

Learning SaltStack
Second Edition

Build, manage, and secure your infrastructure by
utilizing the power of SaltStack

Colton Myers

BIRMINGHAM - MUMBAI

Learning SaltStack
Second Edition

Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: January 2015

Second edition: June 2016

Production reference: 1270616

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78588-190-9

www.packtpub.com

www.packtpub.com

Credits

Author
Colton Myers

Reviewer
Joseph Hall

Commissioning Editor
Pratik Shah

Acquisition Editor
Divya Poojari

Content Development Editor
Rashmi Suvarna

Technical Editors
Manali Gonsalves

Novina Kewalramani

Pramod Kumavat

Copy Editor
Dipti Mankame

Project Coordinator
Judie Jose

Proofreader
Safis Editing

Indexer
Hemangini Bari

Graphics
Kirk D'Penha

Production Coordinator
Shantanu N. Zagade

Cover Work
Shantanu N. Zagade

About the Author

Colton Myers is a software engineer living in Salt Lake City, Utah. Since
graduating with a BS in Computer Science from the University of Utah,
he has worked professionally, writing software in Python. He loves working
on open source software and has made multiple appearances as a speaker
at the US PyCon conference.

Colton is a SaltStack Certified Trainer and has worked on the Salt open source
software for years. He was previously a core engineer at SaltStack. At the time this
book was published, he was a Python developer and systems engineer at Adobe.

Find him on Twitter and Github at @basepi.

I would like to thank my friends and family for the support they've
given me as I've written this book. I'd also like to thank Tom Hatch
for creating such kick-ass software, and growing a fantastic company
and community. Finally, I'd like to thank the SaltStack community;
without them, SaltStack would be nothing.

About the Reviewer

Joseph Hall is a Senior Cloud Engineer at SaltStack. His contributions inside Salt
include a number of execution modules, cloud modules, and the creation of both
SDB and SPM. He is also the author of Mastering SaltStack and Extending SaltStack,
both by Packt Publishing.

www.PacktPub.com

eBooks, discount offers, and more
Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at customercare@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print, and bookmark content
•	 On demand and accessible via a web browser

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib

[i]

Table of Contents
Preface	 v
Chapter 1: Diving In – Our First Salt Commands	 1

Introducing Salt	 1
Installing Salt	 2

Installation with system packages (Ubuntu)	 3
Installation with system packages (CentOS 6)	 3
Installation with system packages (Windows)	 4
Installing with Salt Bootstrap	 7

Configuring Salt	 9
Firewall configuration	 9
Salt minion configuration	 10
Starting the Salt master and Salt minion	 11
Accepting the minion key on the master	 11

A game of ping pong	 13
Masterless Salt	 16
Summary	 18

Chapter 2: Controlling Your Minions with Remote Execution	 19
The structure of a remote execution command	 19

Command-line options	 20
Targeting strings	 23

Glob matching	 23
Perl-compatible regular expression matching	 25
List matching	 26
Grain and pillar matching	 27
Compound matching	 32

Remote execution modules and functions	 34
Adding users	 36
Installing packages	 37
Managing services	 40

Table of Contents

[ii]

Monitoring minion states	 41
Running arbitrary commands	 42

Summary	 44
Chapter 3: Execution Modules – Write Your Own Solution	 45

Exploring the source	 45
Cross-calling execution modules	 48
Grains and the __virtual__ function	 50
The__opts__ and __pillar__ functions	 52
Reformatting return data	 54

An advanced example	 57
Summary	 62

Chapter 4: Defining the State of Your Infrastructure	 63
Our first state	 63
The pieces of a state declaration	 68
Expanding to encompass multiple pieces of state	 69
Dependencies using requisites	 72

The require requisite	 72
The watch requisite	 75
Other requisites	 83
The _in requisites	 84

Summary	 85
Chapter 5: Expanding Our States with Jinja2 and Pillar	 87

Adding a new minion	 87
Jinja2	 89

apache2 or httpd?	 90
Defining secure minion-specific data in pillar	 99

Using pillar data in states	 103
Summary	 107

Chapter 6: The Highstate and Environments	 109
The highstate	 109

Environments	 112
Environments in pillar	 115

Expanding our base environment	 116
Storing our states in Git with GitFS	 120
Summary	 122

Table of Contents

[iii]

Chapter 7: Using Salt Cloud to Manage Virtual Minions	 123
Setting up Salt Cloud	 123

Setting up Linode	 124
Creating an API key	 125

Creating a cloud provider configuration	 126
Creating cloud VM profiles	 131
Creating and destroying machines	 131

Managing groups of VMs with map files	 136
Creating new masters with the map files	 139

Summary	 141
Chapter 8: The Reactor and the Event System	 143

The Salt event system	 143
Listening for events	 143

Event structure	 145
Firing events from Salt	 146
Firing events from custom code	 147

Reacting to events	 148
Summary	 151

Chapter 9: Security Best Practices in Salt	 153
Securing Salt configuration	 153

Master configuration	 153
open_mode and auto_accept	 153
file_recv	 154
Peer publishing	 155

Minion configuration	 156
master_finger	 156

Key management	 156
Preseeding the minion keys	 157
Preseeding the master key	 158
Verifying with key fingerprints	 159

Master fingerprint	 159
Minion fingerprints	 161

Firewall and network configuration	 162
Summary	 162

Table of Contents

[iv]

Chapter 10: How Can I Get Involved?	 163
Contributing code using GitHub	 163

Creating an account on GitHub	 164
The project	 164
Getting the code	 167
Contributing a fix	 170
Committing our changes	 170
Pushing the changes and creating a pull request	 172

Other ways to get involved	 176
Salt-users mailing list	 176
#salt on freenode IRC	 177
#saltstack on the hangops Slack	 179

Summary	 180
Index	 181

Preface

[v]

Preface
SaltStack (or Salt, for short) is an open source project that was started by
Thomas Hatch in 2011. It was originally intended to be a lightning-fast remote
execution system. Later, the various pieces that make up the Salt that we know
today were added on top of this flexible layer. Salt is now one of the most popular
open source projects in the world and one of the most popular infrastructure
management platforms.

The project is managed by SaltStack, Inc., a company dedicated to preserving the
open source nature of the software. SaltStack, Inc. provides service, long-term
support, and custom code in their enterprise product, and supports the open
source Salt project with a team of dedicated engineers.

Why do you care? What can Salt do for you?

Salt is the easiest, most powerful way to manage your servers. Whether you have
a few, hundreds, or even tens of thousands of servers, you can use Salt to manage
them from a single central point. You can use it to flexibly target any subset of
your servers to run commands or accomplish tasks. You can use the state system
to define the state of your infrastructure in a data-driven way and then enforce that
state in seconds, with a single command. You can even create a reactive, self-healing
infrastructure using the event system. Salt is written in Python and designed to be
easy to extend for your own specific use-cases or purposes.

We're going to learn how to do all this and more in these pages. By the end of this
book, you will have the knowledge you need to begin making the management of
your infrastructure easier with Salt.

Let's get to it!

Preface

[vi]

What this book covers
Chapter 1, Diving In – Our First Salt Commands, will discuss how to install Salt and
execute basic commands.

Chapter 2, Controlling Your Minions with Remote Execution, will show how to use Salt
to accomplish tasks on your minions through remote execution.

Chapter 3, Execution Modules – Write Your Own Solution, will discuss how to write
your own custom remote execution modules to extend Salt for your own purposes.

Chapter 4, Defining the State of Your Infrastructure, will discuss how to use Salt States to
define and enforce the state of your infrastructure.

Chapter 5, Expanding Our States with Jinja2 and Pillar, will discuss how to make your
states more flexible and powerful by using Jinja2 and Pillar data.

Chapter 6, The Highstate and Environments, will show how to structure your states
into environments and enforce the state of your entire infrastructure using a
single command.

Chapter 7, Using Salt Cloud to Manage Virtual Minions, will show how to manage your
cloud virtual machines using salt-cloud to create and manage VMs.

Chapter 8, The Reactor and the Event System, will show how to make your
infrastructure automatically react to changes by using the reactor and event
system built into Salt.

Chapter 9, Security Best Practices in Salt, will show how to secure your SaltStack
infrastructure from attackers.

Chapter 10, How Can I Get Involved?, will show how to go beyond this book and learn
more about Salt, as well as how to get involved in the SaltStack community.

What you need for this book
You will need access to a Linux machine to run the examples in this book. The
preferred operating system is Ubuntu 14.04, but any major distribution of Linux is
acceptable. If you use an operating system other than Ubuntu 14.04, your output
may differ from the example output in the book.

Preface

[vii]

Who this book is for
The biggest target audience for this book is system administrators. However,
anyone who works with servers, whether application/web developers, system
administrators, or hobbyists, will be able to use to this book to learn how to
manage their servers/infrastructure easily and consistently.

No prior Salt knowledge is assumed. However, even Salt veterans will find new
knowledge and best practices to apply in their own infrastructures. This book is for
anyone who wants to better manage their infrastructure with Salt.

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"Now, you must open the file /etc/apt/sources.list and add the following line."

A block of code is set as follows:

test_state
 file.managed:
 - name: /tmp/test.txt
 - source: salt://test.txt
 - user: root
 - group: root
 - mode: 644

When we wish to draw your attention to a particular part of a code block,
the relevant lines or items are set in bold:

test_state
 file.managed:
 - name: /tmp/test.txt
 - source: salt://test.txt
 - user: root
 - group: root
 - mode: 644

Preface

[viii]

Any command-line input or output is written as follows:

cp /usr/src/asterisk-addons/configs/cdr_mysql.conf.sample

 /etc/asterisk/cdr_mysql.conf

New terms and important words are shown in bold. Words that you see on the
screen, for example, in menus or dialog boxes, appear in the text like this: "Continue
the installation process by clicking Next and agreeing to the license agreement."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for this book from your account at
http://www.packtpub.com. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have the files e-mailed directly
to you.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support

Preface

[ix]

You can download the code files by following these steps:

1.	 Log in or register to our website using your e-mail address and password.
2.	 Hover the mouse pointer on the SUPPORT tab at the top.
3.	 Click on Code Downloads & Errata.
4.	 Enter the name of the book in the Search box.
5.	 Select the book for which you're looking to download the code files.
6.	 Choose from the drop-down menu where you purchased this book from.
7.	 Click on Code Download.

You can also download the code files by clicking on the Code Files button on the
book's webpage at the Packt Publishing website. This page can be accessed by
entering the book's name in the Search box. Please note that you need to be
logged in to your Packt account.

Once the file is downloaded, please make sure that you unzip or extract the folder
using the latest version of:

•	 WinRAR / 7-Zip for Windows
•	 Zipeg / iZip / UnRarX for Mac
•	 7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/
PacktPublishing/Learning-SaltStack-Second-Edition. We also have
other code bundles from our rich catalog of books and videos available at
https://github.com/PacktPublishing/. Check them out!

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or
added to any list of existing errata under the Errata section of that title.

https://github.com/PacktPublishing/Learning-SaltStack-Second-Edition
https://github.com/PacktPublishing/Learning-SaltStack-Second-Edition
https://github.com/PacktPublishing/
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata

Preface

[x]

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

[1]

Diving In – Our First
Salt Commands

Salt is more than just configuration management or remote execution. It is a powerful
platform that not only gives you unique tools to manage your infrastructure, but also
the power to create new tools to fit your infrastructure's unique needs. However,
everything starts with the foundation of lightning-fast remote execution, so that's
where we will start.

In this chapter, you will learn how to:

•	 Install Salt
•	 Configure the master and the minion
•	 Connect the minion to the master
•	 Run our first remote execution commands

This book assumes that you already have root access on a device with a common
distribution of Linux installed. The machine used in the examples in this book is
running Ubuntu 14.04, unless otherwise stated. Most examples should run on other
major distributions, such as recent versions of Fedora, RHEL 6/7, or Arch Linux.

Introducing Salt
Before installing Salt, we should learn the basic architecture of Salt deployment.

The two main pieces of Salt are the Salt master and the Salt minion. The master
is the central hub. All minions connect to the master to receive instructions. From
the master, you can run commands and apply configuration across hundreds or
thousands of minions in seconds.

Diving In – Our First Salt Commands

[2]

The minion, as mentioned earlier, connects to the master and treats the master as the
source of all truth. Although minions can exist without a master, the full power of
Salt is realized when you have minions and the master working together.

Salt is built on two major concepts: remote execution and configuration
management. In the remote execution system, Salt leverages Python to accomplish
complex tasks with single-function calls. The configuration management system
in Salt, States, builds upon the remote execution foundation to create repeatable,
enforceable configuration for the minions.

With this bird's-eye view in mind, let's get Salt installed so that we can start learning
how to use it to make managing our infrastructure easier!

Installing Salt
The dependencies for running Salt at the time of writing are as follows:

•	 Python 2 – Version 2.6 or greater (Salt is not Python 3-compatible)
•	 Msgpack – python
•	 YAML
•	 Jinja2
•	 MarkupSafe
•	 ZeroMQ – Version 3.2.0 or greater
•	 PyZMQ – Version 2.2.0 or greater
•	 Tornado
•	 PyCrypto
•	 M2Crypto

The easiest way to ensure that the dependencies for Salt are met is to use system-
specific package management systems, such as apt on Ubuntu systems, that will
handle the dependency-resolution automatically. You can also use the Salt Bootstrap
script to handle all of the system-specific commands for you. Salt Bootstrap is an
open source project with the goal of creating a Bourne shell-compatible script that
will install Salt on any compatible server. The project is managed and hosted by the
SaltStack team. You can find more information at https://github.com/saltstack/
salt-bootstrap.

We will explore each of these methods of installation in turn, on a few
different platforms.

https://github.com/saltstack/salt-bootstrap
https://github.com/saltstack/salt-bootstrap

Chapter 1

[3]

Installation with system packages (Ubuntu)
The latest release of Salt for Ubuntu is provided via the official SaltStack package
repository at http://repo.saltstack.com.

First, you must add the official SaltStack GPG key so that the packages can
be verified:

wget -O - https://repo.saltstack.com/apt/ubuntu/14.04/amd64/latest/
SALTSTACK-GPG-KEY.pub | sudo apt-key add –

Now, you must open the file /etc/apt/sources.list and add the following line:

deb http://repo.saltstack.com/apt/ubuntu/14.04/amd64/latest trusty main

Save and close that file.

After you have added the repository, you must update the package management
database, as follows:

sudo apt-get update

You should then be able to install the Salt master and the Salt minion with the
following command:

sudo apt-get install salt-master salt-minion

Assuming there are no errors after running this command, you should be done! Salt
is now installed on your machine.

Note that we have installed both the Salt master and the Salt minion. The term
master refers to the central server—the server from which we will be controlling
all of our other servers. The term minion refers to the servers connected to and
controlled by a master.

Installation with system packages (CentOS 6)
The latest release of Salt for RedHat/CentOS systems is also provided via the official
SaltStack package repository at http://repo.saltstack.com.

You can set up both the repository and the keys required with a single command:

sudo rpm -ivh https://repo.saltstack.com/yum/redhat/salt-repo-
2015.8.el6.noarch.rpm

Make sure that the caches are clean with the following command:

sudo yum clean expire-cache

http://repo.saltstack.com
http://repo.saltstack.com

Diving In – Our First Salt Commands

[4]

Then, install the Salt master and Salt minion with the following commands:

sudo yum install salt-master

sudo yum install salt-minion

Assuming that there are no errors after running this command, you should be done!
Salt is now installed on your machine.

As with Ubuntu, we installed both the Salt master and the Salt minion. The term
master refers to the central server—the server from which we will be controlling
all of our other servers. The term minion refers to the servers connected to and
controlled by a master.

Installation with system packages (Windows)
The latest release of Salt for Windows systems is also provided via official packages
from SaltStack. However, because Windows doesn't currently have a built-in
package manager, the process is more manual. You download the installer and
then run it like you would install most other software on Windows.

Start by going to the Windows section of the SaltStack repo:
http://repo.saltstack.com/#windows.

Here, you'll see links to the x86 and AMD64 versions of the Salt minion
for Windows:

http://repo.saltstack.com/#windows

Chapter 1

[5]

For most setups, you'll want the 64-bit version, highlighted in the preceding image.
When you download and run that file, you'll see the following screen:

Continue the installation process by clicking Next and agreeing to the
license agreement.

Diving In – Our First Salt Commands

[6]

You'll then be shown a configuration page:

Here, you can enter the hostname or IP address of your Salt master, so the minion
knows where to connect. You'll also have the option of setting the ID of the minion.
Set it to something that describes the purpose of the minion so that when you have
many minions, you'll be able to tell each of them apart. Then, click Install.

Chapter 1

[7]

Once the installation completes, you'll have the option of starting the minion. Leave
this box checked and click Finish:

You are done! Salt is now installed on your machine.

Note that the Salt master is not supported on Windows machines, so we only
installed the Salt minion on this machine.

Installing with Salt Bootstrap
Information about manual installation on other major Linux distributions can be
found online at http://docs.saltstack.com. However, in most cases, it is easier
and more straightforward to use the Salt Bootstrap script. In-depth documentation
can be found on the project page at https://github.com/saltstack/salt-
bootstrap; however, the tool is actually quite easy to use, as follows:

curl -L https://bootstrap.saltstack.com -o install_salt.sh
sudo sh install_salt.sh -h

We won't include the help text for Salt Bootstrap here as it would take up too much
space. However, it should be noted that, by default, Salt Bootstrap will only install
the Salt minion. We want both the Salt minion and the Salt master, which can be
accomplished by passing in the -M flag. We also want to pass in the -P flag to allow
bootstrap to install Tornado using pip:

sudo sh install_salt.sh -M -P

http://docs.saltstack.com
https://github.com/saltstack/salt-bootstrap
https://github.com/saltstack/salt-bootstrap

Diving In – Our First Salt Commands

[8]

The preceding command will result in a fully functional installation of Salt on your
machine! The supported operating system list is extensive, as shown in the salt-
bootstrap documentation at https://github.com/saltstack/salt-bootstrap.

The version of Salt used for the examples in this book is the 2015.8 release.
Here is the full version information:
sudo salt --versions-report
Salt Version:
 Salt: 2015.8.5

Dependency Versions:
 Jinja2: 2.7.2
 M2Crypto: Not Installed
 Mako: 0.9.1
 PyYAML: 3.10
 PyZMQ: 14.0.1
 Python: 2.7.6 (default, Mar 22 2014, 22:59:56)
 RAET: Not Installed
 Tornado: 4.2.1
 ZMQ: 4.0.4
 cffi: Not Installed
 cherrypy: Not Installed
 dateutil: 1.5
 gitdb: 0.5.4
 gitpython: 0.3.2 RC1
 ioflo: Not Installed
 libgit2: Not Installed
 libnacl: Not Installed
 msgpack-pure: Not Installed
 msgpack-python: 0.3.0
 mysql-python: 1.2.3
 pycparser: Not Installed
 pycrypto: 2.6.1
 pygit2: Not Installed
 python-gnupg: Not Installed
 smmap: 0.8.2
 timelib: Not Installed

System Versions:
 dist: Ubuntu 14.04 trusty
 machine: x86_64
 release: 3.13.0-46-generic
 system: Ubuntu 14.04 trusty

It's probable that the version of Salt you installed is a newer release and
might have slightly different output. However, the examples should still
all work in the latest version of Salt.

https://github.com/saltstack/salt-bootstrap

Chapter 1

[9]

Configuring Salt
Now that we have the master and the minion installed on our machine, we must do
a couple of pieces of configuration in order to allow them to talk to each other. From
here on out, we're back to using a single Ubuntu 14.04 machine with both master and
minion installed on the machine.

Firewall configuration
Since minions connect to masters, the only firewall configuration that must be done
is on the master. By default, ports 4505 and 4506 must be able to accept incoming
connections on the master. The default install of Ubuntu 14.04, used for these
examples, actually requires no out-of-the-box firewall configuration to be able to
run Salt; the ports required are already open. However, many distributions of Linux
come with much more restrictive default firewall settings. The most common firewall
software in use on Linux systems is iptables.

Note that you might also have to change firewall settings on your
network hardware if there is network filtering in place outside the
software on the machine on which you're working.

Firewall configuration is a topic that deserves its own book. However, our needs
for the configuration of Salt are fairly simple. First, you must find the set of rules
currently in effect for your system. This varies from system to system; for example,
the file is located in /etc/sysconfig/iptables on RedHat distributions, while it is
located at /etc/iptables/iptables.rules in Arch Linux.

Once you find that file, add the following lines to that file, but be sure to do it above
the line that says DROP:

-A INPUT -m state --state new -m tcp -p tcp --dport 4505 -j ACCEPT

-A INPUT -m state --state new -m tcp -p tcp --dport 4506 -j ACCEPT

For more information about configuring on your operating system of choice so
that your Salt minion can connect successfully to your Salt master, see the Salt
documentation at http://docs.saltstack.com/en/latest/topics/tutorials/
firewall.html.

http://docs.saltstack.com/en/latest/topics/tutorials/firewall.html
http://docs.saltstack.com/en/latest/topics/tutorials/firewall.html

Diving In – Our First Salt Commands

[10]

Salt minion configuration
Out of the box, the Salt minion is configured to connect to a master at the location
salt. The reason for this default is that, if DNS is configured correctly such that salt
resolves to the master's IP address, no further configuration is needed. The minion
will connect successfully to the master.

However, in our example, we do not have any DNS configuration in place, so we
must configure it ourselves.

The minion and master configuration files are located in the /etc/salt/ directory.

The /etc/salt/ directory should be created as part of the installation
of Salt, assuming that you followed the preceding directions. If it does
not exist for some reason, please create the directory and create two
files, minion and master, within the directory.

Open the /etc/salt/minion file with your text editor of choice (remember to use
the sudo command!). We will be making a couple of changes to this file.

First, find the commented-out line for the configuration option master. It should
look like this:

#master: salt

Uncomment that line and change salt to localhost (as we have this minion
connected to the local master). It should look like this:

master: localhost

If you cannot find the appropriate line in the file, just add the line shown previously
to the top of the file.

You should also manually configure the minion ID so that you can more easily
follow along with the examples in this text. Find the ID line:

#id:

Uncomment it and set it to myminion:

id: myminion

Chapter 1

[11]

Again, if you cannot find the appropriate line in the file, just add the line shown
previously to the top of the file.

Save and close the file.

Without a manually specified minion ID, the minion will try to
intelligently guess what its minion ID should be at startup. For
most systems, this will mean that the minion ID will be set to the
Fully Qualified Domain Name (FQDN) for the system.

Starting the Salt master and Salt minion
Now we need to start (or restart) our Salt master and Salt minion. Assuming that
you're following along on Ubuntu (which I recommend), you can use the
following commands:

sudo service salt-minion restart

sudo service salt-master restart

Packages in other supported distributions ship with init scripts for Salt. Use
whichever service system is available to you to start or restart the Salt minion
and Salt master.

Accepting the minion key on the master
There is one last step remaining before we can run our first Salt commands. We must
tell the master that it can trust the minion. To help us with this, Salt comes with the
salt-key command to help us manage minion keys:

sudo salt-key

Accepted Keys:

Denied Keys:

Unaccepted Keys:

myminion

Rejected Keys:

Diving In – Our First Salt Commands

[12]

Note that our minion, myminion, is listed in the Unaccepted Keys
section. This means that the minion has contacted the master and the
master has cached that minion's public key, and is waiting for further
instructions as to whether to accept the minion or not.
If your minion is not showing up in the output of salt-key, it's
possible that the minion cannot reach the master on ports 4505
and 4506. Please refer to the Firewall configuration section described
previously for more information.
Troubleshooting information can also be found in the Salt
documentation at http://docs.saltstack.com/en/latest/
topics/troubleshooting/.

We can inspect the key's fingerprint to ensure that it matches our minion's key,
as follows:

sudo salt-key -f myminion

Unaccepted Keys:

myminion: a8:1f:b0:c2:ab:9d:27:13:60:c9:81:b1:11:a3:68:e1

We can use the salt-call command to run a command on the minion to obtain the
minion's key, as follows:

sudo salt-call --local key.finger

local: a8:1f:b0:c2:ab:9d:27:13:60:c9:81:b1:11:a3:68:e1

Since the fingerprints match, we can accept the key on the master, as follows:

sudo salt-key -a myminion

The following keys are going to be accepted:

Unaccepted Keys:

myminion

Proceed? [n/Y] Y

Key for minion myminion accepted.

We can check that the minion key was accepted, as follows:

sudo salt-key

Accepted Keys:

myminion

Denied Keys:

Unaccepted Keys:

Rejected Keys:

Success! We are ready to run our first Salt command!

http://docs.saltstack.com/en/latest/topics/troubleshooting/
http://docs.saltstack.com/en/latest/topics/troubleshooting/

Chapter 1

[13]

A game of ping pong
Here's our first command:

sudo salt '*' test.ping

myminion:

 True

Was that a bit underwhelming?

Don't worry. We're going to get to the more impressive stuff soon enough.
The command we just ran was a remote execution command. Basically, we sent
a message to all (one) of our minions and told them to run a function from one of
the execution modules that is built into Salt. In this case, we just told our minion to
return True. It's a good way to check which of our minions are alive. We will explore
the various parts of this command in more detail in the next chapter.

The test module actually has a few other useful functions. To find out about them,
we're actually going to use another module, sys, as follows:

sudo salt 'myminion' sys.list_functions test

myminion:

 - test.arg

 - test.arg_repr

 - test.arg_type

 - test.collatz

 - test.conf_test

 - test.cross_test

 - test.echo

 - test.exception

 - test.fib

 - test.get_opts

 - test.kwarg

 - test.not_loaded

 - test.opts_pkg

 - test.outputter

 - test.ping

 - test.provider

 - test.providers

 - test.rand_sleep

Diving In – Our First Salt Commands

[14]

 - test.rand_str

 - test.retcode

 - test.sleep

 - test.stack

 - test.tty

 - test.version

 - test.versions_information

 - test.versions_report

Let's try one of the other functions on the list, maybe test.fib:

sudo salt '*' test.fib

myminion:

 Passed invalid arguments to test.fib: fib() takes exactly 1 argument
(0 given)

Well, that didn't work. To find out more information about a function, including
examples of how to use it, we can use the sys.doc function, as follows:

sudo salt '*' sys.doc test.fib

test.fib:

 Return a Fibonacci sequence up to the passed number, and the

 timeit took to compute in seconds. Used for performance tests

 CLI Example:

 salt '*' test.fib 3

In recent versions of salt, the docs for a function are returned along with
the error by default. However, sys.doc is still useful for discovering
docs even without errors, which is why this example is still relevant.

Aha! We need to give it a number to which it should calculate the fibonacci sequence,
as follows:

sudo salt '*' test.fib 30

myminion:

 |_

 - 0

Chapter 1

[15]

 - 1

 - 1

 - 2

 - 3

 - 5

 - 8

 - 13

 - 21

 - 1.09672546387e-05

As it turns out, the fibonacci sequence is not very hard for computers to
calculate quickly.

Note that you can actually use sys.doc to retrieve the documentation
for a whole module's worth of functions at a time, as follows:
sudo salt '*' sys.doc test

I didn't include the output as it is lengthy.

The sys module is going to be one of the most useful modules in your quest to learn
Salt. Keep it handy and turn to it any time you want to learn more about something
you're working with. Remember that the sys module can target itself. The following
code shows you how to use the sys module:

sudo salt '*' sys.list_functions sys

myminion:

 - sys.argspec

 - sys.doc

 - sys.list_functions

 - sys.list_modules

 - sys.list_renderers

 - sys.list_returner_functions

 - sys.list_returners

 - sys.list_runner_functions

 - sys.list_runners

 - sys.list_state_functions

 - sys.list_state_modules

 - sys.reload_modules

Diving In – Our First Salt Commands

[16]

 - sys.renderer_doc

 - sys.returner_argspec

 - sys.returner_doc

 - sys.runner_argspec

 - sys.runner_doc

 - sys.state_argspec

 - sys.state_doc

We are going to discuss remote execution and the execution modules in much
greater detail in the next chapter.

Masterless Salt
In this chapter, we've taken the time to set up Salt in a master-minion relationship.
This will allow us to take advantage of all the power of Salt and scale to multiple
minions easily later on. However, Salt is also designed so that a minion can run
without a master.

We'll run through a few examples of how to run commands on a minion. This will
also be useful even when we do have a master because if we're logged into a minion
for some reason and want to run a command while we're there, we can do so using
these same concepts.

To start, we'll leave our master running. The command used to run commands on
the minion is salt-call, and it can take any of the same execution module functions
that we used with the salt command, as follows:

sudo salt-call test.ping

local:

 True

Note that it doesn't display our minion's ID because we're just running it locally:

sudo salt-call test.fib 10

local:

 |_

 - 0

 - 1

 - 1

 - 2

 - 3

Chapter 1

[17]

 - 5

 - 8

 - 5.00679016113e-06

sudo salt-call sys.doc test.ping

local:

 test.ping:

 Used to make sure the minion is up and responding. Not

 an ICMP ping.

 Returns ``True``.

 CLI Example:

 salt '*' test.ping

Now, let's stop our master and try again:

sudo service salt-master stop

sudo salt-call test.ping

Failed sign in

The example shown previously will take a fairly long time to terminate. Basically,
salt-call is trying to establish a connection with the master just in case it needs
to copy files from the master or other similar operations.

In order for salt-call to operate properly without a master, we need to tell it that
there's no master. We do this with the --local flag, as follows:

sudo salt-call --local test.ping

local:

 True

Success! You can now operate a Salt minion without a master!

Start your master again before moving on to the next chapter of this book:
sudo service salt-master start

Diving In – Our First Salt Commands

[18]

Summary
We covered a lot of ground in this chapter. We installed the Salt minion and
Salt master on our machines and configured them to talk to each other, including
accepting the minion's key on the master. We also ran our first Salt commands,
both from the master and from the minion without involving the master.

However, we've only just begun! In the next chapter, we're going to go much more in
depth into the topic of remote execution and show how powerful this tool is.

[19]

Controlling Your Minions with
Remote Execution

In the previous chapter, we installed our Salt minion and Salt master and learned
how to send our first commands. We're ready to control all the systems in our
infrastructure from a central server, our Salt master.

In this chapter, we are going to expand upon what we discussed there. You will
learn the following:

•	 How a remote execution command is structured
•	 How to target minions in various ways
•	 Grains and how they are useful for remote execution
•	 The basic relationship between minion and master
•	 Practical examples of how you can use remote execution to make managing

your servers easier

Let's get started!

The structure of a remote execution
command
If you remember, our basic remote execution command looks like this:

sudo salt '*' test.ping

myminion:

 True

Controlling Your Minions with Remote Execution

[20]

The basic Salt remote execution command is made up of five distinct pieces.
We can easily see them if we look at the usage text for the salt command,
which is as follows:

sudo salt --help

Usage: salt [options] '<target>' <function> [arguments]

Let's inspect a command that uses all of these pieces:

sudo salt --verbose '*' test.sleep 2

Executing job with jid 20160218032023792688

myminion:

 True

Here are the pieces of a Salt command, including the relevant pieces of the last
command that we ran:

•	 The Salt command: salt
•	 Command-line options: --verbose
•	 Targeting string: '*'
•	 The Salt module function: test.sleep
•	 Arguments to the remote execution function: 2

Let's briefly explore the purpose that each of these pieces serves.

Command-line options
If you've spent any real amount of time on the command line in Linux, you're
probably very familiar with command-line options. They allow us to change the
behavior of a program in various ways.

In Salt, there are a few main categories of command-line options.

Targeting options are used to target minions. We'll learn more about targeting
minions later in the chapter.

Output options are also very useful. The information that minions return after a
command is formed as basic data structures. This means that we can display it in
different formats.

Chapter 2

[21]

By default, most output is displayed via the nested outputter, as follows:

sudo salt '*' cmd.run_all 'echo HELLO'

myminion:

 pid:

 13999

 retcode:

 0

 stderr:

 stdout:

 HELLO

sudo salt --out=nested '*' cmd.run_all 'echo HELLO'

myminion:

 pid:

 14020

 retcode:

 0

 stderr:

 stdout:

 HELLO

You might note that we're using a new execution module in the preceding
example. The cmd execution module is designed to provide ways to execute any
commands or programs on the minions. You will see that cmd.run_all returns
all the pieces of the return of that command as a dictionary, including pid of the
command, the return code, the contents of stdout, and the contents of stderr. This
particular command is a great example of how different types of data are displayed
in the various outputters.

We can see the raw data with the raw outputter, as follows:

sudo salt --out=raw '*' cmd.run_all 'echo HELLO'

{'myminion': {'pid': 14468, 'retcode': 0, 'stderr': '', 'stdout':
'HELLO'}}

Controlling Your Minions with Remote Execution

[22]

For prettier output that still shows the data structures clearly, use the json outputter,
as shown in the following code:

sudo salt --out=json '*' cmd.run_all 'echo HELLO'

{

 "myminion": {

 "pid": 14506,

 "retcode": 0,

 "stderr": "",

 "stdout": "HELLO"

 }

}

You can also output it as YAML or just silence the output altogether using yaml
or quiet, as we do in the following code:

sudo salt --out=yaml '*' cmd.run_all 'echo HELLO'

myminion:

 pid: 14585

 retcode: 0

 stderr: ''

 stdout: HELLO

sudo salt --out=quiet '*' cmd.run_all 'echo HELLO'

There are also options to disable or force colored output, or output the results of a
Salt command to a file.

Miscellaneous options, such as --timeout, change the behavior of the Salt command
in various ways. Here are a few of those options:

•	 --versions-report: This shows Salt's version and the versions of its
dependencies (essential for bug reports).

•	 -t TIMEOUT or --timeout=TIMEOUT: This changes the initial timeout of the
running command. This timeout is the amount of time the master will wait
before checking to see whether any minions are still running the command.
It is not a hard timeout for the job.

•	 --async: This runs a Salt command without waiting for the minions to
respond with the results of the run. The minion will still run the job, but the
results cannot be seen on the command line and must be retrieved from the
job cache later using the provided job ID (jid).

Chapter 2

[23]

•	 -v or --verbose: This turns on command verbosity—that is, it gives more
information about what's happening with the command.

•	 --show-timeout: This shows which minions time out on a given command.
This output is also shown with the --verbose command.

Remember that you can always see the available command-line
options by passing the --help option to a Salt command.

Targeting strings
In our examples until now, we've only been running a single minion. Salt actually
does this really well, and some people even use Salt for a single minion to abstract
away system administration tasks into easy-to-use modules.

However, it is much more common for Salt to be used to control many minions.
Tens, hundreds, or even thousands of minions can be controlled by a single
master. Instead of spending days logging in to each machine and running the
same command, or even minutes or hours using an SSH loop, we can run the
same command on thousands of machines in seconds.

However, we don't always want to run a command on all of our machines.
Thus, we can target a subset of our machines using Salt's targeting system.

Glob matching
For every command that we've run until now, we've targeted '*':

sudo salt '*' test.ping

myminion:

 True

This is using Salt's glob targeting. You're probably very familiar with glob. We use it
all the time in fileserver operations, as shown in the following code:

ls

1.txt 2.txt 3.txt 4.txt 5.txt

rm *.txt

ls

Controlling Your Minions with Remote Execution

[24]

Note that, in the preceding example, we use a * to mean
anything. So, we told the rm command that it should remove all
files that have anything followed by .txt.

Globbing in Salt works in exactly the same way except that it matches on minion IDs,
as follows:

sudo salt '*' test.ping

myminion:

 True

sudo salt '' test.ping

No minions matched the target.

sudo salt 'myminion' test.ping

myminion:

 True

sudo salt 'my*' test.ping

myminion:

 True

sudo salt 'my*mini*' test.ping

myminion:

 True

sudo salt 'larry' test.ping

No minions matched the target.

sudo salt '*.txt' test.ping

No minions matched the target.

sudo salt '??minion' test.ping

myminion:

 True

sudo salt '[a-m]yminion' test.ping

myminion:

 True

Thus, by targeting *, we're telling Salt to target all of our minions.

Note that the previous examples demonstrate a variety of
globbing syntaxes, which are well documented on Wikipedia
and similar resources.

Chapter 2

[25]

Globbing isn't the only targeting mechanism in Salt. In fact, there's a whole slew of
available targeting mechanisms. You can see a list in the output of salt --help.
We can use these alternative targeting mechanisms by passing in command-line
flags to Salt. Let's explore some of these alternative targeting mechanisms.

Perl-compatible regular expression matching
If we need to perform more complex matches against the name of minions, we can
use regular expressions. Salt uses the Python re library, which provides functions
in order to parse Perl-compatible regular expressions (PCRE). If you're not familiar
with the regular expressions, you can review the syntax on the Python website at
https://docs.python.org/2/library/re.html.

PCRE matching requires an extra command-line option: -E or --pcre.

We can start off with a fairly simple example. Text in a PCRE string will be matched
as shown in the following code:

sudo salt -E 'myminion' test.ping

myminion:

 True

sudo salt -E 'my' test.ping

myminion:

 True

Note that, as shown in the second example, PCRE matching will
accept a partial match, unlike globbing.

We can also simulate a * in globbing using the .* syntax, which means any character,
repeated zero or more times, as shown in the following code:

sudo salt -E '.*' test.ping

myminion:

 True

sudo salt -E 'my.*n' test.ping

myminion:

 True

sudo salt -E 'foo.*' test.ping

No minions matched the target.

https://docs.python.org/2/library/re.html

Controlling Your Minions with Remote Execution

[26]

If we want to eliminate partial matching, we can add anchors to the front and back
of the targeting string (^ represents the beginning of the line, and $ matches the
beginning of the line), as follows:

sudo salt -E '^my$' test.ping

No minions matched the target.

sudo salt -E '^myminion$' test.ping

myminion:

 True

We can also use the | (pipe) syntax for the or type of matches, where it will try to
match A or B if we wrote A|B. We can use parentheses to group elements. This is
encapsulated in the following code:

sudo salt -E '((my)|(your))minion' test.ping

myminion:

 True

Question marks can be used to mark pieces of the target string as optional, as shown
in the following code:

sudo salt -E 'myminion(s)?' test.ping

myminion:

 True

sudo salt -E '(my)?minion' test.ping

myminion:

 True

We've barely scratched the surface of what is possible with PCRE, but you now
have the tools to do basic matches using PCRE. Remember to check the link
given previously to the Python documentation for more information on
regular expressions.

List matching
Sometimes, we just want to match a list of minions for a given command, without
any fancy matching. This is easily possible using the list matcher. The list matcher is
invoked with the -L or --list command-line option and takes a comma-separated
list of minions, as shown in the following code:

sudo salt -L 'myminion' test.ping

myminion:

 True

Chapter 2

[27]

sudo salt -L 'myminion,yourminion,theirminion' test.ping

myminion:

 True

sudo salt -L 'anotherminion' test.ping

No minions matched the target.

Grain and pillar matching
Salt can also perform minion matches data in grains or pillars. Grains and pillars
are two concepts specific to Salt. Both are key-value data stores where we can store
data about, or for use by, our minions. We won't talk much about pillars until we get
to the later chapter on states. However, know that both grains and pillars contain
arbitrary data stored in the key-value format.

Using grains
Grains represent static data describing a minion. For example, minions have a grain
named os_family, which describes the family of operating systems to which a
minion belongs. For example, Ubuntu machines are a member of the Debian
os_family. Here's how grains can be retrieved on the command line:

sudo salt '*' grains.item os_family

myminion:

 os_family:

 Debian

A Fedora or CentOS minion would be a member of the RedHat os_family.

If you want to know the exact type of operating system running on your minions,
you can try the os grain or the osfinger grain:

sudo salt '*' grains.item os

myminion:

 os:

 Ubuntu

sudo salt '*' grains.item osfinger

myminion:

 osfinger:

 Ubuntu-14.04

Controlling Your Minions with Remote Execution

[28]

Armed with this information, we can target just our Debian machines using the flag
for targeting grains: -G or --grain:

sudo salt --grain 'os_family:Debian' test.ping

myminion:

 True

Or we can target just our RedHat machines, as follows:

sudo salt --grain 'os_family:RedHat' test.ping

No minions matched the target.

Or we could target more specifically—that is, perhaps just our Ubuntu machines:

sudo salt -G 'os:Ubuntu' test.ping

myminion:

 True

sudo salt -G 'os:ubuntu' test.ping

myminion:

 True

sudo salt -G 'os:u*' test.ping

myminion:

 True

Note that, as the second example here shows, grain matching is not
case-sensitive and, as the third example shows, we can actually use
glob matching in conjunction with grain matching.

However, we've only just brushed the surface of the information that is stored in
grains. We can see a minion's whole list of grain data using the grains.items
function, as follows:

sudo salt '*' grains.items

myminion:

 cpu_model:

 Intel(R) Xeon(R) CPU E5-2680 v2 @ 2.80GHz

 cpuarch:

 x86_64

 id:

Chapter 2

[29]

 myminion

 ipv4:

 - 127.0.0.1

 - 69.164.192.51

 ipv6:

 - 2600:3c00::f03c:91ff:fe50:3f5d

 - ::1

 - fe80::f03c:91ff:fe50:3f5d

 kernel:

 Linux

 kernelrelease:

 3.15.4-x86_64-linode45

 localhost:

 localhost

 master:

 localhost

 os:

 Ubuntu

 os_family:

 Debian

 osarch:

 amd64

 oscodename:

 trusty

 osfinger:

 Ubuntu-14.04

 osfullname:

 Ubuntu

 osrelease:

 14.04

 ps:

 ps -efHww

 saltpath:

 /usr/lib/python2.7/dist-packages/salt

 saltversion:

 2014.7.0rc1

Controlling Your Minions with Remote Execution

[30]

 virtual:

 xen

 virtual_subtype:

 Xen PV DomU

 zmqversion:

 4.0.4

Note that, in the preceding output, I removed many values; otherwise, the output
would have taken four to five pages. However, the output shows just how much
information is encapsulated in the grain system. We can target any of these pieces
of data when we do Salt remote execution. We can also use this data to make our
configuration management (states) much more platform-agnostic, as we'll discover
in a later chapter.

However, the fun with grains doesn't stop even here. We can set our own custom
grains, as follows:

sudo salt '*' grains.setval foo bar
salt myminion:

 foo:
 bar
sudo salt '*' grains.item foo
myminion:

 foo:
 bar

We can use JSON syntax for more complex data structures, as shown in the
following code:

sudo salt '*' grains.setval baz '["larry", "moe", "curly"]'
myminion:

 baz:
 - larry
 - moe
 - curly
sudo salt '*' grains.item baz
myminion:

 baz:
 - larry
 - moe
 - curly

Chapter 2

[31]

Custom grains will persist, including across restarts of the master or the minion.
We can get rid of unwanted custom grains in two ways: either by just deleting the
value (grains.delval) or by deleting the key and value together (grains.delval
with destructive=True), as the following code shows:

sudo salt '*' grains.delval baz

myminion:

 None

sudo salt '*' grains.item baz

myminion:

 baz:

 None

sudo salt '*' grains.delval baz destructive=True

myminion:

 None

sudo salt '*' grains.item baz

myminion:

Note that, in the preceding grains.delval example, the return value of None
is not particularly descriptive, but you can rest assure that the value has been
deleted as we tested later with the grains.item call. The grains.item call also
looks a little interesting. If we show the output of that command in JSON using
the flag --out=json, we can see that an empty dictionary was returned for our
minion, which results in the empty output we saw previously with the default
nested outputter.

Custom grain data is stored in a file on the minion. This file is
managed by Salt, so manual changes will be lost.

cat /etc/salt/grains

baz:

- larry

- moe

- curly

foo: bar

Controlling Your Minions with Remote Execution

[32]

Using pillars
Pillar data is similar to grains, except that it can be defined more dynamically
and is a secure store for data. We will talk more about the implications of this in
Chapter 5, Expanding Our States with Jinja2 and Pillar. Just note that, since it is also a
key-value store, you can match it just as with grains except that you use the -I or
--pillar flag.

Compound matching
The last form of matching we will discuss in this book is perhaps the most powerful
matching, that is, compound matching.

With compound matching, we are able to specify much more granular and complex
matches of our minions, combining the targeting methods discussed previously as
well as a few others that we don't cover in this book.

A compound match can look like this:

sudo salt -C '*minion and G@os:Ubuntu and not L@yourminion,theirminion'
test.ping

myminion:

 True

Let's look at just the targeting string on its own, as follows:

'*minion and G@os:Ubuntu and not L@yourminion,theirminion'

Basically, the compound matcher combines a series of match strings using the
Boolean operators and, or, and not between match strings. It also uses a letter and
the @ symbol to specify the type of match for each section.

By default, match strings are matched using the default glob matching. Thus, the
*minion part of the match specifies all minions that end with minion. As for the
rest of the match types, here is a table, directly from the official Salt documentation
(http://docs.saltstack.com/en/latest/topics/targeting/compound.html),
that enumerates the possible match types and their associated letter:

Letter Match type Example
G Grains glob G@os:Ubuntu

E PCRE minion ID E@web\d+\.(dev|qa|prod)\.loc

P Grains PCRE P@os:(RedHat|Fedora|CentOS)

L The list of minions L@minion1.example.com, minion3.
domain.com

http://docs.saltstack.com/en/latest/topics/targeting/compound.html

Chapter 2

[33]

Letter Match type Example
I Pillar glob I@pdata:foobar

S Subnet/IP address S@192.168.1.0/24 or S@192.168.1.100

R Range cluster R@%foo.bar

Thus, the match that we used here can be summed up like this:

•	 Start with the minions whose IDs end in "minion" (those whose IDs match
the glob pattern *minion)

•	 From the remaining minions, select those that are running Ubuntu (those that
have the grain os:Ubuntu)

•	 From the remaining minions, select those that are not in the following list
of minions:

°° yourminion

°° theirminion

Let's take another example. Say we wanted to target all of our minions that are not
running RedHat. We could do something like this:

sudo salt -C '* and not G@os_family:RedHat' test.ping

myminion:

 True

Again, we can follow this match through logically:

1.	 Start with all minions (those whose IDs match the glob pattern *)
2.	 From the remaining minions, select those that are not running a RedHat

distribution of Linux (those that do not have the grain os_family:RedHat)

Finally, here's an example using the or operator:

sudo salt -C 'G@os:Ubuntu or G@os:Fedora' test.ping

myminion:

 True

One more note on the compound matcher—you cannot use a leading not operator,
as shown in the following example:

sudo salt -C 'not G@os_family:redhat' test.ping

No minions matched the target.

Controlling Your Minions with Remote Execution

[34]

Instead, you must start with a normal match (usually *) and then combine that with
the not operator using and:

sudo salt -C '* and not G@os_family:redhat' test.ping

myminion:

 True

The examples of matching here are a bit contrived since we
only have a single minion. However, hopefully, you have
grasped the power of these various targeting methods when
you have tens, hundreds, or even thousands of servers.

Remote execution modules and functions
The final piece of our remote execution command is the actual function that we
want to run and arguments to this function (if there are any). These functions are
separated into logical groupings named execution modules. For example, test is
an execution module, inside which we find the function ping. All remote execution
commands come in the format <module>.<function>.

We can obtain a list of all available execution modules using the sys module we
used in Chapter 1, Diving In – Our First Salt Commands. Note that Salt ships with all
available modules, so there is no need to install additional modules (unless you write
your own, as we will see in Chapter 3, Execution Modules – Write Your Own Solution).
Here's how we use the sys module:

sudo salt '*' sys.list_modules

myminion:

 - aliases

 - alternatives

 - archive

 - at

 - blockdev

 - buildout

 - cloud

...

 - sys

 - sysctl

 - system

 - test

Chapter 2

[35]

 - timezone

 - tls

 - user

 - virtualenv

I have abbreviated my output—yours should be longer.

We can also find a list of all modules and their complete documentation in the
SaltStack online documentation, in the list of all modules at http://docs.
saltstack.com/en/latest/salt-modindex.html. Here's a screenshot
of that page:

Make sure that you click on the m link at the top of the page or scroll down to the
salt.modules section, as shown in the preceding screenshot. Note that there's a
permanent link at the top of all Salt documentation pages that will bring you to this
module index.

You'll note that there are execution modules that perform many varieties of tasks.
There are routines to manage services, databases, packages, and users—if a task is
common in system administration, it probably has an execution module available.

Let's learn about some of the common modules and run some examples.

http://docs.saltstack.com/en/latest/salt-modindex.html
http://docs.saltstack.com/en/latest/salt-modindex.html

Controlling Your Minions with Remote Execution

[36]

Adding users
First up is user management—a task every system administrator has to deal with at
some point. For this example, we will use the user.add function, as follows:

sudo salt '*' sys.doc user.add

user.add:

 Add a user to the minion

 CLI Example:

 salt '*' user.add name <uid> <gid> <groups> <home> <shell>

Note that this module has one argument that is required: name. We must pass in the
name of the user we want to add. In addition, we can pass in other details, such as
uid, groups, or the home directory. For now, let's just add a user and let Salt use the
defaults for the other settings, as follows:

sudo salt '*' user.add larry

myminion:

 True

Now we can ask the minion about our new user using the user.info function,
as follows:

sudo salt '*' user.info larry

myminion:

 fullname:

 gid:

 1000

 groups:

 - larry

 home:

 /home/larry

 homephone:

 name:

 larry

Chapter 2

[37]

 passwd:

 x

 roomnumber:

 shell:

 uid:

 1000

 workphone:

Success! We have a new user named larry!

Installing packages
Package installation and management are another important aspect of system
administration. For this purpose, Salt provides the pkg module. We can use
pkg.install to install packages, as follows:

sudo salt '*' sys.doc pkg.install

pkg.install:

 Install the passed package, add refresh=True to update the dpkg
 database.

...

 CLI Example:

 salt '*' pkg.install <package name>

Again, I abbreviated the output as the documentation for this function is
quite lengthy.

Let's install the package for the Apache web server. The package name we will use
is apache2 (note that, if you're testing on a RedHat machine, you need to use the
package name httpd instead), as follows:

sudo salt '*' pkg.install apache2

myminion:

 apache2:

 new:

Controlling Your Minions with Remote Execution

[38]

 2.4.7-1ubuntu4.1

 old:

 apache2-api-20120211:

 new:

 1

 old:

 apache2-bin:

 new:

 2.4.7-1ubuntu4.1

 old:

 apache2-data:

 new:

 2.4.7-1ubuntu4.1

 old:

Note that Salt shows us all of the package changes made, including dependencies.

We can also ask the minion about installed packages. We can get a list of all installed
packages with pkg.list_pkgs, and we can ask about a specific package with pkg.
version. The following commands show us how this is done:

sudo salt '*' pkg.list_pkgs

myminion:

 adduser:

 3.113+nmu3ubuntu3

 apache2:

 2.4.7-1ubuntu4.1

 apache2-api-20120211:

 1

 apache2-bin:

 2.4.7-1ubuntu4.1

Chapter 2

[39]

 apache2-data:

 2.4.7-1ubuntu4.1

 apt:

 1.0.1ubuntu2.1

...

sudo salt '*' pkg.version nano

myminion:

 2.2.6-1ubuntu1

We can also remove packages with pkg.remove:

sudo salt '*' pkg.install htop

myminion:

 htop:

 new:

 1.0.2-3

 old:

sudo salt '*' pkg.remove htop

myminion:

 htop:

 new:

 old:

 1.0.2-3

sudo salt '*' pkg.version htop

myminion:

Note that the lack of output is because Salt actually returned an empty dictionary,
which results in no output from the default nested outputter. If you want to know
more explicitly the structure of the output from a Salt command, use the JSON
outputter with the --out=json command-line option.

Controlling Your Minions with Remote Execution

[40]

Salt adds an abstraction layer on top of certain module types. For
example, Ubuntu machines running the pkg functions need to use apt,
while RedHat machines need to use yum to install packages.
This is accomplished by setting up multiple execution modules to resolve
to the same name: pkg. In the source code, examples of these modules
are aptpkg.py, yumpkg.py, and pacman.py. We will talk more about
this abstraction layer in the next chapter—for now, just know that your
minion will use the correct pkg module automatically.
A similar abstraction layer is used for the user module, the service
module, and the group module.

Managing services
Salt also allows us to easily manage services on our minions. We use the service
module, with functions such as service.start, service.status, and service.
stop, to name a few.

Here, we will use the apache2 service to demonstrate. If you followed the preceding
pkg example, you should already have apache2 installed. (A note for RedHat users:
you should use httpd instead of apache2). Note that a result of True from the
service.status remote execution module function means the service is running,
while a result of False means the service is stopped. When starting or stopping a
service, a result of True means that the operation was successful:

sudo salt '*' service.status apache2

myminion:

 True

sudo salt '*' service.stop apache2

myminion:

 True

sudo salt '*' service.status apache2

myminion:

 False

sudo salt '*' service.start apache2

myminion:

 True

Chapter 2

[41]

Monitoring minion states
In order to retrieve the status of our minions, we will use functions provided by
the status module.

Let's start by checking on the disk usage of our minions to make sure that we
have plenty of available disk space. We will use the function status.diskusage,
as follows:

sudo salt '*' status.diskusage

myminion:

 /:

 available:

 23927775232

 total:

 25034108928

 /dev:

 available:

 518504448

 total:

 518508544

We can also check on the CPU usage. If we want many details on our CPU usage,
we can use status.cpustats. However, in this case, we really only want to know
the load average of our CPU; thus, we can use status.loadavg, as shown in the
following example:

sudo salt '*' status.loadavg

myminion:

 1-min:

 0.07

 15-min:

 0.13

 5-min:

 0.09

Controlling Your Minions with Remote Execution

[42]

Memory information is obtained using status.meminfo, as follows:

sudo salt '*' status.meminfo

myminion:

 Active:

 unit:

 kB

 value:

 420796

 Active(anon):

 unit:

 kB

 value:

 269900

Finally, uptime for our server can be obtained using status.uptime, as follows:

sudo salt '*' status.uptime

myminion:

 22:41:58 up 12 days, 3:44, 1 user, load average: 0.13, 0.10,
 0.13

Running arbitrary commands
To finish our discussion of remote execution modules, we will look at the cmd
module. This module is designed to give us direct access to run commands or
scripts on the minion.

The most basic function is cmd.run, which runs a command and returns its output,
as shown in the following code:

sudo salt '*' cmd.run 'echo Hello!'

myminion:

 Hello!

Chapter 2

[43]

We also have commands to just return pieces of a command from the minion, such
as cmd.run_stderr, cmd.run_stdout, and cmd.retcode (which return the STDERR,
STDOUT, and return code for the command, respectively). The following examples
show the difference between these functions:

sudo salt '*' cmd.run_stdout 'echo Hello!'

myminion:

 Hello!

sudo salt '*' cmd.run_stderr 'echo Hello!'

myminion:

sudo salt '*' cmd.retcode 'echo Hello!'

myminion:

 0

If we want all of these pieces, but still split out separately, we can use cmd.run_all,
as shown in the following example:

sudo salt '*' cmd.run_all 'echo Hello!'

myminion:

 pid:

 21243

 retcode:

 0

 stderr:

 stdout:

 Hello!

Also, note that each of these functions has arguments that allow us to run the
command as a particular user, or in a particular directory, or in a particular shell.
In addition, you can use the cmd.script function to run scripts stored in files.

Remember that whenever you see an execution module function in a Salt example or
the documentation, you can see the documentation for the function using sys.doc.

Controlling Your Minions with Remote Execution

[44]

Summary
In this chapter, we covered many aspects of remote execution, including the
structure of a remote execution command in Salt. We also saw how to target
minions based on a variety of data points, and you learned about the purpose of
grains and how to use them in our targeting. Finally, you learned about common
remote execution modules and how to use Salt to accomplish common tasks using
these modules.

In the next chapter, you will learn more about how the code for execution modules is
structured; we will even write our own custom execution module functions!

[45]

Execution Modules – Write
Your Own Solution

In Chapter 2, Controlling Your Minions with Remote Execution, we went over remote
execution commands in detail, learning how to target our commands and get things
done using Salt's remote execution modules.

In this chapter, we will expand on Salt's remote execution system by diving into the
code. You will learn the following things:

•	 What an execution module is made up of (and inspect some of the
execution modules that ship with Salt)

•	 How to write our own execution module functions
•	 The extra tools that are easily available to us in the context of

execution modules
•	 How to sync our execution modules to our minions

Note that in this chapter, we will be inspecting and writing a good deal of Python
code. We will not be reviewing basic Python syntax, so if you're unfamiliar with
Python, I recommend that you run through the tutorial at https://docs.python.
org/2/tutorial/index.html or check out one of the many Python books available
from Packt Publishing.

Exploring the source
By design, Salt makes it very easy to write your own custom execution modules and
functions. It abstracts away much of the nitty-gritty about writing Python for system
administration, yet leaves you with all the power of Python to get things done.

https://docs.python.org/2/tutorial/index.html
https://docs.python.org/2/tutorial/index.html

Execution Modules – Write Your Own Solution

[46]

This means that we can write Salt modules that integrate with our own internal
tools or proprietary software. We can even write quick modules just to reorganize
or reformat data for use in other parts of Salt.

There will be more on that later. For now, let's inspect our first remote execution
function in Salt, which is as follows:

def sleep(length):
 '''
 Instruct the minion to initiate a process that will sleep
 for a given period of time.

 CLI Example:

 .. code-block:: bash

 salt '*' test.sleep 20
 '''
 time.sleep(int(length))
 return True

This is the code for test.sleep, a function that we ran in the previous chapter.
(Remember that execution modules take the form <module>.<function>, so this is
the Python sleep function from the execution test module.) You can find this code
yourself. Either clone Salt Git Repository yourself or navigate to the repository on
GitHub at https://github.com/saltstack/salt, and then navigate to the
salt/modules/test.py file.

This particular function is one of the most simple in Salt's library of execution
modules. Note that the function, named sleep, takes one argument (the length of
the sleep). Below the function declaration is a Python multiline string (delimited by
triple quotes), which is named the docstring. Salt uses these docstrings to compile
documentation for its various pieces. Docstrings should be written in ReStructured
Text (RST). We can see the result of this documentation compilation by going to the
documentation for the test module at http://docs.saltstack.com/en/latest/
ref/modules/all/salt.modules.test.html#salt.modules.test.sleep.

In the last two lines of the preceding code, we see the actual code that makes up the
function. We use the time module from the Python standard library and sleep for
<length> seconds. Then, we return True.

http://docs.saltstack.com/en/latest/ref/modules/all/salt.modules.test.html#salt.modules.test.sleep
http://docs.saltstack.com/en/latest/ref/modules/all/salt.modules.test.html#salt.modules.test.sleep

Chapter 3

[47]

Let's look at another example from the test module, which actually does work,
test.fib:

def fib(num):
 '''
 Return a Fibonacci sequence up to the passed number, and
 the time it took to compute in seconds. Used for
 performance tests

 CLI Example:

 .. code-block:: bash

 salt '*' test.fib 3
 '''
 num = int(num)
 start = time.time()
 fib_a, fib_b = 0, 1
 ret = [0]
 while fib_b < num:
 ret.append(fib_b)
 fib_a, fib_b = fib_b, fib_a + fib_b
 return ret, time.time() - start

Here, we see the same basic structure as in the test.sleep function. In this case, the
function once again takes a single argument and has a docstring. However, now we
see Python code that actually computes the Fibonacci sequence up to num, storing the
results in a list and then returning that list and the elapsed time. A summary of the
output for the preceding code is as follows:

sudo salt '*' test.fib 10 --out=json

{
 "myminion": [
 [
 0,
 1,
 1,
 2,
 3,
 5,
 8
],
 1.6927719116210938e-05
]
}

Execution Modules – Write Your Own Solution

[48]

From these examples, it's easy to see that there's nothing really unique about Salt
execution module functions; they're just Python functions! However, we have
some pretty cool tools to work with, provided for us by Salt.

Cross-calling execution modules
The first tool that Salt provides us with is the ability to cross-call execution module
functions. When Salt loads all of the execution modules, it creates a dictionary
with references to each execution module function. This dictionary is available
as __salt__.

Note that the double-underscore syntax, with two leading and two
trailing underscores, (__salt__), is used in Python to represent a
special variable. All special Salt references that are automatically
made available in Salt code use this syntax.

We can see this dictionary in action in the pkg.refresh_db function, as follows:

def refresh_db():
 '''
 Updates the APT database to latest packages based upon
 repositories

 Returns a dict, with the keys being package databases and
 the values being the result of the update attempt. Values
 can be one of the following:

 - ``True``: Database updated successfully
 - ``False``: Problem updating database
 - ``None``: Database already up-to-date

 CLI Example:

 .. code-block:: bash

 salt '*' pkg.refresh_db
 '''
 ret = {}
 cmd = 'apt-get -q update'

Chapter 3

[49]

 out = __salt__['cmd.run_stdout'](cmd, output_loglevel='trace')
 for line in out.splitlines():
 cols = line.split()
 if not cols:
 continue
 ident = ' '.join(cols[1:])
 if 'Get' in cols[0]:
 # Strip filesize from end of line
 ident = re.sub(r' \[.+B\]$', '', ident)
 ret[ident] = True
 elif cols[0] == 'Ign':
 ret[ident] = False
 elif cols[0] == 'Hit':
 ret[ident] = None
 return ret

On the third line of the body of the function, we can see the reference to __salt__:,
which is provided again here for ease of reference:

 out = __salt__['cmd.run_stdout'](cmd, output_loglevel='trace')

This reference uses an execution module function we are already familiar with.
Remember that cmd.run_stdout runs a shell command on the minion and returns
the contents of STDOUT to us.

At this point, the power of __salt__ might have begun to dawn on you. Because
we have access to all of Salt's other execution modules, we can take advantage of
the convenience that they bring. Rather than having to use the subprocess Python
module to create a separate process to run a shell command, we can just use cmd.
run (or cmd.run_stdout in this case). We can write a function that installs packages
(pkg.install), adds users (user.add), and restarts the system (system.reboot).
As we write our own custom modules and functions, they get added to
our __salt__ dictionary as well—ready for use. The possibilities are endless!

Remember that because we are on a Debian machine, our minion will automatically
use the aptpkg.py module for its pkg functions. To see the preceding code in the
source, navigate to salt/modules/aptpkg.py, as opposed to pkg.py. Let's discuss
why that is and how that works.

Execution Modules – Write Your Own Solution

[50]

Grains and the __virtual__ function
Near the top of our aptpkg.py file, we have some code I would like to draw your
attention to:

Define the module's virtual name
__virtualname__ = 'pkg'

def __virtual__():
 '''
 Confirm this module is on a Debian based system
 '''
 if __grains__.get('os_family', False) != 'Debian':
 return False
 return __virtualname__

As you look through the source for more of the execution modules, you might note
that many execution modules contain code very similar to the previous code.

The __virtual__ function is a function Salt looks for when it is loading execution
modules. It serves a couple of purposes:

•	 It helps Salt decide whether to load the module
•	 It can rename the module if needed

In the case of aptpkg.py, it serves both these purposes. First, it uses __grains__
(another dictionary provided by Salt, which gives access to your minion's grains
values) to decide whether to load this module on this minion. Here's the code for
your perusal:

 if __grains__.get('os_family', False) != 'Debian':
 return False

If the __virtual__ function returns False, Salt will not load any functions from the
module in question. In this case, we return False if the minion is running anything
other than Debian.

Assuming that we pass the grains check, we hit the final line of the __virtual__
function, which is as follows:

 return __virtualname__

Here, we return __virtualname__, which we can see is defined as the
'pkg' string. Any string returned from this function will be used as the
module name inside of Salt.

Chapter 3

[51]

We learned that if we return a string from our __virtual__ function,
then that string will be used as the module name. If we instead return
True from a __virtual__ function, then Salt will load that module
under its filename. We can see an example of this in the mysql module at
salt/modules/mysql.py:, as follows:

Import third party libs
try:
 import MySQLdb
 import MySQLdb.cursors
 import MySQLdb.converters
 from MySQLdb.constants import FIELD_TYPE, FLAG
 HAS_MYSQLDB = True
except ImportError:
 HAS_MYSQLDB = False

...

def __virtual__():
 '''
 Only load this module if the mysql libraries exist
 '''
 if HAS_MYSQLDB:
 return True
 return False

Note that this module only returns True if the required libraries are
installed, and returns False otherwise. If False is returned, the module
will not load at all. This is a common pattern in Salt.

Let's inspect one of the other pkg modules to compare its structure. This example is
from yumpkg.py (salt/modules/yumpkg.py):

Define the module's virtual name
__virtualname__ = 'pkg'

def __virtual__():
 '''
 Confine this module to yum based systems
 '''
 if __opts__.get('yum_provider') == 'yumpkg_api':
 return False
 try:
 os_grain = __grains__['os'].lower()
 os_family = __grains__['os_family'].lower()

Execution Modules – Write Your Own Solution

[52]

 except Exception:
 return False

 enabled = ('amazon', 'xcp', 'xenserver')

 if os_family == 'redhat' or os_grain in enabled:
 return __virtualname__
 return False

This example might look more complex, but yumpkg.py itself must serve many
more distributions, so the detection code has more checks as a result. We can
see the same basic patterns in yumpkg.py that we saw in aptpkg.py—we return
__virtualname__ ('pkg') if we decide that we want to load this module on our
minion, and we return False otherwise.

Similar patterns hold true for modules that resolve to the __virtualname__
values service, group, and user. A full list of these modules is available in the
Salt documentation at http://docs.saltstack.com/en/latest/ref/states/
providers.html#provider-pkg.

The__opts__ and __pillar__ functions
You might have noted that there's another double underscore __<variable>__ in
that last example. In addition to __grains__, __salt__, and __virtual__, Salt also
provides us with two more dictionaries: __opts__ and __pillar__.

The first, __opts__, gives us the ability to access the minion configuration options
in our execution modules. The interesting thing is that the minion options are not
limited to those defaults defined inside the minion config file. In fact, we can store
arbitrary keys and values inside the minion config file.

We still have not explored pillar data in depth. Remember that pillar is a secure
storage for arbitrary data for minions. We will explore it in greater depth when we
discuss states. However, it's useful to know at this point that we have access to this
arbitrary data in our execution modules via the __pillar__ dictionary.

The MySQL module actually takes advantage of both these dictionaries. It requires
you to set a few variables with the connection setting for the MySQL database.
Here is an excerpt from salt/modules/mysql.py:

prefix = 'connection_'
if name.startswith(prefix):
 try:
 name = name[len(prefix):]
 except IndexError:

http://docs.saltstack.com/en/latest/ref/states/providers.html#provider-pkg
http://docs.saltstack.com/en/latest/ref/states/providers.html#provider-pkg

Chapter 3

[53]

 return
val = __salt__['config.option']('mysql.{0}'.format(name), None)
if val is not None:
 connargs[key] = val

A large amount of context was left out of this snippet for brevity as we're really
only interested in a small piece of the code. Here, the MySQL module is working to
compile a series of arguments required to connect to a MySQL database. It will be
looking for values inside the minion config and master config files, or pillar data.
An example of the data for which it is looking is a key named mysql.connection_
host, which will contain the host for the MySQL connection.

This is the important line:

val = __salt__['config.option']('mysql.{0}'.format(name), None)

Here, the MySQL module calls out to another execution module to do the search for
it. Let's look at the config.option module it calls from salt/modules/config.py:

def option(value,
 default='',
 omit_opts=False,
 omit_master=False,
 omit_pillar=False):
 '''
 Pass in a generic option and receive the value that will be
 assigned

 CLI Example:

 .. code-block:: bash

 salt '*' config.option redis.host
 '''
 if not omit_opts:
 if value in __opts__:
 return __opts__[value]
 if not omit_master:
 if value in __pillar__.get('master', {}):
 salt.utils.warn_until(
 'Lithium',
 'pillar_opts will default to False in the '
 'Lithium release'
)
 return __pillar__['master'][value]
 if not omit_pillar:

Execution Modules – Write Your Own Solution

[54]

 if value in __pillar__:
 return __pillar__[value]
 if value in DEFAULTS:
 return DEFAULTS[value]
 return default

Here, we can see that the config.option function will first search the minion
options __opts__, then the master opts, which the minion has as part of its pillar
data (__pillar__.get('master')), and finally the general store of pillar data
(__pillar__) for the data in question. It also provides a way to define a default
value just in case the data is undefined in any of these locations.

Now that we're aware of the available tools, let's create our first custom execution
module function!

Reformatting return data
Let's come up with a simple use case. Let's say that we have an internal tool on
our master. It needs a list of the users on each of our minions. We know that we
can get such a list using the user.list_users function, which is shown in the
following code:

sudo salt '*' user.list_users

myminion:

 - backup

 - bin

 - daemon

 - games

 - gnats

 - irc

 - larry

 - libuuid

 - list

 - lp

 - mail

 - man

 - messagebus

 - news

 - nobody

 - ntp

Chapter 3

[55]

 - proxy

 - root

 - sshd

 - sync

 - sys

 - syslog

 - uucp

 - www-data

However, our tool actually needs this list formatted as comma-separated values,
instead of the list format provided by Salt. This is a perfect task for a simple
custom module.

By default, our custom modules live in the /srv/salt/_modules/ folder, which is
not created by default. Let's create it and create a new file inside the folder named
customuser.py, as shown in the following code:

sudo mkdir -p /srv/salt/_modules/

sudo cd /srv/salt/_modules/

sudo vim customuser.py

Here's the function we will put in that file:

def users_as_csv():
 '''
 Retrieve the users from a minion, formatted
 as comma-separated-values (CSV)

 CLI Example:

 .. code-block:: bash
 salt '*' customuser.users_as_csv
 '''
 user_list = __salt__['user.list_users']()
 csv_list = ','.join(user_list)
 return csv_list

We first retrieve the list of users using the same user.list_users function from
before. Then, we join all the strings in that list using a comma as the separator.
Finally, we return our new comma-separated list of users.

Execution Modules – Write Your Own Solution

[56]

Now that we have our function written, it's time to sync it to all of our minions.
We can use the saltutil.sync_all function for this purpose. Here's how we
sync our function to all our minions:

sudo salt '*' saltutil.sync_all

myminion:

 grains:

 modules:

 - modules.customuser

 outputters:

 renderers:

 returners:

 states:

 utils:

Note that there is also a saltutil.sync_modules function, but we'd rather keep
everything in sync, so we'll just use saltutil.sync_all.

Now that our minion has our custom module, let's test it! Here's how we will do it:

sudo salt '*' customuser.users_as_csv

myminion:

backup,bin,daemon,games,gnats,irc,larry,libuuid,list,lp,mail,man,mess
agebus,news,nobody,ntp,proxy,root,sshd,sync,sys,syslog,uucp,www-data

Success! You have now successfully written your first custom execution
module function!

But there's more. That execution module that we just synced is now a first-class
citizen in our deployment. We can query the functions from that module using
the following code:

sudo salt '*' sys.list_functions customuser

myminion:

 - customuser.users_as_csv

We can also query the documentation for our new function in the following manner:

sudo salt '*' sys.doc customuser.users_as_csv

customuser.users_as_csv:

Chapter 3

[57]

 Retrieve the users from a minion, formatted

 as comma-separated-values (CSV)

 CLI Example:

 salt '*' customuser.users_as_csv

Our custom module even shows up in the complete list of modules, as shown in the
following output:

sudo salt '*' sys.list_modules

myminion:

...

 - config

 - cp

 - cron

 - customuser

 - daemontools

 - data

 - debconf

...

Take the time to write documentation for your custom modules. You'll thank
yourself in the future.

An advanced example
Remote execution modules are endlessly flexible. The tools are there, and you can
write whatever you need to extend Salt to handle your infrastructure.

However, we're not going to try to explore every possible need your infrastructure
might have, as that is impossible to do in the space allotted. Every environment is
different, and we have explored the available tools well enough for you to be able to
tackle those hurdles on your own.

Instead, we will explore a more complicated example of a remote execution module
function from beginning to end and walk through the code.

Execution Modules – Write Your Own Solution

[58]

The example that we will use is file.replace. This remote execution function is
designed to replace text in a file based on a pattern. We can set arguments so that if
a match is not found, it will prepend or append the text to the file. Here's a full list of
arguments in the function declaration:

def replace(path,
 pattern,
 repl,
 count=0,
 flags=0,
 bufsize=1,
 append_if_not_found=False,
 prepend_if_not_found=False,
 not_found_content=None,
 backup='.bak',
 dry_run=False,
 search_only=False,
 show_changes=True,
):

We'll skip the docstring—if you're curious about the purpose of any of these
arguments, remember that you can access the documentation for this function
using the following command:

sudo salt '*' sys.doc file.replace

As the first thing in the function, we do some basic checks to make sure that we
even need to do work. We start with a check as to whether the file in question
exists and make sure that it's a text file (as opposed to binary). We also do some
argument checking. It doesn't make sense to have search_only set at the same time
as the append or prepend options, and it doesn't make sense to set both of those
arguments at the same time. The following is the code for the purposes outlined in
this paragraph:

if not os.path.exists(path):
 raise SaltInvocationError('File not found: {0}'.format(path))

if not salt.utils.istextfile(path):
 raise SaltInvocationError(
 'Cannot perform string replacements on a binary file: {0}'
 .format(path)
)

Chapter 3

[59]

if search_only and (append_if_not_found or prepend_if_not_found):
 raise SaltInvocationError('Choose between search_only and '
 'append/prepend_if_not_found')

if append_if_not_found and prepend_if_not_found:
 raise SaltInvocationError('Choose between append or '
 'prepend_if_not_found')

Next, we're going to prepare the regular expression by compiling it (an optimization
for later), obtaining the regular expression flags, making sure that the buffer size is
set, and initializing some variables:

flags_num = _get_flags(flags)
cpattern = re.compile(pattern, flags_num)
if bufsize == 'file':
 bufsize = os.path.getsize(path)

Search the file; track if any changes have been made for the
return val
has_changes = False
orig_file = [] # used if show_changes
new_file = [] # used if show_changes
if not salt.utils.is_windows():
 pre_user = get_user(path)
 pre_group = get_group(path)
 pre_mode = __salt__['config.manage_mode'](get_mode(path))

Note that we call out to a salt.utils.is_windows() utility function—the salt.
utils modules are also available to use in our execution module functions as well.
These include basically any utility function that should be generally available in
Salt, but that doesn't make sense for the utility function to be called from the
command line.

Now we move on to the real work:

Avoid TypeErrors by forcing repl to be a string
repl = str(repl)
try:
 fi_file = fileinput.input(path,
 inplace=not dry_run,
 backup=False if dry_run else backup,
 bufsize=bufsize,
 mode='rb')
 found = False
 for line in fi_file:

Execution Modules – Write Your Own Solution

[60]

 if search_only:
 # Just search; bail as early as a match is found
 result = re.search(cpattern, line)

 if result:
 return True
 # `finally` block handles file closure
 else:
 result, nrepl = re.subn(cpattern, repl, line, count)

 # found anything? (even if no change)
 if nrepl > 0:
 found = True

 # Identity check each potential change until one
 # change is made
 if has_changes is False and result is not line:
 has_changes = True

 if show_changes:
 orig_file.append(line)
 new_file.append(result)

 if not dry_run:
 print(result, end='', file=sys.stdout)
finally:
 fi_file.close()

We first open the file to be read and then process it line by line (by default, this
depends on buffer size). If we're only doing a search, we search each line until we
find a match and then return the match. For the more common case of actually
wanting to replace the pattern in the file, we use Python's regular expression library
to do the actual substitution and keep track of the results so that we can show the
diff of the file (if show_changes is True). Finally, after we're done looping over the
file, we close the file.

We're still not quite done. We need to do some post-processing for our append or
prepend arguments, and we need to actually overwrite the file with the changes we
made if we're not doing a dry_run test. This is how we go about the task:

if not found and (append_if_not_found or prepend_if_not_found):
 if None == not_found_content:
 not_found_content = repl

Chapter 3

[61]

 if prepend_if_not_found:
 new_file.insert(not_found_content + '\n')
 else:
 # append_if_not_found
 # Make sure we have a newline at the end of the file
 if 0 != len(new_file):
 if not new_file[-1].endswith('\n'):
 new_file[-1] += '\n'
 new_file.append(not_found_content + '\n')
 has_changes = True
 if not dry_run:
 # backup already done in filter part
 # write new content in the file while avoiding partial
 # reads
 try:
 f = salt.utils.atomicfile.atomic_open(path, 'wb')
 for line in new_file:
 f.write(line)
 finally:
 f.close()

if not dry_run and not salt.utils.is_windows():
 check_perms(path, None, pre_user, pre_group, pre_mode)

if show_changes:
 return ''.join(difflib.unified_diff(orig_file, new_file))

return has_changes

We finish up by returning the diff file if show_changes is True, or just returning
whether changes were made or not if show_changes is False.

Hopefully, this example has given you an idea of how you can use execution
modules in your own infrastructure. Feel free to dive into other execution modules
for more examples—the beauty of open source is that anyone can browse the source
and use it for inspiration!

Execution Modules – Write Your Own Solution

[62]

Summary
We covered a lot of material in this chapter. We looked at a number of examples of
remote execution modules included in Salt and learned about the tools available to
us as we write our own execution module functions. Finally, we created our own
execution module, synced it to our minions, and ran it successfully!

In the next chapter, we're going to get into the configuration management aspect
of Salt: states.

[63]

Defining the State of Your
Infrastructure

In the previous chapter, we finished our deep dive of the remote execution system
inside Salt. Remote execution is the foundation upon which all of the rest of Salt
rests. In this chapter, you will learn about one of the most important systems:
"the state system." You will learn the following:

•	 How states are structured and how to write our first state
•	 About the various pieces of the state declaration
•	 How to expand our state declarations to encompass multiple pieces of a state
•	 About ordering states with requisites

Our first state
Without further ado, let's write our first state. All Salt-specific files that aren't Python
files end in the extension .sls. By default, the states are located in the /srv/salt/
directory. We created this directory in the previous chapter, but if you didn't follow
along there, make this directory now, as follows:

mkdir -p /srv/salt

cd /srv/salt

Inside this directory, let's create a file named apache.sls, as shown in the following
line of code:

vim apache.sls

Defining the State of Your Infrastructure

[64]

Here are the contents of that file:

install_apache:
 pkg.installed:
 - name: apache2

State files are formatted using Yet Another Markup Language (YAML).
The most common syntax errors in state files are forgetting the colons
at the end of the first two lines, so watch out for that. More information
about YAML can be found at http://www.yaml.org/. In addition,
many simple YAML parsers can be found with a simple Google search.
These can be very useful to detect simple syntax errors.

Let's run our state. To apply states to our minions, we actually use the state
execution module. For now, we will use the state.sls function, which allows
us to run a single state file, as encapsulated by the following output:

sudo salt '*' state.sls apache

myminion:

 ID: install_apache

 Function: pkg.installed

 Name: apache2

 Result: True

 Comment: Package apache2 is already installed.

 Started: 20:21:00.498735

 Duration: 750.402 ms

 Changes:

Summary

Succeeded: 1

Failed: 0

Total states run: 1

Note that in Chapter 2, Controlling Your Minions with Remote Execution, we installed
apache2 as part of our exploration of the pkg execution module. Thus, the pkg.
installed state function tells us that the package is already installed and
returns promptly.

http://www.yaml.org/

Chapter 4

[65]

If we remove the apache2 package, we can see the behavior when we're installing a
new package, which is shown in the following command lines (output summary):

sudo salt '*' pkg.remove apache2

myminion:

 apache2:

 new:

 old:

 2.4.7-1ubuntu4.1

sudo salt '*' state.sls apache

myminion:

 ID: install_apache

 Function: pkg.installed

 Name: apache2

 Result: True

 Comment: The following packages were installed/updated: apache2.

 Started: 20:53:30.187526

 Duration: 10185.321 ms

 Changes:

 apache2:

 new:

 2.4.7-1ubuntu4.1

 old:

Summary

Succeeded: 1 (changed=1)

Failed: 0

Total states run: 1

Defining the State of Your Infrastructure

[66]

If we were to run the state one more time, we would see the same results as our
first run.

This highlights a major change between execution modules and state modules.
Execution modules are iterative, whereas state modules are declarative. What do we
mean by this? Execution module functions perform a task. In general, when you call
the same execution module multiple times in succession, it will run the same logic
and commands under the hood each time.

State module functions, on the other hand, are designed to be idempotent. An
idempotent operation is one that only changes the result the first time it is applied.
Subsequent applications do not continue to apply changes. Idempotent state
modules functions are designed to do only as much work as necessary to create a
given state on the target minion.

In the case of our first state, we are running a state module function, pkg.installed.
Note the language change from execution modules. pkg.install tells the minion to
"install this package." On the other hand, pkg.installed tells the minion to "ensure
that this package is installed." Under the hood, pkg.install is just running apt-get
install <package>, whereas pkg.installed actually calls out to the pkg execution
module to find out whether the package is installed and only installs it if there's a
need. It does the minimum amount of work to bring your minion into the correct
state, nothing more.

We can access the documentation for state modules in the same ways as we can for
execution modules.

We list the functions for a given state module with sys.list_state_functions,
as follows:

sudo salt '*' sys.list_state_functions pkg

myminion:

 - pkg.installed

 - pkg.latest

 - pkg.mod_aggregate

 - pkg.mod_init

 - pkg.purged

 - pkg.removed

 - pkg.uptodate

Chapter 4

[67]

We can look up the documentation for a state module function using
sys.state_doc, as follows:

sudo salt '*' sys.state_doc pkg.removed

myminion:

 pkg:

 Installation of packages using OS package managers such as

 yum or apt-get

 ===

 Salt can manage software packages via the pkg state module,
 packages can be set up to be installed, latest, removed and
 purged. Package management declarations are typically rather
 simple:

 vim:

 pkg.installed

 A more involved example involves pulling from a custom
 repository. Note that the pkgrepo has a require_in clause.
 This is necessary and can not be replaced by a require clause
 in the pkg.

 base:

 pkgrepo.managed:

 - humanname: Logstash PPA

 - name: ppa:wolfnet/logstash

 - dist: precise

 - file: /etc/apt/sources.list.d/logstash.list

 - keyid: 28B04E4A

 - keyserver: keyserver.ubuntu.com

 - require_in:

 - pkg: logstash

Defining the State of Your Infrastructure

[68]

 logstash:

 pkg.installed

 pkg.removed:

 Verify that a package is not installed, calling
 ``pkg.remove`` if necessary to remove the package.

 name

 The name of the package to be removed.

 Multiple Package Options:

 pkgs

 A list of packages to remove. Must be passed as a
 python list. The ``name`` parameter will be ignored
 if this option is passed.

 New in version 0.16.0

The pieces of a state declaration
Just as with our remote execution commands, state declarations can be broken up
into multiple pieces. Here is our state from before:

install_apache:
 pkg.installed:
 - name: apache2

Here is information about how the pieces line up and what each piece of the state
declaration is called:

<ID Declaration>:
 <State Module>.<Function>:
 - name: <name>
 - <Function Arg>
 - <Function Arg>
 - <Function Arg>
 - <Requisite Declaration>:
 - <Requisite Reference>

Chapter 4

[69]

The preceding reference and more advanced examples can be found in the Salt
documentation at http://docs.saltstack.com/en/latest/ref/states/
highstate.html#large-example.

We haven't talked about requisites yet, so ignore that section for the moment.

We start with the ID of our state. This is a string that must be unique across all of the
states we are running at a given time. Note that it doesn't have to follow stringent
requirements like a variable in a programming language—it can contain letters,
numbers, spaces, and underscores—but just needs to be a valid Python string.
You should always try to keep it simple and descriptive.

Finally, we have our function arguments. The first argument is always name,
followed by any additional arguments required for the state.

Expanding to encompass multiple pieces
of state
We now have our state declaration, which ensures that the apache2 package
is installed on each of our minions. However, apache2 will not necessarily be
running on our systems.

We know that we can start apache2 using the service.start execution module
function, as follows:

sudo salt '*' service.status apache2

myminion:

 False

sudo salt '*' service.start apache2

myminion:

 True

sudo salt '*' service.status apache2

myminion:

 True

Really, we just want to make sure that apache2 is running. Repeatedly running
service.start does serve this purpose, but it's not very stateful. Instead, let's
use the service.running state module function. Again, note the change in
language—rather than starting the service (service.start), we're going to
just ensure that it's running (service.running).

http://docs.saltstack.com/en/latest/ref/states/highstate.html#large-example
http://docs.saltstack.com/en/latest/ref/states/highstate.html#large-example

Defining the State of Your Infrastructure

[70]

Let's first glance at the documentation for this function:

sudo salt '*' sys.state_doc service.running

myminion:

...

 service.running:

 Verify that the service is running

 name

 The name of the init or rc script used to manage the
 service

 enable

 Set the service to be enabled at boot time, True sets
 the service to be enabled, False sets the named
 service to be disabled. The default is None, which
 does not enable or disable anything.

 sig

 The string to search for when looking for the service
 process with ps

Note that this module has an enable argument, which we're going to use to make
sure that apache2 starts on boot on each of our minions. We're going to add a few
lines to our apache.sls file from before:

install_apache:
 pkg.installed:
 - name: apache2

make sure apache is running:
 service.running:
 - name: apache2
 - enable: True

Note that in this example, I used spaces in my ID declaration. This is perfectly valid
and is left to the preference of the user.

Chapter 4

[71]

Let's apply our state again:

sudo salt '*' state.sls apache

myminion:

 ID: install_apache

 Function: pkg.installed

 Name: apache2

 Result: True

 Comment: Package apache2 is already installed.

 Started: 22:54:44.143934

 Duration: 718.254 ms

 Changes:

 ID: make sure apache is running

 Function: service.running

 Name: apache2

 Result: True

 Comment: Service apache2 is already enabled, and is in the
 desired state

 Started: 22:54:44.862391

 Duration: 90.917 ms

 Changes:

Summary

Succeeded: 2

Failed: 0

Total states run: 2

Great, now we know that whenever we run our apache.sls state file, our minion
will ensure that Apache is installed and running.

Defining the State of Your Infrastructure

[72]

Dependencies using requisites
These states will run in the order they are defined in the file by default. However,
we can also affect the ordering using requisites. Requisites allow us to create
dependencies and interactions between our states.

The require requisite
The most basic requisite is require, which allows you to specify that one state
requires another state to be run successfully first. Make sure that you note both
purposes—the require requisite both ensures correct ordering and ensures that
the requiring states run only if the required state ran successfully.

In this case, we want to make sure that apache is installed before we try to run it.
So, we will add a require requisite declaration under our service.running state,
as shown here:

install_apache:
 pkg.installed:
 - name: apache2

make sure apache is running:
 service.running:
 - name: apache2
 - enable: True
 - require:
 - pkg: install_apache

Note that we must specify both the state module pkg and the state ID install_
apache when we define a require requisite. With this requisite in place, let's reorder
the two state declarations in our apache.sls file and also introduce a typo. Note that
in the following example, I'm trying to install apache, not apache2:

make sure apache is running:
 service.running:
 - name: apache2
 - enable: True
 - require:
 - pkg: install_apache

install_apache:
 pkg.installed:
 - name: apache

Chapter 4

[73]

Now, if we run the aforementioned state, we will see our require statement at work,
as shown in the following output summary:

sudo salt '*' state.sls apache

myminion:

 ID: install_apache

 Function: pkg.installed

 Name: apache

 Result: False

 Comment: The following packages failed to install/update:
 apache.

 Started: 23:32:42.579362

 Duration: 10073.515 ms

 Changes:

 ID: make sure apache is running

 Function: service.running

 Name: apache2

 Result: False

 Comment: One or more requisite failed

 Started:

 Duration:

 Changes:

Summary

Succeeded: 0

Failed: 2

Total states run: 2

Defining the State of Your Infrastructure

[74]

Note that the states were evaluated in the correct order and that the service.
running state didn't run, because the require requisite state failed. If we fix our
typo (change apache to apache2) and run it again, we see that everything will go
green again, and that, once again, our states are evaluated in the correct order:

sudo salt '*' state.sls apache

myminion:

 ID: install_apache

 Function: pkg.installed

 Name: apache2

 Result: True

 Comment: Package apache2 is already installed.

 Started: 23:37:07.648991

 Duration: 649.11 ms

 Changes:

 ID: make sure apache is running

 Function: service.running

 Name: apache2

 Result: True

 Comment: Service apache2 is already enabled, and is in the
 desired state

 Started: 23:37:08.298416

 Duration: 91.69 ms

 Changes:

Summary

Succeeded: 2

Failed: 0

Total states run: 2

Chapter 4

[75]

The watch requisite
Now that we have a running Apache server, let's give Apache something to serve.

For this example, we will enable a simple server status page. However,
apache2 on Ubuntu actually has this page already enabled. Before
following the examples, we recommend that you disable this page with
the following commands:
sudo salt '*' cmd.run 'a2dismod status'

sudo salt '*' service.restart apache2

To keep our example simple, we'll just create a couple of Apache configuration files
that give our server a status page. To do this, we'll explore another state module
that is very commonly used in Salt: the file module. Specifically, we'll use file.
managed, a very flexible function to manage files on our minions. Here's what you
get when you use the file.managed function:

sudo salt '*' sys.state_doc file.managed

myminion:

...

 file.managed:

 Manage a given file, this function allows for a file to
 be downloaded from the salt master and potentially run
 through a templating system.

 name

 The location of the file to manage

 source

 The source file to download to the minion, this
 source file can be hosted on either the salt master
 server, or on an HTTP or FTP server. Both HTTPS and
 HTTP are supported as well as downloading directly
 from Amazon S3 compatible URLs with both
 pre-configured and automatic IAM credentials. (see
 s3.get state documentation) File retrieval from
 Openstack Swift object storage is supported via
 swift://container/object_path URLs, see swift.get
 documentation. For files hosted on the salt file
 server, if the file is located on the master in the

Defining the State of Your Infrastructure

[76]

 directory named spam, and is called eggs, the source
 string is salt://spam/eggs. If source is left blank
 or None (use ~ in YAML), the file will be created as
 an empty file and the content will not be managed

...

 user

 The user to own the file, this defaults to the user
 salt is running as on the minion

 group

 The group ownership set for the file, this defaults
 to the group salt is running as on the minion On
 Windows, this is ignored

 mode

 The permissions to set on this file, aka 644, 0775,

 4664. Not supported on Windows

...

For these states, we will need source files that the master will transfer to the minions
as part of the state execution. By default, the master will serve all files (state files
and other files needed by the minions) out of the /srv/salt/ directory that we've
been using.

Let's create two files. The first is /srv/salt/mod_status.conf, the code for which is
as follows:

<Location /server-status>
 SetHandler server-status
 Order allow,deny
 Allow from all
</Location>

The second is /srv/salt/mod_status.load, the code for which is as follows:

LoadModule status_module /usr/lib/apache2/modules/mod_status.so

Now, we will add two new state declarations to our apache.sls file to serve these
files to our minion:

make sure apache is running:
 service.running:
 - name: apache2
 - enable: True

Chapter 4

[77]

 - require:
 - pkg: install_apache

install_apache:
 pkg.installed:
 - name: apache2

sync mod_status.conf:
 file.managed:
 - name: /etc/apache2/mods-enabled/mod_status.conf
 - source: salt://mod_status.conf
 - user: root
 - group: root
 - mode: 600

sync mod_status.load:
 file.managed:
 - name: /etc/apache2/mods-enabled/mod_status.load
 - source: salt://mod_status.load
 - user: root
 - group: root
 - mode: 600

Here, we've introduced the salt:// protocol in our source arguments. Those paths
refer to files that the minion will request from the master. Again, these files are
stored by default in /srv/salt/.

Let's test our new states! The output summary is as follows:

sudo salt '*' state.sls apache

myminion:

 ID: install_apache

 Function: pkg.installed

 Name: apache2

 Result: True

 Comment: Package apache2 is already installed.

 Started: 01:04:42.653416

 Duration: 662.55 ms

 Changes:

 ID: make sure apache is running

Defining the State of Your Infrastructure

[78]

 Function: service.running

 Name: apache2

 Result: True

 Comment: Service apache2 is already enabled, and is in the
 desired state

 Started: 01:04:43.316306

 Duration: 82.727 ms

 Changes:

 ID: sync mod_status.conf

 Function: file.managed

 Name: /etc/apache2/mods-enabled/mod_status.conf

 Result: True

 Comment: File /etc/apache2/mods-enabled/mod_status.conf updated

 Started: 01:04:43.399299

 Duration: 155.956 ms

 Changes:

 diff:

 New file

 ID: sync mod_status.load

 Function: file.managed

 Name: /etc/apache2/mods-enabled/mod_status.load

 Result: True

 Comment: File /etc/apache2/mods-enabled/mod_status.load updated

 Started: 01:04:43.555400

 Duration: 4.498 ms

 Changes:

 diff:

 New file

Summary

Chapter 4

[79]

Succeeded: 4 (changed=2)

Failed: 0

Total states run: 4

Awesome! Let's see whether we can access our new server-status page:

curl -Ss localhost/server-status?auto

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN">

<html><head>

<title>404 Not Found</title>

</head><body>

<h1>Not Found</h1>

<p>The requested URL /server-status was not found on this server.</p>

<hr>

<address>Apache/2.4.7 (Ubuntu) Server at localhost Port 80</address>

</body></html>

Since our minion and master are the same machine, I used
localhost in the previous command—if you are using different
machines, you will need to retrieve the IP address for your
minion and replace localhost with that IP address.

Uh-oh. Rather than getting the server status from Apache, we received a 404 status
code! We forgot that after installing new configuration files for Apache, we must
restart Apache.

Luckily, there's another requisite that will serve our purposes nicely:
the watch requisite.

The watch requisite behaves in a manner that is very similar to that of the require
requisite, with which we are already familiar. In fact, its base behavior is exactly the
same: the watching state only executes if the watched state executes successfully first.
However, if there are changes in the watched state (that is, if the "changes" piece of
the watched state is nonempty), the watching state can add additional behavior.

In the case of the service.running state, this additional behavior is to restart the
service in question.

Defining the State of Your Infrastructure

[80]

Let's add two watch requisites to our state:

install_apache:
 pkg.installed:
 - name: apache2

make sure apache is running:
 service.running:
 - name: apache2
 - enable: True
 - require:
 - pkg: install_apache
 - watch:
 - file: sync mod_status.conf
 - file: sync mod_status.load

sync mod_status.conf:
 file.managed:
 - name: /etc/apache2/mods-enabled/mod_status.conf
 - source: salt://mod_status.conf
 - user: root
 - group: root
 - mode: 600

sync mod_status.load:
 file.managed:
 - name: /etc/apache2/mods-enabled/mod_status.load
 - source: salt://mod_status.load
 - user: root
 - group: root
 - mode: 600

Now, in order for the additional behavior to be triggered, we need to also change
one or both of the files that are being watched. Let's add a blank space to
mod_status.conf:

<Location /server-status>
 SetHandler server-status
 Order allow,deny
 Allow from all

</Location>

Chapter 4

[81]

Now we need to run our state to see whether we have configured
everything correctly:

sudo salt '*' state.sls apache

myminion:

 ID: install_apache

 Function: pkg.installed

 Name: apache2

 Result: True

 Comment: Package apache2 is already installed.

 Started: 01:17:46.175205

 Duration: 775.938 ms

 Changes:

 ID: sync mod_status.conf

 Function: file.managed

 Name: /etc/apache2/mods-enabled/mod_status.conf

 Result: True

 Comment: File /etc/apache2/mods-enabled/mod_status.conf updated

 Started: 01:17:46.952611

 Duration: 172.196 ms

 Changes:

 diff:

 +++

 @@ -2,4 +2,5 @@

 SetHandler server-status

 Order allow,deny

 Allow from all

 +

 </Location>

Defining the State of Your Infrastructure

[82]

 ID: sync mod_status.load

 Function: file.managed

 Name: /etc/apache2/mods-enabled/mod_status.load

 Result: True

 Comment: File /etc/apache2/mods-enabled/mod_status.load is in the
correct state

 Started: 01:17:47.125025

 Duration: 6.316 ms

 Changes:

 ID: make sure apache is running

 Function: service.running

 Name: apache2

 Result: True

 Comment: Service restarted

 Started: 01:17:47.220450

 Duration: 2338.367 ms

 Changes:

 apache2:

 True

Summary

Succeeded: 4 (changed=2)

Failed: 0

Total states run: 4

Note that as expected, the service is restarted. Let's try querying the server
once again:

curl -Ss localhost/server-status?auto

Total Accesses: 0

Total kBytes: 0

Uptime: 44

ReqPerSec: 0

Chapter 4

[83]

BytesPerSec: 0

BusyWorkers: 1

IdleWorkers: 49

ConnsTotal: 0

ConnsAsyncWriting: 0

ConnsAsyncKeepAlive: 0

ConnsAsyncClosing: 0

Scoreboard:
W___...................
...
............

Success!

The extra behavior that is added when there are changes in the watched state is
defined in a special mod_watch function in the watching state module. Only a few
state modules contain this special function, including the service, docker, mount,
cmd, supervisord, test, and tomcat state modules.

We're not going to explore a real mod_watch function as it's out of the scope of
this book. Please see the service state (salt/states/service.py) for a fairly
straightforward example of how this function works.

Other requisites
The watch and require requisites are the most important and most used requisites
in Salt. Here is a summary of the other requisites available in Salt, with a brief
description of their use; exploring examples of each is out of our scope, but it's
important to recognize that each one is available:

•	 onfail: This requisite is used to run a state only if another state has failed.
It's especially useful for self-healing infrastructures and for rolling back code
deployments after failure.

•	 onchanges: This requisite is used to run a state only if another state created
changes. It differs from the watch requisite in that when there are no
changes, it does not execute at all.

•	 prereq: This requisite is one of the most complex requisites. Let's assume
that a service needs to be shut down (service.dead) before changes are
made to a file, but only if changes will be made to the file. This is a use case
for which prereq is perfectly suited. Basically, prereq allows a state to run
only if another state is going to have changes when it is run in the future. We
"look into the future" using a test run of the state that will possibly make the
changes. See the Salt documentation for more details and examples.

Defining the State of Your Infrastructure

[84]

•	 use: This requisite allows a state to inherit the arguments of another state,
overwriting as necessary.

More information on these requisites can be found in the Salt documentation at
http://docs.saltstack.com/en/latest/ref/states/requisites.html.

The _in requisites
States can also inject dependencies into other states. Each requisite has a version
where _in is added to the end of the requisite (watch_in and require_in, for
example). Requisites of this form force other states to depend on the state that
contains the requisite.

An example is in order. Here is an excerpt from our original state where the
service.running state requires the pkg.installed state to run successfully first:

install_apache:
 pkg.installed:
 - name: apache2

make sure apache is running:
 service.running:
 - name: apache2
 - enable: True
 - require:
 - pkg: install_apache

The following example is functionally equivalent to the preceding example:

install_apache:
 pkg.installed:
 - name: apache2
 - require_in:
 - service: make sure apache is running

make sure apache is running:
 service.running:
 - name: apache2
 - enable: True

The pkg.installed state is telling the service.running state to require the pkg.
installed state. The resulting state execution will be identical in both of the
previously shown examples.

http://docs.saltstack.com/en/latest/ref/states/requisites.html

Chapter 4

[85]

Summary
States are very powerful and one of the most important pieces of Salt. In this chapter,
you have written and executed your first states and learned about the structure of a
state declaration. We then expanded our state declarations to enforce multiple pieces
of state and created dependencies using requisites.

We've only just begun exploring states! In the next chapter, we will further expand
our states using Jinja2 templating and pillar data.

[87]

Expanding Our States with
Jinja2 and Pillar

In the previous chapter, you learned about the state system and wrote your first
state. In this chapter, we will do the following:

•	 Learn the basics of the Jinja2 templating language
•	 Use Jinja2 to make our states platform agnostic
•	 Learn how to define minion-specific secure data in the pillar system
•	 Use Jinja2 to use pillar data in our states

Adding a new minion
The initial examples in this chapter will be all about cross-platform states. To make
the examples clearer, we will add a new minion running CentOS 6.5. See Chapter 1,
Diving In – Our First Salt Commands, if you need a refresher on how to install
salt-minion on a new server. Here's a quick two liner to install a minion
using Salt-Bootstrap:

curl -L https://bootstrap.saltstack.com -o install_salt.sh

sudo sh install_salt.sh

Note that the easiest way to ensure the minion can easily
communicate with the master is to have them both as
cloud VMs rather than local VMs, so that they have
individual, public-facing IP addresses.

Expanding Our States with Jinja2 and Pillar

[88]

After installing the same version running on your master, you should configure your
minion to connect to your master's IP with the name centminion. Your /etc/salt/
minion configuration on your new minion should look something like this:

master: 69.164.192.51
id: centminion

Then, restart your minion, as follows:

sudo service salt-minion restart

Stopping salt-minion daemon: [OK]

Starting salt-minion daemon: [OK]

Now, we can return to our master and accept the new minion's key so that we can
communicate with it:

sudo salt-key

Accepted Keys:

myminion

Unaccepted Keys:

centminion

Rejected Keys:

sudo salt-key -a centminion

The following keys are going to be accepted:

Unaccepted Keys:

centminion

Proceed? [n/Y] y

Key for minion centminion accepted.

We know that we're successful if we can ping the new minion, as follows:

sudo salt '*' test.ping

centminion:

 True

myminion:

 True

We can double-check that our minion is running a RedHat distribution instead of a
Debian distribution by checking the os_family grain, as follows:

sudo salt '*' grains.item os_family

myminion:

Chapter 5

[89]

 os_family:

 Debian

centminion:

 os_family:

 RedHat

Everything seems to be in order! We're ready to discuss Jinja2.

Jinja2
Jinja2 is a templating language for Python. Templating provides a mechanism
by which you can create content for files using code blocks to generate content
dynamically. Jinja2 is modeled after the Django template language, so if you've ever
developed in Django, the syntax should feel familiar. Even if you haven't, the syntax
bears a resemblance to Pythons syntax, so it's not very hard to pick up.

There are two main types of Jinja2 syntaxes used in Salt. The first is variable, which
uses double curly braces (the spaces around foo are for readability and are not
required), and which is shown in the following code:

{{ foo }}
{{ foo.bar }}
{{ foo['bar'] }}
{{ get_data() }}

For these examples, the contents of the referenced variable or the results of the
function call are placed in the document at the location of the Jinja2 block.

Jinja2 also has access to basic control statements. Control statement blocks use a curly
brace and percentage sign, which is depicted in the following code:

{% %}

Here is an example of a conditional block:

{% if myvar == 'foo' %}
somecontent
{% elif myvar == 'bar' %}
othercontent
{% else %}
morecontent
{% endif %}

Expanding Our States with Jinja2 and Pillar

[90]

Here is an example of a loop:

{% for user in ['larry', 'moe', 'curly'] %}
It's user {{ user }}!
Hello {{ user }}!
{% endfor %}

We can also set variables for use later in the template, as follows:

{% set myvar = 'foo' %}

With these syntax basics, we're ready to use Jinja2 in Salt!

apache2 or httpd?
You'll remember that our /srv/salt/apache.sls file now looks like this:

install_apache:
 pkg.installed:
 - name: apache2

make sure apache is running:
 service.running:
 - name: apache2
 - enable: True
 - require:
 - pkg: install_apache
 - watch:
 - file: sync mod_status.conf
 - file: sync mod_status.load

sync mod_status.conf:
 file.managed:
 - name: /etc/apache2/mods-enabled/mod_status.conf
 - source: salt://mod_status.conf
 - user: root
 - group: root
 - mode: 600

sync mod_status.load:
 file.managed:
 - name: /etc/apache2/mods-enabled/mod_status.load
 - source: salt://mod_status.load
 - user: root
 - group: root
 - mode: 600

Chapter 5

[91]

Let's try running this state on our new minion, as shown in the following
command-line output:

sudo salt 'centminion' state.sls apache

centminion:

 ID: install_apache

 Function: pkg.installed

 Name: apache2

 Result: False

 Comment: The following package(s) were not found, and no possible
matches were found in the package db: apache2

 Started: 00:41:22.406646

 Duration: 3193.455 ms

 Changes:

Uh-oh! This looks like a problem. We'll discuss how to fix this shortly. The following
is the continuation of the preceding output:

 ID: sync mod_status.conf

 Function: file.managed

 Name: /etc/apache2/mods-enabled/mod_status.conf

 Result: False

 Comment: Parent directory not present

 Started: 00:41:25.602341

 Duration: 162.175 ms

 Changes:

 ID: sync mod_status.load

 Function: file.managed

 Name: /etc/apache2/mods-enabled/mod_status.load

 Result: False

 Comment: Parent directory not present

 Started: 00:41:25.764635

 Duration: 5.494 ms

 Changes:

Expanding Our States with Jinja2 and Pillar

[92]

 ID: make sure apache is running

 Function: service.running

 Name: apache2

 Result: False

 Comment: One or more requisite failed

 Started:

 Duration:

 Changes:

Summary

Succeeded: 0

Failed: 4

Total states run: 4

Uh-oh! Something went wrong here. It looks like the apache2 package is not
available on our CentOS minion. If you're not familiar with CentOS, apache is
actually installed using the package httpd on RedHat distributions.

We could solve this problem by writing another state file that uses httpd instead of
apache2. However, that would be a lot of duplication of code and would be hard to
maintain, and we would have to run our Debian and RedHat states separately.

Instead, let's use the power of Jinja2 to make our state platform agnostic by
dynamically choosing the correct content for our state files.

The first step is to change the package name and service name depending on the
grains of the minion. Luckily, Salt provides us with a grains dictionary in our Jinja2
templating. Here are the changes we will be making to the first two states in our
/srv/salt/apache.sls file:

install_apache:
 pkg.installed:
{% if grains['os_family'] == 'Debian' %}
 - name: apache2
{% elif grains['os_family'] == 'RedHat' %}
 - name: httpd
{% endif %}

make sure apache is running:
 service.running:

Chapter 5

[93]

{% if grains['os_family'] == 'Debian' %}
 - name: apache2
{% elif grains['os_family'] == 'RedHat' %}
 - name: httpd
{% endif %}
 - enable: True
 - require:
 - pkg: install_apache
 - watch:
 - file: sync mod_status.conf
 - file: sync mod_status.load

Let's try out our changes, as follows:

sudo salt 'centminion' state.sls apache

centminion:

 ID: install_apache

 Function: pkg.installed

 Name: httpd

 Result: True

 Comment: The following packages were installed/updated: httpd.

 Started: 00:48:43.521608

 Duration: 15986.367 ms

 Changes:

...

 httpd:

 new:

 2.2.15-31.el6.centos

 old:

 mailcap:

 new:

 2.1.31-2.el6

 old:

Expanding Our States with Jinja2 and Pillar

[94]

Yes, this looks much better. We now have httpd installed and the output continues:

 ID: sync mod_status.conf

 Function: file.managed

 Name: /etc/apache2/mods-enabled/mod_status.conf

 Result: False

 Comment: Parent directory not present

 Started: 00:48:59.509440

 Duration: 285.603 ms

 Changes:

 ID: sync mod_status.load

 Function: file.managed

 Name: /etc/apache2/mods-enabled/mod_status.load

 Result: False

 Comment: Parent directory not present

 Started: 00:48:59.795159

 Duration: 4.147 ms

 Changes:

Well, we're closer, but we're obviously not quite there. We still have some
failures in our output. We'll figure out how to fix these shortly. Meanwhile,
the output continues:

 ID: make sure apache is running

 Function: service.running

 Name: httpd

 Result: False

 Comment: One or more requisite failed

 Started:

 Duration:

 Changes:

Summary

Succeeded: 1 (changed=1)

Failed: 3

Total states run: 4

Chapter 5

[95]

As mentioned previously, we're getting closer—now at least, we have httpd
installed on our system. However, as you can see, our file.managed states
aren't working—it turns out that these directories are also different on RedHat
distributions compared with Debian.

This is another problem that we can fix using Jinja2. Here is our /srv/salt/apache.
sls file with all the revisions required:

install_apache:
 pkg.installed:
{% if grains['os_family'] == 'Debian' %}
 - name: apache2
{% elif grains['os_family'] == 'RedHat' %}
 - name: httpd
{% endif %}

make sure apache is running:
 service.running:
{% if grains['os_family'] == 'Debian' %}
 - name: apache2
{% elif grains['os_family'] == 'RedHat' %}
 - name: httpd
{% endif %}
 - enable: True
 - require:
 - pkg: install_apache
 - watch:
 - file: sync mod_status.conf
{% if grains['os_family'] == 'Debian' %}
 - file: sync mod_status.load
{% endif %}

sync mod_status.conf:
 file.managed:
{% if grains['os_family'] == 'Debian' %}
 - name: /etc/apache2/mods-enabled/mod_status.conf
{% elif grains['os_family'] == 'RedHat' %}
 - name: /etc/httpd/conf.d/mod_status.conf
{% endif %}
 - source: salt://mod_status.conf
 - user: root
 - group: root
 - mode: 600

Expanding Our States with Jinja2 and Pillar

[96]

{% if grains['os_family'] == 'Debian' %}
sync mod_status.load:
 file.managed:
 - name: /etc/apache2/mods-enabled/mod_status.load
 - source: salt://mod_status.load
 - user: root
 - group: root
 - mode: 600
{% endif %}

Note that the mod_status.load file is not even required on RedHat distributions.
So, we use an if statement to make sure that whole stanza only runs on Debian
distributions. We will also use another if statement around the watch requisite
for that file.

Let's see whether we're successful! If we have done everything correctly, the states
should run successfully on both our Debian minion and our RedHat minion:

sudo salt '*' state.sls apache

myminion:

 ID: install_apache

 Function: pkg.installed

 Name: apache2

 Result: True

 Comment: Package apache2 is already installed.

 Started: 01:04:15.934015

 Duration: 789.671 ms

 Changes:

 ID: sync mod_status.conf

 Function: file.managed

 Name: /etc/apache2/mods-enabled/mod_status.conf

 Result: True

 Comment: File /etc/apache2/mods-enabled/mod_status.conf is in
 the correct state

 Started: 01:04:16.724719

 Duration: 143.022 ms

 Changes:

...

Chapter 5

[97]

 ID: make sure apache is running

 Function: service.running

 Name: apache2

 Result: True

 Comment: Service apache2 is already enabled, and is in the
 desired state

 Started: 01:04:16.869997

 Duration: 142.521 ms

 Changes:

Summary

Succeeded: 4

Failed: 0

Total states run: 4

Looking good! Our states are still running just fine on our Ubuntu machine, so we
know we haven't messed that up. Here's the continuation of the preceding output:

centminion:

 ID: install_apache

 Function: pkg.installed

 Name: httpd

 Result: True

 Comment: Package httpd is already installed.

 Started: 01:01:17.921195

 Duration: 492.866 ms

 Changes:

 ID: sync mod_status.conf

 Function: file.managed

 Name: /etc/httpd/conf.d/mod_status.conf

 Result: True

 Comment: File /etc/httpd/conf.d/mod_status.conf updated

 Started: 01:01:18.415350

Expanding Our States with Jinja2 and Pillar

[98]

 Duration: 378.452 ms

 Changes:

 diff:

 New file

Double success! Not only are our states still working on Ubuntu, but we now have
no failures against CentOS either! And the output continues:

 ID: make sure apache is running

 Function: service.running

 Name: httpd

 Result: True

 Comment: Service httpd has been enabled, and is running

 Started: 01:01:18.794266

 Duration: 293.037 ms

 Changes:

 httpd:

 True

Summary

Succeeded: 3 (changed=2)

Failed: 0

Total states run: 3

Our states will now run successfully on any Ubuntu or CentOS machine,
automatically detecting the correct information to send to each.

Chapter 5

[99]

Defining secure minion-specific data
in pillar
So far, we've only been defining the state of our infrastructure using state files.
However, there is no mechanism in the state files for per-minion access control.
Any file or data that you put in /srv/salt is immediately available for
approved minions.

Thus, we need a system to give minion-sensitive data. That system in Salt is
called the pillar system.

Much like grains, which we have talked about before, the pillar system is just a
key-value store in Salt. However, each minion gets its own set of pillar data,
encrypted on a per-minion basis, which makes it suitable for sensitive data.

Our pillar files are stored in a separate directory from our state files. By default,
this directory is /srv/pillar. Let's create this directory:

sudo mkdir /srv/pillar

cd /srv/pillar

Let's define some pillar data. Inside /srv/pillar, we're going to create a couple of
files. The first file is going to be /srv/pillar/core.sls. Note that pillar files also
have the .sls file extension. Here are the contents of our core.sls file:

foo: bar
users:
 - larry
 - moe
 - curly
some_more_data: data

Note that these files, much like our state files, are defined using YAML. However,
the structure of these pillar files is much more freeform. We're just defining data
in the form of a dictionary. The data itself is arbitrary and will look different for
most infrastructures.

Expanding Our States with Jinja2 and Pillar

[100]

Let's define a second file. Let's assume that we need to get a private SSH key down
to one or more of our minions. That will be the purpose of this file. I'm going to
generate a key just for the purposes of this example. I'll place the contents of the
private key in a new file /srv/pillar/ssh_key.sls, as follows:

my_ssh_key: |
 -----BEGIN RSA PRIVATE KEY-----
 MIIEowIBAAKCAQEAr0y/hGfdFQHfs0fln6rToGFEQc9KCFA9fcpTRIwtRzVti
 +5NVjWDFvdyJPJ6L8RicUJ8fSjILOD60YTgUwfEqIp26GbWJ7BBZ+DAPjvPLW
 cEVpxqeSWeRZxVYJn9Rp/LgG/tnQtgy5LGawhdKFjXIBR2dN/jAJPJd4GkVn1
 ZmlfFsmitrCdlvg0T+hWfVe7jafEBUKfrSPd2haoBnraAyn31gb2xE9QdNsOK
 wRgfs/hvcxU2JuP3SIflD8ty6HHSk/p9wxxsm2SWtE0cGkwxPHbDpRU/V40CE
 9wnz2O5xhMxv+MhJygbvmbAuzCSqAFa0yv8SbwIDAQABAoIBABkbyhbB9bWrl
 00QCaNuA8xDmCvmT3KrmzvRzi4y2h2EwE7BhExDz+n7OVs3a+7plxwX5NLcg4
 grqmGLsKuvlIVD6YdQ/d67UT1Tapjsfjv8BcAOGWYO0FOyJ7x1cgSqoLBd18/
 CYXlk4UneT+gQ7ShhFdTNA98tpQ0fhE0Tledtt/89Y2tBCT48TfGI5qtByo/a
 pd7DjUfgWaP5B9pfKs1+Be3c1UvjU9IktdyLvu62CV8WZ+1uKebgGcotz5T80
 mWdBWyqtmfz4JOHyLpijM9IhS7CTPOOIc1dqMkK+haSivj7tOf+x6W7c6SX6c
 zBfxcGECgYEA1igfy6DMMWP/ObrKJNpH/dFLSsseSWomhy2w24Zr4L+PqU4cB
 kPdbrAayOcrsaV9OeE+mOEAQhH0s9WAGuT/8Kpf5lINsx4tVXad1HA7ZkpPmn
 JPPRkdLlNe/sdTbb0OrWw3G+uX0/Krn453RBCraYuV1oELNz8/LnKHECgYEA0
 Ts6cs5Vlb24ZT6OKmZSjqZPTkBpTcO3VDuRT5m3aRNO7o4XTydIu8tHUF2FmS
 3trjZWiWyDaFJaVYQZPgjX1B/UyLtwTsWnI/esPGUGPd+IEe4NFIRGlMGrLYO
 /MhHUxEtXOkGMlrjGofYrkuPdENN0mp0Sxd8WN8CgYAXBWctl5J7uLkl9otmX
 Z05FswIFeFC99U5uust79Hu4AnqGtkzaP4zuOCYOil7RkPo5eq5um4xrAZ3En
 MQOlfILK0TnvVW4OzEKNipce56FB8VzCvicIGviizLDJhOUqVyRRDDgpbmpM6
 NowLX8eZHY5jRTcwwSrSMQKBgDNVwTpqJTtdUv8sUqkO4GplXn6xhzebK2vT5
 KIifysPntuUFaO/dPMEhpDqiEsQ1e+h1aRWzvJSJvq6NRgSyrGUdFWhvMx7/5
 kBWMFm4lOQCi6SScQH756Ln1rEDvsUHr8oUoBRvovirh1xbtxqhUPG13+32bt
 tkqzAoGBAM7pH5+2uQ2ol/t6ucaf7UevtueWRuczpXrMzOYO/X1aWgK15HebV
 8XqjtNswquBcOjxrpgpGvr0IlkWNxR3RnC09fjr5hNs0ErCkbYjuex+1VB2yd
 QJgpe3uET6uiPNWSSewF6Er2RyC5D5ek232W8uEgWf5ULmX0qc68
 -----END RSA PRIVATE KEY-----
my_ssh_key_name: mykey.pem

This also serves to illustrate a syntactical concept in YAML. If you want to define
multiline strings, you can use a pipe (see the first line) and indentation. YAML
knows that the multiline string ends when you stop indenting the content. Thus,
my_ssh_key_name (last line) is a new key in YAML because it's not indented.

Chapter 5

[101]

Now that we have our pillar data defined, we need to tell the master which minions
will receive which data. We do this using a special file, /srv/pillar/top.sls,
which we call a topfile, as follows:

base:
 '*':
 - core
 'os_family:debian':
 - match: grain
 - ssh_key

There are a lot of new concepts in this file, despite it only being six lines long.
The first thing you might notice is that the topfile is also formatted using YAML.
It also follows a specific pattern.

The first level of indentation defines environments. We're going to gloss over that for
now since we're only using the default environment, named base, at the moment.
You will learn more about environments in Chapter 6, The Highstate and Environments.

At the next level of indentation, we define a series of targeting strings. Much like
when we're targeting the command line (see Chapter 2, Controlling Your Minions with
Remote Execution, to review targeting), the default is globbing, and we can override
this default as needed. Thus, in this file, we're saying that all of our minions ('*')
will receive the pillar data in the subsequent list of files. In this case, there is only
one file, core.sls (- core).

The second targeting string ('os_family:debian') is a grain target. So, the first item
in the list under that targeting string must define that we're using grain matching
instead of globbing (- match: grain). Therefore, all of our Debian distribution
minions will get the pillar data defined in ssh_key.sls (- ssh_key).

Pillar data is automatically refreshed whenever we run any states. However, it's
sometimes useful to explicitly refresh the pillar data. We use a remote execution
function named saltutil.refresh_pillar for this purpose. Here's how we
explicitly refresh pillar data:

sudo salt '*' saltutil.refresh_pillar

centminion:

 True

myminion:

 True

Expanding Our States with Jinja2 and Pillar

[102]

If we've done everything correctly, we can query our minions for their pillar data
using the pillar.items remote execution function:

sudo salt '*' pillar.items

myminion:

 foo:

 bar

 my_ssh_key:

 -----BEGIN RSA PRIVATE KEY-----

 MIIEowIBAAKCAQEAr0y/hGfdFQHfs0fln6rToGFEQc9KCFA9fcpTRIwtRzVti

...

 8XqjtNswquBcOjxrpgpGvr0IlkWNxR3RnC09fjr5hNs0ErCkbYjuex+1VB2yd

 QJgpe3uET6uiPNWSSewF6Er2RyC5D5ek232W8uEgWf5ULmX0qc68

 -----END RSA PRIVATE KEY-----

 my_ssh_key_name:

 mykey.pem

 some_more_data:

 data

 users:

 - larry

 - moe

 - curly

centminion:

 foo:

 bar

 some_more_data:

 data

 users:

 - larry

 - moe

 - curly

Chapter 5

[103]

Depending on your version of Salt, you might also have another
key in your pillar named master, which contains all of the master
configuration options. This is dependent on a master configuration
option named pillar_opts. Set this to True or False in your
master config file (and restart your master) to determine
whether the minions get this data as part of their pillar or not.

We see from this output that our minions have only the data we defined for them in
our topfile. We can also query a specific pillar key using the function pillar.item,
as follows:

sudo salt '*' pillar.item users

myminion:

 users:

 - larry

 - moe

 - curly

centminion:

 users:

 - larry

 - moe

 - curly

Using pillar data in states
Let's finish up this chapter with an example that will show how we can use our pillar
data in our state files using Jinja2.

Create a new state file, /srv/salt/users_and_ssh.sls, as shown in the
following code:

{% for user in pillar['users'] %}
add_{{ user }}:
 user.present:
 - name: {{ user }}
{% endfor %}

Expanding Our States with Jinja2 and Pillar

[104]

{% if 'my_ssh_key' in pillar %}
manage_my_ssh_key:
 file.managed:
 - name: /root/.ssh/{{ pillar['my_ssh_key_name'] }}
 - mode: 600
 - contents_pillar: my_ssh_key
 - show_diff: False
{% endif %}

Note that we use a Jinja2 for loop to create a state for each user we need to add on
our systems. We also only create the ssh key file if the minion has the correct pillar
data using a Jinja2 if statement. Also note that we didn't actually use a source file for
our file.managed call here; instead, we told the minion to just insert the contents of
a pillar key in that file (my_ssh_key).

Let's run this state (I'm going to abbreviate the output in certain places due to
space constraints):

sudo salt '*' state.sls users_and_ssh

myminion:

 ID: add_larry

 Function: user.present

 Name: larry

 Result: True

 Comment: User larry is present and up to date

 Started: 19:54:12.806207

 Duration: 0.982 ms

 Changes:

Remember that we added larry in a previous example, and so Salt doesn't do any
work—it sees that larry is present and just reports success. Here's the continuation
of the preceding output:

 ID: add_moe

 Function: user.present

 Name: moe

 Result: True

 Comment: New user moe created

 Started: 19:54:12.807259

 Duration: 55.048 ms

Chapter 5

[105]

 Changes:

 fullname:

 gid:

 1001

 groups:

 - moe

 home:

 /home/moe

 homephone:

 name:

 moe

 passwd:

 x

...

 ID: add_curly

 Function: user.present

 Name: curly

 Result: True

 Comment: New user curly created

 Started: 19:54:12.862569

 Duration: 38.429 ms

 Changes:

...

All of our new users were added successfully despite the fact that we only had to
write one state declaration to accomplish it! That's the power of Jinja2 loops in your
states. The following is a continuation of the preceding output:

 ID: manage_my_ssh_key

 Function: file.managed

 Name: /root/.ssh/mykey.pem

Expanding Our States with Jinja2 and Pillar

[106]

 Result: True

 Comment: File /root/.ssh/mykey.pem updated

 Started: 19:54:12.901193

 Duration: 3.623 ms

 Changes:

 diff:

 New file

Summary

Succeeded: 4 (changed=3)

Failed: 0

Total states run: 4

centminion:

 ID: add_larry

 Function: user.present

 Name: larry

 Result: True

...

 ID: add_moe

 Function: user.present

 Name: moe

 Result: True

...

Chapter 5

[107]

 ID: add_curly

 Function: user.present

 Name: curly

 Result: True

...

Summary

Succeeded: 3 (changed=3)

Failed: 0

Total states run: 3

Note that our ssh key file was only created on our Ubuntu minion, as expected.

Summary
In this chapter, you learned how to make our states more flexible using Jinja2
templating. You learned the basic structures of Jinja2 and templated our apache state
file so that it would run on both RedHat and Debian systems. You also learned how
to define sensitive data in pillar and use that data in our states using Jinja2.

You now have all the tools you need to make flexible, modular states. In the next
chapter, you'll learn how to better organize those files using topfiles in the state
system, and you'll learn about environments in Salt.

[109]

The Highstate and
Environments

In the preceding chapter, you learned how to use Jinja2 and pillar data to make your
state file more flexible.

In this chapter, you will learn how to organize your states so that we can enforce the
state of your infrastructure with just a single remote execution command.

You will learn the following:

•	 How to use topfiles in the state system to target state files to
different minions

•	 How to use environments to further organize our state files
•	 How to use GitFS to store our state files in version control

The highstate
Until now, we have only been running a single state file at a time using state.sls.
However, this doesn't scale very well once we have many state files to manage our
entire infrastructure. We want to be able to split different pieces of our state into
different files to make them more modular. How can we accomplish this?

In the previous chapter, you learned how to target your pillar files to different
minions using a top.sls file or topfile. Topfiles can also be used in the state
system to target different state files to different minions.

The Highstate and Environments

[110]

Let's create our topfile now, which is in /srv/salt/top.sls, as follows:

base:
 '*minion':
 - apache
 'os_family:debian':
 - match: grain
 - users_and_ssh

Note that this file is structured almost exactly like the topfile that we used for
our pillar data. At the top level (first line), we define our environment. There
will be more on environments later—for now, it's enough to note that the default
environment is the base environment.

Within the environment, we define a series of targeting strings. Again, unless
otherwise specified, the targeting string is using globbing to match minions. So
our first match, '*minion', will match all of our minions because they all end with
minion. The second targeting string has - match: grain beneath it, which means
that it is using grain matching. It will match all minions that are running a Debian
distribution of Linux.

Once we've saved the previous file, we're ready to run it. The complete set of state
files included in the topfile is referred to as the highstate. Thus, it shouldn't surprise
you that we use the remote execution function, state.highstate, to run the
highstate, as shown in the following example:

sudo salt '*' state.highstate

myminion:

 ID: install_apache

 Function: pkg.installed

 Name: apache2

 Result: True

 Comment: Package apache2 is already installed.

 Started: 02:03:45.290738

 Duration: 1000.33 ms

 Changes:

 ID: sync mod_status.conf

 Function: file.managed

Chapter 6

[111]

 Name: /etc/apache2/mods-enabled/mod_status.conf

 Result: True

 Comment: File /etc/apache2/mods-enabled/mod_status.conf is in the
correct state

 Started: 02:03:46.292284

 Duration: 151.584 ms

 Changes:

...

Summary

Succeeded: 8

Failed: 0

Total states run: 8

centminion:

 ID: install_apache

 Function: pkg.installed

 Name: httpd

 Result: True

 Comment: Package httpd is already installed.

 Started: 02:03:45.673780

 Duration: 746.008 ms

 Changes:

 ID: sync mod_status.conf

 Function: file.managed

 Name: /etc/httpd/conf.d/mod_status.conf

 Result: True

 Comment: File /etc/httpd/conf.d/mod_status.conf is in the correct
state

The Highstate and Environments

[112]

 Started: 02:03:46.420716

 Duration: 217.693 ms

 Changes:

 ID: make sure apache is running

 Function: service.running

 Name: httpd

 Result: True

 Comment: Service httpd is already enabled, and is in the desired
state

 Started: 02:03:46.638601

 Duration: 81.936 ms

 Changes:

Summary

Succeeded: 3

Failed: 0

Total states run: 3

Note that everything was successful, and no changes were made, because we have
already run these states individually previously. Also note that on our CentOS
minion, which is a RedHat distribution, we only ran the states from apache.sls,
while our Ubuntu minion (a Debian distribution) ran all of the states because it was
targeted by both targeting strings.

Note that if a minion is not targeted in the top.sls file at all, it
will return an error when state.highstate is run.

Environments
Salt provides a concept of environments to further organize our states. Until now,
we've been using the default base environment. However, we can configure as many
environments as we need to organize our infrastructure and give each environment
its own location in the filesystem.

Chapter 6

[113]

We configure the locations of our environments on the master in the master
configuration file, /etc/salt/master. If you look for the File Server Settings
section in the default master configuration file, you can see some example
configurations. We're going to keep ours very simple and just add a single new
environment. Somewhere in your master configuration file, add the following lines:

file_roots:
 base:
 - /srv/salt
 webserver:
 - /srv/web

In this case, we're using the example of configuring our environments for different
purposes. We'll have our entire core configuration in our base environment and then
we'll put the configuration for our web servers in the webserver environment.

Environments are designed to be very flexible and serve whatever
purpose you want them to in your infrastructure. Here, we're using the
example of different environments fulfilling different roles: maybe we
would have an environment for our web servers, an environment for
our database servers, and so on.
However, we could just as easily use environments in our rollout
workflow, that is, we could have an environment for production, an
environment for development, and an environment for staging.
Many users of Salt don't use the concept of environments at all and
instead just organize everything within their base environment. This
is also a perfectly valid use of environments, though it is recommended
that you use directories to structure and separate the various pieces of
your infrastructure to keep things organized.

To make our changes take effect, we need to restart the master, as follows:

sudo service salt-master restart

salt-master stop/waiting

salt-master start/running, process 3340

Let's also create our /srv/web directory and move all of our Apache stuff into it,
as follows:

sudo mkdir /srv/web

sudo mv /srv/salt/apache.sls /srv/web/

sudo mv /srv/salt/mod_status.* /srv/web/

The Highstate and Environments

[114]

We don't actually need to modify apache.sls at all to make it work—since we
moved the mod_status files into the new environment with apache.sls, it will be
able to find those files just fine.

However, we do need to make some modifications to our topfile, /srv/salt/top.
sls, as shown in the following lines of code:

base:
 'os_family:debian':
 - match: grain
 - users_and_ssh
webserver:
 '*minion':
 - apache

We can run our highstate to make sure that everything still works. The output
should be pretty much identical—we haven't actually changed anything about the
states that each minion executes; we've just changed where they're stored on the
master. We will now run our highstate, as follows:

sudo salt '*' state.highstate

Note that we still only have one top.sls file even though we now have two
environments. This is because even though the topfile lives in the same place as
the rest of our states, it transcends environments because it defines environments.

You can have a different topfile in each environment; however, keep in mind that
when you run a highstate, the topfiles from all environments will be combined into
a single set of top data. So, it is recommended that you either have a single topfile
in the base environment or have a topfile in each environment that defines only
that environment.

An example would be useful. If I wanted to split the topfile from the previous
paragraphs into its various environment pieces, we would have /srv/salt/top.sls
looking like this:

base:
 'os_family:debian':
 - match: grain
 - users_and_ssh

Chapter 6

[115]

We would also have our web server topfile in /srv/web/top.sls, and the following
code would be its contents:

webserver:
 '*minion':
 - apache

Thus, when the two topfiles are combined once we run the highstate, there won't be
any collisions as each topfile only deals with its own environment.

Environments in pillar
Environments work almost identically in the pillar system. We set up the
environments in the master configuration, /etc/salt/master. We're not actually
going to do much with the pillar environments in this book, but this is what our
pillar environment configuration in the master configuration might look like:

pillar_roots:
 base:
 - /srv/pillar
 webserver:
 - /srv/pillar-webserver

The topfile also changes in the same way as the state system. It might look something
like this:

base:
 '*':
 - core
 'os_family:debian':
 - match: grain
 - ssh_key
webserver:
 '*minion':
 - webserver_data

We could now make a webserver_data.sls pillar file in our webserver
environment, and it would be applied to all of our '*minion' minions.

The Highstate and Environments

[116]

Expanding our base environment
Because we're treating our environments as roles, let's add some more "core" states to
our base environment. One potential use case might be installing configuration files
to our user on each of our minions so that if we ever log into those minions, we have
all of our shell and editor configuration files. These files are often collectively named
dotfiles, and I store mine on Github.

We'll start with our topfile, /srv/salt/top.sls, as follows:

base:
 '*':
 - myuser.user
 - myuser.dotfiles
 'os_family:debian':
 - match: grain
 - users_and_ssh
webserver:
 '*minion':
 - apache

Note that dots in state file names represent folders. This is to make them resemble
Python imports. Thus, myuser.user actually points to myuser/user.sls.

My username on Github and the username I usually use on servers is basepi.
That's the user I'm going to set up in my example.

Start by creating the directory, /srv/salt/myuser, as follows:

sudo mkdir /srv/salt/myuser

Then, create /srv/salt/myuser/user.sls with these contents:

install_zsh:
 pkg.installed:
 - name: zsh

add_user_basepi:
 user.present:
 - name: basepi
 - shell: /bin/zsh
 - require:
 - pkg: install_zsh

These states will install Z shell (Zsh), my shell of choice, add the user basepi,
and then set that user's shell to Zsh.

Chapter 6

[117]

Next, create /srv/salt/myuser/dotfiles.sls, as follows:

include:
 - myuser.user

install_git:
 pkg.installed:
 - name: git

clone_dotfiles:
 git.latest:
 - name: git://github.com/basepi/dotfiles.git
 - rev: master
 - target: /home/basepi/dotfiles
 - user: basepi
 - submodules: True
 - require:
 - pkg: install_git
 - user: add_user_basepi

install_dotfiles_if_changed:
 cmd.run:
 - name: 'python install.py -y'
 - cwd: '/home/basepi/dotfiles'
 - user: basepi
 - onchanges:
 - git: clone_dotfiles

These states make sure that Git is installed on our minions, clone my dotfiles
repository from Github, and run my dotfiles install script whenever that git
repository changes, (using the onchanges requisite). It also uses an include
statement to ensure that the basepi user is installed first so that we can run
the clone as the basepi user.

Let's run our new states! Our highstate output is getting quite lengthy, so I will cut
out large swaths of the output to try to keep it to the new and relevant bits. Here's
the output summary:

sudo salt '*' state.highstate

myminion:

...

The Highstate and Environments

[118]

 ID: add_user_basepi

 Function: user.present

 Name: basepi

 Result: True

 Comment: New user basepi created

 Started: 21:33:48.700937

 Duration: 88.561 ms

 Changes:

 shell:

 /bin/zsh

...

Here, we see that our basepi user is added and that the user's shell is successfully
set to the newly installed executable, /bin/zsh:

 ID: clone_dotfiles

 Function: git.latest

 Name: git://github.com/basepi/dotfiles.git

 Result: True

 Comment: Repository git://github.com/basepi/dotfiles.git cloned to /
home/basepi/dotfiles

 Started: 21:33:48.793136

 Duration: 17718.574 ms

 Changes:

 new:

 git://github.com/basepi/dotfiles.git

 revision:

 ade8cdf36f7414a2e4b82710e8c465b643627996

 ID: install_dotfiles_if_changed

 Function: cmd.run

 Name: python install.py -y

Chapter 6

[119]

 Result: True

 Comment: Command "python install.py -y" run

 Started: 21:34:06.512572

 Duration: 97.522 ms

 Changes:

 pid:

 13081

 retcode:

 0

 stderr:

 stdout:

 Welcome to Colton's dotfile installation script!
 ('Please note that existing files will be renamed

 with a .old', 'extension, and existing .old files
 may be overwritten!')

 Please see disclaimer in source code before using
 this script.

 ('Installation of', '/home/basepi/.zshrc',
 'complete!')

 ('Installation of', '/home/basepi/.zsh',
 'complete!')

 ('Installation of', '/home/basepi/.vimrc',
 'complete!')

 ('Installation of', '/home/basepi/.vim',
 'complete!')

...

After our user is present, we're ready to clone my dotfiles repository with
git.latest and install the dotfiles in our home directory using the included
script. From the output, we see that the script was successful:

Summary

Succeeded: 13 (changed=4)

Failed: 0

The Highstate and Environments

[120]

Total states run: 13

centminion:

...

Summary

Succeeded: 8 (changed=4)

Failed: 0

Total states run: 8

Success! We can see that all of our states ran without issue.

Storing our states in Git with GitFS
Up to this point, we've been storing all of our Salt files in folders on the master.
Those files are then served by the master to the minions at their request. This
fileserver system is actually a pluggable interface.

This means that we can store our Salt data in any platform we choose, assuming a
Salt fileserver module has been written for that platform.

There are fileserver modules available for a variety of systems, including Git,
Mercurial, Amazon S3, and SVN. The only one we'll be exploring in this text
is the Git fileserver, or GitFS.

Showing a full example of how to set up a Git repository, add and
commit states, and run those states is out of the scope of this book, so
we will only be touching upon basic configuration details. If GitFS is
of interest to you, feel free to try it out. Otherwise, you can skip this
section. There is an extensive tutorial on the advanced features of
GitFS in the documentation at http://docs.saltstack.com/en/
latest/topics/tutorials/gitfs.html.

GitFS allows us to specify a remote Git repository from which Salt will fetch files.
Branches in the repository will correspond to the Salt environments of the same
name. The exception is the master branch; if it exists—the master branch becomes
the base environment.

http://docs.saltstack.com/en/latest/topics/tutorials/gitfs.html
http://docs.saltstack.com/en/latest/topics/tutorials/gitfs.html

Chapter 6

[121]

To configure GitFS, we must modify our master configuration file, /etc/salt/
master. There's a master configuration option called fileserver_backend.
This is what fileserver_backend looks like by default:

fileserver_backend:
 - roots

The roots fileserver backend is the default backend representing files on the master
filesystem. We could replace roots in this configuration with git if we wanted
to exclusively use GitFS, as shown in the following code; or, we can use GitFS in
addition to the roots backend by adding it to the list of fileserver backends:

fileserver_backend:
 - roots
 - git

If multiple fileserver backends are enabled, the master will search them in order
when a minion queries for a file and returns the first match.

Once you've enabled GitFS, you must configure the remote repositories to which it
connects. This is also in the master configuration:

gitfs_remotes:
 - git://github.com/saltstack/salt-states.git
 - file:///var/git/saltmaster

In the previous example, GitFS will query both a GitHub repository, github.com/
saltstack/salt-states.git, using the git:// protocol, and a repository located
on the master filesystem, /var/git/saltmaster, using the file:// protocol.

In the example shown previously, with two repositories defined, the master will
search the repositories in order to find the requested files, returning the first match
it finds.

That's it! If you've set both fileserver_backend and gitfs_remotes correctly and
restarted your master, your master will immediately begin serving files from the Git
repositories you've defined.

This means that you can now store your state files in a Git repository, and Salt will
automatically pull them from that Git repository as though the various branches
were cloned into directories in /srv/, where we were storing our files earlier in this
chapter. Salt continuously updates the Git repository with the latest commits, so you
know that you're always running your latest state files.

The Highstate and Environments

[122]

Summary
In this chapter, you learned how to use environments and topfiles to organize
your states. Now with a single command, you can enforce the state of your entire
infrastructure with a single command.

After three chapters about the state system, you're now prepared to write simple
and flexible states to define your own infrastructure.

From here, we will be exploring other features of Salt that will help manage your
infrastructure. In the next chapter, we will explore Salt Cloud, and you will learn
how to use it to manage your cloud servers.

[123]

Using Salt Cloud to Manage
Virtual Minions

In the previous chapter, we finished up our exploration of the state system in Salt by
learning about environments and the highstate.

In this chapter, we're going to explore another topic included in Salt, named Salt
Cloud. You will learn about the following topics:

•	 How to configure Salt Cloud to talk to one or more cloud providers
•	 How to use Salt Cloud to create and bootstrap new virtual machines
•	 How to manage fleets of virtual machines using map files

Let's get started!

Setting up Salt Cloud
Salt Cloud is a project that was started to work closely with Salt to manage cloud
virtual machines. As infrastructures move more and more to the cloud, it's useful to
have an easy-to-use, powerful abstraction around cloud provider APIs that allows us
to manage them with Salt.

Starting with the 2014.1.0 release of Salt, Salt Cloud is built into Salt, rather than
being kept as a separate project. However, on certain distributions, you still might
have to install the salt-cloud package in order to get all of the relevant files.

Using Salt Cloud to Manage Virtual Minions

[124]

However, on our Ubuntu system, this is not the case—Salt Cloud was installed when
we installed the Salt master. Having said this, depending on which cloud provider
you'll be using, you might have to install libcloud using the following command:

sudo apt-get install python-libcloud

Before we configure Salt Cloud, however, we need to decide which cloud provider
we are going to use, set up an account, and get some information from that
cloud provider.

In the examples in this book, we will be using Linode, a cloud host popular among
developers. Depending on which version of Salt you are using, libcloud may or
may not be a dependency for the Linode Salt Cloud provider. The version of Salt
Cloud used in this book (2015.8.5) does not require libcloud.

It should be noted that Linode is unaffiliated with this text and is
not sponsoring its use in this book.

Setting up Linode
First, you must set up a Linode account to toy around with. Navigate to
http://linode.com and click on the Sign Up button. The sign-up page is
very simple, as you can see in the following screenshot:

http://linode.com

Chapter 7

[125]

Fill out the initial page, and Linode will send you an e-mail to complete the creation
of your account. You will have to enter payment information and preload at least $5
into your account. Note that Linode bills hourly, so you should be able to experiment
with Salt Cloud very cheaply as long as you delete the virtual machines afterwards.

Creating an API key
Once you're on your account landing page, you will need to create an API key for
your account. In the upper-right corner of the page, click on my profile, highlighted
in red in the following screenshot:

Enter your password when prompted and then click on API Keys, which is
highlighted in red in the following screenshot:

Using Salt Cloud to Manage Virtual Minions

[126]

Then, fill in the required information to create an API key, which is highlighted in
blue in the preceding screenshot, and click on Create API Key.

Record your key as instructed. The key I will use is highlighted in red in the
following screenshot; you must use your own key as the key shown here will be
disabled by the time you are reading this text:

Now that we have our API key, we're ready to use Salt Cloud!

Creating a cloud provider configuration
Salt Cloud configuration files fall under two categories: cloud provider configuration
and cloud profile configuration. The former is used to specify basic authentication
information to access a cloud provider. The latter is used to specify specific virtual
machine requirements, such as size, image, and location.

The cloud provider configurations go into /etc/salt/cloud.providers by default.
Basic information about configuring each cloud provider can be found in the Salt
Cloud documentation at http://docs.saltstack.com/en/latest/topics/cloud/
config.html.

One of the pieces of information we need for the Linode configuration is an SSH key
to access the VMs that we create. We can create an SSH key using the ssh-keygen
utility, as shown in the following command:

ssh-keygen

Generating public/private rsa key pair.

Enter file in which to save the key (/root/.ssh/id_rsa):

Enter passphrase (empty for no passphrase):

Enter same passphrase again:

Your identification has been saved in /root/.ssh/id_rsa.

Your public key has been saved in /root/.ssh/id_rsa.pub.

http://docs.saltstack.com/en/latest/topics/cloud/config.html
http://docs.saltstack.com/en/latest/topics/cloud/config.html

Chapter 7

[127]

The key fingerprint is:

bd:7c:1c:36:65:42:95:f2:b9:9e:33:f2:e3:6c:63:fc root@localhost

The key's randomart image is:

+--[RSA 2048]----+

| |

| .. . |

| .oo. |

| . +o |

| S . + . |

| . + o. |

| o oo . |

| ...@ |

| *+*E|

+-----------------+

cat /root/.ssh/id_rsa.pub

ssh-rsa
AAAAB3NzaC1yc2EAAAADAQABAAABAQC/1vLlghC6RDC3WTDRk60X1v6rcgqPO1U/njc1c
gocUxYbB3qRg5VYE2hA190lR6vL9Xj5ASE4h/Xcgn0UVz3l6EUv9lFNc1TpllEbvu9QF9
rR8CEQtPfbWXNdTzXNzJ3rJRgtL78/U3cju+aEH6y2JMX3nLFE7JcfNkSZ6zCGSIltXfQ
tIrQd0B9vBFZBItcn5he1UL/LjEldyCR58z1t1Y0/LHqrxpYoOBC8Rz371B8Re32T9Hvs
5ZY1oMCVhZNYbBeFOxTcaW+fW8AufSdZPY93OFi8qNosKMF8lZF5D2CQG5qZ5Ri4hDaVM
Do+4HpOZkhtiqbHtDK0liiycGNl root@localhost

Now, we have a key stored in /root/.ssh and know our public key, both of which
we will need for our Linode configuration.

Here is what /etc/salt/cloud.providers will look like with our Linode
configuration:

my-linode-config:
 provider: linode
 apikey: zXilHoRor42JG6Zh7oYNjrI2eJGOUaf...E7Gc9dzlLm3
 password: Learning Salt Is Fun!
 ssh_pubkey: ssh-rsa AAAAB3NzaC1ycA...tDK0liiycGNl root@localhost
 ssh_key_file: /root/.ssh/id_rsa

Note that in the preceding example, I have shortened both my apikey and
ssh_pubkey instances so that they will fit on the page. You should insert your
full-length API key and SSH public key in those fields. Also note that you must
specify a default root password to pass to Linode. You should make this password
secure as root SSH login is on by default for Linode VMs.

Using Salt Cloud to Manage Virtual Minions

[128]

We can verify that we haven't made any syntactical errors by doing some basic
queries on Linode. These queries will also give us the information that we need
in order to set up our first cloud profile.

First, using the --list-sizes option, let's list the virtual machine sizes that are
available to us, as shown in the following example:

sudo salt-cloud --list-sizes my-linode-config

[INFO] salt-cloud starting

my-linode-config:

 linode:

 Linode 1024:

 bandwidth:

 2000

 disk:

 24576

 driver:

 extra:

 get_uuid:

 id:

 1

 name:

 Linode 1024

 price:

 10.0

 ram:

 1024

 uuid:

 03e18728ce4629e2ac07c9cbb48afffb8cb499c4

...

Note that we also must pass in the name of our cloud provider configuration,
my-linode-config.

Chapter 7

[129]

Your output will be substantially longer—the only size that we're interested in is
1,024. As we can see, this particular VM size has 24 GB of disk space and 1 GB of
RAM and, currently, it will cost $10 per month to run (billed hourly). This sounds
perfect for our testing purposes.

Now we need an image to deploy on our VM. We can list the available images using
the --list-images option, as follows:

sudo salt-cloud --list-images my-linode-config

[INFO] salt-cloud starting

my-linode-config:

 linode:

 CentOS 6.5:

 driver:

 extra:

 64bit:

 1

 pvops:

 1

 get_uuid:

 id:

 127

 name:

 CentOS 6.5

 uuid:

 f12d308795a507cc73a3cf5f7aacdf2d86fbcf4a

 Ubuntu 14.04 LTS:

 driver:

 extra:

Using Salt Cloud to Manage Virtual Minions

[130]

 64bit:

 1

 pvops:

 1

 get_uuid:

 id:

 124

 name:

 Ubuntu 14.04 LTS

 uuid:

 18be6ebe9bb4f9a818f95a522ac213cfdf295e84

...

Again, you will have many more images listed. Here, I have left two different images
in the output that we will use. We can see that both of these are 64-bit images—one
of Ubuntu 14.04 and the other of CentOS 6.5.

The last piece of information that we're going to need to create our cloud profiles is
the Linode data center in which we will be creating the VMs. Here, we can use the
--list-locations option, as follows:

sudo salt-cloud --list-locations my-linode-config

[INFO] salt-cloud starting

my-linode-config:

 linode:

 Atlanta, GA, USA:

 country:

 US

 driver:

 id:

 4

 name:

 Atlanta, GA, USA

...

Atlanta sounds like a great location to spin up a few VMs.

Chapter 7

[131]

Creating cloud VM profiles
We now have all the information we need. We are going to specify our VM profiles
in /etc/salt/cloud.profiles, as follows:

ubuntu:
 provider: my-linode-config
 size: Linode 1024
 image: Ubuntu 14.04 LTS
 location: Atlanta, GA, USA
 minion:
 master: 69.164.192.51

centos:
 provider: my-linode-config
 size: Linode 1024
 image: CentOS 6.5
 location: Atlanta, GA, USA
 minion:
 master: 69.164.192.51

Most of this should be pretty self-explanatory. We specify which provider
configuration we're using to spin up these minions and then the size, image,
and location (the location is optional) of our VMs. The final piece is any minion
configuration options we want to set on the new VMs. Here, we tell the new minions
to connect to the master at 69.164.192.51, which is the IP address of my Salt
master. Replace that IP address with the address of your master instead.

Creating and destroying machines
We can now use the profiles we've defined to spin up and destroy minions! Let's
start small and create a single minion. We need to use the -p option to specify
our cloud profile, and then give our minion a name as well. In this example, I will
name my minion cloudminion01 and spin it up using the ubuntu profile I created
previously, as shown in the following output:

sudo salt-cloud -p ubuntu cloudminion01

[INFO] salt-cloud starting

[INFO] Creating Cloud VM cloudminion01

[INFO] Rendering deploy script: /usr/lib/python2.7/dist-packages/
salt/cloud/deploy/bootstrap-salt.sh

...

Using Salt Cloud to Manage Virtual Minions

[132]

[INFO] Salt installed on cloudminion01

[INFO] Created Cloud VM 'cloudminion01'

cloudminion01:

 _uuid:

 None

 driver:

...

 id:

 731884

 image:

 None

 name:

 cloudminion01

 private_ips:

 public_ips:

 - 50.116.43.66

 size:

 None

 state:

 3

Once again, I have abbreviated the output substantially. Salt Cloud will actually
show all of the output of creating and bootstrapping the minion, which can
be substantial.

If you would rather redirect the output to a file, use the --out-file
option with the salt-cloud command.

We now have a new minion named cloudminion01 running Ubuntu. Even cooler,
Salt Cloud actually preseeded the keys for this minion and accepted them on the
master. From the moment Salt Cloud finishes creating the minion, it should be
connected to our master!

Chapter 7

[133]

Here's the code to perform what's outlined in this paragraph:

sudo salt '*' test.ping

cloudminion01:

 True

myminion:

 True

centminion:

 True

Our new minion is there! We can now use all of our newly learned Salt tools to
manage that server.

Let's create a few more minions, but this time, we will create multiple VMs at once in
parallel mode using the -P flag, as follows:

sudo salt-cloud -P -p centos cloudminion02 cloudminion03

[INFO] salt-cloud starting

cloudminion02:

 Provisioning:

 VM being provisioned in parallel. PID: 18229

cloudminion03:

 Provisioning:

 VM being provisioned in parallel. PID: 18230

[INFO] Creating Cloud VM cloudminion03

[INFO] Creating Cloud VM cloudminion02

...

[INFO] Salt installed on cloudminion02

[INFO] Created Cloud VM 'cloudminion02'

[INFO] Salt installed on cloudminion03

[INFO] Created Cloud VM 'cloudminion03'

Using Salt Cloud to Manage Virtual Minions

[134]

Let's make sure that the new VMs are present, as follows:

sudo salt '*' test.ping

cloudminion01:

 True

centminion:

 True

myminion:

 True

cloudminion02:

 True

cloudminion03:

 True

Success! We can also see these new minions' keys in the output of salt-key,
which is as follows:

sudo salt-key

Accepted Keys:

centminion

myminion

cloudminion01

cloudminion02

cloudminion03

Unaccepted Keys:

Rejected Keys:

In the next section, we're going to learn how to manage groups of VMs in a
more stateful way using map files. So for now, let's delete the VMs that we've
created. To delete VMs, you use the -d option for Salt Cloud. This is shown in
the following example:

sudo salt-cloud -d cloudminion01 cloudminion02 cloudminion03

[INFO] salt-cloud starting

The following virtual machines are set to be destroyed:

 my-linode-config:

 linode:

 cloudminion01

Chapter 7

[135]

 cloudminion02

 cloudminion03

Proceed? [N/y] y

... proceeding

[INFO] Destroying in non-parallel mode.

[INFO] Clearing Salt Mine: cloudminion01, False

[INFO] Destroying VM: cloudminion01

[INFO] Destroyed VM: cloudminion01

[INFO] Clearing Salt Mine: cloudminion02, False

[INFO] Destroying VM: cloudminion02

[INFO] Destroyed VM: cloudminion02

[INFO] Clearing Salt Mine: cloudminion03, False

[INFO] Destroying VM: cloudminion03

[INFO] Destroyed VM: cloudminion03

my-linode-config:

 linode:

 cloudminion01:

 True

 cloudminion02:

 True

 cloudminion03:

 True

Just like this, our newly created minions are destroyed. Salt Cloud even took
care of deleting the keys from the master, as we can see from the following
output of salt-key:

sudo salt-key

Accepted Keys:

centminion

myminion

Unaccepted Keys:

Rejected Keys:

Using Salt Cloud to Manage Virtual Minions

[136]

Managing groups of VMs with map files
So far, our exploration of Salt Cloud has been limited to operations on single VMs or
manually compiled lists of VMs. This is very useful but doesn't scale as well because
there's no central source of truth for your VMs, especially if you have VMs across
multiple cloud providers.

Salt Cloud provides a tool to solve this problem: map files. Basically, we create a
map of our infrastructure and all the VMs that are in it. When a map is executed,
your infrastructure will be brought to the state defined in the map file. Any VMs
that already exist will be unmodified, and any new VMs will be created.

Let's create a map file to create multiple Ubuntu and CentOS minions. The location
of the map file is unimportant, as we will pass in an absolute path to the map file
anyway. Let's create it at /etc/salt/mymap.sls, as follows:

ubuntu:
 - db1
 - db2
 - web1
centos:
 - web2
 - load

As you can see, cloud maps are also formatted in YAML. At their most basic, they
consist of just a list of minion names under the profile that will be used to create
those minions.

For our map, we will be creating three Ubuntu servers, two of which are database
servers (I haven't done anything special to differentiate the roles of these servers,
except by naming them as Ubuntu servers), and one of which will be a web server.
We also created two CentOS servers, one of which is going to be a web server, and
the other is our load balancer.

Now that we have defined our map, we can execute on our map using the -m flag to
the salt-cloud command. We can also pass in the -P flag here to have salt-cloud
enforce the map in parallel. The use of these flags is shown in the following code:

sudo salt-cloud -m /etc/salt/mymap.sls -P

[INFO] salt-cloud starting

Chapter 7

[137]

[INFO] Applying map from '/etc/salt/mymap.sls'.

The following virtual machines are set to be created:

 web2

 load

 db2

 web1

 db1

Proceed? [N/y] y

... proceeding

[INFO] Calculating dependencies for web2

[INFO] Calculating dependencies for load

[INFO] Calculating dependencies for db2

[INFO] Calculating dependencies for web1

[INFO] Calculating dependencies for db1

[INFO] Since parallel deployment is in use, ssh console output is
disabled. All ssh output will be logged though

[INFO] Cloud pool size: 5

...

[INFO] Salt installed on web2

[INFO] Created Cloud VM 'web2'

[INFO] Salt installed on load

[INFO] Created Cloud VM 'load'

[INFO] Salt installed on db1

[INFO] Created Cloud VM 'db1'

[INFO] Salt installed on web1

[INFO] Created Cloud VM 'web1'

[INFO] Salt installed on db2

[INFO] Created Cloud VM 'db2'

...

Using Salt Cloud to Manage Virtual Minions

[138]

We can now ping all of our new minions, as follows:

sudo salt '*' test.ping

db1:

 True

web2:

 True

web1:

 True

load:

 True

db2:

 True

myminion:

 True

centminion:

 True

The cool thing about maps is that they're stateful. If we add a new minion to the
map, it will only create that minion and leave the others alone.

Let's delete the VMs in our map using the -d option, as follows:

sudo salt-cloud -d -m /etc/salt/mymap.sls

[INFO] salt-cloud starting

[INFO] Applying map from '/etc/salt/mymap.sls'.

The following virtual machines are set to be destroyed:

 my-linode-config:

 linode:

 web2

 load

 db2

 web1

 db1

Proceed? [N/y] y

... proceeding

Chapter 7

[139]

...

my-linode-config:

 linode:

 db1:

 True

 db2:

 True

 load:

 True

 web1:

 True

 web2:

 True

Creating new masters with the map files
We'll wrap up our salt-cloud discussion by learning how to use the map files to
create whole Salt clusters, including a master for the cluster, having all the minions
connect to the new master.

Again, we create a map file. The location of this map file is irrelevant. Let's create it
in /etc/salt/mymastermap.sls, as follows:

ubuntu:
 - mynewmaster:
 make_master: True
 minion:
 local_master: True
 log_level: debug
 grains:
 cluster: mynewcluster
 - newminion1:
 minion:
 local_master: True
 log_level: info
 grains:
 cluster: mynewcluster

Using Salt Cloud to Manage Virtual Minions

[140]

 foo: bar
centos:
 - newminion2:
 minion:
 local_master: True
 log_level: warning
 grains:
 cluster: mynewcluster
 anothergrain: cool

There are a couple of new concepts in this map file. First, we have the make_master
setting. This setting does exactly what you might expect—it makes that VM a
Salt master. Then, for each of our minions (including the minion installed on our
mynewmaster VM), we can use the minion setting to define minion configuration
options. In the map files, local_master is a special setting to tell the minion to
connect to whatever IP our new master VM is located at.

So, in this map file, we will create an Ubuntu machine that will have a master and a
minion installed on it. The minion will connect to the master on that local machine.
Then, we will create two more VMs, one Ubuntu and the other CentOS. Both of them
will have the Salt minion installed on them and will connect to our mynewmaster
Salt master as opposed to the master on which we're executing the salt-cloud
commands. This means that we could easily create a whole Salt cluster, including
master and minions, from a machine that will not be involved in the final cluster
(for example, our laptop).

The final concept from this map is the grains setting for each VM. This allows us to
set the static grain data on our new minions and can be any data that we choose.

I will leave the experimentation with this map file to you. Use the following
command to execute the map file:

sudo salt-cloud -m /etc/salt/mymastermap.sls

At the end of the run, you'll see data about each of your new VMs. Use the IP
address of your new master to log in to the new master and play with the minions
connected to it. Remember that you can delete all of those new VMs using the
preceding command but with the -d flag instead of the -m flag.

Chapter 7

[141]

Summary
In this chapter, you learned how to use Salt Cloud to make managing your cloud
VMs and adding new Salt minions easy. You learned how to configure the Linode
provider and create VMs that are automatically added to your Salt cluster, and how
to use the map files to make your VM creation more stateful.

In the next chapter, you will learn how to use the event system in Salt to make a
reactive infrastructure.

[143]

The Reactor and the Event
System

In the previous chapter, you learned how to use salt-cloud to manage your
cloud VMs.

In this chapter, you are going to learn how to make your infrastructure reactive
and self-healing using events and the reactor in Salt.

You'll learn about the following things:

•	 The event system built into Salt
•	 How to fire events, both from Salt and from third-party applications
•	 How to create reactions to events

The Salt event system
Events are an integral part of almost everything Salt does. However, for the most
part, these events are designed to be invisible and are designed to work behind the
scenes to provide interprocess communication and make a complex system feel
simple and friendly to the user.

We can also leverage the event system for our own purposes.

Listening for events
Before you learn about reacting to events or firing our own, let's inspect some
of these events that are happening all the time in Salt. A Salt runner function
(state.event) is provided for this purpose.

The Reactor and the Event System

[144]

If we run it with no arguments, it will automatically connect to the master event bus
and print all events that come through that bus:

sudo salt-run state.event

Note that if you don't see any events, the easiest way to create events is by running a
job (such as test.ping) from your master.

Here is the job I ran in one terminal window while state.event was running
in another:

sudo salt '*' test.ping

myminion:

 True

centminion:

 True

Here is an excerpt of the state.event output:

sudo salt-run state.event

salt/job/20160513030202312339/new {"tgt_type": "glob",
"jid": "20160513030202312339", "tgt": "*", "_stamp": "2016-05-
13T03:02:02.312623", "user": "root", "arg": [], "fun": "test.ping",
"minions": ["centminion", "myminion"]}

salt/auth {"_stamp": "2016-05-13T03:07:55.004984", "act":
"accept", "id": "myminion", "pub": "-----BEGIN PUBLIC KEY-----\
nMIIBIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEAtHFZaLGBe71IIbjPyJGe\
n1fx/hTUJNMhT+O/Wh21YzdAN8JdQVgDLpevu+Ww5DoYQHrYnyoxIl94foj35fEak\
nIoL2mA+aWBaAQrV6CI2I/PVMAL8uOOQfypuTQYyqHw9sj2zbGvDAS4zCrw8nUdtS\n1ZbPW
Ja5SwK5Xf3XsQDJFIfrGNAQLvdrvlDIYO8w6pTZgqVudb0cgU6gB2nL7g+y\nkwsXY4Ggzbi
NKVu1I0h8MRZM5bD73+XsesABgNoHuSXnpgRTWgVVrXoYjPhoNHxa\n66snGwK/w0rvEFuyTM
s6WG4+YsmKGRQkB0MdGLglrNpXkb51cAvxKuVVAQFYXQ2C\nUwIDAQAB\n-----END PUBLIC
KEY-----", "result": true}

salt/job/20160513030202312339/ret/myminion {"fun_args": [], "jid":
"20160513030202312339", "return": true, "retcode": 0, "success": true,
"cmd": "_return", "_stamp": "2016-05-13T03:02:02.495713", "fun": "test.
ping", "id": "myminion"}

salt/job/20160513030202312339/ret/centminion {"fun_args": [], "jid":
"20160513030202312339", "return": true, "retcode": 0, "success": true,
"cmd": "_return", "_stamp": "2016-05-13T03:02:02.500055", "fun": "test.
ping", "id": "centminion"}

Chapter 8

[145]

If you look at the first event in the output, you can see that an event was fired
when a new job was created. The event data contains the function that is being run
(test.ping) as well as the arguments for that function, the minions on which the
function will run, and so on.

Events formatted like the second event in the output are fired whenever a minion
reauthenticates with the master. This can happen under a variety of circumstances,
so you will see these types of events frequently on the event bus.

The final two events are the return data for our minions from our test.ping job.
We can see the job ID (jid), the return data (True), and the fact that the job was
successful. This event also contains information about the job that was run, which is
similar to the initial event for a job, including the function and arguments for the job.

Event structure
Events are made up of two major parts. The event tag, which is used to identify the
events, and event data.

As we see in our preceding event output, the tags look something like this:

salt/job/20141127001155262018/ret/myminion

Custom event tags should follow a similar pattern, using slashes to separate the
identifiers—almost like a URL. From left to right, event tags usually get more
specific. So, for the preceding event, we have salt as the first identifier, which is
very general. From there, we have the job identifier, which tells us that this is
job-related. Then, we have the job ID (jid) to tell us which specific job this event
belongs to. Finally, we have ret, which tells us that this is return data, and the name
of the minion returning, myminion.

Our custom tag might look something like this:

salt/custom/mycoolapp/failure

We might fire an event with this tag in the event of a failure within mycoolapp
and could then have Salt respond by fixing the problem, notifying a system
administrator, or performing any number of other tasks.

The second part of each event is the event data. Event data is arbitrary,
JSON-serializable data formatted as a dictionary. We can put whatever data
we want or need in the data field or even leave it blank if we don't need it.

The Reactor and the Event System

[146]

Firing events from Salt
There are a number of ways to fire custom events in Salt. The first, and the easiest,
is to use the event remote execution module. Specifically, we will use event.send,
as follows:

sudo salt '*' sys.doc event.send

event.send:

 Send an event to the Salt Master

...

 CLI Example:

 salt-call event.send myco/mytag foo=Foo bar=Bar

 salt-call event.send 'myco/mytag' '{foo: Foo, bar: Bar}'

...

So, let's use this in conjunction with the salt-call command to run the
remote execution functions on our local minion in order to fire an event to the
master event bus:

sudo salt-call event.send 'salt/custom/mycoolapp/failure' '{"foo":
"bar"}'

local:

 True

In another terminal window, I had state.event running, and here's the event that
was fired to the master:

salt/custom/mycoolapp/failure {"data": {"__pub_fun": "event.send", "__
pub_jid": "20160513030755036183", "foo": "bar", "__pub_pid": 3072, "__
pub_tgt": "salt-call"}, "_stamp": "2016-05-13T03:07:55.046303", "cmd": "_
minion_event", "tag": "salt/custom/mycoolapp/failure", "id": "myminion"}

Perfect! Our custom event came through with the custom data we defined. Note that
we can also see other information about the source of the event, including the source
remote execution module function used, the job ID, and so on.

Chapter 8

[147]

Firing events from custom code
Salt also provides an easy mechanism by which third-party applications and
code can fire events onto the Salt event bus. Here is an example of how to fire
events using Python:

Import the proper library
import salt.utils.event
Create and fire event
sock_dir = '/var/run/salt/master'
payload = {'sample-msg': 'this is a test',
 'example': 'this is the same test'}
event = salt.utils.event.SaltEvent('master', sock_dir)
event.fire_event(payload, 'salt/mycustomtag')

However, this example is a little bit limited in its usefulness as in order for the event
to hit the master event bus, the example code must be run on the master.

It's much more useful to just use the Salt Python API in order to actually run the
remote execution module, event.send, on the minion, as follows:

import salt.client
caller = salt.client.Caller()
caller.function('event.send',
 'salt/mycustomtag',
 {'foo': 'bar'})

When we run this script using Python, here is the event that we see (again, using
state.event in another terminal window):

salt/mycustomtag {"data": {"__pub_fun": "event.send", "__pub_jid":
"20160513031204207780", "foo": "bar", "__pub_pid": 3225, "__pub_tgt":
"salt-call"}, "_stamp": "2016-05-13T03:12:04.216211", "cmd": "_minion_
event", "tag": "salt/mycustomtag", "id": "myminion"}

More information on Salt's Python API can be found online at
http://docs.saltstack.com/en/latest/ref/clients/.

http://docs.saltstack.com/en/latest/ref/clients/

The Reactor and the Event System

[148]

Reacting to events
Now that you've learned how to fire our own custom events, it's time to learn
how to react to those events. To accomplish this, we will use a tool, fittingly
named the reactor.

The reactor is configured in two parts. The first piece is in the master configuration
file and defines which events will trigger which reactor files. The second part consists
of the reactor files themselves, which define the actions to be taken when reacting to
events, and which are similar to the state files.

Here are the lines we will be adding to our master configuration file
(/etc/salt/master):

reactor:
 - 'salt/custom/*':
 - salt://reactor.sls

Note that globbing is used to target multiple events with a single configuration.
Thus, we are now set up so that when the master receives any event that has a tag
that starts with salt/custom/, the master will execute the reactor.sls reactor file
from our Salt files in /srv/salt.

If multiple event matchers are defined, Salt will check them in
order when an event is received, and it will run the reactor files
associated with the first match.

Once you've saved the master configuration file, we will need to restart our master:

sudo service salt-master restart

Now, let's create our reactor file at /srv/salt/reactor.sls:

remove_marker:
 local.cmd.run:
 - tgt: '*'
 - arg:
 - 'rm /tmp/marker'

The syntax here should look familiar as it follows the same basic rules as the state
files. This is a very contrived example, but it will make it easy for us to see that
it's working without inspecting logs. In this example, we tell Salt that whenever
this reactor file is executed, it should run the cmd.run remote execution function,
targeting *, with the 'rm –rf /tmp/marker' argument. We will be able to see that
this file is deleted and thus know that our reactor has executed successfully.

Chapter 8

[149]

Note the local prefix before cmd.run. This prefix is used to tell the reactor that
it will run a remote execution command through Salt's local client. Alternatively,
you can use the runner prefix to tell Salt to execute a runner, such as state.
orchestrate.

Now that we have our reactor configured, we can trigger events and see the
reactor at work. To test our general event reactor, we will create the marker file
that it is configured to delete, then fire a custom event, and then see whether the
file is removed:

sudo salt '*' file.touch /tmp/marker

myminion:

 True

centminion:

 True

sudo salt '*' file.file_exists /tmp/marker

myminion:

 True

centminion:

 True

sudo salt-call event.send 'salt/custom/somecustomevent' '{}'

local:

 True

sudo salt '*' file.file_exists /tmp/marker

myminion:

 False

centminion:

 False

As expected, the file was deleted when we received that event.

Next, we will extend the reactor file to have special behavior for a specific tag.
Again, in /srv/salt/reactor.sls, we will write the following code:

append_tag:
 local.cmd.run:
 - tgt: '*'
 - arg:
 - 'rm -rf /tmp/marker'

The Reactor and the Event System

[150]

{% if data['tag'] == 'salt/custom/mycustomapp/failure' %}
run_a_highstate:
 local.state.highstate:
 - tgt: '*'
 - kwarg:
 pillar:
 trigger_event_tag: {{ data['tag'] }}
{% endif %}

Note the use of Jinja2 in the preceding example. Just as with the state files, we can
use Jinja2 to template our reactor files. We are provided with a data variable in
Jinja2, which contains the data from the event that triggered this reactor file as well
as the tag from the event, which we are using, as shown previously.

With this configuration, we tell Salt that when we receive an event with the specific
tag, salt/custom/mycustomapp/failure, it should run a highstate on all of our
minions. Perhaps we have set up our highstate to heal any failures in our custom
app or perform similar functions. This means that when there is a failure, Salt will
automatically fix the problem. We've also set up the highstate run to contain custom
pillar information—specifically, the tag for the event that triggered the run.

In order to see that this highstate has occurred, we will have to inspect the job cache.
For this purpose, I will use the jobs runner module. The last job in jobs.list_jobs
should be our highstate run:

sudo salt-call event.send 'salt/custom/mycustomapp/failure' '{}'

local:

 True

sudo salt-run jobs.list_jobs

...

20141128051734805456:

 Arguments:

 |_

 __kwarg__:

 True

 pillar:

Chapter 8

[151]

 trigger_event_tag:

 salt/custom/mycustomapp/failure

 Function:

 state.highstate

 StartTime:

 2014, Nov 28 05:17:34.805456

 Target:

 *

 Target-type:

 glob

 User:

 root

Using the job ID from the preceding output, we could easily query the job cache for
the results of the highstate:

sudo salt-run jobs.lookup_jid 20141128051734805456

We now have an infrastructure that can react to problems and changes without our
interference! The uses and power of the reactor are nearly limitless—you could have
it set up to do anything from paging an on-call admin to spinning up new servers
and adding to your cluster. Salt provides the tools to react in just about any way that
you can imagine.

Summary
In this chapter, you learned about the Salt event bus. You learned what events are,
how to fire your own custom events, and how to set up Salt to react to specific events
in specific ways.

In the next chapter, we will explore some best practices to secure your Salt-managed
infrastructure and talk about specific security concerns when using Salt.

[153]

Security Best Practices
in Salt

In the previous chapter, you learned how to use the event system and the reactor in
Salt to make a reactive, dynamic, and auto-healing infrastructure.

In this chapter, you will learn best practices to secure your Salt infrastructure.
You will learn the following topics:

•	 Security configuration options
•	 Key management
•	 Firewall and network configuration

Securing Salt configuration
The default Salt configuration values are designed to be pretty secure. However,
sometimes, new users to Salt change configuration values for convenience,
which could have an adverse effect on the security of your infrastructure.

Master configuration

open_mode and auto_accept
Salt provides the ability to bypass certain authentication protocols for very
secure environments, or for convenience in testing environments. In your master
configuration template, you'll find settings for open_mode and auto_accept:

Enable "open mode", this mode still maintains encryption, but
turns off authentication, this is only intended for highly

Security Best Practices in Salt

[154]

secure environments or for the situation where your keys end up
in a bad state. If you run in open mode you do so at your own
risk!
#open_mode: False

Enable auto_accept, this setting will automatically accept all
incoming public keys from the minions. Note that this is
insecure.
#auto_accept: False

At the first glance, these two settings seem very similar, and in many ways they are.
The open_mode setting tells the master that it should skip the authentication step for
any request. This means that any entity that tries to authenticate with the master will
be accepted. Previously accepted keys under the same minion name will be deleted.

On the other hand, auto_accept tells the master to accept all prospective minions.
However, subsequent requests are authenticated against the public key that was
automatically accepted.

These settings do have their place. If your infrastructure is completely separated
from the Internet, so that no malicious host could possibly contact your master,
these settings can be quite convenient. However, I recommend you always keep
these configuration options set to False for production infrastructures. Security is
never convenient.

file_recv
The next setting we'll be discussing is also a master configuration option,
file_recv:

Allow minions to push files to the master. This is disabled by
default, for security purposes.
#file_recv: False

This setting, if set to True, will allow minions to push files to the master. This can be
very useful for transferring files from one minion to another minion with the master
as the middle man. However, this also opens up a new vector for a malicious or
compromised minion to push infected or malicious files up to the master.

Salt is designed to limit the impact that a malicious or compromised minion can
have on the rest of the infrastructure. Compromised minions will have access to
potentially sensitive data through pillar and will be able to request files from the
master. But by default, the minion's ability to compromise the master itself, and by
doing so compromise the rest of the minions, is very limited. Allowing minions to
push files to the master gives compromised minions a way to attack and potentially
compromise the master.

Chapter 9

[155]

There are use cases for Salt where having the minions push files to the master is very
valuable. Thus, there are times when setting file_recv to True may be worth the
risk. However, for most infrastructures, this setting should remain False.

Peer publishing
Peer publishing is a very cool feature in Salt, which allows minions to publish
commands to other minions. This can be useful when a minion needs to pull
specific live data from another minion for its jobs.

However, this feature is disabled by default:

Salt minions can send commands to other minions, but only if
the minion is allowed to. By default "Peer Publication" is
disabled, and when enabled it is enabled for specific minions
and specific commands. This allows secure compartmentalization
of commands based on individual minions.

The configuration uses regular expressions to match minions and
then a list of regular expressions to match functions. The
following will allow the minion authenticated as
foo.example.com to execute functions from the test and pkg
modules.
#peer:
foo.example.com:
- test.*
- pkg.*

This will allow all minions to execute all commands:
#peer:
.*:
- .*
#
This is not recommended, since it would allow anyone who gets
root on any single minion to instantly have root on all of the
minions!

Enabling this feature is not inherently insecure. However, you should restrict peer
publishing access to only the minions that need to execute the jobs and the specific
execution module functions they need to execute. Remember that a compromised
minion, which has been whitelisted for peer publishing, will be able to execute
those commands on all other minions! The whitelisted commands can be used for
destructive purposes, and an intruder could do a lot of damage.

Security Best Practices in Salt

[156]

In the previously mentioned comments, it is noted that you should not whitelist
all commands for all minions. You should also not whitelist generic execution
module functions, such as cmd.run. An intruder could use a function like this
to run arbitrary commands on all your other minions, with root privileges!

Peer publishing is a useful feature, but should be configured with care. You should
only allow minions to execute the exact execution module functions they need via
peer publishing and should avoid execution module functions, which allow arbitrary
command execution such as cmd.run.

Minion configuration
master_finger
In addition to the master configuration settings, there are ways to use the minion
configuration to secure your infrastructure as well. The primary configuration value
we will explore is master_finger, as follows:

Fingerprint of the master public key to validate the
identity of your Salt master before the initial key
exchange. The master fingerprint can be found by running
"salt-key -F master" on the Salt master.
#master_finger: ''

The discussion of this configuration value overlaps with our discussion of key
management, which is to follow. If you set this configuration value to an RSA public
key fingerprint, the minion will only connect to a master if its public key matches
the fingerprint configured here. This is very useful for preventing your minion from
trusting a malicious box that is masquerading as the master for your infrastructure.
Once a minion trusts a master, it will give that master the equivalent of full root access
to itself. Preconfiguring the trusted master key will make it harder for an attacker to
execute a man-in-the-middle attack against your minion on the first connection.

Key management
Key management is another area of Salt with a vast range of convenience/security
trade-offs. For convenience, Salt does not require you to manually transfer the keys
between masters and minions in order for authentication to occur. Instead, the
minion will contact the master, and the master will cache the minion's public RSA
key, awaiting manual approval.

Often, if we just created the minion in question and a minion of that name appears in
the master's key list, we can assume with some degree of certainty that the key we're
accepting is the key of the minion we just created.

Chapter 9

[157]

However, it's possible that a malicious party could have contacted the master under
the same name. In this case, we would be accepting a key from a malicious party,
who would now be able to retrieve data to which they should not have access.

Such an attack is unlikely. It would be very hard to execute, as it's a small attack
window, and the attacker would need to know the name of the minion being created.
However, in a secure production environment, it may be important to ensure the
identity of this minion.

Preseeding the minion keys
Perhaps the most secure way of ensuring the identity of minions is to handle all key
generation and exchange yourself, manually.

There is a documentation page dedicated to this process, located at
https://docs.saltstack.com/en/latest/topics/tutorials/
preseed_key.html.

Rather than allowing the minion to generate its own key and present it to the master,
we will just generate the keys on the master and deploy them to the minion before
ever starting the minion.

To generate a key named myminion, we use the following command on the master:

sudo salt-key --gen-keys=myminion

ls

myminion.pem myminion.pub

To preaccept this key on the master, we just must copy the public key to the accepted
minions directory:

sudo cp myminion.pub /etc/salt/pki/master/minions/

Then, you should transfer the private and public keys to the minion machine. We
recommend using scp for this purpose. Once the keys are on the minion, we just
need to put them in place in the minion's key directory:

sudo cp myminion.pub /etc/salt/pki/minion/minion.pub

sudo cp myminion.pem /etc/salt/pki/minion/minion.pem

ls -l /etc/salt/pki/minion

total 8

-r-------- 1 root root 1674 May 3 00:06 minion.pem

-rw-r--r-- 1 root root 450 May 3 00:06 minion.pub

https://docs.saltstack.com/en/latest/topics/tutorials/preseed_key.html
https://docs.saltstack.com/en/latest/topics/tutorials/preseed_key.html

Security Best Practices in Salt

[158]

Note that the filename of the keys is important. On the master, the filename should
match the ID of the minion. On the minion, the keys should be named minion.pem
and minion.pub.

In the preceding command, you can also see that the permissions on the files are
correct. The permissions on the public key are not very important, but it is very
important that the permissions on the private key (myminion.pem) are restricted.
That key has all the information a malicious party would need to authenticate with
the master and retrieve all the secure pillar data for that minion. I recommend that
the key be owned by root with 600 permissions.

Once the keys are in place on both the minion and the master, the minion will be able
to authenticate with the master without any manual key acceptance, using salt-key.

Preseeding the master key
In the previous section, you learned about the minion configuration value,
master_finger. This configuration value is the fingerprint for the RSA public
key for the master and ensures that a minion only connects to the trusted master.

However, you can take this a step further by preseeding the master public key on
the minion.

The master public key is located on the master at /etc/salt/pki/master/master.
pub. You should transfer this key to the minion using scp or a similar utility and
then copy it into a place in the minion's key directory:

sudo cp master.pub /etc/salt/pki/minion/minion_master.pub
ls -l /etc/salt/pki/minion
total 12
-rw-r--r-- 1 root root 450 May 3 00:27 minion_master.pub
-r-------- 1 root root 1674 May 3 00:26 minion.pem
-rw-r--r-- 1 root root 450 May 3 00:26 minion.pub

Note that the filename is important here as well. The master's key must be named
minion_master.pub.

With this file in place, the minion will only connect to the master that has the
matching private key to go along with the public key we just put in place. In fact,
if a minion tries to connect to a master that doesn't match its cached public key,
here's what will happen:

sudo salt-minion
[ERROR] The master key has changed, the salt master could have been
subverted, verify salt master's public key

[CRITICAL] The Salt Master server's public key did not authenticate!

Chapter 9

[159]

The master may need to be updated if it is a version of Salt lower than
2015.8.5, or

If you are confident that you are connecting to a valid Salt Master, then
remove the master public key and restart the Salt Minion.

The master public key can be found at:

/etc/salt/pki/minion/minion_master.pub

[ERROR] Minion failed to start

Verifying with key fingerprints
Preseeding keys is the most thorough way to be sure that a minion and master are
authentic. It's also a process that is fairly straightforward to automate.

However, as with most secure processes, it is inconvenient. Luckily, we can verify
the minion/master identity using RSA key fingerprints instead. This will give us
most of the security benefits while eliminating some of the inconvenience.

Master fingerprint
We previously discussed the master_finger minion configuration option.
Salt provides a really easy way to retrieve the fingerprint:

root@vagrant-ubuntu-trusty-64:~# salt-key -F

Local Keys:

master.pem: 20:f3:30:07:e9:1d:d0:83:56:5b:35:fb:a6:d0:8a:2a

master.pub: 91:0a:e7:fb:37:40:5f:4a:6e:12:e0:c4:0a:8d:db:bb

Accepted Keys:

myminion: d5:a8:47:03:ed:8d:94:e5:d7:34:22:2c:ad:96:1e:52

The Local Keys section is the one that interest us, specifically the public key.
This fingerprint is the one we want to put in our minion configuration:

master_finger: 91:0a:e7:fb:37:40:5f:4a:6e:12:e0:c4:0a:8d:db:bb

Now, the minion will only authenticate with a master whose public key matches this
signature (and obviously whose private key matches this public key).

If the fingerprint doesn't match, the minion should fail to start in much the same way
as it does when the cached public key doesn't match.

Security Best Practices in Salt

[160]

If you're following along with the 2015.8.5 version I used for the examples
in this book, you'll see that there's a bug: the minion stacktraces, rather
than failing gracefully:
salt-minion
[ERROR] Exception in callback <functools.partial
object at 0x7fbb68467158>
Traceback (most recent call last):
 File "/usr/local/lib/python2.7/dist-packages/tornado/
ioloop.py", line 600, in _run_callback
 ret = callback()
 File "/usr/local/lib/python2.7/dist-packages/tornado/
stack_context.py", line 275, in null_wrapper
 return fn(*args, **kwargs)
 File "/usr/local/lib/python2.7/dist-packages/tornado/
ioloop.py", line 615, in <lambda>
 self.add_future(ret, lambda f: f.result())
 File "/usr/local/lib/python2.7/dist-packages/tornado/
concurrent.py", line 232, in result
 raise_exc_info(self._exc_info)
 File "/usr/local/lib/python2.7/dist-packages/tornado/
gen.py", line 1014, in run
 yielded = self.gen.throw(*exc_info)
 File "/usr/lib/python2.7/dist-packages/salt/crypt.py",
line 433, in _authenticate
 creds = yield self.sign_in()
 File "/usr/local/lib/python2.7/dist-packages/tornado/
gen.py", line 1008, in run
 value = future.result()
 File "/usr/local/lib/python2.7/dist-packages/tornado/
concurrent.py", line 232, in result
 raise_exc_info(self._exc_info)
 File "/usr/local/lib/python2.7/dist-packages/tornado/
gen.py", line 1017, in run
 yielded = self.gen.send(value)
 File "/usr/lib/python2.7/dist-packages/salt/crypt.py",
line 563, in sign_in
 self._finger_fail(self.opts['master_finger'], m_pub_
fn)
AttributeError: 'AsyncAuth' object has no attribute '_
finger_fail'
^C
Hopefully, in the current version of Salt, this bug will be fixed.

Chapter 9

[161]

Minion fingerprints
You can also use fingerprints to verify minions before accepting their keys on the Salt
master using salt-key. We hit on this briefly in Chapter 1, Diving In – Our First Salt
Commands, when we accepted our minion's key, but we'll go over it here as well
as a review.

You'll remember that when we first connect a minion to the master, its key is cached
in the master's Unaccepted Keys section:

salt-key

Accepted Keys:

Denied Keys:

Unaccepted Keys:

myminion

Rejected Keys:

To view that cached key's fingerprint, we can use salt-key -f:

salt-key -f myminion

Unaccepted Keys:

myminion: d5:a8:47:03:ed:8d:94:e5:d7:34:22:2c:ad:96:1e:52

Now we need to go to the minion in question and view its fingerprint:

sudo salt-call --local key.finger

local:

 d5:a8:47:03:ed:8d:94:e5:d7:34:22:2c:ad:96:1e:52

Once we compare the keys and see that they match, we can accept the key for that
minion without worry:

salt-key -a myminion

The following keys are going to be accepted:

Unaccepted Keys:

myminion

Proceed? [n/Y] Y

Key for minion myminion accepted.

This process is less convenient, but it ensures that a rogue minion is never accepted
into your infrastructure and given access to secrets and proprietary information.
As always, it's a trade-off between convenience and security. Only you can judge
the security needs of your infrastructure.

Security Best Practices in Salt

[162]

Firewall and network configuration
Finally, a short word on firewall and network configuration.

Salt is designed so that ports only need to be opened on the Salt master. This is
convenient as the firewall settings only need to be modified on one machine. (Refer
to Chapter 1, Diving In – Our First Salt Commands, for instructions on how to open the
necessary ports on the master.)

However, this also means that we're opening ports on the most critical piece of
our infrastructure. If our Salt master is compromised, the attacker could gain the
equivalent of root access across our entire infrastructure!

Because of this single point of failure, it is recommended that your master should not
be open to the public Internet, if possible. This is much less convenient, as external
minions must be connected to the Salt master's private network (usually via a VPN),
but makes it astronomically more difficult for an attacker to access the master.

If the master must be connected to the Internet at large, other failsafes can be put
into place. For example, you might configure the firewall to only accept traffic from
known minion IP addresses or subnets.

The takeaway here is that the Salt master is a powerful tool, but in the wrong hands,
it becomes a terrible liability. Protect it!

Summary
In this chapter, you learned some best practices in order to secure your SaltStack
infrastructure and some of the security concerns that accompany the convenience
of a tool as powerful as Salt.

In the next chapter, you'll learn how to get involved with the open source
Salt project.

[163]

How Can I Get Involved?
In the previous chapter, you learned some best practices to secure your
SaltStack infrastructure.

In this chapter, you're going to learn more about the Salt open source project and
how you can get involved.

You'll learn about the following things:

•	 How to create an account on GitHub
•	 How to find issues that need to be fixed in Salt
•	 How to clone the Salt repository and make changes to the code
•	 Some basic Git commands
•	 How to create a pull request
•	 How to get involved on the community mailing list and IRC

Contributing code using GitHub
GitHub is a website created to make open source software development easier. Most
of the open source projects on the Internet are hosted on GitHub. This includes the
code for the Salt open source project.

GitHub allows anyone to clone the repository for a project and make changes, and
then propose that these changes be included in the main repository for the project.

How Can I Get Involved?

[164]

Creating an account on GitHub
The first step is to create an account. Navigate to https://github.com, where you'll
see the signup page:

Pick a username, e-mail, and password, and click on Sign Up for GitHub.

The project
Once you sign into your new account, you can check out the Salt project! It's located
at https://github.com/saltstack/salt:

https://github.com
https://github.com/saltstack/salt

Chapter 10

[165]

Here, you can browse the code for the project, view the outstanding feature
requests and bugs in the Issues view, browse the project wiki, view Salt releases,
and much more.

Since we're looking to contribute, a good starting place is the Issues view, which you
can see in the following screenshot:

How Can I Get Involved?

[166]

Salt is a large project, with many open issues. It can be a bit overwhelming if you
don't know what you're looking for.

Luckily, GitHub supports labels, which the SaltStack project maintainers use liberally
to allow for easier perusal of the issue list.

A list of the available labels and their meanings can be found in the SaltStack docs at
https://docs.saltstack.com/en/latest/topics/development/labels.html.
The label we're interested in right now is the Help Wanted label.

As the doc linked here states, Help Wanted is a label for simple issues that may be a
good fit for a new contributor to the project.

By using the controls along the top of the Issues view, we can sort by this label:

With the new shorter list of issues, we can look for an issue we're equipped to fix.
Find a promising issue and click on it to see the details:

https://docs.saltstack.com/en/latest/topics/development/labels.html

Chapter 10

[167]

Getting the code
Now that we have an issue that we want to fix, we need to get the code. The first step
is to Fork the Salt repository into our own repository in our GitHub account:

Now we have our own copy of the Salt code in our account, and we need to clone it
to our machine.

How Can I Get Involved?

[168]

GitHub is built on top of the version control software Git. Git is a subject big enough
for many books, but my favorite primer on the software is the official book Pro Git by
Scott Chacon, which is freely available on the Git website (https://git-scm.com/
book/en/v2).

However, even if you don't have any experience with Git, you should be able to
follow along with these steps:

1.	 First, grab the HTTPS clone URL from GitHub:

2.	 Then, navigate to a suitable directory in your terminal and clone the
repository to your local machine. Make sure that you replace the URL
in the clone command with the URL you copied from GitHub:
cd src

git clone https://github.com/basepi/salt.git

Cloning into 'salt'...

remote: Counting objects: 360894, done.

remote: Compressing objects: 100% (23/23), done.

remote: Total 360894 (delta 15), reused 4 (delta 4), pack-reused
360867

Receiving objects: 100% (360894/360894), 151.73 MiB | 773.00
KiB/s, done.

Resolving deltas: 100% (263751/263751), done.

Checking connectivity... done.

cd salt

ls

https://git-scm.com/book/en/v2
https://git-scm.com/book/en/v2

Chapter 10

[169]

AUTHORS MANIFEST.in pkg tests

COPYING README.rst requirements tox.ini

Contributing.rst conf salt

HACKING.rst debian scripts

LICENSE doc setup.py

3.	 We also want to make sure that we can always get the most up-to-date code
from the official Salt repository, so we're going to tie our local copy to that
upstream code by creating a new remote:

git remote add upstream https://github.com/saltstack/salt

git fetch upstream

remote: Counting objects: 10954, done.

remote: Compressing objects: 100% (8/8), done.

remote: Total 10954 (delta 4824), reused 4829 (delta 4824), pack-
reused 6122

Receiving objects: 100% (10954/10954), 4.30 MiB | 937.00 KiB/s,
done.

Resolving deltas: 100% (8212/8212), completed with 1335 local
objects.

From https://github.com/saltstack/salt

 * [new branch] 0.11 -> upstream/0.11

 * [new branch] 0.12 -> upstream/0.12

 * [new branch] 0.13 -> upstream/0.13

 * [new branch] 0.14 -> upstream/0.14

 * [new branch] 0.15 -> upstream/0.15

 * [new branch] 0.16 -> upstream/0.16

 * [new branch] 0.17 -> upstream/0.17

 * [new branch] 2014.1 -> upstream/2014.1

 * [new branch] 2014.7 -> upstream/2014.7

 * [new branch] 2015.5 -> upstream/2015.5

 * [new branch] 2015.8 -> upstream/2015.8

 * [new branch] 2016.3 -> upstream/2016.3

 * [new branch] develop -> upstream/develop

 * [new tag] v2014.1 -> v2014.1

 * [new tag] v2014.1.0 -> v2014.1.0

...

How Can I Get Involved?

[170]

Perfect. Our local development environment is ready. Now we just need to code the
solution to our issue!

Contributing a fix
Salt has multiple development branches for concurrently maintained releases.
This can make it difficult to figure out where a fix should be submitted. Luckily, the
project maintainers provide guidance on this at https://docs.saltstack.com/en/
latest/topics/development/contributing.html#which-salt-branch.

If you're not sure whether your fix is a bug or a feature, you can usually use the
labels on the issue as a guide. The example issue we're working on in this chapter
is a feature request, so we want to submit our fix on the develop branch.

However, we don't want to code on our local develop branch. Instead, we want to
create a new branch for each fix we make, so we can keep them separate and work
on multiple fixes concurrently. Let's create a new branch for our fix, based on the
upstream develop branch:

git fetch upstream

git branch issue_16196 upstream/develop

Branch issue_16196 set up to track remote branch develop from upstream.

git checkout issue_16196

Previous HEAD position was b9d0336... Merge pull request #31964 from
jfindlay/2015.8

Switched to branch 'issue_16196'

Your branch is up-to-date with 'upstream/develop'.

Now we can make our changes.

Committing our changes
We can see that we have changes pending when we use the git status command:

git status

On branch issue_16196

Your branch is up-to-date with 'upstream/develop'.

Changes not staged for commit:

 (use "git add <file>..." to update what will be committed)

 (use "git checkout -- <file>..." to discard changes in working
directory)

https://docs.saltstack.com/en/latest/topics/development/contributing.html#which-salt-branch
https://docs.saltstack.com/en/latest/topics/development/contributing.html#which-salt-branch

Chapter 10

[171]

 modified: salt/client/ssh/__init__.py

 modified: salt/config/__init__.py

no changes added to commit (use "git add" and/or "git commit -a")

We can see the changes themselves with the git diff command (output truncated):

git diff

diff --git a/salt/client/ssh/__init__.py b/salt/client/ssh/__init__.py

index f626858..d66e585 100644

--- a/salt/client/ssh/__init__.py

+++ b/salt/client/ssh/__init__.py

@@ -217,14 +217,18 @@ class SSH(object):

 # If we're in a wfunc, we need to get the ssh key location from
the

 # top level opts, stored in __master_opts__

 if '__master_opts__' in self.opts:

- priv = self.opts['__master_opts__'].get(

- 'ssh_priv',

- os.path.join(

- self.opts['__master_opts__']['pki_dir'],

- 'ssh',

- 'salt-ssh.rsa'

+ if self.opts['__master_opts__'].get('ssh_use_home_key') and
\

+ os.path.isfile(os.path.expanduser('~/.ssh/id_rsa')):

+ priv = os.path.expanduser('~/.ssh/id_rsa')

+ else:

+ priv = self.opts['__master_opts__'].get(

+ 'ssh_priv',

+ os.path.join(

+ self.opts['__master_opts__']['pki_dir'],

+ 'ssh',

+ 'salt-ssh.rsa'

+)

)

-)

...

How Can I Get Involved?

[172]

Now we need to make these changes official by committing them. We do this by
using the git commit command:

git commit -a
[issue_16196 9223f8e] Add a salt-ssh config to use homedir RSA keys
 2 files changed, 30 insertions(+), 14 deletions(-)

The preceding command tells Git to commit all changes to the files that Git is already
tracking. When you run the command, Git will open your default editor and ask
for a commit description. The first line of this description should be a short and
sweet description of the changes, and a more verbose description can follow in
the subsequent lines:

Once you save and exit your editor, Git will confirm that the changes
were committed.

Pushing the changes and creating a pull
request
Now that we have the committed changes on our local machine, we need to create a
pull request in order to get our changes included in the upstream repository.

The pull request model may seem foreign at first, but it is integral to the process
of developing open source software today. It allows anyone to propose changes to
software, but allows the maintainers of the software to choose the fixes that actually
make it into the code.

Chapter 10

[173]

This is why we needed to create our own fork of the source code. In our fork,
we can push whatever code we want and then request that our code be merged
into the upstream repository.

We do this with the git push command:

git push origin issue_16196
Username for 'https://github.com': basepi
Password for 'https://basepi@github.com':
Counting objects: 5579, done.
Delta compression using up to 8 threads.
Compressing objects: 100% (2173/2173), done.
Writing objects: 100% (5579/5579), 1.14 MiB | 1.13 MiB/s, done.
Total 5579 (delta 4440), reused 4465 (delta 3364)
To https://github.com/basepi/salt.git
 * [new branch] issue_16196 -> issue_16196

If you're using two-factor authentication, you'll need to generate a
token to use as a password in order to push to GitHub over HTTPS.
Alternatively, you can use the ssh keys.

Now our branch is available on our fork of the Salt repository on GitHub. We can
view this branch using the Branch selection dropdown:

How Can I Get Involved?

[174]

Once we are viewing the branch we just pushed, we can easily open a pull request
against the upstream repository using the New pull request button:

The very first thing you should do once you see the pull request creation view
is make sure that you're submitting the pull request against the correct branch.
Earlier in this chapter, we determined that we wanted to submit our fix against
the develop branch:

Chapter 10

[175]

The Salt repository makes use of the pull request templates, so you'll note that
there is a bunch of information already in the description box. Make sure that you
give your pull request a descriptive title line and fill in the various sections of the
description to give the maintainers as much information about your changes as
possible. Then, click on Create pull request.

Now that your pull request has been created, the automated test will run. Watch the
test area for the results:

If there are failures, click on the details and see whether you can figure out where the
failures are coming from. If you are unable to track the failures down, don't panic!
The maintainers are very helpful and should be able to help you get things in order.

Make sure that you keep an eye on your pull request. In addition to test failures, the
maintainers may have additional feedback you should follow. Once everything is in
place, hopefully your fix will be merged, and you'll be an official contributor to Salt!

How Can I Get Involved?

[176]

Other ways to get involved
Contributing code is not the only way to get involved in the Salt community.
There are a few other ways that I want to talk about briefly:

•	 Salt-users mailing list
•	 #salt on freenode IRC
•	 #saltstack on the hangops Slack

Salt-users mailing list
The Salt-users mailing list is actually just a Google group. Head to https://groups.
google.com/forum/#!forum/salt-users, where you can easily join the open
group. Sign into your Google account (create one if necessary) and then click on
Join group to post:

At this point, you'll have to make some decisions about how you want to receive
e-mails from the group:

https://groups.google.com/forum/#!forum/salt-users
https://groups.google.com/forum/#!forum/salt-users

Chapter 10

[177]

If you want to browse the group in the forum view online, you can choose to
receive no e-mail updates. Alternatively, you can receive every update as it comes
in or choose to receive summary updates to reduce the total number of e-mails you
receive. Once you have your settings the way you like them, click on Join this group.

Now you send e-mail to the group by e-mailing salt-users@googlegroups.
com or using the New Topic and Reply buttons on the web view. Remember that
most of the users on the mailing list are volunteers, so you may have to be patient
when waiting for solutions to the problems you post. As with any public forum, be
courteous and respectful to the other members of the community. Jump in and ask or
answer some questions!

#salt on freenode IRC
Much of the conversation around Salt happens on IRC. You can use your favorite
IRC client to connect to http://irc.freenode.net/ and join the #salt channel.

http://irc.freenode.net/

How Can I Get Involved?

[178]

Alternatively, if you're not comfortable or familiar with IRC, you can just use
the web client. Head to http://webchat.freenode.net/?channels=salt and
choose a nickname for the Nickname field. Click on the I'm not a robot checkbox
and Connect:

Be patient as it logs in and sets up your web client. Eventually, you'll see the #salt
channel, where you can chat with other users and ask and answer questions:

As the topic for the channel notes, most of the people on that channel are volunteers
and may not answer immediately. Stay connected and be patient!

http://webchat.freenode.net/?channels=salt

Chapter 10

[179]

#saltstack on the hangops Slack
Salt also has a channel on the popular hangops Slack. Slack is a messaging app for
teams, and it works a lot like IRC, but with a more modern interface. You can sign
up for an account with the hangops Slack team by navigating to https://signup.
hangops.com:

You will receive an e-mail invite to join the team. Follow the instructions, and
eventually you'll be able to log on to the chat interface. Click on the CHANNELS
heading and search for #saltstack to join the channel:

https://signup.hangops.com
https://signup.hangops.com

How Can I Get Involved?

[180]

Now you can chat with other users of Salt in much the same way as IRC. Slack has
unique advantages, such as the ability to read messages that were sent while you
weren't connected.

However, there are fewer people on the #saltstack hangops channel than there are
on the #salt IRC channel, so be patient when asking questions, and you will receive
a response.

Summary
In this chapter, you learned about how to get involved with the Salt project. You
learned how to contribute to source code, including finding issues to work on,
committing code using Git, and opening pull requests. You also learned how
to get involved socially by using the mailing list, IRC, and Slack.

This also brings us to the end of this book! You now have the skills to use Salt to
begin solving problems in your own infrastructure. Remember that you can always
find more documentation and information online at http://docs.saltstack.com/
en/latest/.

The open source Salt project is sponsored and managed by SaltStack, Inc. Find more
information about the enterprise support and products at http://www.saltstack.
com.

http://docs.saltstack.com/en/latest/
http://docs.saltstack.com/en/latest/
http://www.saltstack.com
http://www.saltstack.com

[181]

Index
Symbols
_in requisites 84
#salt, on freenode IRC 177, 178
#saltstack, on the hangops Slack 179, 180

A
apache2 90-98

C
code contribution

about 163
changes, committing 170-172
changes, pushing 172-175
code, obtaining 167-170
fix, contributing 170
GitHub account, creating 164
pull request, creating 172-175
Salt project 164-166

compound matching 32-34
configuration management system, Salt 2

E
environments, highstate

about 113-115
working, in pillar system 115

events
firing, from custom code 147
firing, from Salt 146
listening for 143-145
reacting to 148-151

execution modules
__opts__ function 52-54
__pillar__ function 52-54
__virtual__function 50, 51
about 45-47
advanced example 57-61
cross-calling 48, 49
grains 50, 51
return data, reformatting 54-57

F
firewall 162
Fully Qualified Domain Name (FQDN) 11

G
Git

about 168
states, storing with GitFS 120, 121

GitFS
reference link 120
used, for storing states in Git 120, 121

GitHub
about 163
URL 164
using, for contributing code 163

glob matching 23-25
grain and pillar matching 27
grains

using 27-31
groups of VMs

managing, with map files 136-138

[182]

H
hangops

about 179
URL 179

highstate
about 109-112
base environment, expanding 116-119
environments 112

httpd 90-98

I
installation, Salt

installation, with Salt Bootstrap 7
installation, with system

packages (CentOS 6) 3, 4
installation, with system

packages (Ubuntu) 3
installation, with system

packages (Windows) 4-7
performing 2

iptables 9
IRC client

about 178
URL 177

J
Jinja2 89

K
key fingerprints, verifying with

about 159
master fingerprint 159, 160
minion fingerprint 161

key management
about 156
key fingerprints, verifying with 159
master key, preseeding 158
minion keys, preseeding 157, 158

L
Linode

API key, creating 125, 126
reference link 124
setting up 124, 125

list matching 26

M
map files

used, for creating new masters 139, 140
used, for managing groups of VMs 136-138

master configuration, Salt configuration
auto_accept 153, 154
file_recv 154
open_mode 153, 154
peer publishing 155

master fingerprint 159
master key, key management

preseeding 158
masterless Salt 16, 17
minion

adding 87, 88
minion configuration, Salt configuration

master_finger 156
minion fingerprints 161
minion keys, preseeding

URL 157

N
network configuration 162

P
Perl-compatible regular expressions (PCRE)

matching 25, 26
pillar data

using, in states 103-107
pillars

using 32

[183]

pillar system 99
ping pong game 13-15
Python

URL 45

R
remote execution command structure

about 19, 20
command-line options 20-22
modules and functions 34, 35
strings, targeting 23

remote execution modules and functions
about 34, 35
arbitrary commands, running 42, 43
minion states, monitoring 41, 42
packages, installing 37-39
services, managing 40
users, adding 36

remote execution system, Salt 2
requisites

about 72
used, for dependencies 72

requisites, state system
_in requisites 84
onchanges requisite 83
onfail requisite 83
other requisites 83
prereq requisite 83
require requisite 72, 74
URL 84
use requisite 84
watch requisite 75-83

ReStructured Text (RST) 46

S
Salt

about 1
configuration management 2
configuring 9
installing 2
remote execution 2

Salt master 1
Salt minion 1
States 2

Salt Bootstrap
about 2
reference 2
script installation 7

Salt Cloud
about 123, 124
documentation, reference link 126
Linode, setting up 124
machines, creating 131-134
machines, destroying 131-134
provider configuration, creating 126-130
setting up 123
VM profiles, creating 131

Salt configuration
about 9, 153
firewall configuration 9
minion key, accepting on master 11, 12
Salt master and Salt minion, starting 11
Salt minion configuration 10, 11
securing 153

Salt documentation
URL 52

Salt event system
about 143
event data 145
events, listening for 143, 144
event structure 145
event tag 145

Salt project
about 165, 166
URL 165

Salt's Python API
reference link 147

SaltStack 166
Salt-users mailing list

about 176, 177
URL 176

secure minion-specific data
defining, in pillar 99-103

[184]

state system
apache2, running 69-71
first state, writing 63-66
state declaration 68, 69

strings, targeting
about 23
compound matching 32-34
glob matching 23, 24
grain and pillar matching 27
list matching 26
Perl-compatible regular

expressions (PCRE) matching 25, 26

W
watch requisite 75-83

Y
Yet Another Markup Language (YAML)

about 64
URL 64

	Cover

	Copyright
	Credits
	About the Author
	About the Reviewer
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Diving In – Our First
Salt Commands

	Introducing Salt
	Installing Salt
	Installation with system packages (Ubuntu)
	Installation with system packages (CentOS 6)
	Installation with system packages (Windows)
	Installing with Salt Bootstrap

	Configuring Salt
	Firewall configuration
	Salt minion configuration
	Starting the Salt master and Salt minion
	Accepting the minion key on the master

	A game of ping pong
	Masterless Salt
	Summary

	Chapter 2: Controlling Your Minions with Remote Execution

	The structure of a remote execution command
	Command-line options
	Targeting strings
	Glob matching
	Perl-compatible regular expression matching
	List matching
	Grain and pillar matching
	Compound matching

	Remote execution modules and functions
	Adding users
	Installing packages
	Managing services
	Monitoring minion states
	Running arbitrary commands

	Summary

	Chapter 3: Execution Modules – Write Your Own Solution

	Exploring the source
	Cross-calling execution modules
	Grains and the __virtual__ function
	The__opts__ and __pillar__ functions
	Reformatting return data

	An advanced example
	Summary

	Chapter 4: Defining the State of Your Infrastructure

	Our first state
	The pieces of a state declaration
	Expanding to encompass multiple pieces of state
	Dependencies using requisites
	The require requisite
	The watch requisite
	Other requisites
	The _in requisites

	Summary

	Chapter 5: Expanding Our States with Jinja2 and Pillar

	Adding a new minion
	Jinja2
	apache2 or httpd?

	Defining secure minion-specific data
in pillar
	Using pillar data in states

	Summary

	Chapter 6: The Highstate and Environments

	The highstate
	Environments
	Environments in pillar

	Expanding our base environment

	Storing our states in Git with GitFS
	Summary

	Chapter 7: Using Salt Cloud to Manage Virtual Minions

	Setting up Salt Cloud
	Setting up Linode
	Creating an API key

	Creating a cloud provider configuration
	Creating cloud VM profiles
	Creating and destroying machines

	Managing groups of VMs with map files
	Creating new masters with the map files

	Summary

	Chapter 8: The Reactor and the Event System

	The Salt event system
	Listening for events
	Event structure

	Firing events from Salt
	Firing events from custom code

	Reacting to events
	Summary

	Chapter 9: Security Best Practices
in Salt

	Securing Salt configuration
	Master configuration
	open_mode and auto_accept
	file_recv
	Peer publishing

	Minion configuration
	master_finger

	Key management
	Preseeding the minion keys
	Preseeding the master key
	Verifying with key fingerprints
	Master fingerprint
	Minion fingerprints

	Firewall and network configuration
	Summary

	Chapter 10: How Can I Get Involved?

	Contributing code using GitHub
	Creating an account on GitHub
	The project
	Getting the code
	Contributing a fix
	Committing our changes
	Pushing the changes and creating a pull request

	Other ways to get involved
	Salt-users mailing list
	#salt on freenode IRC
	#saltstack on the hangops Slack

	Summary

	Index

