
Dan Woods

Learning

 Ratpack
SIMPLE, LEAN, AND POWERFUL WEB APPLICATIONS

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Dan Woods

Learning Ratpack
Simple, Lean, and Powerful Web Applications

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

www.allitebooks.com

http://www.allitebooks.org

978-1-491-92166-1

[LSI]

Learning Ratpack
by Dan Woods

Copyright © 2016 Dan Woods. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://safaribooksonline.com). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editor: Brian Foster
Production Editor: Nicole Shelby
Copyeditor: Jasmine Kwityn
Proofreader: Kim Cofer

Indexer: Ellen Troutman
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Rebecca Demarest

May 2016: First Edition

Revision History for the First Edition
2016-05-27: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781491921661 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Learning Ratpack, the cover image,
and related trade dress are trademarks of O’Reilly Media, Inc.

While the publisher and the author have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the author disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

www.allitebooks.com

http://safaribooksonline.com
http://oreilly.com/catalog/errata.csp?isbn=9781491921661
http://www.allitebooks.org

This book is dedicated to my wonderful wife, Ashley. Without her continued support and
patience, Learning Ratpack would never have been possible. Thank you, Ashley, for the

many wonderful years we have shared together and the many, many more to come.

This book is also for my children, Natasha and Ethan. Your love and smiles continue to
drive me every single day. I could not have done this without you two; you are my world.

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

Foreword. ix

Preface. xi

1. Welcome to Ratpack. 1
Hello, World! 2

Running the Example 3
Rapid Prototyping 4

Handler Chain 5
URL Path Bindings 5
Prefixed Routes 7
Path Tokens 8
Request Parameters 9
Parsing Request Data 10
Content Negotiation in Handlers 11

Chapter Summary 18

2. Getting Started. 19
Library Structure 20
Project Structure 21
Ratpack Gradle Plugin 22

Gradle Wrapper 28
Hot Reloading 30

Lazybones 30
Building from a Main Class 33
Working with Handlers 35

Understanding the Chain API Interactions in Groovy and Java 35
Standalone Handlers 36

v

www.allitebooks.com

http://www.allitebooks.org

Chapter Summary 41

3. Testing Ratpack Applications. 43
Spock Test Structure 45
Functional Testing 48

Bootstrapping Test Data 53
Architecting for Improved Testability 55

Integration Testing 58
Unit Testing 61
Unit Testing Standalone Handlers 63
Other Testing Scenarios 68
Chapter Summary 75

4. Application Configuration. 77
Configuring with Environment Variables and System Properties 87

Configuring with Environment Variables 88
Configuration with System Properties 90

Nested Configuration Models 92
Custom Configuration Source 95
Setting Server Configuration 99
Chapter Summary 101

5. Ratpack Modules. 103
Extending Ratpack with Registries 104
Google Guice 108

BindingsSpec in Groovy 111
Framework Modules 117

Configurable Modules 119
Modular Object Rendering in Ratpack 124

Rendering with Content Type 126
Rendering JSON Data 127
Special Rendering Scenarios 128

Chapter Summary 129

6. Serving Web Assets. 131
Serving Static Content 131

Caveats to the FileHandler 134
Using FileSystemBinding to Customize Asset Resolution 135

Serving Dynamic Content 139
Handlebars.js Support 141
Thymeleaf Support 143
Groovy Markup Templates 145

vi | Table of Contents

www.allitebooks.com

http://www.allitebooks.org

Conditionally Serving Content 147
Conditionally Scoping Resources 147
Conditionally Serving Assets Based on Request Attributes 151

Sending Files from Handlers 152
Customizing 404 Behavior 153
Cache Control 155
Asset Pipeline 157
Chapter Summary 160

7. Asynchronous Programming, Promises, and Executions. 161
Promises: A Better Approach to Async Programming 164
Execution Model 166
Scheduling Execution Segments for Computation or I/O 167
Leveraging Executions on Unmanaged Threads 170
Error Handling 172

Execution-Wide Error Handling 173
Promise Error Handling 175

Creating Promises on Your Own 176
Promises from Synchronous Calculations 177
Promises from Asynchronous Calls 178

Chapter Summary 181

8. Data-Driven Web Applications. 183
Groovy SQL Support 183
Connection Pooling with HikariCP Support 190
Ratpack and Grails GORM 195
Designing Data-Driven Service APIs in Ratpack 207
Chapter Summary 211

9. Ratpack and Spring Boot. 213
Adding Spring Boot to Your Ratpack Project 218
Creating a Spring Boot–Backed Registry 221
API Design with Ratpack and Spring 227

Other Notes on API Design with Ratpack and Spring 229
Known Limitations 232
Chapter Summary 232

10. Reactive Programming in Ratpack. 233
Overview of Reactive Programming 233
Promise as a Reactive Data Structure 236

Transforming Data with Promises 239
Filtering Data with Promises 240

Table of Contents | vii

www.allitebooks.com

http://www.allitebooks.org

Composing Data with Promises 242
Reactive Streams 244

Publishers and bindExec 248
RxJava 248

Parallel Processing Using RxJava 256
Further Reading on RxJava 258

Chapter Summary 258

11. Sessions and Security. 261
Integrating Session Support 261

Persisting Objects 264
Configuring the SessionModule 267

Client-Side Sessions 268
Distributed Sessions 271
Working with Cookies 273

Tuning Cookies 277
Expiring Cookies 279

Chapter Summary 283

12. Application Security. 285
SSL Support 285
Basic Authentication 290

Custom UsernamePasswordAuthenticator 295
Form-Based Authentication 301

Data-Driven Form Authentication 306
Additional Authentication Means 312
Chapter Summary 313

13. Going to Production. 315
Publishing Metrics 315

Enabling Reporting 317
Publishing Custom Metrics 320

Application Health Checks 321
Building Distributions 331
Production Checklist 333
Chapter Summary 333

Index. 335

viii | Table of Contents

www.allitebooks.com

http://www.allitebooks.org

Foreword

If you want to know Ratpack, you have come to the right place. This book is the best
and most comprehensive learning resource out there, and Dan is an integral part of
the team and community behind Ratpack. I am thrilled that this book is now avail‐
able.

There are many tools for writing web applications on the JVM, of which Ratpack is
one. I set out to make Ratpack excel at scaling in all relevant ways. While perfor‐
mance and efficiency are crucial, the ability to start simple for greenfield tasks yet
scale toward solving more challenging problems is equally important. You should feel
as empowered by your tools after two years as you did after two days. This is Rat‐
pack’s mission, which Dan eloquently conveys.

We are now building, testing, and deploying web infrastructure differently than we
were just a few years ago. Developers and users are, rightfully, more demanding than
ever. Applications must integrate with and exist within an ever-shifting landscape of
tools, practices, and platforms. Ratpack takes this to heart in several ways: it is a pure
runtime in that it does not impose a proprietary mechanism for build automation,
nor does it require proprietary plugins for IDE integration; it treats deep testability as
a first-class concern; and it favors integration over abstraction, allowing more direct
use of complementary technologies such as persistence, marshalling, and templating.
This is a conscious trade-off of out-of-the-box magic for long term flexibility and
control. Developer freedom is a key tenet of Ratpack. Admittedly, this may not be the
most pressing concern for new (and simple, which all new projects inherently are)
projects, but it’s important when things get real later in an application’s life. And of
course, there is performance.

The term performance can mean many things when it comes to web applications, and
the most relevant meanings for the term are also shifting over time. We are now ask‐
ing backend web applications to deal with more HTTP connections than ever, and to
do it faster than ever. Moreover, as we deploy more and more of our applications to
platforms where you pay for what you use, making efficient and predictable use of

ix

computing resources is becoming a primary concern for more teams. Ratpack uses
event-driven I/O and asynchronous programming for this reason. More efficient and
predictable use of computing resources means lower costs and reduced risk of emer‐
gency rearchitecting due to scaling limits.

Asynchronous programming brings its own set of challenges—a key feature of Rat‐
pack is the way in which it makes asynchronous programming more palatable. For
many new to the paradigm, this is an area where guidance when getting started is
particularly useful. This book does a great job in demystifying the what and the why
of this, which is reason alone to read it.

As the creator of Ratpack, I want other developers to enjoy the same level of satisfac‐
tion I do when using it. More specifically, I want other developers to feel empowered
but not constrained by it. This requires an understanding of what Ratpack can do for
you, why and how it works, and what it leaves up to you.

— Luke Daley

x | Foreword

Preface

Ratpack has had a long and wonderful history as an open source web framework for
the Java Virtual Machine (JVM). As a high-performance, reactive web framework, it
brings forth the fundamental concept that building succinct, lightweight web applica‐
tions is only truly serviced when matched with performance, efficiency, productivity,
and testability as first-class features.

As systems infrastructure moves increasingly to the cloud, the need has never been
more apparent for applications to be built in a way that utilizes system resources as
efficiently as possible. Ratpack’s emphasis on performance and efficiency means that
robust web applications can be built to deliver high performance and low memory
utilization. In this way, Ratpack aims to maximize your investment in compute
resources, while facilitating a developer experience that is focused on productivity
and risk reduction.

The need for high performance and efficient web applications means building asyn‐
chronous programming fixtures atop a nonblocking networking layer. The paradigms
in asynchronous programming can be difficult for unacquainted developers to grasp,
making web frameworks that build on these concepts unapproachable.

Indeed, even for the most seasoned of developers, asynchronous programming intro‐
duces a level of complexity that means the benefits must be carefully weighed against
the increased cognitive overhead. With Ratpack, asynchronous programming is pre‐
sented in a way that is meant to be digestible, with a drastically reduced cognitive load
from developers.

Reducing complexity while increasing approachability also means allowing applica‐
tions to be built in a semantic and expressive way. Web application concepts are easily
expressed in Ratpack through a concise programming interface that works with web
nomenclature that developers will be familiar with. To that extent, the simplest Rat‐
pack application can be written in just a few lines of code, as we will explore at the
beginning of Chapter 1.

xi

Throughout Learning Ratpack, you will be taken on a progressively in-depth tour of
the framework and its capabilities. With comprehensive demonstrations, you will
leave every chapter with a working knowledge of the subject matter, and a foundation
for a deeper understanding in subsequent chapters. You will be exposed to many
aspects of the framework throughout, and by the end of the book, you will have the
confidence to build production-grade web applications with Ratpack.

Who Is the Target Audience for This Book?
Learning Ratpack makes only a few assumptions about the background and experi‐
ence of the reader. Generally speaking, the target audience for this book is Java web
developers, who have experience developing servlet-based web applications and
beyond-superficial exposure to the Groovy programming language. Specifically,
developers familiar with Grails and/or Spring Framework will find this book and its
concepts beneficial.

Although Groovy is not strictly required for building applications with Ratpack, its
ability to express concepts in a semantically concise way makes it an excellent choice
for succinctly demonstrating the capabilities of the framework. As you will find, the
vast majority of example listings in this book will utilize Ratpack’s integration with
Groovy to functionally depict a concept. Where appropriate, a demonstration will
distinctly or correspondingly be shown with the equivalent Java code. Beyond the
specific usage of the Ratpack Groovy domain-specific language, Java developers
should be able to easily follow most of the Groovy examples.

What Is This Book Not Trying to Accomplish?
There is so much discussion to be had on the underlying reasons as to why Ratpack is
such a compelling web framework for the JVM, it would be difficult for any one text
to cover that ground. To that extent, this book is not aiming to be an exhaustive con‐
versation on the rationale of Ratpack. Though deep discussion takes place in many
parts of the book (particularly Chapter 7), Learning Ratpack is intended as a guide for
understanding how to use the framework and become productive with it.

Ratpack is a living web framework, meaning that new improvements and additions
are added every single day. This book will expose you to the foundational aspects of
the framework, and many of its higher-level features that will give you the under‐
standing necessary to follow the framework as it grows. While this book will open the
door to your journey of learning Ratpack, it is important to keep tabs on the project’s
continued activity to know what features are being added.

xii | Preface

http://grails.org
http://spring.io

No Breaking Changes!
In light of the fact that Ratpack will continue to evolve and add new features and
capabilities, it should be noted that the framework has a core tenet that no binary-
incompatible breaking changes will be introduced in a minor or patch version release.
This book is baselined on Ratpack 1.3.3, and the principle of not introducing break‐
ing changes will mean that the code and demonstrations contained herein will be
applicable to all versions of Ratpack in the 1.x.x line.

While new methods will be added to classes, new features added to the infrastructure,
and new extension modules will be made available for your projects, your project will
continue to be compatible with subsequent releases in the same major version. Fol‐
lowing this core tenet in Ratpack means that developers can be assured that updating
a framework dependency will not result in breaking changes to their code.

Staying in Touch
Ratpack has been privileged over the years to have an engaging and vibrant commu‐
nity. The project’s website houses the manual and user guide for all versions, past and
present, and links to the issue tracker and discussion forum. The code is freely avail‐
able on GitHub. Furthermore, the community engages in more synchronous conver‐
sations via its community Slack channel. You are encouraged to join and ask
questions!

Announcements, news, blog posts, and conference presentations are posted through
the project’s official Twitter account, @ratpackweb. Community discussions are
tracked through the Twitter hashtag #ratpackweb.

Ratpack is also privileged to have a group of highly active core maintainers (Twitter
handles provided):

• Luke Daley (project lead; @ldaley)
• John Engelman (@johnrengelman)
• Danny Hyun (@Lspacewalker)
• Rus Hart (@rus_hart)
• David Carr (@varzof)
• Robert Zakrzewski (@zedar185)
• Jeff Beck (@beckje01)
• Marcin Erdmann (@marcinerdmann)
• Dan Woods (myself; @danveloper)

Preface | xiii

https://ratpack.io
https://github.com/ratpack
https://github.com/ratpack
https://slack.ratpack.io
https://twitter.com/ratpackweb
https://twitter.com/hashtag/ratpackweb
https://twitter.com/ldaley
https://twitter.com/johnrengelman
https://twitter.com/Lspacewalker
https://twitter.com/rus_hart
https://twitter.com/varzof
https://twitter.com/zedar185
https://twitter.com/beckje01
https://twitter.com/marcinerdmann
https://twitter.com/danveloper

There are many conferences in the Java and Groovy ecosystem where you will find
presentations on Ratpack. Some of the more popular ones include:

• Gr8Conf
• No Fluff Just Stuff
• Greach
• DevNexus
• Devoxx

Whatever medium you choose to communicate, please find a way to keep in touch
and give your feedback on using Ratpack. It is only through hearing our users that the
framework will continue to improve.

Acknowledgments
Special thanks to the wonderful editors and editorial staff at O’Reilly, especially to
Brian Foster and Nan Barber, who have held my hand and guided me along the way. I
am deeply grateful for the expertise they provided in making this book a reality.

Many deep thanks to the technical reviewers of this book, Keith Conrad and Danny
Hyun. I have valued their input considerably over the course of this project, and I
have learned so much from them along the way. Also, thank you to Graeme Rocher,
Grails project lead, for reviewing parts of this book.

Thank you to every member of the Ratpack community who has made the frame‐
work such a success. Thank you to all the wonderful individuals in the Groovy eco‐
system, who have graciously welcomed newcomers and continued to raise the bar on
what we can achieve as a community. I am proud to be a part of this group.

Last, but certainly not least, a warm and heartfelt thank you to Luke Daley. I have
learned so much from Luke over the years, and his leadership with Ratpack has made
so many people better developers. Without Luke’s contributions to open source, the
world would be far lesser a place. Thank you, Luke, for all you have done, and for
your friendship.

xiv | Preface

http://gr8conf.org
http://nofluff.com
http://greachconf.com
https://devnexus.com
https://www.devoxx.com

CHAPTER 1

Welcome to Ratpack

At its core, Ratpack is a high-performance framework that marries efficient process‐
ing with ease of use. In the modern state of web application development, developer
productivity has a necessary emphasis in many web frameworks. Where Ratpack dif‐
ferentiates itself in this space is by continuing to focus on developer productivity,
while also providing a foundation upon which performance and resource utilization
are forefront considerations. Furthermore, the framework’s concise and easy-to-use
application programming interface (API) allows applications to be designed in a way
where they can be semantically reasoned about without disjointed concepts or com‐
plexities that plague other Java-based web frameworks. Even for a novice developer,
Ratpack applications can be quickly built and understood without a high barrier of
spool up time. In every respect, Ratpack aims to make it easy to build web applica‐
tions on the Java Virtual Machine (JVM) that foster an environment of productivity,
performance, and efficiency.

Ratpack takes a lightly opinionated approach to the manner in which applications are
built—in other words, as much that can be facilitated in a “one-liner” as possible is
presented as such, and when the complexity of a project’s implementation outgrows
those facilities, the framework gets out of the way quickly. Ratpack’s infrastructure is
designed to be extended, and follows sensible patterns for doing so. As your web
application’s requirements grow, Ratpack will continue to be a powerful utility from
which you can harness complex concepts—like reactive programming and determin‐
istic asynchronous processing—in the way that most suitably fits your needs.

In the effort of supporting semantic APIs that are easy to use and understand, Rat‐
pack employs many of the luxuries of Java that have more recently become available.
Lambda expressions, functional programming interfaces, and method references are
a few of the newer language features that the framework has come to adopt. Leverag‐

1

ing these aspects of the language allows the framework to guide applications toward
the simplest path possible for solving the problem at hand.

Ratpack also provides out-of-the-box support for newer versions of the Apache
Groovy programming language. As a long-time language on the JVM, Groovy brings
a lot to the table when designing APIs that are semantically concise, including its
robust and inherent capability to provide flexible, domain-specific languages (DSLs)
as the layer upon which applications are built. In recent years, Groovy has established
itself as much more than a simple dynamic alternative to core Java, and has incorpo‐
rated features into the language that make it a premier choice when building any
modern application on the JVM. Static compilation, for example, gives applications
built with Groovy similar performance levels to those built with Java. Furthermore,
the ability to inform Groovy’s compilation engine as to the structure of a DSL also
serves as a benefit to using Groovy. The ability to coerce a closure to a single abstract
method type is also utilized by Ratpack to work with closures as functional program‐
ming interfaces.

In supporting Groovy as a first-class language, Ratpack places the very best of the
JVM’s ecosystem at your disposal. However, as you will find throughout this book,
Ratpack’s integration with Groovy ends at reducing the visual verbosity of applica‐
tions. As a capable dynamic language, Groovy opens the door for building systems
that employ elaborate compile-time processing, code generation, and runtime
method dispatching that can quickly become difficult to follow and debug. In Rat‐
pack, you will find no “magic” that happens behind the scenes, and indeed the frame‐
work takes the approach of limiting complexity as much as possible, so that you
always know what your application is doing.

Hello, World!
To better understand the nature of Ratpack, we can begin by taking a look at the sim‐
plest possible application type: a “Hello, World!” example. Here, we will start by
showing how the Groovy integration can be leveraged to rapidly prototype applica‐
tions and get a sense of their form and function. We can make use of Groovy’s ability
to act as a scripting language to bring in the necessary framework dependencies,
define a simple application structure, and run it from the command line. If we start
by looking at the example outlined in Example 1-1, we see the entirety of what is
required to get a Groovy-based Ratpack application up and running.

Example 1-1. “Hello, World!” application for a Groovy-based Ratpack implementation

@Grab('io.ratpack:ratpack-groovy:1.3.3')

import static ratpack.groovy.Groovy.ratpack

2 | Chapter 1: Welcome to Ratpack

http://groovy-lang.org
http://groovy-lang.org

ratpack {
 handlers {
 get {
 render "Hello, World!"
 }
 }
}

We start our simple script by using Groovy’s built-in dependency management
system, known as “Grapes,” to “grab” the necessary framework dependency and
make it available to our runtime classpath.

Statically importing the Groovy.ratpack method provides our script with the
DSL within which we define our application’s structure and features.

The handler chain will be covered in more depth in the next section; for now, all
you need to know is that the get handler is binding a processing block for
incoming HTTP GET requests (like those from a browser).

Within the application handler, we render a “Hello, World!” message back to the
client.

This example represents all the code necessary to build your first Ratpack application!
The designed simplicity makes it easy to follow and with just these few lines of code
you are well on your way to becoming a proficient developer with Ratpack.

Running the Example
Groovy can run nearly everywhere that Java can, and if you do not already have the
Groovy runtime at your disposal, you can download it from the project’s website. For
Mac OS X, Linux, or Cygwin users, you can alternatively choose to use SDKMAN! to
install Groovy. Windows users can use the PowerShell-based package manager Posh-
GVM. However you obtain Groovy, ensure that the language binaries are available in
your runtime PATH.

Once you have Groovy in place on your system, you can run the “Hello, World!”
application from the command line. If you place the contents of the example into an
app.groovy file, and use the groovy command-line utility, you will see your applica‐
tion start in your console. The output presented in Example 1-2 shows what you will
see.

Example 1-2. “Hello, World!” application output

$ groovy app.groovy
SLF4J: Failed to load class "org.slf4j.impl.StaticLoggerBinder".
SLF4J: Defaulting to no-operation (NOP) logger implementation

Hello, World! | 3

http://groovy-lang.org/download.html
http://sdkman.io
https://github.com/flofreud/posh-gvm
https://github.com/flofreud/posh-gvm

SLF4J: See http://www.slf4j.org/codes.html#StaticLoggerBinder for further details.
WARNING: No slf4j logging binding found for Ratpack, there will be no logging output.
WARNING: Please add an slf4j binding, such as slf4j-log4j2, to the classpath.
WARNING: More info may be found here: http://ratpack.io/manual/current/logging.html
Ratpack started (development) for http://localhost:5050

The most notable part of the output is the last line, which Ratpack outputs to indicate
where the running application can be accessed. The default HTTP bind port in Rat‐
pack is 5050, so if you open a browser and navigate to http://localhost:5050, you will
see the “Hello, World!” result.

Rapid Prototyping
In the interest of accommodating developer productivity, Ratpack applications can be
quickly and easily modified, with changes reflected in real time. While you have the
“Hello, World!” example application running, from another window you can open
the app.groovy file and make changes to it. For example, if you change the text from
“Hello, World!” to “Hello, Ratpack!” and refresh your browser, you will see the new
message reflected. This core Ratpack concept allows developers to quickly test and
vet changes or features without the need for a full application restart. This is undis‐
putedly a powerful facility when getting the initial structure and features of an appli‐
cation layed out.

In the chapters that follow, we will tour the features of Ratpack that make it amenable
to projects of all shapes and sizes. One such feature is its comprehensive integration
with the Gradle build system, which makes it easy to get a full-featured project run‐
ning and built. As will be demonstrated and discussed later, Ratpack’s integration
with Gradle allows it to leverage the build system’s reloading capabilities that further
the efforts of rapid productivity. All this is to say, the rapid prototyping capabilities
offered by Ratpack extend beyond its simplest form, and are inherent at all levels of
application complexity.

Arguably one of the most notable features of Ratpack—and one that you have
undoubtedly already realized from running the “Hello, World!” application—is how
quickly applications get up and running. Most applications sport sub-second startup
times, which further benefits the process of rapid prototyping. When you make a sig‐
nificant number of complex changes or changes that otherwise require a full applica‐
tion restart, you are not left with a long process of waiting for an application
container to get your code changes live, because startup times are short and quick.
With developer productivity in mind, Ratpack is designed in a way that gets code
started and running as fast as absolutely possible.

4 | Chapter 1: Welcome to Ratpack

https://gradle.org

Handler Chain
The most important structure in the definition of a Ratpack application is undoubt‐
edly the handler chain. If we dissect the code in Example 1-1, we see the handlers
block, which is the area in which application request handlers are defined. The han‐
dler chain defines the edge of your application and the flow by which requests are
processed. To draw a parallel to more traditional Java web development patterns, the
concept of handlers in Ratpack are analogous to filters and servlets in servlet API
terms. That is to say, one or more handlers can participate in the processing of a
request and a handler is responsible for sending a response back.

Handlers are processed top-down, and can be defined to match on HTTP verb,
requested URL, and other concepts that are provided by the chain API. As you
explore the handler chain, you will find that, like the get method that was demon‐
strated in our example application, there are semantic methods for post, put, delete,
patch, and options as well. Using these conveniently named binding methods, you
can appropriate the request handling logic to the corresponding HTTP verb, making
your application’s request handling easy to follow and quick to understand.

In our example application, within the handler chain we can see that we are binding a
request handler for the HTTP GET verb on the default route. Ratpack will route
HTTP GET requests for the / URI to this handler, which is evidenced by the browser
test that we conducted earlier. Through the handler chain API, we can see that similar
binding methods exist for all HTTP verbs. As you build out the specification for your
application, you need only define the request handlers inline in the handler chain.

URL Path Bindings
Each of the methods on the handler chain API for working with the different HTTP
verbs allow you to specify the path to which the handler should be bound. If we con‐
sider again the “Hello, World!” application from earlier, we can extend it slightly to
include a second handler, which binds to the /foo endpoint. The code in Example 1-3
shows the addition of the second handler. As you explore this sample code, note that
in Ratpack, you should not specify the leading / when defining URI paths.

Example 1-3. “Hello, World!” application with /foo handler

@Grab('io.ratpack:ratpack-groovy:1.3.3')

import static ratpack.groovy.Groovy.ratpack

ratpack {
 handlers {
 get {
 render "Hello, World!"

Handler Chain | 5

 }
 get("foo") {
 render "Hello, Foo!"
 }
 }
}

Here, we bind a request handler to /foo. Take note that we are able to leverage
the fact that Groovy does not require us to wrap the final argument in the parens
of a method call when that argument is a closure.

If we run this application and open a browser to http://localhost:5050/foo, we will find
that we are greeted with the “Hello, Foo!” message, as we would expect. Applying
handlers to URI routes in this way works in the same way as the corresponding meth‐
ods of the various other HTTP verbs.

A special and important caveat to the handler chain is that only a single handler can be
bound to a given URI. While it is said that requests flow through the handler chain,
once a handler is found for a given URI path binding, no other handlers bound to
that same path will be eligible for processing. This rule applies regardless of the
HTTP verb to which multiple handlers are bound. In the case where you wish to have
multiple handlers apply to one route (say, in a resource-oriented RESTful API), Rat‐
pack provides a special mechanism for doing so.

There are two similar semantics for representing a handler type that are agnostic to a
request’s HTTP verb: all and path. These two types do the same thing, with the dif‐
ference being that the latter takes a URI path as an argument and the former does
not. In the handler chain, these handler types qualify for processing of any incoming
request, and by making use of this, we can bind a handler to a given URI and define
its capability of processing any HTTP verb type. For the purposes of understanding
multiverb bindings, we will expand our prior example to make the /foo endpoint
handle post GET and POST requests. To do so, we will utilize the path chain method
and within its handler we will introduce the byMethod mechanism. Example 1-4
shows our expanded sample code.

Example 1-4. The byMethod specification

@Grab('io.ratpack:ratpack-groovy:1.3.3')

import static ratpack.groovy.Groovy.ratpack

ratpack {
 handlers {
 get {
 render "Hello, World!"
 }
 path("foo") {

6 | Chapter 1: Welcome to Ratpack

 byMethod {
 get {
 render "Hello, Foo Get!"
 }
 post {
 render "Hello, Foo Post!"
 }
 }
 }
 }
}

Here, we have changed the binding from get to path.

Within the handler logic, we use the byMethod, which is provided as part of the
handler’s context (this will be covered in more depth later in the book).

The byMethod specification allows us to bind our verb-specific handlers. Here, we
specify the handler for an HTTP GET request.

Similarly, we define a handler for POST requests.

If we run this application and open our browser again to http://localhost:5050/foo, we
are greeted with the “Hello, Foo Get!” message. Now, if we open a command line and
use the cURL utility, we can perform a POST request to our application, as follows:

curl -XPOST http://localhost:5050/foo

The output from that call will result in seeing the “Hello, Foo Post!” message.

Prefixed Routes
The handler chain is all about building a contextual definition of your application’s
request-taking flow. As the edges of your application grow, so too does the complexity
of understanding the various definitions. To that end, when you are building your
application’s handler chain, you can choose to prefix a set of handlers under a given
route. This becomes incredibly valuable in conversations about designing RESTful
APIs, but for now, just remember that building a prefixed chain is a capability that
allows you to logically organize your application better.

Prefixed routes are fairly self-explanatory in practice, but to further your understand‐
ing, consider a scenario where you are building an ecommerce application, and you
wish to have a set of endpoints dedicated to working with products. For the sake of
discussion, let’s suppose that we have a list endpoint, which lists all products; a get
endpoint, for getting a specific product; and a search endpoint for looking up prod‐
ucts. It would be repetitive to have to write each of these out as product/list, prod
uct/get, and product/search, and those definitions could get lost easily as the

Handler Chain | 7

https://curl.haxx.se/

complexity of your application grows. Instead, we will use the chain API’s prefix
method to wrap them all up in a subchain dedicated strictly for products. The code in
Example 1-5 demonstrates using the prefix method.

Example 1-5. Using the prefix method

@Grab('io.ratpack:ratpack-groovy:1.3.3')

import static ratpack.groovy.Groovy.ratpack

ratpack {
 handlers {
 prefix("products") {
 get("list") {
 render "Product List"
 }
 get("get") {
 render "Product Get"
 }
 get("search") {
 render "Product Search"
 }
 }
 }
}

To the prefix method, we specify the prefixed URI pattern; the closure supplied to
the prefix method created a subchain, which acts with the exact same behavior as
the handler chain otherwise, with the handlers being bound within the /products
route.

Prefixed routes can be described at any level within a chain, meaning that they can be
further nested within other prefix subchains. This can allow you to build complex
request processing flows that are easy to get a handle on without the verbosity of
defining route depth at each handler definition.

Path Tokens
When binding to a path, Ratpack provides a mechanism by which tokens can be
defined and later extracted by the handler. This allows variable data, such as an ID, to
be accessed from the request path and handled accordingly.

Consider the code in Example 1-6, which demonstrates a path handler that uses the
token notation.

8 | Chapter 1: Welcome to Ratpack

Example 1-6. Path tokens

@Grab('io.ratpack:ratpack-groovy:1.3.3')

import static ratpack.groovy.Groovy.ratpack

ratpack {
 handlers {
 get("foo/:id?") {
 def name = pathTokens.id ?: "World"
 response.send "Hello $name!"
 }
 }
}

Path tokens are prefixed with a colon and are named. The ? at the end of the
token indicates that this is an optional token. Without it, the id property will
always be required.

Within the handler logic, we use the pathTokens.id call to get access to the id
path token.

The pathTokens type is an implementation of a TypeCoercingMap, which provides
you with some assistance in translating path tokens to respective types. By default, the
value will come out a string, but using the coercion methods available will simplify
your code. For example, if we wanted to work with the id field from the example as a
Long type instead of as a string, we could change the code to: pathTo

kens.asLong('id'). Similar coercion methods are available for Boolean (asBool),
Byte (asByte), Short (asShort), and Integer (asInt).

Request Parameters
Request parameters are made available to handlers through the request object.
Unlike path tokens, request parameters are not defined in the path binding.
Example 1-7 demonstrates a handler that extracts a request parameter and handles
the request accordingly.

Example 1-7. Using request parameters

@Grab('io.ratpack:ratpack-groovy:1.3.3')
import static ratpack.groovy.Groovy.ratpack

ratpack {
 handlers {
 get {
 def name = request.queryParams.name ?: "Guest"
 response.send "Hello, $name!"

Handler Chain | 9

 }
 }
}

Off the request object, we can access the queryParams map, which holds keys for
the specifically named query parameters.

Running this application and navigating to http://127.0.0.1:5050?name=John will ren‐
der the message “Hello, John!” in your browser, as we would expect from the handler
code. Also as we would expect, leaving off the ?name=John request parameter will
yield the default “Hello, Guest!” message.

Request parameters will always be String types, so it is important to properly trans‐
late them to their corresponding type for use in external classes or services.

Parsing Request Data
Structured request data can be extracted from the request using the parse method in
our handler. Through this interface, request data can be converted into a data struc‐
ture for additional processing. Example 1-8 demonstrates this capability.

Example 1-8. Parsing request data

@Grab('io.ratpack:ratpack-groovy:1.3.3')

import static ratpack.groovy.Groovy.ratpack
import ratpack.form.Form

ratpack {
 handlers {
 all {
 byMethod {
 get {
 response.send "text/html", """\
 <!DOCTYPE html>
 <html>
 <body>
 <form method="POST">
 <div>
 <label for="checked">Check</label>
 <input type="checkbox" id="checked" name="checked">
 </div>
 <div>
 <label for="name">Name</label>
 <input type="text" id="name" name="name">
 </div>
 <div>
 <input type="submit">
 </div>

10 | Chapter 1: Welcome to Ratpack

 </form>
 </body>
 </html>
 """.stripIndent()
 }
 post {
 parse(Form).then { formData ->
 def msg = formData.checked ? "Thanks for the check!" :
 "Why didn't you check??"
 response.send "text/html", """\
 <!DOCTYPE html>
 <html>
 <body>
 <h1>Welcome, ${formData.name ?: 'Guest'}!</h1>
 ${msg}
 """.stripIndent()
 }
 }
 }
 }
 }
}

This handler, while verbose, is fairly simple. All we are doing here is serving up
an HTML form to work with in a simple view. This is not best practice, and nor‐
mally we would want this served from the project’s assets. Serving content is cov‐
ered later in the book, so this is here only for demonstration’s sake.

Within the chain’s post handler, we call the parse method and inform it that we
want a Form object returned. The resulting formData gives us access to the data
that was submitted from the get handler’s HTML form. We can work with this
like any other map.

This example is serving HTML directly out of the handlers, so pointing a web
browser to the application URL will this time show us a proper HTML form. Tog‐
gling the form’s checkbox and submitting will show the different behavior of the
POST handler, which converts the form data into a Form object before making a deci‐
sion about what to render.

Content Negotiation in Handlers
We previously covered how to build method-agnostic handlers that have specialized
logic for processing different HTTP requests for the same URI binding. You will
recall that the mechanism by which this is accomplished is known as the byMethod
specification. In addition to specifying handler logic for different method types, Rat‐
pack provides a specification with which handlers can apply specific logic based on
the request’s content type.

Handler Chain | 11

Content type negotiation comes into play when designing request handlers that are
responsible for sending data back to a client in a specified format. For example, your
application may design a handler that renders an HTML page when the request speci‐
fies that it desires a text/html content type. That same handler may instead render a
model as JSON data when a requested content type of application/json is specified.
For managing this within your handler logic, Ratpack provides what is known as the
byContent specification, and works similarly to the byMethod specification.

To illustrate this capability better, consider an application where we have a request
handler bound to the /users endpoint. When a consumer of our application opens
the endpoint in a browser, we want it to render back a list of User objects; when a
client library accesses the endpoint and requests JSON or XML data, we want the data
serialized as such. The byContent specification gives us flexibility to adapt the han‐
dler’s response according to what the consumer is capable of receiving. The code in
Example 1-9 demonstrates how this application would look.

Example 1-9. The byContent specification

@Grab('io.ratpack:ratpack-groovy:1.3.3')

import static ratpack.groovy.Groovy.ratpack
import static groovy.json.JsonOutput.toJson

class User {
 String username
 String email
}

def user1 = new User(
 username: "ratpack",
 email: "ratpack@ratpack.io"
)
def user2 = new User(
 username: "danveloper",
 email: "danielpwoods@gmail.com"
)

def users = [user1, user2]

ratpack {
 handlers {
 get("users") {
 byContent {
 html {
 def usersHtml = users.collect { user ->
 """\
 |<div>
 |Username: ${user.username}
 |Email: ${user.email}

12 | Chapter 1: Welcome to Ratpack

 |</div>
 """.stripMargin()
 }.join()

 render """\
 |<!DOCTYPE html>
 |<html>
 |<head>
 |<title>User List</title>
 |</head>
 |<body>
 |<h1>Users</h1>
 |${usersHtml}
 |</body>
 |</html>
 """.stripMargin()
 }
 json {
 render toJson(users)
 }
 xml {
 def xmlStrings = users.collect { user ->
 """
 <user>
 <username>${user.username}</username>
 <email>${user.email}</email>
 </user>
 """.toString()
 }.join()
 render "<users>${xmlStrings}</users>"
 }
 }
 }
 }
}

We will start by envisioning a simple User model object with some simple prop‐
erties.

For demonstrative purposes, we will bootstrap a couple of test objects.

To keep things simple, we can maintain a simple global list of our bootstrapped
users. (Note that this is just for the purposes of demonstrating the example.
Proper data-driven web applications will be covered in depth later in the book.)

Within our handler, we can access the byContent method, which gives us some
convenience methods similar to how the handler chain works. Within the closure
we provide, we can specify handlers for the different content types our applica‐
tion is capable of providing.

Handler Chain | 13

The html convenience method provides the ability to perform processing specifi‐
cally when a text/html content type is requested.

Similarly, json allows you to specify logic for an application/json content type.
Note that here we are using Groovy’s JsonOutput class to assist in serializing the
user list to JSON. Ratpack has extensive support for JSON rendering that will be
covered later in the book.

Ratpack even provides convenience methods for working with XML content
types. If your users request application/xml, this logic will be activated to
respond to them.

If you run this script and navigate to http://localhost:5050/users, your browser will
pull up a web page prominently displaying the list of users, as shown in Figure 1-1.

Figure 1-1. The byContent spec (HTML output)

Next, we can test JSON serialization. By again using the cURL command-line utility,
we can issue a request that specifies that we want application/json content. Note
that content type is specified through the request’s Accept header. In cURL, we spec‐
ify this header by supplying the -H "Accept: application/json" argument. The
output in Example 1-10 shows running the request and the response from our appli‐
cation.

Example 1-10. The byContent spec (JSON output)

$ curl -H "Accept: application/json" localhost:5050/users
[{"username":"ratpack","email":"ratpack@ratpack.io"},{"username":"danveloper", ↵
"email":"danielpwoods@gmail.com"}]

14 | Chapter 1: Welcome to Ratpack

www.allitebooks.com

http://www.allitebooks.org

Great! As you can see, the appropriate logic blocks provided to the byContent
method are being activated accordingly. To be sure, we can run a similar test, shown
in Example 1-11, this time checking that application/xml is working properly.

Example 1-11. The byContent spec (XML output)

$ curl -H "Accept: application/xml" localhost:5050/users
<users><user><username>ratpack</username><email>ratpack@ratpack.io</email></user> ↵
<user><username>danveloper</username><email>danielpwoods@gmail.com</email></user> ↵
</users>

Everything is working exactly as we would expect. It is important to know how byCon
tent operates: when no content type is specified, the first handler is always activated.
In our example, if we run the cURL command again, this time without specifying the
header, we are returned HTML. As an exercise, if you move the json block before
html and rerun the test, you indeed will see JSON output.

Using byContent also gives you the ability to specify custom content types. If your
application requires rendering content in a specialized way according to a consumer’s
capabilities, you can build processing into your handler using the type method on
byContent. If we change our demonstration slightly to also include a handler for the
application/vnd.app.custom+json content type, we can reimagine a shortened ver‐
sion of our handler, such as that shown in Example 1-12.

Example 1-12. Custom content type

get("users") {
 byContent {
 html {
 // ... snipped for brevity ...
 }
 json {
 // ... snipped for brevity ...
 }
 xml {
 // ... snipped for brevity ...
 }
 type("application/vnd.app.custom+json") {
 render toJson([
 some_custom_data: "my custom data",
 type: "custom-users",
 users: users
])
 }
 }
}

Handler Chain | 15

Here, we apply a logic block to an application-specific content type. Within it, we
render back a customized data structure with properties that consumers will
expect.

If we run the cURL test again, this time specifying application/vnd.app.custom
+json, we will see our custom data structure rendered, as shown in Example 1-13.

Example 1-13. The byContent spec (custom type output)

$ curl -H "Accept: application/vnd.app.custom+json" localhost:5050/users
{"some_custom_data":"my custom data","type":"custom-users", "users": ↵
[{"username":"ratpack","email":"ratpack@ratpack.io"},{"username":"danveloper", ↵
"email":"danielpwoods@gmail.com"}]}

This is exactly the output you would expect. This capability makes Ratpack a power‐
ful choice for building applications where the content type serves as a way to drive the
form of the models you render back to your consumers. But, what about when a con‐
sumer requests a content type that does not match anything we have built into the
byContent block? For that, we need to leverage another feature of the specification,
which is specifically designed for this. The noMatch method allows us to attach pro‐
cessing in this case. The shortened example shown in Example 1-14 demonstrates
applying the noMatch block to your byMethod logic.

Example 1-14. The byContent spec (no match handling)

get("users") {
 byContent {
 html {
 // ... snipped for brevity ...
 }
 json {
 // ... snipped for brevity ...
 }
 xml {
 // ... snipped for brevity ...
 }
 type("application/vnd.app.custom+json") {
 // ... snipped for brevity ...
 }
 noMatch {
 response.status 400
 render "negotiation not possible."
 }
 }
}

16 | Chapter 1: Welcome to Ratpack

Within the noMatch block, we will set the response status to 400 (Bad Request)
and send back a plain-text message. Consumers will recognize the HTTP error
code and realize there is a problem with the content type.

If we run the cURL test again, this time with an arbitrary content type string, we will
see a “negotiation not possible” message returned. The output in Example 1-15 shows
the output for this test.

Example 1-15. The byContent spec (no match output)

$ curl -H "Accept: application/nothing" localhost:5050/users
negotiation not possible.

You will recall that when no content type was specified, we defaulted to the first
defined block (html); however, that may not be the desired behavior when an
unknown content type is specified. We can further this example by saying that our
application’s requirements are that when no content type is matched, we want to ren‐
der the JSON explicitly. To facilitate this, instead of specifying a closure to the
noMatch method, we can provide a string with the content type to which the request
processing should be routed. In Example 1-16, we specify that when no match is
found, we instead want to treat the request as though it were application/json.

Example 1-16. The byContent spec (no match to JSON translation)

get("users") {
 byContent {
 html {
 // ... snipped for brevity ...
 }
 json {
 // ... snipped for brevity ...
 }
 xml {
 // ... snipped for brevity ...
 }
 type("application/vnd.app.custom+json") {
 // ... snipped for brevity ...
 }
 noMatch "application/json"
 }
}

Running the test again with the application/nothing content type, we will notice
that this time we are met with the same output that we saw earlier in our JSON test.
Giving your application the ability to direct processing according to a request’s
acceptable content type makes it easy to build powerful APIs and multiuse handlers
in a concise way. Your understanding of content type negotation in Ratpack will serve

Handler Chain | 17

as an excellent foundation for the examples throughout this book. When we get into
discussions of building APIs and data-driven applications, content type negotiation
becomes a paramount consideration.

Chapter Summary
In this introductory chapter, we have opened the door on your understanding of how
to build web applications with Ratpack. From covering the basic “Hello, World!”
demonstration at the beginning, to working through a basic understanding of the
handler chain, and how to work with requests, you now have the necessary exposure
to get off the ground with Ratpack. This chapter’s content will serve as a building
block for the text to come. The concepts demonstrated here will prove ever-useful as
we expand the conversation, and introduce you to the more advanced and robust
concepts and features that Ratpack provides.

18 | Chapter 1: Welcome to Ratpack

CHAPTER 2

Getting Started

Getting started in playing around with Ratpack is really easy, as was demonstrated in
the previous chapter. Up until now, you have been exposed to Ratpack’s ability to
easily get a prototype off the ground with just a few lines of Groovy. As you come to
better understand working with Ratpack, it is important to note that while we can do
everything we need to in a Groovy script, a collaborative and tested project will
require proper application structure.

When building a new project, Ratpack’s nature as a lightly opinionated framework
means that some guidance is provided. As we will discuss in this chapter, Gradle is
the preferred build and dependency management system for Ratpack applications,
and with it you will garner many simplicities and benefits that otherwise would not
be available. In the spirit of not strictly imposing its opinions, the framework and its
component feature sets are provided simply as a set of Java libraries, so no matter
your favored build tool you will certainly find the means to integrate Ratpack.

As we dig into how the framework facilitates extensibility, you will find that your
existing experience building and working in Java-based projects is immediately appli‐
cable, and not to be replaced with a new framework-specific understanding. Indeed,
while Ratpack provides a foundation for building web applications, it—and its
optional feature set—is made available to you as a set of libraries to be incorporated
simply as project dependencies. There are no framework binaries or Ratpack
command-line utilities you need to learn to get started—a simple understanding of
building Java projects is all that is needed.

Ratpack does not require a web application container at runtime, so there are no
implicit project-level dependencies that you need to be concerned with. This means
that the same framework libraries that you build with on your development system
are the ones that will be used in your production environment. In fact, packaged Rat‐

19

http://gradle.org

pack applications are built into Java Archive (JAR) files that are able to be self-
contained and runnable in a standalone fashion.

In Ratpack’s spirit of efficiency, only the minimally required dependency set need be
included in your project. For example, if you are building a Java-based Ratpack appli‐
cation that does not require Groovy support, then your project does not need to
inherit the Groovy dependencies along the way. Likewise, if your project has no need
for authentication, then you will have no need to bring in the Pac4j dependency
either. This conscious design decision to the structure of Ratpack ensures that your
projects are as lightweight as possible, and that you are limiting your exposure to
incorporating conflicting dependency versions as much as possible. Furthermore,
having an explicit understanding of the framework capabilities your project includes
further aids in quickly getting a grasp of what a project is trying to accomplish.

In this chapter, as we explore building a real-world project with Ratpack, you will be
exposed to the means by which the framework and its component parts are made
available to you. We will delve into building a standalone project, including an
explanation of a project’s structure, and an in-depth exploration of Ratpack’s integra‐
tion with the Gradle build system. Your understanding of Ratpack will be carried fur‐
ther by covering the means by which applications can be built from a runnable main
class, deeper coverage of the handler chain, and how to build standalone request han‐
dlers.

This chapter provides comprehensive coverage of Ratpack’s framework structure. By
the end of this chapter, you will be able to set up and build new projects, and will have
an understanding of how to work in an application’s project structure. The knowledge
that you carry forward from this chapter will serve as the foundation for later discus‐
sions on the many parts to Ratpack that make it such a compelling framework for the
JVM.

Library Structure
The framework features that Ratpack provides are composable by incorporating the
various framework libraries as project-level dependencies. For example, Ratpack
projects that are built on Groovy must include the ratpack-groovy library in order
to use the Groovy DSL. Similar library coordinates are available for all of the frame‐
work’s features.

Taking the toolkit approach to framework development means that Ratpack projects
only need to include the aspects of the framework they intend to use. All Ratpack
libraries are homed in the io.ratpack group of Maven coordinates, and each library
follows a sensible naming pattern that corresponds to its function in the framework.
Support for HTTP sessions comes from the ratpack-session library; likewise, sup‐

20 | Chapter 2: Getting Started

port for the reactive programming library RxJava is accomodated by including the
ratpack-rx library.

All libraries in Ratpack’s framework ecosystem extend from the ratpack-core library,
which provides a Java 8–based fabric for building web applications. The core library
will be a transitively included dependency for any project utilizing higher-level fea‐
tures.

The Maven coordinates for some of the framework libraries are as follows:

• Core: io.ratpack:ratpack-core:1.3.3
• Groovy: io.ratpack:ratpack-groovy:1.3.3
• Guice: io.ratpack:ratpack-guice:1.3.3
• Hystrix: io.ratpack:ratpack-hystrix:1.3.3
• RxJava: io.ratpack:ratpack-rx:1.3.3
• Session: io.ratpack:ratpack-session:1.3.3

Ratpack’s ability to separate its component features allows the framework to grow in a
cohesive and independent way. As new features are added, they extend the frame‐
work’s core functionality. In that respect, Ratpack is better able to address the evolv‐
ing needs of web applications without fundamentally changing its underlying form
and function.

Project Structure
Anything beyond the most trivial of Ratpack applications needs to be organized into
a proper project structure. To accomplish this, Ratpack projects need to make use of a
build system, and it is recommended to use one that supports dependency manage‐
ment. As noted at the beginning of this chapter, Ratpack favors the Gradle build sys‐
tem, and in doing so provides helpful utilities and shortcuts that make it easy to
resolve framework dependencies, and build and package applications.

While Gradle is the preferred and supported build system, because Ratpack is a
framework built as a set of libraries, any build and dependency management system
for the JVM will work just fine. This means that developers wishing to utilize Ant,
Maven, or SBT for their projects can easily do so by simply incorporating the appro‐
priate framework dependencies for their project. Out-of-the-box support is not pro‐
vided for these build systems, but given Ratpack’s library-oriented layout, it should
not be hard to get up and running in these environments.

When considering the structural design of a Ratpack project, you need not think of
your web application as anything more than a typical Java project. Ratpack projects
do not deviate from the standard structure adopted by many JVM-based projects

Project Structure | 21

https://github.com/ReactiveX/RxJava/wiki

(there is one exception to this that we will cover momentarily). While other JVM web
frameworks may force your project into a particular structure, Ratpack applications
are designed in a way that enables accustomed JVM developers to quickly be effective
without needing to learn a new structural convention.

A typical project structure for a Ratpack application looks something like the tree
shown in Example 2-1.

Example 2-1. Typical project filesystem structure

.
└── src
 ├── main
 │ └── java
 │ └── tld
 │ └── company
 │ └── app
 │ └── Main.java
 └── test
 └── java
 └── tld
 └── company
 └── app
 └── ApplicationTest.java

The single noted exception to this project structure is where—while not required—
Groovy applications can be structured with a script as the application entry point.
The script is typically placed into a src/ratpack/Ratpack.groovy file (although the abil‐
ity to override this location is available). Example 2-2 shows the minimum project
structure for a Groovy-based project.

Example 2-2. Minimum project structure for Groovy

.
└── src
 └── ratpack
 └── Ratpack.groovy

Ratpack Gradle Plugin
As noted before, Ratpack’s preferred and supported build system is Gradle. It can be
downloaded using the SDKMAN! utility, in the same way as Groovy. After you have
downloaded SDKMAN!, simply issue the sdk use gradle command. After issuing
the command, you will be asked whether you want to install Gradle. Go ahead and do
that to get Gradle downloaded and installed on your system. Example 2-3 shows the
output from SDKMAN!.

22 | Chapter 2: Getting Started

Example 2-3. Installing Gradle with SDKMAN!

$ sdk use gradle

Stop! gradle 2.11 is not installed.
Do you want to install it now? (Y/n): Y

Downloading: gradle 2.11

 % Total % Received % Xferd Average Speed Time Time Time Current
 Dload Upload Total Spent Left Speed
 0 0 0 0 0 0 0 0 --:--:-- --:--:-- --:--:-- 0
 0 0 0 355 0 0 195 0 --:--:-- 0:00:01 --:--:-- 230
100 44.7M 100 44.7M 0 0 900k 0 0:00:50 0:00:50 --:--:-- 1178k

Installing: gradle 2.11
Done installing!

Setting gradle version 2.11 as default.

Using gradle version 2.11 in this shell.

With the Gradle binaries installed, we can begin to build out our project. Ratpack’s
integration with Gradle alleviates some of the time necessary to bootstrap a new
project, by providing sensible defaults in the project’s build configuration. For
instance, consider the build.gradle build script shown in Example 2-4. This build
script is all that is necessary to get a new Ratpack Groovy application off the ground.

Gradle 2.0 or higher is required for use with the Ratpack Gradle
plugin, but for best performance and feature set, Gradle 2.6 or
higher is recommended.

Example 2-4. Minimal Gradle build script

buildscript {
 repositories {
 jcenter()
 }
 dependencies {
 classpath 'io.ratpack:ratpack-gradle:1.3.3'
 }
}

apply plugin: 'io.ratpack.ratpack-groovy'

repositories {
 jcenter()
}

Ratpack Gradle Plugin | 23

Here, we add the ratpack-gradle plugin to the build script’s classpath. This gives
configuration to the build that offers sensible defaults to standard projects.

We apply the ratpack-groovy plugin, which allows Ratpack to configure our
build with the necessary project-level dependencies, including adding the
required ratpack-groovy framework library to the build, as well as including the
necessary Groovy libraries.

If we create an empty directory for our new project and place the contents shown in
Example 2-4 into the build.gradle file, we can start to build out our project structure.
For a simple starting place, we can follow the Groovy project structure outlined in the
prior section. The tree listing for this simple project looks like the one shown in
Example 2-5.

Example 2-5. Groovy project structure

.
├── build.gradle
└── src
 └── ratpack
 └── Ratpack.groovy

If you’re familiar with Maven project structures, you’ll undoubtedly recognize that
the demonstrated project structure does not conform to standards. Indeed, Ratpack’s
Gradle integration is specially designed to include the src/ratpack tree as a project
resource set. This is a convenience that comes for free when using Gradle, and makes
it explicit as to where your project’s Ratpack files live, versus the rest of the project’s
code. As we will explore later, the src/ratpack convention is used in conjunction with
standard src/main/groovy and src/main/java structures.

If we populate the Ratpack.groovy file with a simple application definition, similar to
what we saw in Chapter 1, we can realize a full-fledged application in our newly cre‐
ated project structure. Filling it in with the code shown in Example 2-6, we will get
started.

Example 2-6. Simple Groovy Ratpack application

import static ratpack.groovy.Groovy.ratpack

ratpack {
 handlers {
 get {
 render "Hello, World!"
 }
 }
}

24 | Chapter 2: Getting Started

When working in a project structure, it’s not necessary to include
the @Grab annotation, as we did in the Groovy script at the begin‐
ning of the book. This is because Gradle is now managing our
classpath dependencies, so we have no need to use Grapes at this
point.

From the project root, we can now run our application in development mode. To do
so, simply issue gradle run on the command line, from the project root (i.e., where
the build.gradle file lives). With this, we will see a string of output text similar to that
shown when we ran the Groovy script before, as shown in Example 2-7.

Example 2-7. Gradle run output

$ gradle run
:compileJava UP-TO-DATE
:compileGroovy UP-TO-DATE
:processResources
:classes
:configureRun
:run
SLF4J: Failed to load class "org.slf4j.impl.StaticLoggerBinder".
SLF4J: Defaulting to no-operation (NOP) logger implementation
SLF4J: See http://www.slf4j.org/codes.html#StaticLoggerBinder for further details.
WARNING: No slf4j logging binding found for Ratpack, there will be no logging output.
Ratpack started (development) for http://localhost:5050
WARNING: Please add an slf4j binding, such as slf4j-log4j2, to the classpath.
WARNING: More info may be found here: http://ratpack.io/manual/current/logging.html
> Building 83% > :run

The last line to the run task will stay until you terminate the process. This is using
Gradle to act as our project runner, so that you can see your application running live
without it having to be packaged into a distribution. Again, the most notable line here
is the one starting with Ratpack started, which shows us how to access our applica‐
tion. If you navigate to http://localhost:5050, you will find your “Hello, World!” mes‐
sage displayed in your web browser.

While Groovy is undoubtedly the easiest way to get started with Ratpack, the frame‐
work itself is designed around Java. As such, there are facilities available within the
Gradle plugin to best accommodate those applications that choose to build on Java
alone. Let’s consider a Ratpack Java application by starting with an empty project
directory. As before, we begin building the project by creating a build.gradle file. This
time, we will apply the io.ratpack.ratpack-java plugin, as shown in Example 2-8.

Example 2-8. Ratpack Java build script

buildscript {
 repositories {

Ratpack Gradle Plugin | 25

 jcenter()
 }
 dependencies {
 classpath 'io.ratpack:ratpack-gradle:1.3.3'
 }
}

apply plugin: 'io.ratpack.ratpack-java'

mainClassName = 'tld.company.app.Main'

repositories {
 jcenter()
}

Here, we see the application of the io.ratpack.ratpack-java plugin, which
ensures the ratpack-core dependency is brought in and that the build is prop‐
erly configured for a Java-based project.

When building from a Java-based project that is not using the Groovy DSL file,
we need to specify the entry point to our application. Ratpack integrates with the
Gradle Application plugin for building and development-time running. What‐
ever class in the project that will act as the application runner must be specified
as the mainClassName build script directive. Note that the class name is arbitrary,
though it is probably a good design decision to choose something obvious, like
Main or Application.

With this build script in place, the project structure now conforms to standard Maven
conventions. The minimum filesystem tree looks like the one shown in Example 2-9.

Example 2-9. Java project structure

.
├── build.gradle
└── src
 └── main
 └── java
 └── tld
 └── company
 └── app
 └── Main.java

We will more fully discuss building Ratpack applications from a main class later in
this chapter.

Beyond simply running from the command line, the plugin bootstraps and config‐
ures the aspects of Gradle that make the project ready for packaging and distribution.
For example, the project can be built into a distribution by issuing gradle distZip

26 | Chapter 2: Getting Started

http://bit.ly/gradle-app

or gradle distTar for generating a .zip or .tar file, respectively. This command will
create the deployment structure, including the project’s dependencies, and will gener‐
ate “start” scripts for Linux and Windows machines with all the appropriate classpath
configurations for your project. This is accomplished by leveraging Gradle’s Applica‐
tion plugin.

As noted earlier in the chapter, Ratpack’s nature as a component library framework
means that your project need only include the facets that it needs, therein eliminating
dependency bloat from the framework. This, however, means that it can be difficult
for project developers to properly align the different versions of the various frame‐
work pieces. To alleviate this pain point, the Ratpack Gradle plugin provides a short‐
cut for resolving different libraries of the framework, and locks them according to the
plugin version.

The code in Example 2-10 incorporates RxJava support into the project by simply
including the compile ratpack.dependency('rx') line within the build script’s
dependencies block. From here, the plugin will inform Gradle as to the appropriate
coordinates for the RxJava library.

Example 2-10. Gradle build script with RxJava dependency

buildscript {
 repositories {
 jcenter()
 }
 dependencies {
 classpath 'io.ratpack:ratpack-gradle:1.3.3'
 }
}

apply plugin: 'io.ratpack.ratpack-groovy'

repositories {
 jcenter()
}

dependencies {
 compile ratpack.dependency('rx')
}

As shown at the beginning of the chapter, Ratpack’s library structure is such that each
framework module is named following a convention that prefixes “ratpack-” to each
artifact name. Using the plugin’s ratpack.dependency(..) mechanism, any of the
framework libraries can be resolved by name, which is simply the artifact name with
the prepended “ratpack-” omitted.

Ratpack Gradle Plugin | 27

After a framework dependency is added to the project, it needs to be wired into your
application. Ratpack’s modular structure is powerful, flexible, and efficient, but is also
a departure from many other JVM frameworks, such as Grails, that use a plugin sys‐
tem. Adding and working with modules in Ratpack is covered in depth in Chapter 5.

From here, the project can be integrated with the rest of the Gradle ecosystem, which
includes IDE support and a vast array of plugins for nearly every task.

Gradle Wrapper
Gradle has the ability to produce a wrapper script, which serves as a convenient run‐
ner for your application’s build. This script can be included as part of the project’s
source control, thereby ensuring that anyone working on the project has the ability to
build to the project. For those without Gradle installed, the wrapper will download
Gradle and pass commands to it when they are issued. Use of the wrapper is a power‐
ful utility for ensuring that developers can always build and run your project.

To get started with creating the wrapper, within the root of your project (as noted ear‐
lier, the project root is where the build.gradle file lives) simply issue the gradle wrap
per command. Upon doing so, you will be met with output such as that shown in
Example 2-11.

Example 2-11. Creating the Gradle wrapper

$ gradle wrapper
:wrapper

BUILD SUCCESSFUL

Total time: 5.371 secs

Now within your project directory, you will see a gradle/ directory and two new files
in the root: gradlew and gradlew.bat. The former is a BASH script for Linux and Mac
OS X systems; the latter is a batch file for Windows systems. The gradle/ directory
contains the wrapper JAR file and a corresponding properties file. This directory can
generally be left alone, though if you wish to include the wrapper in your project’s
source control, the directory must also be included. With the wrapper in place, your
project structure now looks like the tree listing in Example 2-12.

Example 2-12. Project structure with Gradle wrapper

.
├── build.gradle
├── gradle
│ └── wrapper
│ ├── gradle-wrapper.jar

28 | Chapter 2: Getting Started

http://plugins.gradle.org

│ └── gradle-wrapper.properties
├── gradlew
├── gradlew.bat
└── src
 └── ratpack
 └── Ratpack.groovy

Going forward, instead of issuing commands using the gradle command-line utility,
you instead can call your gradlew script. In doing so, you ensure that you are using
the project’s specific version of Gradle instead of your system’s version of Gradle.
Using the wrapper will ensure that developers are always building and running with
the appropriate version of Gradle for your project.

Now, if we run the command ./gradlew run for the first time, you will likely be met
with an output indicating that the wrapper is downloading and installing the appro‐
priate version of Gradle. SDKMAN! and Gradle do not share the same filesystem
locations for installed versions, so even if you have the appropriate version installed
on your system, you may find that it is downloading again. Once the download is
complete, you will see the same output that you saw before, as shown in
Example 2-13.

Example 2-13. Gradle run output from wrapper

$./gradlew run
Downloading https://services.gradle.org/distributions/gradle-2.11-bin.zip
...
...
...
...
...
...
... [many more dots] ...
Unzipping /Users/danw/.gradle/wrapper/dists/gradle-2.11-bin/452syho4l32rlk2s8ivd ↵
jogs8/gradle-2.11-bin.zip to /Users/danw/.gradle/wrapper/dists/gradle-2.11-bin/ ↵
452syho4l32rlk2s8ivdjogs8
Set executable permissions for: /Users/danw/.gradle/wrapper/dists/gradle-2.11-bin/ ↵
452syho4l32rlk2s8ivdjogs8/
gradle-2.11/bin/gradle
:compileJava UP-TO-DATE
:compileGroovy UP-TO-DATE
:processResources UP-TO-DATE
:classes UP-TO-DATE
:configureRun
:run
SLF4J: Failed to load class "org.slf4j.impl.StaticLoggerBinder".
SLF4J: Defaulting to no-operation (NOP) logger implementation
SLF4J: See http://www.slf4j.org/codes.html#StaticLoggerBinder for further details.
WARNING: No slf4j logging binding found for Ratpack, there will be no logging output.
Ratpack started (development) for http://localhost:5050

Ratpack Gradle Plugin | 29

WARNING: Please add an slf4j binding, such as slf4j-log4j2, to the classpath.
WARNING: More info may be found here: http://ratpack.io/manual/current/logging.html
> Building 83% > :run

Your project now has a standardized way of building and running, and the wrapper is
the means by which all developers collaborating on the project can ensure they are
working with the necessary Gradle version.

Hot Reloading
As noted in the first chapter, rapid prototyping and hot reloading of Ratpack applica‐
tions is accomplished by integrating with Gradle’s “continuous build” feature. This
capability of the build system allows applications to be started in a mode where Gra‐
dle supervises the project structure and is capable of recognizing changes to classes
and files within your project. Changes are transparently made available to the run‐
ning JVM.

Nothing more is needed to get hot reloading and continuous build capabilities than
to change your ./gradlew run command to ./gradlew -t run. This will automati‐
cally inform Gradle that you intend to reflect changes in real time, and you are free to
develop and make changes on the fly.

A caveat to the continuous build integration is that the task must be started through
Gradle directly. This can be accomplished either through the Gradle command-line
utility or through invoking the Gradle task within your IDE. If you are developing
your application from within an IDE and wish to leverage IDE debugging features
(like breakpoints), then you should start your application with the com‐
mand ./gradle -t run --debug-jvm. This will start the application and wait for a
remote debugger to connect to it. From within your IDE of choice, you can create a
remote debugging run configuration to attach to your running application. For most
applications, the default configuration will be fine.

Lazybones
Lazybones is a project generator, which eliminates the need for bootstrapping a typi‐
cal boilerplate project structure. It takes it a step further with projects like Ratpack by
providing a bare-bones structure and application from which to get started. For
developers new to Ratpack, use of Lazybones is highly encouraged.

Lazybones can be downloaded through SDKMAN!, by issuing the sdk install lazy
bones command. Once installed, bootstrapping a new Ratpack project can be accom‐
plished by running lazybones create <template name> <template version>

<target directory>, which will download the versioned template and generate the
project into the specified target directory. For example, to set up a new Ratpack
project, you can run lazybones create ratpack my-app, where my-app is the name

30 | Chapter 2: Getting Started

http://github.com/pledbrook/lazybones

of the application you wish to create. This will bootstrap the project structure for a
Groovy-based project with a simple index page and Gradle build configuration.

Named templates for Lazybones are stored on Bintray, and templates for Ratpack
applications can be found in the ratpack/lazybones repository. However, different
template locations can be explicitly issued to the lazybones create command,
allowing teams and organizations to pre-define common project structure according
to their requirements. For example, running lazybones create https://

dl.bintray.com/ratpack/lazybones/ratpack-template-1.3.3.zip my-app will
create the project structure for a basic Ratpack Groovy application. The helpful out‐
put from this command is shown in Example 2-14.

Example 2-14. Output from running lazybones create

Creating project from template https://dl.bintray.com/ratpack/lazybones/ ↵
ratpack-template-1.3.3.zip (latest) in 'my-app'

Ratpack project template

You have just created a basic Groovy Ratpack application. It doesn't do much
at this point, but we have set you up with a standard project structure, a
Guice back Registry, simple home page, and Spock for writing tests (because
you'd be mad not to use it).

In this project you get:

* A Gradle build file with pre-built Gradle wrapper
* A tiny home page at src/ratpack/templates/index.html (it's a template)
* A routing file at src/ratpack/Ratpack.groovy
* Reloading enabled in build.gradle
* A standard project structure:

 <proj>
 |
 +- src
 |
 +- ratpack
 | |
 | +- Ratpack.groovy
 | +- ratpack.properties
 | +- public // Static assets in here
 | |
 | +- images
 | +- lib
 | +- scripts
 | +- styles
 |
 +- main
 | |

Lazybones | 31

http://bintray.com

 | +- groovy
 |
 +- // App classes in here!
 |
 +- test
 |
 +- groovy
 |
 +- // Spock tests in here!

That's it! You can start the basic app with

 ./gradlew run

but it's up to you to add the bells, whistles, and meat of the application.

 Project created in my-app!

As you can see from the output, the project structure is created as we would expect,
and even some basic functionality is in place! The output even shows using the Gra‐
dle wrapper to run the project. If we follow the output and issue the ./gradlew run
command, we see output indicating that the application is starting, as shown in
Example 2-15.

Example 2-15. Gradle output from Lazybones application

$./gradlew run
:compileJava UP-TO-DATE
:compileGroovy UP-TO-DATE
:processResources
:classes
:configureRun
:run
[main] INFO ratpack.server.RatpackServer - Starting server...
[main] INFO ratpack.server.RatpackServer - Building registry...
[main] INFO ratpack.server.RatpackServer - Ratpack started (development) ↵
for http://localhost:5050
> Building 83% > :run

As we have seen before, Ratpack conveniently outputs the location where our applica‐
tion is running. Opening a browser and navigating to http://localhost:5050 reveals the
template landing page (as shown in Figure 2-1).

32 | Chapter 2: Getting Started

Figure 2-1. Lazybones template page

This templated project structure serves as a convenient starting place for your project.
From here, you can begin to build out the requirements of your project and use pro‐
vided Gradle build integration to package a runnable distribution.

Building from a Main Class
Ratpack’s support for Groovy makes it easy to get started building complex applica‐
tions using the src/ratpack/Ratpack.groovy file as an entry point into the application.
However, not all Ratpack applications will be built with Groovy, or may not otherwise
be able to follow the out-of-the-box Groovy DSL. In those cases, a project needs to
have an entry point into the application. That is to say, some class needs to be pro‐
vided that is runnable and does the work to stand up the Ratpack application.

In the case of Groovy applications that utilize Ratpack.groovy as their entry point,
Ratpack is taking an opinionated approach to bootstrapping the application behind
the scenes. Indeed, there is a runnable Java class that sits behind this to stand up the
Ratpack server and configure the pieces necessary to get the web application runtime
in place.

Java-based projects, for example, must provide a runnable Java class similar to the
code shown in Example 2-16.

Building from a Main Class | 33

Example 2-16. Ratpack Java Main class

package app;

import ratpack.server.RatpackServer;
import ratpack.server.ServerConfig;

public class Main {

 public static void main(String[] args) throws Exception {
 RatpackServer.start(spec -> spec
 .handlers(chain -> chain
 .get(ctx -> ctx.render("Hello, World!"))
)
);
 }
}

In this example, the Ratpack server is explicitly bootstrapped using the Ratpack
Server.start(..) faculty, which takes a definition of the application, including the
server configuration, any component bindings, and the handler chain. The defini‐
tion’s API is not dissimilar from the Groovy DSL, with the exception that the handler
chain must build off of the Chain object that is provided to the handlers method. In
Groovy, the closure supplied to this method uses delegation, which changes the lexical
scope during execution. We do not have that same luxury with lambda expressions,
so we must make explicit method calls to the handler chain’s API.

The Main class is now entirely self contained and runnable. Running the project will
start the server and bind to the default listening port. Navigate to http://localhost:5050
and you will see the “Hello, World!” message displayed in your browser.

Use of a Main class is not restricted to only Java-based applications. Indeed, any lan‐
guage that builds on top of the JVM can leverage Ratpack’s Main class paradigm as an
entry point to a runnable Java application. In fact, Groovy applications that wish to
utilize an explicit Main class instead of the src/ratpack/ratpack.groovy file can do so,
and still employ the Groovy DSL, as shown in Example 2-17.

Example 2-17. Groovy chain DSL

package app

import ratpack.groovy.Groovy
import ratpack.server.RatpackServer

class MainGroovy {

 public static void main(String[] args) {
 RatpackServer.start { spec -> spec
 .handlers(Groovy.chain {

34 | Chapter 2: Getting Started

www.allitebooks.com

http://www.allitebooks.org

 get {
 render "Hello, World!"
 }
 })
 }
 }
}

The part that matters most in Example 2-17 is the Groovy#chain call, which exposes
the same handlers API as would be found in the src/ratpack/ratpack.groovy file.

Working with Handlers
A cursory overview of the handler chain, including its semantic API, was given in the
previous chapter, and for many use cases, the information contained in that section is
perhaps all that is needed. However, there are scenarios where the simplicity of inline
handler declarations is not suited for the use case, and for that, Ratpack makes it easy
to grow to a more robust layout. To extend beyond the basics, it is important to dis‐
cuss what is actually happening behind the scenes when a handler is defined.

Understanding the Chain API Interactions in Groovy and Java
To start with, understand that most of the examples in this book emphasize the use of
the Groovy handler chain DSL for defining the structure of a Ratpack application.
The previous section exposed you to the handler chain semantics using the Java API.
As you can see, the differences between using Groovy and using Java are fairly limi‐
ted. For Ratpack, that is an intentional design decision.

All of the Groovy DSL in Ratpack is an affixture to the underlying pure Java API,
meaning that the Groovy DSL is little more than a decoration for syntax sugar. To
that extent, the semantics of the Groovy examples translate near-literally to the Java
API, by understanding simply that in Java you are working with lambda expressions
instead of closures. Whether you are using Java or Groovy, behind the scenes, Rat‐
pack is taking the code segment that you have defined in the handler chain and coerc‐
ing it to a ratpack.handling.Handler object.

The Handler class is the functional interface (in Java 8 terms) upon which all request
handlers in Ratpack must be built. It exposes a single method, handle, which takes a
ratpack.handling.Context object as an argument; it is through the Context that a
handler interacts with a request. In Java 8, lambda expressions are seamlessly coerced
to a functional interface type, without any need for explicit casting within the code.
Groovy closures are similarly able to be cast to functional interface types. This allows
the handler chain API to define a signature of Chain#get(Handler)—which, as we’ve
already seen, is the semantic binding for an HTTP GET request—and have the
Groovy representation of chain.get { <handler logic> } be symmetrical to the

Working with Handlers | 35

corresponding Java 8 code of chain.get(ctx -> <handler logic>). In both exam‐
ples, the handler code segment is being automatically coerced into the Handler type,
and the code will be executed when the Handler#handle(Context) method is
invoked (as it is for matching requests).

The main difference to recognize between the Groovy and Java examples is that the
Groovy examples do not need to specify the variable argument that is passed into
them. This is because behind the scenes Ratpack utilizes Groovy’s method dispatch‐
ing mechanism to instruct the closure that it is to resolve any method calls to the
scope of the Context object (before then reaching to the outer scope). This makes it
shorter to write code dealing with request processing, by surfacing those method calls
directly in the handler code block. To understand this better, consider that the
Groovy code chain.get { render "Hello, World!" } is technically equivalent to
chain.get(ctx -> ctx.render("Hello, World!")) through the Java API. (The dif‐
ference of parentheses after the render method call is due to the fact that Groovy
does not require variable arguments to be wrapped in parens.) Indeed, the Groovy
closure could specify the ctx variable argument to the closure using the arrow nota‐
tion, and the logic would be no different beyond being slightly more explicit. For
instance, chain.get { ctx -> ctx.render "Hello, World!" } is equivalent to the
previous Groovy example.

The scoping of Groovy closures to a working type does not start at handlers, however.
As you may have noticed from the prior examples, the call to register a get handler
does not require you to expand it out to its full invocation of: chain.get { ... }.
That is because within the handlers section of the Groovy chain DSL, method calls to
the Chain are implicitly dispatched. Similar to handlers and the context variable argu‐
ment, the chain variable argument can be specified and it would be no more techni‐
cally correct or incorrect. Using the format of handlers { chain -> chain.get
{ ctx -> ctx.render "Hello, World!" } } is equivalent to the more concise ver‐
sion of handlers { get { render "Hello, World!" } }.

Ratpack is able to leverage lower-level aspects of the Groovy compilation engine that
inform it as to the intended scope of a coerced closure. This allows the handler and
chain code segments to get aid in autocompletion from IDEs and even allows the
Groovy DSL code blocks to be statically compiled. Ratpack’s design decision to align
the Groovy DSL with the underlying Java API is geared toward making the interac‐
tions with the framework more explicit, and therein reduces complexity when need‐
ing to understand or debug the behavior of a particular segment of code.

Standalone Handlers
It is indisputable that the easiest way to get started with Ratpack is by inlining the
handler logic into the application’s handler chain—as has been depicted in every

36 | Chapter 2: Getting Started

example up until now. But, while using closures and lambda expressions is a fast and
expressive way to define a handler’s functionality, it may not be the most logical
approach for handlers with reasonably complex logic. In this scenario, extracting the
handler logic to its own class may aid in the encapsulation and extended development
of request processing logic.

As noted earlier in this chapter, the use of closures and lambda expressions is really
just an expressive shortcut for giving Ratpack a Handler object. There are many sce‐
narios where it might make sense to have your handler logic organized into its own
class. A standalone handler can help to facilitate unit testing and separate the code for
a handler’s logic. Indeed, it is probably wise for any nontrivial handler logic to be
defined in its own class.

Writing a standalone handler starts by simply implementing the ratpack.han
dling.Handler interface and its corresponding handle(ratpack.handling.Con
text) method. It can then be attached to the handler chain through the chain API, as
demonstrated in the prior examples. Consider the code in Example 2-18, which
shows a standalone handler class, and its corresponding association in the handler
chain.

Example 2-18. The standalone handler class

import static ratpack.groovy.Groovy.ratpack
import ratpack.handling.Handler
import ratpack.handling.Context

class DefaultRouteHandler implements Handler {
 private final String message

 DefaultRouteHandler(String message) {
 this.message = message
 }

 @Override
 void handle(Context context) {
 context.render message
 }
}

ratpack {
 bindings {
 add(new DefaultRouteHandler("Hello, World!"))
 }
 handlers {
 get(DefaultRouteHandler)
 }
}

Working with Handlers | 37

This example introduces the most important caveat to standalone handlers: they must
be present in the Ratpack component registry to be usable from the chain. The regis‐
try will be covered in depth in Chapter 5; for now, just keep in mind that the bind
ings block and its corresponding add method are the appropriate means for
registering a standalone handler.

The DefaultRouteHandler class has a single parameter constructor that allows the
message that is to be sent to the client to be configurable. We register it in the bind‐
ings block by constructing it with the “Hello, World!” message, and we refer to it in
the handler chain by class name. As you can see from the handler chain, we are able
to bind our standalone handler to the default route through the get(DefaultRoute
Handler) handler method.

Standalone handlers provide greater reusability of common logic. We may, for exam‐
ple, want to bind a standalone handler to different routes, where its logic does differ‐
ent things according to attributes of the request. To understand this better, see the
logic in Example 2-19, which is a slight modification to the prior example, this time
depicting a reusability scenario.

Example 2-19. A standalone handler serviceable to different routes

import static ratpack.groovy.Groovy.ratpack
import ratpack.handling.Handler
import ratpack.handling.Context

class DefaultRouteHandler implements Handler {
 private final String defaultMessage

 DefaultRouteHandler(String message) {
 this.defaultMessage = message
 }

 @Override
 void handle(Context context) {
 if (context.pathTokens.containsKey("name")) {
 context.render "Hello, ${context.pathTokens.name}!"
 } else {
 context.render defaultMessage
 }
 }
}

ratpack {
 bindings {
 add(new DefaultRouteHandler("Hello, World!"))
 }
 handlers {
 get(DefaultRouteHandler)
 get(":name", DefaultRouteHandler)

38 | Chapter 2: Getting Started

 }
}

This time, the handler is actually processing attributes of the request to make a judg‐
ment as to what data is returned to the client. The logic is simple enough, but it
requires that the handler be bound to both the default route, and a route that has a
corresponding path token (path bindings and path tokens were discussed in Chap‐
ter 1). We are able now to use the registered DefaultRouteHandler across many dif‐
ferent bindings in the handler chain.

The preceding examples were contrived “Hello, World!” demonstrations to get you
familiar with the concept of standalone handlers, while keeping the code as easy to
follow as possible. A real-world scenario in which a standalone handler provides a
great deal of benefit is when many Ratpack applications need to share the same logic
—most likely for a top-level or entry handler. This handler logic can be written once,
packaged into a standalone artifact, and brought into one or many projects as a
dependency.

The need for this type of common logic has various use cases. Consider, for example,
the increasingly common scenario of a microservice platform architecture, which
publishes a client library for consumers. Each microservice in the stack can utilize
common handler logic to inspect a request and make intelligent rendering decisions
based on the version of the client, as defined by the incoming “User Agent” header.
This can allow a microservice to render a model according to the object structure that
is known to correspond with the requesting client.

The Ratpack application in Example 2-20 demonstrates the use of a standalone han‐
dler for request introspection and handling according to the incoming User-Agent.

Example 2-20. Complex standalone handler beyond “Hello, World”

import ratpack.handling.Context
import ratpack.handling.Handler
import ratpack.registry.Registry

import static ratpack.groovy.Groovy.ratpack
import static ratpack.jackson.Jackson.json

class UserAgentVersioningHandler implements Handler {
 private static final String ERROR_MSG = "Unsupported User Agent"

 enum ClientVersion {
 V1("Microservice Client v1.0"),
 V2("Microservice Client v2.0"),
 V3("Microservice Client v3.0")

 String versionString

Working with Handlers | 39

 ClientVersion(String versionString) {
 this.versionString = versionString
 }

 static ClientVersion fromString(String versionString) {
 for (val in values()) {
 if (val.versionString == versionString) {
 return val

 }
 }
 null
 }
 }

 @Override
 void handle(Context context) {
 def userAgent = context.request.headers.get("User-Agent")
 def clientVersion = ClientVersion.fromString(userAgent)
 if (!clientVersion) {
 renderError(context)
 } else {
 context.next(Registry.single(ClientVersion, clientVersion))
 }
 }

 private static void renderError(Context context) {
 context.response.status(400)
 context.byContent { spec ->
 spec.json({
 context.render(json([error: true, message: ERROR_MSG]))
 }).html({
 context.render("<h1>400 Bad Request</h1>
<div>${ERROR_MSG}</div>")
 }).noMatch {
 context.render(ERROR_MSG)
 }
 }
 }
}

ratpack {
 handlers {
 get(new UserAgentVersioningHandler())

 get("api") { UserAgentVersioningHandler.ClientVersion clientVersion ->
 if (clientVersion == UserAgentVersioningHandler.ClientVersion.V1) {
 render "V1 Model"
 } else if (clientVersion == UserAgentVersioningHandler.ClientVersion.V2) {
 render "V2 Model"
 } else { // it must be V3 at this point, as the versioning
 render "V3 Model" // handler has figured out the request qualifies
 }

40 | Chapter 2: Getting Started

 }
 }
}

In the UserAgentVersioningHandler, the request processing starts by extracting
the User-Agent header from the request. Note that this line of code is using
Groovy’s dot notation on a Map object; the equivalent Java code is simply
context.getRequest().getHeaders().get("User-Agent"). From here, it
checks if the User-Agent is valid, and if not it renders a polite error message back
to the client; if so, the User-Agent string is tokenized and the relevant version
attribute is extracted. The version string is then processed through the ClientVer
sion enumeration, where it is turned into a representative object. In this exam‐
ple, a User-Agent string of Microservice Client v1.0 will by represented as
the ClientVersion.V1 enumerated value. Likewise, v2.0 and v3.0 will be map‐
ped to their respective values. If no enumerated value is able to represent the
User-Agent, then the client is provided a “Bad Request” response.

This is perhaps the most important part of the flow, as this is the portion of code
responsible for getting the ClientVersion enum value to the downstream API
handler. (Contextual objects will be covered in Chapter 5.) This is also the line of
code that is responsible for informing Ratpack to continue request processing
down the chain.

At the very beginning of the handler chain is where we have applied the UserA
gentVersioningHandler. This allows the client versioning logic to exist
upstream and provide for the API handler what version the client is using.

This line of code represents the handler for the api endpoint. In this example, the
variable argument to the handler closure is extracting the ClientVersion object
from the context registry, making it available for processing as shown. The regis‐
try and its corresponding accessor methods will be covered in depth in Chap‐
ter 5.

Many microservices in the application stack may be accessed by a single client, and it
should be clear at this point that Ratpack’s ability to introduce standalone handlers
into the chain is quite powerful.

Chapter Summary
As you move forward from this chapter, you take with you a firm grasp of the basics
of Ratpack, including a great understanding of how to create and work in a full-
fledged project structure. The chapters that follow will lean heavily on the knowledge
that you have gained from this chapter, from working in project structures, to creat‐

Chapter Summary | 41

ing Gradle build scripts, and working with standalone handlers. You certainly by now
have the fundamental understanding necessary to build robust applications with Rat‐
pack. Now that you know how to build these applications, we must next show you
how Ratpack makes it easy to test them. Your experience from this chapter will prove
fundamentally important to the conversation of building applications that are well
tested.

42 | Chapter 2: Getting Started

CHAPTER 3

Testing Ratpack Applications

Now that we have covered how to build proper project structure and work with
requests a little more completely, it is important to understand how to go about writ‐
ing tests for your application. As a developer-first framework, Ratpack understands
the need to make testing applications easy, and thus provides many test fixtures and
utilities to aid in test-driven development and writing functional and integration
tests.

Getting started with testing in Ratpack is as easy as including a test-scoped depend‐
ency in your project. If you are making use of the Gradle integration, then the process
of adding the dependency will look very similar to how we imported framework
components into the project in the previous chapter. If you are using a dependency
and build management tool besides Gradle, then the ratpack-test framework mod‐
ule needs to be brought into the test time’s compile and runtime classpath.

When using the Gradle plugin, you can add the ratpack-test framework module
through the dependencies block of your project’s build.gradle file. This time, how‐
ever, it will need to add the dependency to the testCompile build configuration, so
that the test fixtures are properly isolated from the regular compile and runtime class‐
paths. In addition to the ratpack-test module, you need to include a testing frame‐
work. Ratpack’s test fixtures do not enforce any opinions about the testing
infrastructure your project uses, but the Spock Framework is the preferred test
framework. There are many examples of testing Ratpack applications with Spock
within Ratpack’s code base, and this chapter will draw heavily on building tests in that
way.

The build script in Example 3-1 is an extended version of the one we worked on in
Chapter 2. This time, the ratpack-test and Spock Framework dependencies are

43

https://github.com/spockframework/spock

added to the testCompile build configuration. Note that for complete object mock‐
ing and spying, Spock requires the objenesis and cglib dependencies as well.

Example 3-1. Build script with test dependencies

buildscript {
 repositories {
 jcenter()
 }
 dependencies {
 classpath 'io.ratpack:ratpack-gradle:1.3.3'
 }
}

apply plugin: 'io.ratpack.ratpack-groovy'

repositories {
 jcenter()
}

dependencies {
 testCompile ratpack.dependency('test')
 testCompile 'org.spockframework:spock-core:1.0-groovy-2.4'
 testCompile 'cglib:cglib:2.2.2'
 testCompile 'org.objenesis:objenesis:2.1'
}

Here, we add the ratpack-test dependency to the project’s build in the testCom‐
pile configuration. Dependencies in this configuration are used at build time, but
are not included in the final artifact.

As noted, you are free to use whatever test framework is suitable to your project’s
requirements, but in this chapter we will largely demonstrate working with
Spock, so here we add the Spock dependency.

cglib is an optional dependency to Spock, though largely needed for providing
mock object types.

Likewise, objenesis is optional, but useful if you intend to mock concrete types,
so we add it here for completeness.

Now that the dependencies are added, you will need to ensure that your project setup
is structured for your test classes. Simply creating a new directory structure that fol‐
lows common Maven-style project source set configuration will allow you to create
tests that can utilize the testCompile configuration. The project structure should
look similar to that found in Example 3-2. If you used Lazybones to build your
project, you will already have the src/test/ directory structure in place.

44 | Chapter 3: Testing Ratpack Applications

Example 3-2. Project structure with test source set

.
└── src
 ├── main
 │ └── groovy
 │ └── tld
 │ └── company
 │ └── app
 ├── ratpack
 │ └── Ratpack.groovy
 └── test
 └── groovy
 └── tld
 └── company
 └── app

Project classes go here.

Test classes go here.

As you can see from the structure, the src/test/ source set mirrors the src/main/ tree. If
you are already familiar with common Java project structures, this will be nothing
compelling. If you haven’t seen this before, just keep in mind that source code in src/
test/ gets both the project’s compile and runtime dependency set, as well as the depen‐
dencies from the testCompile configuration.

With the test structure now in place, you can run your tests from either the command
line or from within the IDE. The Gradle Java and Groovy plugins will run tests within
their respective test directories every time the project is built. To simply run the tests
from the command line, issue the ./gradlew test command from the project root.

Spock Test Structure
Before diving into testing strategies in Ratpack, it is important to take a quick detour
to understand a few key points about Spock. If you have never used Spock, or come
from a background of writing tests in pure Java (with JUnit, for example), then some
of the constructs brought about by Spock may at first appear foreign. Arguably the
most important thing to understand about Spock is that at its most fundamental level,
it is just a test runner on top of JUnit. Therefore, Spock tests are able to be run in the
same way that typical JUnit tests would be run, and running them from within the
IDE or from the command line is supported. Spock tests and JUnit tests are able to
exist alongside one another within a project, without any risk of overlapping prob‐
lems.

Spock tests employ a behavior-driven development (BDD) structure, and are referred
to as specifications. The idea behind this is that a test structure is built around a fea‐

Spock Test Structure | 45

ture specification, and should be as human readable as possible. Specifications consist
of many features, and these features are the actual tests that will be run. A specifica‐
tion is a test class, and the features are methods within that class.

Following the BDD approach, features are defined in different blocks, which denote
the component pieces of a feature’s test. These blocks are organized by their function
in the order of:

setup

Used to set up some test data for the rest of the feature.

stimulus

The invocation of the feature code under test—a method call to a service, for
example. This block may also be used to capture repsonse data from application
code and store it in a local variable for the assertion block.

assertion

An assertion about the behavior observed from the stimulus block. This may be
as simple as asserting that some data returned from a service call equals a calcula‐
ted value. It is important to note that within this block, all statements are implicit
assertions. Unlike JUnit tests, which must explicitly perform an assertion, each
line of code in this segement is treated as an assertion (and therein respected as a
boolean result).

cleanup

Provides a segment to run some code after the feature test has completed. This is
useful for cleaning up any test data that was bootstrapped in the setup block, and
this code segment is always run, regardless of assertion success or failure.

Example 3-3 shows a simple service class that we will use to illustrate testing with
Spock.

Example 3-3. The MyService class

package tld.company.app

class MyService {

 String doServiceCall() {
 "service was called"
 }

 void shutdown() {
 // stub implementation
 }
}

Example 3-4 demonstrates the corresponding specification for the MyService class.

46 | Chapter 3: Testing Ratpack Applications

Example 3-4. Specification for MyService

package tld.company.app

import spock.lang.Specification

class MyServiceSpec extends Specification {

 void "service calls should return proper response"() {
 setup:
 "Set up the service for testing"
 def service = new MyService()

 when:
 "Perform the service call"
 def result = service.doServiceCall()

 then:
 "Ensure that the service call returned the proper result"
 result == "service was called"

 cleanup:
 "Shutdown the service when this feature is complete"
 service.shutdown()
 }
}

The MyServiceSpec class extends Spock’s Specification type. This is needed to
ensure that Spock’s test runner properly captures this class as a test.

Here, we define the feature, and we do so using a human-readable definition of
what this feature is aiming to accomplish.

Within the setup block, we construct a new instance of MyService.

The when block is the stimulus phase of the test, where we actually invoke the
feature-under-test.

The then block is where we make assertions about the result of the service call.

And finally, we use the cleanup block to perform any after-test work that needs
to happen to ensure the object and its dependencies are disposed of properly.

As you can see from the specification, the different blocks can be optionally labeled
with a descriptive text of their role in the feature test. This can help future developers
in understanding the intention of the feature’s implementation. In this specification,
the setup, stimulus, assertion, and cleanup blocks are denoted by the setup, when,
then, and cleanup labels, respectively. The labeling structure provides a human-

Spock Test Structure | 47

readable flow to the structure of the test. Matching that with the description text
makes the feature test readable from beginning to end.

The setup block creates the instance of the MyService class for use within the test.
The when block—or the stimulus—is then responsible for performing the function of
the test and capturing the result. The then block performs the assertion that the
MyService implementation has returned the proper value, and the cleanup block
runs the finalization operation—in this case, a stub function on the implementation.

From the Example 3-4 demonstration, you can understand a few more important
aspects of Spock specifications. The first is that features within a specification are able
to be written as methods, and Spock leverages the fact that Groovy allows you to cre‐
ate a method name as a string value. This allows a feature test’s implementation
within a specification to provide descriptive text about the feature directly within the
method signature.

String method names and the ability to segment code blocks within a feature method
are capabilities that are heavily leveraging Groovy to provide Spock’s BDD capabili‐
ties. To that end, specifications must always be written in Groovy, as Spock utilizes
AST transformations to convert the readable specification into a JUnit runnable test.
Using Groovy also reduces the verbosity of the code in the specification, aiding in the
human readability of the overall specification. This allows the emphasis of a Spock
specification to remain of the feature test, without having to too deeply decipher the
test’s code.

The Spock framework provides many more capabilities, and it is worth taking the
time to explore the documentation to further understand its features. In addition,
there are many examples of practical and advanced Spock usage within the Ratpack
code base, and you can get further understanding of testing Ratpack applications with
Spock by going through some of the tests in Ratpack’s GitHub repository.

Functional Testing
Functional testing is a testing strategy by which your application starts under a test
configuration, without any mocks being applied to replace actual service implementa‐
tions. A functional test configuration may, for example, choose to use ephemeral or
test-dedicated datasources for data access objects. That is to say, if your application
uses MySQL as a datasource, then your functional test configuration may point to a
MySQL host that can be truncated after each run.

Ratpack makes it easy to write functional tests, because the Ratpack server is inher‐
ently embeddable. To make writing functional tests even easier, Ratpack provides fix‐
tures that simplify the process of embedding an existing application in a test.

48 | Chapter 3: Testing Ratpack Applications

http://docs.spockframework.org

For the scenario of a Groovy-based Ratpack application, a functional test can leverage
the GroovyRatpackMainApplicationUnderTest fixture to perform requests against a
running version of the application. Considering the simple “Hello, World!” applica‐
tion demonstrated previously, the test class in Example 3-5 shows how to utilize Rat‐
pack’s test fixture to make an assertion about the response data from the default
handler.

Example 3-5. Groovy FunctionalSpec

package app

import ratpack.groovy.test.GroovyRatpackMainApplicationUnderTest
import spock.lang.Specification

class FunctionalSpec extends Specification {

 void "default handler should render Hello, World!"() {
 setup:
 def aut = new GroovyRatpackMainApplicationUnderTest()

 when:
 def response = aut.httpClient.text

 then:
 response == "Hello, World!"

 cleanup:
 aut.close()
 }
}

Here, we set up the ApplicationUnderTest. Because we’re working on a Groovy
project, the GroovyRatpackMainApplicationUnderTest will be used to start the
application and provide our test with fixtures to aid in different testing scenarios.

The httpClient is one such fixture that we can use to access our application.

In the then block, we make the assertion that the test returned the proper
response.

Finally, we close the application, which will properly shut down the application
server and services.

All ApplicationUnderTest test fixture implementations in Ratpack provide an
HTTP client, which provides a DSL for performing requests against the running
application. In this example, the aut.httpClient.text call is performing an HTTP
GET request to the default endpoint. The when block is capturing the response text

Functional Testing | 49

from the GET request, and the then block is making an assertion that we got the
“Hello, World!” message as we expect.

Spock can also be used to test Ratpack applications that are not based on Groovy.
Those applications, which build from a main class, can use the MainApplicationUn
derTest to specify the entry point to the application under test. Given the main class
in Example 2-16, from earlier in the book, the Example 3-6 specification shows this
capability.

Example 3-6. Main class FunctionalSpec

package tld.company.app

import ratpack.test.MainClassApplicationUnderTest
import spock.lang.Specification

class FunctionalSpec extends Specification {

 void "default handler should render Hello, World!"() {
 setup:
 def aut = new MainClassApplicationUnderTest(Main)

 when:
 def response = aut.httpClient.text

 then:
 response == "Hello, World!"

 cleanup:
 aut.close()
 }
}

The features for the functional specification of a Ratpack application need not always
define a new ApplicationUnderTest within their setup block. Instead, a functional
specification can define the ApplicationUnderTest object at the class level, and write
many features against that single object. This allows an application with many han‐
dlers to only be started once within the specification, while providing many asser‐
tions about the application’s function.

Consider again a more complex Ratpack application, like the one demonstrated ear‐
lier in Example 2-20, which utilized a standalone handler to discriminate on the
User-Agent header of the request. We can write a functional specification with differ‐
ent feature methods to describe the behavior we expect for the different User-Agent
versions our application recognizes. The specification in Example 3-7 provides fea‐
ture tests for the different client versions the application is capable of handling.

50 | Chapter 3: Testing Ratpack Applications

Example 3-7. FunctionalSpec with multiple features

package tld.company.app

import ratpack.groovy.test.GroovyRatpackMainApplicationUnderTest
import spock.lang.AutoCleanup
import spock.lang.Specification

class FunctionalSpec extends Specification {

 @AutoCleanup
 def aut = new GroovyRatpackMainApplicationUnderTest()

 void "should properly render for v1.0 clients"() {
 when:
 def response = aut.httpClient.requestSpec { spec ->
 spec.headers.'User-Agent' = ["Microservice Client v1.0"]
 }.get("api").body.text

 then:
 response == "V1 Model"
 }

 void "should properly render for v2.0 clients"() {
 when:
 def response = aut.httpClient.requestSpec { spec ->
 spec.headers.'User-Agent' = ["Microservice Client v2.0"]
 }.get("api").body.text

 then:
 response == "V2 Model"
 }

 void "should properly render for v3.0 clients"() {
 when:
 def response = aut.httpClient.requestSpec { spec ->
 spec.headers.'User-Agent' = ["Microservice Client v3.0"]
 }.get("api").body.text

 then:
 response == "V3 Model"
 }
}

In this specification, we move the GroovyRatpackMainApplicationUnderTest object
to the class level, and annotate it with @AutoCleanup. The annotation will inform
Spock that the close() method should be called on the object when all feature tests
have finished running. We can now omit both the setup and cleanup blocks and
each feature test describes the stimulus and assertion blocks. When the specification
is instantiated for running, it will start the application just once, and each feature is
able to perform requests against that running application. When all the features have

Functional Testing | 51

been run, the application will be gracefully stopped, allowing subsequent specifica‐
tions to also start the application without any risk of overlap.

This specification also introduces the test HTTP client’s requestSpec() method,
which allows the feature to configure the attributes of the outgoing request. In this
example, we are able to use the RequestSpec to add the User-Agent header, accord‐
ing to what each feature test is asserting. Once the request is properly configured,
the .get('api') call is made, which performs the HTTP GET request against
the /api endpoint. This returns a Response object, which is where the body property
lives. Calling body.text extracts only the content from the response, as
aut.httpClient.text did in the previous example. Note that when performing the
get('api') call, no preceding slash is specified in the URI.

Example 3-7 provided a verbose demonstration of the ability to run multiple feature
tests against a single ApplicationUnderTest. The specification can be rewritten more
simply by employing Spock’s ability to rollup test values into a single feature. The code
in Example 3-8 demonstrates a cleaner implementation of the same specification.

Example 3-8. Refactored FunctionalSpec with rollups

package tld.company.app

import ratpack.groovy.test.GroovyRatpackMainApplicationUnderTest
import spock.lang.AutoCleanup
import spock.lang.Specification
import spock.lang.Unroll

class FunctionalSpec extends Specification {

 @AutoCleanup
 def aut = new GroovyRatpackMainApplicationUnderTest()

 @Unroll
 void "should render #expected for #userAgent clients"() {
 when:
 def response = aut.httpClient.requestSpec { spec ->
 spec.headers.'User-Agent' = [userAgent]
 }.get("api").body.text

 then:
 response == expected

 where:
 userAgent | expected
 "Microservice Client v1.0" | "V1 Model"
 "Microservice Client v2.0" | "V2 Model"
 "Microservice Client v3.0" | "V3 Model"
 }
}

52 | Chapter 3: Testing Ratpack Applications

Notice the where block at the bottom of the feature specification. This allows us to
specify a data table of variables that can be applied to the stimulus and assertion
blocks. This feature test will be run as three standalone tests, while the feature code is
able to be more concisely implemented.

The test HTTP client is a powerful utility in the test fixtures that Ratpack provides. In
addition to the prior demonstrations, it also supports:

• The ability to read the response status code through a call such as
aut.httpClient.get("api").statusCode

• The ability to read response headers through a call such as
aut.httpClient.get("api").headers.'Content-Type'

• The ability to perform GET/POST/PUT/PATCH/DELETE operations through
their corresponding (lowercased) method names

• The ability to manipulate the request body for methods supporting it through the
RequestSpec.Body

Bootstrapping Test Data
Any test type will often need to have some data bootstrapped into the application so
that complex data responses can be observed. Functional tests can make standing up
test data difficult, since you want the application to run in as pure a runtime as possi‐
ble, without manipulating its startup sequence. To that extent, tests may start a fea‐
ture by POSTing data to an API endpoint that stores it for retrieval. This approach
has two benefits, in that you will be testing both the application’s ability to properly
store the data, as well as its ability to render that data back to clients.

To demonstrate this approach more effectively, consider the application in
Example 3-9. For demonstration’s sake, the application provides a post handler on
the api endpoint, which parses the incoming request data into a usable object struc‐
ture and stores it in a global list. A call to the get handler on the api endpoint will in
turn render the objects back to the caller.

Example 3-9. Bootstrapping test data

import groovy.json.JsonSlurper

import static groovy.json.JsonOutput.toJson
import static ratpack.groovy.Groovy.ratpack

class User {
 String username
 String email
}

Functional Testing | 53

List<User> userStorage = []
JsonSlurper jsonSlurper = new JsonSlurper()

ratpack {

 handlers {
 path("api") {
 byMethod {
 post {
 request.body.map { body ->
 jsonSlurper.parseText(body.text) as Map
 }.map { data ->
 new User(data)
 }.then { user ->
 userStorage << user
 response.send()
 }
 }
 get {
 response.send(toJson(userStorage))
 }
 }
 }
 }
}

Example 3-10 shows the application’s corresponding tests.

Example 3-10. Bootstrapping test data FunctionalSpec

package tld.company.app

import groovy.json.JsonSlurper
import ratpack.groovy.test.GroovyRatpackMainApplicationUnderTest
import spock.lang.AutoCleanup
import spock.lang.Specification

import static groovy.json.JsonOutput.toJson

class FunctionalSpec extends Specification {

 private static final JsonSlurper jsonSlurper = new JsonSlurper()

 @AutoCleanup
 def aut = new GroovyRatpackMainApplicationUnderTest()

 void "bootstrap data and properly render it back"() {
 setup:
 def user = [username: "danveloper", email: "danielpwoods@gmail.com"]

 when:

54 | Chapter 3: Testing Ratpack Applications

 def response = aut.httpClient.requestSpec { spec ->
 spec.body { b ->
 b.text(toJson(user))
 }
 }.post('api')

 then:
 response.statusCode == 200

 when:
 def json = aut.httpClient.get('api').body.text

 and:
 def users = jsonSlurper.parseText(json) as List

 then:
 users == [user]
 }
}

The FunctionalSpec for this example introduces some new concepts, such as the
ability to have multiple stimulus and assertion blocks within a single feature test. It
also shows the use of the and block to logically provide multiple stimuli prior to an
assertion (the then block). This fluid capability of Spock’s allows you to effectively
organize your test to bootstrap data, assert that the data was properly bootstrapped,
then read it back out.

Architecting for Improved Testability
The example application in this section achieves its storage and retrieval through the
use of a globally scoped list, userStorage. This works great for demonstrative pur‐
poses and to concisely understand how Ratpack handlers and their corresponding
tests are able to be written, but in a real-world example, we would want the storage
mechanism to be contained in the application and resolved from interfaces. This will
add benefit to our application and the ability to read and write data in a test scenario.

If we rearchitect the application from Example 3-9 to instead resolve the userStorage
from the application’s user registry (more on this in “Extending Ratpack with Regis‐
tries” on page 104), we can have much more granular control over how the applica‐
tion stores and accesses data. The prior example specification demonstrated a “round
trip” of posting data to the api endpoint, and then subsequently reading it back out.
We may, instead, want to have different feature tests that demonstrate the component
parts of that process.

To start with, we should begin by creating a UserService interface that will act as our
service or data access layer for storing and retrieving the posted user data. When con‐
sidering testing, programming to interfaces for aspects of code that manage data

Functional Testing | 55

interaction is always a good idea. Example 3-11 depicts the UserService interface. It
should also be noted that at this point, we should move these and the User class out
to the src/main/groovy/ directory in our project structure. This way, they are still
available to our application, but are not sloppily embedded in the src/ratpack/
ratpack.groovy script.

Example 3-11. The UserService interface

package tld.company.app

import ratpack.exec.Promise

interface UserService {
 Promise<Void> save(User user)
 Promise<List<User>> getUsers()
}

Example 3-12 provides a demonstration for a UserService implementation.

Example 3-12. UserService implementation

package tld.company.app

import ratpack.exec.Promise

class DefaultUserService implements UserService {
 private final List<User> storage = []

 @Override
 Promise<Void> save(User user) {
 storage << user
 Promise.sync { null }
 }

 Promise<List<User>> getUsers() {
 Promise.sync { storage }
 }
}

These examples also demonstrate a concept known as the execution layer, which will
be covered in more depth later in the book. Having the UserService interface con‐
tracts defined to return a Promise allows the concrete implementation to employ the
appropriate strategy for accessing its User storage. In the preceding example, we are
simply pushing the user data into a list in the save method, and equally as simply
returning that whole list from the getUsers method. A more robust implementation
may need to employ blocking mechanisms, which are offered through the execution.
For our current purposes, defining service contracts as promises is a good idea.

56 | Chapter 3: Testing Ratpack Applications

With our service contract and concrete implementation now defined, we need to
make a few changes to our src/ratpack/Ratpack.groovy script to make use of the User
Service within our application. To do this, we will bind the DefaultUserService to
the UserService interface in the registry, and then inject it for use within the api
handler. The code in Example 3-13 shows this change.

Example 3-13. Working with DefaultUserService

import tld.company.app.DefaultUserService
import tld.company.app.User
import tld.company.app.UserService
import groovy.json.JsonSlurper

import static groovy.json.JsonOutput.toJson
import static ratpack.groovy.Groovy.ratpack

ratpack {
 bindings {
 bindInstance UserService, new DefaultUserService()
 bindInstance JsonSlurper, new JsonSlurper()
 }
 handlers {
 path("api") { JsonSlurper jsonSlurper, UserService userService ->
 byMethod {
 post {
 request.body.map { body ->
 jsonSlurper.parseText(body.text) as Map
 }.map { data ->
 new User(data)
 }.flatMap { user ->
 userService.save(user)
 }.then {
 response.send()
 }
 }
 get {
 userService.getUsers().then { users ->
 response.send(toJson(users))
 }
 }
 }
 }
 }
}

Within the bindings block, we specify the binding of the DefaultUserService to
the UserService interface.

Functional Testing | 57

Here, we define the /api endpoint, and at this point we use the closure variable-
argument syntax to specify that we want the UserService and JsonSlurper
injected into the handler.

Within the post logic of the handler’s byMethod block, we use the JsonSlurper to
consume the request body as a Map type.

Within the get logic, we work with the Promise returned from the getUsers call
to render back the user list.

Our application is also now working with the Promise objects returned from the User
Service. The essence to the underlying reactive programming technique will be cov‐
ered in depth in Chapter 10, but for the sake of understanding here, it is important to
understand that a Promise represents a “promise for the requested data.” When a
promise is subscribed to through the then method, the call for the data is made and
subsequently returned. As you can see in the handler’s get logic, the resulting data is
made available to the then method so we can render properly back to the client.

At this point, we can rerun the FunctionalSpec from before to ensure that we indeed
did not break anything through the refactor, and indeed we will find that nothing has.
This use of functional testing within your Ratpack applications provides you with a
comprehensive test footprint from the very beginning of your project. As your
requirements grow, you will undoubtedly find needs and uses for integration and unit
testing, and when you do, Ratpack continues to support you in those pursuits.

Integration Testing
When it comes to testing your application, it may not always be desirable to require a
feature test to perform the “round trip” described in the prior sections. Instead, you
want may to have different feature tests for posting and retrieving data. It may be
desirable in this scenario to make use of a mock implementation of the UserService
to assert that the appropriate data will be saved through the post handler, or to send
back mock test data from the get handler. Doing so gives you more granular control
over testing how data is stored and represented by your application.

If you are not familiar with mocks as a testing strategy, it is important to understand
that a mock is a proxy object that emulates the mocked type and captures interactions.
This allows your test to ensure that your application code is interacting with its ser‐
vice layer in the way that you would expect. Spock gives you the capability to inspect
the object that is sent to a service call to ensure that the data meets a feature’s require‐
ment. In this section, we will demonstrate mocking the UserService and ensuring
that a properly constructed User object is sent to the save method.

58 | Chapter 3: Testing Ratpack Applications

We can leverage the same ApplicationUnderTest fixture from the prior section to
override the DefaultUserService binding, and instead replace it with a mock imple‐
mentation for our test’s sake. We must also introduce another powerful test fixture
that Ratpack provides: the ExecHarness. The ExecHarness is an assistant to tests that
rely on the execution layer for managing data flow in their applications.

Example 3-14 shows an integration specification for our application.

Example 3-14. Integration testing with Ratpack and Spock

package tld.company.app

import ratpack.exec.Promise
import ratpack.registry.Registry
import ratpack.groovy.test.GroovyRatpackMainApplicationUnderTest
import ratpack.test.exec.ExecHarness
import ratpack.impose.ImpositionsSpec
import ratpack.impose.UserRegistryImposition
import spock.lang.AutoCleanup
import spock.lang.Specification

import static groovy.json.JsonOutput.toJson

class IntegrationSpec extends Specification {
 UserService mockUserService = Mock(UserService)

 @AutoCleanup
 ExecHarness harness = ExecHarness.harness()

 @AutoCleanup
 def aut = new GroovyRatpackMainApplicationUnderTest() {
 @Override
 protected void addImpositions(ImpositionsSpec impositions) {
 impositions.add(UserRegistryImposition.of(
 Registry.of { r ->
 r.add(UserService, mockUserService)
 }
))
 }
 }

 void "should convert and save user data"() {
 setup:
 def userMap = [username: "danveloper", email: "danielpwoods@gmail.com"]

 when:
 aut.httpClient.requestSpec { spec ->
 spec.body { b ->
 b.text(toJson(userMap))
 }
 }.post('api')

Integration Testing | 59

 then:
 1 * mockUserService.save(_) >> { User user ->
 assert user.email == userMap.email
 assert user.username == userMap.username
 Promise.sync { null }
 }
 }

 void "should render user list as json"() {
 setup:
 def users = [
 new User(username: "danveloper", email: "danielpwoods@gmail.com"),
 new User(username: "kenkousen", email: "ken@kousenit.com"),
 new User(username: "ldaley", email: "ld@ldaley.com")
]

 when:
 def response = aut.httpClient.get("api")

 then:
 1 * mockUserService.getUsers() >> Promise.sync { users }
 response.body.text == toJson(users)
 }
}

This time, we have created a mock implementation of the UserService.

Using the GroovyRatpackMainApplicationUnderTest’s addImpositions

method, we are able to instruct Ratpack that we prefer our mock over any previ‐
ously bound implementations. (Note that the registry API is slightly different
from that of the bindings block from the application section.)

We can now separate the test facets responsible for ensuring data is properly saved
and retrieved. Instead of the round-trip style from the FunctionalSpec shown earlier,
this time we have two feature methods, one for each part of the process. The "should
convert and save user data" feature test is responsible for ensuring the posted
data is properly coerced to a user object and that the properties of that user object are
populated as expected. The "should render user list as json" feature test
ensures that a list of users is rendered back as JSON.

Using the Spock interaction notation of 1 * mockUserService.save(_), we can
ensure that the save method is only called once. In the then block of the feature test,
we can then capture the User object that was sent from the handler and ensure that
the email and username fields match what we would expect. Note that within an
interaction we need to perform explicit assertions, as this segment of code does not
correspond to Spock’s assertion-per-statement rule that normally applies to the then

60 | Chapter 3: Testing Ratpack Applications

block. From here, we can leverage the ExecHarness test fixture to return a promise to
the handler.

Within the "should render user list as json" feature test, we can use the setup
block to construct a list of sample User objects that we expect to be returned from the
handler. This is a nice alternative to manually bootstrapping data through the round-
trip method demonstrated earlier in the chapter. We also utilize the ExecHarness test
fixture here to return a Promise for our test users. The test ensures that the getUsers
method is called and that the response matches a JSON-serialized version of our test
data.

Unit Testing
Functional and integration tests in Ratpack get you pretty far, as the cost of starting
your application in an embedded fashion within the specification is so low. But there
are scenarios (such as when employing test-driven development) in which you will
want to write unit tests for some feature of your code. Ratpack supports that scenario
through the test fixture ExecHarness, which we discussed briefly in the previous sec‐
tion.

The ExecHarness test fixture, put simply, allows you to work with Ratpack’s threading
and execution model, and make assertions about asynchronous operations in a syn‐
chronous manner. This is valuable in unit testing, because your test specification will
require that you have captured the result of an asynchronous call within the stimulus
block of your feature test prior to being able to make an assertion about that result.
Behind the scenes, it is actually building the working operation.

Consider again the DefaultUserService example from the prior sections, and you
may recall that when we rearchitected our application for better testability, we moved
the UserService interface contracts to return Promise objects. Not having known
about the ExecHarness, you may have tried to write a unit test that made assertions
about the result of the getUsers() call, but you quickly would have realized that you
are not able to work with a Promise outside of a “managed thread.” Ratpack’s thread‐
ing and execution model will be covered in depth in Chapter 7, but for our current
purposes, it is enough to understand that a promise instructs Ratpack as to how the
code contained within it should be executed. Without being on a managed thread,
Ratpack has no way of knowing that.

In a normal application runtime, you never have to think about managed threads or
Ratpack executions at all. In fact, your code will always be run within the context of a
managed thread, so it is never an issue. Indeed, this is part of the reason why func‐
tional and integration testing in Ratpack is so appealing. Because in those testing sce‐
narios you are starting your application from within your specification, you do not
need to do any additional work to ensure your code is bound to a managed thread.

Unit Testing | 61

Unit testing differs here, as you are directly working with the subject of your specifi‐
cation, without Ratpack’s underlying infrastructure.

Luckily, the ExecHarness test fixture provides the minimally required infrastructure
for you to work within the context of a managed thread, but not have to do too much
work that deviates your specification from its intended test logic. Example 3-15 shows
a UserServiceUnitSpec, which utilizes the DefaultUserService concrete implemen‐
tation to test the intended functionality of the save and getUsers methods.

Example 3-15. Unit test for UserService

package tld.company.app

import ratpack.test.exec.ExecHarness
import spock.lang.AutoCleanup
import spock.lang.Shared
import spock.lang.Specification
import spock.lang.Subject

class UserServiceUnitSpec extends Specification {
 private static final def users = [
 new User(username: "danveloper", email: "danielpwoods@gmail.com"),
 new User(username: "kenkousen", email: "ken@kousenit.com"),
 new User(username: "ldaley", email: "ld@ldaley.com")
]

 @AutoCleanup
 ExecHarness execHarness = ExecHarness.harness()

 @Subject @Shared
 UserService userService = new DefaultUserService()

 void "should save and return user list"() {
 given:
 execHarness.yield {
 users.each { user -> userService.save(user) }
 }

 expect:
 execHarness.yieldSingle {
 userService.getUsers()
 }.value == users
 }
}

The most notable portion of the test is the call here to ExecHarness.harness().
This is all the code necessary to bootstrap the underlying Ratpack-managed
infrastructure for your test. From within our feature test, we can now leverage
that infrastructure for working with the save and getUsers methods. (Note that

62 | Chapter 3: Testing Ratpack Applications

in the "should save and return user list" feature test, we are utilizing
Spock’s given and expect blocks this time to setup, stimulus, and assertion
blocks. Please refer to the Spock documentation for more details on this.)

Within the feature test, we are using the yield call on execHarness to wrap the
calls to the DefaultUserService. This is necessary to support the underlying
infrastructure for Promise types. The call to yield will subscribe to and capture
the result of the produced promise; in the case of the call to save, we are leverag‐
ing the fact that yield will wait until the call is complete to move on to the
expect block.

In the case of the call to getUsers, we use the call to yieldSingle to capture the
list of users. The corresponding call to .value captures the result’s value explic‐
itly, and we can assert the service returned the appropriate data set.

The key benefit to testing this way is that it is extremely fast to stand up the mini‐
mally required Ratpack underpinnings, without the need to start the application
entirely. Even though the latter case is acceptably fast, the use of ExecHarness costs a
negligible amount of time to bootstrap.

Unit Testing Standalone Handlers
As we discussed in Chapter 2, you can improve your application’s testability by build‐
ing standalone request handlers. Standalone handlers are able to be distinctly unit
tested without the need for EmbeddedApp or ExecHarness. Using the RequestFixture
test helper, you can write succinct test specifications that allow you to emulate
requests and make assertions about your handler’s responses.

Let’s start by demonstrating a test against the simplest possible standalone request
handler, as shown in Example 3-16.

Example 3-16. The simplest standalone request handler

package tld.company.app

import ratpack.handling.Handler
import ratpack.handling.Context

class AppHandler implements Handler {

 @Override
 void handle(Context ctx) {
 ctx.response.send("ok")
 }
}

Unit Testing Standalone Handlers | 63

As you can see, the handler simply sends an "ok" message back as the response.
Using RequestFixture, we can activate this handler in a standalone manner and
make an assertion that it is properly sending back the message. Example 3-17 demon‐
strates the use of RequestFixture for this purpose.

Example 3-17. The AppHandler test specification

package tld.company.app

import ratpack.test.handling.RequestFixture
import spock.lang.Specification

class AppHandlerSpec extends Specification {

 def handler = new AppHandler()

 void "should render proper response"() {
 given:
 def result = RequestFixture.handle(handler) {}

 expect:
 result.bodyText == "ok"
 }
}

Here we create a new instance of the AppHandler for use throughout the specifi‐
cation.

Using the ratpack.test.handling.RequestFixture class, we call the handle
method against the AppHandler instance. The trailing closure is provided an
instance of RequestFixture for further customization of the request details.

The result provides you with the details of the response, allowing you to make
assertions about the data that will be sent back.

When the RequestFixture#handle method is called, a test Context is created and the
normal request-response lifecycle is perfectly emulated. To better demonstrate the
importance of this capability, let’s look at a more complex standalone handler, as
shown in Example 3-18.

Example 3-18. A complex standalone request handler for unit testing

package tld.company.app

import ratpack.handling.Handler
import ratpack.handling.Context

64 | Chapter 3: Testing Ratpack Applications

import static ratpack.jackson.Jackson.json

class ProductHandler implements Handler {

 @Override
 void handle(Context ctx) {
 ProductService productService = ctx.get(ProductService)

 def id = ctx.pathTokens.asLong("id")
 if (id != null) {
 productService.getProduct(id).then { product ->
 if (product) {
 ctx.render(json(product))
 } else {
 ctx.response.status(404).send()
 }
 }
 } else {
 ctx.response.status(400)
 ctx.render(json([status: "error", message: "product id is required"]))
 }
 }
}

The ProductHandler starts its processing by getting a ProductService from the
Context registry.

Next, it looks at the pathTokens to get a Long value for the id token of the
request path.

If an id value is available, then the getProduct method is called.

If a product is returned, we render it back as JSON.

If no product is returned by the productService, then we send back a 404 (Not
Found) status to the client.

If no id value is available, then here we set the response status to 400 (Bad
Request).

Given the error, we send back a helpful message.

To fully illustrate this demonstration, imagine that the ProductService interface (and
its corresponding Product model) is defined as shown in Example 3-19.

Unit Testing Standalone Handlers | 65

Example 3-19. The ProductService interface

package tld.company.app

import groovy.transform.Immutable
import ratpack.exec.Promise

interface ProductService {

 Promise<Product> getProduct(Long id)

 @Immutable
 static class Product {
 Long id
 String name
 String description
 BigDecimal price
 }
}

From here, we can build a succinct specification with feature tests for all the capabili‐
ties of the ProductHandler. Example 3-20 shows the comprehensive unit test specifi‐
cation for the ProductHandler.

Example 3-20. The unit test specification for the ProductHandler

package tld.company.app

import ratpack.exec.Promise
import ratpack.jackson.JsonRender
import ratpack.test.handling.RequestFixture
import spock.lang.Specification

class ProductHandlerSpec extends Specification {

 def handler = new ProductHandler()
 def productService = Mock(ProductService)
 def product = new ProductService.Product([
 id: 1,
 name: "Learning Ratpack",
 description: "Simple, lean, powerful web applications",
 price: 49.99
])
 def requestFixture = RequestFixture.requestFixture()
 .registry { r ->
 r.add(ProductService, productService)
 }

 void "should properly render valid product requests"() {
 when:
 "a valid product is requested"

66 | Chapter 3: Testing Ratpack Applications

 def result = requestFixture.pathBinding([id: product.id.toString()])
 .handle(handler)

 then:
 "it should be properly rendered back"
 1 * productService.getProduct(product.id) >> Promise.sync { product }
 result.rendered(JsonRender).object == product
 }

 void "should return not found for an invalid product"() {
 when:
 "an invalid product is requested"
 def result = requestFixture
 .pathBinding([id: "0"])
 .handle(handler)

 then:
 "a 404 status should be sent back"
 1 * productService.getProduct(0) >> Promise.sync { null }
 result.status.code == 404
 }

 void "should return bad request for an invalid request"() {
 when:
 "no id is specified"
 def result = requestFixture.handle(handler)

 then:
 "a 400 status should be sent back"
 0 * productService.getProduct(_)
 result.status.code == 400
 }
}

Here we create an instance of the ProductHandler.

As our handler uses the ProductService and we wish to make assertions about
its interactions, we provide a specification-level mock of the interface.

We will also create a valid Product object for use in our feature tests.

Also at the specification level, we create the RequestFixture for use within the
feature tests.

Our specification’s first feature unit test is ensuring that valid product requests
respond with the proper type.

Within this feature test, we set the path binding for the id path token, as the han‐
dler is expecting.

Unit Testing Standalone Handlers | 67

Here we define an interaction on the ProductService. At this statement, we say
that the controller should call getProduct one time, and the result will be a
Promise of the Product type that we defined at the specification level.

Using the rendered method on the result from the RequestFixture, we can
assert that the object rendered from the handler is the same as our Product.

Our next feature test is checking that a request for an invalid product id returns a
404 (Not Found) status code.

We set the id path token to 0.

Here we define the interaction that the call to getProduct for id 0 will return a
Promise of a null value. Recall that the handler logic interprets a null value as a
404 result.

In this unit test, we finally assert that the handler did indeed return a 404 status
code.

Our final feature test checks that the handler returns a 400 (Bad Request) code
when there is no id path token available.

We call the handle method on RequestFixture, this time without any pathBind
ing values.

Here we assert that the getProduct method on the ProductService was never
called.

Finally, we ensure the handler returned the 400 status code.

For unit testing, the RequestFixture test helper enables unparalleled coverage of
your request handling code. The examples shown in this section should serve as a
good introduction, and you can use them as a base to explore further. Indeed, Reques
tFixture provides all the faculties for adding headers, modifying and working with
cookies, testing against different HTTP verbs, and so forth. In terms of unit testing,
you will undoubtedly find the RequestFixture a valuable tool in your toolbelt.

Other Testing Scenarios
Ratpack’s emphasis and focus on testing and testability scales even beyond Ratpack
applications. Indeed, many of the test fixtures for Ratpack can be used to ameliorate
test coverage of existing code in non-Ratpack applications. Specifically, the ratpack-

68 | Chapter 3: Testing Ratpack Applications

test module provides an EmbeddedApp test fixture, which can be employed outside of
Ratpack projects to bring improved test coverage to existing code by leveraging the
Ratpack application and testing infrastructure.

To understand this better, consider a scenario that is familiar to so many readers,
where you have a legacy application that is tightly bound, does not make proper use
of dependency injection, and lacks comprehensive (or any) test coverage. Your initial
reaction is to completely rewrite and rearchitect the application in a proper, test-
friendly way, but you understand the liability of doing so. Before knowing about Rat‐
pack, you may have gone down the route of building extensive test suites and verbose
fixtures to test even the simplest of operations in this application. Ratpack takes this
otherwise arduous task and allows you to wrap the existing service implementations
into a test-only Ratpack runtime, providing for you all the test fixtures that make test‐
ing Ratpack applications so easy and complete.

For demonstration’s sake, assume that the legacy application you want to test is a
servlet-based application that provides doPost and doGet implementations that store
and retrieve User objects accordingly. In this case, consider that the original archi‐
tects of your legacy application have tightly bound the storage of users to the servlet,
making it extremely difficult to test. Example 3-21 shows roughly what this servlet
implementation might look like.

Example 3-21. Legacy servlet implementation

package tld.company.app;

import com.fasterxml.jackson.databind.ObjectMapper;

import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import java.io.BufferedReader;
import java.sql.*;
import java.util.ArrayList;
import java.util.List;

public class UserServlet extends HttpServlet {

 private static final String DB_HOST = System.getProperty("db.host");

 private Connection getConnection() throws SQLException {
 return DriverManager
 .getConnection("jdbc:mysql://" + DB_HOST + "/db", "root", "");
 }

 @Override
 public void doPost(HttpServletRequest request, HttpServletResponse response) {
 try {

Other Testing Scenarios | 69

 StringBuffer jb = new StringBuffer();
 String line = null;
 BufferedReader reader = request.getReader();
 while ((line = reader.readLine()) != null) {
 jb.append(line);
 }

 ObjectMapper objectMapper = new ObjectMapper();
 User user = objectMapper.readValue(jb.toString(), User.class);

 Connection c = getConnection();
 PreparedStatement pstmt = c
 .prepareStatement("insert into users (username,email) values (?, ?)");

 pstmt.setString(1, user.getUsername());
 pstmt.setString(2, user.getEmail());
 pstmt.execute();
 pstmt.close();
 c.close();
 response.setStatus(200);
 } catch (Exception e) {
 try {
 response.sendError(500, e.getMessage());
 } catch (Exception e1) {
 throw new RuntimeException("error throwing error", e1);
 }
 }
 }

 @Override
 public void doGet(HttpServletRequest request, HttpServletResponse response) {
 try {
 Connection c = getConnection();
 Statement stmt = c.createStatement();
 ResultSet rs = stmt.executeQuery("select username,email from users");

 List<User> users = new ArrayList<>();
 while (rs.next()) {
 String username = rs.getString(1);
 String email = rs.getString(2);
 User user = new User();
 user.setUsername(username);
 user.setEmail(email);
 users.add(user);
 }
 rs.close();
 c.close();
 response.setStatus(200);
 ObjectMapper objectMapper = new ObjectMapper();
 objectMapper.writeValue(response.getOutputStream(), users);
 } catch (Exception e) {
 try {

70 | Chapter 3: Testing Ratpack Applications

 response.sendError(500, e.getMessage());
 } catch (Exception e1) {
 throw new RuntimeException("error throwing error", e1);
 }
 }
 }
}

The legacy application in Example 3-21 does not offer any ability to test the servlet’s
interaction with the database on any level. Everything, right down to the SQL state‐
ments, is embedded in the respective doPost and doGet methods. This type of code is
extremely fragile and difficult to refactor, because even the slightest alteration can
result in a complete processing failure.

The challenge is to get some functional tests around this servlet code so that we can
test a round trip of storage and subsequent retrieval. Before exploring how Ratpack
can help test this type of code, it is important to understand that the use of servlet
API code is simply for demonstrating what a legacy application might look like.
There is no faculty in Ratpack for mapping servlets onto handlers, or for working
with them in any practical way outside of an embedded test scenario. Indeed, the best
we can offer in this scenario is a blocking call to the servlet from within a handler to
emulate what an incoming request might look like.

The code in Example 3-22 demonstrates using the EmbeddedApp within a feature test
to stand up the servlet within an embedded Ratpack application, and run the round-
trip test on the code.

Example 3-22. Demonstrating EmbeddedApp

package tld.company.app

import groovy.json.JsonSlurper
import groovy.sql.Sql
import org.apache.catalina.ssi.ByteArrayServletOutputStream
import ratpack.func.Action
import ratpack.test.embed.EmbeddedApp
import spock.lang.Specification

import javax.servlet.http.HttpServletRequest
import javax.servlet.http.HttpServletResponse
import java.sql.DriverManager

import static groovy.json.JsonOutput.toJson

class UserServletFunctionalSpec extends Specification {
 private static final String DB_HOST = "localhost"
 private static final Integer DB_PORT = 3306
 private static final Sql sql =
 new Sql(

Other Testing Scenarios | 71

 DriverManager.getConnection(
 "jdbc:mysql://${DB_HOST}:${DB_PORT}/db",
 "root",
 ""
)
)

 static {
 System.setProperty("db.host", DB_HOST)
 System.setProperty("db.port", DB_PORT.toString())
 }

 UserServlet userServlet = new UserServlet()
 JsonSlurper jsonSlurper = new JsonSlurper()

 EmbeddedApp app = EmbeddedApp.of({ spec ->
 spec.handlers { chain ->
 chain.all { ctx ->
 def servletRequest = Stub(HttpServletRequest)
 def servletResponse = Stub(HttpServletResponse)
 def outputStream = new ByteArrayServletOutputStream()
 def responseStatus = 0
 def bodyPromise = ctx.request.body.map { body ->
 servletRequest.getReader() >> {
 new BufferedReader(body.inputStream.newReader())
 }
 }
 servletResponse.setStatus(_) >> { int status ->
 responseStatus = status
 }
 servletResponse.sendError(_, _) >> { int status, String msg ->
 responseStatus = status
 outputStream.write(msg.bytes)
 }
 servletResponse.getOutputStream() >> outputStream
 ctx.byMethod { b ->
 b.post({
 bodyPromise.then {
 userServlet.doPost(servletRequest, servletResponse)
 ctx.response.status(responseStatus)
 ctx.response.send(outputStream.toByteArray())
 }
 })
 b.get({
 bodyPromise.then {
 userServlet.doGet(servletRequest, servletResponse)
 ctx.response.status(responseStatus)
 ctx.response.send(outputStream.toByteArray())
 }
 })
 }
 }

72 | Chapter 3: Testing Ratpack Applications

 }
 } as Action)

 def setupSpec() {
 trunc()
 }

 def cleanupSpec() {
 trunc()
 }

 private static void trunc() {
 sql.execute("delete from users")
 }

 void "should save user data and list results"() {
 setup:
 def user = [username: "danveloper", email: "daniel.p.woods@gmail.com"]

 when:
 def postResponse = app.httpClient.requestSpec { spec ->
 spec.body { b ->
 b.text(toJson(user))
 }
 }.post()

 then:
 postResponse.statusCode == 200

 when:
 def getResponse = app.httpClient.get()

 then:
 getResponse.statusCode == 200
 (jsonSlurper.parseText(getResponse.body.text) as List) == [user]
 }
}

The EmbeddedApp test fixture is initialized through the EmbeddedApp.of() assem‐
bly method, where we define the structure of the test application using the same
handler chain API that we would see from a regular main class implementation.

Here, we create a Stub for the request object. Stub types work similarly to Mock
types, except that there are no assertions as to how many times an object was
interacted with. However, we can continue to capture interactions to provide
responses for method calls.

Similarly, we create a Stub for the response.

Other Testing Scenarios | 73

We capture an interaction on the request stub which is designed to construct a
BufferedReader for use within the servlet. At this point in the data flow, we have
access to Ratpack’s Context object, so we can directly translate the request body
onto the BufferedReader. Note that here we have to retrieve the request body
from within a Promise type, since Ratpack lazily reads request bodies to improve
performance.

We capture an interaction on the response stub to store the status sent by the
servlet into a local variable, which we later apply to the Ratpack response object.

We capture an interaction on the response stub to store any error status and mes‐
sage sent by the servlet.

Here, we begin the code necessary to translate the interaction of the servlet’s
doPost method. Within the handler’s post logic, we call out to the doPost
method on the servlet using the stubbed request and response objects.

We translate the status, as captured from the response stub, and map it onto the
Ratpack response.

Here, we use the send method on response to send the data back that was cap‐
tured from the servlet interactions.

Within the handler’s get logic, we call out to the doGet method on the servlet.

Here, we translate the status onto the Ratpack response.

Similar to the post logic, we send back the captured output.

Because the servlet did not give us much flexibility on the MySQL datasource
connection, we must have a test MySQL instance set up and bound on localhost
(more details on getting started with MySQL can be found in the MySQL docu‐
mentation). This is a test database instance, so we can safely clean out the users
table between test runs. Within the setupSpec method, we place a call to delete
all the users from the database. This will ensure that we are working with a clean
slate between runs.

Similarly, and for completeness, we also call the delete method from the cleanup
Spec portion of the specification, which will be executed as the last phase of fea‐
ture tests.

With the setup and adaptation out of the way, we are left only to write our round-
trip feature test. The feature test shown here should look similar to the examples

74 | Chapter 3: Testing Ratpack Applications

https://dev.mysql.com/usingmysql/get_started.html
https://dev.mysql.com/usingmysql/get_started.html

shown previously in this section. The EmbeddedApp fixture offers a TestHttp
Client, similar to how ApplicationUnderTest works. Using this mechanism we
can write a feature test that writes some data through the servlet’s doPost handler,
and subsequently retrieve it from the doGet handler, all as though we were writ‐
ing a functional feature test against an actual Ratpack application.

To make all of this work, from within the legacy application, we need only add the
testCompile dependencies of ratpack-test and Spock, as shown earlier. This
method of using Ratpack to assist in testing a legacy code base is an excellent way to
get started with using Ratpack right away. If you work in an environment where you
do not have the freedom to start a “greenfield” Ratpack project or you cannot imme‐
diately rewrite an existing legacy application in Ratpack, you can gain a plethora of
experience with Ratpack by introducing tests that leverage the EmbeddedApp fixture
into an existing code base.

Chapter Summary
Test-driven development is at the forefront of modern web development, and the fix‐
tures that Ratpack provides for testing make it easier than ever to build well-tested
web applications. As this chapter has shown you, from creating unit tests, to working
with integration and functional testing constructs, Ratpack’s charter as a developer-
first framework could never be more present than in the conversation of testing. Fur‐
thermore, this chapter has shown you how Ratpack’s test structures can be utilized in
existing or legacy projects to bring higher levels of confidence to those projects.
Indeed, its nature as a lightweight web framework makes it an excellent utility in your
extended testing arsenal. As you move forward with learning Ratpack, you should
keep the principles and concepts covered in this chapter close to mind in order to
ensure that you are always building systems that account for testability from the start.

Chapter Summary | 75

CHAPTER 4

Application Configuration

Due to the trend of system architectures increasingly moving to cloud infrastructure,
modern applications need the ability to incorporate configurations from one or many
sources to accommodate the cloud’s ephemeral nature. Ratpack provides a modern,
easy-to-use system and semantic API for consuming and working with configuration
details. Application and server configuration can be derived from files within the
project, inside a library, or from the filesystem, system properties, and environment
variables. In every respect, Ratpack empowers developers to follow the principles
outlined by the Twelve Factor App. Regardless of your deployment infrastructure,
Ratpack’s configuration system is ready and able to support your application’s needs.

The configuration system allows you to take configuration from one or many sources
and map it to typed model objects. Those model objects are then able to be used
throughout your application. The use of the serverConfig method on the application
definition provides the means for specifying the sources to your configuration. Con‐
sider a Groovy application that derives its database connection information from
configuration. Example 4-1 outlines an application with a DatabaseConfig class that
holds the properties necessary for specifying the connection details.

Example 4-1. Application with DatabaseConfig

import static ratpack.groovy.Groovy.ratpack
import static groovy.json.JsonOutput.toJson

class DatabaseConfig {
 String host = "localhost"
 String user = "root"
 String password
 String db = "myDB"
}

77

http://12factor.net/

ratpack {
 serverConfig {
 json "dbconfig.json"
 require("/database", DatabaseConfig)
 }
 handlers {
 get("config") { DatabaseConfig config ->
 render toJson(config)
 }
 }
}

The DatabaseConfig class properties are set with reasonable defaults. These will
be overridden with explicitly defined values during the configuration mapping.

Here, we introduce the use of the serverConfig block, wherein we can specify
sources of configuration and map the configuration onto our configuration
model.

The semantic API in the serverConfig block gives us appropriately named
methods for consuming configuration in different formats (in this case, JSON).

After we specify the source of the configuration, we use the require method to
map the /database configuration path to our model object. After being hydrated
by the configuration system, the DatabaseConfig class will become usable
throughout our application.

To demonstrate configuration, we provide a get endpoint on /config that gets a
hold of the mapped DatabaseConfig object, and we render it back to the caller.

Remembering the simplest project structure for a Ratpack Groovy application, if we
place this example into the src/ratpack/Ratpack.groovy file, run the project, and access
the /config endpoint (Figure 4-1), we will find that we are met with a block of JSON
that corresponds perfectly to the default properties on the DatabaseConfig class.

78 | Chapter 4: Application Configuration

Figure 4-1. DatabaseConfig JSON output

Next, let’s take a look at adding the dbconfig.json file into the project. Consider the
project structure shown in Example 4-2.

Example 4-2. Project structure

.
├── build.gradle
└── src
 └── ratpack
 ├── dbconfig.json
 └── Ratpack.groovy

Because our application specifies that we want to map the /database configuration
path to our model, we must ensure that the directives in the dbconfig.json file are
specified under that structure. The text shown in Example 4-3 shows the form of this
file.

Example 4-3. The dbconfig.json file

{
 "database": {
 "host": "mysql001.dev.company.com",
 "user": "ratpack",
 "password": "l3arn!ngR@tpack"
 }
}

Application Configuration | 79

Note here that we are structuring the properties that will be mapped onto the
DatabaseConfig class under the database key, as the application is expecting.

Reloading configuration takes place during the server initialization, so you will want
to restart the process to get the configuration from dbconfig.json properly initialized.
Once the application is restarted, if we again load the /config endpoint (Figure 4-2),
we will now see that the DatabaseConfig model is properly hydrated.

Figure 4-2. Configured DatabaseConfig JSON

At this point, it is important to note that Ratpack takes a highly cautious approach to
loading files. When you specify a string referencing a file to the configuration system,
it resolves that file relative to the project’s base directory. In this case, the base direc‐
tory is defined as the src/ratpack root (where the Ratpack.groovy script is homed).
Even if we were to change the string path to /etc/dbconfig.json, it would attempt to
resolve that file from src/ratpack/etc/dbconfig.json. This is done as a means of protec‐
tion and security to remove the possibility of files being unsafely or erroneously
loaded from outside the project.

When you are building an application for deployment, however, it may be your inten‐
tion to load files from the filesystem, so in that case you must explicitly specify that
you wish to do so. This is accomplished by specifying a java.nio.file.Path refer‐
ence instead of a string. We can reimagine our example, this time loading the dbcon‐
fig.json file from the /etc directory instead, as shown in Example 4-4.

Example 4-4. Loading dbconfig.json from outside the project

import static ratpack.groovy.Groovy.ratpack
import static groovy.json.JsonOutput.toJson

80 | Chapter 4: Application Configuration

import java.nio.file.Paths

class DatabaseConfig {
 String host = "localhost"
 String user = "root"
 String password
 String db = "myDB"
}

ratpack {
 serverConfig {
 json Paths.get("/etc/dbconfig.json")
 require("/database", DatabaseConfig)
 }
 handlers {
 get("config") { DatabaseConfig config ->
 render toJson(config)
 }
 }
}

Here, we use the Paths helper class to reference our configuration file from the
filesystem path /etc/dbconfig.json.

We are not restricted to loading configuration from within the project or off the file‐
system. As noted in the introductory section, we can also load configuration files
from libraries or other classpath dependencies. To load configuration from the class‐
path, we must provide a java.net.URL reference to the file we wish to load. For this,
we can make use of the Class#getResource method to get a handle on our config. To
illustrate this, if we were to say that our dbconfig.json file comes from the /config
folder of a JAR file that is on the project’s classpath, we can load it as shown in
Example 4-5.

Example 4-5. Loading dbconfig.json from classpath

import static ratpack.groovy.Groovy.ratpack
import static groovy.json.JsonOutput.toJson

class DatabaseConfig {
 String host = "localhost"
 String user = "root"
 String password
 String db = "myDB"
}

ratpack {
 serverConfig {
 json Class.getResource("/config/dbconfig.json")
 require("/database", DatabaseConfig)

Application Configuration | 81

 }
 handlers {
 get("config") { DatabaseConfig config ->
 render toJson(config)
 }
 }
}

We are now calling the Class#getResource method. Note that we can shorten
this to getResource, as Groovy scripts implicitly provide us with the static meth‐
ods on Class.

Ratpack’s configuration system also acts with the ability to overlay configurations,
where later references win the mapping. We may have the requirement to load the
dbconfig.json file from our project, then from the classpath, and finally from the file‐
system. In doing so, we can allow more specific configurations to take precedence,
which would thereby accommodate different deployment environments. It is intuitive
to follow the calls that perform the loading of these configuration files, as shown in
Example 4-6.

Example 4-6. Overlaying dbconfig.json configurations

import static ratpack.groovy.Groovy.ratpack
import static groovy.json.JsonOutput.toJson

import java.nio.file.Paths

class DatabaseConfig {
 String host = "localhost"
 String user = "root"
 String password
 String db = "myDB"
}

ratpack {
 serverConfig {
 json "dbconfig.json"
 json Class.getResource("/config/dbconfig.json")
 json Paths.get("/etc/dbconfig.json")
 require("/database", DatabaseConfig)
 }
 handlers {
 get("config") { DatabaseConfig config ->
 render toJson(config)
 }
 }
}

82 | Chapter 4: Application Configuration

We start by loading the dbconfig.json from our project, which lives in the src/
ratpack directory.

Then we can overlay the classpath configuration.

And finally, we incorporate configuration that comes from the /etc/dbconfig.json
file.

Inspecting what each of the respective dbconfig.json files look like will help paint the
picture of how overlaying works. We start with the dbconfig.json file we worked with
earlier in Example 4-3 and overlay the /config/dbconfig.json from the classpath; this
file may have contents like those shown in Example 4-7.

Example 4-7. Classpath dbconfig.json contents

{
 "database": {
 "user": "app-user"
 }
}

The only value the classpath’s dbconfig.json file provides is the user property.

The user property from the classpath takes precedence over the same value from our
project’s dbconfig.json file. At this point, the configuration model looks like the JSON
depicted in Example 4-8.

Example 4-8. Project and classpath merged dbconfig.json

{
 "database": {
 "host": "mysql001.dev.company.com",
 "user": "app-user",
 "password": "l3arn!ngR@tpack"
 }
}

Here, app-user is favored over the previous value of ratpack.

Next, we bring in the /etc/dbconfig.json from the filesystem. Let’s consider that its
contents look like those in Example 4-9.

Example 4-9. Filesystem dbconfig.json

{
 "database": {
 "host": "ratpack-mysql-0441.prod.internal",

Application Configuration | 83

 "password": "kcapt@Rgn!nra3l"
 }
}

The filesystem dbconfig.json overrides the database hostname.

It also specifies a new password for the database user.

Now the three dbconfig.json configurations have been merged, and we end with the
configuration representation that is depicted in Example 4-10.

Example 4-10. Fully merged dbconfig.json

{
 "database": {
 "host": "ratpack-mysql-0441.prod.internal",
 "user": "app-user",
 "password": "kcapt@Rgn!nra3l"
 }
}

The host value was last specified in the /etc/dbconfig.json file, so it wins in the
final representation.

The user value was captured from the classpath’s /config/dbconfig.json, so it is
favored here.

password also came in from the filesystem, though if it had not been specified,
the password field from our project’s dbconfig.json would be shown here.

Ratpack’s ability to overlay configuration sources means that your application can
support a robust runtime environment, where configuration directives are able to be
specified at different layers of responsibility, and merged into a cohesive representa‐
tion.

Configuration files in JSON format are not the only possibility. There are matching
methods on serverConfig for working with YAML and Java properties files. Further‐
more, these different file types can be used together when building the final configu‐
ration representation. If the application’s requirement was to begin by loading the
dbconfig.json file from within the project, followed by loading a dbconfig.yml file from
the /etc directory of the filesystem, we could realize an application structure like the
one shown in Example 4-11.

84 | Chapter 4: Application Configuration

www.allitebooks.com

http://yaml.org
http://www.allitebooks.org

Example 4-11. Mixing JSON and YAML configuration files

import static ratpack.groovy.Groovy.ratpack
import static groovy.json.JsonOutput.toJson

import java.nio.file.Paths

class DatabaseConfig {
 String host = "localhost"
 String user = "root"
 String password
 String db = "myDB"
}

ratpack {
 serverConfig {
 json "dbconfig.json"
 yaml Paths.get("/etc/dbconfig.yml")
 require("/database", DatabaseConfig)
 }
 handlers {
 get("config") { DatabaseConfig config ->
 render toJson(config)
 }
 }
}

Here, we load the dbconfig.json file from our project.

Now we use the yaml method to load the /etc/dbconfig.yml file.

If the /etc/dbconfig.yml file has contents like those depicted in Example 4-12, then we
can begin to realize how the merged configuration will be represented.

Example 4-12. The dbconfig.yml file

database:
 host: ratpack-mysql-0441.prod.internal

Because the /etc/dbconfig.yml file was loaded last, its properties get the highest order
of precendence, meaning that the fully merged configuration will look like the JSON
structure shown in Example 4-13.

Example 4-13. Merged config with JSON and YAML

{
 "database": {
 "host": "ratpack-mysql-0441.prod.internal",
 "user": "ratpack",
 "password": "l3arn!ngR@tpack"

Application Configuration | 85

 }
}

As you can see, the host is favored from the YAML file, while all other properties
are inherited from the project’s dbconfig.yml.

Java properties files are equally as easy to incorporate with the configuration system.
If we expand the example (Example 4-14), we might say that now our requirements
are that dbconfig.json is first loaded from the project, next a /config/dbconfig.proper‐
ties file is loaded from the classpath, and finally /etc/dbconfig.yml is loaded from the
filesystem. When loading Java properties files, we make use of the props method in
the serverConfig block.

Example 4-14. Overlaying JSON, properties, and YAML files

import static ratpack.groovy.Groovy.ratpack
import static groovy.json.JsonOutput.toJson

import java.nio.file.Paths

class DatabaseConfig {
 String host = "localhost"
 String user = "root"
 String password
 String db = "myDB"
}

ratpack {
 serverConfig {
 json "dbconfig.json"
 props Class.getResource("/config/dbconfig.properties")
 yaml Paths.get("/etc/dbconfig.yml")
 require("/database", DatabaseConfig)
 }
 handlers {
 get("config") { DatabaseConfig config ->
 render toJson(config)
 }
 }
}

Again, the project’s dbconfig.json file is loaded.

Next, the /config/dbconfig.properties file is loaded from the classpath.

And finally, the /etc/dbconfig.yml file is loaded from the filesystem.

86 | Chapter 4: Application Configuration

The classpath resource file /config/dbconfig.properties may specify contents like those
shown in Example 4-15.

Example 4-15. The dbconfig.properties file

database.user=app-user

Here, we specify the configuration path, /database, using dot-notation, and we
override the user value for the configuration.

Given this additional configuration source, the final configuration will look like the
one shown in Example 4-16.

Example 4-16. Fully merged configuration from JSON, properties, and YAML files

{
 "database": {
 "host": "ratpack-mysql-0441.prod.internal",
 "user": "app-user",
 "password": "l3arn!ngR@tpack"
 }
}

The host value is brought in from the /etc/dbconfig.yml file.

user is specified in the /config/dbconfig.properties classpath file.

And the password value comes from our project’s dbconfig.json.

Configuring with Environment Variables and System
Properties
Modern Java web applications—especially those designed to run on cloud infrastruc‐
ture—need the ability to derive configuration from the system environment, in the
form of environment variables and Java system properties. In support of that effort,
Ratpack provides conventions by which directives can be specified by those sources,
and incorporated into your application. If we revisit the example application, we can
see how easy it is to allow these sources to participate in the configuration system.
The code in Example 4-17 shows the use of the env and sysProps methods in the
serverConfig block.

Configuring with Environment Variables and System Properties | 87

Example 4-17. Environment variables and system properties configuration

import static ratpack.groovy.Groovy.ratpack
import static groovy.json.JsonOutput.toJson

class DatabaseConfig {
 String host = "localhost"
 String user = "root"
 String password
 String db = "myDB"
}

ratpack {
 serverConfig {
 json "dbconfig.json"
 env()
 sysProps()
 require("/database", DatabaseConfig)
 }
 handlers {
 get("config") { DatabaseConfig config ->
 render toJson(config)
 }
 }
}

This method call is all that is necessary to include configuration from environ‐
ment variables.

It is similarly easy to include configuration from system properties.

When including configuration from these sources, it is important that you follow the
key naming conventions when defining directives. By default, environment variables
that are prefixed with RATPACK_ will be captured as eligible configurations. Likewise,
when specifying Java system properties, the property needs to be prefixed with rat
pack. to be included. Prefixes to both of these methods can be overridden according
to your application’s requirements by supplying the prefix string to the respective
methods.

Configuring with Environment Variables
To better illustrate defining configuration with environment variables, consider a sce‐
nario where we want to specify the host property of the DatabaseConfig in the form
of an environment variable. On our system, the RATPACK_DATABASE__HOST environ‐
mental variable must be exported prior to running the application. The console out‐
put in Example 4-18 shows how we go about doing this.

88 | Chapter 4: Application Configuration

Example 4-18. Setting environment variables for the project

$ export RATPACK_DATABASE__HOST=ratpack-mysql001.prod.internal
$./gradlew run
:compileJava UP-TO-DATE
:compileGroovy UP-TO-DATE
:processResources UP-TO-DATE
:classes UP-TO-DATE
:configureRun
:run
SLF4J: Failed to load class "org.slf4j.impl.StaticLoggerBinder".
SLF4J: Defaulting to no-operation (NOP) logger implementation
SLF4J: See http://www.slf4j.org/codes.html#StaticLoggerBinder for further details.
WARNING: No slf4j logging binding found for Ratpack, there will be no logging output.
WARNING: Please add an slf4j binding, such as slf4j-log4j2, to the classpath.
WARNING: More info may be found here: http://ratpack.io/manual/current/logging.html
Ratpack started (development) for http://localhost:5050
> Building 83% > :run

Here, we issue the export command with our environment variable.

Next, we run the project, and the variable will be available to our application’s
process.

If we again access our /config handler from a browser (Figure 4-3), we will now see
that the database host specified by our environment variable is favored over the one
specified in our project’s dbconfig.json file.

Figure 4-3. Configuration JSON with environment config

Configuring with Environment Variables and System Properties | 89

An important caveat with environment variable configuration is
that depth must be denoted by a double underscore. Note in the
environment variable’s key, RATPACK_DATABASE__HOST, between the
DATABASE and HOST parts, there are two underscores, which trans‐
lates to the equivalent property reference of database.host.

Most modern cloud platforms provide references to databases and even passwords in
the form of system environment variables. Furthermore, with the rising use of con‐
tainerized runtimes, like those built with Docker, injecting configuration through
environment variables is quickly becoming the preferred mechanism for deploy‐
ments. It is a good idea to start building your application with the mindset that at
some point you will need the ability to pull configuration from environment vari‐
ables. Even if you do not immediately need it, it is inconsequential to application
startup performance to simply add the env() method to your serverConfig block.

Configuration with System Properties
Before we demonstrate using Java system properties, we must first make a small
change to our project’s build.gradle file. Gradle does not implicitly pass system prop‐
erties on to the run task, so we must tell it that we want those properties passed on to
our application. We can make this change by configuring the run task in our build
script, as shown in Example 4-19.

Example 4-19. Configuring Gradle run task

buildscript {
 repositories {
 jcenter()
 }
 dependencies {
 classpath 'io.ratpack:ratpack-gradle:1.3.3'
 }
}

apply plugin: 'io.ratpack.ratpack-groovy'

repositories {
 jcenter()
}

run {
 systemProperties System.getProperties()
}

Within the closure that configured the run task, we simply pass all of the system
properties from the Gradle process on to our application.

90 | Chapter 4: Application Configuration

http://docker.io

Let’s again demonstrate overriding the database host field, this time with system
properties. The console output in Example 4-20 shows the passing of the rat
pack.database.host value on to the run task, and thus our application.

Example 4-20. Setting system property configuration

$./gradlew -Dratpack.database.host=mysql004.dev.company.com run
:compileJava UP-TO-DATE
:compileGroovy UP-TO-DATE
:processResources
:classes
:configureRun
:run
SLF4J: Failed to load class "org.slf4j.impl.StaticLoggerBinder".
SLF4J: Defaulting to no-operation (NOP) logger implementation
SLF4J: See http://www.slf4j.org/codes.html#StaticLoggerBinder for further details.
WARNING: No slf4j logging binding found for Ratpack, there will be no logging output.
WARNING: Please add an slf4j binding, such as slf4j-log4j2, to the classpath.
Ratpack started (development) for http://localhost:5050
WARNING: More info may be found here: http://ratpack.io/manual/current/logging.html
> Building 83% > :run

Here, we use the -Dratpack.database.host=mysql004.dev.company.com argu‐
ment to set the database host value.

Again accessing our application’s /config endpoint (Figure 4-4) will now show the
database host from the system property.

Figure 4-4. Configuration JSON from system properties

Like environment variables, system properties can act as a way to configure your
application according to the system environment. To that end, it is also advisable to

Configuring with Environment Variables and System Properties | 91

start out building your application with the intent to support configuration from sys‐
tem properties.

Nested Configuration Models
It may be desirable for your application’s configuration model to be a complex struc‐
ture with nested object types. If you consider the application depicted in
Example 4-21, you can see that the ApplicationConfig class holds properties for the
DatabaseConfig type that we used earlier, and now also has a LandingPageConfig
type as well.

Example 4-21. Mapping configuration to nested models

import static ratpack.groovy.Groovy.ratpack
import static groovy.json.JsonOutput.toJson

class DatabaseConfig {
 String host = "localhost"
 String user = "root"
 String password
 String db = "myDB"
}

class LandingPageConfig {
 String welcomeMessage = "Welcome to Ratpack!"
 String analyticsKey = "ua-12345678"
}

class ApplicationConfig {
 DatabaseConfig database = new DatabaseConfig()
 LandingPageConfig landing = new LandingPageConfig()
}

ratpack {
 serverConfig {
 json "dbconfig.json"
 env()
 sysProps()
 require("", ApplicationConfig)
 }
 handlers {
 get("config") { ApplicationConfig config ->
 render toJson(config)
 }
 }
}

92 | Chapter 4: Application Configuration

Here, we specify the ApplicationConfig class with database and landing fields
that correspond to the DatabaseConfig and LandingPageConfig classes, respec‐
tively.

Because we want to map all configuration onto the top-level ApplicationConfig
class, we specify an empty string as the configuration path here.

Without making any changes to our project’s dbconfig.json file from earlier, if we start
this application, we will find that the file’s configuration is properly mapped to the
DatabaseConfig within the ApplicationConfig (see Figure 4-5).

Figure 4-5. ApplicationConfig JSON output

If we add a new configuration file to our project for the LandingPageConfig, then we
can demonstrate instituting configuration for it as well. The YAML configuration
shown in Example 4-22 shows explicit configuration for the LandingPageConfig
properties.

Example 4-22. The landingpage.yml file

landing:
 analyticsKey: "ua-abcdefgh"

Nested Configuration Models | 93

Here, we will use this opportunity to override the default analyticsKey configu‐
ration value.

We place this file into our src/ratpack directory and modify our Ratpack.groovy to
include this configuration, as shown in Example 4-23.

Example 4-23. Application with landingpage.yml config included

import static ratpack.groovy.Groovy.ratpack
import static groovy.json.JsonOutput.toJson

class DatabaseConfig {
 String host = "localhost"
 String user = "root"
 String password
 String db = "myDB"
}

class LandingPageConfig {
 String welcomeMessage = "Welcome to Ratpack!"
 String analyticsKey = "ua-12345678"
}

class ApplicationConfig {
 DatabaseConfig database
 LandingPageConfig landing
}

ratpack {
 serverConfig {
 json "dbconfig.json"
 yaml "landingpage.yml"
 env()
 sysProps()
 require("", ApplicationConfig)
 }
 handlers {
 get("config") { ApplicationConfig config ->
 render toJson(config)
 }
 }
}

We incorporate the landingpage.yml configuration, which has the configured
value for the analyticsKey property.

If we run this application, we see that the configuration (Figure 4-6) from landing‐
page.yml was indeed properly mapped onto our configuration.

94 | Chapter 4: Application Configuration

Figure 4-6. ApplicationConfig JSON output

An important thing to make note of at this point is that within both the dbconfig.json
and landingpage.yml files, the configuration directives were placed within the objects
database and landing, respectively. The names of these values matter, as they corre‐
spond to the field names of the corresponding model on the ApplicationConfig
class. That is to say that if within the landingpage.yml file we changed the landing key
to something different, the configuration system would not know how to map that
onto the ApplicationConfig model.

Nesting configuration models does not stop at just a single depth. Configuration
models of varying complexity and nested object depth can be described in declarative
configurations and mapped to the corresponding object structure in your application.

Custom Configuration Source
Ratpack’s configuration system is designed to be completely extensible. While most
use cases are satisfied with its helper methods for loading JSON, YAML, Java proper‐
ties, environment variables, and Java system properties, there still may be a time when
your application needs to load its configuration from a nonstandard source. For
example, your project’s requirements may dictate that a centralized configuration
server needs to be used to hydrate the application configuration. Or, you may just

Custom Configuration Source | 95

want your application to have more granular control over how configuration is
loaded into the system.

To facilitate custom configuration sources, Ratpack provides the ratpack.con
fig.ConfigSource interface, which you can apply to the configuration system via the
add method on the serverConfig block. Let’s demonstrate this with an adaptation to
the prior examples that introduces a CustomConfigSource that is responsible for
explicitly setting the host and analyticsKey properties on the DatabaseConfig and
LandingPageConfig classes. Consider the code shown in Example 4-24 to get an
understanding of how we accomplish this.

Example 4-24. Customizing configuration mapping

package app

import com.fasterxml.jackson.databind.ObjectMapper
import com.fasterxml.jackson.databind.node.ObjectNode
import ratpack.config.ConfigSource
import ratpack.file.FileSystemBinding

class CustomConfigSource implements ConfigSource {

 @Override
 ObjectNode loadConfigData(ObjectMapper objectMapper,
 FileSystemBinding fileSystemBinding)
 throws Exception {
 ObjectNode node = objectMapper.createObjectNode()
 DatabaseConfig databaseConfig = new DatabaseConfig(
 host: "my-database-host.dev.company.com"
)
 LandingPageConfig landingPageConfig = new LandingPageConfig(
 analyticsKey: "ua-learningratpack"
)

 node.set("database", objectMapper.valueToTree(databaseConfig))
 node.set("landing", objectMapper.valueToTree(landingPageConfig))

 node
 }
}

Our class must implement the ratpack.config.ConfigSource interface.

This interface defines a loadConfigData method, which provides us a Jackson
ObjectMapper and the FileSystemBinding that corresponds to the project’s base
directory. Behind the scenes of Ratpack’s configuration system, Jackson is utilized
to perform the mapping of configuration data. From the loadConfigData

96 | Chapter 4: Application Configuration

method, we must return a Jackson ObjectNode, which holds the property map‐
pings and will be incorporated into the configuration loading process.

We use the ObjectMapper to create the ObjectNode that we will return.

Here, we demonstrate constructing the DatabaseConfig object and explicitly
overriding its host field.

We do the same here for the analyticsKey on the LandingPageConfig object.

Here we set the database value on the ObjectNode to a tree of our DatabaseCon
fig object.

We do the same here for the landing value and the LandingPageConfig.

Finally, we return the fully hydrated ObjectNode.

This example is intentionally contrived for the sake of simplicity and to demonstrate
capabilities. Real-world implementations will need to do more intelligent work, but
this demonstration should serve as a good foundation of understanding.

We need to modify our Ratpack.groovy class to incorporate the CustomConfig
Source into the configuration system. Before we do that, however, let’s take a quick
look at the project’s new structure. For the purposes of this demonstration, the con‐
figuration classes have been moved out of the Ratpack.groovy file and into the proj‐
ect’s source tree structure. There is also where we will find the CustomConfigSource.
The project structure is depicted in Example 4-25.

Example 4-25. Revised project structure for CustomConfigSource

.
├── build.gradle
└── src
 ├── main
 │ └── groovy
 │ └── app
 │ ├── ApplicationConfig.groovy
 │ ├── CustomConfigSource.groovy
 │ ├── DatabaseConfig.groovy
 │ └── LandingPageConfig.groovy
 └── ratpack
 ├── dbconfig.json
 ├── landingpage.yml
 └── Ratpack.groovy

Custom Configuration Source | 97

Next, see how the updated Ratpack.groovy script now looks, with the addition of the
CustomConfigSource and accounting for the use of the project structure, as shown in
Example 4-26.

Example 4-26. Updated Ratpack.groovy file

import static ratpack.groovy.Groovy.ratpack
import static groovy.json.JsonOutput.toJson

import app.*

ratpack {
 serverConfig {
 json "dbconfig.json"
 yaml "landingpage.yml"
 add new CustomConfigSource()
 env()
 sysProps()
 require("", ApplicationConfig)
 }
 handlers {
 get("config") { ApplicationConfig config ->
 render toJson(config)
 }
 }
}

Our configuration models and the CustomConfigSource now live in the app
package, so we import those resources here.

Here, we add the CustomConfigSource into the mix. You will realize from what
you know by now that the host and analyticsKey values will be favored from
those we set in the CustomConfigSource, as it is further down the chain than our
JSON and YAML configuration files.

If we run this application and again hit the /config endpoint, we will see that indeed
the configuration (see Figure 4-7) specified by the CustomConfigSource is applied to
the rendered ApplicationConfig model.

98 | Chapter 4: Application Configuration

Figure 4-7. ApplicationConfig JSON output

Being able to extend the configuration system for your application’s specific needs
serves as another example of how Ratpack helps guide you when needing to do things
that are beyond the framework’s core capability.

Setting Server Configuration
Ratpack’s underlying web server has a corresponding configuration model object in
the ratpack.server.ServerConfig object. Ratpack will automatically map Java sys‐
tem properties and environment variables over top of the default configurations. To
that extent, you can override server-level configuration, like the server’s port, by pro‐
viding the corresponding runtime values. Table 4-1 shows a description of ServerCon
fig fields and their corresponding Java system property and environment variable
keys to override the default values.

Setting Server Configuration | 99

Ta
bl

e 4
-1

. T
ab

le
of

 S
er

ve
rC

on
fig

 p
ro

pe
rt

ies

Fie
ld

De
sc

rip
tio

n
Sy

ste
m

 P
ro

pe
rty

En
vir

on
m

en
t V

ar
ia

bl
e

po
rt

Th
e p

or
t t

ha
t t

he
 Ra

tp
ac

k s
er

ve
r b

ind
s

to
. D

efa
ult

: 5
05

0.
 Ex

am
ple

 ov
er

rid
es

 to
po

rt
80

80

-D
ra

tp
ac

k.p
or

t=
80

80
RA

TP
AC

K_
PO

RT
=

80
80

de
ve

lop
m

en
t

W
he

th
er

 Ra
tp

ac
k r

un
s i

n
de

ve
lop

m
en

t m
od

e o
r

no
t.

De
fau

lt:
 tr

ue
. E

xa
m

ple
 ov

er
rid

es
 to

 fa
lse

-D
ra

tp
ac

k.d
ev

elo
pm

en
t=

fal
se

RA
TP

AC
K_

DE
VE

LO
PM

EN
T=

fal
se

th
re

ad
s

Th
e n

um
be

r o
f r

eq
ue

st-
ta

kin
g t

hr
ea

ds
 th

at
Ra

tp
ac

k u
se

s.
De

fau
lt:

 2
* n

um
be

r o
f C

PU
s

av
ail

ab
le

to
 th

e J
av

a r
un

tim
e.

Ex
am

ple
ov

er
rid

es
 to

 a
sta

tic
 4

-D
ra

tp
ac

k.t
hr

ea
ds

=
4

RA
TP

AC
K_

TH
RE

AD
S=

4
m

ax
Co

nt
en

tL
en

gt
h

Th
e m

ax
 nu

m
be

r o
f b

yt
es

 a
re

qu
es

t b
od

y c
an

be
. D

efa
ult

: 1
04

85
76

 (1
M

B)
. E

xa
m

ple
 ov

er
rid

es
to

 2M
B

-D
ra

tp
ac

k.m
ax

Co
nt

en
tL

en
gt

h=
20

97
15

2
RA

TP
AC

K_
M

AX
_C

ON
TE

NT
_L

EN
GT

H=
20

97
15

2

co
nn

ec
tT

im
eo

ut
M

illi
s

Th
e c

on
ne

cti
on

 ti
m

eo
ut

 of
 a

re
qu

es
t i

n
m

illi
se

co
nd

s.
De

fau
lt:

 in
de

fin
ite

.
Ex

am
ple

 ov
er

rid
es

 to
 1

se
co

nd

-D
ra

tp
ac

k.c
on

ne
ctT

im
eo

ut
M

illi
s=

10
00

RA
TP

AC
K_

CO
NN

EC
T_

TIM
EO

UT
_M

ILL
IS=

10
00

m
ax

M
es

sa
ge

sP
er

Re
ad

Th
e m

ax
im

um
 nu

m
be

r o
f b

yt
es

 pe
r r

ea
d,

 as
de

fin
ed

 by
 th

e S
O_

RC
VB

UF
 a so

ck
et

 op
tio

ns
.

De
fau

lt
is

un
lim

ite
d.

 Ex
am

ple
 ov

er
rid

es
 to

 1K
B

-D
ra

tp
ac

k.m
ax

M
es

sa
ge

sP
er

Re
ad

=
10

00

RA
TP

AC
K_

M
AX

_M
ES

SA
GE

S_
PE

R_
RE

AD
=

10
00

wr
ite

Sp
inC

ou
nt

Th
e m

ax
im

um
 nu

m
be

r o
f l

oo
ps

 be
fo

re
 a

wr
ite

op
er

at
ion

 re
tu

rn
s z

er
o.

 D
efa

ult
 is

 w
rit

ing
 un

til
all

 th
e b

yt
es

 ha
ve

 be
en

 w
rit

te
n.

 Ex
am

ple
ov

er
rid

es
 to

 10
0

-D
wr

ite
Sp

inC
ou

nt
=

10
0

RA
TP

AC
K_

W
RI

TE
_S

PI
N_

CO
UN

T=
10

00
re

qu
ire

Cli
en

tS
slA

ut
h

Sp
ec

ifi
es

 w
he

th
er

 to
 re

qu
ire

 H
TT

P c
lie

nt
 SS

L
au

th
or

iza
tio

n.
 A

n
SS

LC
on

te
xt

 m
us

t b
e s

pe
cifi

ed
.

De
fau

lt:
 fa

lse
. E

xa
m

ple
 ov

er
rid

es
 to

 tr
ue

-D
re

qu
ire

Cli
en

tS
slA

ut
h=

tru
e

RA
TP

AC
K_

RE
QU

IR
E_

CL
IEN

T_
SS

L_
AU

TH
=

tru
e

a ht
tp

://
bit

.ly
/so

_r
cv

bu
f

100 | Chapter 4: Application Configuration

http://bit.ly/so_rcvbuf

Many of the configuration values specified by the ServerConfig object can be tuned
to improve performance depending on the runtime environment. The most com‐
monly modified properties are the port, development, and threads values. In a
cloud-based runtime environment, like Heroku, the application’s server port may
need to be mapped according to some value provided by the system environment. In
a production environment, it is valuable to set the development property to a false
value. The threads server config value can be tuned according to a server’s environ‐
ment to provide better performance. Some virtualization infrastructures, for example,
will advertise more or fewer CPUs than actually exist on the host, so this property can
be tuned to align an application more appropriately with the underlying system.

Chapter Summary
This chapter has exposed you to Ratpack’s concise fixtures for working with configu‐
ration. From project and library to external and environment configuration sources,
all the way through to demonstrating a custom ConfigSource implementation, and
tuning framework-level settings, you now have a comprehensive understanding of
how Ratpack’s configuration system works and how you can leverage it in your
projects.

Chapter Summary | 101

http://heroku.com

CHAPTER 5

Ratpack Modules

Ratpack’s framework features are separated into different modules that can be made
available to an application by bringing a module of interest onto a project’s classpath.
This allows the framework to be feature rich, while remaining lightweight and
resource efficient. For instance, for applications that do not need support for authen‐
tication or sessions, those supported modules need not be included in the project.

It is important to note that modules differ slightly from the plugins you find in other
popular web application frameworks. In those frameworks, there is often an internal
plugin manager that framework code will reach out to in order to decorate an appli‐
cation with some functionality. Ratpack has no plugin infrastructure, but instead
allows modules to affect an application’s functionality by providing the framework
with classes that serve to decorate or extend core functionality.

The component model for modularity and extensibility has added benefits in that
functionality is provided through the exact same mechanism through which an appli‐
cation’s components are provided. This gives more granular control to application
developers in the case where they need to adapt a framework feature to their specific
use case. Ratpack takes it a step further by giving control to the application in ascer‐
taining what component is resolved and when. In most cases, you will not need to
adjust a module’s behavior, but in a scenario where you want to override the specific
opinions of a feature’s functionality, the ability to do so is there.

Before we can jump into a discussion about the specific modules that Ratpack offers
and how they are used, we must first explore the infrastructure that supports its mod‐
ularity: its registries.

103

Extending Ratpack with Registries
Registries in Ratpack are a central and intricate concept, and are leveraged in nearly
every aspect of its function. From the startup sequence to the request flow, all the way
into application code, registries are an ever-present thing. They need to be, because it
is through the registry that Ratpack gets access to the services and support objects
that aid in its operation.

In its essence, a registry is a fairly mundane object type, resembling the function of a
Map, but it is through its usage that the framework-level concept becomes complex.
Registries within Ratpack are a means for facilitating extensibility and flexibility.
They provide a contract that can be utilized by applications to emulate a sort of
abstract dependency injection mechanism. On that same token, their extensibility can
be leveraged, as it is with the ratpack-guice and ratpack-spring-boot modules, to
incorporate advanced DI frameworks into your application.

Registries are able to be layered, or “joined,” to provide a flexibility that allows for a
child-to-parent resolution process for components. As registries are built, they can be
overlayed onto another registry to provide a more appropriate component binding
for the needs of your application. They provide a boundary for registering different
class implementations within an isolated scope of your application. In contrast, regis‐
tries can be leveraged within your application to facilitate data flow between bound‐
aries that would not normally be able to intercommunicate.

Whether or not it is apparent at first, the very first thing that most Ratpack applica‐
tions will do is interact with a registry to provide a binding for their service layer.
This happens within the application definition and is provided through a concise API
that allows you to specify the service and support class implementations that you will
use throughout your application. Consider the code in Example 5-1, which shows a
Java-based main class that binds a UserService implementation for use within a han‐
dler.

Example 5-1. Main class with UserService binding

package app;

import ratpack.server.RatpackServer;

public class Main {

 public static void main(String[] args) throws Exception {
 RatpackServer.start(spec -> spec
 .registryOf(r -> r
 .add(UserService.class, new DefaultUserService())
)
 .handlers(chain -> chain

104 | Chapter 5: Ratpack Modules

 .get(ctx -> {
 UserService userService = ctx.get(UserService.class);
 userService.list().then(users -> {
 StringBuilder sb = new StringBuilder();
 sb.append('[');
 for (User user : users) {
 sb.append(jsonify(user));
 }
 sb.append(']');
 ctx.getResponse().contentType("application/json");
 ctx.render(sb.toString());
 });
 })
)
);
 }

 private static String jsonify(User user) {
 return "{ \"username\": \""
 +user.getUsername()+"\", \"email\": \""
 +user.getEmail()+"\" }";
 }
}

Within the application definition, we can build out the user registry by making
use of the registryOf mechanism. Within this configuration call, we can now
provide a binding for later user in the application.

Here, we create a binding to the UserService interface with a new instance of the
DefaultUserService class.

When a request comes into our handler logic, we can retrieve the binding using
the ctx.get(UserService.class) call.

In this example, a sort of primitive dependency injection capability is apparent,
because we are able to resolve the UserService from the Context object that was pro‐
vided to the handler. It is important to understand that Ratpack takes no opinion as
to how your application employs dependency injection. Indeed, the entire core of the
framework utilizes registries in its own function, so there is no base-level requirement
for a DI framework. Ratpack applications can be built completely and entirely
without the integration of external DI frameworks.

Robust dependency injection through third-party libraries, such as Guice and Spring,
is well supported. It is entirely up to the application developer to ascertain whether
her application has the requirement for the kind of mature DI support provided by
those libraries. In the case where it is a requirement, Ratpack’s registry serves as a key
integration interface, allowing registry implementations to be backed into those DI
frameworks. This gives a bridge from the DI framework to Ratpack, and allows you

Extending Ratpack with Registries | 105

to write your handler code through the registry’s contract, while still employing your
DI framework of choice behind the scenes.

Use of registries in this manner opens the door for a lot of possibilities and complex
requirements. As noted earlier, a registry acts as a boundary for component resolu‐
tion, so it is practical to have a Ratpack application that leverages multiple DI frame‐
works behind the scenes. Indeed, both Guice and Spring can be leveraged within the
same Ratpack application, affording you the opportunity to interface with a broad
range of ecosystems that leverage those frameworks.

The registry defined during the application definition is just the first place where
your application can provide bindings for your handler logic. As shown, the context
provides an interface for your handlers to resolve services, but that is because the
Context object is itself a registry. Every request that comes into your handler chain
has a new Context object created, and thus a new registry, so the context can serve as
a way for upstream handlers in your chain to communicate downstream. When the
Context object is initially created, it is joined to the upstream registries, so within
your handlers you are able to resolve services that you bound as part of your applica‐
tion definition.

Consider a scenario where your application needs to perform security authorization
on a request prior to serving data. Assume that an access token will be supplied as a
header in the request, and from within a resource’s handler we need to ensure that the
client has access to the data. Multiple handlers will likely need to perform this type of
authorization check, so a good practice in this case is to create a top-level handler that
looks up the user’s profile based on the provided token, and provides that profile to
downstream handlers. Example 5-2 shows a demonstration of this scenario.

Example 5-2. Component delegation sample code

package app;

import ratpack.handling.Context;
import ratpack.registry.Registry;
import ratpack.server.RatpackServer;

public class Main {

 private static final String AUTH_HEADER = "x-auth-token";

 public static void main(String[] args) throws Exception {
 RatpackServer.start(spec -> spec
 .registryOf(r -> r
 .add(UserService.class, new DefaultUserService())
)
 .handlers(chain -> chain
 .all(ctx -> {

106 | Chapter 5: Ratpack Modules

 if (ctx.getRequest().getHeaders().contains(AUTH_HEADER)) {
 String token = ctx.getRequest().getHeaders().get(AUTH_HEADER);
 UserService userService = ctx.get(UserService.class);
 userService.getProfileByToken(token).then(profile ->
 ctx.next(Registry.single(profile))
);
 } else {
 unauthorized(ctx);
 }
 })
 .get("users/:username", ctx -> {
 UserProfile profile = ctx.get(UserProfile.class);
 if (profile.isAuthorized("showuser")) {
 UserService userService = ctx.get(UserService.class);
 userService.getUser(ctx.getPathTokens().get("username"))
 .then(user -> {
 ctx.getResponse().contentType("application/json");
 ctx.render(jsonify(user));
 });
 } else {
 unauthorized(ctx);
 }
 })
)
);
 }

 private static void unauthorized(Context ctx) {
 ctx.getResponse().status(401);
 ctx.getResponse().send();
 }

 private static String jsonify(User user) {
 return "{ \"username\": \""
 + user.getUsername() + "\", \"email\": \""
 + user.getEmail() + "\" }";
 }
}

We start out by attaching an all handler, which inspects every incoming request.

Within this handler, we check to make sure the authorization token is provided.

If it is, we look up the UserProfile by the specified token.

Once we get the user’s profile, we can manage data flow to the downstream han‐
dler by creating a single object registry and joining it to the context registry
through the ctx.next(Registry.single(profile)) call.

Extending Ratpack with Registries | 107

In this downstream get handler, we can now extract the UserProfile from the
context registry.

Let’s assume the UserProfile class has an isAuthorized method that performs
some calculation to ensure that the requested resource and provided parameters
align to provide an authorization in the form of a boolean response. In this case,
if the user is allowed to perform the showuser function, then we process accord‐
ingly; if they are not allowed, we send back an HTTP Unauthorized status code.

The new single-object registry that we attach at the beginning of the chain acts as a
child registry. The registry contract dictates that objects will be first resolved from
child registries; if the object does not exist in a child registry, then the object will be
requested from the parent’s registry, and so forth. This pattern is what allows the con‐
text to remain an immutable registry, while still facillitating data flow through the
handler chain.

Managing data flow through the handler chain is critically important for any nontriv‐
ial application, and it is entirely because of Ratpack’s registry paradigm that this flexi‐
bility exists. Note that because handlers are functionally isolated members of your
application, they are not appropriate places to store state. Even standalone handlers
should not store state during the request processing chain. Instead, it is better prac‐
tice to make use of the context registry when you need to build some mutable state to
flow through the handler chain.

Google Guice
Now that you have a comprehensive understanding of Ratpack registries, we can con‐
tinue discussing its framework modules. As noted earlier, the registry paradigm is
what provides the extensibility and flexibility for dependency injection frameworks to
interoperate at the framework level. Ratpack’s various libraries provide many compo‐
nents that decorate your application with advanced capabilities. Instead of asking you
to bind each of those components individually through your application definition,
instead Ratpack provides its features as Guice modules. These modules are incorpo‐
rated into your application through Ratpack’s Guice support, which provides a mech‐
anism for easily creating a Guice-backed registry.

Google Guice is a programmatic dependency injection library, and
is the favored DI engine for Ratpack. Its concept of modules and
ability to programmatically construct component bindings without
the need for classpath scanning or other opinionated conventions
make it an excellent choice for Ratpack applications.

108 | Chapter 5: Ratpack Modules

To start with, we need to ensure that the ratpack-guice dependency is available
within our project. If you are building a Groovy-based Ratpack project and utilizing
the ratpack-groovy Gradle plugin, then the dependency is already applied. For Java-
based projects, you need to explicitly include it as part of your Gradle build script.
The ratpack.dependency(..) mechanism was demonstrated in Chapter 2, and
Example 5-3 shows a Java-based build script with the Guice dependency applied.

Example 5-3. Java build script with Guice dependency

buildscript {
 repositories {
 jcenter()
 }
 dependencies {
 classpath 'io.ratpack:ratpack-gradle:1.3.3'
 }
}

apply plugin: 'io.ratpack.ratpack-java'

mainClassName = 'app.Main'

repositories {
 jcenter()
}

dependencies {
 compile ratpack.dependency("guice")
}

In the prior section, we demonstrated using the registryOf method in the applica‐
tion definition to bind components to the user registry. The definition also supports
the ability for you to supply a Registry object, which will be used in lieu of having
Ratpack create one on your behalf. When employing the Guice support, we can make
use of a factory method off of the ratpack.guice.Guice class to construct a Guice
Injector and build the registry implementation that will resolve components
through it. The code in Example 5-4 shows our application like before, this time
using Guice to bind our UserService class.

Example 5-4. Java application with Guice-backed registry

package app;

import ratpack.guice.Guice;
import ratpack.server.RatpackServer;

public class Main {

Google Guice | 109

 public static void main(String[] args) throws Exception {
 RatpackServer.start(spec -> spec
 .registry(Guice.registry(r -> r
 .bindInstance(UserService.class, new DefaultUserService())
))
 .handlers(chain -> chain
 .get(ctx -> {
 UserService userService = ctx.get(UserService.class);
 userService.list().then(users -> {
 StringBuilder sb = new StringBuilder();
 sb.append('[');
 for (User user : users) {
 sb.append(jsonify(user));
 }
 sb.append(']');
 ctx.getResponse().contentType("application/json");
 ctx.render(sb.toString());
 });
 })
)
);
 }

 private static String jsonify(User user) {
 return "{ \"username\": \""
 +user.getUsername()+"\", \"email\": \""
 +user.getEmail()+"\" }";
 }
}

Here, we create a new Guice-backed registry using the Guice.registry(..) fac‐
tory method. You can also see that we are now making use of the BindingsSpec
API to add our components to the registry. Within it, we get some additional fea‐
tures that pertain specifically to Guice, such as the ability to specify an interface
to an implementation.

In this example, we specifically bind a new instance of the DefaultUserService
class to the UserService interface.

Now, we can retrieve the class that is bound to the UserService interface, and
our handler logic never needs to be concerned with concrete types.

Even though we have changed the underlying infrastructure that supports our appli‐
cation’s user registry, we do not have to change the means by which we access compo‐
nents within our code. Regardless of the fact that we are using Guice, we continue to
use the Context to retrieve component bindings. Most applications will find benefit
in using dependency injection, but Ratpack’s lightly opinionated nature leaves it
entirely up to you as to when the time is appropriate to incorporate DI.

110 | Chapter 5: Ratpack Modules

BindingsSpec in Groovy
If you are building a Groovy-based application, then there is out-of-the-box support
for Guice. The Groovy DSL takes a slightly more structured approach to defining
your application, so it provides a bindings block, as discussed briefly in Chapter 2.
This block delegates to the BindingsSpec to make wiring your components from the
src/ratpack/ratpack.groovy script into a Guice-backed registry a concise process.

The bindings block exposes several helper functions to simplify the steps necessary
to bind your components through Guice. Generally speaking, the Ratpack philosophy
is to make dependency injection a “one-liner,” so the interfaces for creating injected
components are fairly straightforward.

Perhaps the most commonly used function in the bindings block is the bindIn
stance method, which we have seen previously. This allows you to provide a concrete
binding to an interface type, therein giving you the flexibility of implementation. To
recap the bindInstance usage, consider the application depicted in Example 5-5.

Example 5-5. Groovy BindingsSpec sample

import app.DefaultUserService
import app.UserService

import static groovy.json.JsonOutput.toJson
import static ratpack.groovy.Groovy.ratpack

ratpack {
 bindings {
 bindInstance(UserService, new DefaultUserService())
 }

 handlers {
 all { UserService userService ->
 userService.list().then { users ->
 render(toJson(users))
 }
 }
 }
}

Here, we bind the UserService interface to an instance of the DefaultUserSer
vice implementation.

Our handler is able to inject components by their bound types, instead of having
to deal with concrete implementation classes.

Use of Guice-backed registries means that Ratpack applications are able to garner all
the benefits afforded by Guice’s injection system. If, for example, the DefaultUserSer

Google Guice | 111

vice wanted to make use of a data access object within its implementation, then we
could simply provide that as a field on the class and annotate it with @Inject. Inspect
the DefaultUserService code snippet in Example 5-6 to understand this better.

Example 5-6. DefaultUserService implementation

package app

import ratpack.exec.Blocking
import ratpack.exec.Operation
import ratpack.exec.Promise

import javax.inject.Inject

class DefaultUserService implements UserService {

 @Inject
 UserDAO dao

 @Override
 Promise<List<User>> list() {
 Blocking.get {
 dao.listUsers()
 }
 }
}

As you can see, the DefaultUserService is an implementation of the UserSer
vice, which is the type to which we bound in the bindings block of our applica‐
tion.

We can leverage the javax.inject.Inject annotation to inform Guice that the
UserDAO object should be automatically injected.

Our method code can make use of the UserDAO object as it normally would.

Now we can update the Ratpack Groovy script to also bind the UserDAO implementa‐
tion, as shown in Example 5-7.

Example 5-7. Binding UserDAO in Guice-backed registry

import app.DefaultUserService
import app.MySqlUserDAO
import app.UserDAO
import app.UserService

import static groovy.json.JsonOutput.toJson
import static ratpack.groovy.Groovy.ratpack

112 | Chapter 5: Ratpack Modules

ratpack {
 bindings {
 bindInstance(UserDAO, new MySqlUserDAO())
 bindInstance(UserService, new DefaultUserService())
 }

 handlers {
 all { UserService userService ->
 userService.list().then { users ->
 render(toJson(users))
 }
 }
 }
}

When we bind the UserDAO object to the MySqlUserDAO implementation, it
becomes participant in the Guice lifecycle. The subsequent binding of the Defaul
tUserService allows Guice to provide the necessary binding to its dao field.

This mechanism of backing the registry with DI gives your applications a plethora of
extensibility. You can get even deeper with DI through the BindingsSpec by utilizing
the bind method to provide class-level bindings directly. If we refactor the DefaultU
serService, as shown in Example 5-8, we can utilize Guice’s ability to provide con‐
structor variable argument dependency injection and remove the necessity for a
mutable field-level dependency.

Example 5-8. Refactored DefaultUserService

package app

import ratpack.exec.Blocking
import ratpack.exec.Operation
import ratpack.exec.Promise

import javax.inject.Inject

class DefaultUserService implements UserService {

 private final UserDAO dao

 @Inject
 DefaultUserService(UserDAO dao) {
 this.dao = dao
 }

 @Override
 Promise<List<User>> list() {
 Blocking.get {

Google Guice | 113

 dao.listUsers()
 }
 }
}

From here, we can update our Ratpack Groovy script to bind directly to the class and
let Guice handle the construction of the object on our behalf. This is shown in
Example 5-9.

Example 5-9. Binding the DefaultUserService without constructor

import app.DefaultUserService
import app.MySqlUserDAO
import app.UserDAO
import app.UserService

import static groovy.json.JsonOutput.toJson
import static ratpack.groovy.Groovy.ratpack

ratpack {
 bindings {
 bindInstance(UserDAO, new MySqlUserDAO())
 bind(UserService, DefaultUserService)
 }

 handlers {
 all { UserService userService ->
 userService.list().then { users ->
 render(toJson(users))
 }
 }
 }
}

The DefaultUserService can now maintain a private and final field variable,
and we pass the onus of properly constructing that object on to Guice. This
allows the application code to operate in a more modular way, and frees it from
the burden of constructing new objects, and therein properly utilizes the DI
engine.

Using the Guice binder in Ratpack
The Guice integration in Ratpack extends even further, and for more advanced
requirements, you can get direct access to Guice’s binding configuration. Exposed
through the binder method on the BindingsSpec, Ratpack allows you to interface
directly with the DI engine to perform any more advanced configuration that you
may need, as shown in Example 5-10. It is fairly uncommon that you would need to

114 | Chapter 5: Ratpack Modules

dig into this layer from within your Ratpack application, but it’s good to know that
the capability is there.

Example 5-10. Accessing the Guice binder

import app.DefaultUserService
import app.MySqlUserDAO
import app.UserDAO
import app.UserService
import com.google.inject.Scopes

import static groovy.json.JsonOutput.toJson
import static ratpack.groovy.Groovy.ratpack

ratpack {
 bindings {
 binder { b ->
 b.bind(UserDAO).to(MySqlUserDAO).in(Scopes.SINGLETON)
 b.bind(UserService).to(DefaultUserService).asEagerSingleton()
 }
 }

 handlers {
 all { UserService userService ->
 userService.list().then { users ->
 render(toJson(users))
 }
 }
 }
}

Here, we are hooking into the Guice binder configuration to get direct access to
the Guice APIs for binding our components. It’s not necessary to change any‐
thing related to our interaction with the DI-backed components from the regis‐
try; this is simply a way to perform more specific binding configuration than the
BindingsSpec’s bindInstance and bind methods provide you.

From the code, you can see that we are now specifying that we wish for the MySqlU
serDAO to be bound to the UserDAO interface as a singleton from the Guice binder.
This means that the MySqlUserDAO will be constructed once, and only once, when it is
injected into its dependent components. Likewise, we are binding the DefaultUser
Service to the UserService interface as an eager singleton, ensuring that its instance
is constructed and ready to go at application startup time.

Ratpack’s integration with Guice at this layer opens the door for your application to
have a plethora of extensibility, and enables the mechanism by which Ratpack’s
framework modules are incorporated in your application’s runtime. If your applica‐

Google Guice | 115

tion has modular considerations, you can utilize the same mechanism that the frame‐
work leverages to provide components through modular programmatic bindings.

If we take the examples from before and refactor them slightly to take a more modu‐
lar approach, we can bind them into our application with just a single line of code.
Consider the Guice module in Example 5-11, which takes the UserDAO and UserSer
vice bindings and incorporates them from a Guice module implementation.

Example 5-11. Binding in a Guice module

package app

import com.google.inject.AbstractModule
import com.google.inject.Scopes

class ApplicationModule extends AbstractModule {
 @Override
 protected void configure() {
 bind(UserDAO).to(MySqlUserDAO).in(Scopes.SINGLETON)
 bind(UserService).to(DefaultUserService).asEagerSingleton()
 }
}

By subclassing the com.google.inject.AbstractModule, we are given the ability to
implement a configure() method, which has protected access to the bind(..)
method that we saw previously. This class can exist in a submodule to your project,
enabling you to define proper service class boundaries within your architecture.
From here, we can leverage the module method on the BindingsSpec within the Rat‐
pack Groovy script to properly incorporate the bindings into our application, as
shown in Example 5-12.

Example 5-12. Applying a Guice module

import app.ApplicationModule
import app.UserService

import static groovy.json.JsonOutput.toJson
import static ratpack.groovy.Groovy.ratpack

ratpack {
 bindings {
 module(ApplicationModule)
 }

 handlers {
 all { UserService userService ->
 userService.list().then { users ->
 render(toJson(users))

116 | Chapter 5: Ratpack Modules

 }
 }
 }
}

Providing the ApplicationModule to the BindingsSpec allows Guice to perform
its binding operation through the module’s configure method.

The bindings contained therein are made available to your application as they
normally would.

Guice modules are the means by which Ratpack provides extensibility to applications.
Nearly all framework features are incorporated into applications through the use of
Guice modules. While it is not strictly required for your application to rely on Guice
for dependency injection, when you need to include Ratpack features, then Guice will
likely be required.

Framework Modules
Framework modules in Ratpack are built as Guice modules, and thus implement the
AbstractModule abstract class that was shown in the prior section. This is the prefer‐
red method of extensibility in Ratpack, though this path serves merely as a means to
an end. That is to say, the goal of framework modules is to get their offered compo‐
nents into the user registry for use throughout your application. Because Guice pro‐
vides a convenient system of modularity, the door is open for extensibility through
this mechanism.

It is a two-step process to incorporate a framework feature into your Ratpack applica‐
tion. By now, these parts have been laid out at various points, so the process should
look familiar. The first step is to incorporate the appropriate dependency into your
project. When making use of the Ratpack Gradle plugin, it is as simple as employing
the ratpack.dependency(<module qualifier>) helper within the dependencies
block of your build script. For example, the build script in Example 5-13 shows the
inclusion of the ratpack-session module as a project dependency. Note that the
module qualifier is denoted as the artifact identifier, without the leading ratpack-.

Example 5-13. Gradle build script with session module

buildscript {
 repositories {
 jcenter()
 }
 dependencies {
 classpath 'io.ratpack:ratpack-gradle:1.3.3'
 }
}

Framework Modules | 117

apply plugin: 'io.ratpack.ratpack-groovy'

repositories {
 jcenter()
}

dependencies {
 compile ratpack.dependency('session')
}

The second step to incorporating a framework feature is to bind its associated module
through the BindingsSpec. You can make use of the module(..) method within the
bindings block of your application specification to accomplish this. The Ratpack
Groovy script in Example 5-14 shows bringing in the ratpack.session.SessionMod
ule using this mechanism.

Example 5-14. Incorporating the SessionModule

import ratpack.session.Session
import ratpack.session.SessionModule

import static ratpack.groovy.Groovy.ratpack

ratpack {
 bindings {
 module(SessionModule)
 }

 handlers {
 // ... [snip] ...
 }
}

For most of the framework modules, this single line is sufficient for incorporat‐
ing a module’s functionality.

Behind the scenes, a module may bind framework-level components, like Parsers,
Renderers, and Handlers, but this will generally be transparent. There are, however,
exceptions to the “one-liner” rule, where some framework modules will require you
to provide additional configuration directives to help properly incorporate them in
your application. These types of modules are known as ConfigurableModules, and
provide a means for you to programmatically influence the default configuration of a
particular feature.

118 | Chapter 5: Ratpack Modules

Configurable Modules
Many of Ratpack’s framework modules will require you to provide some additional
configuration as part of their function. The most notable example of this is the
ratpack-hikari module, which provides connection pooling for database connec‐
tions. When utilizing Hikari within your application, you will need to provide it with
configuration directives, including the database connection URL and the datasource
driver class name.

To accommodate configurability of modules, the BindingsSpec offers an interface for
providing configuration values to the configuration model object exposed by those
modules. To demonstrate this capability, consider the incorporation of the HikariMod
ule in the BindingsSpec. Example 5-15 shows bringing in Hikari through the mod
ule(HikariModule) call, this time with the added change of influencing its
configuration model.

Example 5-15. HikariModule (configuration sample code)

import ratpack.hikari.HikariModule
import javax.sql.DataSource
import ratpack.exec.Blocking

import static ratpack.jackson.Jackson.json
import static ratpack.groovy.Groovy.ratpack

ratpack {
 bindings {
 module(HikariModule) { c ->
 c.dataSourceClassName = "com.mysql.jdbc.jdbc2.optional.MysqlDataSource"
 c.addDataSourceProperty "URL", "jdbc:mysql://localhost:3306/db"
 c.username = 'root'
 }
 }

 handlers {
 prefix("users") {
 get { DataSource dataSource ->
 // ... [snip for brevity] ...
 }
 }
 }
}

The closure that you supply to module is provided the module’s configuration
model, similar to how the Groovy DSL handler chain works. This means that you
can contextually influence the configuration properties of the model object
directly within your closure’s code.

Framework Modules | 119

In the case of the HikariModule specifically, its configuration object provides a
property setter for dataSourceClassName, and here you can see the assignment.

Additionally, methods on the configuration object can be called as you would
expect. Here, we are calling the addDataSourceProperty method and supplying
it with a URL parameter.

We must also set the username we will connect to. For the case of a local demon‐
stration, using root without a password will be sufficient.

Here, you can make use of the javax.sql.DataSource object provided by the
module, and know that it will be fully configured according to the properties you
specified when adding the module to the user registry.

In the case of ConfigurableModule, you can provide a closure to the module method,
and you will be given the opportunity to influence its configuration model prior to
any of its component bindings. This is critically important for modules that need to
supply some user-configured detail during their binding. Most of Ratpack’s frame‐
work modules are provided as ConfigurableModule types, though they are generally
preconfigured with reasonable defaults to make it easy to get the most common con‐
figurations off the ground. Only in the cases where you need to make changes should
you have to affect binding at this level.

As expected, the Java API for working with ConfigurableModule is not dissimilar.
The major difference you will see is that the lambda expression that we supply to the
module method takes the configuration object as a parameter. The code shown in
Example 5-16 demonstrates the same capability as the prior example, this time using
the Java API.

Example 5-16. HikariModule (Java configuration)

package app;

import javax.sql.DataSource;
import ratpack.server.RatpackServer;
import ratpack.hikari.HikariModule;
import ratpack.guice.Guice;
import ratpack.exec.Blocking;
import java.sql.*;
import java.util.List;
import java.util.ArrayList;

import static ratpack.jackson.Jackson.json;

public class Main {

120 | Chapter 5: Ratpack Modules

 public static void main(String[] args) throws Exception {
 RatpackServer.start(spec -> spec
 .registry(Guice.registry(b -> b
 .module(HikariModule.class, config -> {
 config.setDataSourceClassName
 ("com.mysql.jdbc.jdbc2.optional.MysqlDataSource");
 config.addDataSourceProperty("URL", "jdbc:mysql://localhost:3306/db");
 config.setUsername("root");
 })
))
 .handlers(chain -> chain
 .prefix("users", pchain -> pchain
 .get(ctx -> {
 DataSource dataSource = ctx.get(DataSource.class);
 // ... [snip] ...
 })
)
)
);
 }

}

We create a Guice-backed registry to be able to work with the BindingsSpec.

Here, we add the HikariModule, and to the second parameter we supply a
lambda expression that takes the module’s config object.

Similar to the Groovy example, we call setters and methods on the config object
within this block.

Within our handler logic, we can now use the Context to get access to the Hikari
Module’s fully configured component bindings.

The ConfigurableModule mechanism is an excellent way for users to be able to par‐
ticipate in the bootstrapping of module bindings. Though not every module requires
configuration, in the case where they do, Ratpack makes it simple and concise to get
those configurations in place. ConfigurableModule types are not reserved strictly for
framework modules either. If your applications or libraries are using modules to pro‐
vide component bindings, they too can implement this type.

Consider again the ApplicationModule example from earlier, and say that you want
to provide the DefaultUserService with a string as part of its construction. The sce‐
nario may be that the implementation is given a unique qualifier from the environ‐
ment. In that case, instead of directly reading the value from the environment, we can
leverage Ratpack’s configuration mechanism and ConfigurableModule to ensure the

Framework Modules | 121

class gets the right value. The code in Example 5-17 demonstrates the changes to our
module.

Example 5-17. Configurable ApplicationModule

package app

import ratpack.guice.ConfigurableModule
import com.google.inject.Scopes
import com.google.inject.Provides

class ApplicationModule extends ConfigurableModule<ApplicationModule.Config> {

 static class Config {
 String nodeName
 }

 @Override
 void configure() {
 bind(UserDAO).to(MySqlUserDAO).in(Scopes.SINGLETON)
 }

 @Provides
 UserService userService(UserDAO dao, Config config) {
 new DefaultUserService(dao, config.nodeName)
 }
}

Here, we extend the ratpack.guice.ConfigurableModule class, and to its
parameterization we provide the configuration class this module works with.

Many Ratpack framework modules define their configuration classes statically
within the module itself. This is a good pattern to follow, as it keeps things con‐
cise and easy to follow, however there is no strict requirement to do this.

Like before, we can continue to use the configure method to perform bindings.

Here, we are using the @Provides faculty of Guice to provide the binding for the
UserService. The arguments to this method will be provided by Guice, so we
can safely get an instance of the UserDAO and Config to supply to the DefaultU
serService constructor.

Within module methods annotated with @Provides, the method arguments are
pulled from the Guice bindings, so components previously bound by Guice can be
used in the construction of later bindings. In this case, we are injecting the Config
object to the userService method and we use that in the construction of the Defaul

122 | Chapter 5: Ratpack Modules

tUserService. Next, we can demonstrate working with this module in our applica‐
tion, as shown in Example 5-18.

Example 5-18. Using the configurable ApplicationModule

import app.ApplicationModule
import app.UserService

import static ratpack.groovy.Groovy.ratpack
import static groovy.json.JsonOutput.toJson

ratpack {
 serverConfig {
 env()
 }
 bindings {
 moduleConfig(
 ApplicationModule,
 serverConfig.get("/user", ApplicationModule.Config)
)
 }
 handlers {
 get("users") { UserService userService ->
 // ... [snip] ...
 }
 }
}

The desire is for the application to pull the config’s nodeName string from the
environment, so here we specify that we want to bring configuration from envi‐
ronment variables.

When adding the ApplicationModule, we can map the module’s Config object
from Ratpack’s configuration mechanism. Note that here we use the moduleCon
fig method, since we are providing the already populated Config object, instead
of configuring manually through a closure, as we have seen with the module
method.

And, as we would expect, we can continue to work with the UserService binding
as before.

As you can see from the example, in addition to being able to configure the module
via a closure, we can also provide an already-mapped Config object. Using this
approach, an environment variable of RATPACK_USER__NODE_NAME will be mapped
onto the nodeName property of the ApplicationModule.Config class and provided to
the DefaultUserService.

Framework Modules | 123

Modular Object Rendering in Ratpack
Another mechanism for modularity in Ratpack comes from its support for decou‐
pling the rendering of model objects from your handler logic. Binding via the frame‐
work’s ratpack.render.Renderer interface type allows you to implement your
rendering logic in a standalone fashion. This can assist you in better organizing the
logic for how your application provides data back to callers. Complex business rules
for ascertaining what data is returned from model objects can be isolated to your ren‐
derer’s implementation, allowing your handlers to remain focused on handling a
request. This form of decoupling can play a critical role in applications that wish to
provide layers of authorization. It can also help to massage data into forms that better
fit a caller’s needs.

Making use of renderers in Ratpack is as easy as implementing the Renderer interface
and binding it in the user or context registry. For example, the code in Example 5-19
shows the UserRenderer implementation, which is responsible for rendering User
objects.

Example 5-19. Rendering the User type

package app

import ratpack.handling.Context
import ratpack.render.Renderer

import static groovy.json.JsonOutput.toJson

class UserRenderer implements Renderer<User> {
 @Override
 Class<User> getType() {
 User
 }

 @Override
 void render(Context context, User user) throws Exception {
 def showAll = context.request.queryParams.containsKey("showAll") &&
 context.request.queryParams.showAll == "true"

 if (showAll) {
 context.render(toJson(user))
 } else {
 context.render(toJson([username: user.username]))
 }
 }
}

124 | Chapter 5: Ratpack Modules

The render method is given access to the request’s Context object, so within the
UserRenderer, you are given the opportunity to inspect the request as part of
your processing flow.

In this example, the renderer checks if the user has provided the ?showAll=true
query parameter.

If so, the full set of properties from the User object is rendered back as JSON; if
not, then only the username is rendered back.

For the UserRenderer to be made available in rendering User objects, you need only
add it to the user registry. The application code shown in Example 5-20 depicts
adding the renderer and making use of it.

Example 5-20. Binding the UserRenderer

import app.DefaultUserService
import app.MySqlUserDAO
import app.UserDAO
import app.UserRenderer
import app.UserService

import static ratpack.groovy.Groovy.ratpack

ratpack {
 bindings {
 bind(UserDAO, MySqlUserDAO)
 bind(UserService, DefaultUserService)
 bind(UserRenderer)
 }

 handlers {
 prefix("users") {
 get(":username") { UserService userService ->
 userService.getUser(pathTokens.username).then { user ->
 render(user)
 }
 }
 }
 }
}

The call to bind(UserRenderer) incorporates it in the user registry, and it is
made available to Ratpack’s rendering infrastructure.

When the call to context.render(User) is made Ratpack will make user of the
UserRenderer to materialize the response for the caller.

Modular Object Rendering in Ratpack | 125

Ratpack’s rendering infrastructure serves as an excellent means by which the logic for
producing structured model data to consumers can be decoupled from the request
handling logic. Following this paradigm allows the requirements for how consumers
use your application to evolve independently of its models and request handling life‐
cycle.

Rendering with Content Type
Renderers play an important role in ensuring that the response’s content type is
appropriately set when sending data back to a client. Up until now, most of the dem‐
onstrations in this book have shown simply rendering a string value back to the cli‐
ent. This is a good strategy when prototyping to ensure that the flow and
configuration of your application is working as you would expect. It does not work
well, however, when you intend to get your application in front of consumers that
require the data that your service provides to come with an associated content type.

There are two ways to ensure that your response’s content type is properly set. The
first, and perhaps most common way, is to explicitly set the content type before your
handler sends the response. This can be accomplished succinctly, as demonstrated by
the handler code snippet in Example 5-21.

Example 5-21. Explicitly setting contentType in handler

get {
 response.contentType("application/json")
 response.send(toJson(new User(username: "dan", email: "danielpwoods@gmail.com")))
}

The call to response.contentType("application/json") ensures that the response
content type header is properly set, regardless of the type of data that you are sending.
Indeed, in all the handler examples we’ve looked at thus far, the code is simply send‐
ing back a string. Ratpack’s internal renderers will capture the fact that the handler is
sending back a string, and if no content type has been explicitly specified, then the
“text/plain” content type will be applied. The exception to this rule is when your han‐
dler logic employs the byContent mechanism, the response content type will be set to
that of the supplied “Accept” header (except when using the noMatch method, which
requires you to explicitly specify the content type).

When making use of a Renderer, your application can set the content type explicitly
from within the render method. This means that when your rendering logic must
account for many different response formats, your handler logic can remain concise
and isolated from the setting of content types and mechanisms by which your models
are serialized back to clients.

126 | Chapter 5: Ratpack Modules

Rendering JSON Data
It is indisputable that JSON has become the de facto serialization format for the Web.
Up until this point, the JSON examples in this book have utilized Groovy’s JsonOut
put#toJson method to serialize objects to JSON. As noted in Chapter 4, using the
toJson method within a call to render causes Ratpack to interpret the response as
“text/plain,” so additional steps are necessary to ensure that the response content type
is set appropriately. Additionally, the JsonOutput helper class does not provide flexi‐
bility and extensibility in how your JSON data is serialized back to clients.

To provide rich support for working with JSON, Ratpack provides a JSON renderer
implementation that utilizes Jackson for serializing your models. Jackson provides a
high level of flexibility for working with JSON data, including an extensive system of
modularity for ensuring that objects are serialized and deserialized according to your
data’s requirements. Jackson is a core dependent of Ratpack’s, and the JsonRenderer
implementation in Ratpack is provided out of the box to help facilitate working with
JSON data.

Rendering an object as JSON with Jackson is as simple as constructing a JsonRen
derer and supplying it to Ratpack’s rendering infrastructure. You can make use of the
json factory method on the ratpack.jackson.Jackson class to construct the Json
Renderer, and once created, you can supply it to the render method within your
handler. The code in Example 5-22 demonstrates this capability.

Example 5-22. Rendering JSON

import app.DefaultUserService
import app.MySqlUserDAO
import app.UserDAO
import app.UserService

import static ratpack.groovy.Groovy.ratpack
import static ratpack.jackson.Jackson.json

ratpack {
 bindings {
 bind(UserDAO, MySqlUserDAO)
 bind(UserService, DefaultUserService)
 }

 handlers {
 prefix("users") {
 get(":username") { UserService userService ->
 userService.getUser(pathTokens.username).then { user ->
 render(json(user))
 }
 }
 }

Modular Object Rendering in Ratpack | 127

http://wiki.fasterxml.com/JacksonHome

 }
}

When rendering the user as JSON, we can wrap the object in a Renderable type,
which is facilitated through the ratpack.jackson.Jackson.json static call.

The render call is now delegated to the JsonRenderer, which ensures that the
response content type is properly set and that the object is appropriately serialized to
JSON. Furthermore, your application can utilize Jackson’s structures—including its
annotations, serializers, and deserializers—for ensuring your data is properly serial‐
ized. In most cases, the code in Example 5-22 is sufficient for properly sending JSON
back to clients. Using the JsonRenderer means that the most common use cases of
responding with JSON data do not require you to build your own renderers.

It is important to note that although Jackson support is provided by default, it is in no
way an inextensible component. Indeed, like all components in Ratpack, the latest
registry binding will always win precedence. This means that if you have a scenario
where you need to provide a customized version of the ObjectMapper, then a specific
binding can be provided in place of the default one.

Special Rendering Scenarios
There are two special rendering scenarios in Ratpack where the framework will take
an opinionated approach to your handler’s response. The first special rendering situa‐
tion is when you attempt to render back a null object. In this case, Ratpack will set
the response status code to 404. If a null object in your application denotes anything
other than a “Not Found” status, then your handler logic will need to account for null
values.

The second scenario is when you attempt to render a Promise object. In this scenario,
Ratpack will fulfill the promise and pass the resulting data on to the rendering infra‐
structure for further processing. The code in Example 5-23 demonstrates this sce‐
nario by removing the call to then, as shown in the prior examples.

Example 5-23. Rendering a Promise

import app.*

import static ratpack.groovy.Groovy.ratpack

ratpack {
 bindings {
 bind(UserDAO, MySqlUserDAO)
 bind(UserService, DefaultUserService)
 bind(UserRenderer)
 }

128 | Chapter 5: Ratpack Modules

 handlers {
 prefix("users") {
 get(":username") { UserService userService ->
 render(userService.getUser(pathTokens.username))
 }
 }
 }
}

In this example, we pass a Promise<User> to the render method. Ratpack’s ren‐
dering infrastructure will fulfill this promise, and the resulting user object will be
handed off to the UserRenderer for final processing.

The ability to render Promise types directly provides a simplification for code that
fulfills a promise and hands the resulting object to the render command. This short‐
cut keeps your code concise and directed.

Chapter Summary
With the information provided in this chapter, you are prepared to develop applica‐
tions that make use of Ratpack’s more advanced capabilities of component binding,
modularity, and dependency injection. Additionally, you are now equipped to better
architect your code for proper service and component boundaries, as well as make
use of advanced configuration directives. The understanding provided up until this
point will prove critically useful for the conversation in subsequent chapters. Building
on the discussion that has taken place up until this point, the remaining chapters will
expose you to using Ratpack’s faculties for serving static assets, creating data-driven
applications, and building robust microservice architectures.

Chapter Summary | 129

CHAPTER 6

Serving Web Assets

Although much of the conversation and example code in this book thus far has
focused on building applications that send simple responses back to clients, Ratpack
also has an extensive and flexible infrastructure for serving and generating web con‐
tent. In addition to being able to serve static content from within a project, Ratpack
also supports the ability to generate dynamic content on a per-request basis. This
chapter will walk you through working with Ratpack’s content serving and generation
mechanisms to build full-featured web applications.

Web content, including static assets and templates, can be served from a directory
within the project, a JAR on the classpath, or from a directory on the filesystem. To
accommodate serving content, Ratpack’s ServerConfig must be supplied with a base
directory through the baseDir property. With a Ratpack Groovy project, the base
directory will be automatically discovered based on the location of the Ratpack.groovy
file (src/ratpack unless explicitly configured otherwise). For main class Ratpack appli‐
cations, the application base directory can also be automatically discovered by placing
a .ratpack marker file within your application’s project structure.

Serving Static Content
Before you begin serving static content from within your application, you should cre‐
ate a subdirectory within the base directory of your project from which static content
will be derived. The naming of this directory is arbitrary to its use, but it is advisable
to name it something like static to denote that the files contained within represent
nondynamic content. The directory tree in Example 6-1 shows a project structure for
a Ratpack Groovy application with an src/ratpack/static directory that contains the
application’s static HTML, JavaScript, and CSS files. Note again that the base directory
in this structure is automatically resolved to src/ratpack.

131

Example 6-1. Project structure with static resources

.
├── build.gradle
└── src
 └── ratpack
 ├── Ratpack.groovy
 └── static
 ├── css
 │ └── app.css
 ├── index.html
 └── js
 └── app.js

Ratpack main class applications can be similarly structured, but it is important to
note that these types of applications make no assumption as to the location of the
base directory. That is to say, when building the application definition, a ServerCon
fig object must be supplied, with the base directory properly specified. Consider the
directory tree shown in Example 6-2, which depicts a common configuration for
Java-based applications.

Example 6-2. Project structure with specified base directory

.
├── build.gradle
└── src
 └── main
 ├── java
 │ └── app
 │ └── Main.java
 └── resources
 ├── .ratpack
 └── static
 ├── css
 │ └── app.css
 ├── index.html
 └── js
 └── app.js

Within this project, the .ratpack marker file is placed directly within the src/main/
resources directory. The src/main/resources/static directory is where the static files will
be served for this application.

As you are already familiar with the handler chain in Ratpack, it should be under‐
stood that serving content comes by way of a built-in handler. By making use of the
files method on the Chain API, we can configure a handler to derive static content
from a directory relative to the base directory. Example 6-3 shows the usage of the
files method from the Groovy DSL.

132 | Chapter 6: Serving Web Assets

Example 6-3. The files method on the Chain API

import static ratpack.groovy.Groovy.ratpack

ratpack {
 handlers {
 files {
 dir("static").indexFiles("index.html")
 }
 }
}

The files call is made, which takes a closure to configure the handler. Within
that closure, the dir("static") call is made indicating that the handler should
serve assets from the src/ratpack/static directory. Finally, the call to .index
Files("index.html") is used to indicate that when serving a directory, the
index.html file should be served as the directory’s root path.

The same API exists for serving static content within a Java main class application.
You can see in Example 6-4 that the application’s ServerConfig object is configured
by way of the serverConfig call on the application definition. Within the handler
chain, the chain.files(..) call is made in the exact same way as the prior example.

Example 6-4. The files method on Java chain

package app;

import ratpack.server.BaseDir;
import ratpack.server.RatpackServer;

public class Main {

 public static void main(String[] args) throws Exception {
 RatpackServer.start(spec -> spec
 .serverConfig(c -> c.baseDir(BaseDir.find()).build())
 .handlers(chain -> chain
 .files(files -> files
 .dir("static").indexFiles("index.html")
)
)
);
 }
}

Here we use the BaseDir#find method to indicate that Ratpack should discover
the base directory by locating the marker file.

Serving Static Content | 133

If you run either of these applications and navigate to http://localhost:5050, your
browser will display a “Hello, World!” message from the index.html file from the proj‐
ect’s static directory.

Caveats to the FileHandler
The FileHandler that is added to the chain through the files method is a terminal
handler, which means that it will take the responsibility of resolving a requested static
resource and sending it back to the client. In the case where a static resource is
requested, but it cannot be found within the dir(..) supplied to the FileHandler
Spec, the handler will respond to the client with a 404 HTTP status code.

Given its terminal nature, any use of the files method on the handler chain must be
placed at the end of the chain to allow calls that are not destined for a static asset to be
eligible for processing. This rule applies to subchains as well, but if you wish to serve
all of your static assets out of a particular route—say, /static—then it is sufficient to
make the call to files within a subchain provided to the prefix handler.

To depict these caveats of the FileHandler better, consider the code in Example 6-5.
As demonstrated, in order for requests to /api to succeed, the files handler must be
specified after the prefix("api") call.

Example 6-5. Files and routes

ratpack {
 handlers {
 prefix("api") {
 // ... API routes snipped ...
 }
 files {
 dir("static").indexFiles("index.html")
 }
 }
}

It is generally considered best practice for the files handler to be placed at the end of
the chain. This ensures that any potential handling overlap does not accidentally get
served by static content when you really intended your nonstatic content handler to
respond to the request. Example 6-6 demonstrates an alternative scenario where
files can be included elsewhere.

Example 6-6. Static files prefixed

ratpack {
 handlers {
 prefix("static") {

134 | Chapter 6: Serving Web Assets

 files {
 dir("static").indexFiles("index.html")
 }
 }
 prefix("api") {
 // ... API routes snipped ...
 }
 }
}

It is important to remember when following this best practice that handlers may cre‐
ate a subchain, so adding a files handler at the end of the subchain of a prefix han‐
dler would continue to serve best practices.

Using FileSystemBinding to Customize Asset Resolution
The moment your application is started, Ratpack builds a FileSystemBinding object
that is used to represent resources, including static content, within your application.
The FileSystemBinding acts as the interface to all files within your project, and pro‐
vides you with a convenient mechanism to work with project-level resources directly
from within a handler’s logic.

If you have the need to access a project-level file from within a handler, the provided
Context object supplies a shortcut method for doing so. With a call to Context#file,
you can get access to any file relative to the current filesystem binding. The emphasis in
the last sentence will be explained in depth momentarily, but it is enough to say that
the filesystem binding for a particular request can be modified according to the
attributes of the request.

Consider the Groovy project structure depicted in Example 6-7, and envision a sce‐
nario where you have a handler that needs to make a decision about whether to serve
the file html/foo.html or html/bar.html.

Example 6-7. Project structure with HTML resources

.
├── build.gradle
└── src
 └── ratpack
 ├── html
 │ ├── bar.html
 │ ├── error.html
 │ └── foo.html
 └── Ratpack.groovy

3 directories, 5 files

Serving Static Content | 135

For the sake of demonstration, let’s make it easy and say that the discriminating factor
for determining what file to serve is a request query parameter, file=<file>. Given
that requirement, we can craft a handler that inspects the query parameter and uses
the Context#file method to read the file and serve it directly back to the client. If the
request fails the requirement, then we can serve back the html/error.html file. The
code in Example 6-8 shows the ratpack.groovy file with the corresponding handler
logic.

Example 6-8. The Ratpack.groovy file

ratpack {
 handlers {
 all {
 def fileParam = request.queryParams.file

 if (fileParam == "foo" || fileParam == "bar") {
 render(file("/html/${fileParam}.html"))
 } else {
 response.status(404)
 render(file("/html/error.html"))
 }
 }
 }
}

We start by capturing the ?file=<file> query param.

Here, we check to make sure the captured parameter is foo or bar. If it is, then
we use the file method to render back the correspondingly named HTML file.

Otherwise, we set the status to 404 and render back the error.html file.

As noted earlier, the FileSystemBinding can be used to access any resource relative
to the current filesystem binding. Within this example, the handler chain has made no
adjustment to the filesystem binding, so files will be resolved relative to the default
filesystem binding, which is the base directory. In this case, that resolves to src/ratpack.

Expanding on the prior example, we can make use of fileSystem method on the
handler chain API to directly specify the filesystem binding from which files should
be resolved. This can aid greatly in reusability of handler code for different file resolu‐
tion requirements. To demonstrate this capability, let’s start by extracting the handler
logic into its own class, as shown in Example 6-9.

136 | Chapter 6: Serving Web Assets

Example 6-9. File rendering—standalone handler

package app

import ratpack.handling.Context
import ratpack.handling.Handler

class FooBarFileHandler implements Handler {

 @Override
 void handle(Context ctx) {
 // capture the "?file=<file>" query param
 def fileParam = ctx.request.queryParams.file

 // check to make sure it was either "foo" or "bar"
 if (fileParam == "foo" || fileParam == "bar") {
 // if so, then use the Context.file(..) call to read the requested resource
 ctx.render(ctx.file("/html/${fileParam}.html"))
 } else {
 // if not, then set the status to 404 and render back the error page
 ctx.response.status(404)
 ctx.render(ctx.file("/html/error.html"))
 }
 }
}

Next, let’s envision that the requirements are a bit different than before, and now we
need to serve a different foo.html, bar.html, and error.html according to what client site
the user is visiting. That is to say, based off of whether the request is coming in to
www.client1.com or www.client2.com, we should resolve the HTML files from the rel‐
ative directories of client1 and client2 accordingly. The tree shown in Example 6-10
depicts the project structure for this example.

Example 6-10. Client-specific resources tree

.
├── build.gradle
└── src
 ├── main
 │ └── groovy
 │ └── app
 │ └── FooBarFileHandler.groovy
 └── ratpack
 ├── Ratpack.groovy
 ├── client1
 │ └── html
 │ ├── bar.html
 │ ├── error.html
 │ └── foo.html
 └── client2

Serving Static Content | 137

 └── html
 ├── bar.html
 ├── error.html
 └── foo.html

9 directories, 9 files

Given the project structure with client-specific resources, and our FooBarFileHan
dler extracted, we can update the handler chain to make use of the fileSystem chain
method, which will scope the FooBarFileHandler according to what site the request
is accessing. The ratpack.groovy script in Example 6-11 shows the updated chain.

Example 6-11. Handler chain with fileSystem

ratpack {
 bindings {
 bind FooBarFileHandler
 }
 handlers {
 host("www.client1.com") {
 fileSystem("client1") {
 all(FooBarFileHandler)
 }
 }
 host("www.client2.com") {
 fileSystem("client2") {
 all(FooBarFileHandler)
 }
 }
 }
}

Use the host(..) handler to create a subchain when the Host header matches
www.client1.com.

Change the fileSystem binding to client1.

Same as the previous host handler, but for www.client2.com.

Same as the previous fileSystem call, but for client2.

In each of the subchains created within the host handler, the fileSystem call is
employed to change the relative filesystem binding. When the FooBarFileHandler
uses the ctx.file("/html/${fileParam}.html") call to resolve the appropriate
HTML file, it will therefore be resolving that file within the appropriate project sub‐
directory.

138 | Chapter 6: Serving Web Assets

Use of the fileSystem method on the handler chain API can serve
as a powerful mechanism when supporting a multitenant environ‐
ment that has different static content according to what site is being
accessed. The use of the FileSystemBinding and Context#file
method, however, are not specifically designed for multitenancy,
and indeed can be used wherever it is necessary to access project-
level resources. All of Ratpack’s provided Renderer and Handler
implementations, for example, make use of the FileSystemBinding
or Context#file method to resolve configurations, templates, or
other static assets within the project.

Serving Dynamic Content
Any web application of reasonable complexity that serves HTML content will likely
need the ability to dynamically generate views according to the attributes of a particu‐
lar request. This can be accomplished in a number of ways, given that Ratpack has
robust integration with multiple dynamic templating engines, including Handle‐
bars.js, Thymeleaf, Groovy Markup Templates, and Groovy Text Templates.

Support for Groovy Markup and Text Templates comes for free in Groovy-based Rat‐
pack projects. Handlebars.js and Thymeleaf support is optionally included through
the ratpack-handlebars and ratpack-thymeleaf modules accordingly. As demon‐
strated earlier in the book, if your project is built with Gradle, you can incorporate
these modules by utilizing the ratpack.dependency(..) mechanism of the Ratpack
Gradle plugin. The code in Example 6-12 shows the dependencies block of a Gradle
build script with Handlebars.js and Thymeleaf support.

Example 6-12. Gradle build script with Handlebars.js and Thymeleaf

dependencies {
 compile ratpack.dependency("handlebars")
 compile ratpack.dependency("thymeleaf")
}

Each of the available templating engines offers the ability to resolve a template from
within your project and provide it with a view model that will be used to hydrate the
dynamic content. No matter what templating strategies you choose to employ within
your project, it should be understood that the support for dynamically rendering
templates comes from an integration with Ratpack’s rendering infrastructure. That is
to say, each of the template engines provides a static method to build a renderable
object, which can then be passed to the render method within your handler.

To understand template rendering better, consider the project structure in
Example 6-13, which shows a typical Groovy Ratpack application.

Serving Dynamic Content | 139

http://handlebarsjs.com/
http://handlebarsjs.com/
http://www.thymeleaf.org/
http://bit.ly/groovy-mut
http://bit.ly/groovy-tt

Example 6-13. Project structure with Groovy template

.
├── build.gradle
└── src
 └── ratpack
 ├── Ratpack.groovy
 └── templates
 └── welcome.html

3 directories, 3 files

Note that this time the project structure includes the src/ratpack/templates/
welcome.html file. We will use this file to dynamically render HTML content from a
view model as a Groovy text template. The template code in Example 6-14 demon‐
strates how we can use Groovy Strings (GStrings) to substitute variable content in-
line. (Note that all variable properties stem from the model variable.)

Example 6-14. Groovy text template (welcome.html)

<!DOCTYPE html>
<html>
<head>
<title>${model.title}</title>
</head>
<body>
${model.welcomeMessage}
<footer>
${model.footerMessage}
</footer>
</body>
</html>

Derive the title attribute from the view model.

Insert the welcomeMessage variable into the body.

Fill the footer with the footerMessage.

This template can be rendered as shown in Example 6-15.

Example 6-15. Rendering welcome.html

import ratpack.groovy.template.TextTemplateModule

import static ratpack.groovy.Groovy.groovyTemplate
import static ratpack.groovy.Groovy.ratpack

ratpack {

140 | Chapter 6: Serving Web Assets

 bindings {
 module(TextTemplateModule)
 }
 handlers {
 get {
 render(groovyTemplate(
 [title: "Hello, Ratpack!",
 welcomeMessage: "Welcome to Learning Ratpack!",
 footerMessage: "Ratpack is Great!"], "welcome.html"))
 }
 }
}

Running this application and opening a browser to http://localhost:5050 will produce
the HTML shown in Example 6-16.

Example 6-16. Rendered welcome.html

<!DOCTYPE html>
<html>
<head>
<title>Hello, Ratpack!</title>
</head>
<body>
Welcome to Learning Ratpack!
<footer>
Ratpack is Great!
</footer>
</body>
</html>

Groovy text templates have additional templating support, such as iterations and con‐
ditionals, that can satisfy relatively simplistic dynamic content needs. As your project
requirements grow, however, you may find more robust templating support in the
integrations offered with Handlebars.js and Thymeleaf.

Handlebars.js Support
As noted earlier, support for rendering Handlebars.js templates is provided as an
optional module. As such, once the dependency is made available to your project, you
will need to incorporate the HandlebarsModule into your application. The application
shown in Example 6-17 demonstrates this.

Example 6-17. A ratpack.groovy file with HandlebarsModule

import ratpack.handlebars.HandlebarsModule

import static ratpack.groovy.Groovy.ratpack
import static ratpack.handlebars.Template.handlebarsTemplate

Serving Dynamic Content | 141

ratpack {
 bindings {
 module HandlebarsModule
 }
 handlers {
 get {
 render(handlebarsTemplate("welcome", [
 title: "Hello, Ratpack!",
 welcomeMessage: "Welcome to Learning Ratpack!",
 footerMessage: "Ratpack is Great!"], "text/html"))
 }
 }
}

Handlebars templates will by default be resolved from $baseDir/handlebars, but this
can be overridden by configuring the HandlebarsModule in the bindings block, as
shown in Example 6-18.

Example 6-18. Configuring the HandlebarsModule

ratpack {
 bindings {
 module(HandlebarsModule) {
 templatesPath "otherTemplatePath"
 }
 }
 handlers {
 // ... snipped ...
 }
}

This path will be resolved relative to the base directory.

For the sake of simplicity, let’s leave the templatesPath alone, and work from the
default template directory. Now, we can imagine building on a project structure like
the one shown in Example 6-19.

Example 6-19. Project structure with Handlebars template

.
├── build.gradle
└── src
 └── ratpack
 ├── handlebars
 │ └── welcome.hbs
 └── Ratpack.groovy

3 directories, 3 files

142 | Chapter 6: Serving Web Assets

The welcome.hbs file can be constructed using Handlebars.js template expressions, as
shown in Example 6-20.

Example 6-20. The welcome.hbs file

<!DOCTYPE html>
<html>
<head>
<title>Learning Ratpack</title>
</head>
<body>

<footer>

</footer>
</body>
</html>

This expression inserts the title variable from the handler’s render call into the
view.

The body of the HTML page will be filled with the welcomeMessage we supplied.

The footer will include the footerMessage key that we provided.

Ratpack’s Handlebars.js integration provides an excellent foundation for web applica‐
tions that need rich dynamic content capabilities. Even more than that, however, it
can also provide a footprint for single-page applications (SPAs) that desire an isomor‐
phic view layer. That is to say, web applications that provide some mixture of client-
side and server-side rendering can make use of the same Handlebars.js templates.

Thymeleaf Support
Thymeleaf is a templating engine for the JVM that provides you with the ability to
concisely craft markup using taglib-like notation within your view layer. In that
respect, its functionality parallels that of JavaServer Pages (JSP), so it can be thought
of as a comfortable adoption for those Java developers accustomed to developing JSP
views.

As noted earlier, like the Handlebars.js support, Thymeleaf templating support is
incorpoarted into your project as an optional dependency. Once the dependency is
included in your project, you will need to incorporate the ThymeleafModule into your
application. The application in Example 6-21 demonstrates incorporating Thymeleaf
and a simple handler for rendering a welcome.html template.

Serving Dynamic Content | 143

Example 6-21. ratpack.groovy with ThymeleafModule

import ratpack.thymeleaf.ThymeleafModule

import static ratpack.groovy.Groovy.ratpack
import static ratpack.thymeleaf.Template.thymeleafTemplate

ratpack {
 bindings {
 module ThymeleafModule
 }
 handlers {
 get {
 render(thymeleafTemplate([
 title: "Hello, Ratpack!",
 welcomeMessage: "Welcome to Learning Ratpack!",
 footerMessage: "Ratpack is Great!"], "welcome"))
 }
 }
}

By default, Thymeleaf templates will be resolved from the $baseDir/thymeleaf direc‐
tory within your project. Like the HandlebarsModule, the ThymeleafModule can be
customized for a different template directory. The updated bindings code is shown
in Example 6-22.

Example 6-22. Configuring the ThymeleafModule

ratpack {
 bindings {
 module(ThymeleafModule) {
 // Given this directive, Thymeleaf templates will
 // be resolved from $baseDir/otherTemplatesPath
 templatesPrefix "otherTemplatesPath"
 }
 }
 handlers {
 // ... snipped ...
 }
}

If we leave the templatesPrefix configuration directive as its default, then we will be
working with a project structure like the one shown in Example 6-23.

Example 6-23. Project structure with Thymeleaf templates

.
├── build.gradle
└── src
 └── ratpack

144 | Chapter 6: Serving Web Assets

 ├── Ratpack.groovy
 └── thymeleaf
 └── welcome.html

3 directories, 3 files

The welcome.html file can then be constructed using the Thymeleaf notation, as
shown in Example 6-24.

Example 6-24. Thymeleaf welcome.html

<!DOCTYPE html>
<html>
<head>
<title th:text="${title}" />
</head>
<body th:text="${welcomeMessage}">
<footer th:text="${footerMessage}" />
</body>
</html>

In Thymeleaf, the th:text key is what is used to fill content into the element. As you
can see from the example, the values to these expressions are able to be filled using
the ${..} notation, similar to Groovy text templates.

Thymeleaf templates have robust support for building views, including support for
iterations, expressions, and internationalization. If you are considering Thymeleaf as
the templating engine for your dynamic content, it is worth reviewing the project’s
documentation to see all the features it offers.

Groovy Markup Templates
When building a Groovy Ratpack project, in addition to Groovy text templates, you
can elect to build dynamic content using the Groovy MarkupTemplateEngine, which
provides a Groovy DSL for building markup. No additional project dependency is
required to make use of MarkupTemplate types, however you must be sure to include
the MarkupTemplateModule in your bindings block.

Like Groovy text templates, Groovy markup templates will be resolved from the
$baseDir/templates directory. The syntax for rendering a Groovy markup template is
similar to that of text templates, as is shown in Example 6-25.

Example 6-25. ratpack.groovy with MarkupTemplate

import ratpack.groovy.template.MarkupTemplateModule

import static ratpack.groovy.Groovy.ratpack
import static ratpack.groovy.Groovy.groovyMarkupTemplate

Serving Dynamic Content | 145

http://bit.ly/using-thyme

ratpack {
 bindings {
 module(MarkupTemplateModule)
 }
 handlers {
 get {
 render(groovyMarkupTemplate([
 title: "Hello, Ratpack!",
 welcomeMessage: "Welcome to Learning Ratpack!",
 footerMessage: "Ratpack is Great!"], "welcome.gtpl"))
 }
 }
}

Given this application code, the corresponding project structure will look similar to
the one depicted in Example 6-26.

Example 6-26. Project structure with MarkupTemplate

.
├── build.gradle
└── src
 └── ratpack
 ├── Ratpack.groovy
 └── templates
 └── welcome.gtpl

3 directories, 3 files

The welcome.gtpl file can be crafted using the MarkupTemplateEngine’s Groovy DSL.
As such, to dynamically render the simple HTML page shown before, the contents of
the template would look like that shown in Example 6-27.

Example 6-27. The welcome.gtpl file

html {
 head {
 title(title)
 }
 body {
 yield welcomeMessage
 footer {
 yield footerMessage
 }
 }
}

The MarkupTemplateEngine provides robust support for programmatic construction
of content material using regular Groovy syntax. Additionally, it provides the ability

146 | Chapter 6: Serving Web Assets

to include and render other templates, so you can build complex layouts using modu‐
lar view components. If you are interested in building your dynamic content with the
MarkupTemplateEngine, it is highly recommended that you review the documenta‐
tion.

Conditionally Serving Content
Ratpack’s handler chain makes it easy to conditionally serve content according to the
attributes of a request. Scenarios where you may find this beneficial are those where
you need to, for example, elect to serve a resource endpoint according to the security
authorization of the requesting user. Another scenario may be where you want to
serve different static assets according to the User-Agent header of an incoming
request. For example, your project may have different static asset sets that are best
suited to be served to Internet Explorer versus Firefox, or Chome and Safari. In real‐
ity, the programmatic flow of the handler chain can be leveraged in a wide variety of
circumstances to choose what assets or endpoints are made available to clients.

Conditionally Scoping Resources
Consider the scenario where your application wants to make decisions as to what
endpoints and resources are available to the currently logged-in user. In this case, a
user named “admin” may need access to privileged resources that we would otherwise
not want to make available to regular users. To start with demonstrating this example,
we will need to include the framework’s optional support for HTTP sessions. To
accomplish this, we must incorporate the ratpack-session module into our project.
The snippet in Example 6-28 shows a Gradle build script’s dependencies block with
the session support added.

Example 6-28. Gradle build script with ratpack-session

dependencies {
 compile ratpack.dependency("session")
}

With the session support added, we can build a /login endpoint that validates a user
against a hardcoded username and password combination (proper application secu‐
rity will be covered in detail later in the book). The code in Example 6-29 demon‐
strates the simple login handler and stores the user in the current session.

Example 6-29. Admin login handler

import ratpack.session.SessionModule
import ratpack.session.Session
import ratpack.form.Form

Conditionally Serving Content | 147

http://bit.ly/groovy-mut
http://bit.ly/groovy-mut

import ratpack.registry.Registry

import static ratpack.groovy.Groovy.ratpack

class User {
 String username

 boolean isAdmin() {
 return username == "admin"
 }
}

ratpack {
 bindings {
 module SessionModule
 }
 handlers {
 post("login") { Session session ->
 parse(Form).flatMap { form ->
 session.getData().map { sessionData ->
 if (form.username == "admin" && form.password == "password") {
 sessionData.set("username", "admin")
 } else {
 sessionData.set("username", "anonymous")
 }
 }
 }.then {
 redirect "/"
 }
 }
 }
}

Build a POST handler to the /login endpoint and access the Session object
from the registry.

Parse the URL-encoded form variables.

Access the Session’s data (the getData() call returns a Promise, because it may
involve a blocking operation).

Check if the user is an admin, and if so set the appropriate value of the username
session key.

If the user is not an admin, set the username session key to anonymous.

Once the work is done on the session, redirect to /.

148 | Chapter 6: Serving Web Assets

The example does not do much at this point, and indeed is incomplete in the flow
(the call to redirect / will not match any handler in the chain). But given that we now
have access to the username value in the session, we can do some work lower in the
chain to discriminate on who the user is and to what resources they should have
access. Building on this further, the handler chain snippet in Example 6-30 shows the
downstream handlers that interpret the session data and make conditional routing
decisions based on whether the user is an admin or not.

Example 6-30. Handler chain with conditional resources

class User {
 String username

 boolean isAdmin() {
 return username == "admin"
 }
}

ratpack {
 bindings {
 module SessionModule
 }
 handlers {
 post("login") { Session session ->
 parse(Form).flatMap { form ->
 session.getData().map { sessionData ->
 if (form.username == "admin" && form.password == "password") {
 sessionData.set("username", "admin")
 } else {
 sessionData.set("username", "anonymous")
 }
 sessionData
 }
 }.then { sessionData ->
 redirect "/"
 }
 }
 all { Session session ->
 session.getData().then { sessionData ->
 def usernameOption = sessionData.get("username")
 def user = new User(username: usernameOption.present ?
 usernameOption.get() :
 "guest"
)
 next(Registry.single(User, user))
 }
 }
 when {
 def user = get(User)
 user.isAdmin()

Conditionally Serving Content | 149

 } {
 prefix("adminApi") {
 // ... API handlers for admin user ...
 }
 files {
 dir("admin").indexFiles("index.html")
 }
 }
 when {
 def user = get(User)
 !user.isAdmin()
 } {
 files {
 dir("user").indexFiles("index.html")
 }
 }
 }
}

Attach an all handler in the chain to process the sessionData.

Apply the username field to a domain object that has some logic for informing if
the user is an admin or not. Note that SessionData#get returns an Optional
type, so here we also check if there is a value, and if not, we set the username to
guest.

Place the User object into the registry and delegate down the chain.

Here, we use the when request flow handler to route to a new subchain if the user
is an admin.

In this subchain, we can define privileged resources for the admin user.

We can also choose to serve static assets from a specific directory.

If the user is not an admin, then we will delegate to this subchain.

In the nonadmin subchain, we can choose an entirely different set of static
resources that we will use.

To emphasize a point, this is a contrived example to demonstrate conditionally serv‐
ing resources and assets according to some attribute of the request. This should not
be considered a good example of how to secure your Ratpack applications. Chap‐
ter 12 will comprehensively cover Ratpack’s support for authentication, authorization,
and general security architecture.

150 | Chapter 6: Serving Web Assets

This example can, however, be applied to a variety of use cases that involve intro‐
specting the request as it flows through the chain, and making downstream decisions
about what endpoints and assets are available to a request. The ability for the handler
chain to make programmatic decisions about the flow of a request to the various end‐
points opens a lot of opportunities for applications that are security centric or wish to
have specific bindings for different client types.

Conditionally Serving Assets Based on Request Attributes
Obscuring resources for the sake of security is not the only use case where you would
want to make a programmatic decision about what assets are served and when. As
noted at the beginning of the section, you may find it valuable to bundle your static
assets according to the capabilities of a client’s browser. For example, consider a sce‐
nario where you may wish to have your view assets modularized and served depend‐
ing on what User-Agent header is supplied as part of the request.

Given the demonstration in the prior subsection, it should be quite easy to recognize
how to accomplish this using the when handler. For each of the User-Agents that we
wish to support, we can define a condition in the predicate block of the when handler
to ensure routing to the appropriate asset bundles. The handler chain in
Example 6-31 is a depiction of this example.

Example 6-31. Handler chain with User-Agent asset routing

handlers {
 // ... application handlers go first ...

 when {
 request.headers.'user-agent' ==~ /.*MSIE.*/
 } {
 files {
 dir("msie").indexFiles("index.htm")
 }
 }

 when {
 request.headers.'user-agent' ==~ /.*Chrome\\/[.0-9]* Mobile.*/
 } {
 files {
 dir("mobile/chrome").indexFiles("index.html")
 }
 }

 files {
 dir("default").indexFiles("index.html")
 }
}

Conditionally Serving Content | 151

Using the when handler, the predicate can perform a regular expression match
against the contents of the User-Agent.

If the User-Agent matches, in this case MSIE, then we elect to serve static content
from the $baseDir/msie directory.

The handler is used again, but this time to perform a regular expression match
on a Chrome Mobile User-Agent.

If none of the conditions matched, then we will serve static assets from the
default directory.

With the inspect-and-route strategy for conditionally serving static assets, we can
build robust backend and frontend applications that are designed to give the user the
best experience possible.

Sending Files from Handlers
There may be scenarios where you find that you want to send a file that exists within
your project’s base directory, without it necessarily being served through the files
method. A perfect example of this is demonstrated in “Customizing 404 Behavior” on
page 153, where in the case of a 404 response you want to explicitly send a 404.html
page back to the client. Within this section, we will cover the use of Context#file to
statically serve project resources.

As you already know, every handler is given access to the Context object, which
serves as the interface for working with the request’s lifecycle. In addition to that, the
Context also provides you with a shortcut to the FileSystemBinding interface so that
you can succinctly work with your project-level resources.

Similar to the files handler chain method, the Context#file method allows you to
resolve assets relative to the current filesystem binding. The application shown in
Example 6-32 demonstrates using the Context#file method to respond to a request
with a file from within the project.

Example 6-32. Sending a file from a handler

ratpack {
 handlers {
 get {
 render file("static/welcome.html")
 }
 }
}

152 | Chapter 6: Serving Web Assets

It is really as simple as that. With the project structure shown in Example 6-33, the
application will render the src/ratpack/static/welcome.html back to a caller.

Example 6-33. Project structure with welcome.html

.
├── build.gradle
└── src
 └── ratpack
 ├── Ratpack.groovy
 └── static
 └── welcome.html

3 directories, 3 files

Note that files can be sent as a response to requests using the render method on the
Context object. The rendering infrastructure will inspect the file and set the appro‐
priate content-type header on the response. Given that, any type of file is able to be
served using the Context#file method in a handler, not just HTML resources. This
gives your application a great deal of flexibility in understanding a request’s proper‐
ties to make a decision about what static content should be sent back.

Customizing 404 Behavior
Ratpack ships with default implementations of the ratpack.error.ClientErrorHan
dler class for both development and production runtimes. You can provide your own
implementation of this interface and add it to the server or context registry to cus‐
tomize the behavior when 404 responses are sent. You may wish to simply render a
custom error page (the default development ClientErrorHandler renders a Ratpack-
branded HTML response) or you may desire more robust handling logic that takes
into account content and media types.

Consider a concise example of a basic Groovy Ratpack application, which has a single
handler bound to the default route and serves a welcome.html page for visitors. The
application in Example 6-34 shows this basic setup, but note that the bindings block
now incorporates a CustomErrorHandler into the application.

Example 6-34. Simple ratpack.groovy with CustomErrorHandler

import app.CustomErrorHandler
import ratpack.error.ClientErrorHandler
import static ratpack.groovy.Groovy.ratpack

ratpack {
 bindings {
 // Binds the ClientErrorHandler interface to the

Customizing 404 Behavior | 153

 // project's CustomErrorHandler implementation.
 bindInstance(ClientErrorHandler, new CustomErrorHandler())
 }
 handlers {
 get {
 render(file("static/welcome.html"))
 }
 }
}

The CustomErrorHandler will be responsible for serving our project’s specialized
404.html page. The implementation for this is shown in Example 6-35.

Example 6-35. CustomErrorHandler implementation

package app

import ratpack.error.ClientErrorHandler
import ratpack.handling.Context

class CustomErrorHandler implements ClientErrorHandler {
 @Override
 void error(Context ctx, int statusCode) throws Exception {
 ctx.render(ctx.file("static/404.html"))
 }
}

As you can see from the example, the ClientErrorHandler interface is not terribly
dissimilar from an ordinary Handler, and we get access to the Context object to han‐
dle the request appropriately. The project structure for this demonstration is provided
in Example 6-36.

Example 6-36. Project structure with custom 404 logic

.
├── build.gradle
└── src
 ├── main
 │ └── groovy
 │ └── app
 │ └── CustomErrorHandler.groovy
 └── ratpack
 ├── Ratpack.groovy
 └── static
 ├── 404.html
 └── welcome.html

6 directories, 5 files

154 | Chapter 6: Serving Web Assets

If you start this application and open a browser to http://localhost:5050, you will be
immediately presented with the contents of the static/welcome.html. If you then navi‐
gate to http://localhost:5050/foo, you can see the CustomErrorHandler is invoked, and
the project’s static/404.html page is rendered instead.

Cache Control
It is important to allow static assets that do not change to be cached on the client side.
Subsequent page loads will then be free to use assets from the browser’s cache, thus
speeding page loads and reducing network traffic. To understand the application of
the cache headers a little better, examine the application shown in Example 6-37.

Example 6-37. Application with cache headers

import static ratpack.groovy.Groovy.ratpack

ratpack {
 handlers {
 // ... Application handlers go first ...

 all {
 int cacheTime = 60 * 60 * 24 * 365 // one year
 response.headers.add("Cache-Control", "max-age=$cacheTime, public")
 next()
 }
 files {
 dir("static").indexFiles("index.html")
 }
 }
}

Add an all type handler into the chain to be invoked with every request that
makes it through to the files handler.

The files handler, as always, will come last in the chain.

With the cache headers set, any request to serve static content from the application
will have the appropriate Cache-Control header applied. In this example, we set the
cache time to one year, so future requests for the same static content will not incur
any network traffic (provided the browser has them stored).

For demonstration’s sake, we can say that the project structure for this application is
like the one shown in Example 6-38.

Cache Control | 155

Example 6-38. Cache-Control project structure

.
├── build.gradle
└── src
 └── ratpack
 ├── Ratpack.groovy
 └── static
 ├── img
 │ └── ratpack.png
 └── index.html

4 directories, 4 files

The index.html file can be simple enough to demonstrate the browser cache, and may
look like that shown in Example 6-39.

Example 6-39. The index.html file

<!DOCTYPE html>
<html>
<head>
 <title>Welcome!</title>
</head>
<body>
Welcome to the application!

</body>
</html>

If you start this application and open a web browser to http://localhost:5050, you will
see the index.html welcome page and the ratpack.png image. Opening your browser’s
development tools and refreshing the page, you will see that the refresh did not need
to again request the index.html or the ratpack.png, because the server has responded
with the Cache-Control headers.

Note that your browser’s configuration may disable cache on localhost pages. If this
is the case, then you will need to explicitly unset the “Disable Cache” option, as the
lack of a check in the box demonstrates in Figure 6-1.

156 | Chapter 6: Serving Web Assets

http://bit.ly/ratpack-pic

Figure 6-1. Chrome Dev Tools showing cached response

Asset Pipeline
The Asset Pipeline is a third-party module for Gradle and Ratpack that provides the
ability to precompile, digest, and serve assets from within your Ratpack applications.
For any application that has requirements for generating and serving static content, it
should be considered a best practice to incorporate the Asset Pipeline into your
project.

The Asset Pipeline Gradle plugin gives your application the ability to pre-process
static content from higher-level formats. Example 6-40 demonstrates incorporating it
into your Ratpack project. In the case of CSS resources, the Asset Pipeline is capable
of compiling assets built with SASS, SCSS, or LESS into CSS files. Similarly, JavaScript
resources that are built with CoffeeScript and Handlebars are able to be compiled and
used as regular JS files. The Asset Pipeline additionally provides URL replacement
within your static content to ensure that links are properly resolved when assets are
used. The Asset Pipeline gives you a high level of flexibility when developing content
for the Web.

Example 6-40. Gradle build script with Asset Pipeline dependencies

buildscript {
 ext {
 assetPipelineVer = "2.7.2"
 }
 repositories {
 jcenter()
 }
 dependencies {
 classpath 'io.ratpack:ratpack-gradle:1.3.3'
 classpath "com.bertramlabs.plugins:asset-pipeline-gradle:${assetPipelineVer}"
 }
}

apply plugin: 'io.ratpack.ratpack-groovy'
apply plugin: 'asset-pipeline'

repositories {

Asset Pipeline | 157

 jcenter()
}

dependencies {
 compile "com.bertramlabs.plugins:ratpack-asset-pipeline:${assetPipelineVer}"
}

The first part to incorporating asset compilation into your project’s build is to
add the asset-pipeline-gradle build script dependency shown here.

With this in place, here we apply the asset-pipeline plugin. This will give our
project all the tasks necessary to build our static assets.

Finally, we add the ratpack-asset-pipeline dependency to the project. This
provides the necessary module and components to add to our application.

Example 6-41 shows a simple application using Asset Pipeline.

Example 6-41. Asset Pipeline ratpack.groovy file

import asset.pipeline.ratpack.AssetPipelineModule

import static ratpack.groovy.Groovy.ratpack

ratpack {
 bindings {
 module(AssetPipelineModule) { c ->
 c.sourcePath "../../../src/assets"
 }
 }
 handlers {
 get {
 redirect("/assets/index.html")
 }
 }
}

With the necessary dependencies in place, we will add the AssetPipelineModule
to our project.

Note that we use the module’s configuration to specify where the source assets
exist.

This line demonstrates redirecting an incoming request of / to the project’s
index.html file.

The AssetPipelineModule applies the AssetPipelineHandler to your handler chain
for serving the compiled assets. By default, the asset handler chain adds an /assets

158 | Chapter 6: Serving Web Assets

endpoint to your application, but this can be configured as part of the module defini‐
tion in the bindings block. For example, the code in Example 6-42 demonstrates
overriding the url field on the configuration class to serve assets directly from the
root of the application.

Example 6-42. Configuring the AssetPipelineModule

import asset.pipeline.ratpack.AssetPipelineModule

import static ratpack.groovy.Groovy.ratpack

ratpack {
 bindings {
 module(AssetPipelineModule) {
 url "/"
 }
 }
 handlers {
 // ... Application handlers ...
 }
}

The Asset Pipeline Gradle plugin will, by default, look for assets in the src/assets
directory. Stylesheets will typically go in src/assets/stylesheets, JavaScript resources will
go in src/assets/javascripts, and HTML resources will go in src/assets/htmls. It is
important to note that the Asset Pipeline compiler will flatten this directory structure
and serve assets from those nested directory structures as top-level links. That is to
say, given the prior example where we overrode the url configuration to /, a Java‐
Script file homed at src/assets/javascripts/application.js will be accessible at the URI /
application.js. If your application requires additional structure, you can create subdir‐
ectories within each of the asset groups. For example, src/assets/javascripts/js/applica‐
tion.js will be served as /js/application.js.

It is also worth noting that development time asset compilation can be tricky depend‐
ing on how your project is compiled and run. If you are running your application
with gradle -t run, for example, then the assets for your development runtime will
exist in a location within the build/ tree of your project’s root. The DevelopmentAsse
tHandler looks for assets in the directory specified in the AssetPipelineModule con‐
fig class’s sourcePath variable, so you may need to tune that property according to
your development runtime. For example, the ratpack.groovy file shown in
Example 6-43 demonstrates overriding the sourcePath to look for assets higher up in
the runtime tree.

Asset Pipeline | 159

Example 6-43. Overriding AssetPipelineModule sourcePath

import asset.pipeline.ratpack.AssetPipelineModule

import static ratpack.groovy.Groovy.ratpack

ratpack {
 bindings {
 module(AssetPipelineModule) {
 url "/"
 sourcePath "../../../src/assets"
 }
 }
 handlers {
 // ... Application handlers ...
 }
}

For any real-world web application that consists of an extensive frontend, it is recom‐
mended to leverage the Asset Pipeline. Simply put, the flexibility and robustness it
offers to compile, minify, uglify, and digest assets are capabilities that your application
is going to want. Even if you do not use additional asset types, like SASS, LESS, or
CoffeeScript, the build-time digesting will allow your assets to be served properly
every time when you go to production.

Chapter Summary
This chapter has covered the wide range of features that Ratpack offers for building
applications that provide and utilize static content. Ratpack’s commitment to being a
feature-rich web application framework is demonstrated by its ability to generate
content dynamically, to serve assets from your project’s base directory, to make pro‐
grammatic decisions about what assets are served and when, to customize 404 behav‐
ior, and to integrate with powerful utilities like the Asset Pipeline. This chapter’s
coverage of working with static assets will set you on a path to developing rich,
content-first web applications.

160 | Chapter 6: Serving Web Assets

CHAPTER 7

Asynchronous Programming, Promises,
and Executions

Asynchronous frameworks for the JVM are plagued by the fact that Java has no
language-level support for continuations. This means that when asynchronous APIs
are employed, a callback handler (or “completion handler”) must be provided to the
receiver in order to return the data to the caller. This invoke-and-callback process
introduces a nondeterministic data flow, where concurrency must be carefully con‐
sidered when building and returning data. It also introduces nondeterminism to the
processing control flow, where it can be difficult, if not impossible, for the framework
to know whether an asynchronous operation is still processing.

Consider the code in Example 7-1, which outlines the contract for an asynchronous
service, and shows the associated user code.

Example 7-1. An asynchronous demonstration using a callback

public interface AsyncDatabaseService {
 void findByUsername(String username, Consumer<User> callback);
}

RatpackServer.start(spec -> spec
 .registry(...)
 .handlers(chain -> chain
 .get(":username", ctx -> {
 AsyncDatabaseService db = ctx.get(AsyncDatabaseService.class);
 String username = ctx.getPathTokens().get("username");
 db.findByUsername(username, user -> {
 ctx.render(user);
 });
 })

161

)
);

Let’s assume for the sake of conversation that the AsyncDatabaseService pro‐
vides the ability to look up a User from a database, based on the username. The
contract for this specifies that callers provide the username, and also the callback
function that will be invoked once the asynchronous call to the database has
completed.

Here, we gather the username argument from the handler’s pathTokens, and we
invoke the findByUsername call with the necessary arguments.

This is a simple enough example, and even looks somewhat similar to the Ratpack
code that you have already seen thus far. The trained eye may be able to recognize
that the response processing has been wrapped inside the Consumer, thereby taking
the control flow away from Ratpack. Because there is no way to know when the Con
sumer will be invoked, Ratpack is completely unaware if a request is still being pro‐
cessed, or if there was an error in the findByUsername processing that will cause the
callback to never be invoked. Without being able to manage control flow, the only
option is for the framework to wait for a period of time, and if no response is sent
out, then assume that the handler did not send one. This has practical problems in
both development and end-user experience, but luckily Ratpack has an answer to this
problem.

Before we get into the solution, let’s make the problem a little more realistic and add
some additional methods. It is not at all uncommon that the construction of a
domain object makes multiple database calls to gather all the data necessary. If we
consider again the AsyncDatabaseService, and suppose that we want to capture the
UserProfile for a given username, but the relational structure of the database
requires that we first capture the User object to get the profile’s reference, then we can
see how the processing becomes problematic.

Example 7-2 shows the modifications to the AsyncDatabaseService with the new
contract added.

Example 7-2. AsyncDatabaseService updates

public interface AsyncDatabaseService {
 void findByUsername(String username, Consumer<User> callback);
 void loadUserProfile(Long profileId, Consumer<UserProfile> callback);
}

If you are coming from a synchronous programming background or are not familiar
with the complexities of asynchronous data composition, your first logical approach
to the problem may be to simply capture the UserProfile in the outer scope and

162 | Chapter 7: Asynchronous Programming, Promises, and Executions

inline the calls to the database. Example 7-3 shows the handler code you might
choose to implement this approach. Those familiar with asynchronous programming
will likely see the problem here, which is that asynchronous calls return immediately,
with the contract that they will invoke the provided callback once they have the data.

Example 7-3. AsyncDatabaseService in handler

get(":username", ctx -> {
 AsyncDatabaseService db = ctx.get(AsyncDatabaseService.class);
 String username = ctx.getPathTokens().get("username");

 User user;
 db.findByUsername(username, u1 -> user = u1);
 db.loadUserProfile(user.getProfileId(), p1 -> {
 ctx.render(p1);
 });
})

The call here, although capturing the returned User object and assigning it to the
user variable in the outer scope, has no guarantee of fulfillment before the call to
loadUserProfile is made.

Because loadUserProfile depends on the user object being properly assigned,
we will likely see a NullPointerException here.

To those initiated with asynchronous programming, the problem of scoping and call‐
backs is well known. A “solution” to this problem may result in nesting the second
call within the Consumer of the first call. Although workable, this approach results in
nested code blocks that are difficult to maintain and harder to debug when problems
do arise. Example 7-4 depicts this strategy.

Example 7-4. Nested async calls

get(":username", ctx -> {
 AsyncDatabaseService db = ctx.get(AsyncDatabaseService.class);
 String username = ctx.getPathTokens().get("username");

 db.findByUsername(username, u1 -> {
 db.loadUserProfile(u1.getProfileId(), profile -> {
 ctx.render(profile);
 });
 });
})

In this demonstration, the call to get the User object is made here.

Asynchronous Programming, Promises, and Executions | 163

Upon its completion, the call to get the UserProfile is made.

Upon the loadUserProfile call’s completion, the call to render the profile is
made.

Although we can be sure that the data will be properly scoped when it is needed,
managing data flow through callback nesting presents a disjointed control flow. If you
envision following this practice for three, four, or five asynchronous calls, you can
begin to imagine how deep the nesting will go, making it difficult, if not impossible,
to trace the data flow. Those with JavaScript development experience are likely
already aware of the problems presented by asynchronous callbacks.

Promises: A Better Approach to Async Programming
As you have already been exposed to Ratpack Promises at this point, you can proba‐
bly see how the prior examples can be ameliorated by changing the contracts on the
AsyncDatabaseService to work with promises instead of callbacks. For complete‐
ness, let’s outline what those changes look like here. If we change the AsyncDataSer
vice, as depicted in Example 7-5, to return Promise objects for their respective
asynchronous calls, we can begin to see how the control flow is simplified.

Example 7-5. AsyncDatabaseService using promises

public interface AsyncDatabaseService {
 Promise<User> findByUsername(String username)
 Promise<UserProfile> loadUserProfile(Long profileId)
}

With the contract on the service changed, you can modify the corresponding handler
logic to instead stream the resulting data to processing functions, once it becomes
available, as shown in Example 7-6. The first benefit that becomes quickly obvious is
the code is clearer and easier to follow.

Example 7-6. Streaming data from promises

get(":username", ctx -> {
 AsyncDatabaseService db = ctx.get(AsyncDatabaseService.class);
 String username = ctx.getPathTokens().get("username");

 db.findByUsername(username).flatMap(user -> {
 return db.loadUserProfile(user.getProfileId());
 }).then(profile -> {
 ctx.render(profile);
 });
})

164 | Chapter 7: Asynchronous Programming, Promises, and Executions

The call to get the User object is made here, and once that data is available, it is
streamed to the provided function.

The resulting data from the findByUserName call is made available so that we can
use it to get the UserProfile. These calls use the flatMap operator on Promise to
transform the value of the stream by chaining the two promises.

Shown here, the subscription to that result is then yielded the resulting profile,
which can be rendered.

At first, this may not look better than the nested callback approach, but if you con‐
sider a more complex stream that makes three or four asynchronous calls, we can see
how much better the code reads when using Promise types. Example 7-7 shows what
many more asynchronous calls looks like using the callback strategy from before.

Example 7-7. Async composition with callbacks

get(":username", ctx -> {
 AsyncDatabaseService db = ctx.get(AsyncDatabaseService.class);
 String username = ctx.getPathTokens().get("username");

 db.findByUsername(username, u1 -> {
 db.loadUserProfile(u1.getProfileId(), profile -> {
 db.loadUserFriends(profile.getFriendIds(), friends -> {
 db.loadPhotosFromFriends(friends.getPhotoIds(), photos -> {
 ctx.render(photos);
 });
 });
 });
 });
})

As you can see, the depth of callbacks grows further, making the resulting handler
logic obscure. The same composition of asynchronous calls using Promise types can
be seen in Example 7-8.

Example 7-8. Async composition with promises

get(":username", ctx -> {
 AsyncDatabaseService db = ctx.get(AsyncDatabaseService.class);
 String username = ctx.getPathTokens().get("username");

 db.findByUsername(username).flatMap(user -> {
 return db.loadUserProfile(user.getProfileId());
 }).flatMap(profile -> {
 return db.loadUserFriends(profile.getFriendIds());
 }).flatMap(friends -> {
 return db.loadPhotosFromFriends(friends.getPhotoIds());

Promises: A Better Approach to Async Programming | 165

 }).then(photos -> {
 ctx.render(photos);
 });
})

The stream of executions is much more inlined now, making the code more readable
and easier to debug. However, Promise types in Ratpack are not just abstractions over
callbacks, as you may find with other frameworks. Indeed, they represent a process‐
ing construct that is much more aligned with the concept of a continuation. Each of
the points where an asynchronous call is made denotes a frame of the continuation.
During the invocation of each frame, the continuation is suspended until its opera‐
tion returns a value (thus fulfilling the promise). The serialization of the asynchro‐
nous calls gives your application a deterministic control flow, where you can rely on
the fact that the prior operation has completed before carrying on to the next.

Execution Model
Ratpack’s execution model is an implementation of a continuation, and the Promise
type is used to represent the distinct frames of the continuation. When a Promise
type is used, a processing stream is created from the asynchronous call and the corre‐
sponding user code, which is denoted by the subscription, or simply the function
supplied to the then(..) method. Each Promise and its corresponding subscription
in an execution comprise a stream of processing, and the execution ensures that
streams are processed in order.

The processing calls that make up a stream are placed into a stack, and that stack is
correspondingly popped to invoke the respective code frame in order. An execution,
as demonstrated by Example 7-8, is made up of many streams (each represented by a
Promise). The streams are serialized within an execution to provide the deterministic
asynchronous processing shown earlier. Example 7-9 shows the execution layout and
processing flow from that example.

Example 7-9. Execution breakdown

Execution
|
|____Stream
 |
 |__end-of-frame marker
 |
 |__.then(p1 -> container.photos = p1)
 |
 |__db.loadPhotosFromFriends(friends.getPhotoIds())
|__Stream
 |
 |__end-of-frame marker

166 | Chapter 7: Asynchronous Programming, Promises, and Executions

 |
 |__.then(f1 -> container.friends = f1)
 |
 |__db.loadUserFriends(profile.getFriendIds())
|__Stream
 |
 |__end-of-frame marker
 |
 |__.then(p1 -> container.profile = p1)
 |
 |__db.loadUserProfile(user.getProfileId())
|____Stream
 |
 |___end-of-frame marker
 |
 |___.then(u1 -> container.user = u1)
 |
 |__db.findByUsername(username)

In this tree, each element in a given stream is known as an execution segment. Streams
are processed in last in, first out (LIFO) order, so the stream’s end-of-frame marker is
always placed at the beginning of a stream to inform the execution when a stream has
reached completion. During processing, when an execution segment is “overrun” but
has not yet fulfilled its value, the execution knows that the stream is still processing.
When all streams are “drained,” the execution knows that the processing work is fin‐
ished.

By allowing Ratpack to manage control flow through its execution model, applica‐
tions get the benefit of its awareness of the processing that is being done. The most
poignant example of this awareness is Ratpack’s ability to ascertain whether a request
has sent a response or not. As noted earlier, in most asynchronous frameworks, the
framework has no awareness as to whether user code has sent a response to a client or
not. It simply has to rely on timeout techniques to determine when processing is
completed or not.

In Ratpack, however, because the execution model is aware of the work that is being
done by the handler, it can ascertain whether handler logic is still processing. This is
most practically seen by Ratpack’s ability to inform a client, in the form of an error
response, that the handler logic did not send a response. In this paradigm, requests
are able to be smartly handled based on data, and not on response-writing timeouts.

Scheduling Execution Segments for Computation or I/O
In addition to serializing execution segments, the execution gives the stream the abil‐
ity to inform as to what type of work the execution is doing, so that work can be exe‐
cuted on the proper thread pool. As discussed earlier in the book, Ratpack is able to
make any API asynchronous. This includes APIs that perform I/O-bound or blocking

Scheduling Execution Segments for Computation or I/O | 167

operations. For performance reasons, it is of critical importance that blocking opera‐
tions do not take place on request-taking threads, so Ratpack provides a Promise type
data construct to represent a call to a blocking operation, through the Blocking class.

If we consider again the examples demonstrated earlier in this chapter, but this time
modified to utilize a BlockingDatabaseService, we can see how the Blocking API
can be used to turn those blocking database calls into asynchronous execution seg‐
ments. Example 7-10 demonstrates the corresponding handler logic.

Example 7-10. Blocking API

package app;

import ratpack.server.RatpackServer;
import java.lang.Exception;
import ratpack.exec.Blocking;
import ratpack.exec.Operation;

public class Main {

 private static class ObjectContainer {
 User user;
 UserProfile profile;
 Friends friends;
 Photos photos;
 }

 public static void main(String[] args) throws Exception {
 RatpackServer.start(spec -> spec
 .registryOf(...)
 .handlers(chain -> chain
 // ... other application handlers here ...

 .prefix("photos", pchain -> pchain
 .get(":username", ctx -> {
 BlockingDatabaseService db = ctx.get(BlockingDatabaseService.class);
 String username = ctx.getPathTokens().get("username");

 final ObjectContainer container = new ObjectContainer();

 Blocking.get(() -> db.findByUsername(username))
 .then(u1 -> container.user = u1);

 Blocking.get(() ->
 db.loadUserProfile(container.user.getProfileId())
).then(p1 -> container.profile = p1);

 Blocking.get(() ->
 db.loadUserFriends(container.profile.getFriendIds())
).then(f1 -> container.friends = f1);

168 | Chapter 7: Asynchronous Programming, Promises, and Executions

 Blocking.get(() ->
 db.loadPhotosFromFriends(container.friends.getPhotoIds())
).then(p1 -> container.photos = p1);

 Operation.of(() -> ctx.render(container.photos)).then();
 })
)
)
);
 }
}

Note that here we have to wrap the objects of our composition in a container
object, since Java lambdas require mutable variables to be effectively final. While
we cannot modify the ObjectContainer class from within our lambda expres‐
sions, we can modify its properties directly.

Our final call to render the Photos object is wrapped in an Operation type,
which allows Ratpack’s execution model to ensure this code is executed last. By
doing so, we are given determinisim as to the availability of the container.pho
tos property, since we know it will have been set by the prior execution segment.

The call to Blocking.get(..) that wraps each of the BlockingDatabaseService calls
returns a Promise type that is specifically designed to inform the execution that any
of the code contained therein should be executed on blocking thread. Ratpack man‐
ages two separate thread pools: one for computation and request taking, and another
for I/O-bound and blocking operations. They are known as the request taking and
blocking thread pools, respectively.

When the stream is created for the blocking call, it opens the door for the Promise
that is generated by the Blocking.get(..) call to schedule the work on the blocking
thread pool. When the blocking execution segment completes, the data returned is
then scheduled back to the originating computation thread.

Rescheduling the subscription’s execution segment to the originating thread is
another important aspect to the execution model. For performance reasons, we will
want to ensure that the subscription’s execution segment that follows the blocking
segment does not incur another context switch to resume computation processing. In
that respect, Ratpack is said to provide thread affinity for computation execution seg‐
ments.

Without specifying that an execution segment is going to perform a blocking opera‐
tion, the segment will be scheduled by default to the computation thread pool. Com‐
putation and blocking operations can be seamlessly intermixed in an execution
without the need for user code to interact with a separate thread pool.

Scheduling Execution Segments for Computation or I/O | 169

This ability to provide blocking operations with a safe execution environment means
that legacy code and third-party libraries that are not designed for asynchronous
work can still be safely utilized in your Ratpack applications. Libraries that have no
inherent asynchronous capabilities (e.g., ones that are built on JDBC) can still be uti‐
lized in an asynchronous way by your handler and service logic.

Leveraging Executions on Unmanaged Threads
Ratpack’s execution model can still be leveraged on threads that are not part of the
normal request processing flow. This is important for services that provide back‐
ground processing capabilities within your Ratpack application. Consider a scenario
where your application needs a background thread for caching or health checks, and
you want to make use of services and APIs that utilize Promise type responses.

A perfect example of background processing that needs Ratpack’s execution model is
a periodic thread that uses the framework’s nonblocking HTTP client library to call
an external HTTP service and store the resulting data in local cache. The background
thread will not already have an execution bound, so we can create one on our own
and bind it accordingly. As is true with most things in Ratpack, the semantics for
accomplishing this are concise.

Consider the code in Example 7-11, which depicts a service class that uses Ratpack’s
computation thread pool to schedule a periodic call to the external service and cache
the results locally.

Example 7-11. Execution forking

public class UserService implements Service, Runnable {
 static String USER_SERVICE_URI = "https://user-service.internal";

 private final HttpClient httpClient;
 private final ObjectMapper mapper;

 private final Map<String, User> userCache = Maps.newConcurrentMap();

 @Inject
 public UserService(HttpClient httpClient, ObjectMapper mapper) {
 this.httpClient = httpClient;
 this.mapper = mapper;
 }

 @Override
 public void onStart(StartEvent event) {
 ExecController execController = event.getRegistry().get(ExecController.class);
 execController.getExecutor()
 .scheduleAtFixedRate(this, 0, 60, TimeUnit.SECONDS);
 }

170 | Chapter 7: Asynchronous Programming, Promises, and Executions

 @Override
 public void run() {
 Execution.fork().start(e -> {
 httpClient.get(new URI(USER_SERVICE_URI+"/users")).onError(t ->
 t.printStackTrace()
).map(response -> {
 return (List<User>)mapper
 .readValue(response.getBody().getBytes(),
 new TypeReference<List<User>>() {});
 }).then(users -> {
 for (User user : users) {
 userCache.put(user.getUsername(), user);
 }
 });
 });
 }

 public User findByUsername(String username) {
 return userCache.containsKey(username) ? userCache.get(username) : null;
 }

 public List<User> list() {
 return Lists.newArrayList(userCache.values());
 }
}

The UserService class starts out by implementing the ratpack.server.Service
special type and the Runnable interface. We will use the class itself as the Runna
ble for the periodic operation. Through the Service interface, Ratpack provides
startup and shutdown hooks to when the application starts and stops, respec‐
tively.

We know that we will need access to the ratpack.http.HttpClient and to Jack‐
son’s ObjectMapper class to transform data from the external service, so here
those resources are dependency injected with Guice. In the onStart method, we
can get access to the server registry through the StartEvent.

Via the registry, we get access to the ratpack.exec.ExecController. The Exe
cController provides us with access to the computation ExecutorService,
which is a ScheduledExecutorService.

We use the executor to schedule the class’s run method at a fixed rate.

Because the thread that is produced by the executor is outside the context of a
request’s lifecycle, we need to explicitly start a new execution on it. Ratpack pro‐
vides a static method, Execution.fork(), to build an execution on the current

Leveraging Executions on Unmanaged Threads | 171

thread. When we call the start method on the ExecutionBuilder, the execution
is tied to the current thread. We are given access to the execution object, denoted
by the e variable, but we do not explicitly need it, as Promise types will automati‐
cally be tied to the thread’s current execution.

The httpClient.get(..) call here produces a Promise. We can use the map oper‐
ator to transform the ReceivedResponse type, response, into a List<User>
object by passing the bytes of the response body down the stream.

Here, we use the Jackson ObjectMapper to transform the response into a list of
User objects. The resulting list will then be passed downstream.

Here, using the then method, we subscribe to the stream. The subscription’s exe‐
cution segment is then responsible for mapping the users into the userCache.

From here, handlers can get access to a User object or a list of User objects through
the findByUsername and list methods, respectively. These calls will then pull the
values from the local cache. All of the work has been done by the periodic back‐
ground thread, where we continue to use Promise types and the execution model,
even outside the normal processing flow.

Error Handling
Error handling is an important aspect to the flow of data. As you build increasingly
complex processing streams, Ratpack will always ensure that errors are propagated
appropriately. To that extent, error handlers can be defined in both the global context
of an execution as well as the local context of a promise. To illustrate this, consider
the first example of global error handling within the application. If we define a Serv
erErrorHandler in the user registry, then we can capture all unhandled exceptions
throughout the application. Example 7-12 demonstrates this with a simple example.

Example 7-12. Adding ServerErrorHandler

import ratpack.error.ServerErrorHandler
import ratpack.handling.Context

import static ratpack.groovy.Groovy.ratpack

ratpack {
 bindings {
 bindInstance ServerErrorHandler, new ServerErrorHandler() {
 @Override
 void error(Context ctx, Throwable throwable) throws Exception {
 ctx.response.status(500)
 ctx.render(ctx.file("errors/500.html"))

172 | Chapter 7: Asynchronous Programming, Promises, and Executions

 }
 }
 }
 handlers {
 get {
 throw new RuntimeException()
 }
 }
}

We bind the ratpack.error.ServerErrorHandler to a new instance.

Within the error method, we are given access to the request’s Context as well as
the Throwable object that produced the error.

For demonstration’s sake, here we throw an unchecked exception.

Running this application and accessing the default route (Figure 7-1) will generate the
error and activate our error handler. In this example, the ServerErrorHandler sets
the response status to 500 and accordingly sends back an HTML file. Without this
handler, in development mode, you will see the stacktrace that was produced; in pro‐
duction, you will see a blank page. Obviously, for a production application you will
want to give your users something more than a blank screen, so here we can specify
that we want to send back an HTML file instead.

Figure 7-1. 500 error page

Given that global error handling takes place within the scope of the request-response
lifecycle, you are able to perform more complex processing when an error is cap‐
tured. For example, you could publish a metric, send an email, write to a database
table, or all three. Additionally, you can choose to render more elaborate error
screens using Ratpack’s templating options.

Execution-Wide Error Handling
Error handlers can also be attached at the level of a forked execution. For example, if
you have a background process that is forking executions, as discussed earlier, an

Error Handling | 173

execution-wide error handler can be attached to process any exceptions that were
unhandled, in a manner similar to how ServerErrorHandler works. The main differ‐
ence between how these two strategies work is that the former handles errors that are
outside the context of a typical request-response lifecycle.

When you go about forking your own execution, prior to the start call you can
attach the execution-wide error handler using the onError method. The Throwable
that was thrown is provided as an argument. If we expand Example 7-11 from earlier,
we can see how Example 7-13 does this.

Example 7-13. Forked execution with error handling

public class UserService implements Service, Runnable {
 static String USER_SERVICE_URI = "https://user-service.internal";

 private final HttpClient httpClient;
 private final ObjectMapper mapper;

 private final Map<String, User> userCache = Maps.newConcurrentMap();

 @Inject
 public UserService(HttpClient httpClient, ObjectMapper mapper) {
 this.httpClient = httpClient;
 this.mapper = mapper;
 }

 @Override
 public void onStart(StartEvent event) {
 ExecController execController = event.getRegistry().get(ExecController.class);
 execController.getExecutor()
 .scheduleAtFixedRate(this, 0, 60, TimeUnit.SECONDS);
 }

 @Override
 public void run() {
 Execution.fork().onError(t -> {
 t.printStackTrace();
 }).start(e -> { //
 httpClient.get(new URI(USER_SERVICE_URI+"/users")).map(response -> {
 return (List<User>)mapper
 .readValue(response.getBody().getBytes(),
 new TypeReference<List<User>>() {});
 }).then(users -> {
 for (User user : users) {
 userCache.put(user.getUsername(), user);
 }
 });
 });
 }

174 | Chapter 7: Asynchronous Programming, Promises, and Executions

 public User findByUsername(String username) {
 return userCache.containsKey(username) ? userCache.get(username) : null;
 }

 public List<User> list() {
 return Lists.newArrayList(userCache.values());
 }
}

Prior to the call to start, we attach our execution-wide error handler using the
onError method.

In this demonstration, we are simply printing the stacktrace from the Throwable, but
because error handling is applied in the context of the forked execution, you have the
ability to perform more elaborate error processing.

Promise Error Handling
Global and execution-wide error handling should really only be used as a catch-all for
uncaught exceptions. You will undoubtedly have the scenario where a Promise pro‐
cessing stream needs to have its own logic for error handling. Attaching error han‐
dling to a Promise type uses similar semantics to how we attached it to the execution,
but this time the error is captured for the promise’s localized stream. This gives you
the ability to perform processing that is more specific to a promise’s given function.

Example 7-14 demonstrates attaching error handling to a Promise type by using the
onError method. Like before, the Throwable is provided to the error handling logic.

Example 7-14. Promise error handling

import static ratpack.groovy.Groovy.ratpack

ratpack {
 handlers {
 get {
 request.body.map {
 throw new RuntimeException()
 }.onError { t ->
 render "There was an error."
 }.then {
 render "There was not an error."
 }
 }
 }
}

Error Handling | 175

To illustrate this example, we will use the getBody method on request, which
returns a Promise. We create a processing stream using the map method so that
we can simulate raising an exception.

We can simulate a failure at this point by throwing a RuntimeException.

Here, we attach the error handler to the promise stream using the onError
method. The argument provided is the Throwable type. Within the processing
logic, here we choose to render back a simple message, but like before, more
elaborate processing can take place in this block.

We subscribe to promise as we normally would. Note that given this processing
stream, we should never hit this block.

If we run this application with the simulated error and open a browser to the applica‐
tion, we will be met with the message that was rendered from the error handling
block (Figure 7-2).

Figure 7-2. Promise error handling

It is important to note that if the error handling logic throws a new exception, the
original exception will be wrapped, so as to provide proper stack tracing. Using
Promise-level error handlers provides an excellent means to localize your error han‐
dling logic according to the operation that was underway. It is a good practice to
ensure that you have error handling throughout your application, so adding a Server
ErrorHandler that will respond to all uncaught exceptions in conjunction with
Promise-level error handling ensures your application will always respond in a user-
friendly way.

Creating Promises on Your Own
It will not always be that you are in a scenario where you are given an interface with a
Ratpack Promise type. In fact, it is likely that most integrations with third-party libra‐
ries should be adapted to work under the premise of a Promise, especially those libra‐

176 | Chapter 7: Asynchronous Programming, Promises, and Executions

ries that have their own threading and execution model. For that, Ratpack provides a
simple means by which promises can be created from both synchronous (computa‐
tion) and asynchronous (I/O) calls that are not managed in the framework’s own exe‐
cution model.

Promises from Synchronous Calculations
The simplest way to think about creating a Promise type in a synchronous manner is
by understanding that the underlying calculation to get the value that the promise
will hold is computation-bound. That is to say, synchronous promises can be built
when their value is not an I/O-bound operation that will block the existing thread. To
demonstrate this clearly, consider the interface in Example 7-15.

Example 7-15. The NumberService interface

package app

import ratpack.exec.Promise

interface NumberService {

 Promise<Integer> getRandomNumber()
}

The getRandomNumber method returns a Promise<Integer>, which the concrete
implementation can choose to either calculate computationally or perform a blocking
operation to resolve. The reason for the latter case might be the need for high consis‐
tency in random number generation across multiple nodes. For the purposes of pro‐
ducing a synchronous promise, let’s consider that we simply want to calculate the
random number using java.util.Random as shown in Example 7-16.

Example 7-16. The SyncNumberService concrete implementation

package app

import java.util.Random
import ratpack.exec.Promise

class SyncNumberService implements NumberService {

 Promise<Integer> getRandomNumber() {
 Promise.sync {
 new Random().nextInt()
 }
 }
}

Creating Promises on Your Own | 177

Here, we use the Promise#sync method to create the Promise type, to which we
supply a Factory that will generate the promise’s value.

Here we synchronously calculate the random value that will fulfill the promise.

When building service interfaces or other APIs in your Ratpack
application, you should always ensure you are using the rat
pack.exec.Promise and ratpack.exec.Operation return types for
calls that could potentially be made asynchronously. By coding to
these return types from the outset, you can ensure that the concrete
implementation will be flexible enough to leverage nonblocking
networking when appropriate.

Synchronous promises behave no differently in terms of the execution model. Rat‐
pack has no awareness as to whether or not they will be performing computation or
I/O bound calculations, so they will always be executed in their serial order according
to their position in the execution stack.

Promises from Asynchronous Calls
As noted, the situation will undoubtedly arise where you will need to integrate with
libraries that have their own threading or execution models. To that end, you can still
leverage Ratpack promises (and thus its execution model), but you will need to adapt
their asynchronous calls to Promise types.

The simplest way to understand how to build Promise types from asynchronous calls
is to consider again Example 7-2 from earlier in the chapter. To this service interface,
we provide a callback that provides our processing logic with the data. If we assume
that we have no control over the interface (i.e., it is inherited from an external
library), we can build a new service interface that adapts these contracts to Promise
types.

Example 7-17 shows leveraging the AsyncDatabaseService to produce results in the
form of Promise types.

Example 7-17. The PromiseDatabaseService implementation

package app;

import ratpack.exec.Promise;

public class PromiseDatabaseService {

 private final AsyncDatabaseService db;

178 | Chapter 7: Asynchronous Programming, Promises, and Executions

 public PromiseDatabaseService(AsyncDatabaseService db) {
 this.db = db;
 }

 public Promise<User> findByUsername(String username) {
 return Promise.async(down ->
 db.findByUsername(username, user ->
 down.success(user)
)
);
 }

 public Promise<UserProfile> loadUserProfile(Long profileId) {
 return Promise.async(down ->
 db.loadUserProfile(profileId, profile ->
 down.success(profile)
)
);
 }
}

The PromiseDatabaseService class will leverage the AsyncDatabaseService and
its underlying threading model to perform the calls to the database. Here, we set
the instance as a class-level private field for use within our public methods.

The findByUsername method now instead returns a Promise<User>. To accom‐
modate this, we use the Promise#async method, to which we are given access to
an object we can use to fulfill the promise once the data becomes available,
shown here as down.success(result).

The loadUserProfile method now returns a Promise<UserProfile>, also using
the Promise#async method to fulfill the promise from the mirroring call to the
AsyncDatabaseService.

Let’s expand on this demonstration a little further and consider that in addition to the
Consumer<User> and Consumer<UserProfile> callbacks we provide to the findByU
sername and loadUserProfile methods, we also supply a Consumer<Throwable> to
each as well to help capture errors. The new service interface looks like that shown in
Example 7-18.

Example 7-18. The updated AsyncDatabaseService with error handling

package app;

import java.util.function.Consumer;

public interface AsyncDatabaseService {

Creating Promises on Your Own | 179

 void findByUsername(String username,
 Consumer<User> callback,
 Consumer<Throwable> error);

 void loadUserProfile(Long profileId,
 Consumer<UserProfile> callback,
 Consumer<Throwable> error);
}

We want to ensure that any errors thrown during the asynchronous processing of the
AsyncDatabaseService are propagated back to the Promise that we return from our
adapted service interface. To accommodate this, the fulfiller provided by the
Promise#async method also allows us to call its error method. Consider the updated
PromiseDatabaseService shown in Example 7-19.

Example 7-19. The PromiseDatabaseService updated with error handling

package app;

import ratpack.exec.Promise;

public class PromiseDatabaseService {

 private final AsyncDatabaseService db;

 public PromiseDatabaseService(AsyncDatabaseService db) {
 this.db = db;
 }

 public Promise<User> findByUsername(String username) {
 return Promise.async(down ->
 db.findByUsername(username, user ->
 down.success(user)
 , error ->
 down.error(error)
)
);
 }

 public Promise<UserProfile> loadUserProfile(Long profileId) {
 return Promise.async(down ->
 db.loadUserProfile(profileId, profile ->
 down.success(profile)
 , error ->
 down.error(error)
)
);
 }
}

180 | Chapter 7: Asynchronous Programming, Promises, and Executions

As you can see now, the Consumer<Throwable> is provided to the AsyncDatabaseSer
vice calls, and the corresponding errors are provided to the Promise type we return.

It is important to note that when adapting asynchronous libraries that have their own
threading and execution model, once the data from their thread of execution fulfills
the promise, the processing is returned to the originating thread of execution in Rat‐
pack’s execution model. While this will eventually make downstream processing of
multiple data objects faster lower in the execution chain, you will likely experience a
CPU context switch when moving data between threads.

As with synchronous promises, asynchronous promises behave no differently in
terms of Ratpack’s execution model. This mechanism, however, can be powerful
when building an application that needs to leverage existing asynchronous services or
datasources. Nothing else is needed than what is demonstrated to show adapting
these interfaces into Ratpack’s promise-based execution model.

Chapter Summary
In this chapter, you learned that Ratpack’s execution model is one of the greatest—
although generally transparent—benefits of the framework. By providing guaranteed
execution order to the complex nature of asynchronous processing, any nondeter‐
minism that asynchronicity would present to web development is now guaranteed
determinism. Furthermore, being able to make use of the execution model through
the succinctness of the Promise API makes it highly consumable for application
developers.

With the execution model further providing supervision of the work that is being
done within Ratpack applications, application developers are given a guarantee as to
the timeliness and correctness of responses that are being sent to clients. There is no
ticking clock on sending a response to a client when the execution model is leveraged;
instead, when there is no more work to do, a response must be sent, or Ratpack will
inform the client that a handler did not send a response.

Given the additional ability to easily schedule execution segments to the thread pool
that is most appropriate for their work, Ratpack applications can employ any legacy
or third-party API, without being concerned that those APIs will interfere with the
performance of their request-taking pools. Furthermore, with Ratpack always having
your application’s performance interests in mind, you can be assured that any jumps
between blocking and nonblocking operations will always take the more resource-
efficient path.

Asynchronous programming is a difficult paradigm for many application developers,
and can at first be off-putting, but the necessity of this style of development when
employing a highly performant, nonblocking networking stack cannot be avoided.
Ratpack aims to make this approach to applicaiton development easy by reducing the

Chapter Summary | 181

complexities for application developers. By also giving the confidence of determinis‐
tic control and data flow to what would otherwise be nondeterministic, Ratpack
developers can feel comfortable developing against asynchronous code.

182 | Chapter 7: Asynchronous Programming, Promises, and Executions

CHAPTER 8

Data-Driven Web Applications

Up until this point, the examples in this book have largely been based on contrived
scenarios to demonstrate usability. Now that you have an in-depth understanding of
Ratpack’s execution model, and the insight to build robust web applications with Rat‐
pack, we can discuss leveraging the framework to solve real-world problems. This
chapter will show you how to model data and your data access layer for asynchronic‐
ity and high performance. Indeed, the discussion throughout this chapter will famili‐
arize you with solutions to a problem space that you will face with nearly every web
application that you build: working with databases and providing data as HTTP
resources.

The Java ecosystem is rich with libraries and utilities to help you build comprehensive
data-driven web applications. A conundrum for most asynchronous JVM web frame‐
works, however, is that the large majority of these libraries are built on synchronous
APIs such as JDBC. Luckily, with Ratpack, this does not mean that you cannot still
use those libraries to build your data access objects and service layers. The execution
model’s ability to seamlessly schedule synchronous, I/O-bound work to the blocking
thread pool makes it the perfect foundation for working with database libraries with
which you are likely already familiar. Furthermore, when the database call returns,
processing is returned to the request-taking thread, affording your application opti‐
mum performance when working with data-driven models.

Groovy SQL Support
Groovy-based Ratpack applications have the benefit of being able to leverage Groovy
SQL, Groovy’s DSL for working with databases. Groovy SQL is a concise utility for
data access layers that want the ability to read and write from a database without hav‐
ing an opinionated querying and modeling paradigm. The DSL that it provides
allows queries and executions to be written with just a single method call. Beyond

183

that, accessing the rows of a database and their column data is presented with Groovy
syntax that you will undoubtedly find familiar. The DSL’s fixtures for working with
databases allows you to write the queries you know you will need, and populate your
model objects as you see fit.

It is a two-part process to start using Groovy SQL in your Ratpack application. First,
we must establish a javax.sql.DataSource connection that the Sql class will use. To
facilitate this, we will need a database driver as part of our application. For the sake of
demonstration, let’s make use of the H2 in-memory database library to get our exam‐
ple going. The Gradle build script in Example 8-1 shows the necessary additions.

Example 8-1. Gradle build script with H2 in-memory database

buildscript {
 repositories {
 jcenter()
 }
 dependencies {
 classpath 'io.ratpack:ratpack-gradle:1.3.3'
 }
}

apply plugin: 'io.ratpack.ratpack-groovy'

repositories {
 jcenter()
}

dependencies {
 compile 'com.h2database:h2:1.4.190'
}

Next, we can build the DataSource directly in the application’s bindings block, as
shown in Example 8-2.

Example 8-2. Building the DataSource and binding it

import org.h2.jdbcx.JdbcDataSource
import javax.sql.DataSource

import static ratpack.groovy.Groovy.ratpack

ratpack {
 bindings {
 bindInstance DataSource, new JdbcDataSource(
 URL: "jdbc:h2:mem:test;DB_CLOSE_DELAY=-1",
 user: "sa",
 password: ""
)

184 | Chapter 8: Data-Driven Web Applications

 }
 handlers {
 // nothing here for now...
 }
}

We can use Groovy’s Map constructors to set the properties directly as part of the
constructor arguments. (Note that the format of the URL is structured with H2’s
DB_CLOSE_DELAY=-1, which instructs the database to keep all data as long as the
JVM is alive.)

With the DataSource in place and bound properly, we can move on to the second
part, which is to incorporate the SqlModule into our project. The SqlModule will use
the bound DataSource and provide our application with access to the Groovy Sql
object, which is the DSL we will use to interact with the database. Example 8-3 shows
the incorporation of the SqlModule.

Example 8-3. Incorporating the SqlModule

import org.h2.jdbcx.JdbcDataSource
import ratpack.groovy.sql.SqlModule
import javax.sql.DataSource

import static ratpack.groovy.Groovy.ratpack

ratpack {
 bindings {
 module SqlModule
 bindInstance DataSource, new JdbcDataSource(
 URL: "jdbc:h2:mem:test;DB_CLOSE_DELAY=-1",
 user: "sa",
 password: ""
)
 }
 handlers {
 // nothing here for now...
 }
}

It is no different than the process with which you are already familiar.

We can modify the bindings block slightly to additionally bind a rat

pack.server.Service implementation, which we can use to bootstrap some data into
the database. This will help us for demonstration purposes now, but even in a sce‐
nario where you are working with a nonvolatile database, you can leverage this tech‐
nique to validate that the database is properly structured, or to make amendments to

Groovy SQL Support | 185

the database schema prior to the application starting up. Example 8-4 shows how we
can create a new database table and bootstrap it with some trivial data.

Example 8-4. Modified bindings block with database initialization

import org.h2.jdbcx.JdbcDataSource
import ratpack.groovy.sql.SqlModule
import ratpack.server.Service
import ratpack.server.StartEvent
import groovy.sql.Sql

import javax.sql.DataSource

import static ratpack.groovy.Groovy.ratpack

ratpack {
 bindings {
 module SqlModule
 bindInstance DataSource, new JdbcDataSource(
 URL: "jdbc:h2:mem:test;DB_CLOSE_DELAY=-1",
 user: "sa",
 password: ""
)

 bindInstance new Service() {
 void onStart(StartEvent e) {
 Sql sql = e.registry.get(Sql)
 sql.execute(
 "CREATE TABLE TEST(ID INT PRIMARY KEY AUTO_INCREMENT, NAME VARCHAR(255))"
)
 sql.execute "INSERT INTO TEST (NAME) VALUES('Luke Daley')"
 sql.execute "INSERT INTO TEST (NAME) VALUES('Rob Fletch')"
 sql.execute "INSERT INTO TEST (NAME) VALUES('Dan Woods')"
 }
 }
 }
 handlers {
 // nothing here for now...
 }
}

Here we use the StartEvent provided to the onStart method to get access to the
server registry and resolve the Sql object.

This is the first introduction to working with the Sql DSL, and as you can see,
the relatively simple execute call simply runs the provided SQL statement
against the database.

186 | Chapter 8: Data-Driven Web Applications

From here on, we employ the sql.execute(..) call to bootstrap data directly
into the TEST table.

The simplicity of working with databases through the Sql DSL is what makes it an
appealing prospect for Groovy applications. It should be noted that the initialization
that we are demonstrating in the Service is still performing blocking calls to the
database. During the onStart call, it is not important that we schedule these calls to
the blocking thread pool, because we will not be affecting request taking, as requests
will not be accepted until all Service classes have been initialized.

When we plan to make database calls during request processing, however, we will
want to ensure that blocking calls are scheduled to the blocking thread pool properly.
As you are already aware of the Blocking fixture, you probably understand how we
can use that within a handler to perform queries against the database. The updated
code in Example 8-5 shows a get handler listing the values we have stored during ini‐
tialization.

Example 8-5. Blocking database call in handler

import groovy.sql.Sql
import org.h2.jdbcx.JdbcDataSource
import ratpack.exec.Blocking
import ratpack.groovy.sql.SqlModule
import ratpack.server.Service
import ratpack.server.StartEvent

import javax.sql.DataSource

import static ratpack.groovy.Groovy.ratpack
import static ratpack.jackson.Jackson.json

ratpack {
 bindings {
 module SqlModule
 bindInstance DataSource, new JdbcDataSource(
 URL: "jdbc:h2:mem:test;DB_CLOSE_DELAY=-1",
 user: "sa",
 password: ""
)

 bindInstance new Service() {
 void onStart(StartEvent e) throws Exception {
 Sql sql = e.registry.get(Sql)
 sql.execute(
 "CREATE TABLE TEST(ID INT PRIMARY KEY AUTO_INCREMENT, NAME VARCHAR(255))"
)
 sql.execute "INSERT INTO TEST (NAME) VALUES('Luke Daley')"
 sql.execute "INSERT INTO TEST (NAME) VALUES('Rob Fletch')"

Groovy SQL Support | 187

 sql.execute "INSERT INTO TEST (NAME) VALUES('Dan Woods')"
 }
 }
 }
 handlers {
 get { Sql sql ->
 Blocking.get {
 sql.rows("select * from test").collect {
 it["name"]
 }
 } then { names ->
 render(json(names))
 }
 }
 }
}

We can inject the Sql type into the handler as we would any other dependency.

Make sure that we wrap the blocking database calls in Blocking.get(..) to
ensure they are executed on the blocking thread.

The Sql DSL allows us to query many rows simply with the rows method.

The resulting objects are ones that we can leverage the “getAt” bracket notation
to access the columns of the row.

The name columns are collected off of each row and returned as the value of the
promise. Here, we can use the Jackson support to render the list of names as
JSON.

As you can already see, using the Sql DSL to work with databases is concise and intu‐
itive. There are many simple data access methods that allow you to query one or
many rows and columns of data, including row and firstRow. These return a single
row from the provided SQL statement or the first row of a multirow query, respec‐
tively. It is worth reading through the Sql class’s comprehensive API documentation,
which includes examples and discussion.

Alone, the simplistic and unopinionated nature of the Sql DSL is attractive enough,
but there are also strong technical reasons to favor this approach over rolling your
own. When you are constructing a SQL statement that will insert or update data in
the database, the Sql class allows you to use GString variable notation within your
statement, and it will transform your variables into a PreparedStatement type. This
is absolutely necessary for web applications that will be inserting or updating data.
Example 8-6 shows a post handler to the “create” URI, which creates a new record in
the database for the provided name.

188 | Chapter 8: Data-Driven Web Applications

http://bit.ly/sql-class

Example 8-6. Inserting data using GString notation

import groovy.sql.Sql
import org.h2.jdbcx.JdbcDataSource
import ratpack.exec.Blocking
import ratpack.groovy.sql.SqlModule
import ratpack.server.Service
import ratpack.server.StartEvent
import ratpack.form.Form

import javax.sql.DataSource

import static ratpack.groovy.Groovy.ratpack
import static ratpack.jackson.Jackson.json

ratpack {
 bindings {
 module SqlModule
 bindInstance DataSource, new JdbcDataSource(
 URL: "jdbc:h2:mem:test;DB_CLOSE_DELAY=-1",
 user: "sa",
 password: ""
)

 bindInstance new Service() {
 void onStart(StartEvent e) {
 Sql sql = e.registry.get(Sql)
 sql.execute(
 "CREATE TABLE TEST(ID INT PRIMARY KEY AUTO_INCREMENT, " +
 "NAME VARCHAR(255))"
)
 sql.execute "INSERT INTO TEST (NAME) VALUES('Luke Daley')"
 sql.execute "INSERT INTO TEST (NAME) VALUES('Rob Fletch')"
 sql.execute "INSERT INTO TEST (NAME) VALUES('Dan Woods')"
 }
 }
 }
 handlers {
 get { Sql sql ->
 Blocking.get {
 sql.rows("select * from test").collect {
 it["name"]
 }
 } then { names ->
 render(json(names))
 }
 }
 post("create") { Sql sql ->
 parse(Form).then { f ->
 def name = f.name
 if (name) {
 Blocking.get {

Groovy SQL Support | 189

 sql.execute "INSERT INTO TEST (NAME) VALUES($name)"
 } onError { t ->
 render(json([success: false, error: t.message]))
 } then {
 render(json([success: true]))
 }
 } else {
 response.status(400) //
 render(json([success: false, error: "name is required"]))
 }
 }
 }
 }
}

We start the request handling by parsing the supplied data using the Form parser.
This will give us access to the URL-encoded values that were sent to this handler.

Check to make sure that the request data sent the name value.

Wrap the blocking Sql call to ensure it gets scheduled properly.

Using the execute method, we can construct the insert statement using the $name
variable.

If there was an error, inform the caller.

Send the success message back to the caller.

The most important part to the entire POST handler is the INSERT statement that is
constructed and called. To every Groovy developer, this looks like a simple variable
replacement, but the Sql DSL takes this to the next level to ensure that your SQL
statements are safe. In this case, instead of simply replacing the token value, Sql is
storing the value, transforming the SQL statement into a PreparedStatement type,
replacing the $name part with the necessary ?, and applying the indexed value appro‐
priately. That is a lot of work that we do not have to do anymore when using Sql.

Connection Pooling with HikariCP Support
The use of Groovy SQL demonstrated in the prior section has taken a somewhat
naive approach to building a data access layer. The underlying datasource in the
examples is using but a single database connection for managing access to a database.
This is fine for testing or prototyping, but when you are building your application for
production, you will need the ability to pull connections from a connection pool. This
allows your database calls to pull from a set of persistent connections, thereby

190 | Chapter 8: Data-Driven Web Applications

improving overall performance and allowing a higher number of concurrent and par‐
allel requests to access your database.

Ratpack provides optional support for pooling database connections through integra‐
tion with the HikariCP library. HikariCP is a high-performance connection pooling
library for Java, and touts itself as a “zero-overhead production-quality connection
pool.” Indeed, its performance measurements place it well above competing libraries
in the space.

To integrate HikariCP in your Ratpack application, you will need to start by including
the ratpack-hikari dependency in your project’s build script. Example 8-7 shows an
amendment to the buildscript from the prior section, this time with HikariCP sup‐
port added.

Example 8-7. HikariCP build script dependency

buildscript {
 repositories {
 jcenter()
 }
 dependencies {
 classpath 'io.ratpack:ratpack-gradle:1.3.3'
 }
}

apply plugin: 'io.ratpack.ratpack-groovy'

repositories {
 jcenter()
}

dependencies {
 compile 'com.h2database:h2:1.4.190'
 compile ratpack.dependency('hikari')
}

Adds the ratpack-hikari dependency to the project.

With the dependency in place, we need to modify our application code to incorporate
the HikariModule into the project. The HikariModule is a ConfigurableModule, so
we can supply the module(HikariModule) call in the bindings block with a Closure
that will allow us to configure the properties of the connection pool. The application
code in Example 8-8 shows the modified application from the prior section, this time
using HikariCP to manage the datasource.

Connection Pooling with HikariCP Support | 191

http://brettwooldridge.github.io/HikariCP/

Example 8-8. HikariCP and Groovy Sql

import groovy.sql.Sql
import ratpack.exec.Blocking
import ratpack.form.Form
import ratpack.groovy.sql.SqlModule
import ratpack.hikari.HikariModule
import ratpack.server.Service
import ratpack.server.StartEvent

import static ratpack.groovy.Groovy.ratpack
import static ratpack.jackson.Jackson.json

ratpack {
 bindings {
 module SqlModule
 module(HikariModule) { c ->
 c.dataSourceClassName = 'org.h2.jdbcx.JdbcDataSource'
 c.addDataSourceProperty 'URL', 'jdbc:h2:mem:test;DB_CLOSE_DELAY=-1'
 c.username = 'sa'
 c.password = ''
 }

 bindInstance new Service() {
 void onStart(StartEvent e) {
 // ... bootstrapping logic from prior section here ...
 }
 }
 }
 handlers {
 // ... handlers from prior section here ...
 }
}

We add the HikariModule and provide the configuration Closure.

Specify the dataSourceClassName, which is the same class we used in the prior
section.

Specify the URL property, similar to how we did previously, but this time apply it
with the addDataSourceProperty method on the configuration object.

Sets the database username.

We also need to set a password. In this case, since we are using the in-memory
H2 database, we set it to an empty string.

Again, in this example we are using the H2 in-memory database for demonstration
simplicity, but any JDBC-compliant datasource can be as easily utilized here. And

192 | Chapter 8: Data-Driven Web Applications

these changes are all that is necessary; the HikariModule will provide the SqlModule
with the necessary DataSource to make its database calls.

If you are not building a Groovy Ratpack project, then you can still make use of the
HikariCP support to provide your project with connection pooling. For example, if
you wanted to utilize database connection pooling within a Java application, and use
the HikariCP datasource directly in your application, that is equally as doable. Gran‐
ted, the implementation of using the DataSource directly from within Java will be
more verbose while accessing the necessary components is trivial. The Java applica‐
tion in Example 8-9 is the same Groovy application we have been demonstrating,
rewritten in Java using the HikariCP datasource directly.

Example 8-9. Java HikariCP application

package app;

import com.google.common.collect.Lists;
import com.google.common.collect.Maps;
import ratpack.exec.Blocking;
import ratpack.form.Form;
import ratpack.guice.Guice;
import ratpack.hikari.HikariModule;
import ratpack.server.RatpackServer;
import ratpack.server.Service;
import ratpack.server.StartEvent;

import javax.sql.DataSource;
import java.sql.Connection;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.util.List;
import java.util.Map;

import static ratpack.jackson.Jackson.json;

public class Main {

 public static void main(String[] args) throws Exception {
 RatpackServer.start(spec -> spec
 .registry(Guice.registry(bindingsSpec ->
 bindingsSpec
 .module(HikariModule.class, c -> {
 c.setDataSourceClassName("org.h2.jdbcx.JdbcDataSource");
 c.addDataSourceProperty("URL", "jdbc:h2:mem:test;DB_CLOSE_DELAY=-1");
 c.setUsername("sa");
 c.setPassword("");
 })
 .bindInstance(new Service() {
 @Override
 public void onStart(StartEvent event) throws Exception {

Connection Pooling with HikariCP Support | 193

 DataSource dataSource = event.getRegistry().get(DataSource.class);
 try (Connection connection = dataSource.getConnection()) {
 connection.createStatement()
 .execute("CREATE TABLE TEST(ID INT PRIMARY KEY " +
 "AUTO_INCREMENT, NAME VARCHAR(255))");
 connection.createStatement()
 .execute("INSERT INTO TEST (NAME) VALUES('Luke Daley')");
 connection.createStatement()
 .execute("INSERT INTO TEST (NAME) VALUES('Rob Fletch')");
 connection.createStatement()
 .execute("INSERT INTO TEST (NAME) VALUES('Dan Woods')");
 }
 }
 })
))
 .handlers(chain -> chain
 .get(ctx -> {
 Blocking.get(() -> {
 DataSource dataSource = ctx.get(DataSource.class);
 List<Map<String, String>> personList = Lists.newArrayList();
 try (Connection connection = dataSource.getConnection()) {
 ResultSet rs = connection.createStatement()
 .executeQuery("SELECT * FROM TEST");
 while (rs.next()) {
 long id = rs.getLong(1);
 String name = rs.getString(2);
 Map<String, String> person = Maps.newHashMap();
 person.put("id", String.valueOf(id));
 person.put("name", name);
 personList.add(person);
 }
 }
 return personList;
 }).then(personList -> ctx.render(json(personList)));
 })
 .post("create", ctx ->
 ctx.parse(Form.class).then(f -> {
 String name = f.get("name");
 if (name != null) {
 Blocking.get(() -> {
 DataSource dataSource = ctx.get(DataSource.class);
 try (Connection connection = dataSource.getConnection()) {
 PreparedStatement pstmt = connection
 .prepareStatement("INSERT INTO TEST (NAME) VALUES(?)");
 pstmt.setString(1, name);
 pstmt.execute();
 }
 return true;
 }).onError(t -> {
 ctx.getResponse().status(400);
 ctx.render(json(getResponseMap(false, t.getMessage())));
 }).then(r ->

194 | Chapter 8: Data-Driven Web Applications

 ctx.render(json(getResponseMap(true, null)))
);
 } else {
 ctx.getResponse().status(400);
 ctx.render(json(getResponseMap(false, "name not provided")));
 }
 })
)
)
);
 }

 private static Map<String, Object> getResponseMap(Boolean status, String message) {
 Map<String, Object> response = Maps.newHashMap();
 response.put("success", status);
 response.put("error", message);
 return response;
 }
}

The HikariModule configuration object allows you to tune every aspect of the con‐
nection pool, including pool sizes, connection timeout, validation timeout, and leak
detection, among other properties. The project’s GitHub page provides documenta‐
tion for all of the properties that you can directly tune.

Ratpack and Grails GORM
Groovy SQL is not the only game in town if you are building data-driven, Groovy-
based Ratpack web applications. Indeed, if you have operated in the Groovy ecosys‐
tem, you’re likely familiar with and understand the power, simplicity, and usability of
Grails’ data mapping layer, GORM. Prior to Grails 3.x, making use of GORM outside
of Grails was a highly complex process, but these days the library can be used exclu‐
sively outside of Grails. This opens the door for frameworks like Ratpack to allow
developers to integrate the robust data modeling and interactions provided by
GORM without the need for the Grails web framework.

Similar to working with Groovy SQL, to leverage GORM inside of Ratpack, we will
need to make use of the Blocking.get(..) mechanism to ensure blocking database
calls are appropriately scheduled to the blocking thread pool. There are some other
added complexities that need to be handled, mostly stemming from the underlying
implementation, which uses Hibernate.

The problems presented by Hibernate are specifically related to the fact that it uses
ThreadLocal storage for binding a database Session to the current thread. As we’ve
already discussed, Ratpack maintains a small request-taking thread pool that is
reused across many different requests, so this is an unsuitable place to have request-
specific ThreadLocals.

Ratpack and Grails GORM | 195

http://bit.ly/hikariCP
http://bit.ly/hikariCP

A thread from the blocking pool is fine for retrieving data with Hibernate, because it
will be dedicated exclusively to the blocking processing. But Hibernate’s manner of
creating a proxy around domain objects in order to provide lazy references to related
objects in a graph presents an issue when we want to query a domain object in a
blocking thread, and then move processing of that data to the computation thread.
Because Hibernate is still managing the proxied object, when the object is moved out
of the blocking thread and back to the computation thread, the ThreadLocal refer‐
ence to the Session will no longer be there, and Hibernate will throw an error.

To make using GORM (and thus Hibernate) more friendly, we need to ensure that the
object is either fully initialized, unwrapped from its proxied type, or translated to a
data transfer object type, prior to moving it off of the blocking thread. For some, this
may prove a prohibitive tax for the sake of using the Hibernate-based ORM; for those
who need the robust modeling and data access capabilities provided by GORM, it
may serve simply as a strategy for accomplishing a means to an end. Your mileage
will vary according to your comfort level and your application’s requirements. The
goal of this section of the book is to expose you to the possibilities you are open to
when working with a framework as flexible, user friendly, and ecosystem friendly as
Ratpack.

To start with integrating GORM into our project, we will need to include the GORM
dependencies in the project’s build script. The build script in Example 8-10 shows the
necessary dependencies.

Example 8-10. Gradle build script with GORM dependencies

buildscript {
 repositories {
 jcenter()
 }
 dependencies {
 classpath 'io.ratpack:ratpack-gradle:1.3.3'
 }
}

apply plugin: 'io.ratpack.ratpack-groovy'

repositories {
 jcenter()
}

dependencies {
 compile('org.grails:grails-datastore-gorm-hibernate4:5.0.0.RELEASE') {
 exclude module: 'groovy'
 }
 compile('org.grails:grails-spring:3.0.9') {
 exclude module: 'groovy'
 }

196 | Chapter 8: Data-Driven Web Applications

 compile 'com.h2database:h2:1.4.190'
}

This call adds the grails-datastore-gorm-hibernate4 dependency to the
project.

We need to explicitly exclude the groovy transitive dependency from this project,
as Ratpack will provide this with a known good version.

The GORM infrastructure leverages the Spring Framework for transaction man‐
agement, so we also need to incorporate this library.

This library also ships with a groovy dependency, so we will exclude it here.

For demonstration’s sake, as with the prior section on Groovy SQL, we will
include the H2 in-memory database driver. This can safely be replaced by
MySQL, PostgreSQL, Oracle, or whatever JDBC driver your project requires.

With the GORM dependencies in place, let’s take a look at what a simple Person
domain class would look like, which is similar to the prior section’s example. The
class in Example 8-11 depicts the simple model object we will be using.

Example 8-11. Person GORM domain class

package app

import org.grails.datastore.gorm.GormEntity

class Person implements GormEntity<Person> {
 Long id
 Long version
 String name

 static constraints = {
 name blank: false
 }
}

A slight difference this example shows is that when using GORM in Ratpack, we want
to ensure that we get the type safety and IDE assistance provided by GORM’s exten‐
sion methods. In Grails, a domain class does not need to explicitly implement the
GormEntity<T> trait in order to get the rich domain model functionality it offers.
Instead, these classes are generally annotated with @grails.persistence.Entity,
and a Groovy AST (Abstract Syntax Tree) transform applies the trait. Instead of doing
that, we can explicitly implement GormEntity<T> and get the benefits of GORM as
well as compile-time type safety and IDE assistance.

Ratpack and Grails GORM | 197

With the Person domain class in place, we can incorporate GORM support into our
application and bootstrap some simple data. Let’s continue the demonstration by tak‐
ing a look at what our basic application logic will look like. The code in Example 8-12,
which includes the bindings block and a Service implementation, shows the basic
setup.

Example 8-12. Basic setup of a Ratpack application with GORM

import app.GormModule
import app.Person
import ratpack.service.Service
import ratpack.service.StartEvent
import ratpack.exec.Blocking
import grails.orm.bootstrap.HibernateDatastoreSpringInitializer

import static ratpack.groovy.Groovy.ratpack

ratpack {
 bindings {
 module GormModule

 bindInstance new Service() {
 void onStart(StartEvent e) throws Exception {
 e.getRegistry().get(HibernateDatastoreSpringInitializer)
 Blocking.exec {
 Person.withNewSession {
 new Person(name: "Luke Daley").save()
 new Person(name: "Rob Fletch").save()
 new Person(name: "Dan Woods").save()
 }
 }
 }
 }
 }
 handlers {
 // ... nothing here for now.
 }
}

For this example, the GormModule will come from within our project and will be
demonstrated next. This module will be responsible for incorporating all of the
components necessary to get GORM up and running.

Here we explicitly request the HibernateDatastoreSpringInitializer to
ensure that GORM’s infrastructure was properly initialized. Doing this here will
ensure that all component bindings have been properly created and that GORM
is aware of our Person class.

198 | Chapter 8: Data-Driven Web Applications

It is necessary to wrap the GORM calls using the Blocking execution fixture to
ensure that the Hibernate session is safely bound to its own thread.

We can utilize GORM’s DomainClass.withNewSession(..) call to construct a
new Hibernate session, and wrap the database calls within the supplied Closure.

Construct a new Person object with the name property that we specify, and call
the save() method on it.

The withNewSession and save methods come from the GormEntity<T> trait that the
Person class explicitly inherited. These are the static and instance-level methods that
allow GORM to work with domain objects as rich models.

The GormModule is the most important part to the whole equation. It is the incorpora‐
tion of this that allows GORM to be used at all within our application. The Guice
module logic in Example 8-13 shows the components and calls necessary to bootstrap
the GORM infrastructure in our application.

Example 8-13. The module for setting up GORM

package app

import com.google.inject.AbstractModule
import com.google.inject.Provides
import com.google.inject.Singleton
import grails.orm.bootstrap.HibernateDatastoreSpringInitializer
import org.h2.Driver
import org.springframework.context.support.GenericApplicationContext
import org.springframework.jdbc.datasource.DriverManagerDataSource

class GormModule extends AbstractModule {
 @Override
 protected void configure() {

 }

 @Provides
 @Singleton
 GenericApplicationContext genericApplicationContext() {
 new GenericApplicationContext()
 }

 @Provides
 @Singleton
 DriverManagerDataSource dataSource(GenericApplicationContext appCtx) {
 def dataSource =
 new DriverManagerDataSource("jdbc:h2:mem:grailsDb1;DB_CLOSE_DELAY=-1",
 'sa', '')

Ratpack and Grails GORM | 199

 dataSource.driverClassName = Driver.name
 appCtx.beanFactory.registerSingleton 'dataSource', dataSource
 dataSource
 }

 @Provides
 @Singleton
 HibernateDatastoreSpringInitializer initializer(DriverManagerDataSource ds,
 GenericApplicationContext appCtx) {
 def datastoreInitializer = new HibernateDatastoreSpringInitializer(Person)
 datastoreInitializer.configureForBeanDefinitionRegistry(appCtx)
 appCtx.refresh()
 datastoreInitializer
 }
}

The GormModule is built no different from any other Guice module that our
application would use.

In this case, we do not need to do anything in the configure block, as we will use
micro-providers to get access to the different components during their initializa‐
tion phases.

As noted earlier, GORM utilizes the Spring Framework behind the scenes for a
variety of tasks, including transaction management. We can construct a simplis‐
tic GenericApplicationContext, as we only need a limited container to make
GORM work in a standalone fashion.

When constructing the DriverManagerDataSource, we will need to register it in
the Spring application context, so using the Guice micro-provider mechanism,
we can inject it as part of the provider method signature.

Construct the dataSource that GORM will use. This is utilizing the H2 in-
memory connect string, similar to that demonstrated in the prior section.

Here, we set the driverClassName on the dataSource to the org.h2.Driver class
name, also similar to what was demonstrated in the prior section.

Now we register the dataSource as a singleton in Spring application context.

Note that here we request the DriverManagerDataSource, but do not explicitly
need it for initializing the HibernateDatastoreSpringInitializer. We do this
to ensure that all the datasource is properly registered in the Spring application
context.

200 | Chapter 8: Data-Driven Web Applications

We can use the HibernateDatastoreSpringInitializer to initialize the Person
class for use with GORM. If you have a robust domain model, multiple domain
classes can be supplied here, but all of the domain classes that you intend to use
will need to be initialized through this mechanism.

Here, we configure the datastoreInitializer using the Spring application con‐
text.

Finally, we need to initalize the Spring application context using the refresh()
call.

This might seem complex and complicated, but if you follow through the flow of ini‐
tialization and preparation, only three components are truly necessary to get GORM
working in our application.

With the GORM fixtures bootstrapped and in place, we can expand out our rat‐
pack.groovy file to provide an endpoint to inspect the data in the PERSON database
table. Example 8-14 shows the addition of a get handler.

Example 8-14. The get handler listing Person database records

import app.GormModule
import app.Person
import grails.orm.bootstrap.HibernateDatastoreSpringInitializer
import ratpack.exec.Blocking
import ratpack.service.Service
import ratpack.service.StartEvent

import static ratpack.groovy.Groovy.ratpack
import static ratpack.jackson.Jackson.json

ratpack {
 bindings {
 module GormModule

 bindInstance new Service() {
 void onStart(StartEvent e) throws Exception {
 e.getRegistry().get(HibernateDatastoreSpringInitializer)
 Blocking.exec {
 Person.withNewSession {
 new Person(name: "Luke Daley").save()
 new Person(name: "Rob Fletch").save()
 new Person(name: "Dan Woods").save()
 }
 }
 }
 }
 }

Ratpack and Grails GORM | 201

 handlers {
 get {
 Blocking.get {
 Person.withNewSession {
 Person.list().collect { p ->
 [id: p.id, version: p.version, name: p.name]
 }
 }
 } then { personList ->
 render(json(personList))
 }
 }
 }
}

The get handler, bound to the default route.

We wrap the database calls in Blocking.get(..) to ensure they are bound to a
blocking thread.

Again, we use the withNewSession to ensure a database session is bound to the
blocking thread.

The call to Person.list() executes the equivalent of a SELECT * FROM PERSON.
As noted in the introduction to this section, when we work with GORM domain
objects, we need to make sure they are no longer bound to a Hibernate session
before moving them out of the blocking and then into the computation thread.
To accomplish this, we can map the resulting properties to a data transfer object
(in this case, a Map).

We can render the resulting data as JSON, just as you would any other data.

If we start this application and navigate a browser to http://localhost:5050, we will see
the resulting JSON data shown in Example 8-15.

Example 8-15. JSON representation of Person objects

[
 {
 "id": 1,
 "version": 0,
 "name": "Luke Daley"
 },
 {
 "id": 2,
 "version": 0,
 "name": "Rob Fletch"
 },

202 | Chapter 8: Data-Driven Web Applications

 {
 "id": 3,
 "version": 0,
 "name": "Dan Woods"
 }
]

We have successfully built our first data-driven web application with Ratpack and
GORM! To add data to the database, we can expose a POST handler at /create, which
pulls the name property from provided URL-encoded form data. Example 8-16 shows
the addition of the post handler.

Example 8-16. Adding the post handler to create and save Person records

import app.GormModule
import app.Person
import grails.orm.bootstrap.HibernateDatastoreSpringInitializer
import ratpack.service.Service
import ratpack.service.StartEvent
import ratpack.form.Form
import ratpack.exec.Blocking
import static ratpack.groovy.Groovy.ratpack
import static ratpack.jackson.Jackson.json

ratpack {
 bindings {
 module GormModule

 bindInstance new Service() {
 void onStart(StartEvent e) throws Exception {
 e.getRegistry().get(HibernateDatastoreSpringInitializer)
 Blocking.exec {
 Person.withNewSession {
 new Person(name: "Luke Daley").save()
 new Person(name: "Rob Fletch").save()
 new Person(name: "Dan Woods").save()
 }
 }
 }
 }
 }
 handlers {
 get {
 Blocking.get {
 Person.withNewSession {
 Person.list().collect { p ->
 [id: p.id, version: p.version, name: p.name]
 }
 }
 } then { personList ->
 render(json(personList))

Ratpack and Grails GORM | 203

 }
 }
 post("create") {
 parse(Form).then { f ->
 def name = f.name
 if (name) {
 Blocking.get {
 Person.withNewSession {
 new Person(name: name).save()
 }
 } onError { t ->
 response.status(400)
 render(json([success: false, error: t.message]))
 } then {
 render(json([success: true, error: null]))
 }
 } else {
 response.status(400)
 render(json([success: false, error: "name not provided"]))
 }
 }
 }
 }
}

As we have seen previously, here we parse the request data using the Form type,
from which we can access the name property in the following line.

Check to make sure that a name value was actually sent.

If it was, then move the call to the database to a blocking thread.

Again, use the withNewSession GORM mechanism to create a new Hibernate
session on the blocking thread.

Create the new Person object and save it.

Capture any errors here and respond to the client accordingly.

If there were no errors, then render back a success message.

If we did not receive a name value with the request, then send back a friendly
error message indicating the error.

This is all that is necessary to demonstrate how to use GORM in Ratpack to build
robust, data-driven web applications! That said, we can do a little more work and
make this an even simpler process.

204 | Chapter 8: Data-Driven Web Applications

We can build on the fact that we are not utilizing the @Entity annotation and corre‐
sponding AST transformation to apply the rich domain model capabilities to the
Person class to simplify the process of working with GORM domain objects. GORM
has done an excellent job of allowing developers to extend its capabilities, and we can
leverage that fact to overload the withNewSession method to automatically schedule
database calls to the blocking thread pool. Consider the trait shown in Example 8-17
to understand the customizations we can provide GORM.

Example 8-17. The GormEntity trait adapted for Ratpack

package app

import groovy.transform.CompileStatic
import org.grails.datastore.gorm.GormEnhancer
import org.grails.datastore.gorm.GormEntity
import org.grails.datastore.gorm.GormStaticApi
import ratpack.exec.Blocking
import ratpack.exec.Promise

@CompileStatic
trait RatpackGormEntity<D> extends GormEntity<D> {
 private static GormStaticApi<D> internalStaticApi

 static GormStaticApi<D> currentGormStaticApi() {
 if (internalStaticApi == null) {
 internalStaticApi = (GormStaticApi<D>) GormEnhancer.findStaticApi(this)
 }
 internalStaticApi
 }

 static <V> Promise<V> withNewSession(Closure callable) {
 Blocking.get {
 (V) currentGormStaticApi().withNewSession(callable)
 }
 }
}

The most important thing that we need to keep track of is the GormStaticApi.
This provides the domain model with the static methods that allow you to easily
work with databases through the rich domain model fixtures.

We capture the GormStaticApi, which we will delegate the withNewSession call
to from within our blocking thread.

This is where we overload the withNewSession method.

And we ensure that any calls to the database are scheduled to a blocking thread.

Ratpack and Grails GORM | 205

This call to the GormStaticApi is what will actually perform the database calls
that are wrapped within the Closure supplied to withNewSession.

With the RatpackGormEntity trait in place, we can implement it from the Person
domain object, as shown in Example 8-18.

Example 8-18. Person with RatpackGormEntity

package app

class Person implements RatpackGormEntity<Person> {
 Long id
 Long version
 String name

 static constraints = {
 name blank: false
 }
}

As you can see, the change to Person is trivial, but we now get the benefit of seam‐
lessly integrating into Ratpack’s execution model. Given that Person now implements
RatpackGormEntity, we can change our application to remove the unnecessary
Blocking calls. Example 8-19 demonstrates calling Person.withNewSession directly
now.

Example 8-19. Removing the unnecessary blocking calls

import app.GormModule
import app.Person
import grails.orm.bootstrap.HibernateDatastoreSpringInitializer
import ratpack.form.Form
import ratpack.service.Service
import ratpack.service.StartEvent

import static ratpack.groovy.Groovy.ratpack
import static ratpack.jackson.Jackson.json

ratpack {
 bindings {
 module GormModule

 bindInstance new Service() {
 void onStart(StartEvent e) throws Exception {
 e.getRegistry().get(HibernateDatastoreSpringInitializer)
 Person.withNewSession {
 new Person(name: "Luke Daley").save()
 new Person(name: "Rob Fletch").save()
 new Person(name: "Dan Woods").save()

206 | Chapter 8: Data-Driven Web Applications

 } operation() then()
 }
 }
 }
 handlers {
 get {
 Person.withNewSession {
 Person.list().collect { p ->
 [id: p.id, version: p.version, name: p.name]
 }
 } then { personList ->
 render(json(personList))
 }
 }
 post("create") {
 parse(Form).then { f ->
 def name = f.name
 if (name) {
 Person.withNewSession {
 new Person(name: name).save()
 } onError { t ->
 response.status(400)
 render(json([success: false, error: t.message]))
 } then { person ->
 render(json([success: true, error: null]))
 }
 } else {
 response.status(400)
 render(json([success: false, error: "name not provided"]))
 }
 }
 }
 }
}

Because of GORM’s ability to extend its out-of-the-box capabilities to fit our use case,
we can easily imagine more robust integrations that also integrate with the execution
model. These integrations can serve as a welcome fixture for newcomers to Ratpack
who are familiar with building domain objects in Grails, and want to leverage
GORM’s capabilities.

GORM has a lot of capabilities and flexibilities that have not been demonstrated in
this section. It is left as an exercise to the reader to review the extensive documenta‐
tion provided by the Grails project.

Designing Data-Driven Service APIs in Ratpack
Regardless of the method you choose to access databases within your data-driven web
applications, a good strategy to follow is to decouple your data access layer from your
handler logic. In that regard, it is advisable to create a service tier that manages the

Designing Data-Driven Service APIs in Ratpack | 207

http://bit.ly/grails-gorm
http://bit.ly/grails-gorm

interactions your application will have with your data. From within your handler
logic, you can employ services to get access to the data you wish to serve.

The tactic of decoupling your handler logic from your data access logic not only cre‐
ates a conceptual boundary, or “architecture slice”, within your application, but it can
also allow you to change out the data access implementation you have chosen as your
requirements evolve. To understand this better, consider that you are building a sim‐
ple data-driven application that only needs to create and provide the Person model
object that we discussed in the prior section. Your initial implementation may choose
to use the Groovy SQL mechanism described at the beginning of this chapter. As your
requirements evolve, you may find that you need to persist and serve additional mod‐
els that are referenced by the Person class. To facilitate this, you may elect to move to
GORM to garner its support for modeling collection relationships.

Were you to build the data access implementation directly into your handler logic, a
migration from Groovy SQL to GORM would certainly be nontrivial. It may, in fact,
require rearchitecting the entire application. Instead, if you were to build your data
access into your application’s service layer, you would only need to modify the service
implementation to change the underlying persistence mechanism.

If we again consider the Person model object, but instead have moved the storage
and retrieval of this type into a service, we can then choose to utilize the service
within our handler to get access to the Person types. The interface in Example 8-20
demonstrates how we can model the service class to suit our needs.

Example 8-20. The PersonService interface

package app

import ratpack.exec.Operation
import ratpack.exec.Promise

interface PersonService {
 /**
 * List all the people in the database
 * @return a promise to a list of {@link Person} models
 */
 Promise<List<Person>> list()

 /**
 * Saves the provided {@link Person} model
 * @param person
 */
 Operation save(Person person)
}

208 | Chapter 8: Data-Driven Web Applications

Arguably the most important aspect to understand about this is the service’s contracts
will specify Promise and Operation return types throughout. Using these types allows
us to decide not only the underlying implementation type, but also whether the
implementation will use asynchronous or synchronous APIs behind the scenes.
Example 8-21 demonstrates a concrete implementation using Groovy SQL.

Example 8-21. The PersonService implementation with Groovy Sql

package app

import com.google.inject.Inject
import groovy.sql.Sql
import ratpack.exec.Blocking
import ratpack.exec.Operation
import ratpack.exec.Promise

class GroovySqlPersonService implements PersonService {
 private final Sql sql

 @Inject
 GroovySqlPersonService(Sql sql) {
 this.sql = sql
 }

 @Override
 Promise<List<Person>> list() {
 Blocking.get {
 sql.rows("select * from test").collect {
 def id = (long)it["id"]
 def name = it["name"]
 new Person(id: id, name: name)
 }
 }
 }

 @Override
 Operation save(Person person) {
 Blocking.get {
 sql.execute "INSERT INTO TEST (NAME) VALUES($person.name)"
 }.operation()
 }
}

Now the application code will need to be modified to bind the PersonService to the
GroovySqlPersonService concrete type, and the handler logic will need to be
changed to call the service class instead of using the Sql type directly. The updated
application logic in Example 8-22 demonstrates these changes.

Designing Data-Driven Service APIs in Ratpack | 209

Example 8-22. Updated ratpack.groovy using the PersonService

import app.GroovySqlPersonService
import app.Person
import app.PersonService
import groovy.sql.Sql
import org.h2.jdbcx.JdbcDataSource
import ratpack.form.Form
import ratpack.groovy.sql.SqlModule
import ratpack.service.Service
import ratpack.service.StartEvent

import javax.sql.DataSource

import static ratpack.groovy.Groovy.ratpack
import static ratpack.jackson.Jackson.json

ratpack {
 bindings {
 module SqlModule
 bindInstance DataSource, new JdbcDataSource(
 URL: "jdbc:h2:mem:test;DB_CLOSE_DELAY=-1",
 user: "sa",
 password: ""
)

 bind PersonService, GroovySqlPersonService

 bindInstance new Service() {
 void onStart(StartEvent e) throws Exception {
 // ... bootstrapping logic from beginning of the chapter ...
 }
 }
 }
 handlers {
 get { PersonService personService ->
 personService.list().then { personList ->
 render(json(personList))
 }
 }
 post("create") { PersonService personService ->
 parse(Form).then { f ->
 def name = f.name
 if (name) {
 def person = new Person(name: name)
 personService.save(person).onError { t ->
 render(json([success: false, error: t.message]))
 } then {
 render(json([success: true]))
 }
 } else {
 response.status(400)

210 | Chapter 8: Data-Driven Web Applications

 render(json([success: false, error: "name is required"]))
 }
 }
 }
 }
}

In the bindings block, we specify to bind the PersonService interface to the
GroovySqlPersonService concrete implementation.

Within the handler closure, we can inject the PersonService interface, which
will resolve the GroovySqlPersonService concrete type.

Within the handler logic, we simply interact with the list() method on the Per
sonService. The data access is completely abstracted from the handler now.

Same as with the get handler, we inject the PersonService.

A change here is that we create a Person type for passing to the PersonService.

We call the save() method on the PersonService, which returns an operation (a
Promise with void return type).

With the data access layer now cleanly moved into the GroovySqlPersonService, the
handler logic can focus on what it is most appropriately designed for: handling the
request. Any of the data access concerns are now isolated to the PersonService
implementation. In the future, if we decide to migrate to using GORM instead of
Groovy SQL, we simply need to create the appropriate PersonService implementa‐
tion, and trade out the binding in the bindings section of the application. No update
to the handler logic is necessary.

Chapter Summary
In this chapter, you have been exposed to the various ways in which Ratpack can
facilitate data access for building robust, data-driven web applications. We have
explored the database integration provided by Groovy SQL and Ratpack’s SqlModule;
we have discussed connection pooling and how to accomplish that using HikariCP;
we have explored integrating with GORM; and we have discussed a clean architecture
pattern between handlers and data access.

With the understanding provided up until this point in the book, you are now fully
equipped to build high-performance, data-driven web applications that leverage a
vast majority of the features provided by Ratpack. You are well through your journey
to being a Ratpack power developer!

Chapter Summary | 211

CHAPTER 9

Ratpack and Spring Boot

Earlier in the book, we discussed Ratpack’s concept of registries and how registries
are used to store and retrieve components that are used throughout the framework
and your application. As you well know by now, registries are the mechanism that
allow you to build Ratpack applications with no dependency injection (DI) with
Guice and Guice modules. It is also through the Registry paradigm that we can
accommodate an application architecture that employs multiple DI frameworks to
allow for the most flexibility and use of best-in-breed tooling.

All of this is to say, a unique an important feature of Ratpack’s is its ability to intero‐
perate with one or more DI providers in isolation, allowing you to leverage the
strengths of whatever component providing framework you choose, without the risk
of those frameworks overlapping one another. From an application development per‐
spective, if you continue to use the Registry as your mechanism for retrieving com‐
ponents, the underlying backing of that registry will not drastically change how your
code looks, and will allow you to choose to bootstrap components in your application
as is best suited to your requirements.

This is important to application development because there are many libraries avail‐
able that ship with integrations specifically for Guice or Spring. With other web
frameworks that do not provide you an abstraction on DI, your application needs to
be structured around the DI provider that is already available, or you need to make a
choice to architect your application around a single DI provider. With Ratpack, you
are given the opportunity to leverage many DI providers to suit your needs. This also
means that Ratpack’s core features, which are provided as Guice modules, can con‐
tinue to be leveraged even in a code base that wishes to bind application components
through Spring.

Similar to Guice’s integration with Ratpack, Spring Boot integration is achieved
through a Registry implementation that has backing in a Spring application context.

213

Because registries can be layered, the components bound to Guice are able to be pro‐
vided directly alongside those that were bound within a Spring application context.
Indeed, given the Registry paradigm’s flexibility, components that were bound in
Guice are able to be overridden from a Spring-backed registry.

Spring is perhaps most well known for its popularity as a web framework, which pro‐
vides application developers with a structure for building web applications around
the model-view-controller design pattern. The underlying structure of Spring-based
web applications relies on the Servlet API, which integrates with a web application
container like Tomcat or Jetty. Modern Spring web applications that are built on
Spring Boot can be packaged into standalone deployments that do not require a per‐
sistent web application container, though they still rely on it (this is usually provided
as an embedded fixture of the application).

As we have already discussed, Ratpack is built on Netty’s networking library, not serv‐
lets, and it does not require any web application container. To that end, servlet-based
web applications cannot be affixed over top of Ratpack’s HTTP layer as a stand-in
replacement for request dispatching. Web components that are provided from a
Spring web application context will not find a suitable home in a Ratpack application.
Controller and Filter types are not supported as integrated components in a Rat‐
pack application’s HTTP request processing flow. Furthermore, other Java EE adapta‐
tions in Spring, such as rendering JSP views, will not be supported in Ratpack.

However, Spring is much more than just a web framework. Indeed, the web facets to
Spring’s arsenal of modules is but one higher-level layer to a robust and comprehen‐
sive underlying infrastructure. Modern Spring applications built using Spring Boot’s
convention-over-configuration engine can employ the vast majority of the Spring
ecosystem of integrations without the need for ever integrating the servlet-based web
layer.

Spring Boot is the basis upon which Ratpack and Spring integrate to give you the
opportunity to leverage Ratpack’s high-performance web layer with Spring’s mature
infrastructure and vast community. Developers who are accustomed to working with
Spring can enjoy a familiar programming model, while garnering all the benefits that
Ratpack provides. This includes all of the recent advancements that have taken place
in Spring Boot to make the process of building and defining a Spring application
structure so easy. Ratpack and Spring Boot’s goals of providing a friendly develop‐
ment experience and producing lightweight deployables are so aligned that the inte‐
gration of the two frameworks is a perfect fit for developers coming from a Spring
background.

The differences between the two frameworks in developing an HTTP request pro‐
cessing flow will need to be considered. From a strictly architectural design perspec‐
tive of web applications, regardless of the underlying web framework, you would
reserve some sanity for yourself to have a clear delineation between the logic that was

214 | Chapter 9: Ratpack and Spring Boot

responsible for parsing data from a request and the logic that was responsible for
doing something with that data. To say that more concretely, the logic at the edge of
your web application—in Ratpack, a Handler; in Spring, a Controller—should only
have enough logic to get the data necessary out of the incoming request and delegate
that data off to a service class to do some processing. The service class, in turn, would
return some data that the request-taking logic would send back with the response.

Consider a scenario where you have a web application that provides a RESTful HTTP
API for working with Product model objects. For the sake of simplicity, let’s say that
the API is only responsible for getting a Product by a specific id or returning a list of
all Product types. The code in Example 9-1 shows what a traditional interface for this
service might look like.

Example 9-1. ProductService interface

interface ProductService {
 Product get(Long id)
 List<Product> list()
}

Let’s keep it simple and say that the ProductService is coming from legacy code or a
client library and that it is non-async and blocks on both the get and list calls. By
now, the code demonstrated in Example 9-2 should be familiar to you.

Example 9-2. Ratpack application with Product REST API

ratpack {
 bindings {
 bind(ProductService, BlockingProductService)
 }
 handlers {
 prefix("product") {
 get(":id") { ProductService productService ->
 def id = pathTokens.asLong("id")
 Blocking.get {
 productService.get(id)
 }.then { product ->
 if (product) {
 render(json(product))
 } else {
 response.status(404)
 render(json([status: "not_found"]))
 }
 }
 }

 get { ProductService productService ->
 Blocking.get {

Ratpack and Spring Boot | 215

 productService.list()
 }.then { products ->
 render(json(products))
 }
 }
 }
 }
}

We provide the binding of the ProductService interface to the assumed concrete
implementation, BlockingProductService.

This is the request handler for getting a Product by ID.

This is the request handler for getting a list of Product types from the Product
Service.

As you can see in the example, the handler logic for both getting Product types by ID
and listing all products are focused strictly on dealing with the properties of the
request and response lifecycle. All the heavy lifting of looking up products is done in
our application’s service layer through the ProductService.

Now, let’s consider how the preceding Ratpack code translates to a Spring Boot appli‐
cation that is using a Controller to serve the Product REST API, as is shown in
Example 9-3.

Example 9-3. Spring Boot application with Product REST API

@RestController
@RequestMapping("/product")
class ProductController {

 private final ProductService productService

 @Autowired
 ProductController(ProductService productService) {
 this.productService = productService
 }

 @RequestMapping(method = RequestMethod.GET)
 Product get(@PathVariable Long id, HttpServletResponse response) {
 def product = this.productService.get(id)
 if (product) {
 return product
 }
 response.status = 404
 return null
 }

216 | Chapter 9: Ratpack and Spring Boot

 @RequestMapping(method = RequestMethod.GET)
 List<Product> list() {
 this.productService.list()
 }
}

The ProductController is annotated with @RestController, which informs
Spring that the resulting objects should be marshalled to their content-
appropriate type. Also using the @RequestMapping annotation, we bind the con‐
troller to the /product endpoint.

Here, we autowire the ProductService using constructor injection (which is
favored over field injection).

This is where we define the endpoint for getting a specific Product by its ID.

This is the endpoint for listing all products.

This Spring Boot web application still needs a bit more work. Let’s assume, for the
sake of brevity, that the application is a standalone Spring Boot (i.e., defines a runna‐
ble Main class) and that the Spring dependencies are contained within the Main class.
The code for the Main class is shown in Example 9-4.

Example 9-4. Main class for Spring Boot Product API application

@SpringBootApplication
class Main {

 @Bean
 ProductService productService() {
 new BlockingProductService()
 }

 static void main(args) {
 SpringApplication.run(Main, args)
 }
}

We annotate the Main class with @SpringBootApplication, which among many
other things, will component scan the classpath, allowing the ProductControl
ler to participate in the web application.

This is where we bind the ProductService. We can bind it in the Spring applica‐
tion context using the @Bean annotation on the method.

This is the starting point to the Spring Boot application.

Ratpack and Spring Boot | 217

With all the pieces in place, we have a good parallel between Ratpack and Spring Boot
implementations of the Product REST API. These examples illustrate how in both
implementations the logic that is responsible for managing the request-response life‐
cycle is focused solely on that task, and leaves the actual work of getting the Product
types to the ProductService.

If you follow this pattern of implementing request handling logic separate from the
heavy lifting of gathering data for a request, then you are well on your way to employ‐
ing Spring Boot in your Ratpack applications. By the end of this chapter, you will
understand how to take the @Bean definitions from a Spring Boot application and
make them accessible to your Handler types in Ratpack.

Adding Spring Boot to Your Ratpack Project
Like most of Ratpack’s framework-level features, the Spring Boot integration is pro‐
vided as an optional module that you can incorporate into your project’s Gradle build
script. The build script in Example 9-5 demonstrates a Ratpack Groovy project with
Spring Boot support.

Example 9-5. Gradle build script with Ratpack Spring Boot dependency

buildscript {
 repositories {
 jcenter()
 }
 dependencies {
 classpath 'io.ratpack:ratpack-gradle:1.3.3'
 }
}

apply plugin: 'io.ratpack.ratpack-groovy'

repositories {
 jcenter()
}

dependencies {
 compile ratpack.dependency("spring-boot")
}

We use the ratpack.dependency(..) faculty, as we would any other framework
dependency.

With the Spring Boot dependency in place, we can create a Spring Boot configuration
class, which is where we will define the bean definitions and enable Spring Boot’s
convention-over-configuration mechanisms to take over the bootstrapping of com‐

218 | Chapter 9: Ratpack and Spring Boot

ponents. Example 9-6 demonstrates how simple it is to build Ratpack applications
with Spring Boot.

Example 9-6. Spring Boot configuration class

package app

import org.springframework.boot.autoconfigure.SpringBootApplication

@SpringBootApplication
class AppSpringConfig {
}

As noted in the introductory section to the chapter, @SpringBootApplication
does a lot of work to detect application-level components and make them avail‐
able in the Spring application context.

This alone is enough to give you a plethora of functionality from Spring. When the
@SpringBootApplication annotation is provided, Spring Boot’s autoconfiguration
engine is activated, and the classpath will be scanned for certain packages and types,
for which, if found, Spring will create the appropriate bean definitions that you will
be able to use throughout your Ratpack application.

If we build on the example from earlier in the chapter and say that we want our Rat‐
pack application to provide a RESTful API for a Product domain, then we can clearly
outline the true strengths that Spring Boot brings. To begin implementing the Pro
ductService shown earlier, we will need some access to a database. The discussion in
the previous chapter could serve as one solution to this problem. However, given that
we are now working in the Spring ecosystem, our application can make use of a pow‐
erful tool that is now at our disposal: Spring Data.

Spring Data provides a mature and comprehensive platform for building data access
objects and working with data-driven domain models. Through Spring Data, and
thus in our Ratpack application, we can even leverage the Java Persistence API, which
should be familiar to seasoned Java developers. To begin going down this path, we
will need to add some additional dependencies from Spring to our project. The upda‐
ted Gradle build script in Example 9-7 applies a so-called “starter” dependency for
Spring Data’s JPA integration.

Example 9-7. Gradle build script with Spring data starter

buildscript {
 repositories {
 jcenter()
 }
 dependencies {

Adding Spring Boot to Your Ratpack Project | 219

 classpath 'io.ratpack:ratpack-gradle:1.3.3'
 }
}

apply plugin: 'io.ratpack.ratpack-groovy'

repositories {
 jcenter()
}

dependencies {
 compile ratpack.dependency("spring-boot")
 compile 'org.springframework.boot:spring-boot-starter-data-jpa:1.2.4.RELEASE'
 compile 'com.h2database:h2:1.4.187'
}

Here we add the Spring Data JPA starter dependency, which provides the depen‐
dencies necessary for Spring Boot to bootstrap the Spring Data JPA components.

We will also add the H2 embedded database driver, which Spring Boot will recog‐
nize and automatically configure a datasource for Spring Data.

Note that we will use the H2 embedded database driver simply for demonstration’s
sake. The Spring Data JPA project page has comprehensive documentation on using
drivers for other databases.

The next step will be to create our Product domain class as a JPA entity. We can use
standard JPA annotations to define the necessary properties of the model object.
Example 9-8 shows the domain model we will be working with.

Example 9-8. Product JPA entity

package app

import javax.persistence.Column
import javax.persistence.Entity
import javax.persistence.GeneratedValue
import javax.persistence.Id

@Entity
class Product {
 @Id
 @GeneratedValue
 Long id

 @Column(nullable = false)
 String name

 @Column(nullable = false)
 String description

220 | Chapter 9: Ratpack and Spring Boot

http://projects.spring.io/spring-data-jpa/

 @Column(nullable = false, precision = 7, scale = 2)
 BigDecimal price
}

When Spring Boot’s autoconfiguration engine detects the JPA libraries on the class‐
path with the H2 embedded database, it will automatically create the database schema
on our behalf. It will also automatically enable JPA repository types within Spring
Data, which will allow us to succinctly create a data access object for the Product
database table. The sample code in Example 9-9 demonstrates how much power and
simplicity Spring Boot can bring to your project.

Example 9-9. Spring Data ProductRepository

package app

import org.springframework.data.repository.CrudRepository
import org.springframework.stereotype.Repository

@Repository
interface ProductRepository extends CrudRepository<Product, Long> {
}

We annotate the interface with @Repository, which instructs Spring Data that it
should utilize this interface as a data access object.

The interface extends the CrudRepository interface, which provides all of the
necessary create-read-update-delete methods that you could ever need.

This is literally all that is needed for Spring Boot to create a data access layer and
bootstrap the schema on our embedded database.

Creating a Spring Boot–Backed Registry
Now that we have built all of the pieces necessary for Spring Boot to do the heavy
lifting, we must incorporate the component bindings into our Ratpack application.
This is made simple through a factory method provided as part of the ratpack-
spring-boot module that was already incorporated as a project dependency earlier in
the chapter.

It was outlined earlier in the book in the discussion on registries, but at this point it is
especially important to understand that there are several different layers of registries
in Ratpack, thus giving several different ways to incorporate your Spring Boot config‐
uration into your Ratpack application. Given a Ratpack Groovy application that uti‐
lizes the ratpack.groovy script to define the application structure, you will need to
define the Spring Boot–backed registry as part of your handler chain. To accomplish

Creating a Spring Boot–Backed Registry | 221

this, you will first need to create the registry from the AppSpringConfig class shown
in the prior section. The ratpack.groovy script shown in Example 9-10 demonstrates
how to do this.

Example 9-10. Ratpack Groovy script with Spring Boot registry

import app.AppSpringConfig
import static ratpack.groovy.Groovy.ratpack
import static ratpack.spring.Spring.spring
import static ratpack.jackson.Jackson.json
import ratpack.exec.Blocking

def springRegistry = spring(AppSpringConfig)

ratpack {
 handlers {
 register(springRegistry)

 prefix("product") {
 get(":id") { ProductRepository productRepository ->
 def id = pathTokens.asLong("id")
 Blocking.get {
 productRepository.findOne(id)
 }.then { product ->
 if (product) {
 render(json(product))
 } else {
 response.status(404)
 render(json([status: "not_found"]))
 }
 }
 }
 get { ProductRepository productRepository ->
 Blocking.get {
 productRepository.findAll()
 }.then { products ->
 render(json(products))
 }
 }
 }
 }
}

Using the ratpack.spring.Spring.spring method, we can use the AppSpring
Config class to get a handle on a Registry implementation that provides compo‐
nents from the Spring application context.

222 | Chapter 9: Ratpack and Spring Boot

Here, we use the handler chain’s reigster method to apply the springRegistry
to the rest of the chain. When using the ratpack.groovy script, this is the best way
to accomplish Spring Boot integration.

With the Spring Boot–backed registry applied, we can inject the ProductReposi
tory and make use of it from within our handlers.

Although our API only surfaces methods for getting and listing Product types, the
ProductRepository is very capable of creating, updating, and deleting Product
entires from the database. To better demonstrate this, if we wanted to bootstrap some
data before our application starts up, we can do so just prior to the application defini‐
tion, still by leveraging the Spring Boot–backed registry. The code snippet in
Example 9-11 demonstrates inserting two entries prior to the application starting.

Example 9-11. Bootstrapping product data

def springRegistry = spring(AppSpringConfig)
def repo = springRegistry.get(ProductRepository)
def product1 = new Product(
 name: "Learning Ratpack",
 description: "The Best Book on Ratpack so far",
 price: 42.99
)
def product2 = new Product(
 name: "Programming Grails",
 description: "Top 10 Book on Grails",
 price: 38.99
)
repo.save([product1, product2])

ratpack {
 // ... rest of app ...
}

We use the springRegistry to extract the ProductRepository.

Create a couple of Product objects to be stored.

Call the ProductRepository#save method to save them.

If you add these changes in, start the application, and navigate to http://localhost:
5050/product, you will see the JSON rendering of the product definitions we have put
in place, exactly as expected. You can test further by navigating to http://localhost:
5050/product/1, which will provide you with the JSON rendering of the product1
entry.

Creating a Spring Boot–Backed Registry | 223

This strategy makes your Spring Boot bindings available to your application through
a context registry. For most use cases, this is fine. However, if you build your Ratpack
application from a Main class, you can leverage Spring Boot as a user registry, which
has some added benefits. Most specifically, components that you bind in your Spring
Boot configuration will be able to participate in the application startup event.

Consider the Main class shown in Example 9-12.

Example 9-12. Ratpack Main class with Spring Boot

package app

import ratpack.server.RatpackServer
import ratpack.exec.Blocking

import static ratpack.spring.Spring.spring

class Main {
 static void main(args) {
 RatpackServer.start { spec -> spec
 .registry(spring(AppSpringConfig))
 .handlers { chain ->
 chain.prefix("product") { pchain ->
 pchain.get(":id") { ctx ->
 ProductRepository productRepository = ctx.get(ProductRepository)
 def id = pathTokens.asLong("id")
 Blocking.get {
 productRepository.findOne(id)
 }.then { product ->
 if (product) {
 render(json(product))
 } else {
 response.status(404)
 render(json([status: "not_found"]))
 }
 }
 }
 pchain.get { ctx ->
 ProductRepository productRepository = ctx.get(ProductRepository)
 Blocking.get {
 productRepository.findAll()
 }.then { products ->
 render(json(products))
 }
 }
 }
 }
 }
 }
}

224 | Chapter 9: Ratpack and Spring Boot

You can see here that we are using the Spring.spring(..) call to build the
Spring Boot–backed registry and apply it to the registry(..) method on the
application definition. This places the registry as a user registry.

Using this manner of constructing the application, we need to change our code to
pull the ProductRepository from the Context object that is supplied to our
Handler closure.

Similarly, when listing all objects, we can pull the ProductRepository from the
Context.

Note that in this example we are not doing any explicit bootstrapping of data. To do
this, let’s change things a little bit, and drive the bootstraping data from configuration
that we pull using Ratpack’s configuration mechanisms. If we create a ProductBoot
strapConfig class, as shown in Example 9-13, and inform Ratpack that it should
bind its configuration sources to it, then we can begin to use data-driven techniques
to initialize our data set. The modified application definition is shown in
Example 9-15.

Example 9-13. ProductBootstrapConfig class

package app

class ProductBootstrapConfig {
 List<Product> products
}

This is all that we need on this class for now. We can use the model directly, as it
is essentially just a Java (Groovy) bean.

We will map to this class from the YAML configuration file shown in Example 9-14.

Example 9-14. Bootstrap YAML config file

product:
 products:
 - name: Learning Ratpack
 description: The Best Book on Ratpack so far
 price: 42.99
 - name: Programming Grails
 description: Top 10 Book on Grails
 price: 38.99

Now, we can modify the application’s definition to incorporate the configuration file
and map it to the ProductBootstrapConfig.

Creating a Spring Boot–Backed Registry | 225

Example 9-15. Main class using Config to provide bootstrapping data

RatpackServer.start { spec -> spec
 .serverConfig { b -> b
 .yaml("bootstrap.yml")
 .sysProps()
 .env()
 .require("/product", ProductBootstrapConfig)
 .baseDir(BaseDir.find())
 .build()
 }
 .registry(Spring.spring(AppSpringConfig))
 .handlers { chain ->
 // handlers
 }
}

We configure the application’s ServerConfig here in the definition.

And reference the bootstrap.yml file. Reminder that this file exists within the base
directory of the project. For the purposes of the main class demonstration, the
later call to baseDir(BaseDir.find()) will scan the classpath for the .ratpack
marker file to know where to get bootstrap.yml from.

Then, we map the config’s data from the top-level product: key to the Product
BootstrapConfig class, which will become accessible in the registry.

Next, we can modify the AppSpringConfig class to provide Ratpack with a Service
implementation that can participate in the application startup event, as shown in
Example 9-16. Remember that this is possible because we are providing the Spring
Boot–backed registry as a user registry.

Example 9-16. Service instance in AppSpringConfig

package app

import ratpack.service.Service
import ratpack.service.StartEvent
import org.springframework.boot.autoconfigure.SpringBootApplication
import org.springframework.context.annotation.Bean

@SpringBootApplication
class AppSpringConfig {

 @Bean
 Service bootstrapDb(ProductRepository repo) {
 new Service() {
 void onStart(StartEvent e) throws Exception {
 def registry = e.registry

226 | Chapter 9: Ratpack and Spring Boot

 def bootstrapConfig = registry.get(ProductBootstrapConfig)
 repo.save(bootstrapConfig.products)
 }
 }
 }
}

Here, we create a bean definition for our Service class, and we use method injec‐
tion to inform Spring that we want access to the ProductRepository from here.

The StartEvent that is provided to the Service#onStart method is the joined
server and user registries, so we can access any component that has been
included as part of the application definition.

Because we used the require(..) call on the serverConfig block of our applica‐
tion definition to map the product config, we can access it here.

Finally, we can save the Product definitions that were mapped as part of the con‐
figuration binding.

This demonstration of interoperating Ratpack and Spring Boot mechanisms to pro‐
vide a data-driven bootstrapping sequence shows how well integrated the two frame‐
works can be.

API Design with Ratpack and Spring
It is important when we are designing APIs with Ratpack and Spring to remember
that we have some powerful faculties at our disposal for making asynchronous APIs
from those that are not inherently async. If you recall from earlier in the book, Rat‐
pack’s execution model provides deterministic execution of asynchronous calls, and
using the Blocking mechanism can adapt synchronous APIs to asynchronous func‐
tionality.

The ProductRepository that we have built from Spring Data is powerful, easy to use,
and easy to build, but it is not asynchronous and is certainly not nonblocking. It
would be a design flaw to simply accept that our handler logic had to wrap the calls to
the repository in Blocking, as that makes inferences about how the service should be
operating. It would be more beneficial for us to design another service that uses the
ProductRepository, but allows our handlers to work with Promise types that
abstract away the synchronous nature of the underlying repository. That way, we can
ensure that our handler code remains clean and unaware of the rest of the code’s
implementation detail. Also, in the future, if we find an asynchronous backing that is
more suitable than the CrudRepository provided by Spring Data, we simply change
out the backing implementation with no need to change our code.

API Design with Ratpack and Spring | 227

To begin, let’s create a ProductService interface that will act as our service interface
for the Product data. The code in Example 9-17 shows the contracts we will use.

Example 9-17. ProductService interface

package app

import ratpack.exec.Promise

interface ProductService {

 Promise<Product> get(Long id)

 Promise<List<Product>> list()
}

We define the contract for the method that will be used to get an individual Prod
uct by ID. Note that we are using the Promise return type now.

Similarly, we create a list() method that returns a Promise for the List of Prod
uct types.

Next, we must create a concrete implementation that we bind to the ProductService.
Because we will be using our Spring Data repository, we can use the implementation
demonstrated in Example 9-18.

Example 9-18. Spring Data ProductService implementation

package app

import org.springframework.stereotype.Service
import org.springframework.beans.factory.annotation.Autowired
import ratpack.exec.Promise
import ratpack.exec.Blocking

@Service
class SpringDataProductService implements ProductService {

 private final ProductRepository repo

 @Autowired
 SpringDataProductService(ProductRepository repo) {
 this.repo = repo
 }

 @Override
 Promise<Product> get(Long id) {
 Blocking.get {
 repo.findOne(id)

228 | Chapter 9: Ratpack and Spring Boot

 }
 }

 @Override
 Promise<List<Product>> list() {
 Blocking.get {
 repo.findAll()
 }
 }
}

We will use the @Service Spring stereotype annotation to define the function of
this service. Because our AppSpringConfig class is doing component scanning,
we do not need to explicitly add this bean definition—it will be detected and
bound automatically.

The @Autowired can be used on the constructor to inject the ProductRepository
into our service class.

We use Blocking here to inform Ratpack’s execution model about where to exe‐
cute the code segment. Our handler logic will stay clean and be agnostic of the
fact that our underlying implementation is synchronous.

Blocking operates here in the same way as described in the previous instance.

Given that we now have a concrete ProductService implementation that will be
automatically incorporated into the Spring application context, we can change our
handler logic to use this class instead of the ProductRepository directly.

Other Notes on API Design with Ratpack and Spring
Our application handlers are still probably doing too much, considering they are
making opinions about how the Product domains should be serialized back to callers.
That is to say, in the current example’s implementations, we only support rendering
back as JSON. That is probably fine for a simple use case, but a more reasonable and
robust implementation would be to provide a Renderer for the Product classes.

Renderer types can also be made available to Ratpack through the Spring Boot regis‐
try, and furthermore can be picked up automatically by Spring’s component scanning,
when annotated properly. The code in Example 9-19 shows the ProductRenderer
class that will make our handler logic simpler.

Example 9-19. ProductRenderer Spring component

package app

API Design with Ratpack and Spring | 229

import org.springframework.stereotype.Component
import ratpack.handling.Context
import ratpack.render.Renderer
import ratpack.groovy.Groovy

import static ratpack.jackson.Jackson.json

@Component
class ProductRenderer implements Renderer<Product> {

 @Override
 Class<Product> getType() {
 Product
 }

 @Override
 void render(Context ctx, Product product) throws Exception {
 ctx.byContent { spec -> spec
 .json {
 ctx.render(json(product))
 }
 .xml {
 // provide XML rendering
 }
 .html {
 ctx.render(Groovy.groovyTemplate([product: product], "product.html"))
 }
 }
 }
}

We can annotate the ProductRenderer with the @Component stereotype, and
Spring will automatically pick it up and make it available to Ratpack through its
registry.

In the render method, we can use the Context#byContent mechanism to render
the provided Product according to the type the caller is capable of receiving.

Given this, our handler logic can be simplified. If we build on the ProductService
example from earlier in this section, we can see what our updated handler logic
would look like. The updated Ratpack Groovy script is shown in Example 9-20.

Example 9-20. Ratpack Groovy script with ProductService and Renderer

import app.AppSpringConfig
import ratpack.groovy.template.TextTemplateModule
import static ratpack.groovy.Groovy.ratpack
import static ratpack.groovy.Groovy.groovyTemplate
import static ratpack.spring.Spring.spring
import static ratpack.jackson.Jackson.json

230 | Chapter 9: Ratpack and Spring Boot

def springRegistry = spring(AppSpringConfig)

ratpack {
 bindings {
 module TextTemplateModule
 }
 handlers {
 register(springRegistry)

 prefix("product") {
 get(":id") { ProductService productService ->
 def id = pathTokens.asLong("id")
 render productService.get(id)
 }
 get { ProductService productService ->
 productService.list().then { products ->
 byContent {
 json {
 render(json(products))
 }
 xml {
 // render XML of products
 }
 html {
 render groovyTemplate([products: products], "products.html")
 }
 }
 }
 }
 }
 }
}

You can see here the logic for rendering a Product back to clients is drastically
simplified. We make use of the fact that Ratpack can render Promise types
directly and ascertain the appropriate Renderer implementation.

Note that due to type erasure in the JVM, we cannot provide a Renderer for
generic List types, so our handler still has to do some of the rendering logic
directly.

The most important takeaway from this section is that we should always be cognizant
of how the data is being accessed by the underlying implementation, and take meas‐
ures to ensure that we are simplifying our handler logic, and letting our service tier
do the heavy lifting. When we follow this architectural paradigm within Ratpack, we
can more heavily leverage the Spring Boot integration throughout our application.

API Design with Ratpack and Spring | 231

Known Limitations
It is a known limitation that Guice and Spring do not cleanly interoperate with one
another. Many different approaches have been taken to help bridge component bind‐
ings between Guice and Spring, but there is still not a single definitive way to inter‐
connect the two frameworks. With Ratpack, that is OK, because we can access
component bindings through the provided registries. But Ratpack does not take any
additional measures to ensure that Guice bindings are available in the Spring applica‐
tion context, or vice versa. That is to say, you should not expect that framework-level
components bound from Guice modules would be available as autowire-candidates in
your Spring application context. When you need access to component bindings that
extend beyond Guice and Spring, however, the Ratpack registry can be used to
accommodate.

For example, a ratpack.service.Service implementation gets access to the user
registry at application start time via the onStart method, as shown earlier. From
within this block, you can access components that were bound in the Guice server
registry from within your Spring components, and vice versa.

When you are using both Spring Boot and Guice bound components, it is advisable
to make use of the registry to get access to components.

Chapter Summary
This chapter has provided a simple introduction to incorporating Spring Boot into
your Ratpack projects. A small demonstration of integrating with the Spring ecosys‐
tem has been shown through the examples that leverage Spring Data, but the world of
Spring is vast, with much to offer. Many of the other available Spring projects, includ‐
ing Spring Cloud, can be brought into your Ratpack projects to help you leverage
some of the most sophisticated technologies available on the JVM.

232 | Chapter 9: Ratpack and Spring Boot

CHAPTER 10

Reactive Programming in Ratpack

No conversation on Ratpack would be complete without a discussion on its reactive
and functional programming capabilities. Indeed, at its core, Ratpack employs reac‐
tive programming strategies to provide the framework-level features for which you
are already familiar. Indirectly, you have already been exposed to some of its reactive
programming paradigms. This chapter will serve to further round out your under‐
standing of how Ratpack utilizes reactive and functional programming, and how you
can leverage the mechanisms it provides in your own applications.

This chapter does not provide exhaustive coverage of all reactive programming para‐
digms, for this subject is gross and expansive in its own right. Instead, we will cover
the capabilities offered to you by Ratpack and its host of framework features that
serve as the underpinnings for building robust reactive systems. Generally speaking,
most Ratpack applications can be built in entirety without the developer ever having
to think about the fact that they are writing reactive code. This is one of the many
strong suits to Ratpack’s easy-to-understand API; however, when the need arises for
more complex reactive implementations, the capabilities are there, and Ratpack will
support you through your development process.

Overview of Reactive Programming
The conversation of reactive programming has become a hot topic in the JVM space
within just the last few years. Other languages have long since had the concept of
reactive programming, and some of those languages—namely those in the .NET fam‐
ily—have even formalized the data structures and interfaces upon which reactive sys‐
tems are built. It has not been until relatively recently, however, that those concepts
have been implemented and brought to the Java ecosystem.

233

Functional and reactive programming often go hand in hand with one another,
wherein a reactive system is supported by functional programming interfaces. This is
evident in the reactive infrastructure provided by Ratpack, as most of the interfaces
for performing reactive operations rely on functional programming interfaces and
interfaces with single abstract methods. These interfaces provide the footprint upon
which complex reactive processing pipelines are built, and as we explore the facilities
in place to accommodate reactive programming in Ratpack, you will begin to better
understand how the framework makes it as easy as possible to build reactive applica‐
tions.

Before we can delve into the fixtures that Ratpack provides for reactive programming,
we must first answer the most fundamental question in this conversation: what is
reactive programming? The answer to this question comes in many forms, but the
most definitive definition could perhaps be explained as follows: reactive program‐
ming is a technique by which a processing function requests data from a producing
function, a single element at a time. Multiple elements are delivered through a pipe‐
line, wherein one or many functions can affect the flow and form of data.

A reactive processing pipeline can be thought of in its simplest form as a two-part
system that is comprised of a producer and a subscriber. The reactive part of the pro‐
cess is initiated when the subscriber requests data from the producer. Data is said to
be streamed to the subscriber from the producer until the producer has no more data
to provide, at which time the processing pipeline is terminated.

The system of streaming data from producer to subscriber allows the subscriber to
remain focused on the processing of a single element of data, and is amenable to a
functional programming style. Following functional programming paradigms, a sub‐
scription, given an input, will always produce the same output. That is to say, if the
same data goes into the subscribing function, it will always produce the same result.

Working in the reactive programming style means that opinions about how the data
is processed can easily be imposed upon the functions of a pipeline, without any
explicit involvement from user code. Given that you have a firm understanding of
Ratpack’s execution model, you can likely understand now how the functions in a
reactive pipeline are able to be adapted into Ratpack’s processing system to ensure
determinstic execution. Indeed, the execution model in and of itself is built upon the
same technique of reactive pipelining that your application code uses.

Another aspect to reactive programming is that the various functions comprising a
processing pipeline are able to be composed in a way that allows for robust strategies
of data processing, including transformation, composition, collections, and map/
reduce strategies. If you consider the diagram in Figure 10-1, you can see how the
subscription at the bottom of the chain initiates the processing flow, thereby request‐
ing a data element from its upstream producer, which is a transforming function that
is both a producer and subscriber.

234 | Chapter 10: Reactive Programming in Ratpack

Figure 10-1. Reactive programming diagram

As you can see from the processing flow, the subscriber at the bottom of the pipeline
initiates the processing flow, thereby requesting data from its producing function,
which is shown here as the transforming function. The transforming function then
requests a data element from its upstream producer, the filtering function. A request is
then made to the producing function, which is the source of the data stream, to begin
emitting elements.

In this example, let’s say the producing function is getting its data elements from a
database, say by running a SELECT * FROM TABLE query. Each of the rows returned
from that query is then streamed to the downstream subscriber. Again, following our
example, let’s say the filtering function in the pipeline is responsible for ensuring that

Overview of Reactive Programming | 235

only rows that satisfy a predicate condition are streamed down the pipeline. Those
rows that make it through the filtering function are then sent to the transforming
function, which would be responsible for taking the row data and turning it into a
model object, for example. Finally, the subscriber that initiated the processing flow is
given the fully composed model object and sends it back to a consumer of our web
application.

This example serves strictly to exemplify the flow of data in a reactive pipeline.
Indeed, the possibilities for subscriber and producer implementations is definitively
endless. That said, there are many common processing use cases that systems like
those employed by Ratpack surface for the everyday needs of development. The fol‐
lowing list outlines some of those use cases and describes their function:

map

Transforms a data element from one structure to another.

filter

Checks a predicate condition against the data element to see if it should be sent
downstream for processing.

flatMap

Provides the means to map the result of a Promise into the stream.

wiretap

Data from the stream will be sent to this “listening” function prior to being sent
to the subscriber. This method is useful for tracing the flow of data through a
stream.

As we delve into Ratpack’s support for reactive programming, you will find that there
are various levels of reactive programming strategies available to you. From the most
simplistic, Promise.then(..) processing, to more robust reactive data streaming,
and even further into Ratpack’s integration with the comprehensive RxJava reactive
programming library, all the faculties you may ever need for building robust reactive
systems are at your fingertips.

Promise as a Reactive Data Structure
As we tour the showcase of reactive programming capabilities offered by Ratpack, we
first encounter an old friend with whom we are by now quite familiar, the Promise
type. Until this point, it may not have been clear that a Promise in Ratpack is actually
a reactive programming data structure, but as we look at some of its more advanced
usages, you will begin to understand how well it fits the very definition of reactive
programming. The only deviation you will find in the Promise processing flow from
how other reactive processing systems work is that a Promise is guaranteed to only
ever emit a single element into its stream. This is important to understand, because it

236 | Chapter 10: Reactive Programming in Ratpack

means that functions in the reactive pipeline need to be prepared to work with what‐
ever data is emitted from the Promise. This could be a single element of data or a col‐
lection of data, depending on what the promise-returning function delivers to the
subscription.

If we analyze a Promise type’s usage in strict reactive terminology, we can begin to
understand how the different parts of working with a Promise fit into the reactive
programming mold. As you are by now well familiar with building APIs that return
Promise, let’s revisit a familiar example from before of a data access object that pulls
some data from our application’s database and renders it back in JSON format. The
code in Example 10-1 shows our BlockingDatabaseService.

Example 10-1. BlockingDatabaseService implementation

package app

import javax.inject.Inject
import groovy.sql.Sql
import ratpack.exec.Promise
import ratpack.exec.Blocking

class BlockingDatabaseService {

 private final Sql sql

 @Inject
 BlockingDatabaseService(Sql sql) {
 this.sql = sql
 }

 Promise<User> getUser(String username) {
 Blocking.get {
 def row = sql.firstRow("SELECT * FROM USER WHERE USERNAME = $username")
 if (row) {
 new User(
 username: row["username"],
 email: row["email"],
 password: row["password"]
)
 } else {
 null
 }
 }
 }

 Promise<List<User>> getUsers() {
 Blocking.get {
 sql.rows("SELECT * FROM USER").collect { row ->
 new User(
 username: row["username"],

Promise as a Reactive Data Structure | 237

 email: row["email"],
 password: row["password"]
)
 }
 }
 }
}

The getUser method returns a Promise for a single User object.

The getUsers method returns a Promise for a List of User objects.

As you can see from this implementation, the getUser method is responsible for
returning a single User object, while the getUsers method returns an entire List of
User objects. The Promise here represents the producer in reactive programming
terms. However, it is important to understand that no processing will take place here
until there is a subscription that requests the data. That is where the code in our han‐
dler logic comes into play. Consider the corresponding Ratpack application shown in
Example 10-2, which utilizes the BlockingDatabaseService to serve endpoints for
accessing user data.

Example 10-2. Ratpack Groovy application

import ratpack.groovy.sql.SqlModule
import ratpack.hikari.HikariModule
import app.BlockingDatabaseService

import static ratpack.groovy.Groovy.ratpack
import static ratpack.jackson.Jackson.json

ratpack {
 bindings {
 module(SqlModule)
 module(HikariModule) { c ->
 c.dataSourceClassName = 'org.h2.jdbcx.JdbcDataSource'
 c.addDataSourceProperty 'URL', 'jdbc:h2:mem:test;DB_CLOSE_DELAY=-1'
 c.username = 'sa'
 c.password = ''
 }

 bind(BlockingDatabaseService)
 }
 handlers {
 prefix("user") {
 get(":username") { BlockingDatabaseService db ->
 db.getUser(pathTokens.username).then { user ->
 render json(user)
 }
 }

238 | Chapter 10: Reactive Programming in Ratpack

 get { BlockingDatabaseService db ->
 db.getUsers().then { users ->
 render json(users)
 }
 }
 }
 }
}

The call to BlockingDatabaseService#getUser emits a single item, and within
our handler we are prepared to deal with that.

The call to getUsers, however, emits a list of users, and in our get handler here
that is exactly what we expect.

The second part to understanding the reactive nature of Promise types is understand‐
ing that when your code makes the call to Promise#then, you are actually attaching a
subscription to the Promise. The Promise is the producer and the block of code that
you supply to the then(..) method is the function representing your subscription.

Transforming Data with Promises
Taking your understanding of Promise types as reactive data structures to the next
level, there are many associated methods on Promise that can help you build compre‐
hensive reactive processing pipelines. For example, given the BlockingDatabaseSer
vice code that we are demonstrating now, it may not be desirable for our application’s
RESTful API to render back the password hash that gets populated into the User
object’s password property. To accommodate this, we will need to transform the data
that is being produced, and we can do so as part of a reactive processing pipeline in
our handler. The updated handler chain in Example 10-3 shows how we use the
Promise#map method to transform our User objects into Map types that are stripped of
any property besides the username and email.

Example 10-3. Using map to transform Promise data

import static ratpack.groovy.Groovy.ratpack
import ratpack.groovy.sql.SqlModule
import ratpack.hikari.HikariModule
import app.BlockingDatabaseService
import ratpack.jackson.Jackson.json

ratpack {
 bindings {
 module(SqlModule)
 module(HikariModule) { c ->
 c.dataSourceClassName = 'org.h2.jdbcx.JdbcDataSource'

Promise as a Reactive Data Structure | 239

 c.addDataSourceProperty 'URL', 'jdbc:h2:mem:test;DB_CLOSE_DELAY=-1'
 c.username = 'sa'
 c.password = ''
 }

 bind(BlockingDatabaseService)
 }
 handlers {
 prefix("user") {
 get(":username") { BlockingDatabaseService db ->
 db.getUser(pathTokens.username).map { u ->
 [username: u.username, email: u.email]
 }.then { map ->
 render json(map)
 }
 }
 get { BlockingDatabaseService db ->
 db.getUsers().map { users ->
 users.collect { u ->
 [username: u.username, email: u.email]
 }
 }.then { maps ->
 render json(maps)
 }
 }
 }
 }
}

As you can see now, the Promise types returned from getUser and getUsers have
attached a transforming function into the processing stream via the map method,
which is responsible for putting the data into the appropriate form before the then
subscription sends the data back to the client.

Filtering Data with Promises
Because Promise types are guaranteed to emit but a single element to their stream,
filtering the stream does not necessarily apply in strictly reactive programming terms.
However, Ratpack provides a mechanism off of Promise for you to reactively inspect
the item and branch processing according to a predicate function. This operates in
practice similar to filtering, except that it is slightly more simplistic and representative
of if-then-else style processing in a reactive way.

Building on the prior example of the handler logic that we had set up for getting a
single user, we can attach the route function to the processing pipeline to inspect the
returned user object and make a decision about what goes back to the client. If you
consider the handler logic depicted in Example 10-4, you will find a practical demon‐
stration of using route with a Promise type.

240 | Chapter 10: Reactive Programming in Ratpack

Example 10-4. Routing promises

get(":username") { BlockingDatabaseService db ->
 db.getUser(pathTokens.username).map { user ->
 user ? [username: user.username, email: user.email] : null
 }.route { u -> u == null } { u ->
 response.status(404)
 render json([error: "not found"])
 }.then { user ->
 render json(user)
 }
}

Because Promise types are guaranteed to always emit a single item, they will also
emit null values. Here, we apply a null value check against the user, and map it
accordingly or pass-through the null value otherwise.

Using the route method, we supply two parameters: a predicate function and an
action function. If the predicate function returns a true response, the action func‐
tion is invoked.

The then subscription to the Promise is invoked if the route’s predicate function
was not truthful. Note that the then(..) subscription is still required to invoke
the processing stream.

As you can see in this example, when the user object returned is null, we set the
appropriate response status and send back a “not found” error message to the client.
This is a perfect use case for “filtering” data to some other processor according to its
state or properties.

For the purposes of completeness, the prior example can be simplified using a short-
hand method on Promise that allows us to route according to whether the value emit‐
ted is null or not. Adding the onNull method into the processing pipeline, we can
reduce the complexity of the code, as shown in Example 10-5.

Example 10-5. Routing promises with onNull

get(":username") { BlockingDatabaseService db ->
 db.getUser(pathTokens.username).map { user ->
 user ? [username: user.username, email: user.email] : null
 }.onNull {
 response.status(404)
 render json([error: "not found"])
 }.then { user ->
 render json(user)
 }
}

Promise as a Reactive Data Structure | 241

More complex reactive programming techniques will need to be employed to filter
single elements from a collection of elements. That is to say, for methods that return a
Promise of type List, where you wish to filter one or more objects out of that list, you
will want to utilize some of the more advanced reactive programming mechanisms
provided by Ratpack.

Composing Data with Promises
As you no doubt have found by now, comprehensively working with data in a robust
web application will mean pulling information from many (possibly disparate) sour‐
ces. At this point you have already been exposed to the Promise type’s flatMap
method, which provides the ability to transform the arity of a Promise stream to
another type, based on the result of another Promise type. To fully exemplify this
capability, let’s consider a scenario where we have a web application that first makes a
call to a database to get a user model object, then makes a subsequent call to a remote
web service to get the user’s profile. Properties of the two resulting objects are used to
compose a comprehensive model object that we serve back from our application’s
handler. If we consider the service interfaces shown in Example 10-6 and
Example 10-7, we can see the APIs we will need to work with.

Example 10-6. The Promise based UserService interface

package app

import ratpack.exec.Promise

interface UserService {

 Promise<User> getUser(String username)
}

Example 10-7. The Promise based UserProfileService interface

package app

import ratpack.exec.Promise

interface UserProfileService {

 Promise<UserProfile> getUserProfile(String username)
}

Notice that while the getUserProfile method on the UserProfileService retrieves
a UserProfile by username, we likely will not want to make this call until we have
succesfully retrieved the User object from the UserService. From our application’s
RESTful API, we want to provide an endpoint that allows aspects of the User object as

242 | Chapter 10: Reactive Programming in Ratpack

well as the UserProfile to be provided strictly by username. To accommodate this,
we will need to first get the User object, then subsequently retrieve the UserProfile
object, before responding to the request.

Using the Promise#flatMap method, we can easily stream these two calls into a final
comprehensive model. A simple implementation for this might look like the one
shown in Example 10-8.

Example 10-8. Composing promises

import app.*

import static ratpack.groovy.Groovy.ratpack
import static ratpack.jackson.Jackson.json

ratpack {
 bindings {
 bind(UserService, DefaultUserService)
 bind(UserProfileService, DefaultUserProfileService)
 }
 handlers {
 prefix("user") {
 get(":username") { UserService userService,
 UserProfileService profileService ->
 userService.getUser(pathTokens.username).flatMap { user ->
 profileService.getUserProfile(pathTokens.username)
 .map { userProfile ->
 [
 username: user.username,
 email: user.email,
 jobTitle: userProfile.jobTitle,
 phoneNumber: userProfile.phoneNumber
]
 }
 }.then { map ->
 render json(map)
 }
 }
 }
 }
}

Here, we make the call to get the user, and using flatMap, we can make the sub‐
sequent call to the UserProfileService.

We make the call to get the user’s profile, and then use the map method on
Promise to transform the User and UserProfile objects into a single model.

Promise as a Reactive Data Structure | 243

Finally, we use the then method to subscribe to the call, which invokes the full
processing flow and returns us the resulting, composed model for our client.

When working with two Promise type calls, where the second call is not dependent
upon data from the first, we can simply use the composition process by building a
Pair type object. This type holds the resulting items from two Promise results in a
single object for use within the then subscription. Using this capability, we can
streamline the processing flow considerably, as shown in Example 10-9.

Example 10-9. Composing data with Pair

get(":username") { UserService userService, UserProfileService userProfileService ->
 def username = pathTokens.username
 userService.getUser(username)
 .right(userProfileService.getUserProfile(username))
 .map { pair ->
 def user = pair.left
 def userProfile = pair.right
 [
 username: user.username,
 email: user.email,
 jobTitle: userProfile.jobTitle,
 phoneNumber: userProfile.phoneNumber
]
 }
 .then { map ->
 render json(map)
 }
}

Use of Promise#right or Promise#left will place the result of the provided Promise
onto the right or left property of the Pair object accordingly. As you can see in the
example, the processing flow is well streamlined and the resulting User and UserPro
file objects are able to be transformed with the Promise#map method, before the
model is delivered to the then subscription for rendering back to the client.

Reactive Streams
The growing popularity in reactive programming libraries for the JVM has recently
prompted the Java reactive programming community to come together and agree
upon a standard by which reactive programming paradigms are implemented. The
drive for standardization in this space has resulted in the creation of the Reactive
Streams Manifesto, which clearly outlines the problems that reactive programming on
the JVM intends to solve, the data structures and interfaces to be used in solving
those problems, and an in-depth specification for which implementors of a reactive
programming libraries can conform to provide maximum interoperability for appli‐

244 | Chapter 10: Reactive Programming in Ratpack

http://www.reactive-streams.org/
http://www.reactive-streams.org/

cations that intend to use reactive programming. Perhaps more importantly than all
of that, the manifesto defines a nomenclature and language that can be used when
talking about reactive programming on the JVM.

Using the standardized interfaces provided by reactive streams also means that
frameworks such as Ratpack can utilize their own implementations for the various
problem domains. Applications built on those frameworks then simply program to
the interface specification and need not be concerned with the intricacies of the
underlying implementation. From a practical perspective, this approach to reactive
programming is akin to Java application development that utilizes Java Enterprise
Edition (EE) APIs. That is to say, similar to how Java EE applications inherit the
implementation according to their enterprise application container, so too do applica‐
tions that employ reactive streams programming interfaces inherit the opinions of the
compliant library they choose.

Ratpack provides an implementation of the reactive streams specification as part of
its core library. It comes completely free with every Ratpack application, and provides
more robust reactive data structures and interfaces for building and working with
reactive pipelines in your application. Furthermore, comprehensive fixtures are avail‐
able when working with reactive streams data structures to easily map a Publisher
type to and from a Promise type.

The major difference between a reactive streams Publisher type and a Promise type
is that a Publisher will produce a stream of data, whereby many elements of the same
type may be published to a downstream Subscriber. As discussed earlier in the chap‐
ter, a Promise is guaranteed to only ever emit a single item to its subscriber, but when
we are working with the reactive streams types in Ratpack, we can build a truly reac‐
tive processing pipeline that definitively fits the definition of reactive programming.

Working with reactive streams in Ratpack is designed to be as simple as possible. All
of the fixtures for creating a Publisher type are provided through convenient and
concise methods off of the ratpack.stream.Streams call. To better understand
working with reactive streams in Ratpack, it will help to look at an example: So, let’s
consider a shortened version of the UserService example from the prior section, and
build a reactive pipeline in our handler that filters all User objects that start with nore
ply and maps the User data to a new object structure for rendering back to our caller.
The updated UserService interface is depicted in Example 10-10.

Example 10-10. UserService reactive streams implementation

package app

import org.reactivestreams.Publisher

interface UserService {

Reactive Streams | 245

 Publisher<User> getUsers()
}

Notice that now our getUsers method returns an org.reactivestreams.Pub
lisher type, which is the standardized interface for reactive publisher types.
Even though the getUsers method will return multiple User objects, we do not
need to specify that there is a collection type here, as we did with Promise,
because the subscribers to the publisher will be working with each User element
on an individual level.

Given this interface, let’s take a quick look at what a database-backed implementation
might look like. Consider the DatabaseUserService shown in Example 10-11, which
utilizes Groovy SQL and Ratpack’s Blocking mechanism to query the database and
create the corresponding Publisher type.

Example 10-11. DatabaseUserService reactive streams implementation

package app

import javax.inject.Inject
import groovy.sql.Sql
import org.reactivestreams.Publisher
import ratpack.exec.Blocking

class DatabaseUserService implements UserService {

 private final Sql sql

 @Inject
 DatabaseUserService(Sql sql) {
 this.sql = sql
 }

 Publisher<User> getUsers() {
 Blocking.get {
 sql.rows "SELECT * FROM USER"
 }
 .publish()
 }
}

As noted, we can still use the Blocking mechanism (or any other Promise-based
API) to ensure our processing is scheduled to the blocking thread pool.

When we are using Groovy, we can simply call Promise#publish() to transform
a Promise into a Publisher.

246 | Chapter 10: Reactive Programming in Ratpack

In Groovy, we can leverage the fact that the ratpack-core module exports Groovy
extensions that allow us to work with the static methods on the Streams class as
though they are instance-level methods on Promise. This allows us to transform a
Promise to a Publisher simply by calling Promise#publish. In a Java environment,
we would need to explicitly wrap the Promise type in a call to Streams.pub
lish(Promise). Either way, the interoperability between Promise and Publisher
types could not be easier.

With our DatabaseUserService in place, let’s take a look at what the Ratpack applica‐
tion and handler chain look like for our RESTful API. The application code provided
in Example 10-12 shows how we can go about implementing our filtering and map‐
ping logic against the stream of User objects coming from the getUsers Publisher.

Example 10-12. Ratpack Groovy application with publisher filtering and mapping

import static ratpack.groovy.Groovy.ratpack
import static ratpack.jackson.Jackson.json

import ratpack.groovy.sql.SqlModule
import ratpack.hikari.HikariModule
import app.*

ratpack {
 bindings {
 module(SqlModule)
 module(HikariModule) { c ->
 c.dataSourceClassName = 'org.h2.jdbcx.JdbcDataSource'
 c.addDataSourceProperty 'URL', 'jdbc:h2:mem:test;DB_CLOSE_DELAY=-1'
 c.username = 'sa'
 c.password = ''
 }

 bind(UserService, DatabaseUserService)
 }
 handlers {
 get("user") { UserService userService ->
 userService.getUsers()
 .filter { user ->
 !user.email.startsWith("noreply")
 }
 .map { user ->
 [
 username: user.username,
 email: user.email
]
 }
 .bindExec()
 .toList()
 .then { maps ->

Reactive Streams | 247

 render json(maps)
 }
 }
 }
}

We start the reactive pipeline by filtering out any User objects with an email that
starts with "noreply".

Given the User object satisfies the filtering condition, we transform it to the Map
type we expect.

Here, we call bindExec, which is a helper method provided by Ratpack to ensure
the Subscription types are properly bound to the execution. Note that in this
case, this call is not completely necessary, since the subscription does no asyn‐
chronous processing, but it is generally a good idea to get in habit of adding this
call.

We can use the toList() method on Publisher to collect the results into a List
type before passing them to the downstream subscriber.

Finally, we subscribe to the pipeline, which initiates the data processing, and we
get back a list of filtered, transformed models to send back to the client.

Publishers and bindExec
A simple note on the implementation here is that reactive streams Subscriber types
do not automatically fit into Ratpack’s execution model. We need to ensure that when
we are using reactive streams that all the processing is bound to the execution model.
When using Groovy, we can again leverage the Groovy extensions provided to use the
Streams#bindExec static method as though it were an instance-level method on Pub
lisher. In Java, we would need to wrap the Publisher in a call to Streams.bind
Exec(Publisher).

If we do not call bindExec against a Publisher type, then the Subscriber may over‐
run the current execution, and the deterministic processing model guaranteed by
Ratpack will not be satisfied. When using Publisher types in your application, it is
critically important that you ensure that bindExec is called as well.

RxJava
RxJava is arguably the most popular of the reactive programming libraries available
on the JVM. Its implementation of reactive programming is adapted directly from the
Reactive Extensions (Rx) project for .NET languages. Similar to reactive streams,

248 | Chapter 10: Reactive Programming in Ratpack

http://bit.ly/rx-library

RxJava reactive pipelines are streams of data where Observable types emit a single
item at a time to Subscriber types. The library is battle proven with a vast ecosystem,
and provides comprehensive implementations for reactive programming techniques
and strategies. It is recommended that you utilize Ratpack’s integration with RxJava
when building applications of sufficient reactive programming complexity.

Like Ratpack, RxJava has an execution model, and external libraries are given the
opportunity to integrate their own execution strategy—known as a scheduler—
through the use of a plugin system. This system is how Ratpack integrates its execu‐
tion model with RxJava Observable types. When the RxRatpack integration is initial‐
ized, Observable types can be transparently mapped to Promise types and vice versa.
Ratpack’s integration with RxJava gives application developers the best of both
worlds: a powerful deterministic execution model in Ratpack, and a rich reactive
pipelining and processing system in RxJava.

To begin incorporating RxJava into your application, you need to include the
ratpack-rx framework dependency. This can be included in your Gradle build script
using the compile ratpack.dependency("rx") call in the dependencies block, in
the same manner used for Ratpack’s other framework dependencies. Ratpack’s RxJava
dependency is dissimilar from Ratpack’s other framework features in that it does not
require the incorporation of a Guice module into your project to use it. Instead, we
simply need to inform RxJava that it should use Ratpack’s own RxJavaObservableExe
cutionHook implementation hook for scheduling the execution of Observable types.

The initialization of Ratpack’s RxJava features is statically invoked, and need only be
called once per running instance of a JVM. This means that if you are building your
Ratpack application using the Groovy script approach, you can simply call the RxRat
pack.initialize() method at any point prior to the use of an Observable in your
application. This is most often satisfied by wiring a ratpack.server.Service
instance responsible only for initializing the RxRatpack system. The application code
provided in Example 10-13 shows this common approach. With the RxRatpack sys‐
tem initialized, Observable types can be safely used throughout your application.

Example 10-13. Initializing the RxRatpack system

import static ratpack.groovy.Groovy.ratpack
import ratpack.rx.RxRatpack
import ratpack.server.StartEvent

ratpack {
 bindings {
 bindInstance new Service() {
 @Override
 void onStart(StartEven) {
 RxRatpack.initialize()

RxJava | 249

 }
 }
 }

 handlers {
 // ... application handlers here ...
 }
}

We call RxRatpack.initialize() to ensure Observable types are scheduled into
the Ratpack execution.

As noted, Observable types can be seamlessly mapped to Promise types, and vice
versa, but it should be noted that when doing so, the number of elements emitted
from the Observable stream should be roughly known, so the proper type can be
mapped. As Promise types only ever emit a single value, while Observable types emit
a stream of elements, when mapping an Observable that emits multiple elements to a
Promise, the Promise will need to collect those elements and emit them as a com‐
bined list to subscribers. If you know that an Observable will only emit a single ele‐
ment, you can choose to map using the promise single strategy, which will only
capture a single element from the Observable. If you know the Observable will emit
more than one element, you can choose the default mapping, which translates to a
Promise<List<T>> type.

The RxRatpack class provides static methods to assist with mapping Observable
types to Promise types. When under regular Java conditions, you can simply call the
RxRatpack.promise(Observable) method to get a Promise. Likewise, you can call
RxRatpack.promiseSingle(Observable) to map a single element Observable. To
demonstrate this, let’s start by looking at the RxJavaUserService interface, which
specifies getUser and getUsers methods, both of which return Observable types.
Note that because RxJava returns a stream of data, the getUsers method does not
specify that a List will be returned. As with a reactive streams Publisher type,
whether a single element or multiple elements are emitted, the signature does not
change.

Example 10-14. The UserService with RxJava

package app;

import rx.Observable;

public interface RxJavaUserService {
 public Observable<User> getUser(String username);
 public Observable<User> getUsers();
}

250 | Chapter 10: Reactive Programming in Ratpack

Next, let’s look at what a Java Ratpack application might look like that utilizes the
RxJavaUserService. The code for this is provided in Example 10-15.

Example 10-15. Initializing RxJava in a main class

package app;

import ratpack.server.RatpackServer;
import ratpack.rx.RxRatpack;
import rx.Observable;

import static ratpack.jackson.Jackson.json;

public class Main {

 public static void main(String[] args) throws Exception {
 RxRatpack.initialize();

 RatpackServer.start(spec -> spec
 .registryOf(r -> r
 .add(RxJavaUserService.class, new DefaultRxJavaUserService())
)
 .handlers(chain -> chain
 .prefix("user", pchain -> pchain
 .get(":username", ctx -> {
 RxJavaUserService userService = ctx.get(RxJavaUserService.class);
 String username = ctx.getPathTokens().get("username");
 Observable<User> userObs = userService.getUser(username);
 RxRatpack.promiseSingle(userObs).then(user ->
 ctx.render(json(user))
);
 })
 .get(ctx -> {
 RxJavaUserService userService = ctx.get(RxJavaUserService.class);
 Observable<User> usersObs = userService.getUsers();
 RxRatpack.promise(usersObs).then(users ->
 ctx.render(json(users))
);
 })
)
)
);
 }
}

Here, we initialize the RxRatpack system.

We bind some default implementation of the RxJavaUserService in our applica‐
tion.

RxJava | 251

Within our handler logic, we call the RxJavaUserService#getUser method,
which returns an Observable for us.

Using the RxRatpack#promiseSingle method, we map the Observable to a
Promise type and subscribe to it, just as we normally would.

Here, we make the call to get all users, which we know will result in more than
one element being emitted to the stream.

Thus, we use the RxRatpack#promise method, which will transform the Observa
ble<User> stream to a Promise<List<User>>, wherein all User objects will be
collected and emitted as a single value from the Promise.

If you are building a Ratpack Groovy application, the ratpack-rx dependency gives
you some extra support. As part of this framework module, Ratpack also ships
Groovy extensions for the RxRatpack class, which allows the static methods therein to
be treated as instance-level methods. Consider the same application, this time depic‐
ted under Groovy conditions, as shown in Example 10-16.

Example 10-16. RxJava Groovy application

import static ratpack.groovy.Groovy.ratpack
import static ratpack.jackson.Jackson.json

import ratpack.service.Service
import ratpack.service.StartEvent
import ratpack.rx.RxRatpack
import app.RxJavaUserService
import app.DefaultRxJavaUserService
import rx.Observable

ratpack {
 bindings {
 bind(RxJavaUserService, DefaultRxJavaUserService)

 bindInstance new Service() {
 @Override
 void onStart(StartEvent e) throws Exception {
 RxRatpack.initialize()
 }
 }
 }
 handlers {
 prefix("user") {
 get(":username") { RxJavaUserService userService ->
 userService.getUser(pathTokens.username)
 .promiseSingle()
 .then { user ->

252 | Chapter 10: Reactive Programming in Ratpack

 render json(user)
 }
 }
 get { RxJavaUserService userService ->
 userService.getUsers()
 .promise()
 .then { users ->
 render json(users)
 }
 }
 }
 }
}

Here, we can call promiseSingle() directly off of the Observable type because of
the Groovy extensions Ratpack provides.

Similarly, we can call promise() to get a List<User> from the mapped Promise
type.

As you can see, with the Groovy extensions for RxJava, there is no need to explicitly
call RxRatpack. This greatly simplifies the semantics of working with Observable
types when building Groovy Ratpack and RxJava web applications.

Similarly, Ratpack Promise types can be seamlessly mapped to Observable types.
When mapping from Promise to Observable, it is important that you know what the
Promise will return, so that you can determine the appropriate method to use. If it
returns a collection of objects, you should use RxRatpack#observeEach; if it returns a
single object, you should use RxRatpack#observe. Consider again the UserService
interface, which is designed to return Promise types for the getUser and getUsers
methods. The Java main class provided in Example 10-17 demonstrates mapping the
resulting Promise types to Observable within our handler methods.

Example 10-17. Mapping Promise to Observable

package app;

import ratpack.exec.Promise;
import ratpack.rx.RxRatpack;
import ratpack.server.RatpackServer;
import java.util.List;

import static ratpack.jackson.Jackson.json;

public class Main {

 public static void main(String[] args) throws Exception{
 RxRatpack.initialize();

RxJava | 253

 RatpackServer.start(spec -> spec
 .registryOf(r -> r
 .add(UserService.class, new DefaultUserService()))
)
 .handlers(chain -> chain
 .prefix("user", pchain -> pchain
 .get(":username", ctx -> {
 UserService userService = ctx.get(UserService.class);
 String username = ctx.getPathTokens().get("username");
 Promise<User> userPromise = userService.getUser(username);
 RxRatpack.observe(userPromise).subscribe(user ->
 ctx.render(json(user))
);
 })
 .get(ctx -> {
 UserService userService = ctx.get(UserService.class);
 Promise<List<User>> usersPromise = userService.getUsers();
 RxRatpack.observeEach(usersPromise).toList().subscribe(users ->
 ctx.render(json(users))
);
 })
)
)
);
 }
}

We use the RxRatpack#observe method to map a single object Promise type to
an Observable, then we subscribe to the Observable to get the User object.

We can map the Promise<List<User>> type to Observable<User> using the
RxRatpack#observeEach.

In the latter case, if we wanted to perform more in-depth reactive processing that
incorporated more of RxJava’s reactive programming functions, we could easily inline
them following the call to observeEach, because the User objects will be streamed to
the pipeline. Note that in either scenario, no processing of the upstream Promise
takes place until the Observable#subscribe method is called.

Like before, this code can be greatly ameliorated by using Groovy, which will apply
the RxRatpack Groovy extensions that allow us to use instance-level methods to map
Promise types to Observable types. Consider the same application, this time rewrit‐
ten in Groovy, as shown in Example 10-18.

Example 10-18. Mapping Promise to Observable (Groovy style)

import static ratpack.groovy.Groovy.ratpack
import static ratpack.jackson.Jackson.json

254 | Chapter 10: Reactive Programming in Ratpack

import app.UserService
import app.DefaultUserService
import ratpack.rx.RxRatpack
import ratpack.server.Service
import ratpack.server.StartEvent

ratpack {
 bindings {
 bind(UserService, DefaultUserService)

 bindInstance new Service() {
 @Override
 void onStart(StartEvent e) {
 RxRatpack.initialize()
 }
 }
 }
 handlers {
 prefix("user") {
 get(":username") { UserService userService ->
 userService.getUser(pathTokens.username)
 .observe()
 .subscribe { user ->
 render json(user)
 }
 }
 get { UserService userService ->
 userService.getUsers()
 .observeEach()
 .toList()
 .subscribe { users ->
 render json(users)
 }
 }
 }
 }
}

Here, we can treat the RxRatpack#observe method as an instance-level method
on Promise.

Similarly, the RxRatpack#observeEach method becomes instance-level when
using Groovy.

The capabilities offered by Ratpack’s RxJava integration provide a solid foundation
upon which to build powerful and robust reactive systems. When building Ratpack
RxJava applications with Groovy, you also get the added benefit of having the meth‐
ods for translating Observable to Promise and vice versa as instance-level methods
that are concise and easy to use.

RxJava | 255

Parallel Processing Using RxJava
The scheduler that Ratpack provides to RxJava can be used for more than simply
scheduling Observable executions onto Ratpack’s execution model. Using RxJava’s
constructs for imposing parallelism onto a reactive pipeline, we can utilize Ratpack’s
execution model to perform reactive parallel processing across the computation
threads available to your application. This may read as a somewhat complex process,
but the usage is simple, and the benefit provided by parallel processing of data may
help improve your application’s performance.

When working with an Observable that we know will emit multiple items that we
want to be processed in parallel, we can utilize the RxRatpack#forkEach mechanism,
which creates a new execution for each data element in the stream. These executions
still conform to Ratpack’s guaranteed and deterministic execution model, so you can
safely operate under those constraints when building your parallel reactive pipeline.

Think back to the example provided in the previous chapter: we wanted to provide a
RESTful API for getting User and UserProfile data from the respective UserService
and UserProfileService interfaces. This time, however, instead of providing an
endpoint for retrieving this data for just a single user, we want to provide it for all
users known to our UserService. This may turn out to be many users, so processing
this data sequentially will not fit our needs. Instead, we can parallelize the composi‐
tion of data as the User objects are streamed from the UserService.

Let’s begin by revisiting the UserService and UserProfile interfaces to now return
Observable types instead of Promise types, as shown in Example 10-19.

Example 10-19. UserService interface with Observable signatures

package app

import rx.Observable

interface UserService {

 Observable<User> getUsers()
}

For demonstration purposes, let’s assume this time the UserProfileService requires
that we provide it the user’s id. The interface contract is depicted in Example 10-20.

Example 10-20. UserProfileService interface with Observable signatures

package app

import rx.Observable

256 | Chapter 10: Reactive Programming in Ratpack

interface UserProfileService {

 Observable<UserProfile> getUserProfile(Long id)
}

With these interfaces in place, and a presumable default implementation for each, we
can build an application around the User stream where we parallelize the calls to the
UserProfileService as part of a reactive processing pipeline. The Groovy applica‐
tion in Example 10-21 shows what the implementation for this technique looks like.

Example 10-21. Parallel processing with the UserService

import static ratpack.groovy.Groovy.ratpack
import static ratpack.jackson.Jackson.json

import ratpack.rx.RxRatpack
import ratpack.server.Service
import ratpack.server.StartEvent
import ratpack.func.Pair
import app.UserService
import app.UserProfileService
import app.DefaultUserService
import app.DefaultUserProfileService

ratpack {
 bindings {
 bind(UserService, DefaultUserService)
 bind(UserProfileService, DefaultUserProfileService)

 bindInstance new Service() {
 @Override
 void onStart(StartEvent e) {
 RxRatpack.initialize()
 }
 }
 }
 handlers {
 get("user") { UserService userService, UserProfileService userProfileService ->
 userService.getUsers()
 .compose(RxRatpack.&forkEach)
 .flatMap { user ->
 userProfileService.getUserProfile(user.id).map { userProfile ->
 new Pair(user, userProfile)
 }
 }
 .map { pair ->
 def user = pair.left
 def userProfile = pair.right
 [
 username: user.username,

RxJava | 257

 email: user.email,
 jobTitle: userProfile.jobTitle,
 phoneNumber: userProfile.phoneNumber
]
 }
 .promise()
 .then { maps ->
 render json(maps)
 }
 }
 }
}

The Observable#compose allows us to provide a strategy for parallelizing the
stream coming out of the userService.getUsers() call.

We can continue to utilize Ratpack’s functional programming interfaces to help
work with our reactive pipeline. Here, we leverage the Pair type, as before, to
combine the User and UserProfile objects into a single object for processing
downstream.

Here, we use map as a transformation function to compose the User and UserPro
file objects into a single combined object.

We can simplify the process of collecting the Observable stream into a List by
translating it to a Promise type (which, remember, inherently maps the resulting
stream to a List).

Using this strategy for composing asynchronous data in a parallel stream allows you
to leverage the full capabilities of your system when composing data that derives from
disparate sources. Ratpack’s integration with RxJava allows you to continue to lever‐
age the deterministic execution model while parallelizing your reactive pipeline.

Further Reading on RxJava
RxJava is a comprehensive library for working with reactive programming para‐
digms. As such, much of the conversation on RxJava is outside the scope of this text.
It is left as an exercise to the reader to explore the extensive documentation to better
understand how reactive programming works with RxJava. Documentation on all
reactive operators in the RxJava arsenal can be found on the project’s GitHub page.

Chapter Summary
This chapter has exposed you to the many ways that Ratpack utilizes and provides
reactive programming capabilities. At its core, Ratpack is first and foremost a reactive

258 | Chapter 10: Reactive Programming in Ratpack

https://github.com/ReactiveX/RxJava

programming web framework, and the understanding that you take away from this
chapter places you in a position to write powerful reactive web applications. From the
simplest usage of Promise type streams, to the reactive streams support, all the way
through to how Ratpack integrates seamlessly with RxJava, there is not a reactive pro‐
gramming solution that is not available to you with Ratpack. As your experience with
Ratpack continues to evolve, you will find that its Ratpack programming fixtures set
you in a good position to succeed in working with data streams and functional pro‐
gramming strategies.

Chapter Summary | 259

CHAPTER 11

Sessions and Security

It is generally advisable that web applications remain as stateless as possible in order
to facilitate scalability. However, there are times when it is important for data to be
persistent throughout the scope of an HTTP session. Particularly when you are build‐
ing applications that have user-based authentication and authorization requirements,
the need for session-scoped data becomes apparent. Sessions, session data storage,
and cookies are all mature aspects in Ratpack’s infrastructure. The use of sessions is
provided to you as an optional framework dependency, while cookies are able to be
used without the need for additional libraries.

This chapter will give you demonstrations and context for building applications that
rely on HTTP sessions and cookies. The knowledge you carry forward from here will
prove valuable as you progress through the chapters that follow, particularly the con‐
versation on how Ratpack applications implement security features. Your exposure to
the concepts outlined in this chapter will serve as the necessary foundation for your
comprehensive understanding of how Ratpack works.

Integrating Session Support
Adding support for HTTP sessions to your Ratpack application is no different than
adding any other optional framework dependency to your project. The ratpack-
session dependency provides the module necessary to make the session constructs
available to your code base. The Gradle build script in Example 11-1 demonstrates
adding the session module to your Ratpack project.

Example 11-1. Gradle build script with Ratpack session dependency

buildscript {
 repositories {

261

 jcenter()
 }
 dependencies {
 classpath 'io.ratpack:ratpack-gradle:1.3.3'
 }
}

apply plugin: 'io.ratpack.ratpack-groovy'

repositories {
 jcenter()
}

dependencies {
 compile ratpack.dependency('session')
}

Here, we add the ratpack-session framework dependency to our project.

With the dependency in place, we can incorporate the SessionModule into our rat
pack.groovy script, as shown in Example 11-2.

Example 11-2. Ratpack Groovy script with SessionModule

import static ratpack.groovy.Groovy.ratpack
import ratpack.session.SessionModule

ratpack {
 bindings {
 module(SessionModule)
 }
 handlers {
 // ... application handlers ...
 }
}

We use the BindingsSpec#module method to add the ratpack.session.Session
Module, just as we would any other framework module.

Alternatively, given a Java-based Ratpack application, the skeleton for a main class
application might look like the one shown in Example 11-3.

Example 11-3. Ratpack Java main class with SessionModule

package app;

import ratpack.session.SessionModule;
import ratpack.server.RatpackServer;
import ratpack.guice.Guice;

262 | Chapter 11: Sessions and Security

public class Main {

 public static void main(String[] args) {
 RatpackServer.start(spec -> spec
 .registry(Guice.registry(b -> b
 .module(SessionModule)
))
 .handlers(chain -> chain
 // ... application handlers ...
)
);
 }
}

As you already know how to build a Guice-backed registry, you can see the simi‐
larities to the previous Groovy example.

The SessionModule provides a Session object to the context registry, which can be
utilized from within any handler. Through the Session object, we can store and
retrieve data for the duration of the user’s session. For example, the Ratpack Groovy
script in Example 11-4 shows an all handler at the top of the chain that retrieves a
request count and increments it with each request, and a get handler downstream
that renders the request count back to the client.

Example 11-4. Ratpack Groovy script using Session

import static ratpack.groovy.Groovy.ratpack
import ratpack.session.SessionModule
import ratpack.session.Session

ratpack {
 bindings {
 module(SessionModule)
 }
 handlers {
 all { Session session ->
 session.get("req-count").map { o ->
 o.orElse(0)
 }.flatMap { count ->
 session.set("req-count", count+1).promise()
 }.then {
 next()
 }
 }

 get { Session session ->
 session.get("req-count").then { o ->
 render o.get().toString()
 }

Integrating Session Support | 263

 }
 }
}

Bind the SessionModule, as shown earlier.

Pull the Session object from the context registry.

Session#get returns a Promise<Optional<T>>, which means that loads possibly
empty data asynchronously, so here we will also use the Promise#map method to
map the value from its Optional type to an Integer we can work with.

We need to flatMap the call to set the new value on the session, as all session
interactions are asynchronous, and thus use Promise types.

Here, we increment the count and set it on the session. Note that Session#set is
an Operation type, so we must map it to a Promise type using promise() to be
compatible with flatMap.

Here, we delegate processing downstream.

Similarly, we extract the req-count key, which now will be set here.

And finally, we render it back to a client.

That’s it! Now you have a concise and simple example of storing and retrieving
session-based data with Ratpack! If you run the application and open a browser to
http://localhost:5050, you will see the number 1 on the initial page load. Refresh the
page a few times and you will see the number incrementing with each request.

Persisting Objects
Trivial examples of storing and retrieving numbers in the session will not get you too
far in a real-world scenario. Luckily, Ratpack allows you to store and retrieve any
object that is Serializable into the session. Say, for example, that we wanted to
implement some functionality that would track the views of particular pages in our
application and keep track of a count. In a real-world scenario, this might help to pro‐
vide better navigation from the user interface or otherwise discern what type of data a
user is looking at to give a better user experience.

To start with, we can build a simple class, ViewTracker, which will act as our interface
for registering views and incrementing the counts. This class will need to have some
serializable storage mechanism (i.e., a Map) and a mechanism for safely incrementing

264 | Chapter 11: Sessions and Security

and retrieving the view counts. The code in Example 11-5 demonstrates a possible
implementation.

Example 11-5. The ViewTracker session object

package app

import com.google.common.collect.Maps
import groovy.transform.Immutable

class ViewTracker implements Serializable {
 private Map<String, View> views = Maps.newConcurrentMap()

 void increment(String uri) {
 def count = 1
 if (views.containsKey(uri)) {
 count = views.get(uri).count+1
 }
 views[uri] = new View(uri, count)
 }

 List<View> list() {
 views.values() as List
 }

 @Immutable
 static class View implements Serializable {
 String uri
 int count
 }
}

Here, we ensure that ViewTracker implements Serializable so that the Java
Object Serialization system that undersits the Session persistence is capable of
writing and reading the object.

This will be our storage of uri to View types that we will work with.

Here, we provide the mechanism for incrementing a view count.

If the view has already been registered, safely retrieve the count and increment it.

Store the new reference data for the URI.

Here, we provide a way to simply list the values in the storage.

Integrating Session Support | 265

With this in place, we can modify the example from earlier in the chapter to demon‐
strate storing the ViewTracker in the session and retrieving it for use. The Ratpack
Groovy script in Example 11-6 shows an enhancement on the prior demonstration.

Example 11-6. Ratpack Groovy with ViewTracker

import static ratpack.groovy.Groovy.ratpack
import static ratpack.jackson.Jackson.json
import ratpack.session.SessionModule
import ratpack.session.Session
import app.ViewTracker

ratpack {
 bindings {
 module(SessionModule)
 }
 handlers {
 all { Session session ->
 session.get("view-tracker").flatMap { o ->
 def tracker = o.orElse(new ViewTracker())
 tracker.increment(request.uri)
 session.set("view-tracker", tracker).promise()
 }.then {
 next()
 }
 }

 all { Session session ->
 session.get("view-tracker").then { o ->
 def tracker = o.get()
 render json(tracker.list())
 }
 }
 }
}

In this upstream all handler, we get the object stored against the view-tracker
key. We use flatMap here, as we will save the ViewTracker before proceeding
down the chain.

If the ViewTracker exists, then we get that value back; if not, we create a new one.

Here, we utilize the ViewTracker#increment method to increment the count for
the request.uri value.

Before proceeding to the rest of the chain, we save the modified ViewTracker in
the session.

266 | Chapter 11: Sessions and Security

For demonstration’s sake, we can render the ViewTracker#list results as JSON.

Running this code and opening a web browser to http://localhost:5050 will show you
that you have viewed the / URI once. If you change the location in your browser to
append the /foo route, you will see that a new entry is added to the list. Play around
with this with a few different URIs and you can begin to see how this can become a
powerful utility for managing a client’s interactions with your service across multiple
page loads.

Configuring the SessionModule
Like many of Ratpack’s framework modules, the SessionModule is a Configurable
Module, which allows you to override the module’s default configuration values to suit
your application’s needs. Like most Java web applications, Ratpack’s session support
stores a cookie on the client that references the session ID. When configuring the
SessionModule, you are also able to specify configuration for the session ID cookie,
including the domain it is stored under, its max age, or the path under which the ses‐
sion ID cookie should be retrieved from the client. The example application in
Example 11-7 shows the possible values that you can configure and how to go about
doing so.

Example 11-7. Configuring SessionModule

import static ratpack.groovy.Groovy.ratpack
import ratpack.session.SessionModule
import java.time.Duration

ratpack {

 bindings {
 module(SessionModule) {
 expires(Duration.ofDays(7))
 domain("https://my-domain.com")
 path("/")
 idName("JSESSIONID")
 httpOnly(true)
 secure(false)
 }
 }
 handlers {
 // ... application handlers here ...
 }
}

Setting the expires value to a java.time.Duration value allows you to specify
how long a user’s session should remain valid.

Integrating Session Support | 267

You can set the domain for which the session ID cookie should be valid. This can
be useful when used in conjunction with additional application configuration for
ensuring that multitenant deployments do not share sessions across domains.

Using the path setting, you can configure under what request paths the session
ID cookie should be retrieved. If only a portion of your application requires ses‐
sions, this can be a useful setting to configure.

The default key for session cookie is JSESSIONID, which is similar to other Java
web applications. You can override the key for the cookie using the idName con‐
figuration method if you wish to customize this value.

By default, session cookies are allowed to be transmitted over unencrypted
HTTP. If you wish to override this configuration, you can do so by setting
httpOnly to false.

If you wish to have session cookies only transmitted over encrypted HTTP
(HTTPS), you can configure the secure setting to true (the default is false).

By default, sessions are stored in memory, which provides an excellent footprint for
getting started with building session support into your application. However, it is
important to understand that these sessions will ultimately be volatile and will not
survive a restart of the application. Additionally, they will not scale across many
instances of your application. This may be fine if you will only ever have a single
instance of your application, but for scalability you will want to utilize Ratpack’s
client-side session storage or its support for building distributed sessions.

Client-Side Sessions
Ratpack’s client-side session support allows your application to persist the session in a
cookie that lives on the client. This cookie can optionally be encrypted to ensure the
security of your users’ session data. This feature of Ratpack can be used to build scala‐
bility into your application’s deployment. When a client connects to your Ratpack
application, its session cookie is transmitted and can be serialized and deserialized
across many instances of your deployment.

Your application can employ client-side session support by using the ClientSideSes
sionModule. This is also a configurable module, giving you the ability to customize
much of its operation. It is used in conjunction with the SessionModule shown in the
prior section, so you can continue to customize configuration for the session ID cookie
while making use of the client-side session cookie.

Support for client-side sessions is provided as part of the ratpack-session module,
and none of the code in your handlers for working with the Session object needs to

268 | Chapter 11: Sessions and Security

1 The “message authentication code” algorithm is used in conjunction with the secretKey to produce a key that
validates that it was your application that produced the session data.

be changed to implement this feature. The code provided in Example 11-8 details
incorporating the ClientSideSessionModule into your Ratpack application.

Example 11-8. Configuring ClientSideSessionModule

import static ratpack.groovy.Groovy.ratpack
import ratpack.session.SessionModule
import ratpack.session.clientside.ClientSideSessionModule
import java.time.Duration

ratpack {

 bindings {
 module(SessionModule) { c ->
 // SessionModule customizations go here
 }
 module(ClientSideSessionModule) { c ->
 c.sessionCookieName = "ratpack_session"
 c.secretToken = Math.floor(System.currentTimeMillis() / 10000)
 c.secretKey = '!c$mB&aGkL112345'
 c.macAlgorithm = "HmacSHA1"
 c.cipherAlgorithm = "AES/CBC/PKCS5Padding"
 c.maxSessionCookieSize = 1932
 c.maxInactivityInterval = Duration.ofHours(24)
 }
 }
}

The sessionCookieName property allows you to customize the key under which
the session cookie is stored with the client. This value defaults to ratpack_ses
sion.

The secretToken property is the value used to sign the serialized session. This
value defaults to a time-based value unless otherwise specified. Signing the serial‐
ized session with this value prevents tampering.

You can specify a value to secretKey to encrypt the client-side session cookie. If
no value is specified here, then by default the session cookie will not be encryp‐
ted.

If the session cookie is to be encrypted, you can override the MAC.1 This value
defaults to HmacSHA1, which uses the SHA-1 cryptographic hashing function to

Client-Side Sessions | 269

generate the MAC. The value specified here must be one of the values specified
by the javax.crypto.Mac class.

You can also override the cipher algorithm that is employed to perform the
encryption of the session cookie. This value defaults to AES/CBC/PKCS5Padding,
which provides 128-bit encryption of the session cookie. Overrides of this value
must be one of the values supported by the javax.crypto.Cipher class.

The maxSessionCookieSize value can be used to specify the maximum size of
the client-side session cookie. Any value within the range of 1024 and 4096 are
valid for this property, and the default size is specified as 1932.

The last value, maxInactivityInterval, is pretty straightforward. It specifies the
duration under which a session should remain valid.

A caveat to using the client-side session cookie support is that the size of the session
must be fairly small. As noted in the breakdown, the maximum size of the session
cookie is 4KB, so if you need to store large objects in the session, then you will want
to use a mechanism other than cookies for doing so. Luckily, Ratpack provides sup‐
port for building distributed sessions, which facilitates scalability and does not
depend on client-side storage for retrieving the session object.

Because it is generally inadvisable to hardcode values like the secretKey property on
the ClientSideSessionModule configuration, you can utilize your application config‐
uration, driven through the serverConfig to populate sensitive values in the mod‐
ule’s configuration. For example, the code in Example 11-9 shows a setup that pulls
configuration from a YAML file, then from environment variables, and finally from
system properties. Then, within the bindings block, we can extract values from the
provided application configuration for use in customizing the ClientSideSession
Module.

Example 11-9. Application configuration for the ClientSideSessionModule

import static ratpack.groovy.Groovy.ratpack
import ratpack.session.SessionModule
import ratpack.session.clientside.ClientSideSessionModule
import ratpack.session.clientside.ClientSideSessionConfig

ratpack {
 serverConfig {
 yaml(Paths.get("/etc/config.yml"))
 env()
 sysProps()
 }
 bindings {
 module(SessionModule)

270 | Chapter 11: Sessions and Security

 moduleConfig(ClientSideSessionModule,
 serverConfig.get("/session", ClientSideSessionConfig))
 }
 handlers {
 // ... application handlers here ...
 }
}

Here, we are using the serverConfig.get(path, class) mechanism to extract
the ClientSideSessionConfig. We also use the moduleConfig method to define
that we are explicitly providing the configuration to the module.

Given this application code, the /etc/config.yml file may be defined like the file shown
in Example 11-10.

Example 11-10. ClientSideSessionModule config file

session:
 sessionCookieName: "my_app_session"
 secretKey: "!c$mB&aGkL112345"

With Ratpack’s configuration model, the configuration values can easily be overrid‐
den through environment variables or system properties to accommodate multiple
runtime environments.

Distributed Sessions
Distributed sessions are a valuable Ratpack feature that comes into play when you
need scalability and client-side session cookies are not going to work for you. For
this, Ratpack provides the ability to persist sessions to Redis as a backend storage
medium. Redis is a great choice for session storage, as it can be clustered and replica‐
ted, and it can scale independently of your application. Furthermore, for applications
that run in cloud- or platform-based deployments, Redis is a widely available storage
solution, making the effort to get a distributed session infrastructure in place rela‐
tively low. For those applications that run in an on-premises infrastructure, the leg‐
work needed to get Redis up and running is still quite trivial.

Support for Redis-backed sessions comes from the optional ratpack-session-redis
module, which, like the ClientSideSessionModule shown in the last section, is used
in conjunction with the SessionModule. Indeed, the SessionModule is a hard
dependency, and the RedisSessionModule must be incorporated into your applica‐
tion after the SessionModule has been specified.

The RedisSessionModule allows you to specify a host, port, and password for your
Redis connection. The password field is strictly optional, and by default Redis does
not configure with backend authentication. It is important that you never allow public

Distributed Sessions | 271

access to the Redis instance that stores your application’s sessions. If you choose to
employ the Ratpack Redis session support, it is also a good idea to build a security
model between your application instances and your Redis instance. This can be
accomplished through firewall rules that only allow access to the Redis instance from
your application.

You can safely evolve your application’s code from using in-memory sessions, to
client-side sessions, and finally out to Redis-backed sessions without having to
change the way your handlers get access to the session data. Nothing more is required
of incorporating Redis-backed sessions than applying the RedisSessionModule
within your bindings block, as shown in Example 11-11.

Example 11-11. Configuring RedisSessionModule

import static ratpack.groovy.Groovy.ratpack
import ratpack.session.SessionModule
import ratpack.session.store.RedisSessionModule

ratpack {

 bindings {
 module(SessionModule)
 module(RedisSessionModule) { c ->
 c.host = "127.0.0.1"
 c.port = 6379
 c.password = "..."
 }
 }
 handlers {
 // ... application handlers here ...
 }
}

Again, note that the SessionModule must come before the RedisSessionModule.

The host property specifies the hostname or IP address to your Redis instance.
This defaults to localhost.

The port to which Reids is bound on the remote system. This defaults to 6379,
which is Redis’ default binding port.

The optional password field for the Redis instance. This defaults to null.

Depending on your application’s requirements, you will likely have the need to use
different Redis instances according to the runtime environment (development versus
production, for example) or the tenancy of the deployment (customer1 versus cus‐
tomer2). Like what was shown in the prior section, we can drive the RedisSession

272 | Chapter 11: Sessions and Security

Module configuration through our application’s configuration, by pulling the values
from configuration. The code in Example 11-12 demonstrates this capability.

Example 11-12. Configuring RedisSessionModule with application configuration

import static ratpack.groovy.Groovy.ratpack
import ratpack.session.SessionModule
import ratpack.session.store.RedisSessionModule

ratpack {
 serverConfig {
 yaml("config.yml")
 env()
 sysProps()
 }
 bindings {
 module(SessionModule)
 moduleConfig(RedisSessionModule,
 serverConfig.get("/session", RedisSessionModule.Config))
 }
 handlers {
 // ... application handlers here ...
 }
}

Working with Cookies
Cookies are applicable to a broader conversation than just HTTP sessions. There are
many reasons why an application would wish to set and retrieve cookies from users.
For example, your application may wish to pass a cookie on to a client that stores
some view layer configuration or preferences. Similarly, you may find the need to set
a cookie that tracks the last several pages that a user has visited in order to provide an
enhanced user experience. Whatever your application’s requirement, working with
cookies in Ratpack involves little more than interfacing with the request and
response objects.

To begin the demonstration of working with cookies, consider the scenario where
you wish to dynamically render view-related decisions based on a configuration pro‐
vided by a cookie. To illustrate this, consider that your application’s main landing
screen (Figure 11-1) provides users with the ability to reorder the position of objects
in its grid. By default, the view may want to provide a standard left alignment of view
objects, with an explicit request realinging them to center or right columns.

Working with Cookies | 273

Figure 11-1. Default main landing view

The desired behavior in this view is that when a user chooses to realign the view
object, we want the new position to be remembered so that subsequent visits to the
application align the view as they desire. For example, if the user clicks the “Move →”
button, we want to both move the object to the middle column (Figure 11-2) and
ensure that when the user comes back in the future the object appears in the middle.
This is also a good strategy for managing simple preferences that may extend beyond
the time window of a session.

Figure 11-2. Center-aligned main landing view

The Groovy text template for this view is shown in Example 11-13.

Example 11-13. Groovy text template (index.html)

<!DOCTYPE html>
<html>
<head>
<title>Learning Ratpack</title>
<style>
.row {
 width: 100%;
}
.row > .col {
 display: inline-block;

274 | Chapter 11: Sessions and Security

 float: left;
 text-align: center;
 padding-top: 5px;
 position: relative;
}
.col.col-3 {
 width: calc(33.333% - 16px);
 margin-left: 12px;
 border: 1px solid #000;
 min-height: 150px;
}
.controls {
 position: absolute;
 bottom: 5px;
 width: 100%;
}
.controls > form {
 display: inline-block;
}
</style>
</head>
<body>
<h2>Welcome to Ratpack</h2>
<div class="row">
 <% 3.times { n -> %>
 <div class="col col-3">
 <% if (model.position == n) { %>
 Learning Ratpack is fun!
 <div class="controls">
 <% if (n > 0) { %>
 <form action="/updatePosition" method="post">
 <input type="hidden" name="next_pos" value="${model.position-1}">
 <input type="submit" value="← Move">
 </form>
 <% } %>
 <% if (n < 2) { %>
 <form action="/updatePosition" method="post">
 <input type="hidden" name="next_pos" value="${model.position+1}">
 <input type="submit" value="Move →">
 </form>
 <% } %>
 </div>
 <% } %>
 </div>
 <% } %>
</div>
</body>
</html>

The template adds some basic styles that make the grid and bottom control but‐
tons render properly.

Working with Cookies | 275

Here, we use the Groovy Number#times call to loop three times to fill in the grid.
The index number of the iteration is provided to the closure, and represented
here as the n variable.

Within the loop, we check that the provided model’s position value is equal to
the current loop index, and if it is, we fill in the view content.

The control buttons are wrapped in a form that submits the next desired position
(next_pos) to our application.

Given this view, we know that we need handlers for both serving the landing page
and capturing the next desired position from the form POSTs. To accommodate this,
we can realize an application structure like the one shown in Example 11-14.

Example 11-14. Working with cookies application

import ratpack.groovy.template.TextTemplateModule
import ratpack.form.Form

import static ratpack.groovy.Groovy.groovyTemplate
import static ratpack.groovy.Groovy.ratpack

ratpack {
 bindings {
 module TextTemplateModule
 }
 handlers {
 post("updatePosition") {
 parse(Form).then { data ->
 response.cookie("ratpack-view-position", data.next_pos)
 redirect "/"
 }
 }
 get {
 def position = request.oneCookie("ratpack-view-position")?.toInteger() ?: 0
 render groovyTemplate([position: position], "index.html") //
 }
 }
}

Because we are rendering Groovy text templates as dynamic content, we need the
TextTemplateModule applied to our application.

Within the updatePosition POST handler, we parse the posted form here.

276 | Chapter 11: Sessions and Security

Next, we use the cookie method on the response object to set the ratpack-
view-position cookie to the value provided by the next_pos value from the
form.

Within the get handler, we start processing by pulling the ratpack-view-
position cookie from the request object and translating it into an integer.
Cookie values will always be string types, and you will recall that the view logic
was built to work with a Number type. The oneCookie method extracts a specific
cookie from the request. If there is no cookie of that name available, then the
value will be null, so here we simply default to zero.

If you run this application and navigate a browser to http://localhost:5050, you will be
met with a landing screen like the one shown in Figure 11-1. Choosing the “Move →”
button, you will notice that the page POSTs to the /updatePosition endpoint and
reloads. Subsequent reloads will keep the content in the position that you specified.
You can use your browser’s development tools to inspect the client-side resources and
validate that the cookie was properly set. Figure 11-3 shows an example of the cookie
value in Chrome’s Resources view.

Figure 11-3. Cookie in Chrome Resources

Tuning Cookies
Cookies are set with clients using unopinionated defaults. For example, no expiry,
domain, secure flag, or HTTP-only flags are set when a cookie is created. Configura‐
tion of these values can be done so through the Cookie object that is returned when
the cookie method is called on the response object. If we change the updatePosi
tion POST handler slightly, we can demonstrate setting these properties on the trans‐
mitted cookie. The updated application code in Example 11-15 shows the tuning of
cookie values.

Working with Cookies | 277

Example 11-15. Tuning cookie values

import ratpack.groovy.template.TextTemplateModule
import ratpack.form.Form

import static ratpack.groovy.Groovy.groovyTemplate
import static ratpack.groovy.Groovy.ratpack

ratpack {
 bindings {
 module TextTemplateModule
 }
 handlers {
 post("updatePosition") {
 parse(Form).then { data ->
 def cookie = response.cookie("ratpack-view-position", data.next_pos)
 cookie.maxAge = 365 * 24 * 60 * 60
 cookie.domain = "localhost"
 cookie.httpOnly = true
 cookie.secure = false
 redirect "/"
 }
 }
 get {
 def position = request.oneCookie("ratpack-view-position")?.toInteger() ?: 0
 render groovyTemplate([position: position], "index.html")
 }
 }
}

It may not be desirable for your user experience for your application to respect
cookies after a period of time has elapsed since their creation. Setting the maxAge
property to a number of seconds allows you to tune how long a browser should
respect a cookie. Here, we set the value to one year.

We can also set the domain on the cookie to ensure that cookies are appropriately
associated with the domain name for your application.

Here, we set the httpOnly flag on the cookie. This indicates whether JavaScript
code should be able to access the cookie once it is stored by the browser. A value
of true here indicates that the cookie is only valid for request-response lifecycles,
and cannot be accessed by the view’s JavaScript. The default value for httpOnly is
false.

The secure property indicates whether cookies should be transmitted over unen‐
crypted HTTP. By default this is set to false, but if you wish to only transmit
cookies when serving your application over HTTPS, then set this value to true. It

278 | Chapter 11: Sessions and Security

is generally a bad practice to store sensitive data in cookies, but if your require‐
ments demand it, then ensure you are properly setting this value.

If you run this application again and change the content position within the view’s
grid, you will see that the cookie in your browser has been updated with the proper‐
ties we specified. Figure 11-4 shows the Chrome console’s Resources tab again, this
time indicating that the cookie values have been properly set in our handler.

Figure 11-4. Updated cookie values

Expiring Cookies
When working with cookies, you will undoubtedly have the need to explicitly remove
a cookie from a client. This is accomplished by expiring the cookie from within a
handler. For the purposes of our demonstration, consider that we want to provide the
means for the view configuration to be set back to its defaults. We can achieve this by
providing a Reset View button that expires the ratpack-view-position cookie, and
redirects back to the landing page.

To illustrate expiring cookies, let’s consider a change to the index.html template,
which adds a button for resetting the view. Example 11-16 shows this addition.

Example 11-16. Reset View button added

<!DOCTYPE html>
<html>
<head>
<title>Learning Ratpack</title>
<style>
.row {
 width: 100%;
}
.row > .col {
 display: inline-block;
 float: left;
 text-align: center;
 padding-top: 5px;
 position: relative;
}

Working with Cookies | 279

.col.col-3 {
 width: calc(33.333% - 16px);
 margin-left: 12px;
 border: 1px solid #000;
 min-height: 150px;
}
.controls {
 position: absolute;
 bottom: 5px;
 width: 100%;
}
.controls > form {
 display: inline-block;
}
</style>
</head>
<body>
<h2>Welcome to Ratpack</h2>
<form action="/resetView" method="post" style="margin-bottom: 10px">
 <input type="submit" value="Reset View">
</form>
<div class="row">
 <% 3.times { n -> %>
 <div class="col col-3">
 <% if (model.position == n) { %>
 Learning Ratpack is fun!
 <div class="controls">
 <% if (n > 0) { %>
 <form action="/updatePosition" method="post">
 <input type="hidden" name="next_pos" value="${model.position-1}">
 <input type="submit" value="← Move">
 </form>
 <% } %>
 <% if (n < 2) { %>
 <form action="/updatePosition" method="post">
 <input type="hidden" name="next_pos" value="${model.position+1}">
 <input type="submit" value="Move →">
 </form>
 <% } %>
 </div>
 <% } %>
 </div>
 <% } %>
</div>
</body>
</html>

Underneath the landing page’s welcome message, we create a form that simply
POSTs to /resetView.

280 | Chapter 11: Sessions and Security

Next, we must update the application code to provide a post handler for the reset
View endpoint. Example 11-17 shows this change.

Example 11-17. Adding the resetView handler

import ratpack.groovy.template.TextTemplateModule
import ratpack.form.Form

import static ratpack.groovy.Groovy.groovyTemplate
import static ratpack.groovy.Groovy.ratpack

ratpack {
 bindings {
 module TextTemplateModule
 }
 handlers {
 post("resetView") {
 response.expireCookie("ratpack-view-position")
 redirect "/"
 }
 post("updatePosition") {
 parse(Form).then { data ->
 def cookie = response.cookie("ratpack-view-position", data.next_pos)
 cookie.maxAge = 365 * 24 * 60 * 60
 cookie.domain = "localhost"
 cookie.httpOnly = true
 cookie.secure = false
 redirect "/"
 }
 }
 get {
 def position = request.oneCookie("ratpack-view-position")?.toInteger() ?: 0
 render groovyTemplate([position: position], "index.html")
 }
 }
}

Here, we add a POST handler for the /resetView endpoint to which the Reset
View button will submit.

It takes no more than calling the expireCookie method on response with the
name of the cookie to have it be removed from the client.

We redirect to the landing page, which will now render back to the default view.

If we run this application, we will see that the landing page now presents the Reset
View button (Figure 11-5).

Working with Cookies | 281

Figure 11-5. Reset View button

Clicking the Reset View button will perform the POST, and when the landing page is
reloaded, we will see that the cookie has indeed been expelled from our browser and
the landing page preferences have been reset (Figure 11-6).

Figure 11-6. Cookie removed and view reset

From here, you can go about customizing the content position and you will find that
the cookie again is set when you do. Being able to expire cookies through such a
seamless and easy-to-use mechanism further exemplifies Ratpack’s nature as a frame‐

282 | Chapter 11: Sessions and Security

work capable of building robust applications that are able to focus on user experience
instead of the nuances of the underlying framework.

Chapter Summary
The concepts and integrations covered in this chapter will service you as a fundamen‐
tal understanding when building user-centric applications. As your journey in learn‐
ing Ratpack continues, the discussions from this chapter will prove invaluable. In the
next chapter, we will discuss introducing security into your application, and your
understanding of Ratpack’s HTTP session support will be necessary for this conversa‐
tion. Furthermore, the knowledge and experience that you now have for working
with cookies allows you to build powerful, modern applications that provide a top-
quality user experience.

Chapter Summary | 283

CHAPTER 12

Application Security

Application security is a feature given immense attention in Ratpack. The conversa‐
tion of security takes many forms; from access control to encryption of communica‐
tions and user data, no modern production-grade application would be complete
without the ability to ensure security for its users and data. We have already seen
some of the levels of security Ratpack provides, with the ability to encrypt user ses‐
sion data, but there are many more core and optional security features available from
the framework. As with the implementation of many other Ratpack features, the goal
with these features is to make it as easy as possible to get security into your applica‐
tion.

SSL Support
A core feature of Ratpack is the ability to provide applications with the means to sup‐
port secure communications with clients. It is highly advisable that any application
that supports user sessions or authentication leverage secure communications. Fol‐
lowing this practice will ensure that your users’ data is secure along the wire, and that
no potential eavesdropper can hijack sensitive data as it flows from application to
user.

The capability to secure communications in Ratpack comes in the form of supporting
SSL HTTP channels in your application. In traditional JVM web applications (i.e.,
those that are servlet-based), integrating SSL support can be a complex configuration
detail, and is often applied secondarily or after the fact. In Ratpack, however, support‐
ing SSL need be little more than a one-liner in your application’s definition.

To begin incorporating SSL support into your application, you must first have an SSL
certificate to use. We can begin testing the secure Ratpack application by generating a
self-signed certificate for us to use. To do this, we can leverage the keytool utility

285

provided by the Java Development Kit (JDK) to generate the self-signed certificate
and store it into a Java KeyStore (JKS) file for our application to use. Example 12-1
shows the appropriate shell command to use to build our development JKS file, as
well as the output you should see.

Example 12-1. Using keytool to generate a JKS file

$ keytool -genkey -alias ratpack \
 -keyalg RSA -keystore /etc/server.jks \
 -keypass changeit -storepass changeit \
 -validity 365 -keysize 2048
What is your first and last name?
 [Unknown]: Dan Woods
What is the name of your organizational unit?
 [Unknown]: Ratpack Web Framework
What is the name of your organization?
 [Unknown]: Development
What is the name of your City or Locality?
 [Unknown]: Everywhere, Earth
What is the name of your State or Province?
 [Unknown]:
What is the two-letter country code for this unit?
 [Unknown]:
Is CN=Dan Woods, OU=Ratpack Web Framework, O=Development, L="Everywhere, Earth", ↵
ST=Unknown, C=Unknown correct?
 [no]: yes
$

This part of the command denotes the fact that we want keytool to generate a
key for our JKS file. This will generate the public and private key pairs that will be
used to encrypt the communication to clients. Also, we give the key the alias of
ratpack so that if we need to inspect the JKS file later, it will be clear that this was
our key.

These inputs denote that we want the key to use RSA encryption and we want the
certificate stored in the /etc/server.jks file. The actual path to the JKS file does not
matter, so long as the application can access it. Choose the proper location
according to your system’s requirements.

Here, we specify the passwords for our certificate and JKS file. We will provide
these values to our application specification to unlock the JKS file for use. Note
that changeit is definitively a bad choice for a password, and you should make
this value something that cannot be easily discovered.

286 | Chapter 12: Application Security

Finally, we set the validity period and key size for our certificate. For a self-
signing certificate, 365 days is generally a safe choice; 2048 bit key size is also a
good default.

With the demonstration JKS file in place, we can instruct our Ratpack application
that we want to provide secure communications. To do this, we leverage the ssl
method on the ServerConfigBuilder from the serverConfig block of our applica‐
tion definition. The code in Example 12-2 demonstrates employing our newly created
JKS file.

Example 12-2. Groovy Ratpack file with SSL

import static ratpack.groovy.Groovy.ratpack
import ratpack.ssl.SSLContexts
import java.nio.file.Paths

ratpack {
 serverConfig {
 ssl SSLContexts.sslContext(Paths.get("/etc/server.jks"), "changeit")
 }
 handlers {
 all {
 render "Hello, SSL World!"
 }
 }
}

We use the ssl method with the assistance of ratpack.ssl.SSLContexts to build
a javax.net.ssl.SSLContext object. This is a helper method provided by Rat‐
pack to make the process of setting up SSL as simple as possible. The first argu‐
ment supplied to the sslContext method is a Path object referencing our JKS
file. The second argument is the password that we specified when building the
JKS file.

When you run this Ratpack application, you will notice that the startup log message
has changed slightly. This time, you should see “Ratpack started for https://localhost:
5050.” Note that the server note recognizes that you are providing secure communi‐
cations and has provided you with an “https” URL to access your application.

If you open a browser and navigate to https://localhost:5050, you will undoubtedly see
a message indicating that the certificate could not be verified. This is expected, as we
have self-signed the certificate in our JKS file. For demonstration’s sake, if you
instruct your browser to accept the certificate, you will see the “Hello, SSL World!”
message prominently disabled over a secure communication channel.

When you are ready to serve your application beyond local development, you will
need to obtain an SSL certificate that has been signed by a trusted certificate authority

SSL Support | 287

(CA). There are several services available to provide issuance of SSL certificates that
are signed by trusted certificate authorities (CA). Most of them will be offered for a
small price, but new services like Let’s Encrypt offer valid SSL certificates at no cost.

Obtaining an SSL certificate is a two-part process that starts with you creating a cer‐
tificate signing request (CSR). We can again use the keytool command to generate
the CSR, which your CA of choice will ask for when producing your SSL certificate.
Example 12-3 shows the command to run to generate a CSR file.

Example 12-3. Using keytool to generate a CSR file

$ keytool -certreq \
 -keyalg RSA -alias ratpack \
 -file csr.csr \
 -keystore /etc/server.jks \
 -storepass changeit

Using the certreq flag, we specify to keytool that we intend to generate a CSR.

Here, we ensure that the key algorithm is RSA and that we reference the proper
alias from Example 12-1, when we created the JKS file.

This is the file where the CSR will be output.

The keystore flag references the path to where our JKS file lives.

And for convenience, here we specify the password to the store. Were this not
specified as an argument to keytool, you would be prompted for the password.

Successfully running this command results in no output, but a csr.csr file should be
generated. Example 12-4 shows what an example output might look like.

Example 12-4. Sample output (csr.scr file)

$ cat csr.csr
-----BEGIN NEW CERTIFICATE REQUEST-----
MIIDADCCAegCAQAwgYoxEDAOBgNVBAYTB1Vua25vd24xEDAOBgNVBAgTB1Vua25vd24xGjAYBgNV
BAcTEUV2ZXJ5d2hlcmUsIEVhcnRoMRQwEgYDVQQKEwtEZXZlbG9wbWVudDEeMBwGA1UECxMVUmF0
cGFjayBXZWIgRnJhbWV3b3JrMRIwEAYDVQQDEwlEYW4gV29vZHMwggEiMA0GCSqGSIb3DQEBAQUA
A4IBDwAwggEKAoIBAQCO9smGiM++8hKIV0s4q3bRao6w7IpzmIQvWL2LSlAp8yOIhNZTqL3exhlL
xpIDT4Q0C4qTwmqx3oE8oj4Kx2WLn+sAix+6Z83ZcMEBueOu3PsqfuM64fC73m8OM06lNmvi9kiF
07LVprDOvtx+HxaRsb7MzbuC32bpHF82dqOOPSRVyLA0ssOmOkEYtFIvKZBcLoPYqBQYWv32HR3P
KSZlfKWnjuv2k0KAIXw3ukp+nILZTSs/kv359aanm4XZiOiLEo+KeS1jUEF5ctIs/SGTf1jBv70U
npvU/S2/N0hc9NRBNy3MIn4+sKzUaXcLYlAh0/WpJyLfMkDQgAwmhN5nAgMBAAGgMDAuBgkqhkiG
9w0BCQ4xITAfMB0GA1UdDgQWBBS+syvlZfYKg3As+lTL7nzUqySmcTANBgkqhkiG9w0BAQsFAAOC
AQEAdGfsJfgJ9Ym+YLen0vG5JZtqHyV1GcfazvySIWRiy//a/zH5hPrZS+fLQVrHfx2B6DsMr+MQ
XaJMlsldIDX9YZMkjl6i+TSSE4zi6eWpMClvu4DNQjcLn9ymkJVGb3QGjNRrgpPb4LCu7ErtYL7L

288 | Chapter 12: Application Security

https://letsencrypt.org

zq4LzYFw+pudO7pA1i5dNDD/6CiOn+70UGEeued3dLOo+TXR+ZBS1GcFAV4aSLL2SrkxXQzd1SYg
B1WO3ok961i7O5IYsXM8ImCwQ7iry6QY6jJZyK8PDsg0dOA4pO8fkFW3rJqYQgeMin6hg02GSIdK
roClngHNz9r0f5x2/QxT3npvYuYBu0I+f+WaBUqoxw==
-----END NEW CERTIFICATE REQUEST-----

After supplying the signing request to your CA, you will be given three certificate
files: your CA’s root certificate; their intermediate certificate; and finally your SSL cer‐
tificate. The next step will be to import the three certificates. The console commands
to do so, again using keytool, are shown in Example 12-5.

Example 12-5. Importing certificates

$ keytool -import -alias root \
 -keystore /etc/server.jks \
 -storepass changeit \
 -trustcacerts -file root.crt

$ keytool -import -alias intermed \
 -keystore /etc/server.jks \
 -storepass changeit \
 -trustcacerts -file intermediate.crt

$ keytool -import -alias ratpack \
 -keystore /etc/server.jks \
 -storepass changeit \
 -trustcacerts -file ratpack.crt

We begin by importing the CA’s root certificate. Here, we use the import com‐
mand to specify that we are importing a certificate to the keystore file. Be sure to
use the root alias here so that the root certificate is properly imported.

Like before, we reference the location to our JKS file.

Also like before, here we specify the JKS password. If you do not specify this, you
will be prompted for a password on the command line.

We specify the trustcacerts flag to indicate that we want keytool to trust the
other root CA certificates for which your distribution is already aware. Finally,
we use the file flag to specify the location to the provided root certificate file.
This will often be named something in accodance with your CA’s naming
scheme, so root.crt should be replaced with what you were provided.

Next, we need to import the CA’s intermediate certificate. We again use the
import command, and we ensure that the alias flag specifies intermed.

SSL Support | 289

Like before, we use the trustcacerts flag, and use the file flag to specify the
location of the CA’s provided intermediate certificate.

Finally, we issue the command to import the signed SSL certificate for your appli‐
cation. We again use import, but this time we specify ratpack for the alias flag,
as this is what we used when we created the JKS before.

The file flag here now references the certificate that is for your application.

With the certificates imported into your JKS file, you can now use the JKS when
deploying your application to your SSL secured domain. You will need to ensure that
your deployment environment is equipped for handling SSL at the application layer,
and that during startup your JKS file is available as outlined before.

Ratpack’s SSL support makes it easy to incorporate secure communication channels
within your application. Using the knowledge that you have gained from this section,
you are now empowered with the knowledge to ensure that you are building applica‐
tions that have your users’ security at the forefront of their experience.

Basic Authentication
As noted earlier, authenticating and authorizing users can come in many forms. To
that extent, Ratpack integrates with Pac4j, which is a sort-of Swiss Army knife for
authentication and authorization in Java applications. The optional framework
dependency ratpack-pac4j provides users with easy-to-use Handler implementa‐
tions that can be applied to the handler chain to enforce authentication and authori‐
zation.

One option for applications that need to protect some resource in their application,
but do not require an invested user experience, is basic authentication. Use of basic
authentication can also be valuable for services that communicate point-to-point
(though OAuth is definitely the preferred mechanism for this). Whatever your need
for basic authentication, Ratpack supports it. It is important to note that use of
authentication and authorization requires a user session and thus the SessionModule
must also be applied, as covered previously in this chapter.

To begin with setting up basic authentication you will need to include the ratpack-
pac4j dependency in your application’s dependencies. Like other framework mod‐
ules, the Ratpack Gradle plugin provides a simple means for integrating this
dependency. The Gradle build script in Example 12-6 shows how to incorporate Pac4j
into your project. One important caveat to note here is that Pac4j, like Ratpack, exists
as a set of libraries with optional dependencies and few opinions about how you inte‐
grate authentication and authorization into your application. In that respect, the two
projects are very well aligned. The ratpack-pac4j framework dependency provides

290 | Chapter 12: Application Security

integration with the core Pac4j infrastructure, but you must also include the specific
Pac4j library that you wish to build authentication upon. In Example 12-6 you will
notice that we also need to include the org.pac4j:pac4j-http dependency, which
provides the integrations necessary for building basic authentication.

Example 12-6. Gradle build script with Pac4j

buildscript {
 repositories {
 jcenter()
 }
 dependencies {
 classpath 'io.ratpack:ratpack-gradle:1.3.3'
 }
}

apply plugin: 'idea'
apply plugin: 'io.ratpack.ratpack-groovy'

repositories {
 jcenter()
}

dependencies {
 compile ratpack.dependency("session")
 compile ratpack.dependency("pac4j")
 compile "org.pac4j:pac4j-http:1.8.6"
 compile "commons-codec:commons-codec:1.10"

}

As noted, we need to include the ratpack-session dependency in our project.
As we will demonstrate, ratpack-pac4j does not have a module itself that needs
to be applied, but instead relies on the user’s session to store and retrieve authen‐
tication.

Here, we apply the ratpack-pac4j dependency to the project.

In addition, we apply the pac4j-http dependency, which allows us to build in
basic authentication.

Finally, pac4j-http basic authentication support depends on commons-codec, but
it is not transitively included in the dependency, so we must add it here explicitly.

Pac4j has a well-defined structure for how its authentication flow works. The flow
begins by defining a client, which is the abstract concept that enables authentication
of the user. The Pac4j client implementation retrieves the provided credentials for a

Basic Authentication | 291

given request and validates them against its given authenticator. If the credentials are
validated from the authenticator, then the client’s profile creator creates a “profile” for
the authenticated user and stores it in the HTTP session. The profile holds all the
details about the authenticated user, which can be used to make downstream deci‐
sions about how the application interacts with the particular user.

Ratpack’s integration with Pac4j makes it easy to tie together the different parts neces‐
sary for authentication. Given the Gradle build script from earlier, with the project
dependencies in place, we can demonstrate basic authentication with Pac4j through
the simple, though robust, code depicted in Example 12-7.

Example 12-7. Basic authentication Ratpack application

import org.pac4j.http.client.indirect.IndirectBasicAuthClient
import org.pac4j.http.credentials.authenticator.test.
 SimpleTestUsernamePasswordAuthenticator
import org.pac4j.http.profile.creator.AuthenticatorProfileCreator
import ratpack.pac4j.RatpackPac4j
import ratpack.session.SessionModule

import static ratpack.groovy.Groovy.ratpack

ratpack {
 bindings {
 module SessionModule
 }
 handlers {
 all(
 RatpackPac4j.authenticator(
 new IndirectBasicAuthClient(
 new SimpleTestUsernamePasswordAuthenticator(),
 AuthenticatorProfileCreator.INSTANCE
)
)
)
 get("auth") {
 RatpackPac4j.login(context, IndirectBasicAuthClient).then {
 redirect "/"
 }
 }
 get {
 RatpackPac4j.userProfile(context)
 .route { o -> o.present } { o -> render "Hello, ${o.get().id}!" }
 .then { render "Not Authenticated!" }
 }
 get("logout") {
 RatpackPac4j.logout(context).then {
 redirect "/"
 }
 }

292 | Chapter 12: Application Security

 }
}

As noted, we must have HTTP sessions available to work with authentication.
Here, we apply the SessionModule, though your application may leverage any of
the session capabilities outlined previously.

The mechanism that performs authentication should be applied as an all han‐
dler, so that different HTTP verbs do not gain unintended access to protected
resources. The helper methods from RatpackPac4j provide Handler implemen‐
tations, so note here that we do not construct a handler ourselves, as we would by
providing a Closure. Instead, we simply make a method call to all.

RatpackPac4j#authenticator is the mechanism by which we will supply the
Pac4j client. The handler provided from here will incorporate the provided Pac4j
client into the context registry for use downstream when we wish to actually ini‐
tiate the login/authentication sequence.

In this example, we make use of the IndirectBasicAuthClient, which is pro‐
vided to our project by the pac4j-http dependency.

The IndirectBasicAuthClient takes a UsernamePasswordAuthenticator imple‐
mentation to perform the authentication. This gives us a great deal of flexibility
in determining the exact manner in which we authenticate a client. For the pur‐
poses of demonstration, we will use the SimpleTestUsernamePasswordAuthenti
cator, though it should be noted that this is strictly for demonstrative purposes
and is not something you want to bring into a real-world application.

Most appropriate for basic authentication is the AuthenticatorProfileCreator,
which creates a limited profile with the username data stored. This is provided by
pac4j-http and can be used to get access to the authenticated username, as
demonstrated further down in the application.

Here, we provide an endpoint that initiates user authentication.

The RatpackPac4j#login method gets the client implementation that was placed
in the context registry earlier and initiates the authentication sequence.

Upon successful authentication, the request is redirected to the / endpoint, which
represents the application’s protected resource in this demonstration.

Basic Authentication | 293

The handler defined here is the application’s protected resource, and the behavior
for interacting with the client is determined by whether they have successfully
authenticated or not.

We use the RatpackPac4j#userProfile method to extract the profile that was
created by the client. The profile is retrieved from the HTTP session, so subse‐
quent requests do not require re-authentication to gain access to protected
resources.

The presence of a user profile indicates successful authentication, so here we can
use the Promise#route method to route the response according to whether there
is a user profile present in the session. The RatpackPac4j#userProfile method
returns an Optional<T>, so the predicate condition checks whether the Optional
type has a value or not. If it does, then we render a “Hello, <username>!” message
back to the client.

If there is no user profile in the session, then we render an “unauthenticated”
response via the then method.

This provides the endpoint for a user to log out when they are finished with their
session.

The RatpackPac4j#logout method invalidates the current session’s request.

After logout, we redirect the user back to /.

If you run this application and open your browser to http://localhost:5050, you will be
met with a simple, “Not Authenticated!” message. This demonstrates how we have
protected the / endpoint from unauthenticated requests. Redirecting your browser
location to http://localhost:5050/auth, you will find that you are met with a basic
authentication dialog, where you are asked for a username and password. The dem‐
onstration here is using the SimpleTestUsernamePasswordAuthenticator, which
simply checks that the username matches the password. As noted in the application
listing’s callouts, you should not use this authenticator for anything more than dem‐
onstration’s sake. If you type a matching username and password into your browser’s
authentication prompt, you will be redirected to the / endpoint, and this time you
will be met with the “Hello, <username>!” message.

If you next direct your browser to your application’s /logout endpoint, you will find
that you are then redirected back to / and met again with the “Not Authenticated!”
message. Your authentication has been invalidated.

294 | Chapter 12: Application Security

Custom UsernamePasswordAuthenticator
As noted, the SimpleTestUsernamePasswordAuthenticator will not get you far for
providing real authentication for your application. There are no out-of-the-box opin‐
ions on how your application solves this problem, however it is easy to implement
your own UsernamePasswordAuthenticator to match your requirements.

For example, say that you wish to provide a static configuration of usernames and
their corresponding password hash to authenticate against. We can leverage Ratpack’s
configuration mechanism to map those values to a model object that we use within
our application’s custom UsernamePasswordAuthenticator. To get started, we need
only implement the validate method from the UsernamePasswordAuthenticator
interface. The code in Example 12-8 demonstrates what this implementation might
look like.

Example 12-8. Custom map-based MapUsernamePasswordAuthenticator

package app

import org.pac4j.core.exception.CredentialsException
import org.pac4j.core.profile.CommonProfile
import org.pac4j.http.credentials.UsernamePasswordCredentials
import org.pac4j.http.credentials.authenticator.UsernamePasswordAuthenticator
import org.pac4j.http.profile.HttpProfile

import javax.crypto.SecretKeyFactory
import javax.crypto.spec.PBEKeySpec

class MapUsernamePasswordAuthenticator implements UsernamePasswordAuthenticator {

 private static final int ITERATIONS = 1000
 private static final int KEY_LENGTH = 192

 Map<String, String> userMap

 public MapUsernamePasswordAuthenticator(Map<String, String> userMap) {
 this.userMap = userMap
 }

 @Override
 void validate(UsernamePasswordCredentials credentials) {
 def passHash = userMap.get(credentials.username)

 if (!passHash || passHash != hashPassword(credentials.password,
 credentials.username)) {
 throwsException("Invalid username or password.")
 }

Basic Authentication | 295

 credentials.userProfile = new HttpProfile(id: credentials.username)
 }

 protected void throwsException(final String message) {
 throw new CredentialsException(message);
 }

 public static String hashPassword(String password, String salt) {
 char[] passwordChars = password.toCharArray();
 byte[] saltBytes = salt.getBytes();

 PBEKeySpec spec = new PBEKeySpec(passwordChars, saltBytes, ITERATIONS,
 KEY_LENGTH);
 SecretKeyFactory key = SecretKeyFactory.getInstance("PBKDF2WithHmacSHA512");
 byte[] hashedPassword = key.generateSecret(spec).getEncoded();
 return String.format("%x", new BigInteger(hashedPassword));
 }
}

As noted, we need to implement the org.pac4j.http.credentials.authentica
tor.UsernamePasswordAuthenticator interface.

Here, we define a static value for how many iterations are used when building the
key for the password hash (more on this to come).

We also define the key length to be used.

Here, we provide the map of username-to-password-hash so that we can retrieve
the appropriate hash by the supplied username.

The validate method is what will be called by the Pac4j infrastructure, which
provides us with a UsernamePasswordCredentials object to get access to the
supplied username and password.

From the provided username-to-password-hash map, we retrieve the password
hash for the given user.

We can provide a sanity check to ensure the user is known, and then validate that
the configured hash matches the hash specified by the configuration.

If there is no user or if the hashes do not match, then we throw a CredentialsEx
ception, which informs Pac4j that authentication has failed.

Here, we have created a UserProfile object in the form of a simple HttpProfile
instance, for which we set the id field to the authenticated user. We set the profile

296 | Chapter 12: Application Security

on the UsernamePasswordCredentials object so that it is accessible for subse‐
quent requests.

The hashPassword method is the main utility in our authenticator. It takes the
provided password and a salt. In this case, we can use the username as the salt for
the password, though you may find benefit in using a pre-configured salt pro‐
vided by your application’s configuration.

From the password and username, using the previously defined ITERATIONS and
KEY_LENGTH count, we construct the key specification that will be used to gener‐
ate the password hash (which will be validated against the configured value from
earlier).

You can specify whatever digest algorithm you desire. Here we specify the
PBKDF2WithHmacSHA512 algorithm, which uses PBKDF2 with HMAC-SHA-512 as
the pseudorandom function. (As a note, this is a good approach for password
security, though there are caveats to the level of rigidity of this security mecha‐
nism. For example, too low an iteration count could leave your passwords more-
easily brute-forced. Play with the ITERATIONS value to ensure you are providing
the appropriate level of security. For this, 1000 count is a good starting place).

Here, we generate and capture the encoded value, which is a byte array of our
password hash.

Finally, we format and return the hashed password for validation.

Using the same logic that we employ to validate the user and their password, we can
fashion a simple standalone Groovy script to generate the password hash that we
store in our application configuration. The script in Example 12-9 demonstrates the
relevant code necessary for this.

Example 12-9. Standalone Groovy script for password hash generation

import javax.crypto.SecretKeyFactory
import javax.crypto.spec.PBEKeySpec

ITERATIONS = 1000
KEY_LENGTH = 192

println hashPassword("mypassword", "username")

String hashPassword(String password, String salt) {
 char[] passwordChars = password.toCharArray();
 byte[] saltBytes = salt.getBytes();

 PBEKeySpec spec = new PBEKeySpec(passwordChars, saltBytes, ITERATIONS, KEY_LENGTH);

Basic Authentication | 297

 SecretKeyFactory key = SecretKeyFactory.getInstance("PBKDF2WithHmacSHA512");
 byte[] hashedPassword = key.generateSecret(spec).getEncoded();
 return String.format("%x", new BigInteger(hashedPassword));
}

Note that we extract the hashPassword function and match the ITERATIONS and
KEY_LENGTH values to those in our MapUsernamePasswordAuthenticator class. We
can run this script using the groovy command-line utility to generate the necessary
hash.

From here, we need to build a configuration file to store the password hash. By now,
you have a firm understanding of how Ratpack’s configuration mechanism works,
and likely already have a configuration file set up for your application. We can add to
it a simple object entry with our username and generated hash. The listing in
Example 12-10 shows what a YAML configuration file entry would look like with our
username and password hash map included.

Example 12-10. Config YAML with password hash map

security:
 basic:
 userPassMap:
 username: -19ab61bf5cff843597ed69e28d59baf77e2e1f6078c48718

Note that here you will want to replace username with your user’s username, and
the corresponding hash value with that generated from the above script.

To incorporate the security configuration into our application, we should have a Java/
Groovy bean that represents the directives we have defined. Consider the Security
Config class depicted in Example 12-11, which we will use in our application to map
the YAML config to an object structure we can work with in our application.

Example 12-11. Security configuration for custom authenticator

package app

class SecurityConfig {

 BasicAuthConfig basic

 static class BasicAuthConfig {
 Map<String, String> userPassMap = [:]
 }
}

We embed the structure of the security.basic directive in a nested object type,
BasicAuthConfig.

298 | Chapter 12: Application Security

The BasicAuthConfig can be defined as its own standalone class, but for demon‐
stration (and simplicity), we will define it here as a static inner class.

The userPassMap will hold the mappings of username to password as defined in
the security.basic.userPassMap directive of our config file. This Map will be
what we work with when validating authentication.

Next, we must read our application’s configuration file into our application, and map
it to the SecurityConfig class for use within our authentication flow. Following that,
we now give the MapUsernamePasswordAuthenticator to the Pac4j BasicAuthClient
so that it knows how to authenticate the incoming user. To accomplish this, we need
only change our use of the BasicAuthClient Pac4j client shown earlier, and provide
it with our new authenticator. The code provided in Example 12-12 shows how to
accomplish this.

Example 12-12. Basic authentication with MapUsernamePasswordAuthenticator

import app.MapUsernamePasswordAuthenticator
import app.SecurityConfig
import org.pac4j.http.client.indirect.IndirectBasicAuthClient
import org.pac4j.http.profile.creator.AuthenticatorProfileCreator
import ratpack.pac4j.RatpackPac4j
import ratpack.session.SessionModule

import static ratpack.groovy.Groovy.ratpack

ratpack {
 serverConfig {
 yaml("config.yml")
 sysProps()
 env()
 require("/security", SecurityConfig)
 }
 bindings {
 module SessionModule
 }
 handlers {
 all(
 RatpackPac4j.authenticator(
 new IndirectBasicAuthClient(
 new MapUsernamePasswordAuthenticator(
 registry.get(SecurityConfig).basic.userPassMap),
 AuthenticatorProfileCreator.INSTANCE
)
)
)
 get("auth") {
 RatpackPac4j.login(context, IndirectBasicAuthClient).then {
 redirect "/"

Basic Authentication | 299

 }
 }
 get {
 RatpackPac4j.userProfile(context)
 .route { o -> o.present } { o -> render "Hello, ${o.get().id}!" }
 .then { render "Not Authenticated!" }
 }
 get("logout") {
 RatpackPac4j.logout(context).then {
 redirect "/"
 }
 }
 }
}

Within the serverConfig block of our application definition (which you should
be familiar with now), we specify that we want to consume the app.yml YAML
configuration file, and allow configuration overrides via Java System Properties
or appropriately named environment variables. Finally, we map the structure of
the security configuration from our YAML file to the SecurityConfig class. As
you well know by now, the require(..) syntax maps the configuration and
places the resulting object in the registry, for use within our application handlers.

Instead of using the SimpleTestUsernamePasswordAuthenticator here, we now
supply our MapUsernamePasswordAuthenticator. Note that the argument to the
constructor is the userPassMap from our SecurityConfig class, so at this point,
we can get the SecurityConfig object (which has our configuration values map‐
ped to it) from the registry, and provide the `` to the MapUsernamePasswordAu
thenticator.

The structure of the project at this point looks like the tree shown in Example 12-13.
This is noted for the reader to understand that for the purposes of this demonstra‐
tion, the app.yml must be within the project’s base directory (in this case, src/ratpack).
If you wish to load configuration from a filesystem path outside of the base directory,
you will need to provide the ServerConfigBuilder#yaml method with the
java.nio.file.Path that points to the location of your configuration file.

Example 12-13. Basic authentication project structure

.
├── build.gradle
└── src
 ├── main
 │ └── groovy
 │ └── app
 │ ├── MapUsernamePasswordAuthenticator.groovy
 │ └── SecurityConfig.groovy

300 | Chapter 12: Application Security

 └── ratpack
 ├── config.yml
 └── ratpack.groovy

5 directories, 5 files

If you start this application and open your browser to http://localhost:5050, you will
notice that the unauthenticated behavior has not changed much since the last version
of the code. We are still met with the “Not Authenticated!” screen when we land on
the / endpoint without providing any authentication. If you navigate now to /auth,
you will see the basic authentication prompt that you are familiar with from earlier.
This time, if you specify the username and password combination from your configu‐
ration file, you will find that you are now validated according to your application’s
configuration!

As demonstrated in this section, basic authentication can serve as a good utility for
implementing base-level security into your application. Ratpack’s handler chain
makes it a powerful option for securing your protected resource routes and easily
defining the application behavior according to whether the user is authenticated or
not. From a service-to-service interaction perspective, basic authentication may
prove a suitable option for securing access to particular consumers.

Form-Based Authentication
Basic authentication is not a practical solution for applications that wish to provide a
rich user experience. Given that, we will need to provide some way that users can
authenticate to our application through an authentication flow that fits into the
desired user experience. Ratpack’s integration with Pac4j gives you the flexibility to
design your authentication mechanism in the way that works best for your applica‐
tion. In this section, we will explore a means for building a data-backed, form-based
authentication system.

Similar to the BasicAuthClient demonstrated in the prior section, for building form-
based authentication we can utilize the FormClient and provide a UsernamePasswor
dAuthenticator, just as we did previously. The FormClient, which is provided as
part of the same pac4j-http dependency, provides us the means to specify the URL
of the login form that is to be used for authentication. When an unauthenticated cli‐
ent attempts to access a protected resource, the Pac4j infrastructure will redirect the
request to the specified login form’s URL, thus initiating the authentication flow. The
login form need only POST username and password form parameters to the Pac4j
authentication callbackUrl, which is provided to us by the FormClient. We can use
Ratpack’s advanced templating support to facilitate the construction of the login
form.

Form-Based Authentication | 301

To begin, we must first envision the application structure that will exemplify form-
based authentication. For the purposes of demonstration, consider that you have a
basic application landing page, which is represented by an index.html file; second to
that, we have a login.html, which provides the view within which users will authenti‐
cate; finally, we have a protectedIndex.html file, which is rendered specifically for the
authenticated user. If we again start with the SimpleTestUsernamePasswordAuthenti
cator, as we did in the prior section, then we can realize a project structure similar to
the one shown in Example 12-14. When a user is authenticated, we want to show
them the protectedIndex.html file when they visit the / route, while an unauthentica‐
ted user visiting / should get the index.html file.

Example 12-14. Initial project structure for form-based authentication

.
├── build.gradle
└── src
 └── ratpack
 ├── ratpack.groovy
 └── templates
 ├── index.html
 ├── login.html
 └── protectedIndex.html

3 directories, 5 files

Nothing need change in our build.gradle file from the demonstration in the prior sec‐
tion. Our ratpack.groovy, however, does need to change slightly to accommodate the
HTML nature of what we are going to accomplish. Consider the code provided in
Example 12-15, which fully implements form-based authentication in our applica‐
tion.

Example 12-15. Ratpack Groovy application with FormClient

import org.pac4j.http.client.indirect.FormClient
import org.pac4j.http.credentials.authenticator.test.
 SimpleTestUsernamePasswordAuthenticator
import org.pac4j.http.profile.creator.AuthenticatorProfileCreator

import static ratpack.groovy.Groovy.ratpack
import static ratpack.groovy.Groovy.groovyTemplate
import static java.util.Collections.singletonMap

import ratpack.session.SessionModule
import ratpack.pac4j.RatpackPac4j
import ratpack.groovy.template.TextTemplateModule

ratpack {
 bindings {

302 | Chapter 12: Application Security

 module SessionModule
 module TextTemplateModule
 }
 handlers {
 def formClient = new FormClient(
 "auth",
 new SimpleTestUsernamePasswordAuthenticator(),
 AuthenticatorProfileCreator.INSTANCE
)

 all(RatpackPac4j.authenticator("auth", formClient))

 get("login") {
 render(groovyTemplate(
 singletonMap("callbackUrl", formClient.loginUrl),
 "login.html"))
 }

 get("logout") {
 RatpackPac4j.logout(context).then {
 redirect '/'
 }
 }

 get {
 RatpackPac4j.userProfile(context)
 .route { o -> o.present } { o ->
 render(groovyTemplate([profile: o.get()], "protectedIndex.html"))
 }
 .then {
 render(groovyTemplate([:], "index.html"))
 }
 }
 }
}

For the purposes of this web application, we will leverage Ratpack’s Groovy Text
Template support for rendering HTML pages, so we must bind the TextTemplate
Module.

Within the handler chain, we can construct the FormClient for use as part of the
authentication flow. The first argument we supply is the authentication endpoint,
defined here as auth; the second argument is the UsernamePasswordAuthentica
tor. As noted, here we will use the SimpleTestUsernamePasswordAuthenticator
again for the purposes of demonstration; the third and final argument we supply
is the UsernameProfileCreator, so that we can capture the logged-in user’s
details in the protectedIndex.

Form-Based Authentication | 303

Here, we attach the Pac4jAuthenticator, which will provide the /auth endpoint
for which our login form will supply the username and password parameters
from our web interface.

The /login endpoint will be the route within which we will render our applica‐
tion’s login form. We supply to the login.html template the callbackUrl, which
we retrieve from the formClient.loginUrl property. This will be the endpoint to
which the login form POSTs the user’s credentials for authentication.

Our protectedIndex.html interface will provide not only a user-authenticated
interface, but also the means for a user to log out. Here, we define the endpoint
that a user will access to invalidate their authentication to our web application.

Finally, we define the landing page interaction. When a user is authenticated and
accesses the / endpoint, they will be rendered the protectedIndex.html template;
when a user is unauthenticated, they will be rendered our application’s unauthen‐
ticated index.html page.

Next, we should take a look at what these HTML template files look like. Let’s start
with our application’s landing page (the index.html file in our project’s templates
directory). This is a fairly simple demonstration, but you can notice the index.html
file has no model data associated with it. Example 12-16 shows what the code for our
basic landing page will look like.

Example 12-16. Landing page HTML file

<!DOCTYPE html>
<html>
<head>
<title>Welcome to My Product!</title>
</head>
<body>

Welcome to My Product's landing page! To access your resources,
you will need to Login.

</body>
</html>

As you can see, the landing page is a fairly simple HTML page, but it does provide
users with a link to the /login endpoint, which will give them the form within which
they can provide their credentials. Let’s take a look at the contents of the login page.
Again, so as to not conflate the demonstration, the login page’s contents are simple, as
shown in Example 12-17.

304 | Chapter 12: Application Security

Example 12-17. Login page HTML file

<!DOCTYPE html>
<html>
<head>
<title>My Product Login Page</title>
</head>
<body>
<h1>Please Login</h1>
<form action="${model.callbackUrl}" method="POST">
 Username:
 <input type="text" name="username" placeholder="username">

 Password: <input type="password" name="password">

 <input type="hidden" name="client_name" value="FormClient">
 <input type="submit" value="Login">
</form>
</body>
</html>

Here, we define the form and pull in from the template’s model the callbackUrl,
to which the form’s parameters will be POSTed. This is the /auth value specified
in our ratpack.groovy file.

Here, we specify an input text field with the username parameter name.

Next, we specify a password input field with the password parameter name.

We must also inform the authenticator to which client it should be authenticat‐
ing, so here we attach a hidden form input field with the client_name parameter
name and the FormClient value. This will inform Pac4j to which client imple‐
mentation it should authenticate the user.

Finally, we provide a submit button for the user to initiate the authentication
sequence.

Lastly, we should take a look at what the authenticated user will get when they suc‐
cessfully log in. This is housed in the protectedIndex.html template, and should pro‐
vide some user-specific interface according to our application’s requirements.
Example 12-18 shows the code for a simple, user-specific landing page.

Example 12-18. Authenticated landing page HTML file

<!DOCTYPE html>
<html>
<head>
<title>My Product • ${model.profile.id}</title>

Form-Based Authentication | 305

</head>
<body>
<h1>Welcome ${model.profile.id}!</h1>
<p>This is your protected product page!</p>
<p>Logout</p>
</body>
</html>

We can utilize the profile supplied to the template’s model to get access to the
authenticated user’s ID and render a custom title for their landing page (in this
case, their username).

We can also use the same method to render some user-specific value in the body
(in this case, a simple welcome message).

Finally, we provide a link to the logout facility so users can escape their authenti‐
cated interface.

With all this in place, if you fire up the application and navigate your browser to
http://localhost:5050, you will find that you are welcomed with the unauthenticated
user’s landing page. From here, you can access the link to the login screen. Doing so
navigates you to the /login endpoint and you are met with a form requesting the
username and password credentials. Because we are using the SimpleTestUsername
PasswordAuthenticator, if you provide a matching username and password combi‐
nation and submit the form, you will find that you are redirected to our application’s
protectedIndex.html page, which has your user-specific details rendered in view.

You can use the same MapUsernamePasswordAuthenticator from the prior section to
drive authentication for your application based off of a fixed list in your configura‐
tion, but that does not scale very well for applications that need authentication to be
data driven. For this, however, we can still utilize the MapUsernamePasswordAuthenti
cator, but hydrate the userPassMap with values from a database table instead of from
static configuration.

Data-Driven Form Authentication
Building on the data-driven techniques that we learned earlier in the book and
matching that with what we now know about building a custom UsernamePasswordAu
thenticator, we can incorporate a data-driven approach to authenticating users in
our application. To start with, we will want to modify the previously shown build.gra‐
dle file to also incorporate the ratpack-hikari dependency. We will use Ratpack’s
Hikari support to provide a connection pool for our authenticator. For the purposes
of demonstration (and simplicity), we will again employ the H2-embedded database,
and bootstrap it with some simple credential data. The build.gradle build script is
shown in Example 12-19.

306 | Chapter 12: Application Security

Example 12-19. Build script with database dependencies

buildscript {
 repositories {
 jcenter()
 }
 dependencies {
 classpath 'io.ratpack:ratpack-gradle:1.3.3'
 }
}

apply plugin: 'io.ratpack.ratpack-groovy'

repositories {
 jcenter()
}

dependencies {
 compile ratpack.dependency("session")
 compile ratpack.dependency("pac4j")
 compile ratpack.dependency("hikari")
 compile 'com.h2database:h2:1.4.190'
 compile "org.pac4j:pac4j-http:1.8.5"
}

With the necessary dependencies in place, let’s take a look at what our ratpack.groovy
file evolves into. The application in Example 12-20 demonstrates creating the Data
Source object, building the user authentication table, and populating it with some
data. We will take the Groovy SQL approach to working with our DataSource, as the
simplicity works well for this use case.

Example 12-20. Groovy Ratpack application (DataSource setup)

import app.DatabaseUsernamePasswordAuthenticator
import groovy.sql.Sql
import org.pac4j.http.client.indirect.FormClient
import org.pac4j.http.profile.UsernameProfileCreator
import org.pac4j.http.profile.creator.AuthenticatorProfileCreator
import ratpack.groovy.sql.SqlModule
import ratpack.groovy.template.TextTemplateModule
import ratpack.hikari.HikariModule
import ratpack.pac4j.RatpackPac4j
import ratpack.server.Service
import ratpack.server.StartEvent
import ratpack.session.SessionModule

import static java.util.Collections.singletonMap
import static ratpack.groovy.Groovy.groovyTemplate
import static ratpack.groovy.Groovy.ratpack

ratpack {

Form-Based Authentication | 307

 bindings {
 module SessionModule
 module TextTemplateModule
 module SqlModule
 module(HikariModule) { c ->
 c.dataSourceClassName = 'org.h2.jdbcx.JdbcDataSource'
 c.addDataSourceProperty 'URL', 'jdbc:h2:mem:test;DB_CLOSE_DELAY=-1'
 c.username = 'sa'
 c.password = ''
 }

 bindInstance new Service() {
 void onStart(StartEvent e) {
 Sql sql = e.registry.get(Sql)
 sql.execute "CREATE TABLE USER_AUTH(USER VARCHAR(255), PASS VARCHAR(255))"
 sql.execute "INSERT INTO USER_AUTH (USER, PASS) " +
 "VALUES('learningratpack', " +
 "'768122eeeebdafa3eb878f868b0e4e6a4944367aa635538f')"
 }
 }
 }
 handlers {
 // ... no changes here yet ...
 }
}

Remember that we need to apply the SqlModule, so that the Sql object will be
properly constructed with our DataSource.

We apply the HikariModule and configure it here to construct an H2 in-memory
embedded database.

As you’re already familiar, we use a ratpack.server.Service instance to boot‐
strap the auth data into our database.

Here, we will add a username/password combination of learningratpack/
r4tp@CKrul3z!. We use the same mechanism for hashing the password as from
the prior section.

This is a good start for getting our application set up to pull authentication data from
our database. The next step will be to implement a new UsernamePasswordAuthenti
cator for use with the FormClient. This time, instead of reading the authentication
information from a Map, we will query the database for the supplied username and get
the stored password hash. The implementation for the DatabaseUsernamePasswordAu
thenticator looks very similar to MapUsernamePasswordAuthenticator, save for the
fact that this time we inject the Sql object, which will be our interface to the database.
The code in Example 12-21 shows what this implementation looks like.

308 | Chapter 12: Application Security

Example 12-21. Custom database-backed DatabaseUsernamePasswordAuthenticator

package app

import com.google.inject.Inject
import groovy.sql.Sql
import org.pac4j.core.exception.CredentialsException
import org.pac4j.http.credentials.UsernamePasswordCredentials
import org.pac4j.http.credentials.authenticator.UsernamePasswordAuthenticator
import org.pac4j.http.profile.HttpProfile

import javax.crypto.SecretKeyFactory
import javax.crypto.spec.PBEKeySpec

class DatabaseUsernamePasswordAuthenticator
 implements UsernamePasswordAuthenticator {
 private static final int ITERATIONS = 1000
 private static final int KEY_LENGTH = 192

 private final Sql sql

 @Inject
 public DatabaseUsernamePasswordAuthenticator(Sql sql) {
 this.sql = sql
 }

 @Override
 void validate(UsernamePasswordCredentials credentials) {
 def userRow = sql.firstRow(
 "SELECT * FROM USER_AUTH WHERE USER = ${credentials.username}"
)

 if (!userRow) {
 throwsException("Invalid username or password")
 }

 def passHash = userRow["PASS"]

 if (!passHash || passHash != hashPassword(credentials.password,
 credentials.username)) {
 throwsException("Invalid username or password.")
 }

 credentials.userProfile = new HttpProfile(id: credentials.username)
 }

 protected void throwsException(final String message) {
 throw new CredentialsException(message);
 }

 public static String hashPassword(String password, String salt) {
 char[] passwordChars = password.toCharArray();

Form-Based Authentication | 309

 byte[] saltBytes = salt.getBytes();

 PBEKeySpec spec = new PBEKeySpec(passwordChars, saltBytes, ITERATIONS,
 KEY_LENGTH);
 SecretKeyFactory key = SecretKeyFactory.getInstance("PBKDF2WithHmacSHA512");
 byte[] hashedPassword = key.generateSecret(spec).getEncoded();
 return String.format("%x", new BigInteger(hashedPassword));
 }
}

As noted, we use the Guice @Inject annotation to get access to the Groovy SQL
Sql object for querying the database in the validate method.

From the credentials supplied by the user, we query the USER_AUTH database table
for the row corresponding to the specified username. We can safely make this call
here synchronously, because Ratpack assumes the authentication sequence will
block, so the UsernamePasswordAuthenticator is pre-emptively scheduled to a
blocking thread.

If there is no row for the given username, then throw an exception, which will
short-circuit the authentication sequence within Pac4j.

Provided we have found the user’s authentication row in the database, capture the
PASS field, which is the hashed version of the user’s password.

The next step is that we must now incorporate the DatabaseUsernamePasswordAu
thenticator into the application’s Guice-backed registry. We use the bind method in
the bindings block to add our new component. Following that, we must slightly
modify the handler chain to pull the DatabaseUsernamePasswordAuthenticator
from the registry during the request cycle and supply it to the FormClient. The code
in Example 12-22 shows the full application definition using our new DatabaseUser
namePasswordAuthenticator.

Example 12-22. Ratpack Groovy application with
DatabaseUsernamePasswordAuthenticator

import app.DatabaseUsernamePasswordAuthenticator
import groovy.sql.Sql
import org.pac4j.http.client.indirect.FormClient
import org.pac4j.http.profile.UsernameProfileCreator
import org.pac4j.http.profile.creator.AuthenticatorProfileCreator
import ratpack.groovy.sql.SqlModule
import ratpack.groovy.template.TextTemplateModule
import ratpack.hikari.HikariModule
import ratpack.pac4j.RatpackPac4j
import ratpack.service.Service
import ratpack.service.StartEvent

310 | Chapter 12: Application Security

import ratpack.session.SessionModule

import static java.util.Collections.singletonMap
import static ratpack.groovy.Groovy.groovyTemplate
import static ratpack.groovy.Groovy.ratpack

ratpack {
 bindings {
 module SessionModule
 module TextTemplateModule
 module SqlModule
 module(HikariModule) { c ->
 c.dataSourceClassName = 'org.h2.jdbcx.JdbcDataSource'
 c.addDataSourceProperty 'URL', 'jdbc:h2:mem:test;DB_CLOSE_DELAY=-1'
 c.username = 'sa'
 c.password = ''
 }

 bindInstance new Service() {
 @Override
 void onStart(StartEvent e) throws Exception {
 Sql sql = e.registry.get(Sql)
 sql.execute "CREATE TABLE USER_AUTH(USER VARCHAR(255), PASS VARCHAR(255))"
 sql.execute "INSERT INTO USER_AUTH (USER, PASS) " +
 "VALUES('learningratpack', " +
 "'768122eeeebdafa3eb878f868b0e4e6a4944367aa635538f')"
 }
 }

 bind(DatabaseUsernamePasswordAuthenticator)
 }
 handlers {
 def callbackUrl = "auth"
 def formClient = new FormClient(
 callbackUrl,
 registry.get(DatabaseUsernamePasswordAuthenticator),
 AuthenticatorProfileCreator.INSTANCE
)
 all(RatpackPac4j.authenticator(callbackUrl, formClient))

 get("login") {
 render(groovyTemplate(singletonMap("callbackUrl", callbackUrl), "login.html"))
 }

 get("logout") {
 RatpackPac4j.logout(context).then {
 redirect '/'
 }
 }

 get {
 RatpackPac4j.userProfile(context)

Form-Based Authentication | 311

 .route { o -> o.present } { o ->
 render(groovyTemplate([profile: o.get()], "protectedIndex.html"))
 }
 .then {
 render(groovyTemplate([:], "index.html"))
 }
 }
 }
}

This line binds our DatabaseUsernamePasswordAuthenticator into the user reg‐
istry.

Here, we set the callbackUrl, which will specify the route that the HTML form
should POST to, and we ensure it is bound to the authenticator.

In the handler chain, we can access components from the user registry via the
registry.get(..) call, as shown here.

Everything else in the application handler chain remains the same. With a little boot‐
strapping of data and a new mechanism for validating the supplied credentials, we
have a fully data-driven authentication sequence! If you start the application and nav‐
igate to http://localhost:5050, you will again be met with the default landing page.
Navigating to the login screen and supplying the previously referenced credential
pair, you will find that you are directed to the fully authenticated page, and the whole
sequence was entirely data driven from your database connection.

Based on what you know from earlier in the book, you can start to envision how this
trivial application could grow into a powerful real-world user experience, complete
with user registration. It is left as an exercise to the reader to implement the necessary
endpoints for creating, modifying, and updating user accounts. With your robust
knowledge of how Ratpack supports data-driven web applications, this will certainly
be a painless task.

Additional Authentication Means
Basic and form-based authentication strategies are not the only game in town when it
comes to authenticating users with Pac4j. Now that you have the necessary knowl‐
edge of how Ratpack and Pac4j integrate to provide authentication, it should be a
seamless process to incorporate the other authentication clients that Pac4j provides.
Simply trading out the pac4j-http dependency with the Pac4j dependency appropri‐
ate to your application’s requirements, you will find new Client and Authenticator
implementations that you can integrate into your application’s authentication flow.

312 | Chapter 12: Application Security

Some examples of the various authentication types supported by Pac4j and their cor‐
responding dependency coordinates include:

• CAS - org.pac4j:pac4j-cas
• Google App Engine - org.pac4j:pac4j-gae
• JSON Web Tokens - org.pac4j:pac4j-jwt
• LDAP - org.pac4j:pac4j-ldap
• OAuth - org.pac4j:pac4j-oauth
• OpenID Connect (i.e., Google Apps) - org.pac4j:pac4j-oidc
• OpenID - org.pac4j:pac4j-openid
• SAML - org.pac4j:pac4j-saml

And many more continue to be added every day. Whatever your application’s authen‐
tication requirements, you will no doubt find the necessary implementations avail‐
able. As noted and demonstrated earlier, when your application’s requirements do not
fit exactly into the flow opined by Ratpack and Pac4j, the two frameworks get out of
your way quickly to let you get the job done.

Chapter Summary
This chapter has covered a lot of ground in terms of introducing security into your
application, but it should be noted that no single text can provide comprehensive
coverage on the subject of web application security. Instead, this chapter will help you
understand the means by which Ratpack provides security for your application. At
this point, you should have an in-depth understanding of building high-performance,
robust, and lean web applications with Ratpack.

Chapter Summary | 313

CHAPTER 13

Going to Production

Congratulations! By now, you have all the tools and strategies at your fingertips to
build robust, reactive web applications with Ratpack, and your applications are fully
capable and ready to be deployed to production. However, in closing we should dis‐
cuss a few final considerations before doing so. As the final chapter to this book, we
will briefly discuss some of the aspects that need to be considered for any production
web application deployment, and the faculties provided by Ratpack for accommodat‐
ing a production environment. We will cover how to bring insight to your applica‐
tions in the form of metrics, as well as provide coverage of distribution techniques
that support the continuous delivery and deployment tactics commonly employed in
modern infrastructure architectures.

You should take away from this chapter a firm understanding of the remaining bits of
application development with Ratpack that set your project up for long-term success.

Publishing Metrics
There is no disputing the fact that one of the most important aspects of running any
web application in production is to provide external insight into what your code is
doing. Facilitating this can take many forms, but a common and well-adopted
approach is to publish metrics to a centralized metric server, according to your appli‐
cation’s requirements. In doing so, you will provide a level of operationalization that
ensures that your application remains stable when deployed to a production environ‐
ment.

Many modern metric collectors provide the ability to build alert and notification
strategies according to the metric data coming out of your application. Following this
principle of application development will ensure that you know exactly what is hap‐
pening with your application during deployment, so that you can more easily per‐

315

form root-cause analysis when there is a problem, and become aware of problems
that exist before your consumers notice them.

There are many strategies and libraries available for producing metrics from your
application. Dropwizard Metrics is one such library that has wide adoption and
allows for flexible implementations that can integrate with a variety of metric collec‐
tors. As such, Ratpack provides optional support for integrating with Dropwizard
Metrics, and following suit with its other framework features, makes the process of
generating various metric types as simple as possible.

To get started with incorporating Dropwizard Metrics into your application, you need
to include the ratpack-dropwizard-metrics dependency as a project dependency.
Similar to other framework modules, this dependency can be incorporated into the
dependencies block of your Gradle build script using the compile

ratpack.dependency("dropwizard-metrics") notation. With the necessary depend‐
ency in place, you will need to apply the DropwizardMetricsModule to your applica‐
tion via the BindingsSpec. The code in Example 13-1 shows the beginnings of an
application with metrics support incorporated.

Example 13-1. Ratpack Groovy application with DropwizardMetricsModule

import static ratpack.groovy.Groovy.ratpack

import ratpack.dropwizard.metrics.DropwizardMetricsModule

ratpack {
 bindings {
 module(DropwizardMetricsModule)
 }
 handlers {
 get {
 render "Hello, World!"
 }
 }
}

By default, the DropwizardMetricsModule prepends a RequestTimingHandler to
your application’s handler chain, which is responsible for capturing the amount of
time spent in the request/response lifecycle of your handler chain. That is to say, with
nothing more than applying the DropwizardMetricsModule to your application, you
get timing metrics on how long it took your application to respond to a request.
Additionally, out of the box you get counter metrics on handler response codes.
Given that the module is prepending a HandlerDecorator to your handler chain, it is
critically important that the module is applied before all other modules in your bind
ings block.

316 | Chapter 13: Going to Production

https://dropwizard.github.io/metrics/3.1.0/

Default support is also provided that publishes a timer metric for how long your
application spent in Blocking operations by tying into the execution model and
observing when a Promise is scheduled to the blocking thread pool. Keeping track of
this metric will give you an idea of how much time is spent working on I/O opera‐
tions versus computation. This may give you the necessary insight to implement opti‐
mizations.

The metrics integration also supports the ability to capture JVM metrics coming out
of your application. This is a simple flag to enable, and can be reported out alongside
the rest of your application metrics. When running in production, having a view into
what is happening in your application’s JVM can yield insight into memory and CPU
utilization, yield insight into areas of your application that may need improvement,
and generally give you a good idea of how your application is performing operation‐
ally. Capturing JVM metrics is not enabled by default, but it is a simple configuration
directive applied to the DropwizardMetricsModule configuration in your bindings
block. The updated code in Example 13-2 shows how to turn on JVM metrics collec‐
tion.

Example 13-2. Ratpack Groovy application with DropwizardMetricsModule

import static ratpack.groovy.Groovy.ratpack

import ratpack.dropwizard.metrics.DropwizardMetricsModule

ratpack {
 bindings {
 module(DropwizardMetricsModule) { c ->
 c.jvmMetrics true
 }
 }
 handlers {
 get {
 render "Hello, World!"
 }
 }
}

Using the module configuration that you are already well familiar with, we set the
jvmMetrics directive to true for the DropwizardMetricsModule configuration.

Enabling Reporting
In Dropwizard Metrics terms, a Reporter is a class that is responsible for sending
published metrics to a collector for analysis. Ratpack supports all of the default
reporters available from Dropwizard Metrics. These reporters include support for
reporting to JMX, the standard output console, a CSV file, Slf4j, and Graphite. Rat‐

Publishing Metrics | 317

pack further provides the ability to report and stream metrics over a WebSocket con‐
nection. It’s possible to enable all of the reporting strategies simultaneously (you may
also choose not to use any). The application code in Example 13-3 shows the evolved
application code from earlier, this time with the JMX, console, and Slf4j reporters
enabled.

Example 13-3. Enabling JMX, console, and Slf4j reporters

import static ratpack.groovy.Groovy.ratpack

import ratpack.dropwizard.metrics.DropwizardMetricsModule

ratpack {
 bindings {
 module(DropwizardMetricsModule) { c ->
 c.jvmMetrics true
 c.jmx()
 c.console()
 c.slf4j()
 }
 }
 handlers {
 get {
 render "Hello, World!"
 }
 }
}

Nothing more than a call to jmx() inside the module configuration is necessary
to enable JMX reporting. When a JMX server management port is specified as
part of your application’s startup parameters, you will be able to attach to your
process to get your application metrics.

A simple call to console() reports metrics to your process’s standard output.

Applications using Slf4j for logging will see metrics output according to your log‐
ging configuration when this reporter is enabled via the slf4j() call.

Enabling the CSV and Graphite reporters requires some additional, albeit simple,
configuration. For example, when the CSV reporter is enabled, a reporting directory
must be specified. Periodically, the metrics collected from your application will be
output to individual .csv files that you can work with in the ways that best suit your
requirements. The code shown in Example 13-4 demonstrates setting up this
reporter.

318 | Chapter 13: Going to Production

Example 13-4. Enabling CSV reporter

import static ratpack.groovy.Groovy.ratpack

import ratpack.dropwizard.metrics.DropwizardMetricsModule

ratpack {
 bindings {
 module(DropwizardMetricsModule) { c ->
 c.csv { csvConfig ->
 def reportingDir = new File("metrics")
 reportingDir.mkdir()
 csvConfig.reportDirectory(reportingDir)
 }
 }
 }
 handlers {
 get {
 render "Hello, World!"
 }
 }
}

Within the configuration we call the csv method, to which we provide an Action
that supplies to us the CsvConfig.

On the CsvConfig, we can provide the reportDirectory method with a File to
the directory where we want metric CSV files written.

Graphite is a popular choice for publishing metrics, as it works as a standalone sys‐
tem for which your application will send metrics in real time. Within Graphite, you
can get a comprehensive view of the metrics for your entire infrastructure. Its
advanced graphing capabilities give you a digestible visual insight into what is hap‐
pening across your deployment footprint. Note that publishing metrics to Graphite
requires that an agent be running on your deployment server, like collectd (for
more information, see the collectd Wiki.

The default configuration for reporting metrics to Graphite are good enough to get
started with. When you need deeper customization, such as prefixing metrics or con‐
figuring the rate and duration units to be used with your metrics, you will need to
supply those values to the DropwizardMetricsModule configuration as part of the
graphite call. This process is similar to what we have just seen with implementing
CSV reporting. The code in Example 13-5 shows how to apply these customizations.

Example 13-5. Enabling Graphite reporter

import static ratpack.groovy.Groovy.ratpack

Publishing Metrics | 319

http://graphite.readthedocs.org
https://collectd.org/wiki/index.php/Plugin:Write_Graphite

import ratpack.dropwizard.metrics.DropwizardMetricsModule
import java.util.concurrent.TimeUnit

ratpack {
 bindings {
 module(DropwizardMetricsModule) { c ->
 c.graphite { graphiteConfig ->
 graphiteConfig.prefix("myapp")
 .rateUnit(TimeUnit.MILLISECONDS)
 .durationUnit(TimeUnit.MILLISECONDS)
 }
 }
 }
 handlers {
 get {
 render "Hello, World!"
 }
 }
}

Within the configuration we call the graphite method, to which we provide an
Action that supplies to us the GraphiteConfig for customization.

This demonstrates setting a prefix on metrics that are reported to Graphite from
our application.

Here, we can configure the TimeUnit value that is to be used to convert rate units.

Similarly, for metrics that supply durations, we can specify a TimeUnit value to
ensure the metrics are converted properly before they are reported.

The various metric reporters provided out of the box by Ratpack give you an excel‐
lent footprint upon which you can gather valuable insight into your application’s
operational state. From here, you can provide further insight into your application’s
specific function by publishing custom metrics.

Publishing Custom Metrics
In addition to the default timer and counter metrics provided, you can easily surface
custom metrics from your application. This can be useful for tracking any detail that
is specific to your environment, project, or other general requirements. Using the
provided com.codahale.metrics.MetricRegistry, you can publish any of the met‐
rics types supported by the Dropwizard Metrics project. This includes support for
complex gauges, counters, histograms, meters, and timers. This section will not serve
as an exhaustive text on the various metric types or the methods of the MetricRegis
try. Instead, it is left as an exercise to the reader to explore the Dropwizard Metrics

320 | Chapter 13: Going to Production

http://bit.ly/metrics_core

project’s extensive user guide to better understand how and when to use the various
metric types.

As a demonstration, however, consider the code in Example 13-6, which is an elabo‐
ration on the prior example. This example demonstrates incrementing a counter met‐
ric any time that a request hits a specific handler.

Example 13-6. Publishing custom metrics

import static ratpack.groovy.Groovy.ratpack

import com.codahale.metrics.MetricRegistry
import ratpack.dropwizard.metrics.DropwizardMetricsModule

ratpack {
 bindings {
 module(DropwizardMetricsModule) { c ->
 c.console()
 }
 }
 handlers {
 get("user") { MetricRegistry metricRegistry ->
 metricRegistry.counter("myapp.user.hits").inc()
 render "Hello, World!"
 }
 }
}

Within our handler, we can inject the MetricRegistry, which is bound from the
DropwizardMetricsModule.

Here, we use the counter method off of the MetricRegistry, which gives us a
Counter type that we can call inc() on to increment.

Application Health Checks
No conversation on going to production would be complete without discussing Rat‐
pack’s integrated means of providing health checks for your application. You can get
started with building health checks into your application by implementing the rat
pack.health.HealthCheck interface and adding the ratpack.health.HealthCheck
Handler to your handler chain. Health checks are generally used to ensure that your
application’s service dependencies are accessible, and if they are not, report them as
such. These dependencies may include databases or message queues, for example.

Especially in a production deployment, it is important that each instance of your
application reports its health so that the deployment infrastructure knows whether
your service is healthy or not. In cloud deployments, an unhealthy instance of your

Application Health Checks | 321

http://bit.ly/metrics_core

application may cause it to be taken out of traffic rotation, thus ensuring that your
users are never unnecessarily exposed to errors. Furthermore, it may allow your
monitoring infrastructure to alert you to the fact that your application has entered an
unhealthy state.

Let’s build on the simplest demonstration of health checks, and simply drive the
health check result based on a static configuration toggle. If we place a property hold‐
ing class into the registry and allow a handler in the chain to manipulate a healthy
boolean value on the class, we can demonstrate how the HealthCheckHandler reports
the state of your application. Example 13-7 shows a simple application demonstrating
this capability.

Example 13-7. Simple demonstration of the HealthCheckHandler

import ratpack.exec.Promise
import ratpack.health.HealthCheck
import ratpack.health.HealthCheckHandler

import static ratpack.groovy.Groovy.ratpack

class PropertyHolder {
 boolean healthy = true
}

ratpack {
 bindings {
 bindInstance new PropertyHolder()
 bindInstance HealthCheck.of("propertyHealth") { registry ->
 def propertyHolder = registry.get(PropertyHolder)
 Promise.sync {
 propertyHolder.healthy ?
 HealthCheck.Result.healthy() :
 HealthCheck.Result.unhealthy("the application is unhealthy")
 }
 }
 }
 handlers {
 get("toggleHealth") { PropertyHolder propertyHolder ->
 propertyHolder.healthy = !propertyHolder.healthy
 response.send()
 }
 get("health/:name?", new HealthCheckHandler())
 }
}

Here we define the PropertyHolder class that will hold the healthy value the
health check will test against.

322 | Chapter 13: Going to Production

We bind the PropertyHolder into the registry, so that it is accessible throughout
our application.

Here we use the HealthCheck#of factory to bind a new instance of a health
check. Health checks are named, and in this case we call our check property
Health. Health checks are given access to the registry for their processing, and
must return a Promise of the HealthCheck.Result class.

Inside of the Promise#sync facotry, we test the value of the healthy boolean on
the PropertyHolder class. If it is true, we return a healthy value; if it is false, we
return an unhealthy value with a message indicating the error.

For the sake of demonstration, we can provide a simple endpoint for toggling the
healthy state of the application. This will simply invert the boolean value of the
health property on the PropertyHolder class.

Finally, we must bind the HealthCheckHandler, and we do so to the /health
endpoint. Note that the name path token is optionally bound; the HealthCheck
Handler can test an individually named health check.

We can run this application and curl the /health endpoint to see its output.
Example 13-8 shows the health check response.

Example 13-8. Output from the /health endpoint

$ curl -v localhost:5050/health
* Trying 127.0.0.1...
* Connected to localhost (127.0.0.1) port 5050 (#0)
> GET /health HTTP/1.1
> Host: localhost:5050
> User-Agent: curl/7.43.0
> Accept: */*
>
< HTTP/1.1 200 OK
< Cache-Control: no-cache, no-store, must-revalidate
< Pragma: no-cache
< Expires: 0
< content-type: application/octet-stream
< content-length: 24
< connection: keep-alive
<
* Connection #0 to host localhost left intact
propertyHealth : HEALTHY

As you can see, the application initializes with a healthy state, and that is reflected in
the response details. Most notable is that the HealthCheckHandler returns a 200 sta‐

Application Health Checks | 323

tus code for healthy results. If we curl the /toggleHealth endpoint, then again
check /health, we will see the health state change to unhealthy. Example 13-9 shows
the output from these curl calls.

Example 13-9. Setting unhealthy state and checking /health endpoint

$ curl -v localhost:5050/toggleHealth
* Trying 127.0.0.1...
* Connected to localhost (127.0.0.1) port 5050 (#0)
> GET /toggleHealth HTTP/1.1
> Host: localhost:5050
> User-Agent: curl/7.43.0
> Accept: */*
>
< HTTP/1.1 200 OK
< content-length: 0
< connection: keep-alive
<
* Connection #0 to host localhost left intact

$ curl -v localhost:5050/health
* Trying 127.0.0.1...
* Connected to localhost (127.0.0.1) port 5050 (#0)
> GET /health HTTP/1.1
> Host: localhost:5050
> User-Agent: curl/7.43.0
> Accept: */*
>
< HTTP/1.1 503 Service Unavailable
< Cache-Control: no-cache, no-store, must-revalidate
< Pragma: no-cache
< Expires: 0
< content-type: application/octet-stream
< content-length: 57
< connection: keep-alive
<
* Connection #0 to host localhost left intact
propertyHealth : UNHEALTHY [the application is unhealthy]

As the output shows, after toggling the health property, our health checks now
report as unhealthy. In the case of unhealthy results, the HealthCheckHandler returns
a status code of 503. This is important because many application load balancers drive
the decision as to whether an instance is healthy or not based on the status code. In
these cases, generally anything besides a 2xx status code will cause the instance to be
taken out of traffic rotation.

A more realistic scenario is one where your application health checks ensure its data‐
base connection is stable. In modern system architectures, however, it may also be
true that your service has a dependency on another remote service. This is commonly

324 | Chapter 13: Going to Production

the case with microservice architectures. Let’s illustrate this scenario in code by imag‐
ing health checks for both the database and a dependency on a remote service.

We will start by looking at the interface for our database. Example 13-10 shows the
UserService interface, which we know makes calls to the database in its concrete
implementation.

Example 13-10. The UserService database interface

package app.services

import app.model.User
import ratpack.exec.Promise
import ratpack.exec.Operation

interface UserService {

 Promise<User> getById(Long id)

 Promise<User> getByUsername(String username)

 Promise<List<User>> listUsers()

 Operation save(User user)

 Operation ping()
}

The most notable aspect to this service contract is the ping method. In its concrete
implementation, this will perform a SELECT 1; call to the database (or similar
vendor-specific query). It is important when building any production-grade applica‐
tion that the ability to query the database in this capacity exists.

Next, let’s look at our remote service contract as shown in Example 13-11.

Example 13-11. The UserProfileService remote service interface

package app.services

import app.model.UserProfile
import ratpack.exec.Promise
import ratpack.exec.Operation

interface UserProfileService {

 Promise<UserProfile> getProfile(Long profileId)

 Operation ping()
}

Application Health Checks | 325

Similar to the UserService, the UserProfileService has a ping method on it. This
operation will also be leveraged by health checks to ensure that the remote service is
accessible. This may be as simple as opening a connection to the remote endpoint, or
as complex as actually querying the endpoint for some commonly known data. Your
application’s mileage will vary, but it is enough to say that your service contract
should have this capability.

Given these service contracts, let’s begin by implementing a health check against the
UserService. Example 13-12 shows the code for this. Note that we now implement
the health checks in their own classes, which implement the ratpack.health.Health
Check interface.

Example 13-12. The health check for the UserService

package app.health

import app.services.UserService
import ratpack.exec.Promise
import ratpack.health.HealthCheck
import ratpack.registry.Registry

class UserServiceHealthCheck implements HealthCheck {
 final String name = "UserServiceCheck"

 @Override
 Promise<HealthCheck.Result> check(Registry registry) throws Exception {
 def userService = registry.get(UserService)

 userService.ping().promise()
 .map {
 HealthCheck.Result.healthy()
 }
 .mapError { error ->
 HealthCheck.Result.unhealthy(error)
 }
 }
}

Here we set the name property on the health check. This field is required.

We need to translate the Operation into a Promise so that we can return a
Promise<HealthCheck.Result> from the check method.

This is the happy path, where no errors have occurred. Here, we can safely return
a healthy result.

326 | Chapter 13: Going to Production

When catching errors, they can be passed simply to unhealthy if you wish only
to have the mesage and stack trace filled in for the check diagnostic.

Next, we implement the health check for the UserProfileService. Let’s say for the
sake of argument that we know the service will throw a runtime ConnectionError
when it is unable to communicate with the remote service. Furthermore, all valida‐
tion errors will be instances of RemoteServiceError—that is to say, the connection to
the remote system is able to be established, but the request from the ping was thought
to be invalid. The former case we know to be fatal, since our service cannot commu‐
nicate to the remote service, while the latter case may indicate a protocol problem
between our two systems. In either event, we want the health check to be as compre‐
hensive as possible, so we can discriminate on these exception types to provide a
diagnostic message when the service ping has failed.

Example 13-13 shows our check for the UserProfileService.

Example 13-13. The health check for the UserProfileService

package app.health

import app.model.ConnectionError
import app.model.RemoteServiceError
import app.services.UserProfileService
import ratpack.exec.Promise
import ratpack.health.HealthCheck
import ratpack.registry.Registry

class UserProfileServiceHealthCheck implements HealthCheck {
 final String name = "UserProfileServiceCheck"

 @Override
 Promise<HealthCheck.Result> check(Registry registry)
 throws Exception {
 def userProfileService = registry.get(UserProfileService)

 userProfileService.ping().promise()
 .map {
 HealthCheck.Result.healthy()
 }
 .mapError { error ->
 def msg = "The was an error with the remote service"
 if (error instanceof ConnectionError) {
 msg = "unable to connect to remote service"
 } else if (error instanceof RemoteServiceError) {
 msg = "protocol failure when pinging remote service"
 }
 HealthCheck.Result.unhealthy(msg, error)
 }

Application Health Checks | 327

 }
}

Here we set the name for the health check.

As before, this is the happy path, so we return the healthy result.

When an error is captured, we set a default message here.

Here we check if this was a ConnectionError, and if so change the message.

If it was not a ConnectionError, then we check if it was a RemoteServiceError,
and likewise set a helpful diagnostic message.

Finally, we render back the unhealthy response.

By checking the exception type from the ping call, we can provide a helpful diagnos‐
tic message when debugging what health check has caused the application to indicate
failure. This will allow you to more quickly deduce where the problem is, so you
know where to start looking for a solution.

We can test to make sure that our application is returning the proper responses for
our health checks by building a simple integration test that wires up the HealthCheck
Handler. The specification is shown in Example 13-14.

Example 13-14. The application health check integration specification

package app

import app.health.UserProfileServiceHealthCheck
import app.health.UserServiceHealthCheck
import app.model.ConnectionError
import app.model.RemoteServiceError
import app.services.UserProfileService
import app.services.UserService
import ratpack.exec.Operation
import ratpack.groovy.test.embed.GroovyEmbeddedApp
import ratpack.health.HealthCheckHandler
import spock.lang.AutoCleanup
import spock.lang.Specification

class AppHealthIntegrationSpec extends Specification {

 def userProfileService = Mock(UserProfileService)
 def userService = Mock(UserService)
 def userServiceHealthCheck = new UserServiceHealthCheck()
 def userProfileServiceHealthCheck = new UserProfileServiceHealthCheck()

328 | Chapter 13: Going to Production

 @AutoCleanup
 @Delegate
 GroovyEmbeddedApp app = GroovyEmbeddedApp.of {
 registryOf {
 add(userProfileService)
 add(userService)
 add(userServiceHealthCheck)
 add(userProfileServiceHealthCheck)
 }
 handlers {
 get("health", new HealthCheckHandler())
 }
 }

 void "should return healthy checks"() {
 when:
 def response = httpClient.get("health")

 then:
 1 * userProfileService.ping() >> Operation.noop()
 1 * userService.ping() >> Operation.noop()
 response.statusCode == 200
 }

 void "should fail when userService is offline"() {
 when:
 def response = httpClient.get("health")

 then:
 1 * userProfileService.ping() >> Operation.noop()
 1 * userService.ping() >> Operation.of { throw new RuntimeException("fail") }
 response.statusCode == 503
 response.body.text.contains("${userServiceHealthCheck.name} : UNHEALTHY")
 response.body.text.contains("${userProfileServiceHealthCheck.name} : HEALTHY")
 }

 void "should fail when userProfileService is offline"() {
 when:
 def response = httpClient.get("health")

 then:
 1 * userProfileService.ping() >> Operation.of {
 throw new RuntimeException("fail")
 }
 1 * userService.ping() >> Operation.noop()
 response.statusCode == 503
 response.body.text.contains("${userServiceHealthCheck.name} : HEALTHY")
 response.body.text.contains("${userProfileServiceHealthCheck.name} : UNHEALTHY")
 }

 void "should indicate proper failure type for userProfileService"() {
 when:

Application Health Checks | 329

 def response = httpClient.get("health")

 then:
 1 * userService.ping() >> Operation.noop()
 1 * userProfileService.ping() >> Operation.of {
 throw error
 }
 response.body.text.
 contains("${userProfileServiceHealthCheck.name} : UNHEALTHY " +
 "[${message}]")

 where:
 error | message
 new ConnectionError() | "unable to connect to remote service"
 new RemoteServiceError() | "protocol failure when pinging remote service"
 new RuntimeException() | "The was an error with the remote service"
 }
}

Here we create a mock of the UserProfileService. We do not need to use a real
concrete implementation here, since we are simply validating the interactions.

Similarly, here we create a mock of the UserService.

We will use real instances of our health checks, so here we create an instance of
the UserServiceHealthCheck.

Likewise, we create an instance of the UserProfileServiceHealthCheck.

Here, we use the GroovyEmbeddedApp test fixture to create an embedded applica‐
tion for our test. We use the @Delegate annotation to make our feature tests
more concise. Also, we apply the @AutoCleanup annotation to ensure the embed‐
ded application is closed properly.

Within our embedded application’s registry, we add the userProfileService, the
userService, and our health checks.

The embedded application has only one handler: the HealthCheckHandler,
which we attach to the /health endpoint.

Each of the subsequent feature tests are described testing their specific function.
Between these feature tests, we are able to see how our application health checks will
operate under varying conditions.

Health checks play a critical role in any production application, and Ratpack’s
acknowledgment of their importance further highlights its nature as a production-
quality web framework. The ease of building health checks into your application

330 | Chapter 13: Going to Production

ensures that you will always be servicing your users, and know when and where
errors occur.

Building Distributions
Another consideration before going to production is how you are going to distribute
your application. Ratpack’s ease of use and lightweight nature to make it a great fit for
building microservices, and as such your project’s distribution should be set up in a
way that is amenable to working in that kind of environment. Generally speaking,
modern application deployments for micro- and other lightweight services lend
themselves nicely to the paradigm of immutable infrastructure.

Earlier in the book, we discussed strategies for packaging your application into runn‐
able JAR files, and the means by which Ratpack’s Gradle plugin integrates with the
Gradle application plugin to provide standalone system distributions. When design‐
ing your project for a production deployment, you will need to be conscientious of
the environment within which your application will run. To that effect, many major
players in the microservice ecosystem have found benefit in providing application
distributions in the form of operating system packages. Packaging your project distri‐
bution as an OS package is generally only applicable to those running in a Linux-
based environment, and if that suits your deployment needs, you can find some
benefit in the community tools that are available as such.

Projects such as Netflix’s Nebula Plugins provide many integrations with the Gradle
build system to support building production-grade deployments. Within this toolset,
you will find the gradle-ospackage-plugin, which provides an easy-to-use DSL to
your Gradle build script for creating RPM (for YUM-based Linux distributions) and
DEB (for Debian-based Linux distributions) packages from your project. It is left as
an exercise for the reader to explore the capabilities of these projects, but as a non‐
comprehensive demonstration, consider the Gradle build script depicted in
Example 13-15. This build script shows the application of the os-package Gradle plu‐
gin, and the ospackage and buildDeb extensions, which specify what should go into
the resulting artifact.

Example 13-15. Gradle build script with Nebula OS package plugin

buildscript {
 repositories {
 jcenter()
 }
 dependencies {
 classpath 'io.ratpack:ratpack-gradle:1.3.3'
 classpath 'com.netflix.nebula:gradle-ospackage-plugin:2.2.6'
 }
}

Building Distributions | 331

http://bit.ly/intro-immutable
https://github.com/nebula-plugins
https://github.com/nebula-plugins/gradle-ospackage-plugin

apply plugin: 'io.ratpack.ratpack-groovy'
apply plugin: 'os-package'

repositories {
 jcenter()
}

ospackage {
 packageName = "myapp"
 release '3'
 into "/opt/myapp"
 from "${project.buildDir}/install/${project.applicationName}"
}

buildDeb {
 dependsOn installDist
 //preInstall file('scripts/preInstall.sh')
 //postInstall file('scripts/postInstall.sh')
}

Within the ospackage extension, we can set the packageName property to a
friendly name for our application. This will affect the name of the resulting arti‐
fact.

The ospackage extension extends from Gradle’s CopySpec, so here we are speci‐
fying where on the deployment system we want our project’s distribution to be
installed.

Here we inform the plugin as to where our project’s distribution files will be.

Within the buildDeb block we specify that running this task depends on the
installDist build task, which will build the distribution and put it into the loca‐
tion specified in the last step.

This and the next line are commented out, but it is shown here to exemplify that
you can specify shell scripts that should be run at pre- and post-installation pha‐
ses of the installation of our project on the target system. Using this, you can
place preInstall.sh and postInstall.sh scripts into a scripts directory in the root of
your project and they will be packaged into your OS package.

If you use this build script and run the ./gradlew buildDeb task, your project will be
built, the distribution created, and a resulting OS package artifact generated. From
there, you can publish the artifact to a repository for installation, or you can manually
copy the artifact to a target server and install it.

332 | Chapter 13: Going to Production

The capability of OS packaging is outlined here to show you how your project can be
integrated with other tools from the ecosystem to demonstrate the possibilities avail‐
able to you with Ratpack and Gradle. Indeed, your mileage will certainly vary, and the
requirements of your infrastructure will drive the manner in which you produce your
production deployments.

Production Checklist
A final consideration in your journey toward production is building a simple check‐
list to ensure that your project is ready to be sent to production. As you ready your
application for deployment, take a moment to think through on your project’s
requirements, and ensure that you have been diligent in getting your application
ready for the wild. As you do, some of the following thoughts may serve as valuable
reminders:

• Am I sure that none of my code will block a request-taking thread?
• Are my service APIs designed to use Promise, Publisher, or Observable types?
• Are the features I am deploying well tested?
• Are the configuration files and directives that will be needed for production

known, set up, and available?
• Is my project’s distribution verified on my target production server?
• Have I made sure that there are no secrets contained within my distribution?
• Does my application have proper metric publishing so that I have the insight I

need following deployment?
• Are my users’ passwords and sensitive data properly encrypted and secured?

You may find it valuable to add or subtract from this list as your software develop‐
ment experience with Ratpack grows, but these should serve as a good starting place
for you. If you can comfortably walk away from these considerations, then it is clear
that you are ready for your application to go to production!

Chapter Summary
Going to production is the final step of building web applications with Ratpack. Over
the course of this book, you have journeyed from an introduction on the basic con‐
cepts of Ratpack, to an understanding of the motivation for the framework, to cover‐
age of its support for testing and validating your code, all the way through to an in-
depth understanding and practice of its numerous framework features. By now, you
can certainly be considered a Ratpack expert, and your applications are ready for
prime-time production! Congratulations and happy Ratpacking!

Production Checklist | 333

Index

Symbols
${..} notation, 145
: (colon), prefacing path tokens, 9
? (question mark), ending path tokens, 9
@AutoCleanup annotation, 51, 330
@Autowired annotation, 229
@Bean annotation, 217, 227
@Component Spring stereotype annotation,

230
@Delegate annotation, 330
@grails.persistence.Entity annotation, 197
@Inject annotation, 112, 310
@Provides annotation, 122
@Repository annotation, 221
@RequestMapping annotation, 217
@RestController annotation, 217
@Service Spring stereotype annotation, 229
@SpringBootApplication annotation, 217, 219
_ (underscore), in environment variables, 90

A
Abstract Syntax Tree (AST) transforms, 197
AbstractModule class example

binding in a Guice module, 116
AES/CBC/PKCS5Padding, 270
all method, 6

basic authentication handler, 293
analyticsKey configuration value, 94
Ant, 21
API design with Ratpack and Spring, 227-231

ProductService interface, 228
Spring Data ProductService implementa‐

tion, 228

application configuration (see configuration
system)

application health checks (see health checks)
application security (see security)
application/json content type, 12

request specifying, 14
application/nothing content type, 17
application/xml content types, 14
ApplicationConfig class example

with CustomConfigSource applied, 98
with nested configurations, 92

ApplicationModule example
configurable, 121

using, 122
providing to BindingsSpec, 116

ApplicationUnderTest fixture, 49
AppSpringConfig class, 219, 222, 229

Service instance in, 226
assertion block (tests), 46

multiple blocks in a test, 55
Asset Pipeline, 157-160

adding and configuring AssetPipelineMod‐
ule, 158

Gradle build script with dependencies, 157
overriding AssetPipelineModule source‐

Path, 159
ratpack.groovy file, 158

asynchronous programming, 161-164
APIs performing I/O-bound or blocking

operations, 167
asynchronous APIs, 227
asynchronous database service, 161

in a handler, 163
with updates, 162

335

nested async calls, 163
Promises from asynchronous calls, 178
using promises, 164-166

authentication
additional types of, 312
basic, 290-301

custom UsernamePasswordAuthentica‐
tor, 295-301

Ratpack application for, 292
form-based, 301-312

data-driven form, 306-312
AuthenticatorProfileCreator, 293
authorizations, performed by handler chain,

106
autoconfiguration engine (Spring Boot), 219

B
background processing, 170
base directory, 131

specified, project structure with, 132
BasicAuthClient, 293

with MapUsernamePasswordAuthenticator,
299

BasicAuthConfig class example, 298
behavior-driven development (BDD), 45
bindExec method, 248
bindings

binding UserRenderer, 125
filesystem binding, accessing files relative to,

135
BindingsSpec API, 110

applying DropwizardMetricsModule via,
316

binding SessionModule, 118
configurable modules, interface providing

configuration values to, 119
in Groovy, 111-117

applying a Guice module, 116
providing class-level bindings through

bind method, 113
using Guice binder in Ratpack, 114

BindingsSpec#module method, 262
bindInstance method, 111
Blocking API, 168, 229

blocking database call in handler, 187
Blocking.get method, using for blocking

database calls, 195
timer metric for Blocking operations, 317

turning blocking database calls into asyn‐
chronous execution segments, 168

wrapping database calls in Blocking.get
method, 202

blocking thread, 169
blocking thread pool, 169

scheduling database calls to, 205
using thread to retrieve data with Hibernate,

196
BlockingDatabaseService class example, 237

Ratpack Groovy application using, 238
BlockingProductService class example, 216
browsers

caching responses, 155-157
conditionally serving content for, 147

build systems, 21
byContent specification, 12, 126, 230

HTML output, 14
JSON output, 14
no match handling, 16
specifying custom content types, 15
XML output, 15

byMethod specification, 6, 11

C
cache control, 155-157
Cache-Control headers, 155
caching, using background thread for, 170
callback handlers (or completion handlers), 161
callbacks in asynchronous programming, 163

nesting, 163
using promises instead of, 164-166

certificate signing request (CSR), 288
certificates (SSL), 285

importing with keytool, 289
signed by certificate authority, 288

Chain API, 5
(see also handler chain)
files method, 132

Cipher class, 270
Class#getResource method, 81
classpath

loading files from, 81
overlaying configuration from, 83

cleanup block (tests), 46, 51
client-side sessions, 268-271
client-specific resources tree, 137
ClientErrorHandler class, 153
clients

336 | Index

informing form-based authenticator of, 305
other authentication clients from Pac4j, 312

ClientSideSessionModule, 268
configuring, 269
configuring with serverConfig, 270

ClientVersion enumeration, 41
closures, 2

casting to functional interface types in
Groovy, 35

working with configurable modules, 119
cloud platforms

application server configuration, 101
environment variables, use for configura‐

tion, 90
coercion methods, 9
com.codahale.metrics.MetricRegistry, 320
com.google.inject.AbstractModule class, 116
computation ExecutorService, 171
computation or I/O operations

metrics for time spent in, 317
scheduling execution segments for, 167-170

conditionally serving content, 147-152
based on request attributes, 151
conditionally scoping resources, 147-151

ConfigSource interface, 96
CustomConfigSource implementations,

96-99
configurable modules, 119-123

ApplicationModule example, 122
HikariModule, 191
incorporating via BindingsSpec and influ‐

encing configuration model, 119
Java API for working with, 120

configuration files
ClientSideSessionModule config file, 271
formats other than JSON, 84
JSON format (dbconfig.json example), 79

configuration system, 77-101
application with DatabaseConfig example,

77
configuring with environment variables and

system properties, 87-92
environment variables, 88
system properties, 90

custom configuration source, 95-99
dbconfig.json file, adding to project, 79
nested configuration models, 92-95
overlaying configurations, 82

overlaying JSON, properties, and YAML
files, 86

ProductBootstrapConfig class example, 225
setting server configuration, 99-101

configure method, 116
connection pooling with HikariCP support,

190-195, 306
ConnectionError, 327
console reporter, enabling, 317
Consumer, 162

nesting async call in, 163
containerized runtimes, 90
content negotiation in handlers, 11-18
content type, 11

(see also content negotiation in handlers)
rendering with, 126

Context object, 35
as registry, 106
creating for unit testing, 64
pulling ProductRepository from, 225
render method accessing, 125
retrieving component bindings, 110

context registry, 224
Context#byContent method, 230
Context#file method, 135, 139

sending files from, 152
continuations

Promise types and, 166
Ratpack execution model and, 166

continuous build capabilities, 30
control flow, nondeterminism in, 161
convention-over-configuration mechanisms

(Spring Boot), 218
Cookie object, 277
cookies, 273-283

client-side session cookie, 269
expiring, 279
in Chrome's Resources view, 277
session ID cookie, 267
tuning, 277-279

modifying cookie values, 277
updated cookie values, 279

working with, application for, 276
core library, 21
counter metrics on handler response codes, 316
CPU utilization, 317
CredentialsException, 296
CSS

application, static CSS files, 131

Index | 337

compilation of files with Asset Pipeline, 157
CSV reporter, enabling, 318
CsvConfig object, 319
cURL utility, 7

request specifying application/json content
type, 14

CustomErrorHandler class example, 153

D
data

composing with Promises, 242-244
filtering with Promises, 240
transforming with Promises, 239-240

data flow, nondeterministic, 161
data-driven form authentication, 306-312

build script with database dependencies, 306
data-driven web applications, 183-211

connection pooling with HikariCP support,
190-195

designing data-driven service APIs in Rat‐
pack, 207-211
decoupling handler and data access

logic, 208
PersonService interface, 208
updated application using PersonService,

209
using Ratpack and Grails GORM, 195-207
using Spring Data, 219

database service for health checks, 324
DatabaseConfig class example, 77

custom configuration mapping, 96
nested in ApplicationConfig, 92

DatabaseUsernamePasswordAuthenticator,
308-312
Groovy Ratpack application DataSource

setup, 307
Ratpack Groovy application with, 310

DatabaseUserService, reactive streams imple‐
mentation, 246

DataSource object, 120
constructing for GORM use, 200
establishing connection for use by Sql class,

184
Ratpack Groovy application with H2 Data‐

Source, 184
setup for DatabaseUsernamePasswordAu‐

thenticator, 307
use by SqlModule, 185

dbconfig.json file

adding to project, 79
configuration directives, 79
configuration directives in database object,

95
loading from classpath, 81
loading from outside the project, 80
overlaying configurations, 82

dbconfig.properties file, 87
dbconfig.yml file, 84
Debian-based Linux distributions, 331
DefaultRouteHandler example, 37

reusability scenario, 38
DefaultUserService class example, 56, 63

accessing Guice binder, 114
binding to UserService, 57
binding to UserService using Guice, 110
binding UserService to instance of, 111
binding without a constructor, 114
refactored to use Guice's constructor vari‐

able argument dependency injection,
113

delegation, 34
dependencies

adding Ratpack libraries in projects with
ratpack-gradle plugin, 27

build script with test dependencies, 43
incorporating framework module into Rat‐

pack application, 117
Ratpack and, 19

dependency injection
Guice library, 108
primitive capability with registries, 105
through third-party libraries, 105

dependency injection frameworks, 213
dependency management, 21
DevelopmentAssetHandler, 159
distributed sessions, 271-273
distributions, building, 331-333

Gradle build script with Nebula OS package
plugin, 331

domain
setting for session ID cookie, 268
setting on cookies, 278

domain classes, initializing for use with GORM,
201

domain-specific languages (DSLs), 2
DomainClass.withNewSession method, 199
DriverManagerDataSource, 200
Dropwizard Metrics, 316

338 | Index

publishing custom metrics, 320
Ratpack Groovy application with DropWi‐

zardMetricsModule, 316
enabling reporting, 317-320
JVM metrics enabled, 317

dynamic content, serving, 139-147
Groovy markup templates, 145
Handlebars.js support, 141-143
Thymeleaf support, 143-145

E
eager singletons, 115
EmbeddedApp test fixture, 69-75, 330

demonstration of, 71
encryption

client-side session cookie, 269
digest algorithms for passwords, 297
generating public/private keys to encrypt

communications, 286
end-of-frame marker (streams), 167
environment variables, defining configuration

configurable modules, 123
naming convention for environment vari‐

ables, 88
setting project environment variables, 88
setting server configuration, 99
using env method of serverConfig, 87
_ (underscore) in names, 90

error handling, 172-176
customizing 404 behavior, 153
execution-wide, 173
PromiseDatabaseService with, 180
updated AsyncDatabaseService with, 179
using Promise types, 175

ExecController, 171
ExecHarness test fixture, 59, 61
ExecHarness.harness() method, 62
execution layer, 56
execution segments, 167
executions

execution model in Ratpack, 166
asynchronous promises and, 181

execution model in RxJava, 249
execution-wide error handling, 173
leveraging on unmanaged threads, 170-172

execution forking, 170
scheduling execution segments for compu‐

tation or I/O, 167-170
ExecutorService, 171

expiration
cookies, 279
setting for sessions, 267

F
features (tests), 46

Function Spec with multiple features, 50
FileHandler, caveats to, 134
files method

on Groovy Chain API, 132
on Java chain, 133
routes and, 134

filesystem
loading files from, 80
loading overlaid configuration from, 83

fileSystem method, 136
handler chain with, 138

FileSystemBinding, 96, 139
using to customize asset resolution, 135

filtering data with Promises, 240
filtering function, 235
filters, 5
flatMap method, 243, 264
forked execution, 170

with error handling, 173
Form object, 204

parsing data for database, 190
form-based authentication, 301-312

initial project structure, 302
FormClient class, 301

ratpack.groovy file with, 302
functional programming, and reactive pro‐

gramming, 234
functional testing, 48-58

architecting for improved testability, 55
bootstrapping test data, 53

FunctionalSpec class example
bootstrapping test data, 54
Groovy FunctionalSpec, 49
Main class FunctionalSpec, 50
refactored with rollups, 52
with multiple features, 50

G
GenericApplicationContext, 200
get method, 3

blocking database call in, 187
listing Person database records, 201

getResource method, 82

Index | 339

Google Guice (see Guice)
GORM (see Grails GORM and Ratpack)
GormEntity<T>, 197

withNewSession and save methods, 199
GormModule, 199
GormStaticApi, 205
Gradle Application plugin, 26
Gradle build system, 19

Asset Pipeline Gradle plugin, 157
build script wih HikariCP dependency, 191
build script with Asset Pipeline dependen‐

cies, 157
build script with database dependencies, 306
build script with GORM dependencies, 196
build script with H2 in-memory database,

184
build script with Handlebars.js and Thyme‐

leaf, 139
build script with Nebula OS package plugin,

331
build script with Pac4j, 291
build script with Ratpack session depend‐

ency, 261
build script with Ratpack Spring Boot

dependency, 218
build script with ratpack-session module,

117, 147
build script with Spring Data starter, 219
configuring run task in build script, 90
gradle-ospackage-plugin, 331
Guice dependency and, 109
installing using SDKMAN!, 22
Ratpack integration with, 4
ratpack-gradle plugin, 23-30

Groovy project structure, 24
hot reloading, 30
Ratpack Groovy build script, 23
Ratpack Java build script, 25
shortcut for resolving framework libra‐

ries and versions, 27
simple Groovy Ratpack application, 24
wrapper scripts, 28

gradle run command, 25
gradle wrapper command, 28
Grails GORM and Ratpack, 195-207

basic setup of Ratpack application, 198
get handler listing Person database records,

201
GormModule, 199

Gradle build script with GORM dependen‐
cies, 196

Person GORM domain class, 197
Person with RatpackGormEntity, 206
post handler for Person records, 203
problems with Hibernate, 195
RatpackGormEntity, 205
removing unecessary blocking calls, 206
scheduling blocking database calls, 195
type safety and IDE assistance from exten‐

sion methods, 197
Graphite, 319

enabling Graphite reporter, 319
GraphiteConfig object, 320

Groovy, 2
"Hello, World!" example, 2
applications using Main class, 34
AST (Abstract Syntax Tree) transforms, 197
BindingsSpec API in, 111-117
files method on Chain API, 132
handler chain API interactions, 35
installing, 3
mapping Promise to Observable, 254
Markup Templates, 139, 145
Ratpack Groovy build script, 23
Ratpack Groovy-based project structure, 22
ratpack-groovy library, 20
RxJava Groovy application, 252
Spock Framework specifications in, 48
SQL support, 183-190

GroovySqlPersonService, 209
HikariCP and, 191
in data-driven form authenticator, 310

standalone script for password hashes, 297
text template, welcome.html, 140
Text Templates, 139

for center aligned main landing view,
274

for form-based authentication, 303
Groovy Strings (GStrings), 140

inserting data using GString notation, 188
Groovy#chain call, 35
GroovyEmbeddedApp test fixture (see Embed‐

dedApp test fixture)
GroovyRatpackMainApplicationUnderTest fix‐

ture, 49
Guice, 105, 108-117

BindingsSpec in Groovy, 111-117
using Guice binder in Ratpack, 114

340 | Index

interoperations with Spring, problems in,
232

Java application with Guice-backed registry,
109

Java build script with Guice dependency,
109

registries and, 213
using Guice binder in Ratpack, 114

Guice.registry(..) factory method, 110

H
H2 in-memory database, 184, 197

Ratpack Groovy application with H2 Data‐
Source, 184

Handlebars.js, 139
template rendering support with Handle‐

barsModule, 141-143
HandlebarsModule

configuring, 142
incorporating into Ratpack Groovy applica‐

tion, 141
handler chain, 3, 5-18, 35-41

accessing user registry components with
registry.get, 312

AssetPipelineHandler, applying, 158
authentication flow, FormClient in, 303
chain API interactions in Groovy and Java,

35
content negotiation in handlers, 11-18
files method on Java chain, 133
for basic authentication, 293
HealthCheckHandler, attaching to /health

endpoint, 330
in Java-based Ratpack applications, 34
methods for HTTP verbs, 5
parsing request data, 10
path tokens, 8
performing security authorizations, 106
prefixed routes, 7
register method, 223
request parameters, 9
RequestTimingHandler prepended to, 316
serving static content, 132

files handler at end of chain, 134
with fileSystem method, 138

standalone handlers, 37
URL path bindings, 5
with cache headers, 155
with conditional resources, 149

with User-Agent asset routing, 151
Handler object, 35
HandlerDecorator, 316
handlers, 5

AsyncDatabaseService in, 163
blocking database call in get handler, 187
explicitly setting contentType in, 126
listing Person database records with get

handler, 201
login, 147
post handler for Person records, 203
post handler for resetView, 281
post handler for updatePosition, 277
sending files from, 152-153
serving HTML static files, 136
standalone, 37

(see also standalone handlers)
unit testing, 63-68

hashPassword method, 297, 298
health checks, 321-331

application health check integration specifi‐
cation, 328

database service, 324
ping method, 325

for UserProfileService, 327
for UserService, 326
output from /health endpoint, 323
setting unhealthy state and checking /health

endpoint, 323
simple demonstration of HealthCheckHan‐

dler, 322
unhealthy results, 503 status code, 324
UserProfileService remote service interface,

325
HealthCheck#of factory, 323
HealthCheck.Result class, 323
"Hello, World!" example, 2
Hibernate, 195

creating new session on blocking thread,
204

making more friendly, 196
HikariCP library, connection pooling with,

191-195
build script dependency, including in

project, 191
HikariCP and Groovy SQL, 191
Java HikariCP application, 193
using in data-driven form authentication,

306

Index | 341

HikariModule, 119
connection pool tuning with, 195
in data-driven form authenticator, 308
incorporating into Ratpack Groovy project,

191
incorporating via BindingsSpec and influ‐

encing configuration model, 119
Java configuration, 120

host handler method, 138
hot reloading, 30
HTML

authenticated landing page HTML file, 305
byContent specification, HTML output, 14
dynamically rendering welcome.html file as

Groovy text template, 140
landing page HTML file, form-based

authentication application, 304
login page HTML file, 304
project structure with HTML resources, 135
static application resources, 131

html method, 14
HTTP request processing, Spring versus Rat‐

pack, 214
HTTP sessions (see sessions)
HTTP verbs

get handler for HTTP GET requests, 3
handler chain methods for, 5

HttpClient class, 171
httpClient test fixture, 49

capabilities of, 53
requestSpec method, 52

httpOnly flag (cookies), 278
HTTPS, 287

(see also SSL)
session cookies, transmission over, 268

I
I/O operations

metrics for time spent in, 317
scheduling execution segments for, 167-170

immutable infrastructure, 331
index.html file

cache control, 156
in form-based authentication application,

304
protectedIndex.html, 302
serving, 133

Inject annotation, 112
INSERT statement, 190

integration testing, 58-61
for application health check, 328

intermediate certificate (CA), 289
io.ratpack.ratpack-java plugin, 25

J
Jackson, 127

ObjectMapper class, 171
rendering names as JSON, 188

JAR (Java Archive) files
packaged Ratpack applications, 19
project structure with Gradle wrapper, 28

Java
handler chain interactions, 35
object serialization system, 265
project structure, 26
Ratpack Java build script, 25
Ratpack Java main class, 33
Ratpack support for, 1

Java Enterprise Edition (EE) applications, 245
Java KeyStore files (see JKS files)
Java Persistence API (JPA), 219

creating Product JPA entity, 220
enabling repository types with Spring Data,

221
Spring Data JPA project page, 220
starter dependency for Spring Data integra‐

tion, 219
Java Virtual Machine (see JVM)
java.net.URL reference, 81
java.nio.file.Path reference, 80
JavaScript

resource compilation with Asset Pipeline,
157

static application resources, 131
javax.crypto.Cipher class, 270
javax.inject.Inject annotation, 112
javax.net.ssl.SSLContext, 287
javax.sql.DataSource object, 120, 184
JKS (Java KeyStore) files, 286

importing certificates from CA into, 289
JMX reporter, 317
JPA (see Java Persistence API)
JSESSIONID session cookie key, 268
JSON

byContent specification, JSON output, 14
byContent specification, no match to JSON

translation, 17
configuration files, 79

342 | Index

overlaying with properties and YAML
files, 86

Ratpack JSON renderer, 127
rendering database column names as, 188
representation of Person objects, 202

json method, 14
JsonOutput class, 14, 127
JsonOutput#toJson method, 127
JUnit, 45
JVM (Java Virtual Machine), 1

metrics from your application, capturing,
317

Ratpack project structure and, 21

K
keytool utility, 285

importing certificates, 289
using to generate a JKS file, 286
using to generate CSR file, 288

L
lambda expressions

coercion to functional interface type, 35
working with configurable modules, 120

LandingPageConfig class example, 92
custom configuration mapping, 96
explicit configuration for properties, 93

Lazybones, 30-33
creating projects from templates, 31

legacy servlet application, testing, 68-75
Let's Encrypt, 288
libraries

dependency injection though third-party
libraries, 105

Ratpack library structure, 20
lightweight services, deployments of, 331
Linux-based environments, 331
loading files

from the classpath, 81
from the filesystem, 80
overlaying configurations, 82
Ratpack approach to, 80

logging, using Slf4j, 318
login, 293

(see also authentication)
login page HTML file, form-based authenti‐

cation application, 304
login handler, 147
Login.html template, 304

M
MAC (message authentication code), 270
Main class applications

application base directory, 131
binding UserService implementation, 104
building from a Main class, 33-35
files method on Java chain, 133
initializing RxJava in main class, 251
Main class for Spring Boot Product API

application, 217
mapping Promise to Observable, 253
project structure with specified base direc‐

tory, 132
Ratpack Java Main class with SessionMod‐

ule, 262
Ratpack Main class with Spring Boot, 224
testing with FunctionalSpec, 50
using Config to provide bootstrapping data,

225
MainApplicationUnderTest, 50
mainClassName build script directive, 26
map method, 258
Map objects, transforming User objects to, 239
MapUsernamePasswordAuthenticator example,

295-301
basic authentication with, 299
using in data-driven form authentication,

306
markup templates (Groovy), 139, 145

rendering, 145
MarkupTemplateEngine, 145

capabilities of, 146
Maven, Ratpack libraries, coordinates for, 21
memory utilization, 317
MetricRegistry class, 320
metrics, 315

(see also publishing metrics)
JVM, capturing, 317
strategies and libraries for producing, 316

microservices, deployments of, 331
mocks, 58
model-view-controller design pattern, 214
modules (Ratpack), 103-129

extending Ratpack with registries, 104-108
framework modules, 117-123

configurable modules, 119
incorporating into Ratpack applications,

117
Google Guice, 108-117

Index | 343

modular object rendering, 124-129
templating engines, 139

MySqlUserDAO object, 113
binding to UserDAO with Guice binder, 115

N
Nebula Plugins project (Netflix), 331
noMatch method (byContent), 16
null objects, rendering, 128

O
object serialization, 265
ObjectMapper, 96, 128, 171
ObjectNode, 97
Observable types, 249

mapping Promise types to, 249-255
Groovy style, 254
using Java Main class, 253

scheduling for Ratpack execution, 250
UserProfileService interface with Observa‐

ble signatures, 256
UserService interface with Observable sig‐

natures, 256
Observable#compose method, 258
Observable#subscribe method, 254
onError method, 174

attaching error handler to promise stream,
176

onNull method, 241
onStart method, 186, 232
operating system packages, application distri‐

butions in, 331
Operation return type, 209

mapping to Promise type, 264
translating into Promise, 326

Optional<T> type, 294
org.pac4j:pac4j-http dependency, 291
originating computation thread, 169
ospackage extension, 332

P
Pac4j, 290

authentication flow, 291
basic authentication Ratpack application,

292
FormClient class, 301
other authentication clients, 312

Pac4jAuthenticator, 304

packageName property, 332
Pair object, composing data with, 244
paradigm of immutable infrastructure, 331
parallel processing, using RxJava, 256-258

parallel processing with UserService, 257
password security, 297

(see also security)
in data-driven form authenticator, 308
standalone Groovy script for hash genera‐

tion, 297
path

java.nio.file.Path reference, 80
setting for session ID cookie, 268

path method, 6
path tokens, 8
Paths helper class, 81
pathTokens type, 9
PBKDF2WithHmacSHA512 algorithm, 297
persistence, 219

(see also Java Persistence API)
persisting data throughout a session, 261
persisting objects in sessions, 264
persisting sessions to Redis, 271

Person class example, 197
calling withNewSession method directly,

206
get handler listing Person database records,

201
initializing for use with GORM, 201
JSON representation of Person objects, 202
post handler for Person records, 203
with RatpackGormEntity, 206
withNewSession and save methods, 199

PersonService interface example, 208
binding to GroovySqlPersonService imple‐

mentation, 209
ping method, 325

UserProfileService interface, 326
checking exception type from, 328

plugins versus Ratpack modules, 103
post method

handling Person records, 203
inserting data in database, 188
resetView handler, 281
updatePosition handler, 277

POST requests
performing using cURL utility, 7
post handler method, 5

prefix method, 8

344 | Index

files handler at end of subchain, 135
prefixed routes, 7
producers, 234

Promise representing, 238
producing function, 235
Product JPA entity, 220
ProductBootstrapConfig class example, 225

mapping YAML bootstrap config file to, 225
ProductHandler class example, 64

unit test specification for, 66
production, deploying to, 315-333

application health checks, 321-331
simple demo of HealthCheckHandler,

322
building distributions, 331-333
production checklist, 333
publishing metrics, 315-321

custom metrics, 320
enabling reporting, 317-320

ProductRenderer class example, 229
ProductRepository, 221

handling Product data, 223
ProductService interface example, 65, 215, 228

Spring Data implementation of, 228
profile creator, 292
profiles

extracting user profile, 294
for authenticated users, 292

project generator (see Lazybones)
project structure, 21

basic authentication project, 300
client-specific resources tree, 137
for form-based authentication, initial struc‐

ture, 302
Ratpack Groovy-based project structure, 78
revised, for CustomConfigSource, 97
with custom 404 logic, 154
with Gradle wrapper, 28
with Groovy template, 139
with Handlebars template, 142
with HTML resources, 135
with MarkupTemplate, 146
with specified base directory, 132
with static resources, 131
with test source set, 44
with Thymeleaf templates, 144

promise single strategy, 250
Promise#flatMap method, 243, 264
Promise#map method, 239, 264

Promise#publish method, 246
Promise#route method, 294
Promise#sync method, 178, 323
Promise.then method, 236
promises

creating your own Promise types, 176-181
from asynchronous calls, 178
from synchronous calculations, 177

in asynchronous programming, 164-166
mapping Promise types to Observable types,

249-255
Groovy style, 254
using Main class, 253

produced by httpClient.get call, 172
Promise as reactive data structure, 236-239

BlockingDatabaseService class, 237
composing data with Promises, 242-244
filtering data with Promises, 240
Ratpack Groovy application, 238
transforming data with Promises,

239-240
Promise objects returned by Session object,

getData, 148
Promise objects returned from UserService,

58, 61
Promise of HealthCheck.Result type, 323
Promise return type, 209, 228
Promise versus Publisher type, 245
Promise<Optional<T>> type, 264
rendering a Promise, 128
representing calls to blocking operations,

168
representing distinct frames in continua‐

tions, 166
scheduling of Promise to blocking thread

pool, 317
translating Operation into, for health check

results, 326
using in error handling, 175

properties files (Java)
as configuration files, 84
overlaying JSON, properties, and YAML

configuration files, 86
PropertyHolder class, 322

health property, toggling, 323
protectedIndex.html file, 302, 304

authenticated landing page HTML file, 305
publishers

Index | 345

Ratpack Groovy application with publisher
filtering and mapping, 247

reactive streams Publisher type, 245
Publishers and bindExec, 248
transforming Promise into, 246

publishing metrics, 315-321
custom metrics, 320
enabling reporting, 317-320

Q
queryParams map, 10

R
random numbers, calculating, 177
rapid prototyping, 4
.ratpack marker file, 132
ratpack-core library, 21
ratpack-dropwizard-metrics dependency, 316
ratpack-groovy library, 20
ratpack-groovy plugin, 24
ratpack-guice module, 104
ratpack-handlebars module, 139
ratpack-hikari module, 119
ratpack-pac4j dependency, 290
ratpack-rx framewok dependency, 249
ratpack-session module, 261

incorporating into Ratpack application, 117
incorporating into Ratpack Groovy applica‐

tion, 147
ratpack-session-redis module, 271
ratpack-spring-boot module, 104
ratpack-test module, 43
ratpack-thymeleaf module, 139
ratpack.config.ConfigSource interface, 96
ratpack.dependency(..) mechanism, 27
ratpack.error.ClientErrorHandler, 153
ratpack.error.ServerErrorHandler, 172
ratpack.exec.ExecController, 171
ratpack.exec.Operation return type, 178, 209
ratpack.exec.Promise return type, 178, 209, 228
ratpack.groovy scripts

handler chain with fileSystem, 138
incorporating SessionModule, 262
using Session object, 263
with FormClient, 302
with ProductService and Renderer, 230
with Spring Boot registry, 221
with ViewTracker incorporated, 266

ratpack.guice.Guice class, 109

ratpack.handling.Context object, 35
ratpack.handling.Handler object, 35
ratpack.http.HttpClient, 171
ratpack.jackson.Jackson class, 127
ratpack.render.Renderer, 124
ratpack.server.Service, 171, 185
ratpack.service.Service, 232
ratpack.session.SessionModule, 118
ratpack.ssl.SSLContexts, 287
ratpack.stream.Streams, 245
RatpackGormEntity trait, 205

implementing from Person domain object,
206

RatpackPac4j, 293
RatpackPac4j#authenticator method, 293
RatpackPac4j#login method, 293
RatpackPac4j#logout method, 294
RatpackPac4j#userProfile method, 294
reactive programming, 58, 233-259

overview, 233-236
diagram of reactive programming, 234
use cases and functions, 236

Promise as reactive data structure, 236-244
composing data with Promises, 242-244
filtering data with Promises, 240
transforming data with Promises,

239-240
reactive streams, 244-248

application with publisher filtering and
mapping, 247

DatabaseUserService implementation,
246

Publishers and bindExec, 248
UserService implementation, 245

RxJava library, 248-258
Reactive Streams Manifesto, 244
ReceivedResponse object, 172
Redis, session storage with, 271
RedisSessionModule, 271

configuring, 272
configuring with application configuration,

273
registries, 104-108, 213

Guice-backed registry in Java application,
109

Guice-backed registry, binding UserDAO in,
112

incorporating DatabaseUsernamePasswor‐
dAuthenticator into, 310

346 | Index

layered or joined, 104
security authorizations through handler

chain, 106
service layer bindings, 104
Spring Boot integration through, 213
Spring Boot-backed, creating, 221-227

bootstrapping product data, 223
using for access to Spring Boot and Guice

bound components, 232
registry method, 225
RemoteServiceError, 327
render method, Context object, 153
Renderer interface, 124
Renderer types, 231

ProductRenderer Spring component, 229
rendering modular objects, 124-129

binding UserRenderer, 125
JSON data, 127
rendering the User type, 124
rendering with content type, 126
special scenarios, 128
templates, 139

reporting, enabling, 317-320
repository types in Spring Data, 221
request data, parsing, 10
request parameters, 9
request taking thread pool, 169, 195
RequestFixture test helper, 63, 68
RequestFixture#handle method, 64
RequestSpec object, 52
RequestTimingHandler, 316
Reset View button, adding, 279
response.contentType method, 126
REST API

ProductService interface, 215
Spring Boot application with Product REST

API, 216
rollups, in refactored FunctionalSpec class

example, 52
root certificate (CA), 289
route function, 240
run task (Gradle), configuring in build script,

90
Runnable interface, 171
runtimes, containerized, 90
RxJava library, 248-258

further reading on, 258
Gradle build script with RxJava dependency,

27

initializing RxJava in a main class, 251
initializing RxRatpack system, 249
mapping Promise to Observable, 253

Groovy style, 254
parallel processing with, 256-258
RxJava Groovy application, 252

RxJavaObservableExecutionHook, 249
RxJavaUserService interface, 250, 251
RxRatpack class

initializing, 249
methods mapping Observables to Promises,

250
RxRatpack#observe method, 253-255
RxRatpack#observeEach method, 253-255
RxRatpack#promise method, 252
RxRatpack#promiseSingle method, 252

S
SBT, 21
ScheduledExecutorService, 171
schedulers, 249
scoping in asynchronous programming, 163
SDKMAN! utility, 22

installing Lazybones, 30
secure property (cookies), 278
security, 285-313

additional authentication types, 312
basic authentication, 290-301

basic authentication Ratpack application,
292

custom UsernamePasswordAuthentica‐
tor, 295-301

form-based authentication, 301-312
data-driven form, 306-312

SSL support, 285-290
SecurityConfig class example, 298

mapping YAML security config file to, 300
SecurityConfig.basic.userPassMap, 300
SELECT * FROM PERSON, 202
SELECT * FROM TABLE statement, 235
Serializable objects, 264
serialization, Java object serialization system,

265
server configuration, setting, 99-101
serverConfig, 77

configuring ClientSideSessionModule, 270
props method, 86
using sysProps and env methods, 87

Index | 347

working with YAML and Java properties
files, 84

ServerConfig object, 226
baseDir property, 131
properties, 99
tuning by modifying properties, 101

ServerConfigBuilder, ssl method, 287
ServerErrorHandler, 172
Service interface, 171

access to user registry at application start,
232

binding Service implementation in database
initialization, 185

Service instance in AppSpringConfig, 226
service layer bindings, 104
Service#onStart method, 227
serving web assets (see web assets, serving)
Servlet API, 214
servlets, 5

legacy servlet implementation, testing,
69-75

Session object, 148, 263
Session#get method, 264
Session#set method, 264
SessionModule

configuring, 267
in Ratpack Java Main class application, 262
incorporating into Ratpack application, 118
incorporating into ratpack.groovy script,

262
required for authentication/authorization,

290
using ClientSideSessionModule with, 268
using RedisSessionModule with, 271

sessions, 261-273
client-side, 268-271
creating new Hibernate session on blocking

thread, 204
distributed, 271-273
for authentication, 293
integrating session support, 261-268

configuring SessionModule, 267
persisting objects, 264

Ratpack's optional support for, 147
using ThreadLocal storage to bind database

Session to current thread, 195
setup block (tests), 46, 51
SHA-1 cryptographic hashing function, 270

SimpleTestUsernamePasswordAuthenticator,
293

Slf4j reporter, enabling, 317
specifications, 45

MyServiceSpec class example, 46
Spock Framework, 43

test structure, 45-48
MyService class example, 46
MyServiceSpec class example, 46

Spring, 105
Ratpack and Spring Boot, 213-232

adding Spring Boot to Ratpack project,
218-221

API design with, 227-231
creating Spring Boot-backed registry,

221-227
known limitations, 232
Main class for Spring Boot Product API

application, 217
ProductService interface, 215
Ratpack application with Product REST

API, 215
Spring Boot application with Product

REST API, 216
use by GORM, 200
use by GORM infrastructure, 197

Spring Data, 219
JPA starter dependency, 220
ProductRepository, 221
ProductService implementation, 228

Spring Data JPA project page, 220
Spring.spring method, 225
Sql object, 185

accessing in data-driven form authenticator,
310

injecting into get handler, 188
resolving, 186

SQL support (Groovy), 183-190
GroovySqlPersonService, 209
HikariCP and Groovy SQL, 191

sql.execute method, 186
SqlModule

in data-driven form authenticator, 308
incorporating into a project, 185

src/ratpack tree, 24
src/ratpack/Ratpack.groovy file, 33
src/test directory structure, 44
SSL, 285-290

certificates, 285

348 | Index

Groovy Ratpack file with SSL, 287
ssl method, ServerConfigBuilder, 287
SSLContext object, 287
standalone handlers, 37

complex request handler for unit testing, 64
DefaultRouteHandler example, 37

reusability of common logic, 38
file rendering, 136
registration of, 38
simple request handler for unit testing, 63
UserAgentVersionHandler example, 39

StartEvent object, 227
static content, serving, 131-139

conditionally, 147
FileHandler, caveats to, 134
using FileSystemBinding to customize asset

resolution, 135
stimulus block (tests), 46

multiple blocks in a test, 55
streaming data from producer to subscriber,

234
streams, 166

execution segments, 167
reactive, 244-248
subscribing to, using then method, 172

Streams#bindExec method, 248
Streams.bindExec method, 248
Streams.publish method, 247
stubs, 73
subchains

creating using prefix method, 8
files handler and, 135

subscribers, 234
attaching subscription to a Promise, 239
Subscriber types in RxJava, 249

synchronous calculations, promises from, 177
system properties, configuration with

configuring Gradle run task, 90
naming convention for properties, 88
ServerConfig object and, 99
setting system property configuration, 91
using sysProps method of serverConfig, 87

T
template expressions (Handlebars.js), 143
templates

dynamic templating engines, 139
for form-based authentication application,

302

terminal handlers, 134
test classes, 46
testCompile build configuration, 43
TestHttpClient, 75
testing, 43-75

existing code in non-Ratpack applications,
68-75

functional testing, 48-58
architecting for better testability, 55
bootstrapping test data, 53

integration testing, 58-61
Spock test structure, 45-48
unit testing, 61-68

handlers, 63-68
text templates (Groovy), 139

additional templating support, 141
for center aligned main landing view, 274
welcome.html file, 140

text/html content type, 12
TextTemplateModule, 276, 303
thread affinity, 169
thread pools in Ratpack, 169
ThreadLocal object, 195
Throwable object, 173

in Promise error handling, 175
stracktrace, printing from, 175

Thymeleaf, 139, 143-145
ThymeleafModule

configuring, 144
Ratpack Groovy application incorporating,

143
transforming data with Promises, 239-240
transforming function, 235
type method, using on byContent, 15
TypeCoercingMap, 9
types, translating path tokens to, 9

U
unit testing, 61-63

handlers, 63-68
unmanaged threads, leveraging executions on,

170-172
URL path bindings, 5
URL replacement with Asset Pipeline, 157
user registry, leveraging Spring Boot as, 224
User-Agent header, serving assets by, 151
UserAgentVersioningHandler example, 39
UserDAO interface

binding in Guice-backed registry, 112

Index | 349

binding MySqlUserDAO via Guice binder,
115

UsernamePasswordAuthenticator, 293
implementing your own, 295-301
in form-based authentication, 303

UsernameProfileCreator, 303
UserProfileService interface, 325

health check for, 327
integration testing of health check, 328
ping method, 326

UserRenderer class example, 124
UserService class example, 56

binding to DefaultUserService, 57
binding to DefaulUserService instance, 111
binding using Guice, 109
health check database service, 325
health check for, 326
integration testing of health check, 328
mocking in integration tests, 58
parallel processing with, 257
reactive streams implementation, 245
with RxJava, 250

UserServiceUnitSpec class example, 62
UserServlet class example, 69

V
validate method, 295
view model, 139

dynamically rendering HTML content from,
140

views
center-aligned main landing view, 274
default main landing view, 273
Reset View button, 279

ViewTracker session object example, 264
storing in a session and retrieving for use,

266

W
web application containers, 214
web assets, serving, 131-160

Asset Pipeline, 157-160
cache control, 155-157

conditionally, 147-152
based on request attributes, 151
conditionally scoping resources, 147-151

customizing 404 behavior, 153
dynamic content, 139-147

Groovy markup templates, 145
Handlebars.js support, 141-143
Thymeleaf support, 143-145

sending files from handlers, 152-153
static content, 131-139

FileHandler, caveats to, 134
FileSystemBinding, customizing asset

resolution, 135
welcome.gtpl file, 146
welcome.hbs file, 143
welcome.html file, 140

in Thymeleaf, 145
sending via Context#file method, 153

when method, 151
wrapper script (Gradle), 28

output from Lazybones application, 32

X
XML

byContent specification, XML output, 15
convenience methods for XML content

types, 14
requests specifying XML data return, 12

Y
YAML configuration files, 84

ApplicationConfig with nested landing‐
page.yml file, 94
config directives in landing object, 95

bootstrap config file, 225
ClientSideSessionModule config file, 271
incorporating and mapping to Product‐

BootstrapConfig, 225
overlaying JSON, properties, and YAML

files, 86
with username and password hash map, 298

YUM-based Linux distributions, 331

350 | Index

About the Author
Dan Woods is a full-stack developer who specializes in distributed and web architec‐
tures. He is a member of the Ratpack core team and contributes to many open source
projects in the broader Java and Groovy ecosystem. Dan’s professional emphasis is on
building continuous delivery and cloud infrastructure automation tooling.

Colophon
The animals on the cover of Learning Ratpack are ring-tailed lemurs (Lemur catta).
Like all lemurs, ring-tails are endemic to the island of Madagascar and favor forested
areas where trees are plentiful. Most thickly forested areas in Madagascar have been
cleared for livestock, however, so the ring-tailed lemur is listed as endangered due to
habitat loss and falling wild population numbers.

Ring-tailed lemurs are highly social and live in female-dominated groups of 30 or
more individuals. They are very vocal and use a wide range of calls to communicate.
Males also use scent to mark territory and challenge each other—they participate in
“stink fights” by covering their tails in scent and waving them at opponents.

As opportunistic omnivores, ring-tailed lemurs have a varied diet that includes fruits,
leaves, flowers, bark, sap, spiders, small birds, and even chameleons. If available, the
fruits and leaves of the tamarind tree are the most sought-after meal, but lemurs are
willing to eat a wide variety of things depending on the season.

Actor and comedian John Cleese has a passion for lemurs and was the host of a 1998
BBC documentary called In the Wild: Operation Lemur with John Cleese. The show
tracked the progress of lemurs being reintroduced back into the Betampona Reserve
in Madagascar, a project that was partially funded by Cleese himself.

Many of the animals on O’Reilly covers are endangered; all of them are important to
the world. To learn more about how you can help, go to animals.oreilly.com.

The cover image is from Cassell’s Natural History. The cover fonts are URW Type‐
writer and Guardian Sans. The text font is Adobe Minion Pro; the heading font is
Adobe Myriad Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

http://animals.oreilly.com

	Copyright
	Table of Contents
	Foreword
	Preface
	Who Is the Target Audience for This Book?
	What Is This Book Not Trying to Accomplish?
	No Breaking Changes!

	Staying in Touch
	Acknowledgments

	Chapter 1. Welcome to Ratpack
	Hello, World!
	Running the Example
	Rapid Prototyping

	Handler Chain
	URL Path Bindings
	Prefixed Routes
	Path Tokens
	Request Parameters
	Parsing Request Data
	Content Negotiation in Handlers

	Chapter Summary

	Chapter 2. Getting Started
	Library Structure
	Project Structure
	Ratpack Gradle Plugin
	Gradle Wrapper
	Hot Reloading

	Lazybones
	Building from a Main Class
	Working with Handlers
	Understanding the Chain API Interactions in Groovy and Java
	Standalone Handlers

	Chapter Summary

	Chapter 3. Testing Ratpack Applications
	Spock Test Structure
	Functional Testing
	Bootstrapping Test Data
	Architecting for Improved Testability

	Integration Testing
	Unit Testing
	Unit Testing Standalone Handlers
	Other Testing Scenarios
	Chapter Summary

	Chapter 4. Application Configuration
	Configuring with Environment Variables and System Properties
	Configuring with Environment Variables
	Configuration with System Properties

	Nested Configuration Models
	Custom Configuration Source
	Setting Server Configuration
	Chapter Summary

	Chapter 5. Ratpack Modules
	Extending Ratpack with Registries
	Google Guice
	BindingsSpec in Groovy

	Framework Modules
	Configurable Modules

	Modular Object Rendering in Ratpack
	Rendering with Content Type
	Rendering JSON Data
	Special Rendering Scenarios

	Chapter Summary

	Chapter 6. Serving Web Assets
	Serving Static Content
	Caveats to the FileHandler
	Using FileSystemBinding to Customize Asset Resolution

	Serving Dynamic Content
	Handlebars.js Support
	Thymeleaf Support
	Groovy Markup Templates

	Conditionally Serving Content
	Conditionally Scoping Resources
	Conditionally Serving Assets Based on Request Attributes

	Sending Files from Handlers
	Customizing 404 Behavior
	Cache Control
	Asset Pipeline
	Chapter Summary

	Chapter 7. Asynchronous Programming, Promises, and Executions
	Promises: A Better Approach to Async Programming
	Execution Model
	Scheduling Execution Segments for Computation or I/O
	Leveraging Executions on Unmanaged Threads
	Error Handling
	Execution-Wide Error Handling
	Promise Error Handling

	Creating Promises on Your Own
	Promises from Synchronous Calculations
	Promises from Asynchronous Calls

	Chapter Summary

	Chapter 8. Data-Driven Web Applications
	Groovy SQL Support
	Connection Pooling with HikariCP Support
	Ratpack and Grails GORM
	Designing Data-Driven Service APIs in Ratpack
	Chapter Summary

	Chapter 9. Ratpack and Spring Boot
	Adding Spring Boot to Your Ratpack Project
	Creating a Spring Boot–Backed Registry
	API Design with Ratpack and Spring
	Other Notes on API Design with Ratpack and Spring

	Known Limitations
	Chapter Summary

	Chapter 10. Reactive Programming in Ratpack
	Overview of Reactive Programming
	Promise as a Reactive Data Structure
	Transforming Data with Promises
	Filtering Data with Promises
	Composing Data with Promises

	Reactive Streams
	Publishers and bindExec

	RxJava
	Parallel Processing Using RxJava
	Further Reading on RxJava

	Chapter Summary

	Chapter 11. Sessions and Security
	Integrating Session Support
	Persisting Objects
	Configuring the SessionModule

	Client-Side Sessions
	Distributed Sessions
	Working with Cookies
	Tuning Cookies
	Expiring Cookies

	Chapter Summary

	Chapter 12. Application Security
	SSL Support
	Basic Authentication
	Custom UsernamePasswordAuthenticator

	Form-Based Authentication
	Data-Driven Form Authentication

	Additional Authentication Means
	Chapter Summary

	Chapter 13. Going to Production
	Publishing Metrics
	Enabling Reporting
	Publishing Custom Metrics

	Application Health Checks
	Building Distributions
	Production Checklist
	Chapter Summary

	Index
	About the Author
	Colophon

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

