (short for Application
Programming Interface) is through the Python Console, which can be opened by
going to Plugins | Python Console. As you can see in the following screenshot, the
Python Console is displayed within a new panel below the map:

Our access point for interaction with the application, project, and data is the iface
object. To get a list of all the functions available for iface, type help(iface).
Alternatively, this information is available online in the API documentation at
http://qgis.org/api/classQgisInterface.html.

Loading and exploring datasets
One of the first things we will want to do is to load some data. For example, to load a
vector layer, we use the addVectorLayer() function of iface:

v_layer =
iface.addVectorLayer('C:/Users/anita/Documents/Geodata/qgis_sample_
data/shapefiles/airports.shp','airports','ogr')

http://qgis.org/api/classQgisInterface.html

Extending QGIS with Python

[162]

When we execute this command, airports.shp will be loaded using the ogr
driver and added to the map under the layer name of airports. Additionally, this
function returns the created layer object. Using this layer object—which we stored
in v_layer—we can access vector layer functions, such as name(), which returns the
layer name and is displayed in the Layers list:

v_layer.name()

This is the output:

u'airports'

The u in front of the airports layer name shows that the name
is returned as a Unicode string.

Of course, the next logical step is to look at the layer's features. The number of
features can be accessed using featureCount():

v_layer.featureCount()

Here is the output:

76L

This shows us that the airport layer contains 76 features. The L in the end shows
that it's a numerical value of the long type. In our next step, we will access these
features. This is possible using the getFeatures() function, which returns a
QgsFeatureIterator object. With a simple for loop, we can then print the
attributes() of all features in our layer:

my_features = v_layer.getFeatures()
for feature in my_features:
 print feature.attributes()

This is the output:

[1, u'US00157', 78.0, u'Airport/Airfield', u'PA', u'NOATAK' ...
[2, u'US00229', 264.0, u'Airport/Airfield', u'PA', u'AMBLER'...
[3, u'US00186', 585.0, u'Airport/Airfield', u'PABT', u'BETTL...
...

When using the preceding code snippet, it is worth noting that the Python
syntax requires proper indentation. This means that, for example, the
content of the for loop has to be indented, as shown in the preceding
code. If Python encounters such errors, it will raise an Indentation Error.

Chapter 6

[163]

You might have noticed that attributes() shows us the attribute values, but we
don't know the field names yet. To get the field names, we use this code:

for field in v_layer.fields():
 print field.name()

The output is as follows:

ID
fk_region
ELEV
NAME
USE

Once we know the field names, we can access specific feature attributes, for example,
NAME:

for feature in v_layer.getFeatures():

 print feature.attribute('NAME')

This is the output:

NOATAK
AMBLER
BETTLES
...

A quick solution to, for example, sum up the elevation values is as follows:

sum([feature.attribute('ELEV') for feature in
v_layer.getFeatures()])

Here is the output:

22758.0

In the previous example, we took advantage of the fact that Python
allows us to create a list by writing a for loop inside square
brackets. This is called list comprehension, and you can read
more about it at https://docs.python.org/2/tutorial/
datastructures.html#list-comprehensions.

https://docs.python.org/2/tutorial/datastructures.html#list-comprehensions
https://docs.python.org/2/tutorial/datastructures.html#list-comprehensions

Extending QGIS with Python

[164]

Loading raster data is very similar to loading vector data and is done using
addRasterLayer():

r_layer = iface.addRasterLayer('C:/Users/anita/Documents/Geodata/qgis_
sample_data/raster/SR_50M_alaska_nad.tif','hillshade')
r_layer.name()

The following is the output:

u'hillshade'

To get the raster layer's size in pixels we can use the width() and height()
functions, like this:

r_layer.width(), r_layer.height()

Here is the output:

(1754, 1394)

If we want to know more about the raster values, we use the layer's data provider
object, which provides access to the raster band statistics. It's worth noting that
we have to use bandStatistics(1) instead of bandStatistics(0) to access the
statistics of a single-band raster, such as our hillshade layer (for example, for the
maximum value):

r_layer.dataProvider().bandStatistics(1).maximumValue

The output is as follows:

251.0

Other values that can be accessed like this are minimumValue, range, stdDev, and
sum. For a full list, use this line:

help(r_layer.dataProvider().bandStatistics(1))

Styling layers
Since we now know how to load data, we can continue to style the layers. The
simplest option is to load a premade style (a .qml file):

v_layer.loadNamedStyle('C:/temp/planes.qml')
v_layer.triggerRepaint()

Make sure that you call triggerRepaint() to ensure that the map is redrawn to
reflect your changes.

Chapter 6

[165]

You can create planes.qml by saving the airport style you created in
Chapter 2, Viewing Spatial Data (by going to Layer Properties | Style |
Save Style | QGIS Layer Style File), or use any other style you like.

Of course, we can also create a style in code. Let's take a look at a basic single symbol
renderer. We create a simple symbol with one layer, for example, a yellow diamond:

from PyQt4.QtGui import QColor
symbol = QgsMarkerSymbolV2()
symbol.symbolLayer(0).setName('diamond')
symbol.symbolLayer(0).setSize(10)
symbol.symbolLayer(0).setColor(QColor('#ffff00'))
v_layer.rendererV2().setSymbol(symbol)
v_layer.triggerRepaint()

A much more advanced approach is to create a rule-based renderer. We discussed
the basics of rule-based renderers in Chapter 5, Creating Great Maps. The following
example creates two rules: one for civil-use airports and one for all other airports.
Due to the length of this script, I recommend that you use the Python Console
editor, which you can open by clicking on the Show editor button, as shown in the
following screenshot:

Extending QGIS with Python

[166]

Each rule in this example has a name, a filter expression, and a symbol color. Note
how the rules are appended to the renderer's root rule:

from PyQt4.QtGui import QColor
rules = [['Civil','USE LIKE \'%Civil%\'','green'], ['Other','USE
NOT LIKE \'%Civil%\'','red']]
symbol = QgsSymbolV2.defaultSymbol(v_layer.geometryType())
renderer = QgsRuleBasedRendererV2(symbol)
root_rule = renderer.rootRule()
for label, expression, color_name in rules:
 rule = root_rule.children()[0].clone()
 rule.setLabel(label)
 rule.setFilterExpression(expression)
 rule.symbol().setColor(QColor(color_name))
 root_rule.appendChild(rule)
root_rule.removeChildAt(0)
v_layer.setRendererV2(renderer)
v_layer.triggerRepaint()

To run the script, click on the Run script button at the bottom of the editor toolbar.

If you are interested in reading more about styling vector layers,
I recommend Joshua Arnott's post at http://snorf.net/
blog/2014/03/04/symbology-of-vector-layers-in-
qgis-python-plugins/.

Filtering data
To filter vector layer features programmatically, we can specify a subset string.
This is the same as defining a Feature subset query in in the Layer Properties |
General section. For example, we can choose to display airports only if their
names start with an A:

v_layer.setSubsetString("NAME LIKE 'A%'")

To remove the filter, just set an empty subset string:

v_layer.setSubsetString("")

http://snorf.net/blog/2014/03/04/symbology-of-vector-layers-in-qgis-python-plugins/
http://snorf.net/blog/2014/03/04/symbology-of-vector-layers-in-qgis-python-plugins/
http://snorf.net/blog/2014/03/04/symbology-of-vector-layers-in-qgis-python-plugins/

Chapter 6

[167]

Creating a memory layer
A great way to create a temporary vector layer is by using so-called memory layers.
Memory layers are a good option for temporary analysis output or visualizations.
They are the scripting equivalent of temporary scratch layers, which we used in
Chapter 3, Data Creation and Editing. Like temporary scratch layers, memory layers
exist within a QGIS session and are destroyed when QGIS is closed. In the following
example, we create a memory layer and add a polygon feature to it.

Basically, a memory layer is a QgsVectorLayer like any other. However, the
provider (the third parameter) is not 'ogr' as in the previous example of loading a
file, but 'memory'. Instead of a file path, the first parameter is a definition string that
specifies the geometry type, the CRS, and the attribute table fields (in this case, one
integer field called MYNUM and one string field called MYTXT):

mem_layer =
QgsVectorLayer("Polygon?crs=epsg:4326&field=MYNUM:integer&field=MYTXT:
string", "temp_layer", "memory")
if not mem_layer.isValid():
 raise Exception("Failed to create memory layer")

Once we have created the QgsVectorLayer object, we can start adding features to its
data provider:

mem_layer_provider = mem_layer.dataProvider()
my_polygon = QgsFeature()
my_polygon.setGeometry(
 QgsGeometry.fromRect(QgsRectangle(16,48,17,49)))
my_polygon.setAttributes([10,"hello world"])
mem_layer_provider.addFeatures([my_polygon])
QgsMapLayerRegistry.instance().addMapLayer(mem_layer)

Note how we first create a blank QgsFeature, to which we then add
geometry and attributes using setGeometry() and setAttributes(),
respectively. When we add the layer to QgsMapLayerRegistry, the
layer is rendered on the map.

Extending QGIS with Python

[168]

Exporting map images
The simplest option for saving the current map is by using the scripting equivalent
of Save as Image (under Project). This will export the current map to an image file in
the same resolution as the map area in the QGIS application window:

iface.mapCanvas().saveAsImage('C:/temp/simple_export.png')

If we want more control over the size and resolution of the exported image, we need
a few more lines of code. The following example shows how we can create our own
QgsMapRendererCustomPainterJob object and configure to our own liking using
custom QgsMapSettings for size (width and height), resolution (dpi), map extent,
and map layers:

from PyQt4.QtGui import QImage, QPainter
from PyQt4.QtCore import QSize
configure the output image
width = 800
height = 600
dpi = 92
img = QImage(QSize(width, height), QImage.Format_RGB32)
img.setDotsPerMeterX(dpi / 25.4 * 1000)
img.setDotsPerMeterY(dpi / 25.4 * 1000)
get the map layers and extent
layers = [layer.id() for layer in
iface.legendInterface().layers()]
extent = iface.mapCanvas().extent()
configure map settings for export
mapSettings = QgsMapSettings()
mapSettings.setMapUnits(0)
mapSettings.setExtent(extent)
mapSettings.setOutputDpi(dpi)
mapSettings.setOutputSize(QSize(width, height))
mapSettings.setLayers(layers)
mapSettings.setFlags(QgsMapSettings.Antialiasing |
QgsMapSettings.UseAdvancedEffects |
QgsMapSettings.ForceVectorOutput | QgsMapSettings.DrawLabeling)
configure and run painter
p = QPainter()
p.begin(img)
mapRenderer = QgsMapRendererCustomPainterJob(mapSettings, p)
mapRenderer.start()
mapRenderer.waitForFinished()
p.end()
save the result
img.save("C:/temp/custom_export.png","png")

Chapter 6

[169]

Creating custom geoprocessing scripts
using Python
In Chapter 4, Spatial Analysis, we used the tools of Processing Toolbox to analyze our
data, but we are not limited to these tools. We can expand processing with our own
scripts. The advantages of processing scripts over normal Python scripts, such as the
ones we saw in the previous section, are as follows:

• Processing automatically generates a graphical user interface for the script to
configure the script parameters

• Processing scripts can be used in Graphical modeler to create geoprocessing
models

As the following screenshot shows, the Scripts section is initially empty, except for
some Tools to add and create new scripts:

Extending QGIS with Python

[170]

Writing your first Processing script
We will create our first simple script; which fetches some layer information. To get
started, double-click on the Create new script entry in Scripts | Tools. This opens an
empty Script editor dialog. The following screenshot shows the Script editor with a
short script that prints the input layer's name on the Python Console:

The first line means our script will be put into the Learning QGIS group of scripts,
as shown in the following screenshot. The double hashes (##) are Processing syntax
and they indicate that the line contains Processing-specific information rather than
Python code. The script name is created from the filename you chose when you
saved the script. For this example, I have saved the script as my_first_script.py.
The second line defines the script input, a vector layer in this case. On the following
line, we use Processing's getObject() function to get access to the input layer object,
and finally the layer name is printed on the Python Console.

You can run the script either directly from within the editor by clicking on the Run
algorithm button, or by double-clicking on the entry in the Processing Toolbox. If
you want to change the code, use Edit script from the entry context menu, as shown
in this screenshot:

Chapter 6

[171]

A good way of learning how to write custom scripts for
Processing is to take a look at existing scripts, for example, at
https://github.com/qgis/QGIS-Processing/tree/
master/scripts. This is the official script repository, where
you can also download scripts using the built-in Get scripts from
on-line scripts collection tool in the Processing Toolbox.

Writing a script with vector layer output
Of course, in most cases, we don't want to just output something on the Python
Console. That is why the following example shows how to create a vector layer.
More specifically, the script creates square polygons around the points in the input
layer. The numeric size input parameter controls the size of the squares in the
output vector layer. The default size that will be displayed in the automatically
generated dialog is set to 1000000:

##Learning QGIS=group
##input_layer=vector
##size=number 1000000
##squares=output vector
from qgis.core import *
from processing.tools.vector import VectorWriter
get the input layer and its fields
my_layer = processing.getObject(input_layer)
fields = my_layer.dataProvider().fields()
create the output vector writer with the same fields
writer = VectorWriter(squares, None, fields, QGis.WKBPolygon,
my_layer.crs())
create output features
feat = QgsFeature()
for input_feature in my_layer.getFeatures():
 # copy attributes from the input point feature
 attributes = input_feature.attributes()
 feat.setAttributes(attributes)
 # create square polygons
 point = input_feature.geometry().asPoint()
 xmin = point.x() - size/2
 ymin = point.y() - size/2
 square = QgsRectangle(xmin,ymin,xmin+size,ymin+size)
 feat.setGeometry(QgsGeometry.fromRect(square))
 writer.addFeature(feat)
del writer

https://github.com/qgis/QGIS-Processing/tree/master/scripts
https://github.com/qgis/QGIS-Processing/tree/master/scripts

Extending QGIS with Python

[172]

In this script, we use a VectorWriter to write the output vector layer. The
parameters for creating a VectorWriter object are fileName, encoding, fields,
geometryType, and crs.

The available geometry types are QGis.WKBPoint, QGis.
WKBLineString, QGis.WKBPolygon, QGis.WKBMultiPoint,
QGis.WKBMultiLineString, and QGis.WKBMultiPolygon.
You can also get this list of geometry types by typing
VectorWriter.TYPE_MAP in the Python Console.

Note how we use the fields of the input layer (my_layer.dataProvider().
fields()) to create the VectorWriter. This ensures that the output layer has the
same fields (attribute table columns) as the input layer. Similarly, for each feature in
the input layer, we copy its attribute values (input_feature.attributes()) to the
corresponding output feature.

After running the script, the resulting layer will be loaded into QGIS and listed using
the output parameter name; in this case, the layer is called squares. The following
screenshot shows the automatically generated input dialog as well as the output of
the script when applied to the airports from our sample dataset:

Chapter 6

[173]

Visualizing the script progress
Especially when executing complex scripts that take a while to finish, it is good
practice to display the progress of the script execution in a progress bar. To add a
progress bar to the previous script, we can add the following lines of code before
and inside the for loop that loops through the input features:

i = 0
n = my_layer.featureCount()
for input_feature in my_layer.getFeatures():
 progress.setPercentage(int(100*i/n))
 i+=1

Note that we initialize the i counter before the loop and
increase it inside the loop after updating the progress bar
using progress.setPercentage().

Developing your first plugin
When you want to implement interactive tools or very specific graphical user
interfaces, it is time to look into plugin development. In the previous exercises, we
introduced the QGIS Python API. Therefore, we can now focus on the necessary
steps to get our first QGIS plugin started. The great thing about creating plugins for
QGIS is that there is a plugin for this! It's called Plugin Builder. And while you are at
it, also install Plugin Reloader, which is very useful for plugin developers. Because
it lets you quickly reload your plugin without having to restart QGIS every time
you make changes to the code. When you have installed both plugins, your Plugins
toolbar will look like this:

Before we can get started, we also need to install Qt Designer, which is the
application we will use to design the user interface. If you are using Windows, I
recommend WinPython (http://winpython.github.io/) version 2.7.10.3 (the
latest version with Python 2.7 at the time of writing this book), which provides Qt
Designer and Spyder (an integrated development environment for Python). On
Ubuntu, you can install Qt Designer using sudo apt-get install qt4-designer.
On Mac, you can get the Qt Creator installer (which includes Qt Designer) from
http://qt-project.org/downloads.

http://winpython.github.io/
http://qt-project.org/downloads

Extending QGIS with Python

[174]

Creating the plugin template with Plugin
Builder
Plugin Builder will create all the files that we need for our plugin. To create a plugin
template, follow these steps:

1. Start Plugin Builder and input the basic plugin information, including:
 ° Class name (one word in camel case; that is, each word starts with an

upper case letter)
 ° Plugin name (a short description)
 ° Module name (the Python module name for the plugin)

When you hover your mouse over the input fields in the Plugin Builder
dialog, it displays help information, as shown in the following screenshot:

2. Click on Next to get to the About dialog, where you can enter a more
detailed description of what your plugin does. Since we are planning to
create the first plugin for learning purposes only, we can just put some
random text here and click on Next.

Chapter 6

[175]

3. Now we can select a plugin Template and specify a Text for the menu
item as well as which Menu the plugin should be listed in, as shown in the
following screenshot. The available templates include Tool button with
dialog, Tool button with dock widget, and Processing provider. In this
exercise, we'll create a Tool button with dialog and click on Next:

4. The following dialog presents checkboxes, where we can chose which
non-essential plugin files should be created. You can select any subset
of the provided options and click on Next.

Extending QGIS with Python

[176]

5. In the next dialog, we need to specify the plugin Bug tracker and the code
Repository. Again, since we are creating this plugin only for learning
purposes, I'm just making up some URLs in the next screenshot, but you
should use the appropriate trackers and code repositories if you are planning
to make your plugin publicly available:

6. Once you click on Next, you will be asked to select a folder to store the
plugin. You can save it directly in the QGIS plugin folder, ~\.qgis2\
python\plugins on Windows, or ~/.qgis2/python/plugins on
Linux and Mac.

7. Once you have selected the plugin folder, it displays a Plugin Builder
Results confirmation dialog, which confirms the location of your plugin
folder as well as the location of your QGIS plugin folder. As mentioned
earlier, I saved directly in the QGIS plugin folder, as you can see in the
following screenshot. If you have saved in a different location, you can now
move the plugin folder into the QGIS plugins folder to make sure that QGIS
can find and load it:

Chapter 6

[177]

One thing we still have to do is prepare the icon for the plugin toolbar. This requires
us to compile the resources.qrc file, which Plugin Builder created automatically,
to turn the icon into usable Python code. This is done on the command line. On
Windows, I recommend using the OSGeo4W shell, because it makes sure that the
environment variables are set in such a way that the necessary tools can be found.
Navigate to the plugin folder and run this:

pyrcc4 -o resources.py resources.qrc

You can replace the default icon (icon.png) to add your
own plugin icon. Afterwards, you just have to recompile
resources_rc.qrc as shown previously.

Extending QGIS with Python

[178]

Restart QGIS and you should now see your plugin listed in the Plugin Manager,
as shown here:

Activate your plugin in the Plugin Manager and you should see it listed in the
Plugins menu. When you start your plugin, it will display a blank dialog that
is just waiting for you to customize it.

Customizing the plugin GUI
To customize the blank default plugin dialog, we use Qt Designer. You can find the
dialog file in the plugin folder. In my case, it is called my_first_plugin_dialog_
base.ui (derived from the module name I specified in Plugin Builder). When you
open your plugin's .ui file in Qt Designer, you will see the blank dialog. Now you
can start adding widgets by dragging and dropping them from the Widget Box on the
left-hand side of the Qt Designer window. In the following screenshot, you can see that
I added a Label and a drop-down list widget (listed as Combo Box in the Widgetbox).
You can change the label text to Layer by double-clicking on the default label text.
Additionally, it is good practice to assign descriptive names to the widget objects;
for example, I renamed the combobox to layerCombo, as you can see here in the
bottom-right corner:

Chapter 6

[179]

Once you are finished with the changes to the plugin dialog, you can save them.
Then you can go back to QGIS. In QGIS, you can now configure Plugin Reloader by
clicking on the Choose a plugin to be reloaded button in the Plugins toolbar and
selecting your plugin. If you now click on the Reload Plugin button and the press
your plugin button, your new plugin dialog will be displayed.

Implementing plugin functionality
As you have certainly noticed, the layer combobox is still empty. To populate
the combobox with a list of loaded layers, we need to add a few lines of code to
my_first_plugin.py (located in the plugin folder). More specifically, we expand
the run() method:

def run(self):
 """Run method that performs all the real work"""
 # show the dialog
 self.dlg.show()
 # clear the combo box to list only current layers
 self.dlg.layerCombo.clear()
 # get the layers and add them to the combo box
 layers = QgsMapLayerRegistry.instance().mapLayers().values()
 for layer in layers:
 if layer.type() == QgsMapLayer.VectorLayer:
 self.dlg.layerCombo.addItem(layer.name(), layer)
 # Run the dialog event loop
 result = self.dlg.exec_()

Extending QGIS with Python

[180]

 # See if OK was pressed
 if result:
 # Check which layer was selected
 index = self.dlg.layerCombo.currentIndex()
 layer = self.dlg.layerCombo.itemData(index)
 # Display information about the layer
 QMessageBox.information(self.iface.mainWindow(),"Learning
QGIS","%s has %d features." %(layer.name(),layer.featureCount()))

You also have to add the following import line at the top of the script to avoid
NameErrors concerning QgsMapLayerRegistry and QMessageBox:

from qgis.core import *
from PyQt4.QtGui import QMessageBox

Once you are done with the changes to my_first_plugin.py, you can save the file
and use the Reload Plugin button in QGIS to reload your plugin. If you start your
plugin now, the combobox will be populated with a list of all layers in the current
QGIS project, and when you click on OK, you will see a message box displaying the
number of features in the selected layer.

Creating a custom map tool
While the previous exercise showed how to create a custom GUI that enables
the user to interact with QGIS, in this exercise, we will go one step further and
implement our own custom map tool similar to the default Identify tool. This means
that the user can click on the map and the tool reports which feature on the map was
clicked on.

To this end, we create another Tool button with dialog plugin template called
MyFirstMapTool. For this tool, we do not need to create a dialog. Instead, we have
to write a bit more code than we did in the previous example. First, we create our
custom map tool class, which we call IdentifyFeatureTool. Besides the __init__()
constructor, this tool has a function called canvasReleaseEvent() that defines the
actions of the tool when the mouse button is released (that is, when you let go of the
mouse button after pressing it):

class IdentifyFeatureTool(QgsMapToolIdentify):
 def __init__(self, canvas):
 QgsMapToolIdentify.__init__(self, canvas)
 def canvasReleaseEvent(self, mouseEvent):
 print "canvasReleaseEvent"
 # get features at the current mouse position
 results = self.identify(mouseEvent.x(),mouseEvent.y(),
 self.TopDownStopAtFirst, self.VectorLayer)

Chapter 6

[181]

 if len(results) > 0:
 # signal that a feature was identified
 self.emit(SIGNAL("geomIdentified"),
 results[0].mLayer, results[0].mFeature)

You can paste the preceding code at the end of the my_first_map_tool.py code.
Of course, we now have to put our new map tool to good use. In the initGui()
function, we replace the run() method with a new map_tool_init() function.
Additionally, we define that our map tool is checkable; this means that the user can
click on the tool icon to activate it and click on it again to deactivate it:

def initGui(self):
 # create the toolbar icon and menu entry
 icon_path = ':/plugins/MyFirstMapTool/icon.png'
 self.map_tool_action=self.add_action(
 icon_path,
 text=self.tr(u'My 1st Map Tool'),
 callback=self.map_tool_init,
 parent=self.iface.mainWindow())
 self.map_tool_action.setCheckable(True)

The new map_tool_init()function takes care of activating or deactivating our
map tool when the button is clicked on. During activation, it creates an instance of
our custom IdentifyFeatureTool, and the following line connects the map tool's
geomIdentified signal to the do_something() function, which we will discuss in a
moment. Similarly, when the map tool is deactivated, we disconnect the signal and
restore the previous map tool:

def map_tool_init(self):
 # this function is called when the map tool icon is clicked
 print "maptoolinit"
 canvas = self.iface.mapCanvas()
 if self.map_tool_action.isChecked():
 # when the user activates the tool
 self.prev_tool = canvas.mapTool()
 self.map_tool_action.setChecked(True)
 self.map_tool = IdentifyFeatureTool(canvas)
 QObject.connect(self.map_tool,SIGNAL("geomIdentified"),
 self.do_something)
 canvas.setMapTool(self.map_tool)
 QObject.connect(canvas,SIGNAL("mapToolSet(QgsMapTool *)"),
 self.map_tool_changed)
 else:
 # when the user deactivates the tool

Extending QGIS with Python

[182]

 QObject.disconnect(canvas,SIGNAL("mapToolSet(QgsMapTool *)"
),self.map_tool_changed)
 canvas.unsetMapTool(self.map_tool)
 print "restore prev tool %s" %(self.prev_tool)
 canvas.setMapTool(self.prev_tool)

Our new custom do_something() function is called when our map tool is used
to successfully identify a feature. For this example, we simply print the feature's
attributes on the Python Console. Of course, you can get creative here and add
your desired custom functionality:

def do_something(self, layer, feature):
 print feature.attributes()

Finally, we also have to handle the case when the user switches to a different map
tool. This is similar to the case of the user deactivating our tool in the map_tool_
init() function:

def map_tool_changed(self):
 print "maptoolchanged"
 canvas = self.iface.mapCanvas()
 QObject.disconnect(canvas,SIGNAL("mapToolSet(QgsMapTool *)"),
 self.map_tool_changed)
 canvas.unsetMapTool(self.map_tool)
 self.map_tool_action.setChecked(False)

You also have to add the following import line at the top of the script to avoid errors
concerning QObject, QgsMapTool, and others:

from qgis.core import *
from qgis.gui import *
from PyQt4.QtCore import *

When you are ready, you can reload the plugin and try it. You should have the
Python Console open to be able to follow the plugin's outputs. The first thing you
will see when you activate the plugin in the toolbar is that it prints maptoolinit
on the console. Then, if you click on the map, it will print canvasReleaseEvent,
and if you click on a feature, it will also display the feature's attributes. Finally,
if you change to another map tool (for example, the Pan Map tool) it will print
maptoolchanged on the console and the icon in the plugin toolbar will be unchecked.

Chapter 6

[183]

Summary
In this chapter, we covered the different ways to extend QGIS using actions and
Python scripting. We started with different types of actions and then continued
to the Python Console, which offers a direct, interactive way to interact with the
QGIS Python API. We also used the editor that is part of the Python Console
panel and provides a better way to work on longer scripts containing loops or
even multiple class and function definitions. Next, we applied our knowledge of
PyQGIS to develop custom tools for the Processing Toolbox. These tools profit
from Processing's automatic GUI generation capabilities, and they can be used
in Graphical modeler to create geopreocessing models. Last but not least, we
developed a basic plugin based on a Plugin Builder template.

With this background knowledge, you can now start your own PyQGIS experiments.
There are several web and print resources that you can use to learn more about
QGIS Python scripting. For the updated QGIS API documentation, check out
http://qgis.org/api/. If you are interested in more PyQGIS recipes, take a look at
PyQGIS Developer Cookbook at http://docs.qgis.org/testing/en/docs/pyqgis_
developer_cookbook and QGIS programming books offered by Packt Publishing, as
well as Gary Sherman's book The PyQGIS Programmer's Guide, Locate Press.

http://qgis.org/api/
http://docs.qgis.org/testing/en/docs/pyqgis_developer_cookbook
http://docs.qgis.org/testing/en/docs/pyqgis_developer_cookbook

[185]

Index
Symbols
2.5D style

creating 129
3D web map

exporting 154, 155
.ui file

reference link 64
used, for creating feature form 64

A
absolute paths 48
actions

used, for adding functionality 157, 158
used, for opening files 160
used, for opening web browser 160

advanced vector styling
2.5D style, creating 129
about 117
categorized styles, using for

nominal data 123
color ramps, creating 121, 122
color ramps, using 121, 122
data-defined symbology, creating 126, 127
dynamic heatmap style, creating 128
graduated style, creating 118-120
live layer effects, adding 130, 131
multiple styles, working with 131, 132
rule-based style, creating for

road layers 124, 125
airport style

example 36-39
Android 1
ArcCatalog 10
ArcPy 157

Atlas feature
used, for creating map series 150

attribute form 62
attributes

editing 60
editing, in attribute table 60-62
new values, calculating 65, 66

attribute table
attributes, editing 60-62
join results, checking 70
used, with print maps 149

autogenerate
reference 63
used, for creating feature form 63

automated geoprocessing
with graphical modeler 108-111

B
background maps

loading 45-47
basic map

creating 141
legend, adding 144
north arrow image, adding 144
scalebar, adding 143

batch-processing 107, 108

C
categorized styles

using, for nominal data 123
color models 127
color names 127
color ramps

creating 121, 122
using 121, 122

[186]

composer template 141
Coordinate Reference System (CRS)

about 13, 21, 91
dealing with 21-23

custom geoprocessing scripts
creating, Python used 169

custom map tool
creating 180-182

D
data

adding, to spatial databases 76, 77
loading, from databases 27-29
loading, from OGC web services 29-31

data-defined placement 138
data-defined symbology

creating 126, 127
delimited text (CSV) file 20
density mapping

with hexagonal grids 103
drag and drop designer

used, for creating feature form 63
dynamic heatmap style

creating 128

E
elevation/terrain data

analyzing 82-84
expressions

used, for selecting features 54, 55

F
feature form

attributes, editing 62
creating, autogenerate used 63
designing, with drag and drop designer 63
designing, with .ui file 64

feature selection
with expressions 54, 55
with mouse 54
with spatial queries 55, 56

feature selection tools 53
files

opening, actions used 160
vector data, loading from 18-20

first-order polynomial transformation 25
form view 61
functionality

adding, actions used 157, 158

G
GDAL

about 80, 86
reference link 24
URL 80

gedit 48
Geographic Resources Analysis Support

System (GRASS) GIS 2
Georeferencer

about 24
use cases 24

GIS StackExchange
reference link 16

graduated style
creating 118-120
Equal Interval mode 118
Natural Breaks (Jenks) mode 119
Pretty Breaks mode 119
Quantile (Equal Count) mode 118
Standard Deviation mode 119

graphical modeler
used, for automated geoprocessing 108-111

ground control points (GCPs) 24

H
heatmap

creating, from points 92, 93
hexagonal grids

used, for density mapping 103
highway shields 136
HTML frames

used, with print maps 149

I
Identify tool 180
installation, QGIS

about 1
on Ubuntu 8-10
on Windows 2-7

[187]

ISO basic Latin alphabet
reference link 3

K
kernel functions

reference link 92

L
label placement

line labels, configuring 137
point labels, configuring 137
polygon labels, configuring 137, 138

labels
activating 133, 134
background, configuring 136
buffers, configuring 136
formatting 135, 136
placement, controlling 136
placing, manually 138, 139
rendering 139, 140
shadows, configuring 136
text styles, customizing 135

landmass style
example 42-45

Layer Properties
join, setting up 69

Leaflet
about 151
URL 154

linear option 26
lines

converting 96-98
line styles

creating 39-42
Linux 1
list comprehension

about 163
reference link 163

live layer effects
adding 130, 131

M
Mac OS X 1
map tiles

creating 153, 154

measuring tools
using 60

memory layers 167
Memory Layer Saver plugin 71
models

documenting 112, 113
sharing 112, 113

mouse
used, for selecting features 54

MSSQL 27
multiline labels

enabling 135
multiple datasets

batch-processing 107, 108

N
nearest neighbors

obtaining 95, 96
network drive 48
Notepad++ 48

O
OfflineEditing plugin 13
OGC web services

data, loading from 29-31
reference link 29

OGR SQL
URL 28

on the fly reprojection 22
Open Geospatial Consortium (OGC) 17
OpenLayers 3 151
Oracle Spatial 27
OSGeo4W

about 2
URL 2

OSGeo4W installer 2
OSGeo4W shell 177
overview map

creating 148

P
plugin

developing 173
implementing 179, 180

[188]

Plugin Builder
about 173
plugin template, creating with 174-178

plugin GUI
customizing 178, 179

Plugin Reloader 173, 179
points

converting 96-98
point styles

creating 36-39
Polygonize tool 86, 87
polygons

converting 96-98
polygon styles

creating 42-45
PostGIS 27, 28
PostgreSQL

reference link 28
print maps

attribute tables, using 149
basic map, creating 141
designing 141
explanatory text, adding 145
HTML frames, using 149
legend, adding 144
map frames, adding 146, 147
map grids, adding 146, 147
map series, creating with Atlas feature 150
overview maps, creating 148

Processing plugin
area shares, calculating within

region 104-106
automated geoprocessing, with graphical

modeler 108-112
density mapping, with hexagonal grids 103
features, identifying 98-100
lines, converting 96-98
models, documenting 112, 113
models, sharing 112, 113
multiple datasets,

batch-processing 107, 108
nearest neighbors, obtaining 95, 96
points, converting 96-98
polygons, converting 96-98
raster, sampling at point locations 101, 102
used, for performing vector and raster

analysis 94, 95

Processing script
writing 170

Proj4 projection engine 23
project files

dealing with 48, 49
projective transformation 26
PyQGIS 157
Python

about 157
used, for creating custom geoprocessing

scripts 169
Python 2.7 157
Python action

configuring 158, 159
Python Console

about 161
data, filtering 166
datasets, exploring 161-164
datasets, loading 161-164
layers, styling 164-166
map images, exporting 168
memory layer, creating 167

Q
QGIS

about 1
download link 1
help and reporting issues, finding 16
installing, on Ubuntu 8-10
installing, on Windows 2-7
reference link, for installation instructions 1
running, for first time 10-12
user interface 12-15

QGIS 2.14 LTR version 1
QGIS 3.x 157
QGIS API

about 161
reference link 161

QGIS Browser 10
QGIS Desktop 10
QGIS Map Showcase Flickr group

URL 117
QGIS project

reference link, for sample data 18

[189]

QGIS, releases
developer version

(DEV, master, or testing) 2
latest release (LR) 2
long-term release (LTR) 1
reference link 2

Qt Creator installer
URL 173

Qt Designer 173, 178

R
raster and vector data

combining 86
converting between 86, 87
heatmap, creating from points 92, 93
raster layer statistics, accessing 87-90
vector layer statistics, accessing 87-90
zonal statistics, computing 90-92

raster data
analyzing 79
converting 67, 68
elevation/terrain data, analyzing 82-84
raster calculator, using 84-86
rasters, clipping 79-81
reprojecting 67, 68

raster files
loading 23, 24

Rasterize tool 87
raster layers

styling 32-35
raster maps

georeferencing 24-26
relative path 48
resampling method 26
river styles

example 39-42
road styles

example 39-42
rule-based style

creating, for road layers 124, 125

S
script

progress, visualizing of 173
writing, with vector layer output 171, 172

second-order polynomial transformation 26
selection tools 53
self-intersecting polygons error 74
shapefiles 18
Shuttle Radar Topography Mission (SRTM)

URL 81
sliver polygons 75
snapping

used, for topologically correct editing 59
spatial databases

about 113
data, adding 76, 77

SpatiaLite
about 27
data, aggregating 115, 116
location, selecting 113-115
reference link 114
URL 113

spatial queries
used, for selecting features 55, 56

Spyder 173
SQLite

about 27
URL 27

standalone installer 2
System for Automated Geoscientific

Analyses (SAGA) GIS 2

T
tabular data

joining 68, 69
join results, checking in attribute table 70
join, setting up in Layer Properties 69

temporary scratch layers
using 70, 71

terrain analysis tools 81
thin-plate spline algorithm 26
third-order polynomial transformation 26
topological errors

checking for 71
finding, Topology Checker

plugin used 72-74
fixing 71
invalid geometry errors, fixing 74, 75

[190]

U
Ubuntu

QGIS, installing on 8-10
Unix 1

V
v.sample GRASS tool 101
vector and raster analysis

performing, with Processing plugin 94, 95
vector data

converting 67, 68
loading, from files 18-20
reprojecting 67, 68

vector geometries
advanced digitizing tools, using 58, 59
basic digitizing tools, using 57
editing 57
snapping, using 59

vector layer output
script, writing with 171, 172

vector layers
creating 51-53
reference link 166
styling 35, 36

W
web browser

opening, actions used 160
Web Coverage Services (WCS) 29
Web Feature Services (WFS) 29, 31
web maps

3D web map, exporting 154, 155
about 151
exporting 151, 152
map tiles, creating 153, 154

Web Map Services (WMS) 29
Windows

about 1
QGIS, installing on 2-7

WinPython
URL 173

WKT
about 21
reference link 21

Z
zonal statistics

computing 90-92

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewer
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Getting Started with QGIS
	Installing QGIS
	Installing QGIS on Windows
	Installing on Ubuntu

	Running QGIS for the first time
	Introducing the QGIS user interface
	Finding help and reporting issues
	Summary

	Chapter 2: Viewing Spatial Data
	Loading vector data from files
	Dealing with coordinate reference systems
	Loading raster files
	Georeferencing raster maps

	Loading data from databases
	Loading data from OGC web services
	Styling raster layers
	Styling vector layers
	Creating point styles – an example of an airport style
	Creating line styles – an example of river or road styles
	Creating polygon styles – an example of a landmass style

	Loading background maps
	Dealing with project files
	Summary

	Chapter 3: Data Creation and Editing
	Creating new vector layers
	Working with feature selection tools
	Selecting features with the mouse
	Selecting features with expressions
	Selecting features using spatial queries

	Editing vector geometries
	Using basic digitizing tools
	Using advanced digitizing tools
	Using snapping to enable topologically correct editing

	Using measuring tools
	Editing attributes
	Editing attributes in the attribute table
	Editing attributes in the feature form
	Creating a feature form using autogenerate
	Designing a feature form using drag and drop designer
	Designing a feature form using a .ui file

	Calculating new attribute values

	Reprojecting and converting vector and raster data
	Joining tabular data
	Setting up a join in Layer Properties
	Checking join results in the attribute table

	Using temporary scratch layers
	Checking for topological errors and fixing them
	Finding errors with the Topology Checker
	Fixing invalid geometry errors

	Adding data to spatial databases
	Summary

	Chapter 4: Spatial Analysis
	Analyzing raster data
	Clipping rasters
	Analyzing elevation/terrain data
	Using the raster calculator

	Combining raster and vector data
	Converting between rasters and vectors
	Accessing raster and vector layer statistics
	Computing zonal statistics
	Creating a heatmap from points

	Vector and raster analysis with Processing
	Finding nearest neighbors
	Converting between points, lines, and polygons
	Identifying features in the proximity of other features
	Sampling a raster at point locations
	Mapping density with hexagonal grids
	Calculating area shares within a region
	Batch-processing multiple datasets
	Automated geoprocessing with the graphical modeler
	Documenting and sharing models

	Leveraging the power of spatial databases
	Selecting by location in SpatiaLite
	Aggregating data in SpatiaLite

	Summary

	Chapter 5: Creating Great Maps
	Advanced vector styling
	Creating a graduated style
	Creating and using color ramps
	Using categorized styles for nominal data
	Creating a rule-based style for road layers
	Creating data-defined symbology
	Creating a dynamic heatmap style
	Creating a 2.5D style
	Adding live layer effects
	Working with different styles

	Labeling
	Customizing label text styles
	Controlling label formatting
	Configuring label buffers, background, and shadows
	Controlling label placement
	Configuring point labels
	Configuring line labels
	Configuring polygon labels

	Placing labels manually
	Controlling label rendering

	Designing print maps
	Creating a basic map
	Adding a scalebar
	Adding a North arrow image

	Adding a legend
	Adding explanatory text to the map
	Adding map grids and frames
	Creating overview maps
	Adding more details with attribute tables and HTML frames
	Creating a map series using the Atlas feature

	Presenting your maps online
	Exporting a web map
	Creating map tiles
	Exporting a 3D web map

	Summary

	Chapter 6: Extending QGIS with Python
	Adding functionality using actions
	Configuring your first Python action
	Opening files using actions
	Opening a web browser using actions

	Getting to know the Python Console
	Loading and exploring datasets
	Styling layers
	Filtering data
	Creating a memory layer
	Exporting map images

	Creating custom geoprocessing scripts using Python
	Writing your first Processing script
	Writing a script with vector layer output
	Visualizing the script progress

	Developing your first plugin
	Creating the plugin template with Plugin Builder
	Customizing the plugin GUI
	Implementing plugin functionality
	Creating a custom map tool

	Summary

	Index

