
www.allitebooks.com

http://www.allitebooks.org

Learning TypeScript

Exploit the features of TypeScript to develop and
maintain captivating web applications with ease

Remo H. Jansen

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Learning TypeScript

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: September 2015

Production reference: 1230915

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78398-554-8

www.packtpub.com

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

Credits

Author
Remo H. Jansen

Reviewers
Liviu Ignat

Jakub Jedryszek

Andrew Leith Macrae

Brandon Mills

Ivo Gabe de Wolff

Commissioning Editor
Amarabha Banerjee

Acquisition Editor
Manish Nainani

Content Development Editor
Kirti Patil

Technical Editor
Vivek Arora

Copy Editor
Puja Lalwani

Project Coordinator
Nidhi Joshi

Proofreader
Safis Editing

Indexer
Rekha Nair

Graphics
Jason Monteiro

Production Coordinator
Manu Joseph

Cover Work
Manu Joseph

www.allitebooks.com

http://www.allitebooks.org

About the Author

Remo H. Jansen is a web development engineer, open source contributor,
entrepreneur, technology lover, gamer, and Internet enthusiast.

He is originally from Seville, Spain, but currently lives in Dublin, Ireland, where
he has a full-time job in the financial services industry. Remo has been working
on large-scale JavaScript applications for the last few years, from flight booking
engines to investment and portfolio management solutions.

Remo is an active member of the TypeScript community. He is the organizer of
the Dublin TypeScript Meet-up and the creator of InversifyJS (an inversion of
control container for TypeScript applications) and AtSpy (a test spies framework
for TypeScript applications). He also writes a blog about TypeScript and other
web technologies at http://blog.wolksoftware.com/.

Remo has previously worked as a technical reviewer on Mastering TypeScript
written by Nathan Rozentals and published by Packt Publishing.

If you wish to contact him, you can do so at http://www.remojansen.com/.

www.allitebooks.com

http://blog.wolksoftware.com/
http://www.remojansen.com/
http://www.allitebooks.org

Acknowledgments

This is my first book. It has been a really long journey to get to this day, and, along
the way, I had the pleasure of learning a lot from some amazing people who deserve
a big thank you.

I would like to start by thanking my teachers from the school of computer science at
Salesians of St. Peter in Triana (Seville, Spain) because they made me appreciate the
value of education.

To the team at Packt Publishing for their support and hard work; it has been an
absolute pleasure to work with you guys.

To the technical reviewers of this book, because their invaluable feedback and hard
work really helped to improve the contents of this book.

To my work colleagues and housemates, Sergio Pacheco Jimenez and Adolfo Blanco
Diez, for the long technical conversations at midnight and the constant supply of
caffeinated beverages.

To my girlfriend, Lorraine, I'm so privileged for your unconditional support and
patience. You are simply the best and keep getting better.

Finally, to my family, for always believing in me, for your advice, for being the best
listeners, for all your hard work, for forgiving my mistakes, and for all that you have
taught me. Thanks for the laughs and thanks for the tears, I'm really proud of being
your grandson, son, and brother.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Liviu Ignat is a full-stack developer and architect, technology geek, and
entrepreneur, and has been writing commercial software since 2004. He started
with VB6, soon moved to .NET Java and then continued moving to frontend web
development. He has fun with everything that is a functional language, such as F#,
Scala, Swift, JavaScript, and so on. He has been using Typescript for some of his latest
projects together with Node.js on the server or with most of the popular frontend
frameworks on the client side.

Currently, he is also involved in a number of projects, the most relevant being
http://giftdoodle.com/, where he is the CTO of the company, where most of the
JavaScript software stack written is also Typescript. During his work experience, he
has been involved in building distributed backend services, mostly with .NET and
then complex single-page web applications. Recently, he has become a big fan of
micro-services with Node.js and Docker, single-page web applications, and native
applications for Android and iOS.

When he is not coding, Liviu loves snowboarding during winter, sailing in exotic
places during summer, or just traveling the world. You can find and contact Liviu
at http://www.ignat.email/.

Jakub Jedryszek works for Microsoft as a software engineer. At the time of
reviewing this book, he was working on the Azure Portal—the largest and most
complex single-page web application in the world written in TypeScript. He is a
cofounder of dotNetConfPL—online conference for .NET Developers. His blog is
at http://jj09.net/.

www.allitebooks.com

http://giftdoodle.com/
http://www.ignat.email/
http://jj09.net/
http://www.allitebooks.org

Andrew Leith Macrae first cut his programming teeth on an Apple, poking
bytes into RAM. Over the years, he has developed interactive applications with
Hypercard, Director, Flash, and, more recently, Adobe AIR for mobile. He has also
worked in HTML since there was HTML to work in, and is currently working as a
senior frontend developer at Rogers Communications Inc. in Toronto, in an Agile
environment using AngularJS and SASS.

He is convinced that TypeScript is the future of JavaScript, bringing the structure
and discipline of strongly typed object oriented language to facilitate efficient,
intentional coding for the development of large scale applications for the Web.

You can contact Andrew at http://adventmedia.net/.

Brandon Mills was first introduced to programming more than a decade ago,
kicking off a career which has taken him to companies as small as two-person start-ups
and as large as Microsoft, where he helped build Visual Studio 2013, Azure Tools, and
the developer tools in the new Edge browser that shipped with Windows 10. He is a
member of the core development team for ESLint, a customizable, open source linter
for JavaScript and JSX. Node.js is his platform of choice, on top of which he authors
applications and services in JavaScript or TypeScript. You can follow him on GitHub
at https://github.com/btmills.

Thanks to Scott for his impetus and inspiration, Linda for her
unconditional love, Abby for his patience, and Ashlynn for
her support.

Ivo Gabe de Wolff is a freelance developer under the name of ivogabe, founded in
2012, and he is studying mathematics and computing sciences at Utrecht University.
When he was 11, he started programming games with Game Maker. After learning
various languages, such as C# and JavaScript, he now uses TypeScript for almost all his
projects. In the last few years, he has used TypeScript in lots of different environments,
including for mobile apps. Now, he mainly specializes in Node.js programming.

Furthermore, he is the author of various open source projects, including
gulp-typescript. You can find his projects on https://github.com/ivogabe.
If you want to read more about TypeScript, JavaScript, Gulp, or mathematical
backgrounds, you can take a look at his blog at http://dev.ivogabe.com/.

www.allitebooks.com

http://adventmedia.net/
https://github.com/btmills
https://github.com/ivogabe
http://dev.ivogabe.com/
http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.com
and as a print book customer, you are entitled to a discount on the eBook copy. Get in
touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles,
sign up for a range of free newsletters and receive exclusive discounts and offers
on Packt books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.com

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com
http://www.allitebooks.org

[i]

Table of Contents
Preface ix
Chapter 1: Introducing TypeScript 1

The TypeScript architecture 2
Design goals 2
TypeScript components 3

TypeScript language features 4
Types 7

Optional static type notation 7
Variables, basic types, and operators 8

Var, let, and const 10
Union types 10
Type guards 11
Type aliases 11
Ambient declarations 12
Arithmetic operators 13
Comparison operators 13
Logical operators 14
Bitwise operators 14
Assignment operators 15

Flow control statements 16
The single-selection structure (if) 16
The double-selection structure (if…else) 16
The inline ternary operator (?) 17
The multiple-selection structure (switch) 17
The expression is tested at the top of the loop (while) 19
The expression is tested at the bottom of the loop (do…while) 19
Iterate on each object's properties (for…in) 20
Counter controlled repetition (for) 20

Functions 21
Classes 22
Interfaces 24
Namespaces 25

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Putting everything together 26
Summary 27

Chapter 2: Automating Your Development Workflow 29
A modern development workflow 29
Prerequisites 30

Node.js 30
Atom 30
Git and GitHub 33

Source control tools 33
Package management tools 38

npm 38
Bower 41
tsd 42

Task runners 43
Checking the quality of the TypeScript code 45
Compiling the TypeScript code 46
Optimizing a TypeScript application 48
Managing the Gulp tasks' execution order 51

Test runners 53
Synchronized cross-device testing 55
Continuous Integration tools 58
Scaffolding tools 59
Summary 61

Chapter 3: Working with Functions 63
Working with functions in TypeScript 64

Function declarations and function expressions 64
Function types 65
Functions with optional parameters 66
Functions with default parameters 68
Functions with rest parameters 69
Function overloading 71
Specialized overloading signatures 72
Function scope 73
Immediately invoked functions 76
Generics 79
Tag functions and tagged templates 82

Asynchronous programming in TypeScript 83
Callbacks and higher-order functions 83
Arrow functions 84
Callback hell 86

Table of Contents

[iii]

Promises 90
Generators 96
Asynchronous functions – async and await 97

Summary 98
Chapter 4: Object-Oriented Programming with TypeScript 99

SOLID principles 100
Classes 101
Interfaces 104
Association, aggregation, and composition 105

Association 105
Aggregation 105
Composition 106

Inheritance 107
Mixins 109

Generic classes 115
Generic constraints 118

Multiple types in generic type constraints 122
The new operator in generic types 123

Applying the SOLID principles 123
The Liskov substitution principle 123
The interface segregation principle 125
The dependency inversion principle 126

Namespaces 127
Modules 129

ES6 modules – runtime and design time 131
External modules – design time only 132
AMD modules – runtime only 133
CommonJS modules – runtime only 134
UMD modules – runtime only 135
SystemJS modules – runtime only 136

Circular dependencies 136
Summary 138

Chapter 5: Runtime 139
The environment 140
The runtime 141

Frames 141
Stack 142
Queue 142
Heap 143
The event loop 143

Table of Contents

[iv]

The this operator 144
The this operator in the global context 144
The this operator in a function context 144
The call, apply, and bind methods 145

Prototypes 148
Instance properties versus class properties 149
Prototypal inheritance 152
The prototype chain 156
Accessing the prototype of an object 157
The new operator 158

Closures 158
Static variables with closures 160
Private members with closures 162

Summary 164
Chapter 6: Application Performance 165

Prerequisites 166
Performance and resources 166
Performance metrics 167

Availability 167
The response time 168
Processing speed 168
Latency 168
Bandwidth 168
Scalability 169

Performance analysis 169
Network performance analysis 169
Network performance and user experience 174

Network performance best practices and rules 176
GPU performance analysis 179

Frames per second (FPS) 179
CPU performance analysis 180
Memory performance analysis 183
The garbage collector 185

Performance automation 186
Performance optimization automation 187
Performance monitoring automation 187
Performance testing automation 188

Exception handling 189
The Error class 189
The try…catch statements and throw statements 190

Summary 191

Table of Contents

[v]

Chapter 7: Application Testing 193
Software testing glossary 194

Assertions 194
Specs 195
Test cases 195
Suites 195
Spies 195
Dummies 195
Stubs 195
Mocks 196
Test coverage 196

Prerequisites 196
Gulp 197
Karma 197
Istanbul 197
Mocha 198
Chai 198
Sinon.JS 198
Type definitions 198
PhantomJS 199
Selenium and Nightwatch.js 199

Testing planning and methodologies 200
Test-driven development 200
Behavior-driven development (BDD) 201
Tests plans and test types 201

Setting up a test infrastructure 203
Building the application with Gulp 204
Running the unit test with Karma 207
Running E2E tests with Selenium and Nightwatch.js 210

Creating test assertions, specs, and suites with Mocha and Chai 213
Testing the asynchronous code 217
Asserting exceptions 218
TDD versus BDD with Mocha and Chai 219

Test spies and stubs with Sinon.JS 220
Spies 223
Stubs 225

Creating end-to-end tests with Nightwatch.js 227
Generating test coverage reports 228
Summary 230

Table of Contents

[vi]

Chapter 8: Decorators 231
Prerequisites 231
Annotations and decorators 232

The class decorators 233
The method decorators 236
The property decorators 238
The parameter decorators 240
The decorator factory 242
Decorators with arguments 244
The reflection metadata API 245

Summary 249
Chapter 9: Application Architecture 251

The single-page application architecture 252
The MV* architecture 258
Common components and features in the MV* frameworks 259

Models 259
Collections 260
Item views 260
Collection views 261
Controllers 262
Events 263
Router and hash (#) navigation 263
Mediator 266
Dispatcher 267
Client-side rendering and Virtual DOM 268
User interface data binding 269

One-way data binding 269
Two-way data binding 270

Data flow 270
Web components and shadow DOM 272

Choosing an application framework 273
Writing an MVC framework from scratch 274

Prerequisites 276
Application events 277
Mediator 278
Application 281
Route 283
Event emitter 284
Router 285
Dispatcher 288
Controller 291

Table of Contents

[vii]

Model and model settings 292
View and view settings 295
Framework 299

Summary 299
Chapter 10: Putting Everything Together 301

Prerequisites 302
The application's requirements 302
The application's data 303
The application's architecture 304
The application's file structure 305
Configuring the automated build 307
The application's layout 310
Implementing the root component 310
Implementing the market controller 312
Implementing the NASDAQ model 314
Implementing the NYSE model 316
Implementing the market view 316
Implementing the market template 319
Implementing the symbol controller 320

Implementing the quote model 321
Implementing the symbol view 323
Implementing the chart model 325
Implementing the chart view 327
Testing the application 330
Preparing the application for a production release 330
Summary 332

Index 333

[ix]

Preface
Over the past few years, the JavaScript code base of an average web application
has been exponentially growing. However, the current JavaScript specification
(ECMAScript 5 or ES5) was designed several years ago and lacks some features
that are necessary to cope with the complexity that we can find in large-scale
JavaScript applications today. As a result of these missing features, maintainability
problems have arisen.

The upcoming JavaScript version (ECMAScript 6 or ES6) is meant to solve some
of the maintainability issues of JavaScript, but its implementation is in progress
and many incompatible web browsers are still in use today. For these reasons,
the wide adoption of the ES6 specification is expected to be a slow process.

Microsoft spent two years developing TypeScript with the goal of resolving the
maintainability and scalability problems of JavaScript and publicly announced it
in October 2012:

"We designed TypeScript to meet the needs of the JavaScript programming
teams that build and maintain large JavaScript programs. TypeScript helps
programming teams to define interfaces between software components and
to gain insight into the behavior of existing JavaScript libraries. TypeScript
also enables teams to reduce naming conflicts by organizing their code into
dynamically loadable modules. Typescript's optional type system enables
JavaScript programmers to use highly-productive development tools and
practices: static checking, symbol-based navigation, statement completion,
and code re-factoring."

 - TypeScript Language Specification 1.0

Preface

[x]

Some developers with years of experience in the field find it challenging to
define what is a large-scale JavaScript application. When referring to this term, we
will avoid taking into account the number of lines of code in the application. It is
much better to consider the number of modules, dependencies between modules as
measures of the application's scale. We will define large-scale applications as non-
trivial applications that require significant developer effort to be maintained.

Learning TypeScript introduces many of the TypeScript features in a simple and
easy-to-understand format. This book will teach you everything you need to know
in order to implement large-scale JavaScript applications using TypeScript. Not
only does it teach TypeScript's core features, which are essential to implement a
web application, but it also explores the power of some tools, design principles, best
practices, and it also demonstrates how to apply them in a real-life application.

What this book covers
Chapter 1, Introducing TypeScript, introduces the core features of TypeScript, including
the optional static type notation system, operators, functions, interfaces, and modules.
The chapter also demonstrates how to apply these features in a real-life example.

Chapter 2, Automating Your Development Workflow, introduces some automation tools,
such as Gulp and Karma, to maximize your productivity as a developer. This chapter
also introduces some tools that facilitate the usage of third-party libraries in the
development of TypeScript applications.

Chapter 3, Working with Functions, provides an in-depth look at the functions in
TypeScript. This chapter also teaches you everything you need to know about
asynchronous programming in order to become a proficient TypeScript developer.

Chapter 4, Object-Oriented Programming with TypeScript, provides an in-depth look
at object-oriented programming in TypeScript, including classes, interfaces, and
modules and encourages adherence to good practices (SOLID principles). It also
covers features such as inheritance, mixings, and generics, which facilitate the
reusability of our code.

Chapter 5, Runtime, helps you understand how the runtime works. Understanding how
the runtime works can help us identify potential performance issues and allow us to be
much more effective as TypeScript developers.

Preface

[xi]

Chapter 6, Application Performance, provides the necessary knowledge to make effective
use of the available resources of a system. This chapter teaches you how to test the
performance of a TypeScript web application and how to automate some common
tasks in the performance optimization process of a TypeScript application.

Chapter 7, Application Testing, demonstrates how to use the behavior-driven
development methodology together with the leading TypeScript testing tools to
create bug-free applications. In this chapter, you will learn how to write TypeScript
unit tests with Karma, Mocha, Chai, and Sinon.JS, how to create end-to-end tests
using Nightwatch.js, and how to generate test coverage reports using Istanbul.

Chapter 8, Decorators, provides an in-depth look at decorators, including class,
property, parameter, and method decorators. This chapter also includes an
introduction to the reflection metadata API.

Chapter 9, Application Architecture, demonstrates some of the core architecture
principles of a modern web application. The chapter introduces the concept
of the single-page web application and its common components and features
(models, views, controllers, routers, templates, and so on). This chapter will
teach you everything you need to know in order to understand the majority of
single-page web application frameworks by implementing a real-life single-page
web application framework from scratch.

Chapter 10, Putting Everything Together, demonstrates how to apply the majority
of the concepts exposed in this book by implementing a real-life single-page web
application using TypeScript.

What you need for this book
The examples in this book are written using TypeScript 1.5. You will need the
TypeScript compiler and a text editor. This book explains how to use Atom, but it
is also possible to use other editors, such as Visual Studio 2015, Visual Studio Code,
or Sublime Text.

You also need an Internet connection to download the required references and
online packages and libraries, such as jQuery, Mocha, and Gulp. Depending on
your operating system, you will need a user account with administrative privileges
in order to install some of the tools used in this book.

Chapter 2, Automating Your Development Workflow, describes the setup of a
development environment.

Preface

[xii]

Who this book is for
If you are an intermediate-level JavaScript developer aiming to learn TypeScript to
build beautiful web applications, then this book is for you. No prior knowledge of
TypeScript is required but a basic understanding of jQuery is expected.

The book introduces TypeScript from basic to advanced language constructs and
object-oriented techniques for getting the most out of the TypeScript language and
compiler. This book will show you how to incorporate strong typing, object-oriented
principles, design patterns, and the best practices for managing the complexity of
large-scale JavaScript applications with ease.

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"We can include other contexts through the use of the include directive."

A block of code is set as follows:

class Greeter {
 greeting: string;
 constructor(message: string) {
 this.greeting = message;
 }
 greet() {
 return "Hello, " + this.greeting;
 }
}

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

function MathHelper() { /* ... */ }

// class method
MathHelper.areaOfCircle = function(radius) {
 return radius * radius * this.PI;
}

// class property
MathHelper.PI = 3.14159265359;

Preface

[xiii]

Any command-line input or output is written as follows:

git clone https://github.com/user-name/repository-name.git

New terms and important words are shown in bold. Words that you see on
the screen, for example, in menus or dialog boxes, appear in the text like this:
"In this tab, we can select Create JavaScript CPU Profile and then click on the
Start button to start recording the CPU usage."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http://www.packtpub.com/support
and register to have the files e-mailed directly to you.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support

Preface

[xiv]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

[1]

Introducing TypeScript
This book focuses on TypeScript's object-oriented nature and how it can help you
to write better code. Before diving into the object-oriented programing features of
TypeScript, this chapter will give you an overview of the history behind TypeScript
and introduce you to some of the basics.

In this chapter, you will learn about the following concepts:

• The TypeScript architecture
• Type annotations
• Variables and primitive data types
• Operators
• Flow control statements
• Functions
• Classes
• Interfaces
• Modules

Introducing TypeScript

[2]

The TypeScript architecture
In this section, we will focus on the TypeScript's internal architecture and its original
design goals.

Design goals
In the following points, you will find the main design goals and architectural
decisions that shaped the way the TypeScript programming language looks
like today:

• Statically identify JavaScript constructs that are likely to be errors. The
engineers at Microsoft decided that the best way to identify and prevent
potential runtime issues was to create a strongly typed programming language
and perform static type checking at compilation time. The engineers also
designed a language services layer to provide developers with better tools.

• High compatibility with the existing JavaScript code. TypeScript is a superset
of JavaScript; this means that any valid JavaScript program is also a valid
TypeScript program (with a few small exceptions).

• Provide a structuring mechanism for larger pieces of code. TypeScript
adds class-based object orientation, interfaces, and modules. These features
will help us structure our code in a much better way. We will also reduce
potential integration issues within our development team and our code
will become more maintainable and scalable by adhering to the best
object-oriented principles and practices.

• Impose no runtime overhead on emitted programs. It is common to
differentiate between design time and execution time when working with
TypeScript. We use the term design time code to refer to the TypeScript code
that we write while designing an application; we use the terms execution
time code or runtime code to refer to the JavaScript code that is executed after
compiling some TypeScript code.
TypeScript adds features to JavaScript but those features are only available
at design time. For example, we can declare interfaces in TypeScript but
since JavaScript doesn't support interfaces, the TypeScript compiler will
not declare or try to emulate this feature in the output JavaScript code.
The Microsoft engineers provided the TypeScript compiler with mechanisms
such as code transformations (converting TypeScript features into plain
JavaScript implementations) and type erasure (removing static type notation)
to generate really clean JavaScript code. Type erasure removes not only the
type annotations but also all the TypeScript exclusive language features such
as interfaces.

Chapter 1

[3]

Furthermore, the generated code is highly compatible with web browsers
as it targets the ECMAScript 3 specification by default but it also supports
ECMAScript 5 and ECMAScript 6. In general, we can use the TypeScript
features when compiling to any of the available compilation targets,
but there are some features that will require ECMAScript 5 or higher
as the compilation target.

• Align with the current and future ECMAScript proposals. TypeScript is not
just compatible with the existing JavaScript code; it will also potentially be
compatible with future versions of JavaScript. The majority of Typescript's
additional features are based on the future ECMAScript proposals; this
means many TypeScript files will eventually become valid JavaScript files.

• Be a cross-platform development tool. Microsoft released TypeScript under
the open source Apache license and it can be installed and executed in all
major operating systems.

TypeScript components
The TypeScript language is internally divided into three main layers. Each of these
layers is, in turn, divided into sublayers or components. In the following diagram,
we can see the three layers (green, blue, and orange) and each of their internal
components (boxes):

In the preceding diagram, the acronym VS refers to Microsoft's Visual
Studio, which is the official integrated development environment for
all the Microsoft products (including TypeScript). We will learn more
about this and the other IDEs in the next chapter.

Introducing TypeScript

[4]

Each of these main layers has a different purpose:

• The language: It features the TypeScript language elements.
• The compiler: It performs the parsing, type checking, and transformation of

your TypeScript code to JavaScript code.
• The language services: It generates information that helps editors and

other tools provide better assistance features such as IntelliSense or
automated refactoring.

• IDE integration: In order to take advantages of the TypeScript features,
some integration work is required to be done by the developers of the IDEs.
TypeScript was designed to facilitate the development of tools that help to
increase the productivity of JavaScript developers. As a result of these efforts,
integrating TypeScript with an IDE is not a complicated task. A proof of this
is that the most popular IDEs these days include a good TypeScript support.

In other books and online resources, you may find references to the term
transpiler instead of compiler. A transpiler is a type of compiler that takes
the source code of a programming language as its input and outputs the
source code into another programming language with more or less the
same level of abstraction.

We don't need to go into any more detail as understanding how the TypeScript
compiler works is out of the scope of this book; however, if you wish to learn more
about this topic, refer to the TypeScript language specification, which can be found
online at http://www.typescriptlang.org/.

TypeScript language features
Now that you have learned about the purpose of TypeScript, it's time to get our
hands dirty and start writing some code.

Before you can start learning how to use some of the basic TypeScript building
blocks, you will need to set up your development environment. The easiest and
fastest way to start writing some TypeScript code is to use the online editor
available on the official TypeScript website at http://www.typescriptlang.org/
Playground, as you can see in the following screenshot:

http://www.typescriptlang.org/
http://www.typescriptlang.org/Playground
http://www.typescriptlang.org/Playground

Chapter 1

[5]

In the preceding screenshot, you will be able to use the text editor on the left-hand
side to write your TypeScript code. The code is automatically compiled to JavaScript
and the output code will be inserted in the text editor located on the right-hand side
of the screen. If your TypeScript code is invalid, the JavaScript code on the right-
hand side will not be refreshed.

Alternatively, if you prefer to be able to work offline, you can download and install the
TypeScript compiler. If you work with Visual Studio, you can download the official
TypeScript extension (version 1.5 beta) from https://visualstudiogallery.msdn.
microsoft.com/107f89a0-a542-4264-b0a9-eb91037cf7af. If you are working
with Visual Studio 2015, you don't need to install the extension as Visual Studio 2015
includes TypeScript support by default.

If you use a different code editor or you use the OS X or Linux operating systems,
you can download an npm module instead. Don't worry if you are not familiar with
npm. For now, you just need to know that it stands for Node Package Manager and
is the default Node.js package manager.

https://visualstudiogallery.msdn.microsoft.com/107f89a0-a542-4264-b0a9-eb91037cf7af
https://visualstudiogallery.msdn.microsoft.com/107f89a0-a542-4264-b0a9-eb91037cf7af

Introducing TypeScript

[6]

There are TypeScript plugins available for many popular
editors such as Sublime https://github.com/Microsoft/
TypeScript-Sublime-Plugin and Atom https://atom.
io/packages/atom-typescript.

In order to be able to use npm, you will need to first install Node.js in your
development environment. You will be able to find the Node.js installation
files on the official website at https://nodejs.org/.

Once you have installed Node.js in your development environment, you will be able
to run the following command in a console or terminal:

npm install -g typescript

OS X users need to use the sudo command when installing global (-g) npm packages.
The sudo command will prompt for user credentials and install the package using
administrative privileges:

sudo npm install -g typescript

Create a new file named test.ts and add the following code to it:

var t : number = 1;

Save the file into a directory of your choice and once you have saved the file open
the console, select the directory where you saved the file, and execute the following
command:

tsc test.ts

The tsc command is a console interface for the TypeScript compiler. This command
allows you to compile your TypeScript files into JavaScript files. The compiler features
many options that will be explored in the upcoming chapters of this book.

In the preceding example, we used the tsc command to transform the test.ts file
into a JavaScript file.

If everything goes right, you will find a file named test.js in the same directory in
which the test.ts file was located. Now, you know how to compile your TypeScript
code into JavaScript and we can start learning about the TypeScript features.

You will be able to learn more about editors and other tools in
Chapter 2, Automating Your Development Workflow.

https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://github.com/Microsoft/TypeScript-Sublime-Plugin
https://atom.io/packages/atom-typescript
https://atom.io/packages/atom-typescript
https://nodejs.org/

Chapter 1

[7]

Types
As we have already learned, TypeScript is a typed superset of JavaScript. TypeScript
added optional static type annotations to JavaScript in order to transform it into a
strongly typed programming language. The optional static type annotations are used
as constraints on program entities such as functions, variables, and properties so that
compilers and development tools can offer better verification and assistance (such as
IntelliSense) during software development.

Strong typing allows the programmer to express his intentions in his code, both to
himself and to others in the development team.

Typescript's type analysis occurs entirely at compile time and adds no runtime
overhead to program execution.

Optional static type notation
The TypeScript language service is really good at inferring types, but there are
certain cases where it is not able to automatically detect the type of an object or
variable. For these cases, TypeScript allows us to explicitly declare the type of a
variable. The language element that allows us to declare the type of a variable is
known as optional static type notation. For a variable, the type notation comes
after the variable name and is preceded by a colon:

var counter; // unknown (any) type
var counter = 0; // number (inferred)
var counter : number; // number
var counter : number = 0; // number

As you can see, the type of the variable is declared after the name, this style of
type notation is based on type theory and helps to reinforce the idea of types being
optional. When no type annotations are available, TypeScript will try to guess the
type of the variable by examining the assigned values. For example, in the second
line in the preceding code snippet, we can see that the variable counter has been
identified as a numeric variable because the numeric value 0 was assigned as its
value. This process in which types are automatically detected is known as Type
inference, when a type cannot be inferred the especial type any is used as the
type of the variable.

www.allitebooks.com

http://www.allitebooks.org

Introducing TypeScript

[8]

Variables, basic types, and operators
The basic types are the Boolean, number, string, array, void types, and all user
defined Enum types. All types in TypeScript are subtypes of a single top type called
the Any type. The any keyword references this type. Let's take a look at each of these
primitive types:

Data Type Description

Boolean Whereas the string and number data types can have a virtually unlimited
number of different values, the Boolean data type can only have two.
They are the literals true and false. A Boolean value is a truth value;
it specifies whether the condition is true or not.

var isDone: boolean = false;

Number As in JavaScript, all numbers in TypeScript are floating point values.
These floating-point numbers get the type number.

var height: number = 6;

String You use the string data type to represent text in TypeScript. You include
string literals in your scripts by enclosing them in single or double quotation
marks. Double quotation marks can be contained in strings surrounded
by single quotation marks, and single quotation marks can be contained in
strings surrounded by double quotation marks.

var name: string = "bob";
name = 'smith';

Array TypeScript, like JavaScript, allows you to work with arrays of values.
Array types can be written in one of the two ways. In the first, you use the
type of the elements followed by [] to denote an array of that element type:

var list:number[] = [1, 2, 3];

The second way uses a generic array type, Array:
var list:Array<number> = [1, 2, 3];

Enum An enum is a way of giving more friendly names to sets of numeric values.
By default, enums begin numbering their members starting at 0, but you can
change this by manually setting the value of one to its members.

enum Color {Red, Green, Blue};
var c: Color = Color.Green;

Chapter 1

[9]

Data Type Description

Any The any type is used to represent any JavaScript value. A value of the any
type supports the same operations as a value in JavaScript and minimal
static type checking is performed for operations on any values.

var notSure: any = 4;
notSure = "maybe a string instead";
notSure = false; // okay, definitely a boolean

The any type is a powerful way to work with existing JavaScript, allowing
you to gradually opt in and opt out of type checking during compilation.
The any type is also handy if you know some part of the type, but perhaps
not all of it. For example, you may have an array but the array has a mix of
different types:

var list:any[] = [1, true, "free"];
list[1] = 100;

Void The opposite in some ways to any is void, the absence of having any type
at all. You will see this as the return type of functions that do not return
a value.

function warnUser(): void {
 alert("This is my warning message");
}

JavaScript's primitive types also include undefined and null. In JavaScript, undefined
is a property in the global scope that is assigned as a value to variables that have
been declared but have not yet been initialized. The value null is a literal (not a
property of the global object). It can be assigned to a variable as a representation of
no value.

var TestVar; // variable is declared but not initialized
alert(TestVar); // shows undefined
alert(typeof TestVar); // shows undefined

var TestVar = null; // variable is declared and value null is
assigned as value
alert(TestVar); // shows null
alert(typeof TestVar); // shows object

In TypeScript, we will not be able to use null or undefined as types:

var TestVar : null; // Error, Type expected
var TestVar : undefined; // Error, cannot find name undefined

Since null or undefined cannot be used as types, both the variable declarations in
the preceding code snippet are invalid.

Introducing TypeScript

[10]

Var, let, and const
When we declare a variable in TypeScript, we can use the var, let, or const
keywords:

var mynum : number = 1;
let isValid : boolean = true;
const apiKey : string = "0E5CE8BD-6341-4CC2-904D-C4A94ACD276E";

Variables declared with var are scoped to the nearest function block (or global, if
outside a function block).

Variables declared with let are scoped to the nearest enclosing block (or global if
outside any block), which can be smaller than a function block.

The const keyword creates a constant that can be global or local to the block in
which it is declared. This means that constants are block scoped. You will learn
more about scopes in Chapter 5, Runtime.

The let and const keywords have been available since the
release of TypeScript 1.4 but only when the compilation target
is ECMAScript 6. However, they will also work when targeting
ECMAScript 3 and ECMAScript 5 once TypeScript 1.5 is released.

Union types
TypeScript allows you to declare union types:

var path : string[]|string;
path = '/temp/log.xml';
path = ['/temp/log.xml', '/temp/errors.xml'];
path = 1; // Error

Union types are used to declare a variable that is able to store a value of two or more
types. In the preceding example, we have declared a variable named path that can
contain a single path (string), or a collection of paths (array of string). In the example,
we have also set the value of the variable. We assigned a string and an array of
strings without errors; however, when we attempted to assign a numeric value, we
got a compilation error because the union type didn't declare a number as one of the
valid types of the variable.

Chapter 1

[11]

Type guards
We can examine the type of an expression at runtime by using the typeof or
instanceof operators. The TypeScript language service looks for these operators
and will change type inference accordingly when used in an if block:

var x: any = { /* ... */ };
if(typeof x === 'string') {
 console.log(x.splice(3, 1)); // Error, 'splice' does not exist
on 'string'
}
// x is still any
x.foo(); // OK

In the preceding code snippet, we have declared an x variable of type any. Later, we
check the type of x at runtime by using the typeof operator. If the type of x results
to be string, we will try to invoke the method splice, which is supposed to a member
of the x variable. The TypeScript language service is able to understand the usage of
typeof in a conditional statement. TypeScript will automatically assume that x must
be a string and let us know that the splice method does not exist on the type string.
This feature is known as type guards.

Type aliases
TypeScript allows us to declare type aliases by using the type keyword:

type PrimitiveArray = Array<string|number|boolean>;
type MyNumber = number;
type NgScope = ng.IScope;
type Callback = () => void;

Type aliases are exactly the same as their original types; they are simply alternative
names. Type aliases can help us to make our code more readable but it can also lead
to some problems.

If you work as part of a large team, the indiscriminate creation of aliases can lead
to maintainability problems. In the book, Maintainable JavaScript, Nicholas C. Zakas,
the author recommends to avoid modifying objects you don't own. Nicholas was
talking about adding, removing, or overriding methods in objects that have not
been declared by you (DOM objects, BOM objects, primitive types, and third-party
libraries) but we can apply this rule to the usage of aliases as well.

Introducing TypeScript

[12]

Ambient declarations
Ambient declaration allows you to create a variable in your TypeScript code that will
not be translated into JavaScript at compilation time. This feature was designed to
facilitate integration with the existing JavaScript code, the DOM (Document Object
Model), and BOM (Browser Object Model). Let's take a look at an example:

customConsole.log("A log entry!"); // error

If you try to call the member log of an object named customConsole, TypeScript will
let us know that the customConsole object has not been declared:

// Cannot find name 'customConsole'

This is not a surprise. However, sometimes we want to invoke an object that has not
been defined, for example, the console or window objects.

console.log("Log Entry!");
var host = window.location.hostname;

When we access DOM or BOM objects, we don't get an error because these objects
have already been declared in a special TypeScript file known as declaration files.
You can use the declare operator to create an ambient declaration.

In the following code snippet, we will declare an interface that is implemented by the
customConsole object. We then use the declare operator to add the customConsole
object to the scope:

interface ICustomConsole {
 log(arg : string) : void;
}
declare var customConsole : ICustomConsole;

Interfaces are explained in greater detail later in the chapter.

We can then use the customConsole object without compilation errors:

customConsole.log("A log entry!"); // ok

TypeScript includes, by default, a file named lib.d.ts that provides interface
declarations for the built-in JavaScript library as well as the DOM.

Declaration files use the file extension .d.ts and are used to increase the TypeScript
compatibility with third-party libraries and run-time environments such as Node.js
or a web browser.

Chapter 1

[13]

We will learn how to work with declaration files in Chapter 2, Automating
Your Development Workflow.

Arithmetic operators
There following arithmetic operators are supported by the TypeScript programming
language. In order to understand the examples, you must assume that variable A
holds 10 and variable B holds 20.

Operator Description Example
+ This adds two operands A + B will give 30

- This subtracts the second operand from the first A - B will give -10
* This multiplies both the operands A * B will give 200
/ This divides the numerator by the denominator B / A will give 2
% This is the modulus operator and remainder after

an integer division
B % A will give 0

++ This is the increment operator that increases the
integer value by 1

A++ will give 11

-- This is the decrement operator that decreases the
integer value by 1

A-- will give 9

Comparison operators
The following comparison operators are supported by the TypeScript language. In
order to understand the examples, you must assume that variable A holds 10 and
variable B holds 20.

Operator Description Example
== This checks whether the values of two operands are equal

or not. If yes, then the condition becomes true.
(A == B) is
false. A == "10"
is true.

=== This checks whether the value and type of two operands
are equal or not. If yes, then the condition becomes true.

A === B is
false. A ===
"10" is false.

!= This checks whether the values of two operands are equal
or not. If the values are not equal, then the condition
becomes true.

(A != B) is true.

Introducing TypeScript

[14]

Operator Description Example
> This checks whether the value of the left operand is

greater than the value of the right operand; if yes, then
the condition becomes true.

(A > B) is false.

< This checks whether the value of the left operand is
less than the value of the right operand; if yes, then the
condition becomes true.

(A < B) is true.

>= This checks whether the value of the left operand is
greater than or equal to the value of the right operand; if
yes, then the condition becomes true.

(A >= B) is
false.

<= This checks whether the value of the left operand is less
than or equal to the value of the right operand; if yes,
then the condition becomes true.

(A <= B) is
true.

Logical operators
The following logical operators are supported by the TypeScript language. In order
to understand the examples, you must assume that variable A holds 10 and variable
B holds 20.

Operator Description Example
&& This is called the logical AND operator. If both the

operands are nonzero, then the condition becomes true.
(A && B) is true.

|| This is called logical OR operator. If any of the two
operands are nonzero, then the condition becomes true.

(A || B) is true.

! This is called the logical NOT operator. It is used to
reverse the logical state of its operand. If a condition is
true, then the logical NOT operator will make it false.

!(A && B) is false.

Bitwise operators
The following bitwise operators are supported by the TypeScript language. In order
to understand the examples, you must assume that variable A holds 2 and variable B
holds 3.

Operator Description Example
& This is called the Bitwise AND operator. It performs

a Boolean AND operation on each bit of its integer
arguments.

(A & B) is 2

| This is called the Bitwise OR operator. It performs
a Boolean OR operation on each bit of its integer
arguments.

(A | B) is 3.

Chapter 1

[15]

Operator Description Example
^ This is called the Bitwise XOR operator. It performs a

Boolean exclusive OR operation on each bit of its integer
arguments. Exclusive OR means that either operand one
is true or operand two is true, but not both.

(A ^ B) is 1.

~ This is called the Bitwise NOT operator. It is a unary
operator and operates by reversing all bits in the
operand.

(~B) is -4

<< This is called the Bitwise Shift Left operator. It moves all
bits in its first operand to the left by the number of places
specified in the second operand. New bits are filled with
zeros. Shifting a value left by one position is equivalent
to multiplying by 2, shifting two positions is equivalent
to multiplying by 4, and so on.

(A << 1) is 4

>> This is called the Bitwise Shift Right with sign operator.
It moves all bits in its first operand to the right by the
number of places specified in the second operand.

(A >> 1) is 1

>>> This is called the Bitwise Shift Right with zero operators.
This operator is just like the >> operator, except that the
bits shifted in on the left are always zero,

(A >>> 1) is 1

One of the main reasons to use bitwise operators in languages such as
C++, Java, or C# is that they're extremely fast. However, bitwise operators
are often considered not that efficient in TypeScript and JavaScript.
Bitwise operators are less efficient in JavaScript because it is necessary
to cast from floating point representation (how JavaScript stores all of its
numbers) to a 32-bit integer to perform the bit manipulation and back.

Assignment operators
The following assignment operators are supported by the TypeScript language.

Operator Description Example
= This is a simple assignment operator that assigns values

from the right-side operands to the left-side operand.
C = A + B will
assign the value
of A + B into C

+= This adds the AND assignment operator. It adds the
right operand to the left operand and assigns the result
to the left operand.

C += A is
equivalent to C
= C + A

Introducing TypeScript

[16]

Operator Description Example
-= This subtracts the AND assignment operator. It

subtracts the right operand from the left operand and
assigns the result to the left operand.

C -= A is
equivalent to C
= C - A

*= This multiplies the AND assignment operator. It
multiplies the right operand with the left operand and
assigns the result to the left operand.

C *= A is
equivalent to C
= C * A

/= This divides the AND assignment operator. It divides
the left operand with the right operand and assigns the
result to the left operand.

C /= A is
equivalent to C
= C / A

%= This is the modulus AND assignment operator. It takes
the modulus using two operands and assigns the result
to the left operand.

C %= A is
equivalent to C
= C % A

Flow control statements
This section describes the decision-making statements, the looping statements, and
the branching statements supported by the TypeScript programming language.

The single-selection structure (if)
The following code snippet declares a variable of type Boolean and name isValid.
Then, an if statement will check whether the value of isValid is equal to true. If the
statement turns out to be true, the Is valid! message will be displayed on the screen.

var isValid : boolean = true;

if(isValid) {
 alert("is valid!");
}

The double-selection structure (if…else)
The following code snippet declares a variable of type Boolean and name isValid.
Then, an if statement will check whether the value of isValid is equal to true. If
the statement turns out to be true, the message Is valid! will be displayed on the
screen. On the other side, if the statement turns out to be false, the message Is NOT
valid! will be displayed on the screen.

var isValid : boolean = true;

if(isValid) {
 alert("Is valid!");

Chapter 1

[17]

}
else {
 alert("Is NOT valid!");
}

The inline ternary operator (?)
The inline ternary operator is just an alternative way of declaring a double-selection
structure.

var isValid : boolean = true;
var message = isValid ? "Is valid!" : "Is NOT valid!";
alert(message);

The preceding code snippet declares a variable of type Boolean and name isValid.
Then it checks whether the variable or expression on the left-hand side of the operator
? is equal to true.

If the statement turns out to be true, the expression on the left-hand side of the
character will be executed and the message Is valid! will be assigned to the
message variable.

On the other hand, if the statement turns out to be false, the expression on the
right-hand side of the operator will be executed and the message, Is NOT valid!
will be assigned to the message variable.

Finally, the value of the message variable is displayed on the screen.

The multiple-selection structure (switch)
The switch statement evaluates an expression, matches the expression's value to a
case clause, and executes statements associated with that case. A switch statement
and enumerations are often used together to improve the readability of the code.

In the following example, we will declare a function that takes an enumeration
AlertLevel. Inside the function, we will generate an array of strings to store e-mail
addresses and execute a switch structure. Each of the options of the enumeration is
a case in the switch structure:

enum AlertLevel{
 info,
 warning,
 error
}

Introducing TypeScript

[18]

function getAlertSubscribers(level : AlertLevel){
 var emails = new Array<string>();
 switch(level){
 case AlertLevel.info:
 emails.push("cst@domain.com");
 break;
 case AlertLevel.warning:
 emails.push("development@domain.com");
 emails.push("sysadmin@domain.com");
 break;
 case AlertLevel.error:
 emails.push("development@domain.com");
 emails.push("sysadmin@domain.com");
 emails.push("management@domain.com");
 break;
 default:
 throw new Error("Invalid argument!");
 }
 return emails;
}

getAlertSubscribers(AlertLevel.info); // ["cst@domain.com"]
getAlertSubscribers(AlertLevel.warning); //
["development@domain.com", "sysadmin@domain.com"]

The value of the level variable is tested against all the cases in the switch. If the variable
matches one of the cases, the statement associated with that case is executed. Once the
case statement has been executed, the variable is tested against the next case.

Once the execution of the statement associated to a matching case is finalized, the
next case will be evaluated. If the break keyword is present, the program will not
continue the execution of the following case statement.

If no matching case clause is found, the program looks for the optional default
clause, and if found, it transfers control to that clause and executes the associated
statements.

If no default clause is found, the program continues execution at the statement
following the end of switch. By convention, the default clause is the last clause,
but it does not have to be so.

Chapter 1

[19]

The expression is tested at the top of the loop
(while)
The while expression is used to repeat an operation while a certain requirement
is satisfied. For example, the following code snippet, declares a numeric variable i.
If the requirement (the value of i is less than 5) is satisfied, an operation takes place
(increase the value of i by 1 and display its value in the browser console). Once
the operation has completed, the accomplishment of the requirement will be
checked again.

var i : number = 0;
while (i < 5) {
 i += 1;
 console.log(i);
}

In a while expression, the operation will take place only if the requirement is satisfied.

The expression is tested at the bottom of the loop
(do…while)
The do-while expression is used to repeat an operation until a certain requirement
is not satisfied. For example, the following code snippet declares a numeric variable
i and repeats an operation (increase the value of i by 1 and display its value in
the browser console) for as long as the requirement (the value of i is less than 5)
is satisfied.

var i : number = 0;
do {
 i += 1;
 console.log(i);
} while (i < 5);

Unlike the while loop, the do-while expression will execute at least once regardless
of the requirement value as the operation will take place before checking if a certain
requirement is satisfied or not.

Introducing TypeScript

[20]

Iterate on each object's properties (for…in)
The for-in statement by itself is not a bad practice; however, it can be misused, for
example, to iterate over arrays or array-like objects. The purpose of the for-in
statement is to enumerate over object properties.

var obj : any = { a:1, b:2, c:3 };
for (var key in obj) {
 console.log(key + " = " + obj[key]);
}

// Output:
// "a = 1"
// "b = 2"
// "c = 3"

The following code snippet will go up in the prototype chain, also enumerating the
inherited properties. The for-in statement iterates the entire prototype chain, also
enumerating the inherited properties. When you want to enumerate only the object's
own properties (the ones that aren't inherited), you can use the hasOwnProperty
method:

for (var key in obj) {
 if (obj.hasOwnProperty(prop)) {
 // prop is not inherited
 }
}

Counter controlled repetition (for)
The for statement creates a loop that consists of three optional expressions, enclosed
in parentheses and separated by semicolons, followed by a statement or a set of
statements executed in the loop.

for (var i: number = 0; i < 9; i++) {
 console.log(i);
}

The preceding code snippet contains a for statement, it starts by declaring the
variable i and initializing it to 0. It checks whether i is less than 9, performs the two
succeeding statements, and increments i by 1 after each pass through the loop.

Chapter 1

[21]

Functions
Just as in JavaScript, TypeScript functions can be created either as a named function
or as an anonymous function. This allows us to choose the most appropriate
approach for an application, whether we are building a list of functions in an
API or a one-off function to hand over to another function.

// named function
function greet(name? : string) : string {
 if(name){
 return "Hi! " + name;
 }
 else
 {
 return "Hi!";
 }
}

// anonymous function
var greet = function(name? : string) : string {
 if(name){
 return "Hi! " + name;
 }
 else
 {
 return "Hi!";
 }
}

As we can see in the preceding code snippet, in TypeScript we can add types to each
of the parameters and then to the function itself to add a return type. TypeScript can
infer the return type by looking at the return statements, so we can also optionally
leave this off in many cases.

There is an alternative function syntax, which uses the arrow (=>) operator after the
function’s return type and skips the usage of the function keyword.

var greet = (name : string) : string => {
 if(name){
 return "Hi! " + name;
 }
 else
 {
 return "Hi! my name is " + this.fullname;
 }
};

Introducing TypeScript

[22]

The functions declared using this syntax are commonly known as arrow functions.
Let's return to the previous example in which we were assigning an anonymous
function to the greet variable. We can now add the type annotations to the greet
variable to match the anonymous function signature.

var greet : (name : string) => string = function(name : string) :
string {
 if(name){
 return "Hi! " + name;
 }
 else
 {
 return "Hi!";
 }
};

Keep in mind that the arrow function (=>) syntax changes the way the
this operator works when working with classes. We will learn more
about this in the upcoming chapters.

Now you know how to add type annotations to force a variable to be a function with
a specific signature. The usage of this kind of annotations is really common when we
use a call back (functions used as an argument of another function).

function sume(a : number, b : number, callback : (result:number)
=> void){
 callback(a+b);
}

In the preceding example, we are declaring a function named sume that takes two
numbers and a callback as a function. The type annotations will force the callback
to return void and take a number as its only argument.

We will focus on functions in Chapter 3, Working with Functions.

Classes
ECMAScript 6, the next version of JavaScript, adds class-based object orientation
to JavaScript and, since TypeScript is based on ES6, developers are allowed to use
class-based object orientation today, and compile them down to JavaScript that
works across all major browsers and platforms, without having to wait for the next
version of JavaScript.

Chapter 1

[23]

Let's take a look at a simple TypeScript class definition example:

class Character {
 fullname : string;
 constructor(firstname : string, lastname : string) {
 this.fullname = firstname + " " + lastname;
 }
 greet(name? : string) {
 if(name)
 {
 return "Hi! " + name + "! my name is " + this.fullname;
 }
 else
 {
 return "Hi! my name is " + this.fullname;
 }
 }
}

var spark = new Character("Jacob","Keyes");
var msg = spark.greet();
alert(msg); // "Hi! my name is Jacob Keyes"
var msg1 = spark.greet("Dr. Halsey");
alert(msg1); // "Hi! Dr. Halsey! my name is Jacob Keyes"

In the preceding example, we have declared a new class Character. This class has
three members: a property called fullname, a constructor, and a method greet.
When we declare a class in TypeScript, all the methods and properties are public
by default.

You'll notice that when we refer to one of the members of the class (from within
itself) we prepend the this operator. The this operator denotes that it's a member
access. In the last lines, we construct an instance of the Character class using a new
operator. This calls into the constructor we defined earlier, creating a new object with
the Character shape, and running the constructor to initialize it.

TypeScript classes are compiled into JavaScript functions in order to achieve
compatibility with ECMAScript 3 and ECMAScript 5.

We will learn more about classes and other object-oriented programming
concepts in Chapter 4, Object-Oriented Programming with TypeScript.

Introducing TypeScript

[24]

Interfaces
In TypeScript, we can use interfaces to enforce that a class follow the specification in
a particular contract.

interface LoggerInterface{
 log(arg : any) : void;
}

class Logger implements LoggerInterface{
 log(arg){
 if(typeof console.log === "function"){
 console.log(arg);
 }
 else
 {
 alert(arg);
 }
 }
}

In the preceding example, we have defined an interface loggerInterface and a
class Logger, which implements it. TypeScript will also allow you to use interfaces
to declare the type of an object. This can help us to prevent many potential issues,
especially when working with object literals:

interface UserInterface{
 name : string;
 password : string;
}

var user : UserInterface = {
 name : "",
 password : "" // error property password is missing
};

We will learn more about interfaces and other object-oriented
programming concepts in Chapter 4, Object-Oriented Programming
with TypeScript.

Chapter 1

[25]

Namespaces
Namespaces, also known as internal modules, are used to encapsulate features and
objects that share a certain relationship. Namespaces will help you to organize your
code in a much clearer way. To declare a namespace in TypeScript, you will use the
namespace and export keywords.

namespace Geometry{
 interface VectorInterface {
 /* ... */
 }
 export interface Vector2dInterface {
 /* ... */
 }
 export interface Vector3dInterface {
 /* ... */
 }
 export class Vector2d implements VectorInterface,
 Vector2dInterface {
 /* ... */
 }
 export class Vector3d implements VectorInterface,
 Vector3dInterface {
 /* ... */
 }
}

var vector2dInstance : Geometry.Vector2dInterface = new
Geometry.Vector2d();
var vector3dInstance : Geometry.Vector3dInterface = new
Geometry.Vector3d();

In the preceding code snippet, we have declared a namespace that contains
the classes vector2d and vector3d and the interfaces VectorInterface,
Vector2dInterface, and Vector3dInterface. Note that the first interface is
missing the keyword export. As a result, the interface VectorInterface will not be
accessible from outside the namespace's scope.

In Chapter 4, Object-Oriented Programming with TypeScript, we'll be
covering namespaces (internal modules) and external modules and
we'll discuss when each is appropriate and how to use them.

Introducing TypeScript

[26]

Putting everything together
Now that we have learned how to use the basic TypeScript building blocks
individually, let's take a look at a final example in which we will use modules,
classes, functions, and type annotations for each of these elements:

module Geometry{
 export interface Vector2dInterface {
 toArray(callback : (x : number[]) => void) : void;
 length() : number;
 normalize();
 }
 export class Vector2d implements Vector2dInterface {
 private _x: number;
 private _y : number;
 constructor(x : number, y : number){
 this._x = x;
 this._y = y;
 }
 toArray(callback : (x : number[]) => void) : void{
 callback([this._x, this._y]);
 }
 length() : number{
 return Math.sqrt(this._x * this._x + this._y * this._y);
 }
 normalize(){
 var len = 1 / this.length();
 this._x *= len;
 this._y *= len;
 }
 }
}

The preceding example is just a small portion of a basic 3D engine written in
JavaScript. In 3D engines, there are a lot of mathematical calculations involving
matrices and vectors. As you can see, we have defined a module Geometry that
will contain some entities; to keep the example simple, we have only added the
class Vector2d. This class stores two coordinates (x and y) in 2d space and performs
some operations on the coordinates. One of the most used operations on vectors is
normalization, which is one of the methods in our Vector2d class.

Chapter 1

[27]

3D engines are complex software solutions, and as a developer, you are much more
likely to use a third-party 3D engine than create your own. For this reason, it is
important to understand that TypeScript will not only help you to develop large-scale
applications, but also to work with large-scale applications. In the following code
snippet, we will use the module declared earlier to create a Vector2d instance:

var vector : Geometry.Vector2dInterface = new
Geometry.Vector2d(2,3);
vector.normalize();
vector.toArray(function(vectorAsArray : number[]){
 alert(' x :' + vectorAsArray[0] + ' y : '+ vectorAsArray[1]);
});

The type checking and IntelliSense features will help us create a Vector2d instance,
normalize its value, and convert it into an array to finally show its value on screen
with ease.

Summary
In this chapter, you have learned about the purposes of TypeScript. You have also
learned about some of the design decisions made by the TypeScript engineers at
Microsoft.

Towards the end of this chapter, you learned a lot about the basic building blocks of
a TypeScript application .You started to write some TypeScript code for the first time
and you can now work with type annotations, variables and primitive data types,
operators, flow control statements, functions, and classes.

In the next chapter, you will learn how to automate your development workflow.

www.allitebooks.com

http://www.allitebooks.org

[29]

Automating Your
Development Workflow

After taking a first look at the main TypeScript language features, we will now
learn how to use some tools to automate our development workflow. These tools
will help us to reduce the amount of time that we usually spend on simple and
repetitive tasks.

In this chapter, we will learn about the following topics:

• An overview of the development workflow
• Source control tools
• Package management tools
• Task runners
• Test runners
• Integration tools
• Scaffolding tools

A modern development workflow
Developing a web application with high quality standards has become a
time-consuming activity. If we want to achieve a great user experience, we will need
to ensure that our applications can run as smoothly as possible on many different web
browsers, devices, Internet connection speeds, and screen resolutions. Furthermore,
we will need to spend a lot of our time working on quality assurance and performance
optimization tasks.

Automating Your Development Workflow

[30]

As developers, we should try to minimize the time spent on simple and repetitive
tasks. This might sound familiar as we have been doing this for years. We started by
writing build scripts (such as makefiles) or automated tests and today, in a modern
web development workflow, we use many tools to try to automate as many tasks as
we can. These tools can be categorized into the following groups:

• Source control tools
• Package management tools
• Task runners
• Test runners
• Continuous integration tools
• Scaffolding tools

Prerequisites
You are about to learn how to write a script, which will automate many tasks in your
development workflow; however, before that, we need to install a few tools in our
development environment.

Node.js
Node.js is a platform built on V8 (Google's open source JavaScript engine). Node.js
allows us to run JavaScript outside a web browser. We can write backend and
desktop applications using JavaScript with Node.js.

We are not going to write server-side JavaScript applications but we are going to
need Node.js because many of the tools used in this chapter are Node.js applications.

If you didn't install Node.js in the previous chapter, you can visit https://nodejs.
org to download the installer for your operating system.

Atom
Atom is an open source editor developed by the GitHub team. The open source
community around this editor is really active and has developed many plugins
and themes. You can download Atom from https://atom.io/.

https://nodejs.org
https://nodejs.org
https://atom.io/

Chapter 2

[31]

Once you have completed the installation, open the editor and go to the preferences
window. You should be able to find a section within the preferences window to
manage packages and another to manage themes just like the ones that we can
see in the following screenshot:

The Atom user interface is slightly different from the other
operating systems. Refer to the Atom documentation at
https://atom.io/docs if you need additional help to
manage packages and themes.

We need to search for the atom-typescript package in the package management
section and install it. We can additionally visit the themes section and install a theme
that makes us feel more comfortable with the editor.

We will use Atom instead of Visual Studio because Atom is
available for Linux, OS X, and Windows, so it will suit most readers.
Unfortunately, we will not cover Visual Studio Code because it was
announced when this book was about to be published. Visual Studio
Code is a lightweight IDE developed by Microsoft and available for
free for Windows, OS X, and Linux. You can visit https://code.
visualstudio.com/ if you wish to learn more about it.
If you want to work with Visual Studio, you will be able to find
the extension to enable Typescript support in Visual Studio
at https://visualstudiogallery.msdn.microsoft.
com/2d42d8dc-e085-45eb-a30b-3f7d50d55304.

https://atom.io/docs
https://code.visualstudio.com/
https://code.visualstudio.com/
https://visualstudiogallery.msdn.microsoft.com/2d42d8dc-e085-45eb-a30b-3f7d50d55304
https://visualstudiogallery.msdn.microsoft.com/2d42d8dc-e085-45eb-a30b-3f7d50d55304

Automating Your Development Workflow

[32]

One of the highest rated themes is called seti-ui and is particularly useful because
it uses a really good set of icons to help us to identify each file in our application.
For example, the gulpfile.js or bower.json files (we will learn about these files
later) are just JavaScript and JSON files but the seti-ui theme is able to identify
that they are the Gulp and Bower configuration files respectively and will display
their icons accordingly.

We can install this theme by opening the console of our operating system and
running the following commands:

cd ~/.atom/packages
git clone https://github.com/jesseweed/seti-ui --depth=1

You need to install Git to be able to run the preceding command.
You will find some information about the Git installation later on
in this chapter.

Chapter 2

[33]

Once we have installed the theme and TypeScript plugin, we will need to close the
Atom editor and open it again to make the changes effective. If everything goes well,
we will get a confirmation message in the top-right corner of the editor window.

Git and GitHub
Towards the end of this chapter, we will learn how to configure a continuous
integration build server. The build server will observe changes in our application's
code and ensure that the changes don't break the application.

In order to be able to observe the changes in the code, we will need to use a source
control system. There are a few source control systems available. Some of the most
widely used ones are Subversion, Mercurial and Git.

Source control systems have many benefits. First, they enable multiple developers to
work on a source file without any work being overridden.

Second, source control systems are also a good way of keeping previous copies of a
file or auditing its changes. These features can be really useful, for example, when
trying to find out when a new bug was introduced for the first time.

While working through the examples, we will perform some changes to the source
code. We will use Git and GitHub to manage these changes. To install Git, go to
http://git-scm.com/downloads and download the executable for your operating
system. Then, go to https://github.com/ to create a GitHub account. While
creating the GitHub account, you will be offered a few different subscription plans,
the free plan offers everything we need to follow the examples in this chapter.

Source control tools
Now that we have installed Git and created a GitHub account, we will use GitHub to
create a new code repository. A repository is a central file storage location. It is used
by the source control systems to store multiple versions of files. While a repository
can be configured on a local machine for a single user, it is often stored on a server,
which can be accessed by multiple users.

http://git-scm.com/downloads
https://github.com/

Automating Your Development Workflow

[34]

GitHub offers free source control repositories for open source
projects. GitHub is really popular within the open source
community and many popular projects are hosted on GitHub
(including TypeScript). However, GitHub is not the only option
available and you can use a local Git repository or another
source control service provider such as Bitbucket. If you wish
to learn more about these alternatives, refer to the official
Git documentation at https://git-scm.com/doc or the
BitBucket website at https://bitbucket.org/.

To create a new repository on GitHub, log in to your GitHub account and click on
the link to create a new repository, which we can find in the top-right corner of the
screen.

A web form similar to the one in the following screenshot will then appear.
This form contains some fields, which allow us to set the repository's name,
description, and privacy settings.

https://git-scm.com/doc
https://bitbucket.org/

Chapter 2

[35]

We can also add a README.md file, which uses markdown syntax and is used to add
whatever text we want to the repository's home page on GitHub. Furthermore, we
can add a default .gitignore file, which is used to specify files that we would like
to be ignored by Git and therefore not saved into the repository.

Last but not least, we can also select a software license to cover our source code.
Once we have created the repository, we will navigate to our profile page on GitHub,
find the repository that we have just created, and go to the repository's page. On the
repository's page, we will be able to find the clone URL at the bottom-right corner of
the page.

We need to copy the repository's clone URL, open a console, and use the URL as an
argument of the git clone command:

git clone https://github.com/user-name/repository-name.git

Sometimes the Windows command-line interface is not able to find
the Git and Node.js commands.
The easiest way to get around this issue is to use the Git console
(installed with Git) rather than using the Windows command line.
If you want to use the Windows console, you will need to manually
add the Git and Node installation paths to the Windows PATH
environment variable.
Also, note that we will use the UNIX path syntax in all the
examples.
If you are working with OS X or Linux, the default command-line
interface should work fine.

Automating Your Development Workflow

[36]

The command output should look similar to this:

Cloning into 'repository-name'...

remote: Counting objects: 3, done.

remote: Compressing objects: 100% (3/3), done.

remote: Total 3 (delta 2), reused 0 (delta 0), pack-reused 0

Unpacking objects: 100% (3/3), done.

Checking connectivity... done.

We can then move inside the repository by using the change directory command (cd)
and use the git status command to check the local repository's status:

cd repository-name

git status

On branch master

Your branch is up-to-date with 'origin/master'.

nothing to commit, working directory clean

We will use GitHub throughout this book. However, if you want to
use a local repository, you can use the Git init command to create
an empty repository.
Refer to the Git documentation at http://git-scm.com/docs/
git-init to learn more about the git init command and
working with a local repository.

The git status command is telling us that there are no changes in our working
directory. Let's open the repository folder in Atom and create a new file called
gulpfile.js. Now, run the git status command again, and we will see that
there are some new untracked files:

On branch master

Your branch is up-to-date with 'origin/master'.

Untracked files:

 (use "git add <file>..." to include in what will be committed)

 gulpfile.js

nothing added to commit but untracked files present (use "git add" to
track)

http://git-scm.com/docs/git-init
http://git-scm.com/docs/git-init

Chapter 2

[37]

The files in the Atom project explorer are displayed using a
color code, which will help us to identify whether a file is new,
or has changed since we cloned the repository.

When we make some changes, such as adding a new file or changing an existing
file, we need to execute the git add command to indicate that we want to add that
change to a snapshot:

git add gulpfile.js

git status

On branch master

Your branch is up-to-date with 'origin/master'.

Changes to be committed:

 (use "git reset HEAD <file>..." to unstage)

 new file: gulpfile.js

Now that we have staged the content we want to snapshot, we have to run the git
commit command to actually record the snapshot. Recording a snapshot requires a
commentary field, which can be provided using the git commit command together
with its -m argument:

git commit -m "added the new gulpfile.js"

If everything has gone well, the command output should be similar to the following:

[master 2a62321] added the new file gulpfile.js

 1 file changed, 1 insertions(+)

 create mode 100644 gulpfile.js

To share the commit with other developers, we need to push our changes to the
remote repository. We can do this by executing the git push command:

git push

The git push command will ask for our GitHub username and password and
then send the changes to the remote repository. If we visit the repository's page on
GitHub, we will be able to find the recently created file. We will return to GitHub
later in this chapter to configure our continuous integration server.

Automating Your Development Workflow

[38]

If you are working in a large team, you might encounter some file
conflicts when attempting to push some changes to the remote
repository. Resolving a file conflict is out of the scope of this book;
however, if you need further information about Git, you will find
an extensive user manual at https://www.kernel.org/pub/
software/scm/git/docs/user-manual.html.

Package management tools
Package management tools are used for dependency management, so that we no
longer have to manually download and manage our application's dependencies. We
will learn how to work with three different package management tools: Bower, npm,
and tsd.

npm
The npm package manager was originally developed as the default Node.js package
management tool, but today it is used by many tools. Npm uses a configuration file,
called package.json, to store references to all the dependencies in our application.
It is important to remember that we will normally use npm to install dependencies
that we will use on the server side, in a desktop application, or with development
tools.

Before we install any packages, we should add a package.json file to our project.
We can do it by executing the following command:

npm init

The npm init command will ask for some basic information about our project,
including its name, version, description, entry point, test command, Git repository,
keywords, author and license.

Refer to the official npm documentation at https://docs.npmjs.
com/files/package.json if you are unsure about the purposes
of some of the package.json fields mentioned earlier.

The npm command will then show us a preview of the package.json file that is
about to be generated and ask for our final confirmation.

Remember that you need to have Node.js installed to be able to
use the npm command tool.

https://www.kernel.org/pub/software/scm/git/docs/user-manual.html
https://www.kernel.org/pub/software/scm/git/docs/user-manual.html
https://docs.npmjs.com/files/package.json
https://docs.npmjs.com/files/package.json

Chapter 2

[39]

After creating the project's package.json file, run the npm install command to
install our first dependency. The npm install command takes the name of one or
multiple dependencies separated by a single space as an argument and a second
argument to indicate the scope of the installation.

The scope can be:

• A dependency at development time (testing frameworks, compilers, and so on)
• A dependency at runtime (a web framework, database ORMs, and so on)

We will use the gulp-typescript npm package to compile our TypeScript code; so,
let's install it as a development dependency (using the --save-dev argument):

npm install gulp-typescript --save-dev

To install a global dependency, we will use the -g argument:

npm install typescript -g

We might need administrative privileges to install packages with
global scope in our development environment, as we already learned
in the previous chapter.
Also, note that npm will not add any entries to our package.json
file when installing packages with global scope but it is important that
we manually add the right dependencies to the devDependencies
and peerDependencies sections in the package.json file to
guarantee that the continuous integration build server will resolve
all our project's dependencies correctly. We will learn about the
continuous integration build server in detail later in this chapter.

To install a runtime dependency, use the --save argument:

npm install jquery --save

JQuery is probably the most popular JavaScript framework or library
ever created. It is used to facilitate the usage of some browser APIs
without having to worry about some vendor-specific differences
in the APIs. JQuery also provides us with many helpers that will
help us reduce the amount of code necessary to perform tasks such
as selecting an HTML node within the tree of nodes in an HTML
document.
It is assumed that the readers of this book have a good understanding
of JQuery. If you need to learn more about JQuery, refer to the official
documentation at https://api.jquery.com/.

https://api.jquery.com/

Automating Your Development Workflow

[40]

Once we have installed some dependencies in the package.json file, the contents
should look similar to this:

{
 "name": "repository-name",
 "version": "1.0.0",
 "description": "example",
 "main": "index.html",
 "scripts": {
 "test": "test"
 },
 "repository": {
 "type": "git",
 "url": "https://github.com/username/repository-name.git"
 },
 "keywords": [
 "typescript",
 "demo",
 "example"
],
 "author": "Name Surname",
 "contributors": [],
 "license": "MIT",
 "bugs": {
 "url": "https://github.com/username/repository-name/issues"
 },
 "homepage": "https://github.com/username/repository-name",
 "engines": {},
 "dependencies": {
 "jquery" : "^2.1.4"
 },
 "devDependencies": {
 "gulp-typescript": "^2.8.0"
 }
}

Some fields in the package.json file must be configured manually.
To learn more about the available package.json configuration
fields, visit https://docs.npmjs.com/files/package.json.
The versions of the npm packages used throughout this book may
have been updated since the publication of this book. Refer to the
packages documentation at https://npmjs.com to find out
potential incompatibilities and learn about new features.

https://docs.npmjs.com/files/package.json
https://npmjs.com

Chapter 2

[41]

All the npm packages will be saved under the node_modules directory. We should
add the node_modules directory to our .gitignore file as it is recommended to
avoid saving the application's dependencies into source control. We can do this by
opening the .gitignore file and adding a new line that contains the name of the
folder (node_modules).

The next time we clone our repository, we will need to download all our dependencies
again, but to do so, we will only need to execute the npm install command without
any additional parameters:

npm install

The package manager will then search for the package.json file and install all the
declared dependencies.

If, in the future, we need to find an npm package name, we will be
able to use the npm search engines at https://www.npmjs.com
in order to find it.

Bower
Bower is another package management tool. It is really similar to npm but it was
designed specifically to manage frontend dependencies. As a result, many of the
packages are optimized for its usage in a web browser.

We can install Bower by using npm:

npm install -g bower

Instead of the package.json file, Bower uses a configuration file named bower.
json. We can use the majority of the npm commands and arguments in Bower.
For example, we can use the bower init command to create the initial bower
configuration file:

bower init

The initial configuration file is quite similar to the package.json
file. Refer to the official documentation at http://bower.io/
docs/config/ if you want to learn more about the bower.json
configuration fields.

We can also use the bower install command to install a package:

bower install jquery

http://bower.io/docs/config/
http://bower.io/docs/config/
https://www.npmjs.com

Automating Your Development Workflow

[42]

Furthermore, we can also use the install scope arguments:

bower install jquery --save

bower install jasmine --save-dev

All the Bower packages will be saved under the bower_components directory.
As you have already learned, it is recommended to avoid saving your application's
dependencies in your remote repository, so you should also add the bower_
components directory to your .gitignore file.

tsd
In the previous chapter, we learned that TypeScript by default includes a file
lib.d.ts that provides interface declarations for the built-in JavaScript objects
as well as the Document Object Model (DOM) and Browser Object Model (BOM)
APIs. The TypeScript files with the extension .d.ts are a special kind of TypeScript
file known as type definition files or declaration files.

The type definition files usually contain the type declarations of third-party libraries.
These files facilitate the integration between the existing JavaScript libraries and
TypeScript. If, for example, we try to invoke the JQuery in a TypeScript file, we will
get an error:

$.ajax({ / **/ }); // cannot find name '$'

To resolve this issue, we need to add a reference to the JQuery type definition file in
our TypeScript code, as shown in the following line of code:

///<reference path="jquery.d.ts">

Fortunately, we don't need to create the type definition files because there is an
open source project known as DefinitelyTyped that already contains type definition
files for many JavaScript libraries. In the early days of TypeScript development,
developers had to manually download and install the type definition files from the
DefinitelyTyped project website, but those days are gone, and today we can use a
much better solution known as tsd.

The tsd acronym stands for TypeScript Definitions and it is a package manager
that will help us to manage the type definition files required by our TypeScript
application. Just like npm and bower, tsd uses a configuration file named tsd.json
and stores all the downloaded packages under a directory named typings.

Run the following command to install tsd:

npm install tsd -g

Chapter 2

[43]

We can use the tsd init command to generate the initial tsd.json file and the tsd
install command to download and install dependencies:

tsd init // generate tsd.json

tsd install jquery --save // install jquery type definitions

You can visit the DefinitelyTyped project website at https://github.com/
borisyankov/DefinitelyTyped to search for tsd packages.

Task runners
A task runner is a tool used to automate tasks in the development process. The
task can be used to perform a wide variety of operations such as the compilation
of TypeScript files or the compression of JavaScript files. The two most popular
JavaScript task runners these days are Grunt and Gulp.

Grunt started to become popular in early 2012 and since then the open source
community has developed a large number of Grunt-compatible plugins.

On the other hand, Gulp started to become popular in late 2013; therefore, there
are less plugins available for Gulp, but it is quickly catching up with Grunt.

Besides the number of plugins available, the main difference between Gulp and
Grunt is that while in Grunt we will work using files as the input and output of our
tasks, in Gulp we will work with streams and pipes instead. Grunt is configured
using some configuration fields and values. However, Gulp prefers code over
configuration. This approach makes the Gulp configuration somehow more
minimalistic and easier to read.

In this book, we will work with Gulp; however, if you want to learn
more about Grunt, you can do so at http://gruntjs.com/.

In order to gain a good understanding of Gulp, we can use the project that we have
already created and add some extra folders and files to it. Alternatively, we can start
a new project from scratch. We will configure some tasks, which will reference paths,
folders, and files numerous times, so the following directory tree structure should
help us understand each of these tasks:

├── LICENSE
├── README.md
├── index.html
├── gulpfile.js
├── karma.conf.js

https://github.com/borisyankov/DefinitelyTyped
https://github.com/borisyankov/DefinitelyTyped
http://gruntjs.com/

Automating Your Development Workflow

[44]

├── tsd.json
├── package.json
├── bower.json
├── source
│ └── ts
│ └── *.ts
├── test
│ └── main.test.ts
├── data
│ └── *.json
├── node_modules
│ └── ...
├── bower_components
│ └── ...
└── typings
 └── ...

A copy of a finished example project is provided in the companion
source code. The code is provided to help you follow the content.
You can use the finished project to help improve the understanding
of the concepts discussed in the rest of this chapter.

Let's start by installing gulp globally with npm:

npm install -g gulp

Then install gulp in our package.json devDependencies:

npm install --save-dev gulp

Create a JavaScript file named gulpfile.js inside the root folder of our project,
which should contain the following piece of code:

var gulp = require('gulp');

gulp.task('default', function() {
 console.log('Hello Gulp!');
});

And, finally, run gulp (we must execute this command from where the gulpfile.js
file is located):

gulp

Chapter 2

[45]

We have created our first Gulp task, which is named default. When we run the
gulp command, it will automatically try to search for the gulpfile.js file in the
current directory, and once found, it will try to find the default task.

Checking the quality of the TypeScript code
The default task is not performing any operations in the preceding example, but we
will normally use a Gulp plugin in each task. We will now add a second task, which
will use the gulp-tslint plugin to check whether our TypeScript code follows a
series of recommended practices.

We need to install the plugin with npm:

npm install gulp-tslint --save-dev

We can then load the plugin in to our gulpfile.js file and add a new task:

var tslint = require('gulp-tslint');
gulp.task('lint', function() {
 return gulp.src([
 './source/ts/**/**.ts', './test/**/**.test.ts'
]).pipe(tslint())
 .pipe(tslint.report('verbose'));
});

We have named the new task lint. Let's take a look at the operations performed by
the lint task, step by step:

1. The gulp src function will fetch the files in the directory located at
./source/ts and its subdirectories with the file extension .ts. We
will also fetch all the files in the directory located at ./test and its
subdirectories with the file extension .test.ts.

2. The output stream of the src function will be then redirected using the pipe
function to be used as the tslint function input.

3. Finally, we will use the output of the tslint function as the input of the
tslint.report function.

Now that we have added the lint task, we will modify the gulpfile.js file to
indicate that we want to run lint as a subtask of the default task:

gulp.task('default', ['lint']);

Automating Your Development Workflow

[46]

Many plugins allow us to indicate that some files should be ignored
by adding the exclamation symbol (!) before a path. For example, the
path !path/*.d.ts will ignore all files with the extension .d.ts;
this is useful when the declaration files and source code files are
located in the same directory.

Compiling the TypeScript code
We will now add two new tasks to compile our TypeScript code (one for the
application's logic and one for the application's unit tests).

We will use the gulp-typescript plugin, so remember to install it as a
development dependency using the npm package manager, just as we did
previously in this chapter:

npm install -g gulp-typescript

We can then create a new gulp-typescript project object:

var ts = require('gulp-typescript');
var tsProject = ts.createProject({
 removeComments : true,
 noImplicitAny : true,
 target : 'ES3',
 module : 'commonjs',
 declarationFiles : false
});

It has been announced that the gulp-typescript plugin will soon support
the usage of a special JSON file named tsconfig.json. This file is
used to store the TypeScript compiler configuration. When the file is
available, it is used by the compiler during the compilation process.
The tsconfig.json file is useful because it prevents us from having
to write all the desired compiler parameters when using its console
interface. Refer to the gulp-typescript documentation, which can be
found at https://www.npmjs.com/package/gulp-typescript,
to learn more about this feature.

https://www.npmjs.com/package/gulp-typescript

Chapter 2

[47]

In the preceding code snippet, we have loaded the TypeScript compiler as a
dependency and then created an object named tsProject, which contains the
settings to be used by the TypeScript compiler during the compilation of our code.
We are now ready to compile our application's source code:

gulp.task('tsc', function() {
return gulp.src('./source/ts/**/**.ts')
 .pipe(ts(tsProject))
 .js.pipe(gulp.dest('./temp/source/js'));
});

The tsc task will fetch all the .ts files in the directory located at ./source/ts
and its subdirectories and pass them as a stream to the TypeScript compiler. The
compiler will use the compilation settings passed as the tsProject argument and
then save the output JavaScript files into the path ./temp/sources/js.

We also need to compile some unit tests written in TypeScript. The tests are located
in the test folder and we want the output JavaScript files to be stored under temp/
test. Using the same project configuration object in a different task and with
different input files can result in bad performance and unexpected behavior; so we
need to initialize another gulp-typescript project object. This time we will name the
object tsTestProject:

var tsTestProject = ts.createProject({
 removeComments : true,
 noImplicitAny : true,
 target : 'ES3',
 module : 'commonjs',
 declarationFiles : false
});

The tsc-test task is almost identical to the tsc task, but instead of compiling the
application's code, it will compile the application's tests. Since the source and test
are located in different directories, we have used different paths in this task:

gulp.task('tsc-tests', function() {
 return gulp.src('./test/**/**.test.ts')
 .pipe(ts(tsTestProject))
 .js.pipe(gulp.dest('./temp/test/'));
});

We will update the default task once more in order to perform the new tasks:

gulp.task('default', ['lint', 'tsc', 'tsc-tests']);

Automating Your Development Workflow

[48]

Optimizing a TypeScript application
When we compile our Typescript code, the compiler will generate a JavaScript file
for each compiled TypeScript file. If we run the application in a web browser, these
files won't really be useful on their own because the only way to use them would be
to create an individual HTML script tag for each one of them.

Alternatively, we could follow two different approaches:

• We could use a tool, such as the RequireJS library, to load each of those files
on demand using AJAX. This approach is known as asynchronous module
loading. To follow this approach, we will need to change the configuration
of the TypeScript compiler to use the asynchronous module definition
(AMD) notation.

• We could configure the TypeScript compiler to use the CommonJS module
notation and use a tool, such as Browserify, to trace the application's modules
and dependencies and generate a highly optimized single file, which will
contain all the application's modules.

In this book, we will use the CommonJS method because it is highly integrated with
Browserify and Gulp.

If you have never worked with AMD or CommonJS modules before,
don't worry too much about it for now. We will focus on modules in
Chapter 4, Object-Oriented Programming with TypeScript.

We can find the application's root module (named main.ts in our example) in the
companion code. This file contains the following code:

///<reference path="./references.d.ts" />

import { headerView } from './header_view';
import { footerView } from './footer_view';
import { loadingView } from './loading_view';

headerView.render();
footerView.render();
loadingView.render();

The preceding import statements are used to access the contents of
some external modules. We will learn more about external modules
in Chapter 4, Object-Oriented Programming with TypeScript.

Chapter 2

[49]

When compiled (using the CommonJS module notation), the output JavaScript code
will look like this:

var headerView = require('./header_view');
var footerView = require('./footer_view');
var loadingView = require('./loading_view');
headerView.render();
footerView.render();
loadingView.render();

As we can see in the first three lines, the main.js file depends on the other three
JavaScript files: header_view.js, footer_view.js, and loading_view.js. If we
check the companion code, we will see that these files also have some dependencies.

We will normally refer to these dependencies as modules. Importing a module
allows us to use the public parts (also known as the exported parts) of a module
from another module.

Browserify is able to trace the full tree of dependencies and generate a
highly optimized single file, which will contain all the application's modules
and dependencies.

We will now add two new tasks to our automated build (gulpfile.js). In the first
one, we will configure Browserify to trace the dependencies of our application's
modules. In the second one, we will configure Browserify to trace the dependencies
of our application's unit tests.

We need to install some packages before implementing the new task:

npm install browserify vinyl-transform gulp-uglify gulp-sourcemaps

We can then import the modules and write some initialization code:

Var browserify = require('browserify'),
 transform = require('vinyl-transform'),
 uglify = require('gulp-uglify'),
 sourcemaps = require('gulp-sourcemaps');

var browserified = transform(function(filename) {
 var b = browserify({ entries: filename, debug: true });
 return b.bundle();
});

In the preceding code snippet, we have loaded the required plugins and declared
a function named browserified, which is required for compatibility reasons.
The browserified function will transform a regular Node.js stream into a Gulp
(buffered vinyl) stream.

Automating Your Development Workflow

[50]

Let's proceed to implement the actual task:

gulp.task('bundle-js', function () {
 return gulp.src('./temp/source/js/main.js')
 .pipe(browserified)
 .pipe(sourcemaps.init({ loadMaps: true }))
 .pipe(uglify())
 .pipe(sourcemaps.write('./'))
 .pipe(gulp.dest('./dist/source/js/'));
});

The task we just defined will take the file main.js as the entry point of our application
and trace all the application's modules and dependencies from this point. It will then
generate one single stream containing a highly optimized JavaScript.

We will then use the uglify plugin to minimize the output size. The reduced file
size will reduce the application's loading time, but will make it harder to debug.
We will also generate a source map file to facilitate the debugging process.

Uglify removes all line breaks and whitespaces and reduces the length
of some variable names. The source map files allow us to map the
reduced file to its original code while debugging.
A source map provides a way of mapping code within a compressed
file back to its original position in a source file. This means we can
easily debug an application even after its assets have been optimized.
The Chrome and Firefox developer tools both ship with built-in
support for source maps.

The bundle-test task is really similar to the previous task. This time, we will
avoid using uglify and source maps because usually we won't need to optimize the
download times of our unit tests. As you can see, we don't have a single entry point
because we will allow the existence of multiple entry points (each entry point will
be liked to a collection of automated tests known as test suite. Don't worry if you are
not familiar with this term, as we will learn more about it in Chapter 7, Application
Testing):

gulp.task('bundle-test', function () {
 return gulp.src('./temp/test/**/**.test.js')
 .pipe(browserified)
 .pipe(gulp.dest('./dist/test/'));
});

Finally, we have to update the default task to also perform the new tasks:

gulp.task('default', ['lint', 'tsc', 'tsc-tests', 'bundle-js',
'bundle-test']);

Chapter 2

[51]

We have created a task to compile the TypeScript files into JavaScript
files. The JavaScript files are stored in a temporary folder and a second
task bundles all the JavaScript files into a single file. In a real corporate
environment, it is not recommended to store files temporarily when
working with Gulp. We can perform all these operations with one
single task by passing the output stream of an operation as the input of
the following operation. However, in this book, we will try to split the
tasks to facilitate the understanding of each task.

If we try to execute the default task after adding these changes, we will probably
experience some issues because the tasks are executed in parallel by default. We
will now learn how to control the task's execution order to avoid this kind of issue.

Managing the Gulp tasks' execution order
Sometimes we will need to run our tasks in a certain order (for example, we need
to compile our TypeScript into JavaScript before we can execute our unit tests).
Controlling the tasks' execution order can be challenging since in Gulp all the
tasks are asynchronous by default.

There are three ways to make a task synchronous:

• Passing in a callback
• Returning a stream
• Returning a promise

Refer to Chapter 3, Working with Functions to learn more about
the usage callbacks and promises.

Let's take a look at the first two ways (we will not cover the usage of promises in
this chapter):

// Passing a callback (cb)
gulp.task('sync', function (cb) { // note the cb argument
 // setTimeout could be any async task
 setTimeout(function () {
 cb(); // note the cb usage here
 }, 1000);
});

// Returning a stream
gulp.task('sync', function () {

Automating Your Development Workflow

[52]

 return gulp.src('js/*.js') // note the return keyword here
 .pipe(concat('script.min.js')
 .pipe(uglify())
 .pipe(gulp.dest('../dist/js');
});

Now that we have a synchronous task, we can combine it with the task dependency
notation to manage the execution order:

gulp.task('secondTask', ['sync'], function () {
 // this task will not start until
 // the sync task is all done!
});

In the preceding code snippet, the secondTask task will not start until the sync task is
done. Now, let's imagine that there is a third task named thirdTask. We will write the
following code snippet hoping that it will execute the sync task before the thirdTask
task and finally the default task, but it will in fact run the sync task and thirdTask
task in parallel:

gulp.task('default', ['sync', 'thirdTask'], function () {
 // do stuff
});

Fortunately, we can install the run-sequence Gulp plugin via npm, which will allow
us to have better control over the task execution order:

var runSequence = require('run-sequence');
gulp.task('default', function(cb) {
 runSequence(
 'lint', // lint
 ['tsc', 'tsc-tests'], // compile
 ['bundle-js','bundle-test'], // optimize
 'karma' // test
 'browser-sync', // serve
 cb // callback
);
});

The preceding code snippet will run in the following order:

1. lint.
2. tsc and tsc-tests in parallel.
3. bundle-js and bundle-test in parallel.
4. karma.
5. browser-sync.

Chapter 2

[53]

The Gulp development team announced plans to improve the
management of the task execution order without the need for
external plugins when this book was about to be published. Refer
to the Gulp documentation and release notes on future releases to
learn more about it. The documentation can be found at https://
github.com/gulpjs/gulp/blob/master/docs/README.md.

Test runners
A test runner is a tool that allows us to automate the execution of our application's
unit tests.

Unit testing refers to the practice of testing certain functions and
areas (units) of our code. This gives us the ability to verify that our
functions work as expected. It is assumed that the reader has some
understanding of the unit test process, but the topics explored
here will be covered in a much higher level of detail in Chapter 7,
Application Testing.

We can use a test runner to automatically execute our application's test suites in
multiple browsers instead of having to manually open each web browser in order
to execute the tests.

We will use a test runner known as Karma. Karma is compatible with multiple unit
testing frameworks, but we will use the Mocha testing framework together with two
libraries: Chai (an assertion library) and Sinon (a mocking framework).

You don't need to worry too much about these libraries right now
because we will focus on their usage in Chapter 7, Application Testing.

Let's start by using npm to install the testing framework that we are going to use:

npm install mocha chai sinon --save-dev

We will continue by installing the karma test runner and some dependencies:

npm install karma karma-mocha karma-chai karma-sinon karma-coverage
karma-phantomjs-launcher gulp-karma --save-dev

https://github.com/gulpjs/gulp/blob/master/docs/README.md
https://github.com/gulpjs/gulp/blob/master/docs/README.md

Automating Your Development Workflow

[54]

After installing all the necessary packages, we have to add a new Gulp task to the
gulpfile.js file. The new task will run the application's unit tests using Karma:

Var karma = require("gulp-karma");

gulp.task('karma', function(cb) {
 gulp.src('./dist/test/**/**.test.js')
 .pipe(karma({
 configFile: 'karma.conf.js',
 action: 'run'
 }))
 .on('end', cb)
 .on('error', function(err) {
 // Make sure failed tests cause gulp to exit non-zero
 throw err;
 });
});

In the preceding code snippet, we are fetching all the files with the extension
.test.js under the directory located at ./dist/test/ and all its subdirectories.
We will then pass the files to the Karma plugin together with the location of the
karma.conf.js file, which contains the Karma configuration. We will create a new
JavaScript file named karma.conf.js in the project's root directory and copy the
following code into it:

module.exports = function (config) {
 'use strict';
 config.set({
 basePath: '',
 frameworks: ['mocha', 'chai', 'sinon'],
 browsers: ['PhantomJS'],
 reporters: ['progress', 'coverage'],
 plugins : [
 'karma-coverage',
 'karma-mocha',
 'karma-chai',
 'karma-sinon',
 'karma-phantomjs-launcher'
],
 preprocessors: {
 './dist/test/*.test.js' : ['coverage']
 },
 port: 9876,
 colors: true,
 autoWatch: false,
 singleRun: false,
 logLevel: config.LOG_INFO
 });
};

Chapter 2

[55]

The configuration file tells Karma about the application's base path, frameworks
(Mocha, Chai, and Sinon.JS), browsers (PhantomJS), plugins, and reporters that
we want to use during the tests' execution. PhantomJS is a headless web browser,
it is useful because it can execute the unit test without actually having to open a
web browser.

We should run the tests in real web browsers along with PhantomJS
before doing a production deployment. There are Karma plugins, such
as karma-firefox-launcher and karma-chrome-launcher,
which will allow us to run the unit tests in the browsers of our choice.

Karma uses the progress reporter by default to let us know the status of the test
execution process. We added the coverage reporter as well because we want to have
an idea of what percentage of our application's code has been tested with unit tests.
After adding the coverage reporter and running our unit tests we will be able to find
the coverage report under a folder named coverage, which should be located in the
same directory where the karma.conf.js file was located.

If we look at the Karma configuration documentation at http://karma-runner.
github.io/0.8/config/configuration-file.html, we will notice that we are
missing the files field in our karma.conf.js file. We didn't indicate the location of
our unit tests because the Gulp task will pass the stream, which contains the unit
tests', files to Karma, and then the Karma task is executed.

Synchronized cross-device testing
We will add one last task to the gulpfile.js file, which will allow us to run
our application in a web browser. We need to install the browser-sync package
by using npm:

npm install -g browser-sync

We will then create two new tasks. These tasks are just used to group a few tasks into
one main task. We are doing this because sometimes we want to refresh a webpage
to see the effect of changing some TypeScript code and we need to run a number of
tasks (compilation, bundling, and so on) before we can actually see the changes in a
web browser. By grouping all these tasks into higher-level tasks, we can save some
time and make our configuration files more readable:

gulp.task('bundle', function(cb) {
 runSequence('build', [

http://karma-runner.github.io/0.8/config/configuration-file.html
http://karma-runner.github.io/0.8/config/configuration-file.html

Automating Your Development Workflow

[56]

 'bundle-js', 'bundle-test'
], cb);
});

gulp.task('test', function(cb) {
 runSequence('bundle', ['karma'], cb);
});

The preceding two tasks are used to group all the build-related tasks into a
higher-level task (named bundle) and to group all the test-related tasks into
a higher-level task (named test).

After installing the package and implementing the preceding two tasks, we can
add a new Gulp task to the gulpfile.js file:

var browserSync = require('browser-sync');
gulp.task('browser-sync', ['test'], function() {
 browserSync({
 server: {
 baseDir: "./dist"
 }
 });

 return gulp.watch([
 "./dist/source/js/**/*.js",
 "./dist/source/css/**.css",
 "./dist/test/**/**.test.js",
 "./dist/data/**/**",
 "./index.html"
], [browserSync.reload]);
});

In this task, we are configuring BrowserSync to host in the local web server all the
static files under the dist directory. We then use the gulp watch function to indicate
that, if the content of any of the files under the dist directory changes, BrowserSync
should automatically refresh our web browser.

When some changes are detected, the test task is invoked. Because the test task
invokes the bundle tasks, any changes will trigger the entire process (build and
test) before refreshing the webpage and displaying the new files in a web browser.

BrowserSync is a really powerful tool, it allows us to test in one device and
automatically repeat our actions (clicks, scrolls, and so on) on as many devices as we
want. It will also allow us to debug our applications remotely, which can be really
useful when we are testing an application on mobile devices.

Chapter 2

[57]

Synchronizing devices is really simple. If we run the browser-sync task,
the application will be launched in the default web browser. If we look at
the console output, we will see that the application is running in one URL
(http://localhost:3000) and the BrowserSync tools are available in a
second URL (http://localhost:3001):

[BS] Access URLs:

 Local: http://localhost:3000

 External: http://192.168.241.17:3000

 UI: http://localhost:3001

 UI External: http://192.168.241.17:3001

[BS] Serving files from: ./dist

If we open another tab in our browser pointing to the BrowserSync tools URL
(http://localhost:3001, in the example), we will access the BrowserSync tools
user interface:

We can use the BrowserSync tools user interface to access the remote debugging
options and device synchronization options. To synchronize a new device, we just
need to use a phone or tablet connected to the same local area network and open the
indicated external URL in the device's web browser.

If you wish to learn more about BrowserSync, visit the official project documentation
at http://www.browsersync.io/docs/.

http://www.browsersync.io/docs/

Automating Your Development Workflow

[58]

Continuous Integration tools
Continuous Integration (CI) is a development practice that helps to prevent
potential integration issues. Software integration issues refers to the difficulties that
may arise during the practice of combining individually tested software components
into an integrated whole. Software is integrated when components are combined into
subsystems or when subsystems are combined into products.

Components may be integrated after all of them are implemented and tested, as in a
waterfall model or a big bang approach. On the other hand, CI requires developers to
commit their code daily into a remote code repository. Each commit is then verified
by an automated build, allowing teams to detect integration issues earlier.

In this chapter, we have created a remote code repository and an automated build,
but we haven't configured a tool to observe our commits and run the automate build
accordingly. We need a CI server. There are many options when it comes to choosing
a CI server, but exploring these options is out of the scope of this book. We will work
with Travis CI because it is highly integrated with GitHub and is free for open source
projects and learning purposes.

To configure Travis CI, we need to visit the website https://travis-ci.org and
log in using our GitHub credentials. Once we have logged in, we will be able to see
a list of our public GitHub repositories and will also be able to enable the CI.

To finish the configuration, we need to add a file named travis.yml to our
application's root directory, which contains the Travis CI configuration:

language: node_js

node_js:

 - "0.10""

There are many other available TravisCI configuration options.
Refer to http://docs.travis-ci.com/ to learn more about
the available options.

After completing these two small configuration steps, Travis CI will be ready to
observe the commits to our remote code repository.

https://travis-ci.org
http://docs.travis-ci.com/

Chapter 2

[59]

If the build works in the local development environment, but fails
in the CI server, we will have to check the build error log and try to
figure out what went wrong. Chances are that the software versions
in our environment will be ahead of the ones in the CI server and
we will need to indicate to Travis CI that a dependency needs to be
installed or updated. We can find the Travis CI documentation at
http://docs.travis-ci.com/user/build-configuration/
to learn how to resolve this kind of issue.

Scaffolding tools
A scaffolding tool is used to autogenerate the project structure, build scripts, and
much more. The most popular scaffolding tool these days is Yeoman. Yeoman uses
an internal command known as yo, a package manager, and a task runner of our
choice to generate projects based on templates.

The project templates are known as generators and the open source community has
already published many of them, so we should be able to find one that more or less
suits our needs. Alternatively, we can write and publish our own Yeoman generator.

We will now create a new project to showcase how Yeoman can help us to save
some time. Yeoman will generate the package.json and bower.json files and
automatically install some dependencies for us.

The yo command can be installed using npm:

npm install -g yo

After installing the yo command, we will need to install at least one generator.
We need to find a generator for the kind of project that we wish to create.

We are going create a new project using Gulp as the task runner and
TypeScript to showcase the usage of Yeoman. We can use a generator called
generator-typescript. The list of available generators can be found online
at http://yeoman.io/generators/.

We can install a generator by using npm:

npm install -g generator-typescript

After installing the generator, we can use it with the help of the yo command:

yo typescript

http://docs.travis-ci.com/user/build-configuration/
http://yeoman.io/generators/

Automating Your Development Workflow

[60]

If, for example, we also wanted to use Sass, we could use the generator-gulp-sass-
typescript generator instead:

npm install -g generator-gulp-sass-typescript

Some of the generators are interactive and will allow us to select whether we want to
add some optional third-party libraries to the project or not. Let's run the generator
to see what it looks like:

yo generator-gulp-sass-typescript

The screen that is displayed contains a series of steps to guide us through the process
of creating a new project, which includes Gulp as the task runner, Sass as the CSS
preprocessor, and TypeScript as the programming language:

Downloading the example code
You can download the example code files from your account at
http://www.packtpub.com for all the Packt Publishing books you
have purchased. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have the
files e-mailed directly to you.

http://www.packtpub.com
http://www.packtpub.com/support

Chapter 2

[61]

After executing the generator, the project template will generate a directory tree
similar to the following one:

├── app
│ ├── index.html
│ ├── sass
│ │ └── styles.scss
│ ├── scripts
│ │ └── main.js
│ ├── styles
│ │ └── styles.css
│ └── ts
│ └── main.ts
├── bower.json
├── bower_components
│ └── ...
├── gulpfile.js
├── node_modules
│ └── ...
└── package.json

The bower.json, package.json, and gulpfile.js files (the Gulp task runner
configuration) are autogenerated and will save us a considerable amount of time.

It is never a good idea to let a tool generate some code for us if we
don't really understand what that code does. While in the future you
should definitely consider using Yeoman to generate a new project,
it is recommended to gain a good understanding of task and test
runners before using a scaffolding tool.

Summary
In this chapter, you learned how to work with a source control repository and how
to use Gulp to manage the tasks in an automated build. The automated build helps
us to validate the quality of the TypeScript code, compile it, test it, and optimize it.
You also learned how to install third-party packages and TypeScript type definitions
for those third-party components.

Towards the end of the chapter, you learned how to use the automated build and a
continuous integration server to reduce the impact of potential integration issues.

In the next chapter, you will learn about functions.

[63]

Working with Functions
In Chapter 1, Introducing TypeScript, we took a first look at the usage of functions.
Functions are the fundamental building block of any application in TypeScript,
and they are powerful enough to deserve the dedication of an entire chapter to
explore their potential.

In this chapter, we will learn to work with functions in depth. The chapter is divided
into two main sections. In the first section, we will start with a quick recap of some
basic concepts and then move onto some less commonly known function features
and use cases. The first section includes the following concepts:

• Function declaration and function expressions
• Function types
• Functions with optional parameters
• Functions with default parameters
• Functions with rest parameters
• Function overloading
• Specialized overloading signature
• Function scope
• Immediately invoked functions
• Generics
• Tag functions and tagged templates

Working with Functions

[64]

The second section focuses on TypeScript asynchronous programming capabilities
and includes the following concepts:

• Callbacks and higher order functions
• Arrow functions
• Callback hell
• Promises
• Generators
• Asynchronous functions (async and await)

Working with functions in TypeScript
In this section, we will focus on the declaration and usage of functions, parameters,
and arguments. We will also introduce one of the most powerful features of
TypeScript: Generics.

Function declarations and function
expressions
In the first chapter, we introduced the possibility of declaring functions with (named
function) or without (unnamed or anonymous function) explicitly indicating its name,
but we didn't mention that we were also using two different types of function.

In the following example, the named function greetNamed is a function declaration
while greetUnnamed is a function expression. Ignore the first two lines, which
contain two console log statements, for now:

console.log(greetNamed("John"));
console.log(greetUnnamed("John"));

function greetNamed(name : string) : string {
 if(name) {
 return "Hi! " + name;
 }
}

var greetUnnamed = function(name : string) : string {
 if(name){
 return "Hi! " + name;
 }
}

Chapter 3

[65]

We might think that these preceding functions are really similar, but they will
behave differently. The interpreter can evaluate a function declaration as it is being
parsed. On the other hand, the function expression is part of an assignment and will
not be evaluated until the assignment has been completed.

The main cause of the different behavior of these functions
is a process known as variable hoisting. We will learn more
about the variable hoisting process later in this chapter.

If we compile the preceding TypeScript code snippet into JavaScript and try to
execute it in a web browser, we will observe that the first alert statement will work
because JavaScript knows about the declaration function and can parse it before the
program is executed.

However, the second alert statement will throw an exception, which indicates that
greetUnnamed is not a function. The exception is thrown because the greetUnnamed
assignment must be completed before the function can be evaluated.

Function types
We already know that it is possible to explicitly declare the type of an element in our
application by using the optional type declaration annotation:

function greetNamed(name : string) : string {
 if(name) {
 return "Hi! " + name;
 }
}

In the preceding function, we have specified the type of the parameter name (string)
and its return type (string). Sometimes, we will need to not just specify the types of
the function elements, but also the function itself. Let's take a look at an example:

var greetUnnamed : (name : string) => string;

greetUnnamed = function (name : string) : string {
 if(name){
 return "Hi! " + name;
 }
}

Working with Functions

[66]

In the preceding example, we have declared the variable greetUnnamed and its type.
The type of greetUnnamed is a function type that takes a string variable called name
as its only parameter and returns a string after being invoked. After declaring the
variable, a function, whose type must be equal to the variable type, is assigned to it.

We can also declare the greetUnnamed type and assign a function to it in the same line
rather than declaring it in two separate lines like we did in the previous example:

var greetUnnamed : (name : string) => string = function(name : string)
: string {
 if(name){
 return "Hi! " + name;
 }
}

Just like in the previous example, the preceding code snippet also declares a variable
greetUnnamed and its type. We will assign a function to this variable in the same line
in which it is declared. The assigned function must be equal to the variable type.

In the preceding example, we have declared the type of
the greetUnnamed variable and then assigned a function
as its value. The type of the function can be inferred from
the assigned function, and for this reason, it is unnecessary
to add a redundant type annotation. We have done this to
facilitate the understanding of this section, but it is important
to mention that adding redundant type annotations can make
our code harder to read, and it is considered bad practice.

Functions with optional parameters
Unlike JavaScript, the TypeScript compiler will throw an error if we attempt to
invoke a function without providing the exact number and type of parameters that
its signature declares. Let's take a look at a code sample to demonstrate it:

function add(foo : number, bar : number, foobar : number) : number {
 return foo + bar + foobar;
}

Chapter 3

[67]

The preceding function is called add and will take three numbers as parameters:
named foo, bar, and foobar. If we attempt to invoke this function without providing
exactly three numbers, we will get a compilation error indicating that the supplied
parameters do not match the function's signature:

add(); // Supplied parameters do not match any signature
add(2, 2); // Supplied parameters do not match any signature
add(2, 2, 2); // returns 6

There are scenarios in which we might want to be able to call the function without
providing all its arguments. TypeScript features optional parameters in functions
to help us to increase the flexibility of our functions. We can indicate to TypeScript
that we want a function's parameter to be optional by appending the character ? to
its name. Let's update the previous function to transform the required parameter
foobar into an optional parameter:

function add(foo : number, bar : number, foobar? : number) : number {
 var result = foo + bar;
 if(foobar !== undefined){
 result += foobar;
 }
 return result;
}

Note how we have changed the foobar parameter name into foobar?, and how
we are checking the type of foobar inside the function to identify if the parameter
was supplied as an argument to the function or not. After doing these changes, the
TypeScript compiler will allow us to invoke the function without errors when we
supply two or three arguments to it:

add(); // Supplied parameters do not match any signature
add(2, 2); // returns 4
add(2, 2, 2); // returns 6

It is important to note that the optional parameters must always be located after the
required parameters in the function's parameters list.

Working with Functions

[68]

Functions with default parameters
When a function has some optional parameters, we must check if an argument has
been passed to the function (just like we did in the previous example).

There are some scenarios in which it would be more useful to provide a default value
for a parameter when it is not supplied than to make it an optional parameter. Let's
rewrite the add function (from the previous section) using the inline if structure:

function add(foo : number, bar : number, foobar? : number) :
number {
 return foo + bar + (foobar !== undefined ? foobar : 0);
}

There is nothing wrong with the preceding function, but we can improve its
readability by providing a default value for the foobar parameter instead of
flagging it as an optional parameter:

function add(foo : number, bar : number, foobar : number = 0) :
number {
 return foo + bar + foobar;
}

To indicate that a function parameter is optional, we just need to provide a default
value using the = operator when declaring the function's signature. The TypeScript
compiler will generate an if structure in the JavaScript output to set a default value
for the foobar parameter if it is not passed as an argument to the function:

function add(foo, bar, foobar) {
 if (foobar === void 0) { foobar = 0; }
 return foo + bar + foobar;
}

Void 0 is used by the TypeScript compiler to check if a variable is equal to undefined.
While most developers use the undefined variable, most compilers use void 0.

Just like optional parameters, default parameters must be always located after any
required parameters in the function's parameter list.

Chapter 3

[69]

Functions with rest parameters
We have seen how to use optional and default parameters to increase the
number of ways that we can invoke a function. Let's return one more time
to the previous example:

function add(foo : number, bar : number, foobar : number = 0) :
number {
 return foo + bar + foobar;
}

We have seen how to make possible the usage of the add function with two or three
parameters, but what if we wanted to allow other developers to pass four or five
parameters to our function? We would have to add two extra default or optional
parameters. And what if we wanted to allow them to pass as many parameters as
they may need? The solution to this possible scenario is the use of rest parameters.
The rest parameter syntax allows us to represent an indefinite number of arguments
as an array:

function add(...foo : number[]) : number {
 var result = 0;
 for(var i = 0; i < foo.length; i++){
 result += foo[i];
 }
 return result;
}

As we can see in the following code snippet, we have replaced the function parameters
foo, bar, and foobar with just one parameter: foo. Note that the name of the
parameter foo is preceded by an ellipsis (a set of three periods—not the actual ellipsis
character). A rest parameter must be of an array type or we will get a compilation error.
We can now invoke the add function with as many parameters as we may need:

add(); // returns 0
add(2); // returns 2
add(2,2); // returns 4
add(2,2,2); // returns 6
add(2,2,2,2); // returns 8
add(2,2,2,2,2); // returns 10
add(2,2,2,2,2,2); // returns 12

Although there is no specific limit to the theoretical maximum number of arguments
that a function can take, there are, of course, practical limits. These limits are entirely
implementation-dependent and, most likely, will also depend exactly on how we are
calling the function.

Working with Functions

[70]

JavaScript functions have a built-in object called the arguments object. This object is
available as a local variable named arguments. The arguments variable contains an
object similar to an array, which contains the arguments used when the function
was invoked.

The arguments object exposes some of the methods and properties
provided by a standard array, but not all of them. Refer to the complete
reference at https://developer.mozilla.org/en-US/docs/
Web/JavaScript/Reference/Functions/arguments to learn
more about its peculiarities.

If we examine the JavaScript output, we will notice that TypeScript iterates the
arguments object in order to add the values to the foo variable:

function add() {
 var foo = [];
 for (var _i = 0; _i < arguments.length; _i++) {
 foo[_i - 0] = arguments[_i];
 }
 var result = 0;
 for (var i = 0; i < foo.length; i++) {
 result += foo[i];
 }
 return result;
}

We can argue that this is an extra, unnecessary iteration over the function's
parameters. Even though is hard to imagine this extra iteration becoming a
performance issue, if you think that this could be a problem for the performance
of your application, you may want to consider avoiding using rest parameters
and use an array as the only parameter of the function instead:

function add(foo : number[]) : number {
 var result = 0;
 for(var i = 0; i < foo.length; i++){
 result += foo[i];
 }
 return result;
}

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/arguments
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/arguments

Chapter 3

[71]

The preceding function takes an array of numbers as its only parameter.
The invocation API will be a little different from the rest parameters, but we
will effectively avoid the extra iteration over the function's argument list:

add(); // Supplied parameters do not match any signature
add(2); // Supplied parameters do not match any signature
add(2,2); // Supplied parameters do not match any signature
add(2,2,2); // Supplied parameters do not match any signature

add([]); // returns 0
add([2]); // returns 2
add([2,2]); // returns 4
add([2,2,2]); // returns 6

Function overloading
Function overloading or method overloading is the ability to create multiple
methods with the same name and a different number of parameters or types.
In TypeScript, we can overload a function by specifying all function signatures
of a function, followed by a signature known as the implementation signature.
Let's take a look at an example:

function test(name: string) : string; // overloaded signature
function test(age: number) : string; // overloaded signature
function test(single: boolean) : string; // overloaded signature
function test(value: (string | number | boolean) : string { //
implementation signature
 switch(typeof value){
 case "string":
 return `My name is ${value}.`;
 case "number":
 return `I'm ${value} years old.`;
 case "boolean":
 return value ? "I'm single." : "I'm not single.";
 default:
 console.log("Invalid Operation!");
 }
}

Working with Functions

[72]

You might not be familiar with the syntax used in some of the
strings in the preceding code snippet. This syntax is known as
Template Strings. Template strings are enclosed by the back-
tick (` `) character instead of double or single quotes. Template
strings can contain placeholders. These are indicated by the dollar
sign and curly braces (${expression}). The expressions in the
placeholders and the text between them get passed to a function.
The default function just concatenates the parts into a single string.

As we can see in the preceding example, we have overloaded the function test
three times by adding a signature that takes a string as its only parameter, another
function that takes a number, and a final signature that takes a Boolean as its unique
parameter. It is important to note that all function signatures must be compatible; so
if, for example, one of the signatures tries to return a number while another tries to
return a string, we will get a compilation error.

The implementation signature must be compatible with all the overloaded
signatures, always be the last in the list, and take any or a union type as the
type of its parameters.

Invoking the implementation signature directly will cause a compilation error:

test("Remo"); // returns "My name is Remo."
test(26); // returns "I'm 26 years old.";
test(false); // returns "I'm not single.";
test({ custom : "custom" }); // error

Specialized overloading signatures
We can use a specialized signature to create multiple methods with the same name and
number of parameters but a different return type. To create a specialized signature, we
must indicate the type of function parameter using a string. The string literal is used to
identify which of the function overloads is invoked:

interface Document {
 createElement(tagName: "div"): HTMLDivElement; // specialized
 createElement(tagName: "span"): HTMLSpanElement; // specialized
 createElement(tagName: "canvas"): HTMLCanvasElement; //
 specialized
 createElement(tagName: string): HTMLElement; // non-specialized
}

In the preceding example, we have declared three specialized overloaded signatures
and one non-specialized signature for the function named createElement.

Chapter 3

[73]

When we declare a specialized signature in an object, it must be assignable to at
least one non-specialized signature in the same object. This can be observed in the
preceding example, as the createElement property belongs to a type that contains
three specialized signatures, all of which are assignable to the non-specialized
signature in the type.

When writing overloaded declarations, we must list the non-specialized signature last.

Remember that, as seen in Chapter 1, Introducing TypeScript, we
can also use union types to create a method with the same name
and number of parameters but a different type.

Function scope
Low-level languages such as C have low-level memory management features.
In programming languages with a higher level of abstraction such as TypeScript,
values are allocated when variables are created and automatically cleared from
memory when they are not used anymore. The process that cleans the memory
is known as garbage collection and is performed by the JavaScript runtime
garbage collector.

The garbage collector generally does a great job, but it is a mistake to assume that it
will always prevent us from facing a memory leak. The garbage collector will clear
a variable from the memory whenever the variable is out of the scope. Is important
to understand how the TypeScript scope works so we understand the lifecycle of
the variables.

Some programming languages use the structure of the program source code to
determine what variables we are referring to (lexical scoping), while others use
the runtime state of the program stack to determine what variable we are referring
to (dynamic scoping). The majority of modern programing languages use lexical
scoping (including TypeScript). Lexical scoping tends to be dramatically easier to
understand for both humans and analysis tools than dynamic scoping.

While in most lexical scoped programming languages, variables are scoped to a
block (a section of code delimited by curly braces {}), in TypeScript (and JavaScript),
variables are scoped to a function:

function foo() : void {
 if(true){
 var bar : number = 0;
 }

Working with Functions

[74]

 alert(bar);
}

foo(); // shows 0

The preceding function named foo contains an if structure. We have declared a
numeric variable named bar inside the if structure, and later we have attempted
to show the value of the variable bar using the alert function.

We might think that the preceding code sample would throw an error in the fifth
line because the bar variable should be out of the scope when the alert function is
invoked. However, if we invoke the foo function, the alert function will be able to
display the variable bar without errors because all the variables inside a function
will be in the scope of the entire function body, even if they are inside another block
of code (except a function block).

This might seem really confusing, but it is easy to understand once we know that,
at runtime, all the variable declarations are moved to the top of a function before
the function is executed. This behavior is called hoisting.

TypeScript is compiled to JavaScript and then executed—this means
that a TypeScript application is a JavaScript application at runtime, and
for this reason, when we refer to the TypeScript runtime, we are talking
about the JavaScript runtime. We will learn in depth about the runtime
in Chapter 5, Runtime.

So, before the preceding code snippet is executed, the runtime will move the
declaration of the variable bar to the top of our function:

function foo() : void {
 var bar :number;
 if(true){
 bar= 0;
 }
 alert(bar);
}

This means that we can use a variable before it is declared. Let's take a look at an
example:

function foo2() : void {
 bar = 0;
 var bar : number;
 alert(bar);
}

foo2();

Chapter 3

[75]

In the preceding code snippet, we have declared a function foo2, and in its body, we
have assigned the value 0 to a variable named bar. At this point, the variable has not
been declared. In the second line, we are actually declaring the variable bar and its
type. In the last line, we are displaying the value of bar using the alert function.

Because declaring a variable anywhere inside a function (except another function) is
equivalent to declaring it at the top of the function, the foo2 function is transformed
into the following at runtime:

function foo2() : void {
 var bar : number;
 bar = 0;
 alert(bar);
}

foo2();

Because developers with a Java or C# background are not used to the function scope,
it is one of the most criticized characteristics of JavaScript. The people in charge of
the development of the ECMAScript 6 specification are aware of this and, as a result,
they have introduced the keywords let and const.

The let keyword allows us to set the scope of a variable to a block (if, while, for…)
rather than a function block. We can update the first example in this section to
showcase how let works:

function foo() : void {
 if(true){
let bar : number = 0;
bar = 1;
 }
 alert(bar); // error
}

The bar variable is now declared using the let keyword and, as a result, it is only
accessible inside the if block. The variable is not hoisted to the top of the foo function
and cannot be accessed by the alert function outside the if statement.

While variables defined with const follow the same scope rules as variables declared
with let, they can't be reassigned:

function foo() : void {
 if(true){
 const bar : number = 0;
 bar = 1; // error

Working with Functions

[76]

 }
 alert(bar); // error
}

If we attempt to compile the preceding code snippet, we will get an error because
the bar variable is not accessible outside the if statement (just like when we used
the let keyword), and a new error occurs when we try to assign a new value to the
bar variable. The second error is caused because it is not possible to assign a value
to a constant variable once the variable has already been initialized.

Immediately invoked functions
An immediately invoked function expression (IIFE) is a design pattern that produces
a lexical scope using function scoping. IIFE can be used to avoid variable hoisting from
within blocks or to prevent us from polluting the global scope. For example:

var bar = 0; // global

(function() {
 var foo : number = 0; // in scope of this function
 bar = 1; // in global scope
 console.log(bar); // 1
 console.log(foo); // 0
})();

console.log(bar); // 1
console.log(foo); // error

In the preceding example, we have wrapped the declaration of two variables
(foo and bar) with an IIFE. The foo variable is scoped to the IIFE function and
is not available in the global scope, which explains the error when trying to access
it in the last line.

We can also pass a variable to the IIFE to have better control over the creation of
variables outside its own scope:

var bar = 0; // global

(function(global) {
 var foo : number = 0; // in scope of this function
 bar = 1; // in global scope
 console.log(global.bar); // 1
 console.log(foo); // 0
})(this);

Chapter 3

[77]

console.log(bar); // 1
console.log(foo); // error

This time, the IIFE takes the this operator as its only argument, which points to the
global scope, because we are not invoking the this operator from within a function.
Inside the IIFE, the this operator is passed as a parameter named global. We can
then achieve much better control over the objects we want to declare in the global
scope (bar) and those we don't (foo).

Furthermore, IIFE can help us to simultaneously allow public access to methods
while retaining privacy for variables defined within the function. Let's take a look
at an example:

class Counter {
 private _i : number;
 constructor() {
 this._i = 0;
 }
 get() : number {
 return this._i;
 }
 set(val : number) : void {
 this._i = val;
 }
 increment() : void {
 this._i++;
 }
}
var counter = new Counter();
console.log(counter.get()); // 0
counter.set(2);
console.log(counter.get()); // 2
counter.increment();
console.log(counter.get()); // 3
console.log(counter._i); // Error: Property '_i' is private

By convention, TypeScript and JavaScript developers usually name
private variables with names preceded by an underscore (_).

We have defined a class named Counter that has a private numeric attribute named
_i. The class also has methods to get and set the value of the private property _i.
We have also created an instance of the Counter class and invoked the methods set,
get, and increment to observe that everything is working as expected. If we attempt
to access the _i property in an instance of Counter, we will get an error because the
variable is private.

www.allitebooks.com

http://www.allitebooks.org

Working with Functions

[78]

If we compile the preceding TypeScript code (only the class definition) and examine
the generated JavaScript code, we will see the following:

var Counter = (function () {
 function Counter() {
 this._i = 0;
 }
 Counter.prototype.get = function () {
 return this._i;
 };
 Counter.prototype.set = function (val) {
 this._i = val;
 };
 Counter.prototype.increment = function () {
 this._i++;
 };
 return Counter;
})();

This generated JavaScript code will work perfectly in most scenarios, but if we execute
it in a browser and try to create an instance of Counter and access its property _i, we
will not get any errors because TypeScript will not generate runtime private properties
for us. Sometimes we will need to write our functions in such a way that some
properties are private at runtime, for example, if we release a library that will be used
by JavaScript developers. We can use IIFE to simultaneously allow public access to
methods while retaining privacy for variables defined within the function:

var Counter = (function () {
 var _i : number = 0;
 function Counter() {
 }
 Counter.prototype.get = function () {
 return _i;
 };
 Counter.prototype.set = function (val : number) {
 _i = val;
 };
 Counter.prototype.increment = function () {
 _i++;
 };
 return Counter;
})();

Chapter 3

[79]

In the preceding example, everything is almost identical to TypeScript's generated
JavaScript, except that the variable _i before was an attribute of the Counter class,
and now it is an object in the Counter closure.

Closures are functions that refer to independent (free) variables. In other
words, the function defined in the closure remembers the environment
(variables in the scope) in which it was created. We will discover more
about closures in Chapter 5, Runtime.

If we run the generated output in a browser and try to invoke the _i property directly,
we will notice that the property is now private at runtime:

var counter = new Counter();
console.log(counter.get()); // 0
counter.set(2);
console.log(counter.get()); // 2
counter.increment();
console.log(counter.get()); // 3
console.log(counter._i); // undefined

In some cases, we will need to have really precise control over scope
and closures, and our code will end up looking much more like
JavaScript. Just remember that, as long as we write our application
components (classes, modules, and so on) to be consumed by
other TypeScript components, we will rarely have to worry about
implementing runtime private properties. We will look in depth at
the TypeScript runtime in Chapter 5, Runtime.

Generics
Andy Hunt and Dave Thomas formulated the don't repeat yourself (DRY)
principle in the book The Pragmatic Programmer. The DRY principle aims to reduce
the repetition of information of all kinds. We will now take a look at an example
that will help us to understand what generics functions are and how they can help
us follow the DRY principle.

We will start by declaring a really simple User class:

class User {
 name : string;
 age : number;
}

Working with Functions

[80]

Now that we have our User class in place, let's write a function named getUsers
that will request a list of users via AJAX:

function getUsers(cb : (users : User[]) => void) : void {
 $.ajax({
 url: "/api/users",
 method: "GET",
 success: function(data) {
 cb(data.items);
 },
 error : function(error) {
 cb(null);
 }
 });
}

We will use jQuery in this example. Remember to create a package.
json file and install the jQuery package using npm. You will also
need to install the jQuery type definitions file using tsd. Refer to
Chapter 1, Introducing Typescript and Chapter 2, Automating Your
Development Workflow if you need additional help.

The getUsers function takes a function as a parameter that will be invoked if the
AJAX request has been successful. It can be invoked as follows:

getUsers(function(users : User[]){
 for(var i; users.length; i++){
 console.log(users[i].name);
 }
});

Now let's imagine that we need an almost identical operation. But this time, we will
use an Order entity instead:

class Order {
 id : number;
 total : number;
 items : any[]
}

The getOrders function is almost identical to the getUsers function. It uses a
different URL and it will pass an array of Orders instead of a User array:

function getOrders(cb : (orders : Order[]) => void) : void {
 $.ajax({

Chapter 3

[81]

 url: "/api/orders",
 method: "GET",
 success: function(data) {
 cb(data.items);
 },
 error : function(error) {
 cb(null);
 }
 });
}

getOrders(function(orders : Orders[]){
 for(var i; orders.length; i++){
 console.log(orders[i].total);
 }
});

We can use generics to avoid this kind of repetition. Generic programming is a
style of computer programming in which algorithms are written in terms of types
to be specified later. These types are then instantiated when needed for specific
types provided as parameters. We are going to write a generic function named
getEntities that takes two parameters:

function getEntities<T>(url : string, cb : (list : T[]) => void) :
void {
 $.ajax({
 url: url,
 method: "GET",
 success: function(data) {
 cb(data.items);
 },
 error : function(error) {
 cb(null);
 }
 });
}

We have added angle brackets (<>) after the name of our functions to indicate that it
is a generic function. Enclosed in the angle brackets is the character T, which is used to
refer to a type. The first parameter is named url and is a string; the second parameter
is a function named cb, which takes a parameter list of type T as its only parameter.

Working with Functions

[82]

We can now use this generic function to indicate what type T will represent:

getEntities<User>("/api/users",function(users : Users[]) {
 for(var i; users.length; i++) {
 console.log(users[i].name);
 }
});

getEntities<Order>("/api/orders", function(orders : Orders[]) {
 for(var i; orders.length; i++) {
 console.log(orders[i].total);
 }
});

Tag functions and tagged templates
We have already seen how to work with template strings such as the following:

var name = 'remo';
var surname = jansen;
var html = `<h1>${name} ${surname}</h1>`;

However, there is one use of template strings that we deliberately skipped because it
is closely related to the use of a special kind of function known as tag function.

We can use a tag function to extend or modify the standard behavior of template
strings. When we apply a tag function to a template string, the template string
becomes a tagged template.

We are going to implement a tag function named htmlEscape. To use a tag function,
we must use the name of the function followed by a template string:

var html = htmlEscape `<h1>${name} ${surname}</h1>`;

A tag template must return a string and take the following arguments:

• An array which contains all the static literals in the template string (<h1> and
</h1> in the preceding example) is passed as the first argument.

• A rest parameter is passed as the second parameter. The rest parameter
contains all the values in the template string (name and surname in the
preceding example).

We now know the signature of a tag function.

tag(literals : string[], ...values : any[]) : string

Chapter 3

[83]

Let's implement the htmlEscape tag function:

function htmlEscape(literals, ...placeholders) {
 let result = "";
 for (let i = 0; i < placeholders.length; i++) {
 result += literals[i];
 result += placeholders[i]
 .replace(/&/g, '&')
 .replace(/"/g, '"')
 .replace(/'/g, ''')
 .replace(/</g, '<')
 .replace(/>/g, '>');
 }
 result += literals[literals.length - 1];
 return result;
}

The preceding function iterates through the literals and values and ensures that the
HTML code is escaped from the values to avoid possible code injection attacks.

The main benefit of using a tagged function is that it allows us to create custom
template string processors.

This feature will be available in the TypeScript 1.6 release.

Asynchronous programming in
TypeScript
Now that we have seen how to work with functions, we will explore how we can use
them, together with some native objects, to write asynchronous applications.

Callbacks and higher-order functions
In TypeScript, functions can be passed as arguments to another function. The function
passed to another as an argument is known as a callback. Functions can also be
returned by another function. The functions that accept functions as parameters
(callbacks) or return functions as an argument are known as higher-order functions.
Callbacks are usually anonymous functions.

var foo = function() { // callback
 console.log('foo');

Working with Functions

[84]

}

function bar(cb : () => void) { // higher order function
 console.log('bar');
 cb();
}

bar(foo); // prints 'bar' then prints 'foo'

Arrow functions
In TypeScript, we can declare a function using a function expression or an arrow
function. An arrow function expression has a shorter syntax compared to function
expressions and lexically binds the value of the this operator.

The this operator behaves a little differently in TypeScript compared to other
languages. When we define a class in TypeScript, we can use the this operator
to refer to the class's own properties. Let's take a look at an example:

class Person {
name : string;
 constructor(name : string) {
 this.name = name;
 }
 greet() {
 alert(`Hi! My name is ${this.name}`);
 }
}
var remo = new Person("Remo");
remo.greet(); // "Hi! My name is Remo"

We have defined a Person class that contains a property of type string called name.
The class has a constructor and a method greet. We have created an instance named
remo and invoked the method named greet, which internally uses the this operator
to access the remo property's name. Inside the greet method, the this operator
points to the object that encloses the greet method.

We must be careful when using the this operator because in some scenarios it can
point to the wrong value. Let's add an extra method to the previous example:

class Person {
name : string;
 constructor(name : string) {
 this.name = name;
 }

Chapter 3

[85]

 greet() {
 alert(`Hi! My name is ${this.name}`);
 }
 greetDelay(time : number) {
 setTimeout(function() {
 alert(`Hi! My name is ${this.name}`);
 }, time);
 }
}
var remo = new Person("remo");
remo.greet(); // "Hi! My name is remo"
remo.greetDelay(1000); // "Hi! My name is "

In the greetDelay method, we perform an almost identical operation to the one
performed by the greet method. This time the function takes a parameter named
time, which is used to delay the greet message.

In order to delay the message, we use the setTimeout function and a callback.
As soon as we define an anonymous function (the callback), the this keyword
changes its value and starts pointing to the anonymous function. This explains
why the name remo is not displayed by the greetDelay message.

As mentioned, an arrow function expression lexically binds the value of the this
operator. This means that it allows us to add a function without altering the value
of this operator. Let's replace the function expression from the previous example
with an arrow function:

class Person {
 name : string;
 constructor(name : string) {
 this.name = name;
 }
 greet() {
 alert(`Hi! My name is ${this.name}`);
 }
 greetDelay(time : number) {
 setTimeout(() => {
 alert(`Hi! My name is ${this.name}`);
 }, time);
 }
}

var remo = new Person("remo");
remo.greet(); // "Hi! My name is remo"
remo.greetDelay(1000); // "Hi! My name is remo"

Working with Functions

[86]

By using an arrow function, we can ensure that the this operator still points to the
Person instance and not to the setTimeout callback. If we execute the greetDelay
function, the name property will be displayed as expected.

The following piece of code was generated by the TypeScript compiler. When
compiling an arrow function, the TypeScript compiler will generate an alias for
the this operator named _this. The alias is used to ensure that the this operator
points to the right object.

Person.prototype.greetDelay = function (time) {
 var _this = this;
 setTimeout(function () {
 alert("Hi! My name is " + _this.name);
 }, time);
};

Callback hell
We have seen that callbacks and higher order functions are two powerful and flexible
TypeScript features. However, the use of callbacks can lead to a maintainability issue
known as callback hell. We will now write a real-life example to showcase what a
callback hell is and how easily we can end up dealing with it.

Remember that you can find the complete source code for this
demo in the companion source code.

We are going to need handlebars and jQuery libraries, so let's install these two
libraries and their respective type definition files using npm and tsd. We can then
import their type definitions:

///<reference path="../typings/handlebars/handlebars.d.ts" />

///<reference path="../typings/jquery/jquery.d.ts" />

To make our code easier to read, we will create an alias for the callback type:

type cb = (json : any) => void;

Now we need to declare our View class. The View class has some properties that
allow us to set the following properties:

• Container: The DOM selector where we want our view to be inserted
• Template URL: The URL that will return a handlebars template

Chapter 3

[87]

• Service URL: The URL of a web service that will return some JSON data
• Arguments: The data to be send to the service

We can see the View class implementation as follows:

class View {
 private _container : string;
 private _templateUrl : string;
 private _serviceUrl : string;
 private _args : any;
 constructor(config){
 this._container = config.container;
 this._templateUrl = config.templateUrl;
 this._serviceUrl = config.serviceUrl;
 this._args = config.args;
 }
 //...

After defining the class constructor and its properties, we will add a private method
named _loadJson to our class. This method takes the service URL, the arguments, a
success callback, and an error callback as its arguments. Inside the method, we will
send a jQuery AJAX request using the service URL and argument settings:

 private _loadJson(url : string, args : any, cb : cb, errorCb :
 cb) {
 $.ajax({
 url: url,
 type: "GET",
 dataType: "json",
 data: args,
 success: (json) => {
 cb(json);
 },
 error: (e) => {
 errorCb(e);
 }
 });
 }
 //...

Working with Functions

[88]

Handlebars is a library that allows us to compile and render HTML
templates in a browser. These templates help with JSON-to-HTML
transformations. We will mention this library later a couple of times,
but don't worry if you have never used it before; this section is not
about handlebars.
This section is about a set of tasks and how we can control the
execution flow of those tasks using callbacks. If you want to learn
more about handlebars, visit http://handlebarsjs.com/.

This function is almost identical to the previous one, but instead of loading some
JSON, we will load a handlebars template:

 private _loadHbs(url : string, cb : cb, errorCb : cb) {
 $.ajax({
 url: url,
 type: "GET",
 dataType: "text",
 success: (hbs) => {
 cb(hbs);
 },
 error: (e) => {
 errorCb(e);
 }
 });
 }
 //...

This function takes a handlebar template code as input and tries to compile it using
the handlebars compile function. Just like in the previous example, we use callbacks,
which will be invoked after the success or failure of the operation:

 private _compileHbs(hbs : string, cb : cb, errorCb : cb) {
 try
 {
 var template = Handlebars.compile(hbs);
 cb(template);
 }
 catch(e) {
 errorCb(e);
 }
 }
 //...

http://handlebarsjs.com/

Chapter 3

[89]

In this function, we take the already compiled template and the already loaded JSON
data and put them together to transform JSON into HTML following the template
formatting rules. Just like in the previous example, we use callbacks that will be
invoked after the success or failure of the operation:

 private _jsonToHtml(template : any, json : any, cb : cb, errorCb
 : cb) {
 try
 {
 var html = template(json);
 cb(html);
 }
 catch(e) {
 errorCb(e);
 }
 }
 //...

The following function takes the HTML generated by the _jsonToHtml function and
appends it to a DOM element:

 private _appendHtml = function (html : string, cb : cb, errorCb
 : cb) {
 try
 {
 if($(this._container).length === 0) {
 throw new Error("Container not found!");
 }
 $(this._container).html(html);
 cb($(this._container));
 }
 catch(e) {
 errorCb(e);
 }
 }
 //...

Now that we have a few functions that use callbacks, we will use all of them together
in one single function named render. The render method controls the execution
flow of the tasks, and executes them in the following order:

1. Loads the JSON data.
2. Loads the template.
3. Compiles the template.

Working with Functions

[90]

4. Transforms JSON into HTML.
5. Appends HTML to the DOM.

Each task takes a success callback, which invokes the following tasks in the list if it is
successful, and an error callback, which is invoked when something goes wrong:

 public render (cb : cb, errorCb : cb) {
 try
 {
 this._loadJson(this._serviceUrl, this._args, (json) => {
 this._loadHbs(this._templateUrl, (hbs) => {
 this._compileHbs(hbs, (template) => {
 this._jsonToHtml(template, json, (html) => {
 this._appendHtml(html, cb);
 }, errorCb);
 }, errorCb);
 }, errorCb);
 }, errorCb);
 }
 catch(e){
 errorCb(e);
 }
 }
}

In general, you should try to avoid nesting callbacks like in the preceding example
because it will:

• Make the code harder to understand
• Make the code harder to maintain (refactor, reuse, and so on)
• Make exception handling more difficult

Promises
After seeing how the use of callbacks can lead to some maintainability problems,
we will now look at promises and how they can be used to write better asynchronous
code. The core idea behind promises is that a promise represents the result of an
asynchronous operation. Promise must be in one of the three following states:

• Pending: The initial state of a promise
• Fulfilled: The state of a promise representing a successful operation
• Rejected: The state of a promise representing a failed operation

Chapter 3

[91]

Once a promise is fulfilled or rejected, its state can never change again. Let's take a
look at the basic syntax of a promise:

function foo() {
 return new Promise((fulfill, reject) => {
 try
 {
 // do something
 fulfill(value);
 }
 catch(e){
 reject(reason);
 }
 });
}

foo().then(function(value){ console.log(value); })
 .catch(function(e){ console.log(e); });

A try…catch statement is used here to showcase how we can
explicitly fulfill or reject a promise. The try…catch statement is not
really needed in a Promise function because when an error is thrown
in a promise, the promise will automatically be rejected.
The preceding code snippet declares a function named foo that
returns a promise. The promise contains a method named then,
which accepts a function to be invoked when the promise is fulfilled.
Promises also provide a method named catch, which is invoked
when a promise is rejected.

We will now return to the callback hell example and make some changes in the code
to use promises instead of callbacks.

Just like before, we are going to need handlebars and jQuery; so let's import their
type definitions. In addition, this time, we will also need the declarations of a library
known as Q:

///<reference path="../typings/handlebars/handlebars.d.ts" />
///<reference path="../typings/jquery/jquery.d.ts" />
///<reference path="../typings/q/q.d.ts" />

We will use the Promise object from a library instead of the native
object because the libraries implement fallbacks so our code can
work in old browsers. We will use a promises library known as Q
(version 1.0.1) in this example. If you want to learn more about it,
visit https://github.com/kriskowal/q.

https://github.com/kriskowal/q

Working with Functions

[92]

The class name has changed from View to ViewAsync but everything else is still
identical to the previous example:

class ViewAsync {
 private _container : string;
 private _templateUrl : string;
 private _serviceUrl : string;
 private _args : any;
 constructor(config) {
 this._container = config.container;
 this._templateUrl = config.templateUrl;
 this._serviceUrl = config.serviceUrl;
 this._args = config.args;
 }
 //...

Many developers append the word Async to the name of a function
as a code convention, which is used to indicate that a function is an
asynchronous function.

We will use our first promise in the function _loadJsonAsync. This function was
named _loadJson in the callback example. We have removed the callbacks for
success and error previously declared in the function signature. Finally, we have
wrapped the function with a promise object and invoked the resolve and reject
methods when the promise succeeds or fails respectively.

 private _loadJsonAsync(url : string, args : any) {
 return Q.Promise(function(resolve, reject) {
 $.ajax({
 url: url,
 type: "GET",
 dataType: "json",
 data: args,
 success: (json) => {
 resolve(json);
 },
 error: (e) => {
 reject(e);
 }
 });
 });
 }
 //...

Chapter 3

[93]

We will then refactor (rename, remove callbacks, wrap logic with a promise,
and so on) each of the class functions (_loadHbsAsync, compileHbsAsync,
and _appendHtmlAsync):

 private _loadHbsAsync(url : string) {
 return Q.Promise(function(resolve, reject) {
 $.ajax({
 url: url,
 type: "GET",
 dataType: "text",
 success: (hbs) => {
 resolve(hbs);
 },
 error: (e) => {
 reject(e);
 }
 });
 });
 }
 private _compileHbsAsync(hbs : string) {
 return Q.Promise(function(resolve, reject) {
 try
 {
 var template : any = Handlebars.compile(hbs);
 resolve(template);
 }
 catch(e) {
 reject(e);
 }
 });
 }
 private _jsonToHtmlAsync(template : any, json : any) {
 return Q.Promise(function(resolve, reject) {
 try
 {
 var html = template(json);
 resolve(html);
 }
 catch(e) {
 reject(e);
 }
 });
 }

Working with Functions

[94]

 private _appendHtmlAsync(html : string, container : string) {
 return Q.Promise((resolve, reject) => {
 try
 {
 var $container : any = $(container);
 if($container.length === 0) {
 throw new Error("Container not found!");
 }
 $container.html(html);
 resolve($container);
 }
 catch(e) {
 reject(e);
 }
 });
 }
 //...

The RenderAsync method (previously named render) will present some
significant differences.

In the following function, we start by wrapping the function's logic with a promise,
invoke the function _loadJsonAsync, and assign its return value to the variable
getJson. If we return to the _loadJsonAsync function, we will notice that the return
type is a promise. Therefore, the getJson variable is a promise that once fulfilled will
return the JSON data required to render our view.

This time, we will invoke the then method, which belongs to the promise returned
by the _loadHbsAsync method. This will allow us to pass the output of the function
_loadHbsAsync to _compileHbsAsync when the promise's state changes to fulfilled.

 public renderAsync() {
 return Q.Promise((resolve, reject) => {
 try
 {
 // assign promise to getJson
 var getJson = this._loadJsonAsync(this._serviceUrl,
 this._args);

 // assign promise to getTemplate
 var getTemplate = this._loadHbsAsync(this._templateUrl)
 .then(this._compileHbsAsync);

 // execute promises in parallel
 Q.all([getJson, getTemplate]).then((results) => {

Chapter 3

[95]

 var json = results[0];
 var template = results[1];

 this._jsonToHtmlAsync(template, json)
 .then((html : string) => {
 return this._appendHtmlAsync(html, this._container);
 })
 .then(($container : any) => { resolve($container); });
 });
 }
 catch(error) {
 reject(error);
 }
 });
 }
}

Once we have declared the getJson and getTemplate variables (each containing
a promise as a value) we will use the all method from the Q library to execute the
getJson and getTemplate promises in parallel.

Q's all method takes a list of promises and a callback as input. Once all the promises
in the list have been fulfilled, the callback is invoked and an array named results
is passed to the fulfilment callback. The array contains the results of each of the
promises in the same order that they were passed to the all method.

Inside Q's all method callback, we will use the loaded JSON and the compiled
template and arguments when invoking the _jsonToHtmlAsync promise. We will
finally use the then method to call the _appendHtmlAsync method and resolve
the promise.

As observed in the example, using promises gives us better control over the execution
flow of each of the operations in our render method. Remember that you can use four
different types of asynchronous flow control:

• Concurrent: The tasks are executed in parallel. We saw this in the example
when we used the all method in the getJson and getTemplate promises.

• Series: A group of tasks is executed in sequence but the preceding tasks do
not pass arguments to the next task.

• Waterfall: A group of tasks is executed in sequence and each task passes
arguments to the next task. This approach is useful when the tasks have
dependencies on each other. In the preceding example, we find this
asynchronous flow control approach when the _loadHbsAsync promise
passes its output to the _compileHbsAsync promise.

Working with Functions

[96]

• Composite: This is any combination of the previous concurrent, series, and
waterfall approaches. The render method in the example uses a combination
of all the asynchronous flow control approaches in this list.

Generators
If we invoke a function in TypeScript, we can assume that once the function starts
running, it will always run to completion before any other code can run. This has
been the case until now. However, a new kind of function which may be paused in
the middle of execution—one or many times—and resumed later, allowing other
code to run during these paused periods, is about to arrive in TypeScript and ES6.
These new kinds of functions are known as generators.

A generator represents a sequence of values. The interface of a generator object is
a just an iterator. The next()function can be invoked until it runs out of values.

We can define the constructor of a generator by using the function keyword
followed by an asterisk (*). The yield keyword is used to stop the execution of
the function and return a value. Let's take a look at an example:

function *foo() {
 yield 1;
 yield 2;
 yield 3;
 yield 4;
 return 5;
}

var bar = new foo();
bar.next(); // Object {value: 1, done: false}
bar.next(); // Object {value: 2, done: false}
bar.next(); // Object {value: 3, done: false}
bar.next(); // Object {value: 4, done: false}
bar.next(); // Object {value: 5, done: true}
bar.next(); // Object { done: true }

As you can see, this iterator has five steps. The first time we call next, the function
will be executed until it reaches the first yield statement, and then it will return the
value 1 and stop the execution of the function until we invoke the generator's next
method again. As we can see, we are now able to stop the function's execution at a
given point. This allows us to write infinite loops without causing a stack overflow
as in the following example:

function* foo() {
 var i = 1;

Chapter 3

[97]

 while (true) {
 yield i++;
 }
}

var bar = new foo();
bar.next(); // Object {value: 1, done: false}
bar.next(); // Object {value: 2, done: false}
bar.next(); // Object {value: 3, done: false}
bar.next(); // Object {value: 4, done: false}
bar.next(); // Object {value: 5, done: false}
bar.next(); // Object {value: 6, done: false}
bar.next(); // Object {value: 7, done: false}
// ...

Generators will open possibilities for synchronicity as we can call a generator's next
method after some asynchronous event has occurred.

Asynchronous functions – async and await
Asynchronous functions are a TypeScript feature that is scheduled to arrive with
the upcoming TypeScript releases. An asynchronous function is a function that is
expected to be invoked in a synchronous operation. Developers can use the await
keyword to wait for the function results without blocking the normal execution of
the program.

Asynchronous functions will be implemented using promises when targeting ES6,
and promise fallbacks when targeting ES3 and ES5.

Using asynchronous functions generally helps to increase the readability of a piece
of code when compared with the use of promises; but technically we can achieve
the same features using both promises and synchronous code.

Let's take a sneak-peek at this upcoming feature:

var p: Promise<number> = /* ... */;

async function fn(): Promise<number> {
 var i = await p;
 return 1 + i;
}

Working with Functions

[98]

The preceding code snippet declares a promise named p. This promise is the piece of
code that will wait to be executed. While waiting, the program execution will not be
blocked because we will wait from an asynchronous function named fn. As we can
see, the fn function is preceded by the async keyword, which is used to indicate to
the compiler that it is an asynchronous function.

Inside the function, the await keyword is used to suspend execution until p is
settled. As we can see, the syntax is much more minimalistic and cleaner than it
would be if we used the promises API (then and catch methods and callbacks).

Refer to the TypeScript roadmap to learn more about the stages
of development of this feature.

Summary
In this chapter, we saw how to work with functions in depth. We started with a
quick recap of some basic concepts and then moved to some lesser known function
features and use cases.

Once we saw how to work with functions, we focused on the usage of callbacks,
promises, and generators to take advantage of the asynchronous programming
capabilities of Typescript.

In the next chapter, we will look at how to work with classes, interfaces, and other
object-oriented programming features of the TypeScript programming language.

[99]

Object-Oriented
Programming with TypeScript

In the previous chapter, we explored the use of functions and some asynchronous
techniques. In this chapter, we will see how to group our functions in reusable
components, such as classes or modules. This chapter is divided into two main
sections. The first part will cover the following topics:

• SOLID principles
• Classes
• Association, aggregation, and composition
• Inheritance
• Mixins
• Generic classes
• Generic constraints
• Interfaces

In the second part, we will focus on the declaration and use of namespaces and
external modules. The second part will cover the following topics:

• Namespaces (internal modules)
• External modules
• Asynchronous module definition (AMD)
• CommonJS modules
• ES6 modules
• Browserify and universal module definition (UMD)
• Circular dependencies

Object-Oriented Programming with TypeScript

[100]

SOLID principles
In the early days of software development, developers used to write code with
procedural programing languages. In procedural programming languages, the
programs follow a top-to-bottom approach and the logic is wrapped with functions.

New styles of computer programming, such as modular programming or
structured programming, emerged when developers realized that procedural
computer programs could not provide them with the desired level of abstraction,
maintainability, and reusability.

The development community created a series of recommended practices and
design patterns to improve the level of abstraction and reusability of procedural
programming languages, but some of these guidelines required a certain level of
expertise. In order to facilitate adherence to these guidelines, a new style of computer
programming known as object-oriented programming (OOP) was created.

Developers quickly noticed some common OOP mistakes and came up with five
rules that every OOP developer should follow to create a system that is easy to
maintain and extend over time. These five rules are known as the SOLID principles.
SOLID is an acronym introduced by Michael Feathers, which stands for the
following principles:

• Single responsibility principle (SRP): This principle states that a software
component (function, class, or module) should focus on one unique task
(have only one responsibility).

• Open/closed principle (OCP): This principle states that software entities
should be designed with application growth (new code) in mind (should
be open to extension), but the application growth should require the fewer
possible number of changes to the existing code (be closed for modification).

• Liskov substitution principle (LSP): This principle states that we should
be able to replace a class in a program with another class as long as both
classes implement the same interface. After replacing the class, no other
changes should be required, and the program should continue to work
as it did originally.

• Interface segregation principle (ISP): This principle states that we should
split interfaces that are very large (general-purpose interfaces) into smaller
and more specific ones (many client-specific interfaces) so that clients will
only need to know about the methods that are of interest to them.

• Dependency inversion principle (DIP): This principle states that entities
should depend on abstractions (interfaces) as opposed to depending on
concretion (classes).

Chapter 4

[101]

In this chapter, we will see how to write TypeScript code that adheres to these
principles so that our applications are easy to maintain and extend over time.

Classes
We should already be familiar with the basics about TypeScript classes, as we have
declared some of them in previous chapters. So we will now look at some details and
OOP concepts through examples. Let's start by declaring a simple class:

class Person {
 public name : string;
 public surname : string;
 public email : string;
 constructor(name : string, surname : string, email : string){
 this.email = email;
 this.name = name;
 this.surname = surname;
 }
 greet() {
 alert("Hi!");
 }
}

var me : Person = new Person("Remo", "Jansen",
"remo.jansen@wolksoftware.com");

We use classes to represent the type of an object or entity. A class is composed
of a name, attributes, and methods. The class in the preceding example is named
Person and contains three attributes or properties (name, surname, and email) and
two methods (constructor and greet). Class attributes are used to describe the
object's characteristics, while class methods are used to describe its behavior.

A constructor is a special method used by the new keyword to create instances
(also known as objects) of our class. We have declared a variable named me,
which holds an instance of the Person class. The new keyword uses the Person
class's constructor to return an object whose type is Person.

A class should adhere to the single responsibility principle (SRP). The Person class
in the preceding example represents a person, including all their characteristics
(attributes) and behaviors (methods). Now let's add some email as validation logic:

class Person {
 public name : string;
 public surname : string;

Object-Oriented Programming with TypeScript

[102]

 public email : string;
 constructor(name : string, surname : string, email : string) {
 this.surname = surname;
 this.name = name;
 if(this.validateEmail(email)) {
 this.email = email;
 }
 else {
 throw new Error("Invalid email!");
 }
 }
 validateEmail() {
 var re = /\S+@\S+\.\S+/;
 return re.test(this.email);
 }
 greet() {
 alert("Hi! I'm " + this.name + ". You can reach me at " +
 this.email);
 }
}

When an object doesn't follow the SRP and it knows too much (has too many
properties) or does too much (has too many methods), we say that the object is a
God object. The Person class here is a God object because we have added a method
named validateEmail that is not really related to the Person class's behavior.

Deciding which attributes and methods should or should not be part of a class
is a relatively subjective decision. If we spend some time analyzing our options,
we should be able to find a way to improve the design of our classes.

We can refactor the Person class by declaring an Email class, responsible for e-mail
validation, and use it as an attribute in the Person class:

class Email {
 public email : string;
 constructor(email : string){
 if(this.validateEmail(email)) {
 this.email = email;
 }
 else {
 throw new Error("Invalid email!");
 }
 }
 validateEmail(email : string) {
 var re = /\S+@\S+\.\S+/;

Chapter 4

[103]

 return re.test(email);
 }
}

Now that we have an Email class, we can remove the responsibility of validating the
emails from the Person class and update its email attribute to use the type Email
instead of string:

class Person {
 public name : string;
 public surname : string;
 public email : Email;
 constructor(name : string, surname : string, email : Email){
 this.email = email;
 this.name = name;
 this.surname = surname;
 }
 greet() {
 alert("Hi!");
 }
}

Making sure that a class has a single responsibility makes it easier to see what it
does and how we can extend/improve it. We can further improve our Person and
Email classes by increasing the level of abstraction of our classes. For example,
when we use the Email class, we don't really need to be aware of the existence
of the validateEmail method; so this method could be invisible from outside the
Email class. As a result, the Email class would be much simpler to understand.

When we increase the level of abstraction of an object, we can say that we are
encapsulating the object's data and behavior. Encapsulation is also known as
information hiding. For example, the Email class allows us to use emails without
having to worry about e-mail validation because the class will deal with it for us.
We can make this clearer by using access modifiers (public or private) to flag as
private all the class attributes and methods that we want to abstract from the use
of the Email class:

class Email {
 private email : string;
 constructor(email : string){
 if(this.validateEmail(email)) {
 this.email = email;
 }
 else {
 throw new Error("Invalid email!");
 }

Object-Oriented Programming with TypeScript

[104]

 }
 private validateEmail(email : string) {
 var re = /\S+@\S+\.\S+/;
 return re.test(email);
 }
 get():string {
 return this.email;
 }
}

We can then simply use the Email class without needing to explicitly perform any
kind of validation:

var email = new Email("remo.jansen@wolksoftware.com");

Interfaces
The feature that we will miss the most when developing large-scale web
applications with JavaScript is probably interfaces. We have seen that following
the SOLID principles can help us to improve the quality of our code, and writing
good code is a must when working on a large project. The problem is that if we
attempt to follow the SOLID principles with JavaScript, we will soon realize that
without interfaces, we will never be able to write SOLID OOP code. Fortunately
for us, TypeScript features interfaces.

Traditionally, in OOP, we say that a class can extend another class and implement
one or more interfaces. An interface can implement one or more interfaces and
cannot extend another class or interface. Wikipedia's definition of interfaces in
OOP is as follows:

In object-oriented languages, the term interface is often used to define an abstract
type that contains no data or code, but defines behaviors as method signatures.

Implementing an interface can be understood as signing a contract. The interface is a
contract, and when we sign it (implement it), we must follow its rules. The interface
rules are the signatures of the methods and properties, and we must implement them.

We will see many examples of interfaces later in this chapter.

In TypeScript, interfaces don't strictly follow this definition. The two main
differences are that in TypeScript:

• An interface can extend another interface or class
• An interface can define data and behaviors as opposed to only behaviors

Chapter 4

[105]

Association, aggregation, and
composition
In OOP, classes can have some kind of relationship with each other. Now, we will
take a look at the three different types of relationships between classes.

Association
We call association those relationships whose objects have an independent lifecycle
and where there is no ownership between the objects. Let's take an example of a
teacher and student. Multiple students can associate with a single teacher, and
a single student can associate with multiple teachers, but both have their own
lifecycles (both can be create and delete independently); so when a teacher leaves the
school, we don't need to delete any students, and when a student leaves the school,
we don't need to delete any teachers.

Aggregation
We call aggregation those relationships whose objects have an independent lifecycle,
but there is ownership, and child objects cannot belong to another parent object. Let's
take an example of a cell phone and a cell phone battery. A single battery can belong to
a phone, but if the phone stops working, and we delete it from our database, the phone
battery will not be deleted because it may still be functional. So in aggregation, while
there is ownership, objects have their own lifecycle.

Object-Oriented Programming with TypeScript

[106]

Composition
We use the term composition to refer to relationships whose objects don't have an
independent lifecycle, and if the parent object is deleted, all child objects will also
be deleted.

Let's take an example of the relationship between questions and answers. Single
questions can have multiple answers, and answers cannot belong to multiple
questions. If we delete questions, answers will automatically be deleted.

Objects with a dependent life cycle (answers, in the example) are known as
weak entities.

Sometimes, it can be a complicated process to decide if we should use association,
aggregation, or composition. This difficulty is caused in part because aggregation and
composition are subsets of association, meaning they are specific cases of association.

Chapter 4

[107]

Inheritance
One of the most fundamental object-oriented programming features is its capability
to extend existing classes. This feature is known as inheritance and allows us to create
a new class (child class) that inherits all the properties and methods from an existing
class (parent class). Child classes can include additional properties and methods not
available in the parent class. Let's return to our previously declared Person class.
We will use the Person class as the parent class of a child class named Teacher:

class Person {
 public name : string;
 public surname : string;
 public email : Email;
 constructor(name : string, surname : string, email : Email){
 this.name = name;
 this.surname = surname;
 this.email = email;
 }
 greet() {
 alert("Hi!");
 }
}

This example is included in the companion source code.

Once we have a parent class in place, we can extend it by using the reserved
keyword extends. In the following example, we declare a class called Teacher,
which extends the previously defined Person class. This means that Teacher
will inherit all the attributes and methods from its parent class:

class Teacher extends Person {
 teach() {
 alert("Welcome to class!");
 }
}

Note that we have also added a new method named teach to the class Teacher. If
we create instances of the Person and Teacher classes, we will be able to see that
both instances share the same attributes and methods with the exception of the
teach method, which is only available for the instance of the Teacher class:

var teacher = new Teacher("remo", "jansen", new
Email("remo.jansen@wolksoftware.com"));

Object-Oriented Programming with TypeScript

[108]

var me = new Person("remo", "jansen", new
Email("remo.jansen@wolksoftware.com"));

me.greet();
teacher.greet();
me.teach(); // Error : Property 'teach' does not exist on type
'Person'
teacher.teach();

Sometimes, we will need a child class to provide a specific implementation of
a method that is already provided by its parent class. We can use the reserved
keyword super for this purpose. Imagine that we want to add a new attribute
to list the teacher's subjects, and we want to be able to initialize this attribute
through the teacher constructor. We will use the super keyword to explicitly
reference the parent class constructor inside the child class constructor. We can
also use the super keyword when we want to extend an existing method, such as
greet. This OOP language feature that allows a subclass or child class to provide a
specific implementation of a method that is already provided by its parent classes
is known as method overriding.

class Teacher extends Person {
 public subjects : string[];
 constructor(name : string, surname : string, email : Email, subjects
: string[]){
 super(name, surname, email);
 this.subjects = subjects;
 }
 greet() {
 super.greet();
 alert("I teach " + this.subjects);
 }
 teach() {
 alert("Welcome to Maths class!");
 }
}

var teacher = new Teacher("remo", "jansen", new
Email("remo.jansen@wolksoftware.com"), ["math", "physics"]);

Chapter 4

[109]

We can declare a new class that inherits from a class that is already inheriting from
another. In the following code snippet, we declare a class called SchoolPrincipal
that extends the Teacher class, which extends the Person class:

class SchoolPrincipal extends Teacher {
 manageTeachers() {
 alert("We need to help students to get better results!");
 }
}

If we create an instance of the SchoolPrincipal class, we will be able to access all
the properties and methods from its parent classes (SchoolPrincipal, Teacher,
and Person):

var principal = new SchoolPrincipal("remo", "jansen", new
Email("remo.jansen@wolksoftware.com"), ["math", "physics"]);
principal.greet();
principal.teach();
principal.manageTeachers();

It is not recommended to have too many levels in the inheritance tree. A class
situated too deeply in the inheritance tree will be relatively complex to develop, test,
and maintain. Unfortunately, we don't have a specific rule that we can follow when
we are unsure whether we should increase the depth of inheritance tree (DIT).

We should use inheritance in such a way that it helps us to reduce the complexity
of our application and not the opposite. We should try to keep the DIT between
0 and 4 because a value greater than 4 would compromise encapsulation and
increase complexity.

Mixins
Sometimes, we will find scenarios in which it would be a good idea to declare
a class that inherits from two or more classes simultaneously (known as
multiple inheritance).

Let's take a look at an example. We will not add any code to the methods in this
example because we want to avoid the possibility of getting distracted by it; we should
focus on the inheritance tree:

class Animal {
 eat() {
 // ...
 }
}

Object-Oriented Programming with TypeScript

[110]

We started by declaring a class named Animal, which only has one method named
eat. Now, let's declare two new classes:

class Mammal extends Animal {
 breathe() {
 // ...
 }
}

class WingedAnimal extends Animal {
 fly(){
 // ...
 }
}

We have declared two new classes named WingedAnimal and Mammal. Both classes
inherit from the Animal class.

Now that we have our classes ready, we are going to try to implement a class named
Bat. Bats are mammals and have wings—creating a new class named Bat, which will
extend both the Mammal and WingedAnimal classes, seems logical. However, if we
attempt to do so, we will encounter a compilation error:

// Error: Classes can only extend a single class.
class Bat extends WingedAnimal, Mammal {
 // ...
}

This error is thrown because TypeScript doesn't support multiple inheritance.
This means that a class can only extend one class. The designers of programming
languages such as C# or TypeScript decided to not support multiple inheritance
because it can potentially increase the complexity of applications.

Sometimes, a class inheritance diagram can take a diamond-like shape (as seen in
the following figure). This kind of class inheritance diagram can potentially lead
us to design issue known as the diamond problem.

Chapter 4

[111]

We will not face any problems if we call a method that is exclusive to only one of the
classes in the inheritance tree:

var bat = new Bat();
bat.fly();
bat.eat();
bat.breathe();

The diamond problem takes place when we try to invoke one of the Bat class's parent's
methods, and it is unclear or ambiguous which of the parent's implementations of that
method should be invoked. If we add a method named move to both the Mammal and
the WingedAnimal class and try to invoke it from an instance of Bat, we will get an
ambiguous call error.

Now that we know why multiple inheritance can be potentially dangerous, we will
introduce a feature known as mixin. Mixins are alternatives to multiple inheritance,
but this feature has some limitations.

Object-Oriented Programming with TypeScript

[112]

Let's return to the Bat class example to showcase the usage of mixins:

class Mammal {
 breathe() : string {
 return "I'm alive!";
 }
}

class WingedAnimal {
 fly() : string{
 return "I can fly!";
 }
}

This example is included in the companion source code.

The two classes presented in the preceding example are not much different from the
previous example; we have added some logic to the breathe and fly methods, so
we can have some output to help us to understand this demonstration. Also, note
that the classes no longer extend the Animal class:

class Bat implements Mammal, WingedAnimal {
 breathe : () => string;
 fly : () => string;
}

The Bat class has some important additions. We have used the reserved keyword
implements (as opposed to extends) to indicate that Bat will implement the
functionality declared in both the Mammal and WingedAnimal classes. We have also
added the signature of each of the methods that the Bat class will implement.

We need to copy the following function somewhere in our code to be able to
apply mixins:

function applyMixins(derivedCtor: any, baseCtors: any[]) {
 baseCtors.forEach(baseCtor => {
 Object.getOwnPropertyNames(baseCtor.prototype).forEach(name =>
{
 if (name !== 'constructor') {
 derivedCtor.prototype[name] = baseCtor.prototype[name];
 }
 });
 });
}

Chapter 4

[113]

The preceding function is a well-known pattern and can be
found in many books and online references, including the
official TypeScript handbook.

This function will iterate each property of the parent classes (contained in an array
named baseCtors) and copy the implementation to a child class (derivedCtor).

We only need to declare this function once in our application. Once we have done it,
we can use it as follows:

applyMixins(Bat, [Mammal, WingedAnimal]);

The child class (Bat) will then contain the implementation of each property and
method of the two parent classes (WingedAnimal and Mammal):

var bat = new Bat();
bat.breathe(); // I'm alive!
bat.fly(); // I can fly!

As we said at the beginning of this section, mixins have some limitations. The first
limitation is that we can only inherit the properties and methods from one level in the
inheritance tree. Now we can understand why we removed the Animal class prior to
applying the mixin. The second limitation is that, if two or more of the parent classes
contain a method with the same name, the method that is going to be inherited will be
taken from the last class passed in the baseCtors array to the applyMixins function.
We will now see an example that presents both these limitations.

In order to show the first limitation, we will declare the Animal class:

class Animal {
 eat() : string {
 return "Delicious!";
 }
}

We will then declare the Mammal and WingedAnimal classes, but this time, they will
extend the Animal class:

class Mammal extends Animal {
 breathe() : string {
 return "I'm alive!";
 }
 move() : string {
 return "I can move like a mammal!";
 }
}

Object-Oriented Programming with TypeScript

[114]

class WingedAnimal extends Animal {
 fly() : string{
 return "I can fly!";
 }
 move() : string {
 return "I can move like a bird!";
 }
}

We will then declare a Bat class but we will name it Bat1. This class will implement
both the Mammal and WindgedAnimal classes:

class Bat1 implements Mammal, WingedAnimal {
 eat : () => string;
 breathe : () => string;
 fly : () => string;
 move : () => string;
}

We are ready to invoke the applyMixins function. Notice how we pass Mammal
before WingedAnimal in the array:

applyMixins(Bat1, [Mammal, WingedAnimal]);

We can now create an instance of Bat1, and we will be able to observe that the eat
method has not been inherited from the Animal class due to the first limitation:

var bat1 = new Bat();
bat1.eat(); // Error: not a function

Each of the parent class's methods has been inherited without issues:

bat1.breathe(); // I'm alive!
bat1.fly(); // I can fly!"

Except the move method because according to the second limitation, only the
implementation of the last parent class passed to the applyMixins method
will be implemented. In this case, the implementation is inherited from the
WingedAnimal class:

bat1.move(); // I can move like a bird

To finalize, we will see the effect of switching the order of the parent classes when
invoking the applyMixins method:

class Bat2 implements WingedAnimal, Mammal {
 eat : () => string;
 breathe : () => string;

Chapter 4

[115]

 fly : () => string;
 move : () => string;
}

Notice how we have passed WingedAnimal before Mammal in the array:

applyMixins(Bat2, [WingedAnimal, Mammal]);
var bat2 = new Bat2();
bat2.eat(); // Error: not a function
bat2.breathe(); // I'm alive!
bat2.fly(); // I can fly!
bat2.move() // I can move like a mammal

Generic classes
In the previous chapter, we saw how to work with generic functions. We will now
take a look at how to work with generic classes.

Just like with generic functions, generic classes can help us to avoid the duplication
of code. Let's take a look at an example:

class User {
 public name : string;
 public password : string;
}

This example is included in the companion source code.

We have declared a User class, which contains two properties: name and password.
We will now declare a class named NotGenericUserRepository without using
generics. This class takes a URL via its constructor and has a method named
getAsync. The getAsync method will request a list of users stored in a JSON file
using AJAX:

class NotGenericUserRepository {
 private _url : string;
 constructor(url : string) {
 this._url = url;
 }
 public getAsync() {
 return Q.Promise((resolve : (users : User[]) => void, reject)
 => {
 $.ajax({
 url: this._url,

Object-Oriented Programming with TypeScript

[116]

 type: "GET",
 dataType: "json",
 success: (data) => {
 var users = <User[]>data.items;
 resolve(users);
 },
 error: (e) => {
 reject(e);
 }
 });
 });
 }
}

Once we have finished declaring the NotGenericUserRepository user repository,
we can create an instance and invoke the getAsync method:

var notGenericUserRepository = new NotGenericUserRepository("./demos/
shared/users.json");
notGenericUserRepository.getAsync()
 .then(function(users : User[]){
 console.log('notGenericUserRepository => ', users);
 });

If we also need to request another list of entities different from User, we could end
up duplicating a lot of code. Imagine that we also need to request a list of conference
talks. We could create an entity named Talk and an almost identical repository class:

class Talk {
 public title : string;
 public description : string;
 public language : string;
 public url : string;
 public year : string;
}

class NotGenericTalkRepository {
 private _url : string;
 constructor(url : string) {
 this._url = url;
 }
 public getAsync() {
 return Q.Promise((resolve : (talks : Talk[]) => void, reject)
 => {
 $.ajax({

Chapter 4

[117]

 url: this._url,
 type: "GET",
 dataType: "json",
 success: (data) => {
 var users talks = <Talk[]>data.items;
 resolve(userstalks);
 },
 error: (e) => {
 reject(e);
 }
 });
 });
 }
}

If the number of entities grows, we will continue to repeatedly duplicate code. We
may think that we could use the any type to avoid this problem, but then we would
be losing the security provided by the checking type performed by TypeScript at
compilation time. A much better solution is to create a Generic repository:

class GenericRepository<T> {
 private _url : string;
 constructor(url : string){
 this._url = url;
 }
 public getAsync() {
 return Q.Promise((resolve : (entities : T[]) => void, reject) => {
 $.ajax({
 url: this._url,
 type: "GET",
 dataType: "json",
 success: (data) => {
 var list = <T[]>data.items;
 resolve(list);
 },
 error: (e) => {
 reject(e);
 }
 });
 });
 }
}

Object-Oriented Programming with TypeScript

[118]

The repository code is identical to NotGenericUserRepository, except for the entity
type. We have removed the hardcoded reference to the User and Talk entities and
replaced them with the generic type T. We can now declare as many repositories as
we wish without duplicating a single line of code:

var userRepository = new GenericRepository<User>("./demos/shared/
users.json");
userRepository.getAsync()
 .then((users : User[]) => {
 console.log('userRepository => ', users);
 });

var talkRepository = new GenericRepository<Talk>("./demos/shared/
talks.json");
talkRepository.getAsync()
 .then((talks : Talk[]) => {
 console.log('talkRepository => ', talks);
 });

Generic constraints
Sometimes, we might need to restrict the use of a generic class. Take the generic
repository from the previous section as an example. We have a new requirement:
we need to add some changes to validate the entities loaded via AJAX, and we
will return only the valid entities.

One possible solution is to use the typeof operator to identify the type of the
generic type parameter T within a generic class or function:

// ...
success: (data) => {
 var list : T[];
 var items = <T[]>data.items;
 for(var i = 0; i < items.length; i++){
 if(items[i] instanceof User) {
 // validate user
 }
 if(items[i] instanceof Talk) {
 // validate talk
 }
 }
 resolve(list);
}
// ...

Chapter 4

[119]

The problem is that we will have to modify our GenericRepository class to
add extra logic with each new entity. We will not add the validation rules into
the GenericRepository repository class because a generic class should not be
aware of the type used as the generic type.

A better solution is to add a method named isValid to the entities, which will
return true if the entity is valid:

// ...
success: (data) => {
 var list : T[];
 var items = <T[]>data.items;
 for(var i = 0; i < items.length; i++){
 if(items[i].isValid()) { // error
 // ...
 }
 }
 resolve(list);
}
// ...

The second approach follows the second SOLID principle, the open/close principle, as
we can create new entities and the generic repository will continue to work (open for
extension), but no additional changes to it will be required (closed for modification).
The only problem with this approach is that, if we attempt to invoke an entity's
isValid method inside the generic repository, we will get a compilation error.

The error is thrown because we are allowed to use the generic repository with any
type, but not all types have a method named isValid. Fortunately, this issue can
easily be resolved by using a generic constraint. Constraints will restrict the types
that we are allowed to use as the generic type parameter T. We are going to declare a
constraint, so only types that implement an interface named ValidatableInterface
can be used with the generic method.

Let's start by declaring an interface:

interface ValidatableInterface {
 isValid() : boolean;
}

This example is included in the companion source code.

Object-Oriented Programming with TypeScript

[120]

Now we can proceed to implement the interface. In this case, we must implement the
isValid method:

class User implements ValidatableInterface {
 public name : string;
 public password : string;
 public isValid() : boolean {
 // user validation...
 return true;
 }
}

class Talk implements ValidatableInterface {
 public title : string;
 public description : string;
 public language : string;
 public url : string;
 public year : string;
 public isValid() : boolean {
 // talk validation...
 return true;
 }
}

Now, let's declare a generic repository and add a type constraint so only types derived
from ValidatableInterface will be accepted as the generic type parameter T:

class GenericRepositoryWithConstraint<T extends
ValidatableInterface> {
 private _url : string;
 constructor(url : string){
 this._url = url;
 }
 public getAsync() {
 return Q.Promise((resolve : (talks : T[]) => void, reject) =>
 {
 $.ajax({
 url: this._url,
 type: "GET",
 dataType: "json",
 success: (data) => {
 var items = <T[]>data.items;
 for(var i = 0; i < items.length; i++) {

Chapter 4

[121]

 if(items[i].isValid()) {
 list.push(items[i]);
 }
 }
 resolve(list);
 },
 error: (e) => {
 reject(e);
 }
 });
 });
 }
}

Even though we have used an interface, we used the extends
keyword and not the implements keyword to declare the
constraint in the preceding example. There is no special reason for
that. This is just the way the TypeScript constraint syntax works.

We can then create as many repositories as we want:

var userRepository = new
 GenericRepositoryWithConstraint<User>("./users.json");

userRepository.getAsync()
 .then(function(users : User[]){
 console.log(users);
 });

var talkRepository = new
 GenericRepositoryWithConstraint<Talk>("./talks.json");

talkRepository.getAsync()
 .then(function(talks : Talk[]){
 console.log(talks);
 });

If we attempt to use a class that doesn't implement the ValidatableInterface of
the generic type parameter T, we will get a compilation error.

Object-Oriented Programming with TypeScript

[122]

Multiple types in generic type constraints
We can only refer to one type when declaring a generic type constraint. Let's imagine
that we need a generic class to be constrained, so it only allows types that implement
the following two interfaces:

interface IMyInterface {
 doSomething();
};
interface IMySecondInterface {
 doSomethingElse();
};

We may think that we can define the required generic constraint as follows:

class Example<T extends IMyInterface, IMySecondInterface> {
 private genericProperty : T;
 useT() {
 this.genericProperty.doSomething();
 this.genericProperty.doSomethingElse(); // error
 }
}

However, this code snippet will throw a compilation error. We cannot specify
multiple types when declaring a generic type constraint. However, we can work
around this issue by transforming IMyInterface, IMySecondInterface in
super-interfaces:

interface IChildInterface extends IMyInterface, IMySecondInterface {

}

IMyInterface and IMySecondInterface are now super-interfaces because they
are the parent interfaces of the IChildInterface interface. We can then declare the
constraint using the IChildInterface interface:

class Example<T extends IChildInterface> {
 private genericProperty : T;
 useT() {
 this.genericProperty.doSomething();
 this.genericProperty.doSomethingElse();
 }
}

Chapter 4

[123]

The new operator in generic types
To create a new object within generic code, we need to indicate that the generic
type T has a constructor function. This means that instead of using type:T, we
should use type: { new(): T;} as follows:

function factoryNotWorking<T>(): T {
 return new T(); // compile error could not find symbol T
}

function factory<T>(): T {
 var type: { new(): T ;};
 return new type();
}

var myClass: MyClass = factory<MyClass>();

Applying the SOLID principles
As we have previously mentioned, interfaces are fundamental features when it
comes to following the SOLID principles, and we have already put the first two
SOLID principles into practice.

We have already discussed the single responsibility principle. Now, we will see
real examples of the three remaining principles.

The Liskov substitution principle
The Liskov substitution principle (LSP) states, Subtypes must be substitutable
for their base types. Let's take a look at an example to understand what this means.

We will declare a class named PersistanceService, the responsibility of which
is to persist some object into some sort of storage. We will start by declaring the
following interface:

interface PersistanceServiceInterface {
 save(entity : any) : number;
}

Object-Oriented Programming with TypeScript

[124]

After declaring the PersistanceServiceInterface interface, we can implement it.
We will use cookies as the storage for the application's data:

class CookiePersitanceService implements PersistanceServiceInterface{
 save(entity : any) : number {
 var id = Math.floor((Math.random() * 100) + 1);
 // Cookie persistance logic...
 return id;
 }
}

We will continue by declaring a class named FavouritesController, which has a
dependency on PersistanceServiceInterface:

class FavouritesController {
 private _persistanceService : PersistanceServiceInterface;
 constructor(persistanceService : PersistanceServiceInterface) {
 this._persistanceService = persistanceService;
 }
 public saveAsFavourite(articleId : number) {
 return this._persistanceService.save(articleId);
 }
}

We can finally create an instance of FavouritesController and pass an instance of
CookiePersitanceService via its constructor:

var favController = new FavouritesController(new
CookiePersitanceService());

The LSP allows us to replace a dependency with another implementation as long as
both implementations are based in the same base type; so, if we decide to stop using
cookies as storage and use the HTML5 local storage API instead, we can declare a
new implementation:

class LocalStoragePersitanceService implements
PersistanceServiceInterface{
 save(entity : any) : number {
 var id = Math.floor((Math.random() * 100) + 1);
 // Local storage persistance logic...
 return id;
 }
}

We can then replace it without having to add any changes to the
FavouritesController controller class.

var favController = new FavouritesController(new
LocalStoragePersitanceService());

Chapter 4

[125]

The interface segregation principle
Interfaces are used to declare how two or more software components cooperate
and exchange information with each other. This declaration is known as
application programming interface (API). In the previous example, our interface
was PersistanceServiceInterface, and it was implemented by the classes
LocalStoragePersitanceService and CookiePersitanceService. The interface
was consumed by the FavouritesController class; so we say that this class is a
client of the PersistanceServiceInterface's API.

The interface segregation principle (ISP) states that no client should be forced to
depend on methods it does not use. To adhere to the ISP, we need to keep in mind
that when we declare the API (how two or more software components cooperate
and exchange information with each other) of our application's components, the
declaration of many client-specific interfaces is better than the declaration of one
general-purpose interface. Let's take a look at an example.

If we design an API to control all the elements in a vehicle (engine, radio, heating,
navigation, lights…), we could have one general-purpose interface, which allows
us to control every single element of the vehicle:

interface VehicleInterface {
 getSpeed() : number;
 getVehicleType: string;
 isTaxPayed() : boolean;
 isLightsOn() : boolean;
 isLightsOff() : boolean;
 startEngine() : void;
 acelerate() : number;
 stopEngine() : void;
 startRadio() : void;
 playCd : void;
 stopRadio() : void;
}

This example is included in the companion source code.

If a class has a dependency (client) in the VehicleInterface interface but it only
wants to use the radio methods, we will be facing a violation of the ISP because,
as we have already seen, no client should be forced to depend on methods it does
not use.

Object-Oriented Programming with TypeScript

[126]

The solution is to split the VehicleInterface interface into many client-specific
interfaces so that our class can adhere to the ISP by depending only on the
RadioInterface interface:

interface VehicleInterface {
 getSpeed() : number;
 getVehicleType: string;
 isTaxPayed() : boolean;
 isLightsOn() : boolean;
}

interface LightsInterface {
 isLightsOn() : boolean;
 isLightsOff() : boolean;
}

interface RadioInterface {
 startRadio() : void;
 playCd : void;
 stopRadio() : void;
}

interface EngineInterface {
 startEngine() : void;
 acelerate() : number;
 stopEngine() : void;
}

The dependency inversion principle
The dependency inversion (DI) principle states, Depend upon abstractions. Do not depend
upon concretions. In the previous section, we implemented FavouritesController and
we were able to replace an implementation of PersistanceServiceInterface with
another without having to perform any additional change to FavouritesController.
This was possible because we followed the DI principle, as FavouritesController
has a dependency upon PersistanceServiceInterface (abstractions) rather than
LocalStoragePersitanceService or CookiePersitanceService (concretions).

Chapter 4

[127]

Depending on your background, you may wonder if there are any
Inversion of Control (IoC) containers available for TypeScript. We
can indeed find some IoC containers available online. However,
because Typescript's runtime doesn't support reflection or interfaces,
they can arguably be considered pseudo IoC containers rather than
real IoC containers.
If you want to learn more about inversion of control, I highly
recommend the article, Inversion of Control Containers and the
Dependency Injection pattern, by Martin Fowler, available at
http://martinfowler.com/articles/injection.html.

Namespaces
TypeScript features namespaces (previously known as internal modules).
Namespaces are mainly used to organize our code.

If we are working on a large application, as the code base grows we will need to
introduce some kind of organization scheme to avoid naming collisions and make
our code easier to follow and understand.

We can use namespaces to encapsulate interfaces, classes, and objects that are
somehow related. For example, we could wrap all our application models inside
an internal module named model:

namespace app {
 export class UserModel {
 // ...
 }
}

When we declare a namespace, all its entities are private by default. We can use the
export keyword to declare what parts of our namespace we wish to make public.

We are allowed to nest a namespace inside another. Let's create a file named
models.ts and add the following code snippet to it:

namespace app {
 export namespace models {
 export class UserModel {
 // ...
 }

http://martinfowler.com/articles/injection.html

Object-Oriented Programming with TypeScript

[128]

 export class TalkModel {
 // ...
 }
 }
}

In the preceding example, we have declared a namespace named app, and inside
it, we have declared a public namespace named models, which contains two public
classes: UserModel and TalkModel. We can then call the namespace from another
TypeScript file by indicating the full namespace name:

var user = new app.models.UserModel();
var talk = new app.models.TalkModel();

If an internal module becomes too big, it can be divided into multiple files to increase
its maintainability. If we take the preceding example, we could add more contents to
the internal module named app by referencing it in another file.

Let's create a new file named validation.ts and add the following code to it:

namespace app {
 export namespace validation {
 export class UserValidator{
 // ...
 }

 export class TalkValidator {
 // ...
 }
 }
}

Let's create a file named main.ts and add the following code to it:

var user = new app.models.UserModel();
var talk = new app.models.TalkModel();
var userValidator = new app.validation.UserValidator();
var talkValidator = new app.validation.TalkValidator();

Even though the namespaces' models and validation are in two different files, we
are able to access them from a third file.

Namespace can contain periods. For example, instead of nesting the namespaces
(validation and models) inside the app module, we could have used periods in the
validation and model internal module names:

namespace app.validation {

Chapter 4

[129]

 // ...
}
namespace app.models {
 // ...
}

The import keyword can be used within an internal module to provide an alias for
another module:

import TalkValidatorAlias = app.validation.TalkValidator;
var talkValidator = new TalkValidatorAlias();

Once we have finished declaring our namespaces, we can decide if we want to
compile each one into JavaScript or if we prefer to concatenate all the files into one
single file.

We can use the --out flag to compile all the input files into a single JavaScript
output file:

tsc --out output.js input.ts

The compiler will automatically order the output file based on the reference tags
present in the files. We can then import our files or file using an HTML <script> tag.

Modules
TypeScript also has the concept of external modules or just modules. The main
difference between using modules (instead of namespaces) is that after declaring all
our modules, we will not import them using an HTML <script> tag and we will be
able to use a module loader instead.

A module loader is a tool that allows us to have better control over the module
loading process. This allows us to perform tasks such as loading files asynchronously
or combining multiple modules into a single highly optimized file with ease.

Using the <script> tag is not recommended because when a web browser finds a
<script> tag, it downloads the file using asynchronous requests. We should attempt
to load as many files as possible using asynchronous requests because doing so will
significantly improve the network performance of a web application.

We will discover more about network performance in
Chapter 6, Application Performance.

Object-Oriented Programming with TypeScript

[130]

The JavaScript versions prior to ECMAScript 6 (ES6) don't include native module
support. Developers were forced to develop their own module loaders. The open
source community tried to come up with improved solutions over the years. As
a result, today there are several module loaders available, and each one uses a
different module definition syntax. The most popular ones are as follows:

• RequireJS: RequireJS uses a syntax known as asynchronous module
definition (AMD)

• Browserify: Browserify uses a syntax known as CommonJS.
• SystemJS: SystemJS is a universal module loader, which means that

it supports all the available module syntaxes (ES6, CommonJS, AMD,
and UMD).

Node.js applications also use the CommonJS syntax.

Fortunately, TypeScript allows us to choose which kind of module definition syntax
(ES6, CommonJS, AMD, SystemJS, or UMD) we want to use at runtime.

We can indicate our preference by using the --module flag when compiling:

tsc --module commonjs main.ts // use CommonJS

tsc --module amd main.ts // use AMD

tsc --module umd main.ts // use UMD

tsc --module system main.ts // use SytemJS

While we can select four different module definition syntaxes at runtime. However,
only two are available at design time:

• External module syntax (The default module syntax in the TypeScript
versions prior to 1.5)

• ES6 module syntax (The recommended external module syntax in TypeScript
1.5 or higher)

It is important to understand that we can use one kind of module definition syntax
at design time (ES6, CommonJS, AMD, SystemJS, or UMD) and another at runtime
(external modules or ES6).

Since the release of TypeScript 1.5, it is recommended you use the ECMAScript 6
module definition syntax because it is based on standards, and in the future, we will
be able to use this syntax at both design time and runtime.

Chapter 4

[131]

We will now take a look at each of the available module definition syntaxes.

ES6 modules – runtime and design time
TypeScript 1.5 introduces support for the ES6 module syntax. Let's define an external
module using it:

class UserModel {
 // ...
}
export { UserModel };

We have defined an external module. We don't need to use the namespace keyword,
but we must continue to use the export keyword. We used the export keyword
at the bottom of the module, but it is also possible to use it just before the class
keyword like we did in the internal module example:

export class UserModel {
 // ...
}

We can also export an entity using an alias:

class UserModel {
 // ...
}
export { UserModel as User }; // UserModel exported as User

An export declaration exports all meanings of a name:

interface UserModel {
 // ...
}

class UserModel {
 // ...
}
export { UserModel }; // Exports both interface and function

To import a module, we must use the import keyword as follows:

import { UserModel } from "./models";

The import keyword creates a variable for each imported component. In the
preceding code snippet, a new variable named UserModel is declared and its value
contains a reference to the UserModel class, which was declared and exported in
the models.ts file.

Object-Oriented Programming with TypeScript

[132]

We can use the export keyword to import multiple entities from one module:

class UserValidator {
 // ...
}

class TalkValidator {
 // ...
}

export { UserValidator, TalkValidator };

Furthermore, we can use the import keyword to import multiple entities from a
single module as follows:

import { UserValidator, TalkValidator } from "./validation.ts"

Throughout the rest of this book, we will use the ES6 syntax at
design-time and the CommonJS syntax at runtime.

External modules – design time only
Before TypeScript 1.5, modules were declared using a kind of module syntax known
as external module syntax. This kind of syntax was used at design time (TypeScript
code). However, once compiled into JavaScript, it was transformed and executed
(runtime) into AMD, CommonJS, UMD, or SystemJS modules.

We should try to avoid using this syntax and use the new ES6 syntax instead.
However, we will take a quick look at the external module syntax because we
may have to work on old applications or outdated documentation.

We can import a module using the import keyword:

import User = require("./user_class");

The preceding code snippet declares a new variable named User. The User variable
takes the exported content of the user_class module as its value.

To export a module, we need to use the export keyword. We can apply the export
keyword directly to a class or interface:

export class User {
 // …
}

Chapter 4

[133]

We can also use the export keyword on its own by assigning to it the value that we
desire to export:

class User {
 // …
}
export = User;

External modules can be compiled into any of the available module definition
syntaxes (AMD, CommonJS, SystemJS, or UMD).

AMD modules – runtime only
If we compile the initial external module into an AMD module (using the flag
--compile amd), we will generate the following AMD module:

define(["require", "exports"], function (require, exports) {
 var UserModel = (function () {
 function UserModel() {
 }
 return UserModel;
 })();
 return UserModel;
});

The define function takes an array as its first argument. This array contains a list of
the names of the module dependencies. The second argument is a callback that will
be invoked once all the module dependencies have been loaded. The callback takes
each of the module dependencies as its parameters and contains all the logic from
our TypeScript component. Notice how the return type of the callback matches the
components that we declared as public by using the export keyword. AMD modules
can then be loaded using the RequireJS module loader.

We will not discuss AMD and RequireJS further in this book,
but if you want to learn more about them, you can do so by
visiting http://requirejs.org/docs/start.html.

http://requirejs.org/docs/start.html

Object-Oriented Programming with TypeScript

[134]

CommonJS modules – runtime only
We begin by compiling our external module into a CommonJS module (using the
flag --compile commonjs). We will compile the following code snippet:

class User {
 // …
}
export = User;

As a result, the following CommonJS module is generated:

var UserModel = (function () {
 function UserModel() {
 //…
 }
 return UserModel;
})();
module.exports = UserModel;

As we can see in the preceding code snippet, the CommonJS module definition syntax
is almost identical to the deprecated TypeScript (1.4 or prior) external module syntax.

The preceding CommonJS module can be loaded by a Node.js application without
any additional changes using the import keyword and the require function:

import UserModel = require('./UserModel');
var user = new UserModel();

However, if we attempt to use the require function in a web browser, an exception
will be thrown because the require function is undefined. We can easily solve this
problem by using Browserify.

All that we need to follow is three simple steps:

1. Install Browserify using npm:
npm install -g browserify

2. Use Browserify to bundle all your CommonJS modules into a JavaScript
file that you can import using an HTML <script> tag. We can do this by
executing the following command:
browserify main.js -o bundle.js

In the preceding command, main.js is the file that contains the root module
within our application's dependency tree. The bundle.js file is the output
file that we will be able to import using a HTML script tag.

Chapter 4

[135]

3. Import the bundle.js file using a HTML <script> tag.

If you need more information about Browserify, visit the official
documentation at https://github.com/substack/node-
browserify#usage.

UMD modules – runtime only
If we want to release a JavaScript library or framework, we will need to compile our
TypeScript application into both CommonJS and AMD modules. Our library should
also allow developers to load it directly in a web browser using a HTML script tag.

The web development community has developed the following code snippet to help
us to achieve universal module definition (UMD) support:

(function (root, factory) {
 if (typeof exports === 'object') {
 // CommonJS
 module.exports = factory(require('b'));
 } else if (typeof define === 'function' && define.amd) {
 // AMD
 define(['b'], function (b) {
 return (root.returnExportsGlobal = factory(b));
 });
 } else {
 // Global Variables
 root.returnExportsGlobal = factory(root.b);
 }
}(this, function (b) {
 // Your actual module
 return {};
}));

This code snippet is great, but we want to avoid manually adding it to every single
module in our application. Fortunately, there are a few options available to achieve
UMD support with ease.

The first option is to use the flag --compile umd to generate one UMD module
for each module in our application. The second option is to create one single UMD
module that will contain all the modules in the application using a module loader
known as Browserify.

https://github.com/substack/node-browserify#usage
https://github.com/substack/node-browserify#usage

Object-Oriented Programming with TypeScript

[136]

Refer to the official Browserify project website at
http://browserify.org/ to learn more about Browserify.
Refer to the Browserify-standalone option to learn more
about the generation of one unique optimized file.

SystemJS modules – runtime only
While UMD gives you a way to output a single module that works in both AMD
and CommonJS, SystemJS will allow you to use ES6 modules closer to their native
semantics without requiring an ES6-compatible browser engine.

SytemJS is used by Angular 2.0, which is the upcoming version of a popular web
application development framework.

Refer to the official SytemJS project website at https://github.com/
systemjs/systemjs to learn more about SystemJS.
There is a free list of common module mistakes available online at
http://www.typescriptlang.org/Handbook#modules-
pitfalls-of-modules.

Circular dependencies
A circular dependency is an issue that we can encounter when working with
multiple components and dependencies. Sometimes, it is possible to reach a
point in which one component (A) has a dependency on a second component (B),
which depends on the first component (A). In the following graph, each node is a
component, and we can observe that the nodes circular1.ts and circular2.ts have
a circular dependency. The node named doesNotDependOnAnything.ts doesn't
have dependencies and the node named onlyDependsOnOtherStuff.ts has a
dependency on circular1.ts but doesn't have circular dependencies.

http://browserify.org/
https://github.com/systemjs/systemjs
https://github.com/systemjs/systemjs
http://www.typescriptlang.org/Handbook#modules-pitfalls-of-modules
http://www.typescriptlang.org/Handbook#modules-pitfalls-of-modules

Chapter 4

[137]

The circular dependencies don't need to necessarily involve just two components.
We can encounter scenarios in which a component depends on another component,
which depends on other components, and some of the components in the dependency
tree end up pointing to one of their parent components in the tree.

Identifying a circular dependency is very time consuming. Fortunately, Atom
includes a command-line tool that will generate a dependency tree graph for us
like the preceding one. In order to access the Atom command line, we need to
navigate to View (in the top menu) and then to Toggle Command Palette.

Object-Oriented Programming with TypeScript

[138]

After opening the Toggle Command Palette, we need to type TypeScript:
Dependency View to display the graph:

If you want to learn more about dependency graphs, you can
visit its official documentation at https://github.com/
TypeStrong/atom-typescript/blob/master/docs/
dependency-view.md.

Summary
In this chapter, we saw how to work with classes, interfaces, and modules in depth.
We were able to reduce the complexity of our application by using techniques such
as encapsulation and inheritance.

We were also able to create external modules and manage our application
dependencies using tools such as RequireJS or Browserify.

In the next chapter, we will discuss the TypeScript runtime.

https://github.com/TypeStrong/atom-typescript/blob/master/docs/dependency-view.md
https://github.com/TypeStrong/atom-typescript/blob/master/docs/dependency-view.md
https://github.com/TypeStrong/atom-typescript/blob/master/docs/dependency-view.md

Chapter 5

[139]

Runtime
After completing this book, you will probably be eager to start a new project to put
into practice all your new knowledge. As the new project grows and you develop
more complex features, you might encounter some runtime issues.

We should be able to resolve design-time issues with ease because in the previous
chapter, we looked at the main TypeScript features.

However, we have not learned much about the TypeScript runtime. The good news
is that, depending on your background, you may already know a lot about it, as
the TypeScript runtime is the JavaScript runtime. TypeScript is only used at design
time; the TypeScript code is then compiled into JavaScript and finally executed. The
JavaScript runtime is in charge of the execution. Is important to understand that
we never execute TypeScript code and we always execute JavaScript code. For this
reason, when we refer to the TypeScript runtime, we will, in fact, be talking about
the JavaScript runtime.

When we compile our TypeScript code, we will generate JavaScript code, which will
be executed on the server side (with Node.js) or on the client side (in a web browser).
It is then that we may encounter some challenging runtime issues.

In this chapter, we will cover the following topics:

• The environment
• The event loop
• The this operator
• Prototypes
• Closures

Let's start by learning about the environment.

Runtime

[140]

The environment
The runtime environment is one of the first things that we must consider before
we can start developing a TypeScript application. Once we have compiled our
TypeScript code, it can be executed in many different JavaScript engines. While the
majority of those engines will be web browsers, such as Chrome, Internet Explorer,
or Firefox, we might also want to be able to run our code on the server side or in a
desktop application in environments such as Node.js or RingoJS.

It is important to keep in mind that there are some variables and objects available at
runtime that are environment-specific. For example, we could create a library and
access the document.layers variable. While document is part of the W3C Document
Object Model (DOM) standard, the layers property is only available in Internet
Explorer and is not part of the W3C DOM standard.

The W3C defines the DOM as follows:

The Document Object Model is a platform- and language-neutral interface that
will allow programs and scripts to dynamically access and update the content,
structure and style of documents. The document can be further processed and the
results of that processing can be incorporated back into the presented page.

In a similar manner, we can also access a set of objects known as the Browser Object
Model (BOM) from a web browser runtime environment. The BOM consists of the
objects navigator, history, screen, location, and document, which are properties of
the window object.

You need to realize that the DOM is part of the web browsers but not part of
JavaScript. If we want to run our application in a web browser, we will be able to
access the DOM and BOM. However, in environments like Node.js or RingoJS, they
will not be available, since they are standalone JavaScript environments completely
independent of a web browser. We can also find other objects on the server-side
environments (such as process.stdin in Node.js) that will not be available if we
attempt to execute our code in a web browser.

As if this wasn't enough work, we also need to keep in mind the existence of
multiple versions of these JavaScript environments. We will have to support multiple
browsers and multiple versions of Node.js. The recommended practice when dealing
with this problem is to add logic that looks for the availability of features rather than
the availability of a particular environment or version.

A really good library is available that can help us to implement feature
detection when developing for web browsers. The library is called
Modernizr and can be downloaded at http://modernizr.com/.

http://modernizr.com/

Chapter 5

[141]

The runtime
The TypeScript runtime (JavaScript) has a concurrency model based on an event loop.
This model is quite different to the models in other languages such as C or Java. Before
we focus on the event loop itself, you must understand some runtime concepts.

What follows is a visual representation of some important runtime concepts: heap,
stack, queue, and frame:

We will now look at the role of each of these runtime concepts.

Frames
A frame is a sequential unit of work. In the preceding diagram, the frames are
represented by the blocks inside the stack.

When a function is called in JavaScript, the runtime creates a frame in the stack.
The frame holds that particular function's arguments and local variables. When the
function returns, the frame is popped out of the stack. Let's take a look at an example:

function foo(b){
 var a = 12;
 return a+b+35;
}

function bar(x){

Runtime

[142]

 var m = 4;
 return foo(m*x);
}

After declaring the foo and bar functions, we invoke the bar function:

bar(21);

When bar is executed, the runtime will create a new frame containing the arguments
of bar and all the local variables. The frame (represented as a square in the preceding
diagram) is then added to the top of the stack.

Internally, bar invokes foo. When foo is invoked, a new frame is created and
allocated in the top of the stack. When the execution of foo is finished (foo has
returned), the top frame is removed from the stack. When the execution of bar is
also complete, it is removed from the stack as well.

Now, let's imagine what would happen if the foo function invoked the bar function.
We would create a never-ending function call loop. With each function call, a new
frame would be added to the stack, and eventually, there would be no more space
in the stack, and an error would be thrown. Most developers are familiar with this
error, known as a stack overflow error.

Stack
The stack contains the sequential steps (frames) that a message needs to execute. A
stack is a data structure that represents a simple Last In First Out (LIFO) collection
of objects. Therefore, when a frame is added to the stack, it is always added to the
top of the stack.

Since the stack is a LIFO collection, the event loop processes the frames stored in it
from top to bottom. The dependencies of a frame are added to the top of it in the
stack to ensure that all the dependencies of each of the frames are met.

Queue
The queue contains a list of messages waiting to be processed. Each message is
associated with a function. When the stack is empty, a message is taken out of the
queue and processed. The processing consists of calling the associated function and
adding the frames to the stack. The message processing ends when the stack becomes
empty again.

In the previous runtime diagram, the blocks inside the queue represent the messages.

Chapter 5

[143]

Heap
The heap is a memory container that is not aware of the order of the items stored in
it. The heap contains all the variables and objects currently in use. It may also contain
frames that are currently out of scope but have not yet been removed from memory
by the garbage collector.

The event loop
Concurrency is the ability for two or more operations to be executed simultaneously.
The runtime execution takes place on one single thread, which means that we cannot
achieve real concurrency.

The event loop follows a run-to-completion approach, which means that it will
process a message from beginning to end before any other message is processed.

As we discussed in Chapter 3, Working with Functions, we can use the
yield keyword and generators to pause the execution of a function.

Every time a function is invoked, a new message is added to the queue. If the stack is
empty, the function is processed (the frames are added to the stack).

When all the frames have been added to the stack, the stack is cleared from top
to bottom. At the end of the process, the stack is empty and the next message
is processed.

Web workers can performance background tasks in a different thread.
They have their own queue, heap, and stack.

One of the advantages of the event loop is that the execution order is quite predictable
and easy to follow. Another important advantage of the event loop approach is that
it features non-blocking I/O. This means that when the application is waiting for an
input and output (I/O) operation to finish, it can still process other things, such as
user input.

A disadvantage of this approach is that if a message takes too long to complete, the
application becomes unresponsive. Good practice is to make message processing
short, and if possible, split one message function into several messages functions.

Runtime

[144]

The this operator
In JavaScript, the this operator behaves a little differently than other languages. The
value of the this operator is often determined by the way a function is invoked. Its
value cannot be set by assignment during execution, and it may be different each
time a function is invoked.

The this operator also has some differences when using the
strict and nonstrict modes. To learn more about the strict mode,
refer to https://developer.mozilla.org/en-US/docs/
Web/JavaScript/Reference/Strict_mode.

The this operator in the global context
In the global context, the this operator will always point to the global object. In a
web browser, the window object is the global object:

console.log(this === window); // true
this.a = 37;
console.log(window.a); // 37
console.log(this.document === document === window. document); // true

The this operator in a function context
The value of this inside a function depends on how the function is invoked. If we
simply invoke a function in the nonstrict mode, the value of this within the function
will point to the global object:

function f1(){
 return this;
}
f1() === window; // true

However, if we invoke a function in the strict mode, the value of this within the
function's body will point to undefined:

console.log(this); // global (window)

function f2(){
 "use strict";
 return this; // undefined
}
console.log(f2()); // undefined
console.log(this); // window

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Strict_mode
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Strict_mode

Chapter 5

[145]

However, the value of the this operator inside a function invoked as an instance
method points to the instance. In other words, the value of the this operator within
a function that is part of a class points to that class:

var p = {
 age: 37,
 getAge: function() {
 return this.age; // this points to the class instance (p)
 }
};
console.log(p.getAge()); // 37

In the preceding example, we have used object literal notation to define an object
named p, but the same applies when declaring objects using prototypes:

function Person() {}
Person.prototype.age = 37;
Person .prototype.getAge = function () {
 return this.age;
}
var p = new Person();
p.age; // 37
p.getAge(); // 37

When a function is used as a constructor (with the new keyword), the this operator
points to the object being constructed:

function Person() { // function used as a constructor
 this.age = 37;
}
var p = new Person();
console.log(p.age); // logs 37

The call, apply, and bind methods
All the functions inherit the call, apply, and bind methods from
Function.prototype. We can use these methods to set the value of the this
operator when it is used inside the body of a function.

The call and apply methods are almost identical; both methods allow us to
invoke a function and set the value of the this operator within the function. The
main difference between call and apply is that while apply lets us invoke the
function with arguments as an array and call requires the function parameters
to be listed explicitly.

Runtime

[146]

A useful mnemonic is A (apply) for array and
C (call) for comma.

Let's take a look at an example. We will start by declaring a class named Person. This
class has two properties (name and surname) and one method (greet). The greet
method uses the this operator to access the name and surname instance properties:

class Person {
 public name : string;
 public surname : string;

 constructor(name : string, surname : string) {
 this.name = name;
 this.surname = surname;
 }

 public greet(city : string, country : string) {
 // we use the this operator to access name and surname
 var msg = `Hi, my name is ${this.name} ${this.surname}. `;
 msg += `I'm from ${city} (${country}).`;
 console.log(msg);
 }
}

After declaring the Person class, we will create an instance:

var person = new Person("remo", "jansen");

If we invoke the greet method, it will work as expected:

person.greet.("Seville", "Spain");
// Hi, my name is remo jansen. I'm from Seville (Spain).

Alternatively, we can invoke the method using the call and apply functions. We
have supplied the person object as the first parameter of both functions because we
want the this operator (inside the greet method) to take person as its value:

person.greet.call(person, "seville", "spain");
person.greet.apply(person, ["seville", "spain"]);

If we provide a different value to be used as the value of this, we will not be able to
access the name and surname properties within the greet function:

person.greet.call(null, "seville", "spain");
person.greet.apply(null, ["seville", "spain"]);
// Hi, my name is undefined.I'm from seville spain.

Chapter 5

[147]

The two preceding examples may seem useless because the first one invoked the
function directly and the second one caused an unexpected behavior. The apply and
call methods make sense only when we want the this operator to take a different
value when a function is invoked:

var valueOfThis = { name : "anakin", surname : "skywalker" };
person.greet.call(valueOfThis, "mos espa", "tatooine");
person.greet.apply(valueOfThis, ["mos espa", "tatooine"]);
// Hi, my name is anakin skywalker. I'm from mos espa tatooine.

The bind method can be used to set the value of the this operator (within a
function) regardless of how it is invoked.

When we invoke a function's bind method, it returns a new function with the same
body and scope as the original function, but the this operator (within the body
function) is permanently bound to the first argument of bind, regardless of how the
function is invoked.

Let's take a look at an example. We will start by creating an instance of the Person
class that we declared in the previous example:

var person = new Person("remo", "jansen");

Then, we can use bind to set the greet function to be a new function with the same
scope and body:

var greet = person.greet.bind(person);

If we try to invoke the greet function using bind and apply, just like we did in the
previous example, we will be able to observe that this time the this operator will
always point to the object instance independent of how the function is invoked:

greet.call(person, "seville", "spain");
greet.apply(person, ["seville", "spain"]);
// Hi, my name is remo jansen. I'm from seville spain.

greet.call(null, "seville", "spain");
greet.apply(null, ["seville", "spain"]);
// Hi, my name is remo jansen. I'm from seville spain.

var valueOfThis = { name: "anakin", surname: "skywalker" };
greet.call(valueOfThis, "mos espa", "tatooine");
greet.apply(valueOfThis, ["mos espa", "tatooine"]);
// Hi, my name is remo jansen. I'm from mos espa tatooine.

Runtime

[148]

Using the apply, call, and bind functions is not recommended
unless you really know what you are doing, because they can lead
to complex runtime issues for other developers.

Once we bind an object to a function with bind, we cannot override it:

var valueOfThis = { name: "anakin", surname: "skywalker" };
var greet = person.greet.bind(valueOfThis);
greet.call(valueOfThis, "mos espa", "tatooine");
greet.apply(valueOfThis, ["mos espa", "tatooine"]);
// Hi, my name is remo jansen. I'm from mos espa tatooine.

The use of the bind, apply, and call methods is often
discouraged because it can lead to confusion. Modifying the default
behavior of the this operator can lead to really unexpected results.
Remember to use these methods only when strictly necessary and to
document your code properly to reduce the risk caused by potential
maintainability issues.

Prototypes
When we compile a TypeScript program, all classes and objects become JavaScript
objects. Sometimes, we will encounter our application behaving unexpectedly at
runtime, and we will not be able to identify and understand the root cause of this
behavior without a good understanding of how inheritance works in JavaScript.
This understanding will allow us to have much better control over our application
at runtime.

The runtime inheritance system uses a prototypal inheritance model. In a prototypal
inheritance model, objects inherit from objects, and there are no classes available.
However, we can use prototypes to simulate classes. Let's see how it works.

At runtime, almost every JavaScript object has an internal property called prototype.
The value of the prototype attribute is an object, which contains some attributes
(data) and methods (behavior).

In TypeScript, we can use a class-based inheritance system:

class Person {
 public name : string;
 public surname : string;
 public age : number = 0;
 constructor(name : string, surname : string){
 this.name = name;

Chapter 5

[149]

 this.surname = surname;
 }
 greet() {
 var msg =`Hi! my name is ${this.name} ${this.surname}`;
 msg += `I'm ${this.age}`;
 }
}

We have defined a class named Person. At runtime, this class is declared using
prototypes instead of classes:

var Person = (function () {
 function Person(name, surname) {
 this.age = 0;
 this.name = name;
 this.surname = surname;
 }
 Person.prototype.greet = function () {
 var msg = "Hi! my name is " + this.name +
 " " + this.surname;
 msg += "I'm " + this.age;
 };
 return Person;
})();

The TypeScript compiler wraps the object definition (we will not refer it as the
class definition because technically, it is not a class) with an immediately invoked
function expression (IIFE). Inside the IIFE, we can find a function named Person. If
we examine the function and compare it to the TypeScript class, we will notice that it
takes the same parameters, like the constructor in the TypeScript class. This function
is used to create new instances of the Person class.

After the constructor, we can see the definition of the greet method. As you can see,
the prototype attribute is used to attach the greet method to the Person class.

Instance properties versus class properties
As JavaScript is a dynamic programming language, we can add properties and
methods to an instance of an object at runtime; and they don't need to be part of the
object (class) itself. Let's take a look at an example:

function Person(name, surname) {
 // instance properties
 this.name = name;

Runtime

[150]

 this.surname = surname;
}
var me = new Person("remo", "jansen");
me.email = "remo.jansen@wolksoftware.com";

Here, we defined a constructor function for an object named Person, which takes
two variables (name and surname) as arguments. Then, we have created an instance
of the Person object and added a new property named email to it. We can use a
for…in statement to check the properties of me at runtime:

for(var property in me) {
 console.log("property: " + property + ", value: '" +
 me[property] + "'");
}
// property: name, value: 'remo'
// property: surname, value: 'jansen'
// property: email, value: 'remo.jansen@wolksoftware.com'
// property: greet, value: 'function (city, country) {
// var msg = "Hi, my name is " + this.name + " " +
//this.surname;
// msg += "\nI'm from " + city + " " + country;
// console.log(msg);
// }'

All these properties are instance properties because they hold a value for each new
instance. If, for example, we create a new instance of Person, both instances will hold
their own values:

var hero = new Person("John", "117");
hero.name; // "John"
me.name; // "remo"

We have defined these instance properties using the this operator, because in the
class constructor, the this operator points to the object's prototype. This explains
why we can alternatively define instance properties through the object's prototype:

Person.prototype.name = name; // instance property
Person.prototype.name = surname; // instance property

We can also declare class properties and methods. The main difference is that the
value of class properties and methods is shared between all the instances of an object.
Class properties and methods are sometimes called static properties and methods.

Chapter 5

[151]

Class properties are often used to store static values:

function MathHelper() {
 /* ... */
}

// class property
MathHelper.PI = 3.14159265359;

Class methods are also often used as utility functions that perform calculations upon
supplied parameters and return a result:

function MathHelper() { /* ... */ }

// class method
MathHelper.areaOfCircle = function(radius) {
 return radius * radius * this.PI;
}

// class property
MathHelper.PI = 3.14159265359;

In the preceding example, we have accessed a class attribute (PI) from a class
method (areaOfCircle). We can access class properties from instance methods, but
we cannot access instance properties or methods from class properties or methods.
We can demonstrate this by declaring PI as an instance property instead of a class
property:

function MathHelper() {
 // instance property
 this.PI = 3.14159265359;
}

If we then attempt to access PI from a class method, it will be undefined:

// class method
MathHelper.areaOfCircle = function(radius) {
 return radius * radius * this.PI; // this.PI is undefined
}

MathHelper.areaOfCircle(5); // NaN

Runtime

[152]

We are not supposed to access class methods or properties from instance methods,
but there is a way to do it. We can achieve it using the prototype's constructor
property. We can also demonstrate this as follows:

function MathHelper () { /* ... */ }

// class property
MathHelper.PI = 3.14159265359;

// instance method
MathHelper.prototype.areaOfCircle = function(radius) {
 return radius * radius * this.constructor.PI;
}

var math = new MathHelper ();
console.log(MathHelper.areaOfCircle(5)); // 78.53981633975

We can access PI (the class property) from areaOfCircle (the instance method)
using the prototype's constructor property because this property returns a reference
to the object's constructor.

Inside areaOfCircle, the this operator returns a reference to the object's prototype:

this === MathHelper.prototype //true

We may deduce that this.constructor is equal to MathHelper.prototype.
constructor and, therefore, MathHelper.prototype.constructor is equal to
MathHelper.

Prototypal inheritance
You might be wondering how the extends keyword works. Let's create a new
TypeScript class, which inherits from the Person class, to help you understand it:

class SuperHero extends Person {
 public superpower : string;
 constructor(name : string, surname : string, superpower :
 string){
 super(name, surname);
 this.superpower = superpower;
 }
 userSuperPower() {
 return `I'm using my ${this.superpower}`
 }
}

Chapter 5

[153]

The preceding class is named SuperHero and extends the Person class. It has one
extra attribute (superpower) and method (useSuperPower). If we compile the code,
we will notice the following piece of code:

var __extends = this.__extends || function (d, b) {
 for (var p in b) if (b.hasOwnProperty(p)) d[p] = b[p];
 function __() { this.constructor = d; }
 __.prototype = b.prototype;
 d.prototype = new __();
};

This piece of code is generated by TypeScript. Even though it is a really small
piece of code, it showcases almost every concept contained in this chapter, and
understanding it can be quite challenging. We might need to examine it multiple
times to understand it, but the effort is worth it. Let's take a look at the function.

Before the function expression is evaluated for the first time, the this operator
points to the global object, which does not contain a method named __extends.
This means that the __extends variable is undefined at this point:

console.log(this.__extends); // undefined

When the function expression is evaluated for the first time, the value of the function
expression (an anonymous function) is assigned to the __extends property in the
global scope:

console.log(this.__extends); // extends(n, e, t);

TypeScript generates the function expression once for each TypeScript file containing
the extends keyword. However, the function expression is only evaluated once
(when the __extends variable is undefined). This behavior is implemented in the
first line of code:

var __extends = this.__extends || function (d, b) { // ...

The first time this line of code is executed, the function expression is evaluated.
The value of the function expression is an anonymous function, which is assigned
to the __extends variable in the global scope. As we are in the global scope,
var __extends and this._extends refer to the same variable at this point.

When a new file is executed, the __extends variable is already available in the global
scope and the function expression is not evaluated. This means that the value of the
function expression is only assigned to the __extends variable once.

Runtime

[154]

As you already know, the value of the function expression is an anonymous
function. Let's now focus on it:

function (d, b) {
 for (var p in b) if (b.hasOwnProperty(p)) d[p] = b[p];
 function __() { this.constructor = d; }
 __.prototype = b.prototype;
 d.prototype = new __();
}

This function takes two arguments named d and b. When we invoke it, we should
pass a derived object constructor (d) and a base object constructor (b).

The first line inside the anonymous function iterates each class property and method
from the base class and creates their copy in the derived class:

for (var p in b) if (b.hasOwnProperty(p)) d[p] = b[p];

When we use a for…in statement to iterate an instance of an object,
it will iterate the object's instance properties. However, if we use a
for…in statement to iterate the properties of an object's constructor,
the statement will iterate its class properties. In the preceding
example, the for…in statement is used to inherit the object's class
properties and methods. To inherit the instance properties, we will
copy the object's prototype.

The second line declares a new constructor function named __, and inside it, the
this operator is used to access its prototype:

function __() { this.constructor = d; }

The prototype contains a special property named constructor, which returns a
reference to the object's constructor. The function named __ and this.constructor
are pointing to the same variable at this point. The value of the derived object
constructor (d) is then assigned to the __ constructor.

In the third line, the value of the prototype object from the base object constructor is
assigned to the prototype of the __ object constructor:

__.prototype = b.prototype;

In the last line, a new __() is invoked, and the result is assigned to the derived class
(d) prototype. By performing all these steps, we have achieved all that we need to
invoke the following:

var instance = new d():

Chapter 5

[155]

Upon doing so, we will get an object that contains all the properties from both the
derived class (d) and the base class (b). Furthermore, the instance of operator will
work as we would expect:

var superHero = new SuperHero();
console.log(superHero instanceof Person); // true
console.log(superHero instanceof SuperHero); // true

We can see the function in action by examining the runtime code that defines the
SuperHero class:

var SuperHero = (function (_super) {
 __extends(SuperHero, _super);
 function SuperHero(name, surname, superpower) {
 _super.call(this, name, surname);
 this.superpower = superpower;
 }
 SuperHero.prototype.userSuperPower = function () {
 return "I'm using my " + superpower;
 };
 return SuperHero;
})(Person);

We can see an IIFE here again. This time, the IIFE takes the Person object constructor
as the argument. Inside the function, we will refer to this argument using the name
_super. Inside the IIFE, the __extends function is invoked and the SuperHero
(derived class) and _super (base class) arguments are passed to it.

In the next line, we can find the declaration of the SuperHero object constructor
and the useSuperPower function. We can use SuperHero as an argument of
__extend before it is declared, because functions declarations are hoisted to the
top of the scope.

Function expressions are not hoisted. When we assign a function to a
variable in a function expression, the variable is hoisted, but its value
(the function itself) is not hoisted.

Inside the SuperHero constructor, the base class (Person) constructor is invoked
using the call method:

_super.call(this, name, surname);

Runtime

[156]

As we discussed previously in this chapter, we can use call to set the value of the
this operator in a function context. In this case, we are passing the this operator,
which points to the instance of SuperHero being created:

function Person(name, surname) {
 // this points to the instance of SuperHero being created
 this.name = name;
 this.surname = surname;
}

The prototype chain
When we try to access a property or method of an object, the runtime will search
for that property or method in the object's own properties and methods. If it is not
found, the runtime will continue searching through the object's inherited properties
by navigating the entire inheritance tree. As a derived object is linked to its base
object through the prototype property, we refer to this inheritance tree as the
prototype chain.

Let's take a look at an example. We will declare two simple TypeScript classes named
Base and Derived:

class Base {
 public method1(){ return 1; };
 public method2(){ return 2; };
}

class Derived extends Base {
 public method2(){ return 3; };
 public method3(){ return 4; };
}

Now, we will examine the JavaScript code generated by TypeScript:

var Base = (function () {
 function Base() {
 }
 Base.prototype.method1 = function () { return 1; };
 ;
 Base.prototype.method2 = function () { return 2; };
 ;
 return Base;
})();

Chapter 5

[157]

var Derived = (function (_super) {
 __extends(Derived, _super);
 function Derived() {
 _super.apply(this, arguments);
 }
 Derived.prototype.method2 = function () { return 3; };
 ;
 Derived.prototype.method3 = function () { return 4; };
 ;
 return Derived;
})(Base);

We can then create an instance of the Derived class:

var derived = new Derived();

If we try to access the method named method1, the runtime will find it in the
instance's own properties:

console.log(derived.method1()); // 1

The instance also has its own property named method2 (with value 2), but there is
also an inherited property named method2 (with value 3). The object's own property
(method2 with value 3) prevents access to the prototype property (method2 with
value 2). This is known as property shadowing:

console.log(derived.method2()); // 3

The instance does not have its own property named method3, but it has a property
named method3 in its prototype:

console.log(derived.method3()); // 4

Both the instance and the objects in the prototype chain (the Base class) don't have a
property named method4:

console.log(derived.method4()); // error

Accessing the prototype of an object
Prototypes can be accessed in three different ways:

• Person.prototype: We can access the prototype of a function directly using
the prototype attribute

• Person.getPrototypeOf(person): We want this function to access the
prototype of an instance of an object we can use the getPrototypeOf
function

Runtime

[158]

• person.__proto__: This is a property that exposes the internal prototype of
the object through which it is accessed

The use of __proto__ is controversial and has been
discouraged by many. It was never originally included in the
ECMAScript language spec, but modern browsers decided to
implement it anyway. Today, the __proto__ property has been
standardized in the ECMAScript 6 language specification and
will be supported in the future, but it is still a slow operation
that should be avoided if performance is a concern.

The new operator
We can use the new operator to generate an instance of Person:

var person = new Person("remo", "jansen");

The runtime does not follow a class-based inheritance model. When we use the new
operator, the runtime creates a new object that inherits from the Person class prototype.

We may conclude that the behavior of the new operator at runtime (JavaScript) is not
really different from the extends keyword at design time (TypeScript).

Closures
Closures are one of the most powerful features available at runtime, but they are
also one of the most misunderstood. The Mozilla developer network defines closures
as follows:

"Closures are functions that refer to independent (free) variables. In other words,
the function defined in the closure 'remembers' the environment in which it
was created."

We understand independent (free) variables as variables that persist beyond the
lexical scope from which they were created. Let's take a look at an example:

function makeArmy() {
 var shooters = []
 for(var i = 0; i < 10; i++) {
 var shooter = function() { // a shooter is a function
 alert(i) // which should alert it's number
 }

Chapter 5

[159]

 shooters.push(shooter)
 }
 return shooters;
}

We have declared a function named makeArmy. Inside the function, we have created
an array of functions named shooters. Each function in the shooters array will
alert a number, the value of which was set from the variable i inside a for statement.
We will now invoke the makeArmy function:

var army = makeArmy();

The army variable should now contain the array of functions shooters. However,
we will notice a problem if we execute the following piece of code:

army[0](); // 10 (expected 0)
army[5](); // 10 (expected 5)

The preceding code snippet does not work as expected because we made one of the
most common mistakes related to closures. When we declared the shooter function
inside the makeArmy function, we created a closure without knowing it.

The reason for this is that the functions assigned to shooter are closures; they
consist of the function definition and the captured environment from the makeArmy
function's scope. Ten closures have been created, but each one shares the same single
environment. By the time the shooter functions are executed, the loop has run its
course and the i variable (shared by all the closures) has been left pointing to the last
entry (10).

One solution in this case is to use more closures:

function makeArmy() {
 var shooters = []
 for(var i = 0; i < 10; i++) {
 (function(i){
 var shooter = function() {
 alert(i);
 }
 shooters.push(shooter)
 })(i);
 }
 return shooters;
}

var army = makeArmy();
army[0](); // 0
army[5](); // 5

Runtime

[160]

This works as expected. Rather than the shooter functions sharing a single
environment, the immediately invoked function creates a new environment for
each one, in which i refers to the corresponding value.

Static variables with closures
In the previous section, we saw that when a variable is declared in a closure context
it can be shared between multiple instances of a class, or in other words, the variable
behaves as a static variable.

We will now see how we can create variables and methods that behave like static
variables. Let's start by declaring a TypeScript class named Counter:

class Counter {
 private static _COUNTER = 0;
 constructor() {}
 private _changeBy(val) {
 Counter._COUNTER += val;
 }
 public increment() {
 this._changeBy(1);
 }
 public decrement() {
 this._changeBy(-1);
 }
 public value() {
 return Counter._COUNTER;
 }
}

The preceding class contains a static member named _COUNTER. The TypeScript
compiler transforms it into the following resulting code:

var Counter = (function () {
 function Counter() {
 }
 Counter.prototype._changeBy = function (val) {
 Counter._COUNTER += val;
 };
 Counter.prototype.increment = function () {
 this._changeBy(1);
 };
 Counter.prototype.decrement = function () {
 this._changeBy(-1);
 };

Chapter 5

[161]

 Counter.prototype.value = function () {
 return Counter._COUNTER;
 };
 Counter._COUNTER = 0;
 return Counter;
})();

As you can observe, the static variable is declared by the TypeScript compiler as
a class property (as opposed to an instance property). The compiler uses a class
property because class properties are shared across all instances of a class.

Alternatively, we could write some JavaScript (remember that all valid JavaScript is
valid TypeScript) code to emulate static properties using closures:

var Counter = (function() {
 // closure context
 var _COUNTER = 0;

 function changeBy(val) {
 _COUNTER += val;
 }

 function Counter() {};

 Counter.prototype.increment = function() {
 changeBy(1);
 };
 Counter.prototype.decrement = function() {
 changeBy(-1);
 };
 Counter.prototype.value = function() {
 return _COUNTER;
 };
 return Counter;
})();

The preceding code snippet declares a class named Counter. The class has some
methods used to increment, decrement, and read the variable named _COUNTER.
The _COUNTER variable itself is not part of the object prototype.

The Counter constructor function is part of a closure. As a result, all the instances of
the Counter class will share the same closure context, which means that the context
(the variable counter and the function changeBy) will behave as a singleton.

Runtime

[162]

The singleton pattern requires an object to be declared as a static variable
to avoid the need to create its instance whenever it is required. The object
instance is, therefore, shared by all the components in the application. The
singleton pattern is frequently used in scenarios where it is not beneficial,
which introduces unnecessary restrictions in situations where a unique
instance of a class is not actually required, and introduces global states
into an application.

So, you now know that it is possible to use closures to emulate static variables:

var counter1 = new Counter();
var counter2 = new Counter();
console.log(counter1.value()); // 0
console.log(counter2.value()); // 0
counter1.increment();
counter1.increment();
console.log(counter1.value()); // 2
console.log(counter2.value()); // 2 (expected 0)
counter1.decrement();
console.log(counter1.value()); // 1
console.log(counter2.value()); // 1 (expected 0)

Private members with closures
We have seen that the closure function can access variables that persist beyond
the lexical scope from which they were created. These variables are not part of the
function prototype or body, but they are part of the closure function context.

As there is no way to directly access the context of a closure function, the context
variables and methods can be used to emulate private members. The main advantage
of using closures to emulate private members (instead of the TypeScript private
access modifier) is that closures will prevent access to private members at runtime.

TypeScript avoids emulating private properties at runtime. The TypeScript compiler
will throw an error at compilation time if we attempt to access a private member.

However, TypeScript avoids the use of closures to emulate private members to
improve the application performance. If we add or remove an access modifier to
or from one of our classes, the resulting JavaScript code will not change at all. This
means that private members of a class become public members at runtime.

Chapter 5

[163]

However, it is possible to use closures to emulate private properties at runtime. Just
like when we emulated a static variable using closures, we can only achieve this kind
of advanced control over the behavior of closures by writing pure JavaScript. Let's
take a look at an example:

function makeCounter() {

 // closure context
 var _COUNTER = 0;
 function changeBy(val) {
 _COUNTER += val;
 }

 function Counter() {};

 Counter.prototype.increment = function() {
 changeBy(1);
 };
 Counter.prototype.decrement = function() {
 changeBy(-1);
 };
 Counter.prototype.value = function() {
 return _COUNTER;
 };
 return new Counter();
};

The preceding class is almost identical to the class that we previously declared to
demonstrate how to emulate static variables at runtime using closures.

This time, a new closure context is created every time we invoke the makeCounter
function, so each new instance of Counter will remember an independent context
(counter and changeBy):

var counter1 = makeCounter();
var counter2 = makeCounter();
console.log(counter1.value()); // 0
console.log(counter2.value()); // 0
counter1.increment();
counter1.increment();
console.log(counter1.value()); // 2
console.log(counter2.value()); // 0 (expected 0)
counter1.decrement();
console.log(counter1.value()); // 1
console.log(counter2.value()); // 0 (expected 0)

Runtime

[164]

Since the context cannot be accessed directly, we can say that the variable counter
and the changeBy function are private members:

console.log(counter1.counter); // undefined
counter1.changeBy(2); // changeBy is not a function
console.log(counter1.value()); // 1

Summary
In this chapter, we discovered how to understand the runtime, which allows us not
only to resolve runtime issues with ease but also to be able to write better TypeScript
code. A deep understanding of closures and prototypes will allow you to develop
some complex features that it would have not been possible to develop without
this knowledge.

In the next chapter, we will focus on performance, memory management, and
exception handling.

[165]

Application Performance
In this chapter, we will take a look at how can we manage available resources in an
efficient manner to achieve great performance. You will understand the different types
of resource, performance factors, performance profiling and automation.

The chapter begins by introducing some core performance concepts, such as
latency or bandwidth, and continues by showcasing how to measure and monitor
performance as part of the automated build process.

As we discussed in previous chapters, we can use TypeScript to generate JavaScript
code that can be executed in many different environments (web browsers, Node.
js, mobile devices, and so on). In this chapter, we will explore performance
optimization, which is mainly applicable to the development of web applications.
The following topics will be covered in this chapter:

• Performance and resources
• Aspects of performance
• Memory profiling
• Network Profiling
• CPU and GPU profiling
• Performance testing
• Performance recommendations
• Performance automation

Application Performance

[166]

Prerequisites
Before we get started, we need to install Google Chrome because we will use its
developer tools to perform web performance analysis.

Performance and resources
Before we get our hands dirty doing some performance analysis, monitoring, and
automation, we must first spend some time understanding some core concepts and
aspects about performance.

A good application is one that has a set of desirable characteristics, which includes
functionality, reliability, usability, reusability, efficiency, maintainability, and
portability. Over the course of this book so far, we have understood a lot about
maintainability and reusability. In this chapter, we will focus on performance,
which is closely related to reliability and maintainability.

The term performance refers to the amount of useful work accomplished compared
to the time and resources used. A resource is a physical (CPU, RAM, GPU, HDD,
and so on) or virtual (CPU times, RAM regions, files, and so on) component with
limited availability. As the availability of a resource is limited, each resource is
shared between processes. When a process finishes using a resource, it must release
the resource before any other process can use it. Managing available resources in an
efficient manner will help to reduce the time other processes spend waiting for the
resources to become available.

When we work on a web application, we need to keep in mind that the following
resources will have limited availability:

• Central Processing Unit (CPU): This carries out the instructions of a
computer program by performing the basic arithmetic, logical, control,
and input/output (I/O) operations specified by the instructions.

• Graphics Processor Unit (GPU): This is a specialized processor is used in
the manipulation and alteration of memory to accelerate the creation of
images in a frame buffer intended for output to a display. The GPU is
used when we create applications that use the WebGL API or when we
use some CSS3 animations.

• Random Access Memory (RAM): This allows data items to be read and
written in approximately the same amount of time regardless of the order in
which data items are accessed. When we declare a variable, it will be stored
in RAM memory; when the variable is out of the scope, it will be removed
from RAM by the garbage collector.

Chapter 6

[167]

• Hard Disk Drive (HDD) and Solid State Drive (SSD): Both of these are
data storage devices used to store and retrieve information. When developing
client-side web applications, we will not have to worry about these resources
really often because these applications don't usually extensively use persistent
data storage. However, we should keep in mind that, whenever we store an
object in a persistent manner (cookies, local storage, IndexedDB, and so on),
the performance of our application will be affected by the availability of the
HDD or SSD.

• Network throughput: This determines how much actual data can be sent
per unit of time across a network. The network throughput is determined
by factors such as the network latency or bandwidth (we will discuss more
about these factors later in this chapter).

All the resources presented in the preceding list are also limited
when working on a Node.js application or a hybrid application.
However, it is not really common to extensively use the GPU while
working on a Node.js application, but it is a possible scenario.

Performance metrics
As performance is influenced by the availability of multiple types of physical and
virtual device, we can find a few different performance metrics (factors to measure
performance). Some popular performance metrics include availability, response
time, processing speed, latency, bandwidth, and scalability. These measurement
mechanisms are usually directly related to one of the general resources (CPU, network
throughput, and so on) that were mentioned in the previous section. We will now look
at each of these performance metrics in detail.

Availability
The availability of a system is related to its performance, because if the system is not
available at some stage, we will perceive it as bad performance. The availability can be
improved by improving the reliability, maintainability, and testability of the system.
If the system is easy to test and maintain, it will be easy to increase its reliability.

Application Performance

[168]

The response time
The response time is the amount of time that it takes to respond to a request for a
service. A service here does not refer to a web service; a service can be any unit of
work. The response time can be divided into three parts:

• Wait time: This is the amount of time that the requests will spend waiting for
other requests that took place earlier to be completed.

• Service time: This is the amount of time that it takes for the service (unit of
work) to be completed.

• Transmission time: Once the unit of work has been completed, the response
will be sent back to the requestor. The time that it takes for the response to be
transmitted is known as the transmission time.

Processing speed
Processing speed (also known as clock rate) refers to the frequency at which a
processing unit (CPU or GPU) runs. An application contains many units of work. Each
unit of work is composed of instructions for the processor; usually, the processors
can perform an instruction in each clock tick. Since a few clock ticks are required for
an operation to be completed, the higher the clock rate (processing speed), the more
instructions will be completed.

Latency
Latency is a term we can apply to many elements in a system; but when working on
web applications, we will use this term to refer to network latency. Network latency
indicates any kind of delay that occurs in data communication over the network.

High latency creates bottlenecks in the communication bandwidth. The impact of
latency on network bandwidth can be temporary or persistent, based on the root
cause of the delays. High latency can be caused by problems in the medium (cables
or wireless signals), problems with routers and gateways, and anti-virus, among
other things.

Bandwidth
Just like in the case of latency, whenever we mention bandwidth in this chapter,
we will be referring to the network bandwidth. The bandwidth, or data transfer rate,
is the amount of data that can be carried from one point to another in a given time.
The network bandwidth is usually expressed in bits per second.

Chapter 6

[169]

Network performance can be affected by many factors. Some of these
factors can degrade the network throughput. For example, a high packet
loss, latency, and jitter will reduce the network throughput, while a high
bandwidth will increase it.

Scalability
Scalability is the ability of a system to handle a growing amount of work. A system
with good scalability will be able to pass some performance tests, such as spike or
stress testing.

We will discover more about performance tests (such as spike and stress) later in
this chapter.

Performance analysis
Performance analysis (also known as performance profiling) is the observation and
study of resource usage by an application. We will perform profiling in order to
identify performance issues in our applications. A different performance profiling
process will be carried out for each type of resource using specific tools. We will
now take a look at how we can use Google Chrome's developer tools to perform
network profiling.

Network performance analysis
We are going to start by analyzing network performance. Not so long ago, in order
to be able to analyze the network performance of an application, we would have
had to write a small network logging application ourselves. Today, things are much
easier thanks to the arrival of the performance timing API (http://www.w3.org/
TR/resource-timing/). The performance timing API allows us to access detailed
network timing data for each loaded resource.

http://www.w3.org/TR/resource-timing/
http://www.w3.org/TR/resource-timing/

Application Performance

[170]

The following diagram illustrates the network timing data points that the
API provides:

We can access the performance timing API via the global object:

window.performance

The performance attribute in the global object has some properties (memory,
navigation, and timing) and methods (clearMarks, clearMeasures, and
getEntries). We can use the getEntries function to get an array that contains
the taming data points of each request:

window.performance.getEntries()

Each entity in the array is an instance of PerformanceResourceTiming, which
contains the following information:

{
 connectEnd: 1354.525000002468
 connectStart: 1354.525000002468
 domainLookupEnd: 1354.525000002468
 domainLookupStart: 1354.525000002468
 duration: 179.89400000078604
 entryType: "resource"
 fetchStart: 1354.525000002468
 initiatorType: "link"
 name: "https://developer.chrome.com/static/css/out/site.css"
 redirectEnd: 0
 redirectStart: 0
 requestStart: 1380.8379999827594

Chapter 6

[171]

 responseEnd: 1534.419000003254
 responseStart: 1533.6550000065472
 secureConnectionStart: 0
 startTime: 1354.525000002468
}

Unfortunately, the timing data points in the preceding format may not be really
useful, but there are tools that can help us to analyze them with ease. The first of
these tools is a browser extension called performance-bookmarklet. This extension is
open source and is available for Chrome and Firefox. The extension download links
can be found at https://github.com/micmro/performance-bookmarklet.

In the following screenshot, you can see one of the graphs generated by the
extension. The graphs display the performance typing API information in a much
better way, allowing us to spot performance issues with ease:

Alternatively, you can use the network panel in the Chrome developer tools to
perform network performance profiling. To access the network panel, navigate to
View, Developer, and then Developer Tools:

https://github.com/micmro/performance-bookmarklet

Application Performance

[172]

Windows users can access the developer tools by pressing the F12 key.
OS X users can access it using the Alt + Cmd + I shortcut.

Once the developer tools are visible, you can access the Network tab by clicking
on it:

Clicking on the Network tab will lead you to a screen similar to the one seen here:

As you can observe, the information is presented in a table in which each file loaded
is displayed as a row. On the right-hand side, you can see that one of the columns is
the timeline. The timeline displays the performance timing API in a similar way to
the way that the performance-bookmarklet extension did.

Two important elements in the timeline are the red and blue lines. These lines let
us know when the DOMContentLoaded event is triggered (the blue line), following
which the load event is triggered (the red line):

Chapter 6

[173]

These two events are important because we can examine which requests were
completed when the event was fired to get an idea of which contents were available
for the user when they took place:

• The DOMContentLoaded event is fired when the engine has completed
parsing of the main document

• The load event is fired when all the page's resources have been loaded

If you hover over one of the cells of the timing column, you will be able to see each of
the performance timing API data points:

Application Performance

[174]

It is interesting to know that this developer tool actually reads this information using
the performance timing API. Let's understand the meaning of each of the data points:

Performance timing API data point Description
Stalled/Blocking This is the time the request spent waiting before it

could be sent; there is a maximum number of open
TCP connections for an origin. When the limit is
reached, some requests will display blocking time
rather than stalled time.

Proxy Negotiation This is the time spent negotiating a connection with
a proxy server.

DNS Lookup This is the time spent resolving a DNS address;
resolving a DNS requires a full round-trip to the
DNS server for each domain in the page.

Initial Connection / Connecting This is the time it took to establish a connection.
SSL This is the time spent establishing an SSL connection.
Request Sent / Sending This is the time spent issuing the network request,

typically a fraction of a millisecond.
Waiting (TTFB) This is the time spent waiting for the initial byte to

be received—the time to first byte (TTFB). The TTFB
can be used to find out the latency of a round-trip to
the server in addition to the time spent waiting for
the server to deliver the response.

Content Download / Downloading This is the time taken for the response data to be
received.

Network performance and user experience
Now that you know how we can analyze network performance, it is time to identify the
performance goals we should aim for. Numerous studies have proved that it is really
important to keep loading times as low as possible. The Akamai study, published in
September 2009, interviewed 1,048 online shoppers and found the following:

• 47 percent of people expect a web page to load in two seconds or less
• 40 percent will abandon a web page if it takes more than three seconds to load
• 52 percent of online shoppers claim that quick page loads are important for

their loyalty to a site
• 14 percent will start shopping at a different site if page loads are slow;

23 percent will stop shopping or even walk away from their computer
• 64 percent of shoppers who are dissatisfied with their site visit will go

somewhere else to shop next time

Chapter 6

[175]

You can read the full Akamai study at http://www.akamai.com/
html/about/press/releases/2009/press_091409.html.

From the preceding study conclusions, we should assume that network performance
matters. Our first priority should be to try to improve the loading speed.

If we try to improve the performance of a site to make sure that it loads in less than
two seconds, we might make a common mistake: trying to get the onLoad event to
be triggered in under two seconds.

While triggering the onLoad event as early as possible will probably improve the
network performance of an application, it doesn't mean that the user experience will
be equally improved. The onLoad event is insufficient to determine performance.
We can demonstrate this by comparing the loading performance of the Twitter
and Amazon websites. As you can see in the following screenshot, users have the
opportunity to engage with Amazon much sooner than with Twitter. Even though
the onLoad event is the same on both sites, the user experience is drastically different:

This example demonstrates that to improve the user experience, we must try to
reduce the loading times, but we must also try to load the web contents in such a
way that the user engagement can begin as early as possible. To achieve this, we
should load all the secondary content in an asynchronous manner.

Refer to Chapter 3, Working with Functions to learn more about
asynchronous programming with TypeScript.

http://www.akamai.com/html/about/press/releases/2009/press_091409.html
http://www.akamai.com/html/about/press/releases/2009/press_091409.html

Application Performance

[176]

Network performance best practices and rules
Another easy way to analyze the performance of a web application is by using a
best-practices tool for network performance, such as the Google PageSpeed Insights
application or the Yahoo YSlow application.

Google PageSpeed Insights can be used online or as a Google Chrome extension.
To try this tool, you can visit the online version at https://developers.google.
com/speed/pagespeed/insights/ and insert the URL of the web application that
you want to analyze. In just a few seconds, you will get a report like the one in the
following screenshot:

The report contains some effective recommendations that will help us to improve the
network performance and overall user experience of our web applications. Google
PageSpeed Insights uses the following rules to rate the speed of a web application:

• Avoid landing page redirects
• Enable compression

https://developers.google.com/speed/pagespeed/insights/
https://developers.google.com/speed/pagespeed/insights/

Chapter 6

[177]

• Improve server response time
• Leverage browser caching
• Minify resources
• Optimize images
• Optimize CSS Delivery
• Prioritize visible content
• Remove render-blocking JavaScript
• Use asynchronous scripts

When you use this tool, if you click on the score of each rules, you can see
recommendations and details that will help you to understand what is wrong
and what you need to do to increase the score achieved for one particular rule.

On the other hand, Yahoo YSlow is available as a browser extension, a Node.js
module, and a PhantomJS plugin, among others. We can find the right version for
our needs at http://yslow.org/. When we run YSlow, it will generate a report that
will provide us with a general score and a detailed score of the website, like the one
in the following screenshot:

http://yslow.org/

Application Performance

[178]

YSlow uses the following set of rules to rate the speed of a web application:

• Minimize HTTP requests
• Use a content delivery network
• Avoid empty src or href
• Add an expires or a cache-control header
• Gzip components
• Put stylesheets at the top
• Put scripts at the bottom
• Avoid CSS expressions
• Make JavaScript and CSS external
• Reduce DNS lookups
• Minify JavaScript and CSS
• Avoid redirects
• Remove duplicate scripts
• Configure ETags
• Make AJAX cacheable
• Use GET for AJAX requests
• Reduce the number of DOM elements
• Prevent 404 errors
• Reduce cookie size
• Use cookie-free domains for components
• Avoid filters
• Do not scale images in HTML
• Make favicon.ico small and cacheable

Just like before, when you use this tool, if you click on each of the rules scored you
can see recommendations and details that will help you to understand what is wrong
and what you need to do to increase the score achieved for one particular rule.

If you want to learn more about network performance optimization,
please take a look at the book High Performance Browser Networking
by Ilya Grigorik.

Chapter 6

[179]

GPU performance analysis
The rendering of some elements in web applications is accelerated by the use of the
GPU. The GPU is specialized in the processing of graphics-related instructions
and can, therefore, deliver much better performance than the CPU when it comes
to graphics. For example, CSS3 animations in modern web browsers are accelerated
by the GPU, while the CPU performs JavaScript animations. In the past, the only
way to achieve some animations was via JavaScript. But today, we should avoid
using them when possible and use CSS3 instead because it will help us to achieve
great web performance.

In recent years, access to the GPU has been added to browsers via the WebGL
API. This API allows web developers to create 3D games and other highly visual
applications by using the power of the GPU.

Frames per second (FPS)
We will not go into much detail about the performance of 3D applications because
it is a really extensive field and we could write an entire book talking about it.
However, we will mention an important concept that can be applied to any kind of
web application: frames per second (FPS) or frame rate. When a web application
is displayed on screen, it is done at a number of images (frames) per second. A low
frame rate can be detrimental to the overall user experience when perceived by the
users. A lot of research has been carried out on this topic, and 60 frames per second
seems to be the optimum frame rate for a great user experience.

Whenever we develop a web application, we should take a look at the frame rate and
try to prevent it from dropping below 40 FPS. This is especially important during
animations and user actions.

An open source library called stats.js can help us to see the frame rate while
developing a web application. This library can be downloaded from GitHub at
https://github.com/mrdoob/stats.js/. We need to download the library and
load it in a web page. We can then load the following code snippet by adding a new
file or just execute it in the developer console:

var stats = new Stats();
stats.setMode(1); // 0: fps, 1: ms

// position of the frame rate counter (align top-left)
stats.domElement.style.position = 'absolute';
stats.domElement.style.left = '0px';
stats.domElement.style.top = '0px';

https://github.com/mrdoob/stats.js/

Application Performance

[180]

document.body.appendChild(stats.domElement);

var update = function () {
 stats.begin();
 // monitored code goes here
 stats.end();
 requestAnimationFrame(update);
};
requestAnimationFrame(update);

If everything goes well, we will be able to see the frame rate counter in the top-left
corner of the screen. Clicking on it will switch from the FPS view to the millisecond
(MS) view:

• The FPS view displays the frames rendered in the last second. The higher this
number is, the better.

• The MS view displays the milliseconds needed to render a frame. The lower
this number is, the better.

Some advanced WebGL applications may require an in-depth
performance analysis. For such cases, Chrome provides the
Trace Event Profiling Tool. If you wish to learn more about this
tool, visit the official page at https://www.chromium.org/
developers/how-tos/trace-event-profiling-tool.

CPU performance analysis
To analyze the usage of the processing time, we will take a look at the execution path
of our application. We will examine each of the functions invoked and how long it
takes to complete their execution. We can access all this information by opening the
Chrome developer tools' Profiles tab:

https://www.chromium.org/developers/how-tos/trace-event-profiling-tool
https://www.chromium.org/developers/how-tos/trace-event-profiling-tool

Chapter 6

[181]

In this tab, we can select Collect JavaScript CPU Profile and then click on the Start
button to start recording the CPU usage. Being able to select when we want to start
and stop recording the CPU usage helps us select the specific functions that we want
to analyze. If, for example, we want to analyze a function named foo, all we need
to do is start recording the CPU usage, invoke the foo function and stop recording.
A timeline like the one in the following screenshot will then be displayed:

Application Performance

[182]

The timeline displays (horizontally) the functions invoked in the chronological
order. If the function invokes other functions, the function's call-stack is displayed
vertically. When we hover over one of these functions, we will be able to see its
details in the bottom-left corner of the timeline:

The details include the following information:

• Name: The name of the function.
• Self time: The time spent on the completion of the current invocation of the

function. We will take into account the time spent in the execution of the
statements within the function, not including any functions that it called.

• Total time: The total time spent on the completion of the current invocation
of the function. We will take into account the time spent in the execution of
the statements within the function, including functions that it called.

• Aggregated self time: The time for all invocations of the function across the
recording, not including functions called by this function.

• Aggregated total time: The time for all invocations of the function across the
recording, including functions called by this function.

Chapter 6

[183]

As we saw in the previous chapter, all the JavaScript code is executed in one
single thread at runtime. For this reason, when a function is executed, no other
function will be executed. Sometimes, the execution of a function takes too long
to be completed, and the application becomes unresponsive. We can use the CPU
profile report to identify which functions are consuming too much processing time.
Once we have identified these functions, we can refactor and then to try to improve
the application responsiveness. Some common improvements include using an
asynchronous execution flow when possible and reducing the size of the functions.

Memory performance analysis
When we declare a variable, it is allocated in the RAM. Some time after the variable
is out of the scope, it is cleared from memory by the garbage collector. Sometimes,
we can generate a scenario in which a variable never goes out of scope. If the variable
never goes out of scope, it will never be cleared from memory. This can eventually
lead to some serious memory leaking issues. A memory leak is the continuous loss
of available memory.

When dealing with memory leaks, we can take advantage of the Google Chrome
developer tools to identify the root cause of the problem with ease.

The first thing that we might wonder is whether our application has memory leaks
or not. We can find out by visiting the timeline tab and clicking on the top-left icon to
start recording the resource usage. Once we stop recording, a timeline graph like the
one in the following screenshot will be displayed:

In the timeline, we can select Memory to see the memory usage (Used JS Heap)
over time (the blue line in the image). In the preceding example, we can see a notable
drop towards the end of the line. This is a good sign because it indicates that the
majority of the used memory has been cleared when the page has finished loading.

The memory leaks can also take place after loading; in that case, we can use the
application for a while and observe how the memory usage varies in the graph to
identify the cause of the leak.

Application Performance

[184]

An alternative way to detect memory leaks is by observing the memory allocations.
We can access this information by recording the heap allocations in the Profiles tab:

The report will be displayed after we have recorded some usage of the resources.
We can do this by clicking on the Start and Stop buttons. The memory allocation
report will display a timeline like the one in the following screenshot. Each of
the blue lines is a memory allocation that took place during the recorded period.
The height of the line represents the amount of memory used. As you can see,
the memory is almost cleared completely around the eighth second:

If we click on one of the blue lines, we will be able to navigate through all the variables
that were stored in memory when the allocation took place and examine their values.
It is also possible to take a memory snapshot at any given point from the Profiles tab:

Chapter 6

[185]

This feature is particularly useful when we are debugging and we want to see the
memory usage at a particular breakpoint. The memory snapshot works like the
details view in the previously explained allocations view:

As you can see in the preceding screenshot, the memory snapshot allows us to
navigate through all the variables that were stored in memory when the snapshot
was taken and examine their values.

The garbage collector
Programing languages with a low level of abstraction have low-level memory
management mechanisms. On the other hand, in languages with a higher level
of abstraction, such as C# or JavaScript, the memory is automatically allocated
and freed by a process known as the garbage collector.

The JavaScript garbage collector does a great job when it comes to memory
management, but it doesn't mean that we don't need to care about memory
management.

Application Performance

[186]

Independent of which programming language we are working with, the memory life
cycle pretty much follows the same pattern:

• Allocate the memory you need
• Use the memory (read/write)
• Release the allocated memory when it is not needed any more

The garbage collector will try to release the allocated memory when is not needed any
more using a variation of an algorithm known as the mark-and-sweep algorithm. The
garbage collector performs periodical scans to identify objects that are out of the scope
and can be freed from the memory. The scan is divided in two phases: the first one
is known as mark because the garbage collector will flag or mark the items that can
be freed from the memory. During the second phase, known as sweep, the garbage
collector will free the memory consumed by the items marked in the previous phase.

The garbage collector is usually able to identify when an item can be cleared from
the memory; but we, as developers, must try to ensure that objects get out of scope
when we don't need them any more. If a variable never gets out of the scope, it will
be allocated in memory forever, potentially leading to a severe memory leak issue.

The number of references pointing to an item in memory will prevent it from being
freed from memory. For this reason, most cases of memory leaks can be fixed by
ensuring that there are no permanent references to variables. Here are a few rules
that can help us to prevent potential memory leak issues:

• Remember to clear intervals when you don't need them any more.
• Remember to clear event listeners when you don't need them any more.
• Remember that when you create a closure, the inner function will remember

the context in which it was declared. This means that there will be some extra
items allocated in memory.

• Remember that when using object composition, if circular references are
created, you can end up having some variables that will never be cleared
from memory.

Performance automation
In this section we will understand how we can automate many of the performance
optimization tasks, from concatenation and compression of contents to the automation
of the performance monitoring and performance testing processes.

Chapter 6

[187]

Performance optimization automation
After analyzing the performance of our application, we will start working
on some performance optimizations. Many of these optimizations involve
the concatenation and compression of some of the application's components.
The problem with compressed components is that they are more complicated to
debug and maintain. We will also have to create a new version of the concatenated
and compressed contents every time one of the original components (not
concatenated and not compressed) changes. As these include many highly repetitive
tasks, we can use the task runner Gulp to perform many of these tasks for us. We
can find online plugins that will allow us to concatenate and compress components,
optimize images, generate a cache manifest, and perform many other performance
optimization tasks.

If you would like to learn more about Gulp, refer to
Chapter 2, Automating Your Development Workflow.

Performance monitoring automation
We have seen that we can automate many of the performance optimization tasks
using the Gulp task runner. In a similar way, we can also automate the performance
monitoring process.

In order to monitor the performance of an existing application, we will need to
collect some data that will allow us to compare the application performance over
time. Depending on how we collect the data, we can identify three different types
of performance monitoring:

• Real user monitoring (RUM): This is a type of solution used to capture
performance data from real user visits. The collection of data is performed by
a small JavaScript code snippet loaded in the browser. This type of solution
can help us to collect data and discover performance trends and patterns.

• Simulated browsers: This type of solution is used to capture performance
data from simulated browsers. This is the most economic option, but it is
limited because simulated browsers cannot offer as accurate a representation
of the real user experience.

• Real-browser monitoring: This is used to capture the performance data of
real browsers. This information provides a more accurate representation
of the real user experience, as the data is collected using exactly what a
user would see if they visited the site with the given environment (browser,
geographic location, and network throughput).

Application Performance

[188]

In Chapter 2, Automating Your Development Workflow, we saw how to configure
a Gulp task that used the Karma test runner to execute a test suite in a headless
browser known as PhantomJS.

PhantomJS is a simulated browser that can be configured to generate HTTP
Archive (HAR) files. A HAR file uses a common format for recording HTTP
tracing information. This file contains a variety of information, but for our
purposes, it has a record of each object being loaded by a browser.

There are multiple scripts available online that showcase how to collect the data and
reformat it using the PhantomJS API. One of the examples, netsniff.js, exports
the network traffic in HAR format. The netsniff.js file (and other examples) can
be found at https://github.com/ariya/phantomjs/blob/master/examples/
netsniff.js.

Once we have generated the HAR files, we can use another application to see the
collected performance information on a visual timeline. This application is called
HAR viewer, and it can be found at https://github.com/janodvarko/harviewer.

Alternatively, we could write a custom script or Gulp task to read the HAR files and
break the automated build if the application performance doesn't meet our needs.

It is also possible to configure PhantomJS to run the YSlow performance analysis
report and integrate it with the automated build. To learn more about PhantomJS
and performance monitoring, refer to the official documentation at http://
phantomjs.org/network-monitoring.html.

If you are considering using RUM, take a look at the New Relic
solutions at http://newrelic.com/, or Google Analytics at
http://www.google.com/analytics/.

Performance testing automation
Another way to improve the performance of an application is to write automated
performance tests. These tests can be used to guarantee that the system meets a set
of performance goals. There are multiple types of performance testing, but some of
the most common ones include the following:

• Load testing: This is the most basic form of performance testing. We can use
a load test to understand the behavior of the system under a specific expected
load (number of concurrent users, number of transactions, and duration).
There are multiple types of load testing:

https://github.com/janodvarko/harviewer
http://phantomjs.org/network-monitoring.html
http://phantomjs.org/network-monitoring.html
http://newrelic.com/
http://www.google.com/analytics/
https://github.com/ariya/phantomjs/blob/master/examples/netsniff.js

Chapter 6

[189]

 ° Stress testing: This is normally used to understand the maximum
capacity limits of an application. This kind of test determines if an
application is able to handle an extreme load by using an extreme
load for an extended period of time.
Stress testing is not really useful when working on a client-side
application. However, it can be really helpful when working on
a Node.js application, since Node.js applications can have many
simultaneous users.

 ° Soak testing: This is also known as endurance testing. This kind of
test is similar to the stress test, but instead of using an extreme load, it
uses the expected load for an extended period of time. It is a common
practice to collect memory usage data during this kind of test to
detect potential memory leaks. This kind of test helps us to detect if
the performance
suffers some kind of degradation after an extended period of time.

 ° Spike testing: This is also similar to the stress test, but instead of
using an extreme time load during an extended time period, it uses
sudden intervals of extreme and expected load. This kind of test
helps us to determine if an application is able to handle dramatic
changes in load.

 ° Configuration testing: This is used to determine the effects of
configuration changes on the performance and behavior of an
application. A common example would be experimenting with
different methods of load balancing.

This kind of test can also be automated by using tools such as JMeter
(http://jmeter.apache.org) or Locust (http://locust.io).

Exception handling
Understanding how to use the available resources in an efficient manner will help
us to create better applications. In a similar manner, understanding how to handle
runtime errors will help us to improve the overall quality of our applications.
Exception handling in TypeScript involves three main language elements.

The Error class
When a runtime error takes place, an instance of the Error class is thrown:

throw new Error();

http://jmeter.apache.org
http://locust.io

Application Performance

[190]

We can create custom errors in a couple of different ways. The easiest way to achieve
it is by passing a string as argument to the Error class constructor:

Throw new Error("My basic custom error");

If we need more customizable and advanced control over custom exceptions, we can
use inheritance to achieve it:

module CustomException {
 export declare class Error {
 public name: string;
 public message: string;
 public stack: string;
 constructor(message?: string);
 }

 export class Exception extends Error {

 constructor(public message: string) {
 super(message);
 this.name = 'Exception';
 this.message = message;
 this.stack = (<any>new Error()).stack;
 }
 toString() {
 return this.name + ': ' + this.message;
 }
 }
}

In the preceding code snippet, we have declared a class named Error. This class
is available at runtime but is not declared by TypeScript, so we will have to do
it ourselves. Then, we have created an Exception class, which inherits from the
Error class.

Finally, we can create customError by inheriting from our Exception class:

class CustomError extends CustomException.Exception {
 // ...
}

The try…catch statements and throw
statements
A catch clause contains statements that specify what to do if an exception is thrown
in the try block. We should perform some operations in the try block, and if they
fail, the program execution flow will move from the try block to the catch block.

Chapter 6

[191]

Additionally, there is an optional block known as finally, which is executed after
both the try and catch (if there was an exception in catch) blocks:

try {
 // code that we want to work
 throw new Error("Oops!");
}
catch (e){
 // code executed if expected to work fails
 console.log(e);
}
finally {
 // code executed always after try or try and catch (when
 errors)
 console.log("finally!");
}

It is also important to mention that in the majority of programming languages,
including TypeScript, throwing and catching exceptions is an expensive operation
in terms of resource consumption. We should use these statements if we need them,
but sometimes it is necessary to avoid them because they can potentially negatively
affect the performance of our applications. Therefore, we should keep in mind that it
is a good idea to avoid the use of try…catch and throw statements in performance-
critical functions and loops.

Summary
In this chapter, we saw what performance is and how the availability of resources can
influence it. We also looked at how to use some tools to analyze the way a TypeScript
application uses available resources. These tools allow us to spot some possible
issues, such as a low frame rate, memory leaks, and high loading times. We have also
discovered that we can automate many kinds of performance optimization task, as
well as the performance monitoring and testing processes.

In the following chapter, we will see how we can automate the testing process of our
TypeScript applications to achieve great application maintainability and reliability.

[193]

Application Testing
In this chapter, we are going to take a look at how to write unit tests for TypeScript
applications. We will see how to use tools and frameworks to facilitate the testing
process of our applications.

The contents of this chapter cover the following topics:

• Setting up a test infrastructure
• Testing planning and methodologies
• How to work with Mocha, Chai, and Sinon.JS
• How to work with test assertions, specs, and suites
• Test spies
• Test stubs
• Testing on multiple environments
• How to work with Karma and PhantomJS
• End-to-end testing
• Generating test coverage reports

We will get started by installing some necessary third-party software dependencies.

Application Testing

[194]

Software testing glossary
Across this chapter, we will use some concepts that may not be familiar to those
readers without previous software testing experience. Let's take a quick look at
some of the most popular testing concepts before we get started.

Assertions
An assertion is a condition that must be tested to confirm that a certain piece of code
behaves as expected or, in other words, to confirm conformance to a requirement.

Let's imagine that we are working as part of one of the Google Chrome development
team and we have to implement the JavaScript Math object. If we are working on the
pow method, the requirement could be something like the following:

"The Math.pow(base, exponent) function should return the base (the base number) to
the exponent (the exponent used to raise the base power—that is, base ^ exponent)."

With this information, we could create the following implementation:

class Math1 {
 public static pow(base: number, exponent: number) {
 var result = base;
 for(var i = 1; i < exponent; i++){
 result = result * base;
 }
 return result;
 }
}

To ensure that the method is correctly implemented, we must test it conforms with
the requirement. If we analyze the requirements closely, we should identify at least
two necessary assertions.

The function should return the base to the exponent:

var actual = Math1.pow(3,5);
var expected = 243;
var asertion1 = (Math1.pow(base1, exponent1) === expected1);

The exponent is not used as the base (or the base is not used as the exponent):

var actual = Math1.pow(5,3);
var expected = 125;
var asertion2 = (Math1.pow(base2, exponent2) === expected2);

Chapter 7

[195]

If both assertions are valid, then our code adheres to the requirements, and we know
that it will work as expected:

var isValidCode = (asertion1 && asertion2);
console.log(isValidCode);

Specs
Spec is a term used by software development engineers to refer to test specifications.
A test specification (not to be confused with a test plan) is a detailed list of all the
scenarios that should be tested, how they should be tested, and so on. We will see
later in this chapter how we can use a testing framework to define a test spec.

Test cases
A test case is a set of conditions used to determine whether one of the features of an
application is working as it was originally established to work. We might wonder
what the difference between a test assertion and a test case is. While a test assertion
is a single condition, a test case is a set of conditions. We will see later in this chapter
how we can use a testing framework to define test cases.

Suites
A suite is a collection of test cases. While a test case should focus on only one test
scenario, a test suite can contain test cases for many test scenarios.

Spies
Spies are a feature provided by some testing frameworks. They allow us to wrap a
method and record its usage (input, output, number of times invoked). When we
wrap a function with a spy, the underlying method's functionality does not change.

Dummies
A dummy object is an object that is passed around during the execution of a test but
is never actually used.

Stubs
A stub is a feature provided by some testing frameworks. Stubs also allow us to
wrap a method to observe its usage. Unlike spies, when we wrap a function with a
stub, the underlying method's functionality is replaced with a new behavior.

Application Testing

[196]

Mocks
Mocks are often confused with stubs. Martin Fowler once wrote the following in an
article titled Mocks Aren't Stubs:

In particular I see them often (mocks) confused with stubs - a common helper to
testing environments. I understand this confusion - I saw them as similar for a
while too, but conversations with the mock developers have steadily allowed a
little mock understanding to penetrate my tortoiseshell cranium. This difference
is actually two separate differences. On the one hand there is a difference in how
test results are verified: a distinction between state verification and behavior
verification. On the other hand is a whole different philosophy to the way testing
and design play together, which I term here as the classical and mockist styles of
Test Driven Development.

Both mocks and stubs provide some sort of input to the test case; but, despite their
similarities, the flow of information from each is very different:

• Stubs provide input for the application under test so that the test can be
performed on something else

• Mocks provide input to the test to decide whether the test should pass or fail

The difference between mocks and stubs will become clearer as we move towards
the end of this chapter.

Test coverage
The term test coverage refers to a unit of measurement, which is used to illustrate
the number of portions of code in an application that have been tested via automated
tests. Test coverage can be obtained by automatically generating test coverage
reports. Towards the end of the chapter, we will see how to create such reports using
a tool called Istanbul (http://gotwarlost.github.io/istanbul/).

Prerequisites
Throughout this chapter, we will use some third-party tools, including some
frameworks and automation tools. We will start by looking at each tool in detail.
Before we get started, we need to use npm to create a package.json file in the
folder that we are going to use to implement the examples in this chapter.

Let's create a new folder named app and run the npm init command inside it to
generate a new package.json file:

npm init

http://gotwarlost.github.io/istanbul/

Chapter 7

[197]

Refer to Chapter 2, Automating Your Development Workflow
for additional help on npm.

Gulp
We will use the Gulp task runner to run some tasks necessary to execute our tests.
We can install Gulp using npm:

npm install gulp -g

If you are not familiar with task runners and continuous
integration build servers, take a look at Chapter 2, Automating
Your Development Workflow.

Karma
Karma is a test runner. We will use Karma to automatically execute our tests. This
is useful because sometimes the execution of the test will not be started by one of
the members of our software development team. Instead, it will be triggered by a
continuous integration build server (usually via a task runner).

Karma can be used with multiple testing frameworks, thanks to the installation of
plugins. Let's install Karma using the following command:

npm install --save-dev karma

We will also install another Karma plugin that facilitates the creation of test
coverage reports:

npm install --save-dev karma-coverage

Istanbul
Istanbul is a tool that identifies which lines of our application are processed during
the execution of the automated test. It can generate reports known as test coverage
reports. These reports can help us to get an idea of the level of testing of a project
because they show which lines of code were not executed and a percentage value
that represents the fraction of the application that has been tested. It is recommended
that a test coverage value of at least 75 percent of the overall application should be
achieved, while many open source projects target a test coverage of 100 percent.

Application Testing

[198]

Mocha
Mocha is a popular JavaScript testing library that facilitates the creation of test suites,
test cases, and test specs. Mocha can be used to test TypeScript in the frontend and
backend, identify performance issues, and generate different types of test reports,
among many other features.

Let's install Mocha and the Karma-Mocha plugin using the following command:

npm install --save-dev mocha karma-mocha

Chai
Chai is a test assertion library that supports test-driven development (TDD) and
behavior-driven development (BDD) test styles.

We will see more about TDD and BDD later in this chapter.

The main goal of Chai is to reduce the amount of work necessary to create a test
assertion and make the test more readable.

We can install Chai and the Karma-Chai plugin using the following command:

npm install --save-dev chai karma-chai

Sinon.JS
Sinon.JS is an isolation framework that provides us with a set of APIs (test spies,
stubs, and mocks) that can help us to test a component in isolation. Testing isolated
software components is difficult because there is a high level of coupling between the
components. A mocking library such as Sinon.JS can help us isolate the components
in order to test individual features.

We can install Sinon.JS and the Karma-Sinon plugin using the following command:

npm install --save-dev sinon karma-sinon

Type definitions
To be able to work with third-party libraries in JavaScript with a good support, we
need to import the type definitions of each library. We will use the tsd package
manager to install the necessary type definitions:

tsd install mocha --save

Chapter 7

[199]

tsd install chai --save

tsd install sinon --save

tsd install jquery - -save

Refer to Chapter 2, Automating Your Development Workflow
for additional help on tsd.

PhantomJS
PhantomJS is a headless browser. We can use PhantomJS to run our tests in a browser
without having to actually open a browser. Being able to do this is useful for a few
reasons; the main one is that PhantomJS can be executed via a command interface,
and it is really easy to integrate with task runners and continuous integration servers.
The second reason is that not having to open a browser potentially reduces the time
required to complete the execution of the tests suites.

We need to install the Karma plugin that will run the test in PhantomJS:

npm install --save-dev phantomjs

npm install --save-dev karma-phantomjs-launcher

Selenium and Nightwatch.js
Selenium is a test runner but it was especially designed to run a particular type of
test known as an end-to-end (E2E) test.

We will learn more about E2E testing later on this chapter, so
we don't need to worry too much about this topic for now.

Though we will see how to use selenium towards the end of the chapter, we can
install it now. We will not work with Selenium directly because we are going to use
another tool (known as Nightwatch.js) for E2E testing, which will automatically run
Selenium for us.

Nightwatch.js is an automated testing framework, written in Node.js for web
applications and websites, which uses the Selenium WebDriver API. It is a complete
browser automation (end-to-end) solution.

Application Testing

[200]

We can install Nightwatch.js and Selenium by executing the following commands:

npm install --save-dev gulp-nightwatch

npm install selenium-standalone -g

selenium-standalone install

The Selenium standalone requires the Java binaries to be installed in the
development environment and accessible through the $PATH variable.
Refer to the official Java documentation at https://www.java.com/
en/download/help/index_installing.xml to learn more about
the Java installation.

Testing planning and methodologies
When it comes to software development, we usually have many choices. Every
time we have to develop a new application, we can choose the type of database,
the architecture, and frameworks that we will use. Not all our choices are about
technologies. For example, we can also choose a software development methodology
such as extreme programming or scrum. When it comes to testing, there are two
major styles or methodologies: test-driven development (TDD) and behavior-driven
development (BDD).

Test-driven development
Test-driven development is a testing methodology that focuses on encouraging
developers to write tests before they write application code. Usually, the process
of writing code in TDD consists of the following basic steps:

1. Write a test that fails.
2. Run the test and ensure that it fails (there is no code at this point so it

should fail).
3. Write the code to make the test pass.
4. Run the test and ensure that it passes.
5. Run all the other tests to ensure that no other parts of the application break.
6. Repeat the process.

The difference between using TDD or not is really a mindset. Many developers don't
like writing tests, so chances are that' if we leave their implementation as the last task
in the development process, the tests will not implemented or the application will
just be partially tested.

https://www.java.com/en/download/help/index_installing.xml
https://www.java.com/en/download/help/index_installing.xml

Chapter 7

[201]

TDD is recommended because it effectively helps you and your team to increase the
test coverage of your applications and, therefore, significantly reduce the number of
potential issues.

Behavior-driven development (BDD)
Behavior-driven development appeared after TDD with the mission of being a
refined version of TDD. BDD focuses on the way tests are described (specs) and
states that the tests should focus on the application requirements and not the test
requirements. Ideally, this will encourage developers to think less about the tests
themselves and more about the application as a whole.

The original article in which the BDD principles were
introduced for the first time by Dan North is available
online at http://dannorth.net/introducing-bdd/.

As we have already seen, Mocha and Chai provide APIs for the TDD and BDD
approaches. Later in this chapter, we will further explore these two approaches.

Recommending one of these methodologies is not trivial because TDD and BDD
are both really good testing methodologies. However, BDD was developed
after TDD with the objective to improve it, so we can argue that BDD has some
additional advantages over TDD. In BDD, the description of a test focuses on what
the application should do and not what the test code is testing. This can help the
developers to identify tests that reflect the behavior desired by the customer. BDD
tests are then used to document the requirements of a system in a way that can be
understood and validated by both the developer and the customer. On the other
hand, TDD tests cannot be understood with ease by the customer.

Tests plans and test types
The term test plan is sometimes incorrectly used to refer to a test specification.
While tests specifications define the scenarios that will be tested and how they
will be tested, the test plan is a collection of all the test specs for a given area.

It is recommended to create an actual planning document because a test plan
can involve many processes, documents, and practices. One of the main goals of
a test plan is to identify and define what kind of test is adequate for a particular
component or set of components in an application.

http://dannorth.net/introducing-bdd/

Application Testing

[202]

Following are the most commonly used test types:

• Unit tests: These are used to test an isolated component. If the component
is not isolated—or in other words, the component has some dependencies—
we will have to use some tools and practices such as mocks or dependency
injection to try to isolate it as much as we can during the test.
If it is not possible to manipulate the component dependencies, we will use
spies to facilitate the creation of the unit tests.
Our main goal should be to achieve the total isolation of a component when
it is tested. A unit test should also be fast, and we should try to avoid input/
output, network usage, and any other operation that could potentially affect
the speed of the test.

• Partial integration tests and full integration tests: These are used to test
a set of components (partial integration test) or the entire application as a
whole (full integration test). In integration, we will normally use known
test data to feed the backend with information that will be displayed in the
frontend. We will then assert that the displayed information is correct.

• Regression tests: These tests are used to verify that an issue has been fixed.
If we are using TDD or BDD, whenever we encounter an issue we should
create a unit test that reproduces the issue, and then change the code. By
doing this, we will be able to run attempts to reproduce past issues and
ensure that everything is still working.

• Performance / Load tests: These tests verify if the application meets our
performance expectations. We can use performance tests to verify that our
application will be able to handle many concurrent users or activity spikes.
To learn more about this type of test, take a look at the previous chapter:
Chapter 6, Application Performance.

• End-to-end (E2E) tests: These tests are not really different from full
integration tests. The main difference is that in an E2E testing session, we will
try to emulate an environment almost identical to the real user environment.
We will use Nightwatch.js and Selenium for this purpose.

• User acceptance tests (UAT): These are used so that the system meets all the
requirements of the end user.

Chapter 7

[203]

Setting up a test infrastructure
As we saw previously in this chapter when we talked about unit tests, usually,
testing requires being able to isolate the individual software component of
our applications.

In order to be able to isolate the components of our application, we will need to
adhere to some principles (such as the dependency inversion principle) that will
help us to increase the level of decoupling between the components.

We will now configure a testing environment using Gulp and Karma and write
some automated test using Mocha and Chai. By the end of this chapter, we will
know how writing unit tests can help us to increase the level of decoupling and
isolation between the components of an application, and how they can lead us to
the development of great applications, especially when it comes to maintainability
and reliability.

Let's get started by creating the folder structure of a new application. We will create
two folders inside the app folder that we created at the beginning of this chapter.

Let's name the first folder source and the second folder test. Here, we can see how
our directory tree should look by the end of the chapter:

├──app
 ├── gulpfile.js
 ├── index.html
 ├── karma.conf.js
 ├── nightwatch.json
 ├── package.json
 ├── source
 │ ├── calculator_widget.ts
 │ ├── demos.ts
 │ ├── interfaces.d.ts
 │ ├── math_demo.ts
 ├── style
 │ └── demo.css
 ├── test
 │ ├── bdd.test.ts
 │ ├── e2e.test.ts
 │ ├── tdd.test.ts
 ├── tsd.json
 └── typings

We are going to develop a really small application to be able to write a unit test. We
are going to write a unit test and an end-to-end test.

Application Testing

[204]

The source code of the entire demo can be found in the
companion code samples.

Once we have completed our application, we will be able to open it in a browser,
where we should see a form like the one in the following screenshot. This form
allows us to find the result of a number (base) to the power of another (exponent).

Building the application with Gulp
We will get started by creating a new gulpfile.js file as we did in Chapter 2,
Automating Your Development Workflow. The first thing that we are going to do
is import all the necessary node modules:

var gulp = require("gulp"),
 browserify = require("browserify"),
 source = require("vinyl-source-stream"),
 buffer = require("vinyl-buffer"),
 run = require("gulp-run"),
 nightwatch = require('gulp-nightwatch'),
 tslint = require("gulp-tslint"),
 tsc = require("gulp-typescript"),
 browserSync = require('browser-sync'),
 karma = require("karma").server,
 uglify = require("gulp-uglify"),
 docco = require("gulp-docco"),
 runSequence = require("run-sequence"),
 header = require("gulp-header"),
 pkg = require(__dirname + "/package.json");

Remember that we need to install all necessary packages by using the
npm package manager. We can take a look at the package.json file
to see all the dependencies and their respective versions.

Chapter 7

[205]

The second thing that we are going to do is to create some tasks to compile
our TypeScript code. Here, we should notice that we are going compile the
application code into the /build/source folder and the application tests into
the /build/test folder:

var tsProject = tsc.createProject({
 removeComments : false,
 noImplicitAny : false,
 target : "ES5",
 module : "commonjs",
 declarationFiles : false
});

gulp.task("build-source", function() {
 return gulp.src(__dirname + "/source/*.ts")
 .pipe(tsc(tsProject))
 .pipe(gulp.dest(__dirname + "/build/source/"));
});

The previous Gulp task compiles the TypeScript files under the source folder into
JavaScript files that will be stored in inside the build/source folder. We should be
able to run the task by executing the following command:

gulp build-source

The preceding command will fail if no source files are available.
You can copy project source files from the companion source code
or continue reading this chapter and create the files as we progress.

We will also declare a second task to compile our unit tests, but the output will be
stored under the build/test folder:

var tsTestProject = tsc.createProject({
 removeComments : false,
 noImplicitAny : false,
 target : "ES5",
 module : "commonjs",
 declarationFiles : false
});

gulp.task("build-test", function() {
 return gulp.src(__dirname + "/test/*.test.ts")
 .pipe(tsc(tsTestProject))
 .pipe(gulp.dest(__dirname + "/build/test/"));
});

Application Testing

[206]

We should be able to run this new task using Gulp by using the following command:

gulp build-test

Once the JavaScript is under the build folder, we need to bundle the external modules
(as we used { module : "commonjs" } in the preceding compiler settings) into
bundled libraries that can be executed in a web browser.

Browserify needs a unique entry point for each library. For this reason, we are going
to create three tasks—one for each bundled library.

We will create a task to bundle the application itself:

gulp.task("bundle-source", function () {
 var b = browserify({
 standalone : 'demos',
 entries: __dirname + "/build/source/demos.js",
 debug: true
 });

 return b.bundle()
 .pipe(source("demos.js"))
 .pipe(buffer())
 .pipe(gulp.dest(__dirname + "/bundled/source/"));
});

Just like we did with the previous Gulp tasks, we can invoke the new task by using
the following command:

gulp bundle-source

We will also create another task to bundle all the unit tests in our application into a
single bundled suite of tests:

gulp.task("bundle-test", function () {

 var b = browserify({
 standalone : 'test',
 entries: __dirname + "/build/test/bdd.test.js",
 debug: true
 });

 return b.bundle()
 .pipe(source("bdd.test.js"))
 .pipe(buffer())
 .pipe(gulp.dest(__dirname + "/bundled/test/"));
});

Chapter 7

[207]

The companion code has tests using both the TDD and BDD styles
in two independent files named tdd.test.ts and bdd.test.ts.
However, in the examples in this chapter, we will only focus on
the BDD style.

We can invoke the new task by using the following command:

gulp bundle-test

Finally, we will create another task to bundle all the E2E tests in the application into
a single bundled E2E test suite:

gulp.task("bundle-e2e-test", function () {

 var b = browserify({
 standalone : 'test',
 entries: __dirname + "/build/test/e2e.test.js",
 debug: true
 });

 return b.bundle()
 .pipe(source("e2e.test.js"))
 .pipe(buffer())
 .pipe(gulp.dest(__dirname + "/bundled/e2e-test/"));
});

We can invoke the new task by using the following command:

gulp bundle-e2e-test

Running the unit test with Karma
We have already covered the basics of Karma in Chapter 2, Automating Your
Development Workflow. We are going to create a task to execute Karma:

gulp.task("run-unit-test", function(cb) {
 karma.start({
 configFile : __dirname + "/karma.conf.js",
 singleRun: true
 }, cb);
});

Application Testing

[208]

The Karma task configuration is really simple because the majority of the configuration
is located in the karma.conf.js file, which is included in the companion code.
Let's take a look at the configuration file:

module.exports = function (config) {
 'use strict';

 config.set({
 basePath: '',
 frameworks: ['mocha', 'chai', 'sinon'],
 browsers: ['PhantomJS'],
 reporters: ['progress', 'coverage'],
 coverageReporter: {
 type : 'lcov',
 dir : __dirname + '/coverage/'
 },
 plugins : [
 'karma-coverage',
 'karma-mocha',
 'karma-chai',
 'karma-sinon',
 'karma-phantomjs-launcher'
],
 preprocessors: {
 '**/bundled/test/bdd.test.js' : 'coverage'
 },
 files : [
 {
 pattern: "/bundled/test/bdd.test.js",
 included: true
 },
 {
 pattern: "/node_modules/jquery/dist/jquery.min.js",
 included: true
 },
 {
 pattern:
 "/node_modules/bootstrap/dist/js/bootstrap.min.js",
 included: true
 }
],

Chapter 7

[209]

 client : {
 mocha : {
 ui : "bdd"
 }
 },
 port: 9876,
 colors: true,
 autoWatch: false,
 logLevel: config.DEBUG
 });
};

If we take a look at the configuration file, we will see that we have configured the
path where the tests are located and the browser that we want to use to run the test
(PhantomJS). Declaring what browser we want to use is not enough; we also need to
install a plugin so Karma can launch that browser.

Since we are going to write test using Mocha, Chai, and Sinon.JS, we have loaded
the plugins to integrate Karma with each of these frameworks. There are many other
popular testing frameworks, and the majority of them are compatible with Karma
via the use of plugins.

Another interesting setting in the preceding configuration file is the client entry.
We use it to configure the options of Mocha and indicate that we are going to use
a BDD testing style.

When Karma executes the Mocha unit tests, it generates an HTML page internally
and adds all the required files indicated in the files field as well as some files
indicated by the plugins field. For the preceding example, Karma will generate an
HTML page that will contain reference (using the <script> tags) to Mocha, Chai,
and Sinon.JS (indicated by the plugins) as well as jQuery, Bootstrap, and the bdd.
test.js file (indicated by the files field).

The companion source code includes the package.json file. We can
use this file to run the npm install command and download all the
third-party dependencies (including jQuery and Bootstrap).

Application Testing

[210]

It is important to understand that only files loaded via the files field will be available
during the test execution, and that all the files will be loaded using a script tag.
Sometimes, we may encounter issues related to missing files or parsing errors (when
a non-JavaScript file is loaded using a script tag). We can have a better control over
the file inclusion process using the settings pattern, included, served, and watched:

Settings Description
pattern The pattern to use to match files.
included If autoWatch is true, all files that have set watched

to true will be watched for changes.
served Should the files be served by Karma's webserver?
watched Should the files be included in the browser using the

<script> tag? We will use false if we want to load
them manually (for example, using RequireJS).

The karma.conf.js file also contains some settings to generate test coverage reports,
but we will skip those for now and focus on them towards the end of the chapter.

Remember that you can find all the details about each field in
the karma.conf.js file at http://karma-runner.github.
io/0.8/config/configuration-file.html.

Running E2E tests with Selenium and
Nightwatch.js
Karma (in combination with Mocha, Chai, and Sinon.JS) is a great tool when it comes
to writing and executing unit tests and partial integration tests. However, Karma is
not the best tool when it comes to writing E2E tests. For this reason, we will write a
collection of E2E tests that will be written and executed using a separate set of tools:
Selenium and Nightwatch.js.

To configure Nightwatch.js, we will start by creating a new Gulp task that will be in
charge of the execution of the E2E tests. We only need to specify the location of an
external configuration file named Nightwatch.js:

gulp.task('run-e2e-test', function(){
 return gulp.src('')
 .pipe(nightwatch({
 configFile: __dirname + '/nightwatch.json'
 }));
});

http://karma-runner.github.io/0.8/config/configuration-file.html
http://karma-runner.github.io/0.8/config/configuration-file.html

Chapter 7

[211]

We are going to focus on Nightwatch.js because it is designed to
work with the majority of frameworks; but if you are working with
AngularJS, I would recommend you to take a look at Protractor.
Protractor is a great E2E testing framework that has a high level of
integration with AngularJS.

The nightwatch.js file contains the entire required configuration necessary to
execute our E2E tests. We need to specify the location of the E2E test suites and
the basic Selenium configuration.

We need to think that Selenium is more or less like Karma; it is a tool that can
execute a unit test in a browser. The main difference is that Selenium allows us to
write tests in a way that simulates much better how a real user would behave. It is
important to understand that Nightwatch.js is not the tool directly in charge of
execution of the test. Nightwatch.js is a framework that helps to write E2E tests
and can communicate with Selenium to execute the tests.

In this case, we will tell Nightwatch.js not to run Selenium for us using
the start_process entry in the nightwatch.json configuration file. The
nightwatch.json file should look as follows:

{
 "src_folders" : ["bundled/e2e-test/"],
 "output_folder" : "reports",
 "selenium" : {
 "start_process" : false
 },
 "test_settings" : {
 "default" : {
 "silent": true,
 "screenshots" : {
 "enabled" : true,
 "path" : "screenshots"
 },
 "desiredCapabilities": {
 "browserName": "chrome",
 "javascriptEnabled" : true,
 "acceptSslCerts" : true
 }
 },
 "phantomjs" : {
 "desiredCapabilities": {
 "browserName": "phantomjs",
 "javascriptEnabled" : true,

Application Testing

[212]

 "acceptSslCerts" : true,
 "phantomjs.binary.path" :
 "./node_modules/phantomjs/bin/phantomjs"
 }
 },
 "chrome" : {
 "desiredCapabilities": {
 "browserName": "chrome",
 "javascriptEnabled": true,
 "acceptSslCerts": true
 }
 }
 }
}

We will run Selenium manually using the selenium-standalone npm package
(we can check the prerequisites section for installation details):

selenium-standalone start

Besides configuring Selenium, we need to configure which web browsers we are
going to use during the execution of our E2E tests and to run the web application
on a web server.

If you wish to learn more about all the available Nightwatch.js
configuration parameters, please visit the official documentation
at http://nightwatchjs.org/guide#settings-file.

Finally, to be able to run the E2E test, we will also need to run the application itself
on a web server. As we saw in Chapter 2, Automating Your Development Workflow, we
can use browserSync for that purpose; so we will add a task to deploy browserSync:

gulp.task('serve', function(cb) {
 browserSync({
 port: 8080,
 server: {
 baseDir: "./"
 }
 });

 gulp.watch([
 "./**/*.js",
 "./**/*.css",
 "./index.html"
], browserSync.reload, cb);
});

http://nightwatchjs.org/guide#settings-file

Chapter 7

[213]

If one test is failing and we don't know what is causing it to fail, we will be able to
test it manually by running the application in a web browser.

It is important to run the tasks in the correct order. We need to open a console or
terminal and start Selenium:

selenium-standalone start

Open another console or terminal and run the following commands:

gulp build-source

gulp build-test

gulp bundle-source

gulp bundle-e2e-test

gulp serve

Finally, open a third console and run the following command:

gulp run-e2e-test

Creating test assertions, specs, and
suites with Mocha and Chai
Now that the test infrastructure is ready, we will start writing a unit test. We need
to remember that we are going to follow the BDD development testing style, which
means that we will write the test before we actually write the code.

We will write a web calculator; because we want to keep it simple, we will only
implement one of its features. After doing some analysis, we have come up with a
design interface that will help us to understand the requirements. We will declare
the following interface in the interfaces.d.ts file:

interface MathInterface {
 PI : number;
 pow(base: number, exponent: number);
}

As we can see, the calculator will allow us to calculate the exponent of a number
and to get the number PI. Now that we know the requirements, we can start writing
some unit tests. Let's create a file named bdd.test.ts and add the following code:

///<reference path="../typings/tsd.d.ts" />
///<reference path="../source/interfaces.d.ts" />

Application Testing

[214]

import { MathDemo } from "../source/math_demo";

var expect = chai.expect;

describe('BDD test example for MathDemo class \n', () => {

 before(function(){ /* invoked once before ALL tests */ });
 after(function(){ /* invoked once after ALL tests */ });
 beforeEach(function(){ /* invoked once before EACH test */ });
 afterEach(function(){ /* invoked once before EACH test */ });

 it('should return the correct numeric value for PI \n', () => {
 var math : MathInterface = new MathDemo();
 expect(math.PI).to.equals(3.14159265359);
 expect(math.PI).to.be.a('number');
 });

 // ...
});

In the preceding code snippet, we have imported the necessary type definition files
and an external module named MathDemo. This external module will declare the
MathDemo class, which will implement the MathInterface that we are about to test.

We can also see a shortcut for expect, so we don't need to write chai.expect every
time we need to invoke expect:

var expect = chai.expect;

Just below the shortcut we can find the first test suite:

describe('BDD test example for MathDemo class \n', () => {

Test suites are declared using the describe() function and are used to wrap a set of
unit tests; and the unit tests themselves are declared using the it() function:

it('should return the correct numeric value for PI \n', () => {

Inside the unit test, we can perform one or more assertions. The Chai assertions
provide easily readable code thanks to the usage of a chainable style:

expect(math.PI).to.equals(3.14159265359);
expect(math.PI).to.be.a('number');

There are cases in which we will notice that we are repeating a certain test initialization
logic across multiple unit tests within a test suite. There are some helper functions that
we can use to avoid code duplication.

Chapter 7

[215]

The before() function will be invoked before any test in the suite case is executed.
The after() function will be executed after all the tests in the test suite have
been executed:

 before(function(){ /* invoked once before ALL tests */ });
 after(function(){ /* invoked once after ALL tests */ });

The beforeEach() function is executed once (before the test is executed) for each
test in the test suite, while the afterEach() function is executed once (after the test
is executed) for each test in the test suite:

 beforeEach(function(){ /* invoked once before EACH test */ });
 afterEach(function(){ /* invoked once before EACH test */ });

If we run the test at this point, it will fail because the feature being tested (PI) is not
implemented. Let's create a file named math_demo.ts and add the following code:

///<reference path="./interfaces.d.ts" />

class MathDemo implements MathInterface{
 public PI : number;

 constructor() {
 this.PI = 3.14159265359;
 }

 //...
}
export { MathDemo };

If we execute the test with Karma, it should pass without errors. It is important to
run the tasks in the correct order. To do this, we need to open a console or terminal
and run the following commands:

gulp build-source

gulp build-test

gulp bundle-source

gulp bundle-test

Finally, we can run the unit tests using the following command:

gulp run-unit-test

Application Testing

[216]

There was another requirement in the MathInterface interface, so we are going to
repeat the entire BDD process once more; but this time, we will test a function named
pow instead of a property. We will start by adding a new test to the test suite that we
have preciously created:

it('should return the correct numeric value for pow \n', () => {
 var math : MathInterface = new MathDemo();
 var result = math.pow(3,5);
 var expected = 243;
 expect(result).to.be.a('number');
 expect(result).to.equal(expected);
 });

As we can see in the previously declared MathInterface interface, the function that
we are going to test is named pow and takes two numeric arguments. So we have
created a test that will create a new instance of MathDemo and invoke its pow method,
passing the numeric values 3 and 5 as arguments. The expected value of calculating
3*3*3*3*3 is 243; for this reason, we have asserted that the pow() function returns a
numeric value and its value is 243.

At this point, the preceding test will fail because the pow method has not been
implemented. Let's return to the math_demo.ts file and implement the pow method:

///<reference path="./interfaces.d.ts" />

class MathDemo implements MathInterface{
 public PI : number;

 constructor() {
 this.PI = 3.14159265359;
 }

 public pow(base: number, exponent: number) {
 var result = base;
 for(var i = 1; i < exponent; i++){
 result = result * base;
 }
 return result;
 }

 // ...
}
 export { MathDemo };

Chapter 7

[217]

If we run the tests again, we will be able to see the number of tests that have been
executed, how many of them have failed, and how long it took to finish the execution
of all the tests:

Executed 2 of 2 SUCCESS (0.007 secs / 0.008 secs)

Testing the asynchronous code
In Chapter 3, Working with Functions, we learned how to work with a synchronous
code; and in Chapter 6, Application Performance, we saw that using asynchronous code
is one of the golden rules of web application performance. We should aim to write
asynchronous code as much as we can, and for this reason, it is important to learn
how to test asynchronous code.

Let's write an asynchronous version of the pow function to demonstrate how we
can test an asynchronous function. We will start with the requirements:

interface MathInterface {
 // ..
 powAsync(base: number, exponent: number, cb : (result : number)
 => void);
}

We need to implement a function named powAsync, which takes two numeric values
as parameters (just like before) and a callback function. The test for the asynchronous
version is almost identical to the test that we wrote for the synchronous function:

 it('should return the correct numeric value for pow (async) \n',
 (done) => {
 var math : MathInterface = new MathDemo();
 math.powAsync(3, 5, function(result) {
 var expected = 243;
 expect(result).to.be.a('number');
 expect(result).to.equal(expected);
 done(); // invoke done() inside your call back or fulfilled
 promises
 });
 });

The main thing that we need to notice is that, this time, the callback passed to the it
method receives an argument named done. The argument is a function that we need
to execute to indicate that the test execution is finished.

Application Testing

[218]

By default, the it method waits for the callback to return, but when testing
asynchronous code, the function may return before the test execution is finished:

public powAsyncSlow(base: number, exponent: number, cb : (result :
number) => void) {
 var delay = 45; //ms
 setTimeout(() => {
 var result = this.pow(base, exponent);
 cb(result);
 }, delay);
 }

When testing asynchronous code, Mocha will consider the test as failed (timeout) if it
takes more than 2,000 milliseconds to invoke the done function. The time limit before
a timeout can be configured, as can be warnings for slow functions.

Mocha recommends that, when a function takes more than 40
milliseconds, we should consider investigating how to improve its
performance. If the function execution takes over 100 milliseconds,
we must investigate. Execution times of over 2,000 milliseconds are
not tolerated by default.

Asserting exceptions
Asserting the types or values of variables is straightforward, as we have been able
to explore in the previous examples; but there is one scenario that perhaps is not as
intuitive as the previous one. This scenario is testing for an exception.

Let's add a new method to the MathInterface interface with the only purpose of
illustrating how to test for an exception:

interface MathInterface {
 // ...
 bad(foo? : any) : void;
}

The bad method throws an exception when it is invoked with a non-numeric
argument:

public bad(foo? : any) {
 if(isNaN(foo)){
 throw new Error("Error!");
 }
 else {
 //...
 }
}

Chapter 7

[219]

In the following test, we can see how we can use Chai's expect API to assert that an
exception is thrown:

it('should throw an exception when no parameters passed \n', () => {
 var math : MathInterface = new MathDemo();
 var throwsF = function() { math.bad(/* missing args */) };
 expect(throwsF).to.throw(Error);
});

If you wish to learn more about assertions, visit the Chai official
documentation available at http://chaijs.com/api/bdd/.

TDD versus BDD with Mocha and Chai
TDD and BDD follow many of the same principles but have some differences in
their style. While these two styles provide the same functionality, BDD is considered
to be easier to read by many of the members of a software development team (not
just developers).

The following table compares the naming and style of suites, tests, and assertions
between the TDD and BBD styles:

TDD BDD
suite describe

setup before

teardown after

suiteSetup beforeEach

suiteTeardown afterEach

test it

assert.equal(math.PI,
3.14159265359);

expect(math.PI).to.equals(3.14159265359);

In the companion code samples, you will find all the examples
in this chapter following both the TDD and BDD styles.

http://chaijs.com/api/bdd/

Application Testing

[220]

Test spies and stubs with Sinon.JS
We have been working on the MathDemo class. We have implemented and tested
its features using unit tests and assertions. Now we are going to create a little
web widget that will internally use the MathDemo class to perform a mathematical
operation. We can think of this new class as a graphical user interface for the
MathDemo class. We need the following HTML:

<div id="widget">
 <input type="text" id="base" />
 <input type="text" id="exponent" />
 <input type="text" id="result" />
 <button id="submit" type="submit">Submit</button>
</div>

In the companion code, the HTML code contains more attributes,
such as CSS classes; but they been have removed here for clarity.

Let's create a file named calculator_widget.ts under the source directory. We
are going to store the HTML code in a string variable located in the scope of the web
widget. The new class will be called CalculatorWidget, and it will implement the
CalculatorWidgetInterface interface:

interface CalculatorWidgetInterface {
 render(id : string);
 onSubmit() : void;
}

We should write the unit test before we implement the CalculatorWidget class,
but this time we will break the BDD rules in an attempt to facilitate the understanding
of stubs and spies:

///<reference path="./interfaces.d.ts" />
///<reference path="../typings/tsd.d.ts" />

var template = 'HTML...';

class CalculatorWidget implements CalculatorWidgetInterface{

 private _math : MathInterface;
 private $base: JQuery;
 private $exponent: JQuery;
 private $result: JQuery;
 private $btn: JQuery;

Chapter 7

[221]

 constructor(math : MathInterface) {
 if(math == null) throw new Error("Argument null exception!");
 this._math = math;
 }

 public render(id : string) {
 $(id).html(template);
 this.$base = $("#base");
 this.$exponent = $("#exponent");
 this.$result = $("#result");
 this.$btn = $("#submit");
 this.$btn.on("click", (e) => {
 this.onSubmit();
 });
 }

 public onSubmit() {
 var base = parseInt(this.$base.val());
 var exponent = parseInt(this.$exponent.val());

 if(isNaN(base) || isNaN(exponent)) {
 alert("Base and exponent must be a number!");
 }
 else {
 this.$result.val(this._math.pow(base, exponent));
 }
 }
}
export { CalculatorWidget };

As we can see, we have defined a variable that contains the HTML that we previously
examined but it is not displayed for brevity. A new class named CalculatorWidget
is also defined together with the class constructor. We can observe that the class has
two properties: a variable named _dom and an implementation of MathInterface
named _math. We are depending on an interface because as we saw in Chapter 4,
Object-Oriented Programming with TypeScript, it is a good practice (dependency
inversion principle) to do so.

Notice that the class constructor takes an implementation of MathInterface as its
only argument. Passing the dependencies of a component via its constructor is also a
good practice and is used to reduce the coupling between components.

Application Testing

[222]

The first method in the class is named render and takes the ID (string) of an HTML
element as its only argument. The ID is used to select the node that matches the ID
using a jQuery selector. Once it has been selected, the HTML that we previously
examined is inserted into the selected node. We can say that the component is in
charge of rendering its own HTML and can be reused easily just by changing its
container. This is how web widgets usually work: they are independent components
that can be considered as reusable standalone applications within a parent application
that is no more than just a collection of web widgets.

After rendering the HTML, the render method creates shortcuts for each component
of the widget's form and initializes a click event listener:

 public render(id : string) {
 $(id).html(template);
 this._dom.$base = $("#base");
 this._dom.$exponent = $("#exponent");
 this._dom.$result = $("#result");
 this._dom.$btn = $("#submit");

 this._dom.$btn.on("click", (e) => {
 this.onSubmit();
 });
 }

When a user clicks on the button with id equals to submit, an event is triggered, and
the event listener invokes the onSubmit function that we can find in the following
code snippet. This function will read the values for base and exponent using the
shortcuts previously declared:

 public onSubmit() {
 var base = parseInt(this._dom.$base.val());
 var exponent = parseInt(this._dom.$exponent.val());

 if(isNaN(base) || isNaN(exponent)) {
 alert("Base and exponent must be a number!");
 }
 else {
 this._dom.$result.val(this._math.pow(base, exponent));
 }
 }
}

Chapter 7

[223]

If the values of the inputs (base and exponent) are not numeric values, an alert
message is displayed to provide the users with error feedback. If the values
are numeric, the pow method of the MathDemo class is invoked, and the result is
assigned to the result field value via one of the previously created shortcuts.

Writing unit tests can become a complex task when the components being tested
are highly coupled with other components. In the previous section, we tried to
follow some good practices such as the dependency inversion principle or injecting
dependencies via the constructor of the dependent; but sometimes, even when using
good practices, we will have to deal with highly coupled code.

Spies, mocks, and stubs can help us to take away some of the pain caused by highly
coupled components. These features can also help us to identify the root cause of an
issue. If we replace all the dependencies of a component with stubs and a test fail,
we will know that the issue is located in the component being tested and not in one
of its dependencies.

For example, the CalculatorWidget class has a dependency on the MathDemo class.
If there is an issue in the calculator website, we will not be able to know if the root
cause of the issue is located in the CalculatorWidget class or the MathDemo class.
However, if we write some unit tests for the CalculatorWidget class in isolation
(replacing its MathDemo dependency with a stub) and some of the tests fail, we will
know for sure that the root cause of the issue is located in the CalculatorWidget
and not in the MathDemo class.

Let's take a look at some test examples.

Spies
We are going to start by taking a look at the use of spies by creating a new test
suite. This time we will use the before() and beforeEach() functions. When the
before() function is invoked (before any unit test is executed), a new HTML node
is created to hold the widget's HTML.

The beforeEach() function is used to reset the container before each test.
This way, we can ensure that a new widget is created for each test in the test suite.
This is a good idea because it will prevent one test from potentially affecting the
results of another.

describe('BDD test example for CalculatorWidget class \n', () => {

 before(function() {
 $("body").append('<div id="widget"/>');
 });

Application Testing

[224]

 beforeEach(function() {
 $("#widget").empty();
 });

Usually, testing frameworks (regardless of the language we are working
with) won't allow us to control the order in which the unit tests and test
suites are executed. The tests can even be executed in parallel by using
multiple threads. For this reason, it is important to ensure that the unit
tests in our test suites are independent of each other.

Now that the test suite is ready, we can create unit tests for the render() and
onSubmit() methods. The test starts by the creation of an instance of MathDemo,
which is then passed to CalculatorWidget constructor to create a new instance
named calculator.

The render method is then invoked to render the widget inside the HTML node
with the ID widget. The HTML node should be available at this stage because it was
created by the before() method. After the widget has been rendered, a value is set
for the inputs with IDs base and exponent.

The test specification (onSubmit should be invoked when #submit is clicked)
should help us understand that we are testing the click event. We are going to use
a spy to observe the onSubmit() function; so, when the button with ID submit is
clicked, the spy will detect that the onSubmit() function was invoked.

To finish the test, we are going to trigger a click event on the button with ID submit
and assert that the onSubmit() function was actually only invoked once:

it('onSubmit should be invoked when #submit is clicked', () => {
 var math : MathInterface = new MathDemo();
 var calculator = new CalculatorWidget(math);
 calculator.render("#widget");
 $('#base').val("2");
 $('#exponent').val("3");

 // spy on onSubmit
 var onSubmitSpy = sinon.spy(calculator, "onSubmit");
 $("#submit").trigger("click");

 // assert calculator.onSubmit was invoked when click on #submit
 expect(onSubmitSpy.called).to.equal(true);
 expect(onSubmitSpy.callCount).to.equal(1);
 expect($("#result").val()).to.equal("8");
});

Chapter 7

[225]

Spies will allow us to perform many operations: from checking how many times a
function has been invoked to checking if it was invoked using the new operator, or if
it was invoked with a set of specific parameters.

The last assertion helps us guarantee that onSubmit() is setting the correct result in
the result input.

All the possible operations are detailed in the Sinon.JS online
documentation found at http://sinonjs.org/docs/#sinonspy.

Stubs
It may look like we have already tested the entire application by now, but that is
usually never the case. Let's analyze what exactly we have tested so far:

• We have tested the entire MathDemo class, and we know that it returns the
correct value when pow is invoked

• We know that the CalculatorWidget class is rendering the HTML correctly
• We know that the CalculatorWidget class is setting up some events and

reading some values from the HTML inputs as expected

So far, we have created some tests for the MathDemo class and the CalculatorWidget
class, but we have forgotten to test the integration between them.

We have been testing using 2 as base and 3 as exponent, but if we wrongly used
the same value as base and exponent, we could have missed one potential issue:
maybe the CalculatorWidget class is passing the arguments in incorrect order
to the MathDemo class when the function pow() is invoked in the body of the
onSubmit() function.

Later on in this chapter, we will see how to generate a kind
of report (a test coverage report) that can help us to identify
areas of our application that have not been tested.

We can test this scenario by isolating the CalculatorWidget class from its
dependency on the MathDemo class. We can achieve this by using a stub.
Let's take a look at the upcoming unit tests to see a stub in action.

http://sinonjs.org/docs/#sinonspy

Application Testing

[226]

At the beginning of the method, a new instance of MathDemo is created, and a stub
is used against its pow method. The stub will replace the pow method with a new
method. The new method will assert that the parameters received are in the
correct order:

it('pass the right args to Math.pow', (done) => {
 var math : MathInterface = new MathDemo();

 // replace pow method with a method for testing
 sinon.stub(math, "pow", function(a, b) {
 // assert that CalculatorWidget.onSubmit invokes
 // math.pow with the right arguments
 expect(a).to.equal(2);
 expect(b).to.equal(3);
 done();
 });

 var calculator = new CalculatorWidget(math);
 calculator.render("#widget");
 $('#base').val("2");
 $('#exponent').val("3");

 $("#submit").trigger("click");
});

Once the stub is ready, a new instance of the CalculatorWidget class is created,
but instead of passing a normal instance of MathDemo as its only argument, we are
injecting the stub. By doing this, we are no longer testing the MathDemo class, and we
are testing the CalculatorWidget class in an isolated environment. This would have
been much more complicated without a design that facilitates replacing the class
dependencies via a constructor injection.

To finish the test, we render the calculator widget, set the value of the inputs with
IDs base and exponent, and trigger a click on the button with ID submit. The event
will invoke the onSubmit function, which will then invoke the pow method. When
the parameters are in the incorrect order, we will be able to be 100 percent sure about
the location of the root cause of this issue: the onSubmit function.

Chapter 7

[227]

Creating end-to-end tests with
Nightwatch.js
Writing an E2E test with Nightwatch.js is an intuitive process. We should be able
to read an E2E test and be able to understand it even if it is the first time that we
encounter one.

If we take a look at the following code snippet, we will see that, once we have
reached the page, the test will wait 1 second for the body of the page to be visible.
The test will then wait 0.1 seconds for some elements to be visible. The elements
can be selected using CSS selectors or XPath syntax. If the elements are visible,
the setValue method will insert 2 in the text input with base as ID and 3 in the
text input with exponent as ID:

var test = {
 'Calculator pow e2e test example' : function (client) {
 client
 .url('http://localhost:8080/')
 .waitForElementVisible('body', 1000)
 .assert.waitForElementVisible('TypeScriptTesting', 100)
 .assert.waitForElementVisible('input#base' ,100)
 .assert.waitForElementVisible('input#exponent', 100)
 .setValue('input#base', '2')
 .setValue('input#exponent', '3')
 .click('button#submit')
 .pause(100)
 .assert.value('input#result', '8')
 .end();
 }
};

export = test;

The test will then find the submit button and trigger an on-click event. After 0.1
seconds, the test asserts that the correct value has been inserted into the text input with
result as ID. We can see each of these steps in the console during the test execution.

We can run the tests using the following command:

gulp run-e2e-test

Remember that we must run the tasks to compile and bundle the E2E
tests as well as run the application in a web server with BrowserSync
and execute Selenium before being able to run E2E tests.

Application Testing

[228]

Generating test coverage reports
Earlier in in this chapter, when we configured Karma, we added some settings
to generate test coverage reports. Let's take a look at the karma.conf.js file to
identify test coverage-related configuration:

module.exports = function (config) {
 'use strict';

 config.set({
 basePath: '',
 frameworks: ['mocha', 'chai', 'sinon'],
 browsers: ['PhantomJS'],
 reporters: ['progress', 'coverage'],
 coverageReporter: {
 type : 'lcov',
 dir : __dirname + '/coverage/'
 },
 plugins : [
 'karma-coverage',
 'karma-mocha',
 'karma-chai',
 'karma-sinon',
 'karma-phantomjs-launcher'
],
 preprocessors: {
 '**/bundled/test/bdd.test.js' : 'coverage'
 },
 files : [
 {
 pattern: "/bundled/test/bdd.test.js",
 included: true
 },
 {
 pattern: "/node_modules/jquery/dist/jquery.min.js",
 included: true
 },
 {
 pattern:
 "/node_modules/bootstrap/dist/js/bootstrap.min.js",
 included: true
 }
],
 client : {
 mocha : {
 ui : "bdd"
 }
 },

Chapter 7

[229]

 port: 9876,
 colors: true,
 autoWatch: false,
 logLevel: config.DEBUG
 });
};

As we can see, we need to set the folder in which the test coverage report will be
stored. We also need to add coverage to the reporter's setting and a new entry
named coverageReport to configure the format of the report.

We cannot forget to install the karma-coverage plugin using npm and adding a
reference in the karma.conf.js under the plugins field. Finally, we need to add
coverage to the preprocessor field:

npm karma-coverage

To generate the report, we just need to execute the Gulp tasks used to run all the
unit tests in the application. We can do so by using the following command:

gulp run-unit-test

Once the execution of the test has been completed, we can open the folder in which
we decided to store the coverage reports and open the available index.html file in
a web browser. The HTML report allows us to navigate to the coverage statistics of
a specific file by clicking on the name of one of the source files.

Application Testing

[230]

The report can help us to identify with ease the parts of our code that have not
been tested (lines are highlighted in red). The test coverage report also calculates
the number of lines tested against the number of lines in the application. As we can
see in the preceding screenshot, only 82.24 percent of the statements are tested in
the example.

If you would like to learn more about all the tools that we have
discussed in this chapter, I highly recommend checking out the
book Backbone.js Testing written by Ryan Roemer.

Summary
In this chapter, we discussed some core testing concepts (including stubs,
spies, suites, and more). We also looked at the test-driven development and
behavior-driven development approaches and how to work with some of the
leading JavaScript testing frameworks, such as Mocha, Chai, Sinon.JS, Karma,
Selenium, and Nightwatch.js.

Towards the end of the chapter we explored how to test across multiple devices
and how to generate test coverage reports.

In the next chapter, we will look at decorators and the metadata reflection API—
two exciting new features introduced by TypeScript 1.5.

[231]

Decorators
In this chapter, you are going to learn about annotations and decorators—the two
new features based on the future ECMAScript 6 specification, but we can use them
today with TypeScript 1.5.

You will learn about the following topics:

• Annotations and decorators:
 ° Class decorators
 ° Method decorators
 ° Property decorators
 ° Parameter decorators
 ° Decorator factory
 ° Decorators with parameters

• The reflection metadata API

Prerequisites
The TypeScript features in this chapter require TypeScript 1.5 or higher. We can
use Gulp as we have done in previous chapters, but we need to ensure that the
latest version of TypeScript is used by the gulp-typescript package. Let's start
by creating a package.json file and installing the required packages:

npm init

npm install --save-dev gulp gulp-typescript typescript

npm install --save reflect-metadata

Decorators

[232]

Once we have installed the packages, we can create a gulpfile.js file and
add a new task to compile our code.

The following code snippet shows the required compiler configuration.
The compilation target must be ES5 and the emitDecoratorMetadata setting
must be set as true. We also need to specify the package that provides the
TypeScript compiler to ensure that the latest version is used:

var gulp = require("gulp"),
 tsc = require("gulp-typescript"),
 typescript = require("typescript");

var tsProject = tsc.createProject({
 removeComments : false,
 noImplicitAny : false,
 target : "es5",
 module : "commonjs",
 declarationFiles : false,
 emitDecoratorMetadata : true,
 typescript: typescript
});

Once the compiler settings are ready, we can write a gulp task using the
gulp-typescript plugin:

gulp.task("build-source", function() {
 return gulp.src(__dirname + "/file.ts")
 .pipe(tsc(tsProject))
 .js.pipe(gulp.dest(__dirname + "/"));
});

Annotations and decorators
Annotations are a way to add metadata to class declarations. The metadata can then
be used by tools such as dependency injection containers.

The annotations API was proposed by the Google AtScript team but annotations are
not a standard. However, decorators are a proposed standard for ECMAScript 7 by
Yehuda Katz, to annotate and modify classes and properties at design time.

Chapter 8

[233]

Annotations and decorators are pretty much the same:

Annotations and decorators are nearly the same thing. From a consumer
perspective we have exactly the same syntax. The only thing that differs is that
we don't have control over how annotations are added as metadata to our code.
A decorator is rather an interface to build something that ends up as annotation.

Over a long term, however, we can just focus on decorators, since those are a real
proposed standard. AtScript is TypeScript and TypeScript implements decorators.

 - "The difference between Annotations and Decorators" by Pascal Precht

We are going to use the following class to showcase how to work with decorators:

class Person {

 public name: string;
 public surname: string;

 constructor(name : string, surname : string) {
 this.name = name;
 this.surname = surname;
 }

 public saySomething(something : string) : string {
 return this.name + " " + this.surname + " says: " + something;
 }
}

There are four types of decorators that can be used to annotate: classes, properties,
methods, and parameters.

The class decorators
The official TypeScript decorator proposal defines a class decorator as follows:

A class decorator function is a function that accepts a constructor function as
its argument, and returns either undefined, the provided constructor function,
or a new constructor function. Returning undefined is equivalent to returning
the provided constructor function.

 - "Decorators Proposal – TypeScript" by Ron Buckton

Decorators

[234]

A class decorator is used to modify the constructor of class in some way. If the
class decorator returns undefined, the original constructor remains the same.
If the decorator returns, the return value will be used to override the original
class constructor.

We are going to create a class decorator named logClass. We can start by
defining the decorator as follows:

function logClass(target: any) {
 // …
}

The class decorator above does not have any logic yet, but we can already apply
it to a class. To apply a decorator, we need to use the at (@) symbol:

@logClass
class Person {
 public name: string;
 public surname: string;
 //...

If we have declared and applied a decorator, a function named __decorate will be
generated by the TypeScript compiler, which will then compile our code in JavaScript.
We are not going to examine the internal implementation of the __decorate function,
but we need to understand that it is used to apply a decorator at runtime. We can see
it in action by examining the JavaScript code that is generated when we compile the
decorated Person class mentioned previously:

var Person = (function () {
 function Person(name, surname) {
 this.name = name;
 this.surname = surname;
 }
 Person.prototype.saySomething = function (something) {
 return this.name + " " + this.surname + " says: " +
 something;
 };
 Person = __decorate([
 logClass
], Person);
 return Person;
})();

Chapter 8

[235]

Now that we know how the class decorator will be invoked, let's implement it:

function logClass(target: any) {

 // save a reference to the original constructor
 var original = target;

 // a utility function to generate instances of a class
 function construct(constructor, args) {
 var c : any = function () {
 return constructor.apply(this, args);
 }
 c.prototype = constructor.prototype;
 return new c();
 }

 // the new constructor behaviour
 var f : any = function (...args) {
 console.log("New: " + original.name);
 return construct(original, args);
 }

 // copy prototype so instanceof operator still works
 f.prototype = original.prototype;

 // return new constructor (will override original)
 return f;
}

The class decorator takes the constructor of the class being decorated as its only
argument. This means that the argument (named target) is the constructor of
the Person class.

The decorator starts by creating a copy of the class constructor, then it defines a
utility function (named construct) that can be used to generate instances of a class.

Decorators are used to add some extra logic or metadata to the decorated element.
When we try to extend the functionality of a function (methods or constructors), we
need to wrap the original function with a new function that contains the additional
logic and invokes the original function.

In the preceding decorator, we added extra logic to log in the console, the name
of the class when a new instance is created. To achieve this, a new class constructor
(named f) was declared. The new constructor contains the additional logic and
uses the construct function to invoke the original class constructor.

Decorators

[236]

At the end of the decorator, the prototype of the original constructor function is
copied to the new constructor function to ensure that the instanceof operator
continues to work when it is applied to an instance of the decorated class. Finally,
the new constructor is returned and some code generated by the TypeScript compiler
uses it to override the original class constructor.

After decorating the class constructor, a new instance is created:

var me = new Person("Remo", "Jansen");

On doing so, the following text appears in the console:

"New: Person"

The method decorators
The official TypeScript decorator proposal defines a method decorator as follows.

A method decorator function is a function that accepts three arguments:
The object that owns the property, the key for the property (a string or a symbol),
and optionally the property descriptor of the property. The function must return
either undefined, the provided property descriptor, or a new property descriptor.
Returning undefined is equivalent to returning the provided property descriptor.

- "Decorators Proposal – TypeScript" by Ron Buckton

The method decorator is really similar to the class decorator but it is used to override
a method, as opposed to using it to override the constructor of a class.

If the method decorator returns a value different from undefined, the returned value
will be used to override the property descriptor of the method.

Note that a property descriptor is an object that can be obtained by
invoking the Object.getOwnPropertyDescriptor() method.

Let's declare a method decorator named logMethod without any behavior for now:

function logMethod(target: any, key: string, descriptor: any) {
 // ...
}

Chapter 8

[237]

We can apply the decorator to one of the methods in the Person class:

//...
@logMethod
public saySomething(something : string) : string {
 return this.name + " " + this.surname + " says: " + something;
}
// ...

The method decorator is invoked using the following arguments:

• The prototype of the class that contains the method being decorated is
Person.prototype

• The name of the method being decorated is saySomething
• The property descriptor of the method being decorated is Object.

getOwnPropertyDescriptor(Person.prototype, saySomething)

Now that we know the value of the decorator parameters, we can proceed to
implement it:

function logMethod(target: any, key: string, descriptor: any) {

 // save a reference to the original method
 var originalMethod = descriptor.value;

 // editing the descriptor/value parameter
 descriptor.value = function (...args: any[]) {

 // convert method arguments to string
 var a = args.map(a => JSON.stringify(a)).join();

 // invoke method and get its return value
 var result = originalMethod.apply(this, args);

 // convert result to string
 var r = JSON.stringify(result);

 // display in console the function call details
 console.log(`Call: ${key}(${a}) => ${r}`);

 // return the result of invoking the method
 return result;
 }

 // return edited descriptor
 return descriptor;
}

Decorators

[238]

Just like we did when we implemented the class decorator, we start by creating
a copy of the element being decorated. Instead of accessing the method via the
class prototype (target["key"]), we will access it via the property descriptor
(descriptor.value).

We then create a new function that will replace the method being decorated.
The new function invokes the original method but also contains some additional
logic used to log in the console, the method name, and the value of its arguments
every time it is invoked.

After applying the decorator to the method, the method name and arguments will
be logged in the console when it is invoked:

var me = new Person("Remo", "Jansen");
me.saySomething("hello!");
// Call: saySomething("hello!") => "Remo Jansen says: hello!"

The property decorators
The official TypeScript decorator proposal defines a property decorator as follows:

A property decorator function is a function that accepts two arguments: The object
that owns the property and the key for the property (a string or a symbol). A property
decorator does not return.

- "Decorators Proposal – TypeScript" by Ron Buckton

A property decorator is really similar to a method decorator. The main differences
are that a property decorator doesn't return a value and that the third parameter
(the property descriptor) is not passed to the property decorator.

Let's create a property decorator named logProperty to see how it works:

function logProperty(target: any, key: string) {
 // ...
}

We can use it in one of the Person class's properties as follows:

class Person {
 @logProperty
 public name: string;
 // ...

Chapter 8

[239]

As we have been doing so far, we are going to implement a decorator that will
override the decorated property with a new property that will behave exactly as the
original one, but will perform an additional task—logging the property value in the
console whenever it changes:

function logProperty(target: any, key: string) {

 // property value
 var _val = this[key];

 // property getter
 var getter = function () {
 console.log(`Get: ${key} => ${_val}`);
 return _val;
 };

 // property setter
 var setter = function (newVal) {
 console.log(`Set: ${key} => ${newVal}`);
 _val = newVal;
 };

 // Delete property. The delete operator throws
 // in strict mode if the property is an own
 // non-configurable property and returns
 // false in non-strict mode.
 if (delete this[key]) {
 Object.defineProperty(target, key, {
 get: getter,
 set: setter,
 enumerable: true,
 configurable: true
 });
 }
}

In the preceding decorator, we created a copy of the original property value and
declared two functions: getter (invoked when we change the value of the property)
and setter (invoked when we read the value of the property) respectively.

In the previous decorator, the return value was used to override the element being
decorated. Because the property decorator doesn't return a value, we can't override
the property being decorated but we can replace it. We have manually deleted the
original property and created a new property using the Object.defineProperty
function and the previously declared getter and setter functions.

Decorators

[240]

After applying the decorator to the name property, we will be able to observe any
changes to its value in the console:

var me = new Person("Remo", "Jansen");
// Set: name => Remo
me.name = "Remo H.";
// Set: name => Remo H.
var n = me.name;
// Get: name Remo H.

The parameter decorators
The official decorator proposal defines a parameter decorator as follows:

A parameter decorator function is a function that accepts three arguments: The
object that owns the method that contains the decorated parameter, the property key
of the property (or undefined for a parameter of the constructor), and the ordinal
index of the parameter. The return value of this decorator is ignored.

Decorators Proposal – TypeScript" by Ron Buckton

Let's create a parameter decorator named addMetadata to see how it works:

function addMetadata(target: any, key : string, index : number) {
 // ...
}

We can apply the property decorator to a parameter as follows:

public saySomething(@addMetadatasomething : string) : string {
 return this.name + " " + this.surname + " says: " + something;
}

The parameter decorator doesn't return, which means that we will not be able to
override the method that contains the parameter being decorated.

We can use parameter decorators to add some metadata to the prototype (target)
class. In the following implementation, we will add an array named log_${key}_
parameters as a class property where key is the name of the method that contains
the parameter being decorated:

function addMetadata(target: any, key : string, index : number) {
 var metadataKey = `_log_${key}_parameters`;
 if (Array.isArray(target[metadataKey])) {
 target[metadataKey].push(index);
 }

Chapter 8

[241]

 else {
 target[metadataKey] = [index];
 }
}

To allow more than one parameter to be decorated, we check whether the new field
is an array. If the new field is not an array, we create and initialize the new field to be
a new array containing the index of the parameter being decorated. If the new field is
an array, the index of the parameter being decorated is added to the array.

A parameter decorator is not really useful on its own; it needs to be combined with
a method decorator, so the parameter decorator adds the metadata and the method
decorator reads it:

@readMetadata
public saySomething(@addMetadata something : string) : string {
 return this.name + " " + this.surname + " says: " + something;
}

The following method decorator works like the method decorator that we
implemented previously in this chapter, but it will read the metadata added by the
parameter decorator and instead of displaying all the arguments passed to the method
in the console when it is invoked, it will only log the ones that have been decorated:

function readMetadata (target: any, key: string, descriptor: any) {

 var originalMethod = descriptor.value;
 descriptor.value = function (...args: any[]) {

 var metadataKey = `_log_${key}_parameters`;
 var indices = target[metadataKey];

 if (Array.isArray(indices)) {

 for (var i = 0; i < args.length; i++) {

 if (indices.indexOf(i) !== -1) {

 var arg = args[i];
 var argStr = JSON.stringify(arg) || arg.toString();
 console.log(`${key} arg[${i}]: ${argStr}`);
 }
 }
 var result = originalMethod.apply(this, args);
 return result;

Decorators

[242]

 }
 }
 return descriptor;
}

If we apply the saySomething method:

var person = new Person("Remo", "Jansen");

person.saySomething("hello!");

The readMetadata decorator will display the value of the parameters that were
added to the metadata (the class property named _log_saySomething_parameters)
in the console by the addMetadata decorator:

saySomething arg[0]: "hello!"

Note that, in the previous example, we used a class property to
store some metadata. Later in this chapter, you will learn how to use
the reflection metadata API; this API has been designed specifically
to generate and read metadata and it is, therefore, recommended to
use it when we need to work with decorators and metadata.

The decorator factory
The official decorator proposal defines a decorator factory as follows:

A decorator factory is a function that can accept any number of arguments, and
must return one of the above types of decorator function.

Decorators Proposal – TypeScript" by Ron Buckton

You learned to implement class, property, method, and parameter decorators. In the
majority of cases, we will consume decorators, not implement them. For example, in
Angular 2.0, we will use an @view decorator to declare that a class will behave as a
View, but we will not implement the @view decorator ourselves.

We can use the decorator factory to make decorators easier to consume. Let's
consider the following code snippet:

@logClass
class Person {

 @logProperty
 public name: string;

Chapter 8

[243]

 public surname: string;

 constructor(name : string, surname : string) {
 this.name = name;
 this.surname = surname;
 }

 @logMethod
 public saySomething(@logParameter something : string) : string {
 return this.name + " " + this.surname + " says: " + something;
 }
}

The problem with the preceding code is that we, as developers, need to know that
the logMethod decorator can only be applied to a method. This might seem trivial
because the decorator naming used above makes it easier for us.

A better solution is to enable developers to use an @log decorator without having to
worry about using the right kind of decorator:

@log
class Person {

 @log
 public name: string;
 public surname: string;

 constructor(name : string, surname : string) {
 this.name = name;
 this.surname = surname;
 }

 @log
 public saySomething(@log something : string) : string {
 return this.name + " " + this.surname + " says: " + something;
 }
}

We can achieve this by creating a decorator factory. A decorator factory is a function
that is able to identify what kind of decorator is required and return it:

function log(...args : any[]) {
 switch(args.length) {
 case 1:
 return logClass.apply(this, args);

Decorators

[244]

 case 2:
 // break instead of return as property
 // decorators don't have a return
 logProperty.apply(this, args);
 break;
 case 3:
 if(typeof args[2] === "number") {
 logParameter.apply(this, args);
 }
 return logMethod.apply(this, args);
 default:
 throw new Error("Decorators are not valid here!");
 }
}

As we can observe in the preceding code snippet, the decorator factory uses the
number and type of arguments passed to the decorator to identify the required
kind of decorator.

Decorators with arguments
We can use a special kind of decorator factory to allow developers to configure the
behavior of a decorator. For example, we could pass a string to a class decorator
as follows:

@logClass("option")
class Person {
// ...

In order to be able to pass some parameters to a decorator, we need to wrap the
decorator with a function. The wrapper function takes the parameters of our
choice and returns a decorator:

function logClass(option : string) {
 return function (target: any) {

 // class decorator logic goes here
 // we have access to the decorator parameters
 console.log(target, option);
 }
}

This can be applied to all the kinds of decorator that you learned about in
this chapter.

Chapter 8

[245]

The reflection metadata API
You learned that decorators can be used to modify and extend the behavior of a
class's methods or properties. You also learned that we can use decorators to add
metadata to the class being decorated.

For less experienced developers, the possibility of adding metadata to a class
might not seem really useful or exciting but it is one of the greatest things that has
happened to JavaScript in the past few years.

As we already know, TypeScript only uses types at design time. However, some
features such as dependency injection, runtime type assertions, reflection, and
testing are not possible without the type information being available at runtime.
This is not a problem anymore because we can use decorators to generate metadata
and that metadata can contain type information. The metadata can then be processed
at runtime.

When the TypeScript team started to think about the best possible way to allow
developers to generate type information metadata, they reserved a few special
decorator names for this purposes.

The idea was that, when an element was decorated using these reserved decorators,
the compiler would automatically add the type information to the element being
decorated. The reserved decorators were the following:

TypeScript compiler will honor special decorator names and will flow additional
information into the decorator factory parameters annotated by these decorators.

@type – The serialized form of the type of the decorator target

@returnType – The serialized form of the return type of the decorator target if it is
a function type, undefined otherwise

@parameterTypes – A list of serialized types of the decorator target's arguments if
it is a function type, undefined otherwise

@name – The name of the decorator target

- "Decorators brainstorming" by Jonathan Turner

Shortly after, the TypeScript team decided to use the reflection metadata API (one of
the proposed ES7 features) instead of the reserved decorators.

Decorators

[246]

The idea is almost identical but instead of using the reserved decorator names, we
will use some reserved metadata keys to retrieve the metadata using the reflection
metadata API. The TypeScript documentation defines three reserved metadata keys:

Type metadata uses the metadata key "design:type".

Parameter type metadata uses the metadata key "design:paramtypes".

Return type metadata uses the metadata key "design:returntype".

- Issue #2577 - TypeScript Official Repository at GitHub.com

Let's see how we can use the reflection metadata API. We need to start by referencing
and importing the required reflect-metadata npm package:

/// <reference path="./node_modules/reflect-metadata/reflect-
metadata.d.ts"/>

import 'reflect-metadata';

We can then create a class for testing purposes. We are going to get the type of one of
the class properties at runtime. We are going to decorate the class using a property
decorator named logType:

class Demo {
 @logType
 public attr1: string;
}

Instead of using a reserved decorator, @type, we need to invoke the Reflect.
getMetadata() method and pass the design:type key. The types are returned as
functions, for example, for the type string, the function String(){} function is
returned. We can use the function.name property to get the type as a string:

function logType(target: any, key: string) {
 var t = Reflect.getMetadata('design:type', target, key);
 console.log(`${key} type: ${t.name}`);
}

If we compile the preceding code and run the resulting JavaScript code in a web
browser, we will be able to see the type of the attr1 property in the console:

'attr1 type: String'

Remember that, in order to run this example,
the reflect-medatada library must be imported.

Chapter 8

[247]

We can apply the other reserved metadata keys in a similar manner. Let's create a
method with many parameters to use the design:paramtypes reserved metadata
key to retrieve the types of the parameters

class Demo {
 @logParamTypes
 public doSomething(
 param1 : string,
 param2 : number,
 param3 : Foo,
 param4 : { test : string },
 param5 : IFoo,
 param6 : Function,
 param7 : (a : number) => void
) : number {

 return 1;
 }
}

This time, we will use the design:paramtypes reserved metadata key, and because
we are querying the types of multiple parameters, the types will be returned as an
array by the Reflect.getMetadata() function:

function logParamTypes(target : any, key: string) {
 var types = Reflect.getMetadata('design:paramtypes', target, key);
 var s = types.map(a => a.name).join();
 console.log(`${key} param types: ${s}`);
}

If we compile and run the preceding code in a web browser, we will be able to see
the types of the parameters in the console:

'doSomething param types: String, Number, Foo, Object, Object,
Function, Function'

The types are serialized and follow some rules. We can see that functions are
serialized as Function, objects literals ({test : string}) and interfaces are
serialized as Object, and so on:

Type Serialized
void undefined
string String
number Number

Decorators

[248]

Type Serialized
boolean Boolean
symbol Symbol
any Object
enum Number
Class C{} C
Object literal {} Object
interface Object

Note that some developers have required the possibility of accessing
the type of interfaces and the inheritance tree of a class via metadata.
This feature is known as complex type serialization and is not
available at the time of writing this book, but the TypeScript team
has already started to work on it.

To conclude, we are going to create a method with a return type and use the
design:returntype reserved metadata key to retrieve the types of the return type:

class Demo {
 @logReturntype
 public doSomething2() : string {
 return "test";
 }
}

Just like in the two previous decorators, we need to invoke the
Reflect.getMetadata() function, passing the design:returntype reserved
metadata key:

function logReturntype(target, key) {
 var returnType = Reflect.getMetadata('design:returntype', target,
 key);
 console.log(`${key} return type: ${returnType.name}`);
}

If we compile and run the preceding code in a web browser, we will be able to see
the types of the return type in the console:

'doSomething2 return type: String'

Chapter 8

[249]

Summary
In this chapter, you learned how to consume and implement the four available types
of decorators (class, method, property, and parameter) and how to create a decorator
factory to abstract developers from the decorator types when they are consumed.

You also learned how to use the reflection metadata API to access type information
at runtime.

In the next chapter, you will learn about the architecture of a TypeScript application.
You will also learn about how to work with some design patterns and how to create
a single-page web application.

Chapter 9

[251]

Application Architecture
In previous chapters, we have covered several aspects of TypeScript, and we should
now feel confident enough to create a small application.

As we know, TypeScript was created by Microsoft to facilitate the creation of
large-scale JavaScript applications. Some TypeScript features such as modules or
classes can facilitate the process of creating large applications, but it is not enough.
We need good application architecture if we want to succeed in the long term.

This chapter is divided into two main parts. In the first part, we are going to look
at the single-page application (SPA) architecture and some design patterns that
will help us create scalable and maintainable applications. This section covers the
following topics:

• The single-page web application architecture
• The MV* architecture
• Models and collections
• Item views and collection views
• Controllers
• Events
• Router and hash navigation
• Mediator
• Client-side rendering and virtual DOM
• Data binding and data flow
• The web component and shadow DOM
• Choosing an MV* framework

Application Architecture

[252]

In the second part of this chapter, we are going to put in to practice many of the
theoretical concepts explored in the first part of this chapter. We are going to develop
a single-page web application framework, from scratch, which will be used to create
an application in Chapter 10, Putting Everything Together.

The single-page application architecture
We are going to start by exploring what single-page applications (SPAs) are
and how they work. Numerous SPA frameworks are available that can help us
develop applications with a good architecture.

We could jump directly into the use of one of these frameworks, but it is always a
good thing to understand how a third-party software component works before we
use it. For this reason, we are going use the first part of this chapter to study the
internal architecture of an SPA. Let's start by understanding what an SPA is.

An SPA is a web application in which all the resources (HTML, CSS, JavaScript, and
so on) are either loaded in one single request, or loaded dynamically without fully
reloading the page. We use the term single-page to refer to this kind of application
because the web page is never fully reloaded after the initial page load.

In the past, the Web was just a collection of static HTML files and hyperlinks;
every time we clicked on a hyperlink, a new page was loaded. This affected web
application performance negatively because many of the contents of the page (for
example, page headers, page footers, side menus, scripts) were loaded again with
each new page.

When AJAX support arrived for web browsers, developers started to load some of
the page content via AJAX requests to avoid unnecessary page reloads and provide
better user experience. AJAX applications and SPAs work in a very similar way. The
significant difference is that AJAX applications load sections of the web application
as HTML. These sections are ready to be appended to the DOM as soon as they finish
loading. On the other hand, SPAs avoid loading the HTML; instead, they load data
and client-side templates. The templates and data are processed and transformed
into HTML in the web browser in a process known as client-side rendering. The
data is usually in XML or JSON format, and there are many available client-side
template languages.

Chapter 9

[253]

Let's compare both approaches in detail. For example, to show a list of clients and
orders in an HTML table using the AJAX application approach, we could load the
initial page containing the list of clients in HTML format, ready to be displayed. In
the table, we would use a row for each client:

<tr>
 <td>Client Name 1</td>
 <td>
 <a href="javascript: void(0);" class="orders_link" data-client-
id="1">
 View Orders

 </td>
 <!-- more columns... -->
</tr>

You don't need to create new folders or files for now. This is a theoretical
example and is not mean to be implemented or executed.

We would also need some JavaScript code to load the client orders via AJAX when a
user clicks on the View Orders link:

$(document).ready(){

 // load and display client orders
 function displayOrders(userId){
 $.ajax({
 method: "GET",
 url: `/client/orders.aspx?id=${userId}`,
 dataType: "html",
 success : function(html) {
 $("#page_container").html(html);
 },
 error : function(e) {
 var msg = "<h1>Sorry, there has been an error!</h1>";
 $("#page_container").html(msg);
 }
 });
 }

 // set click event

Application Architecture

[254]

 $('.orders_link').on('click', function(e) {
 var userId = $(e.currentTarget).data("client-id");
 displayOrders(userId);
 });
}

Refer to the Handlebars.js (http://handlebarsjs.com/) and
JQuery AJAX (http://api.jquery.com/jquery.ajax/)
documentation if you need additional help to understand the
preceding example.

The preceding code snippet waits for the page to finish loading by using a
document-ready event handler. Then it adds an event handler for click events on
elements with a class attribute equal to orders_link.

The event handler takes the user ID from the data-client-id attribute and passes it
to the displayOrders function. The displayOrders function uses an AJAX request
to load the list of orders. The list of orders is in HTML format and can be inserted
into the DOM without changing its format.

In an SPA, the process is very similar. The initial HTML page (containing the list of
clients) is loaded just like in the AJAX application. In SPAs, the navigation to a new
page is also managed by JavaScript events, but it is usually managed by a component
known as Router.

Let's ignore navigation in SPAs for now and focus on the loading and rendering. In
an SPA, we will not load a list of orders in HTML format; we will load it using the
XML or JSON formats. If we use JSON, the response may look like the following one:

{
 "orders" : [
 {
 "order_id" : 32423234,
 "currency" : "EUR",
 "date" : "13-02-2015,
 "items" :[
 { "product_id" : 13223523, "price" : 150.00, "quantity": 2 }
 { "product_id" : 62352355, "price" : 50.00, "quantity": 1 }
]
 },
 {
 "order_id" : 32423786,
 "currency" : "EUR",
 "date": "13-02-2015,

http://handlebarsjs.com/
http://api.jquery.com/jquery.ajax/

Chapter 9

[255]

 "items" :[
 { "product_id" : 13228898, "price" : 60.00, "quantity" : 1 }
]
 }
]
}

We can use an AJAX request almost identical to the one that we used to load HTML
in the AJAX application:

function getOrdersData(userId : number, cb){
 $.ajax({
 method: "GET",
 url: `/api/orders/${userId}`,
 dataType: "json",
 success : function(json) {
 cb(json);
 },
 error : function(e) {
 var msg = "<h1>Sorry, there has been an error!</h1>";
 $("#page_container").html(msg);
 }
 });
}

Before we can show the list of orders in the web browser, we need to transform
it into HTML. To transform the JSON into HTML, we can use a template system.
There are many template systems, but we are going use a Handlebars template
for this example. Let's take a look at the syntax of one of these templates:

{{#each orders}}
 <tr>
 <td>{{order_id}}</td>
 <td>{{date}}</td>
 <td>

 {{#each items}} {{product_id}} x {{quantity}}
 {{/each}}

 </td>
 </tr>
{{/each}}

Application Architecture

[256]

The elements of the Handlebars template language are wrapped with double
brackets ({{ and }}). The preceding template starts with an each flow control
statement. The each statement is used to repeat some instructions for each of the
elements in an array. If we take a look at the JSON response, we will be able to see
that the orders element is an array. The template will repeat the operations between
{{#each orders}} and {{/each}} once for each object in the orders array.

Each repetition creates a new HTML table row. To display the value of one of the
JSON fields in the HTML output, we just need to refer to the field wrapped around
double brackets. For example, when we render the cell containing the order ID, we
use {{order_id}}.

When referring to a JSON field in a template, the field must be in the
current scope. The scope can be explicitly accessed using the this
keyword, for example, {{this.order_id}} is equal to {{order_
id}}. The scope in a template changes when we use some of the available
flow control sentences. For example, the {{#each orders}} statement
assigns the current item in the array to the this keyword.

In order to use a Handlebars template, we need to load and compile it. We can load
the template using a regular AJAX request:

function getOrdersTemplate(cb){
 $.ajax({
 method: "GET",
 url: "/client/orders.hbs",
 dataType: "text",
 success : function(templateSource) {
 var template = Handlebars.compile(source);
 cb(template);
 },
 error : function(e) {
 var msg = "<h1>Sorry, there has been an error!</h1>";
 $("#page_container").html(msg);
 }
 });
}

In the preceding example, we have loaded a template using an AJAX request and
compiled it using the Handlebars compile method.

Chapter 9

[257]

In a real production website, templates are usually precompiled by
the continuous integration build. The templates are then ready to be
used when they finish loading. Precompiling the templates can help
to improve the application's performance.

We have created two functions: one to load the template and compile it and the other
to load the JSON data. The last step is to create a function that puts together the
template and the JSON data to generate the HTML table, which contains the list of
client orders:

function displayOrders(userId){
 getOrdersData(userId, function(data) {
 getOrdersTemplate(data, function(template) {
 var html = template(json);
 $("#page_container").html(html);
 });
 });
}

It may seem like SPAs require much more work and that they could cause poor
performance compared with AJAX applications because there are both more
operations and requests to be performed in the web browser. However, that is far
from the reality. To understand the benefits of SPAs, we need to understand why
they were created in the first place.

The creation of SPAs was highly influenced by two events: the first one is the
exponential increase of the popularity of mobile devices and tablets with Internet
access and powerful hardware. The second event is the improvement of JavaScript
performance that took place during the same period of time.

As mobile devices gained popularity, companies were forced to develop a mobile
version of the same client application. Companies started developing web services to
generate JSON and XML (instead of HTML pages) that could be consumed by each
of these client applications. These web services could be used by all applications,
thus allowing companies to reduce costs.

The problem was that the existing AJAX applications could not take advantage
of the web services without a client-side rendering system. Template systems
such as Mustache (the predecessor of Handlebars) were released for the first time
to solve this problem.

Application Architecture

[258]

One of the main advantages of SPAs is that we need an HTTP API. An HTTP API has
many advantages over an application that renders HTML pages in the server side.
For example, we can write unit tests for a web service with ease because asserting
data is much easier than asserting some user interaction functionality. HTTP APIs
can be used by many client applications, which can reduce costs and open new lines
of business, such as selling the HTTP API as a product.

Another important advantage of SPAs is that because a lot of the work is performed
in the web browser, the server performs fewer tasks and is able to handle a higher
number of requests. Client-side performance is not negatively affected because
personal computers and mobile devices have become really powerful and JavaScript
performance has improved significantly over the last few years.

Network performance in SPAs can be both better and worse when compared to
network performance in AJAX applications. The response formatted in the HTML
format can sometimes be heavier than the data in JSON or XML formats.

The price to pay when using JSON or XML is that but we will perform an extra web
request to fetch the template. We can solve these problems by pre-compiling the
templates, implementing caching mechanisms and joining small template files into
larger template files to reduce the number of requests.

The MV* architecture
As we have seen, many tasks that were traditionally performed on the server side
are performed on the client side in SPAs. This has caused an increase in the size of
JavaScript applications and the need for a better code organization.

As a result, developers have started using in the frontend some of the design
patterns that have been used with success in the backend over the last decade.
Among those, we can highlight the Model-View-Controller (MVC) design pattern
and some of its derivative versions, such as Model-View-ViewModel (MVVM) and
Model-View-Presenter (MVP).

Developers around the world started to share some SPA frameworks that somehow
try to implement the MVC design pattern but do not necessarily follow the MVC
pattern strictly. The majority of these frameworks implement Models and Views, but
since not all of them implement Controllers, we refers to this family of frameworks
as MV*.

We will cover concepts such as MVC, Models, and Views later
in this chapter.

Chapter 9

[259]

We will now look at other architecture principles, design patterns, and components
commonly present in MV* frameworks.

Common components and features in the
MV* frameworks
We have seen that single-page web applications are usually developed using a
family of frameworks known as MV*, and we have covered the basics of some
common SPA architecture principles.

Let's delve further into some components and features that are commonly found in
MV* frameworks.

In this section, we will use some small code snippets from some of the
most popular MV* frameworks. We are not attempting to learn how to
use each of these frameworks, and no previous experience with an MV*
framework is required.
Our goal should be to understand the common components and
features of an MV* framework and not focus on a particular framework.

Models
A model is a component used to store data. The data is retrieved from an HTTP
API and displayed in the view. Some frameworks include a model entity that we, as
developers, must extend. For example, in Backbone.js (a popular MV* framework), a
model must extend the Backbone.Model class:

class TaskModel extends Backbone.Model{
 public created : number;
 public completed : boolean;
 public title : string;
 constructor() {
 super();
 }
}

A model inherits some methods that can help us interact with the web services. For
example, in the case of a Backbone.js model, we can use a method named fetch to set
the values of a model using the data returned by a web service. In some frameworks,
models include logic to retrieve data from an HTTP API, while others include an
independent component responsible for the communication with an HTTP API.

Application Architecture

[260]

In other frameworks, models are plain entities, and it is not necessary to extend or
instantiate one of the framework's classes:

class TaskModel {
 public created : number;
 public completed : boolean;
 public title : string;
}

Collections
Collections are used to represent a list of models. In the previous section, we saw an
example of a model named TaskModel. While this model could be used to represent
a single task in a list of things to do, a collection could be used to represent the list
of tasks.

In the majority of MV* frameworks that support collections, we need to specify the
model of the items of a collection when the collection is declared. For example, in the
case of Backbone.js, the Task collection could look like the following:

class TaskCollection extends Backbone.Collection<TaskModel> {
 public model : TaskModel;
 constructor() {
 this.model = TodoModel;
 super();
 }
}

Just like in the case of models, some frameworks' collections are plain arrays, and we
will not need to extend or instantiate one of the framework's classes. Collections can
also inherit some methods to facilitate interaction with web services.

Item views
The majority of frameworks feature an item view (or just view) component. Views
are responsible for rendering the data stored in the models as HTML. Views usually
require a model, a template, and a container to be passed as a constructor argument,
property, or setting.

• The model and the template are used to generate the HTML, as we
discovered earlier on in this chapter

• The container is usually the selector of one of the DOM elements in the page;
the selected DOM element is then used as a container for the HTML, which is
inserted or appended to it

Chapter 9

[261]

For example, in Marionette.js (a popular MV* framework based on Backbone.js),
a view is declared as follows:

class NavBarItemView extends Marionette.ItemView {
 constructor(options: any = {}) {
 options.template = "#navBarItemViewTemplate";
 super(options);
 }
}

Collection views
A collection view is a special type of view. The relationship between collection views
and views is somehow comparable with the relationship between collections and
models. Collection views usually require a collection, an item view, and a container
to be passed as a constructor argument, property, or setting.

A collection loops through the models in the specified collection, renders each of
them using a specified item view, and then appends the results of the container.

In the majority of frameworks, when a collection view is rendered, an
item view is rendered for each item in the collection; this can sometimes
create a performance bottleneck.
An alternative solution is to use an item view and a model in which one
of its attributes is an array. We can then use the {{#each}} statement
in the view template to render a collection in one single operation, as
opposed to one operation for each item in the collection.

The following code snippet is an example of a collection view in Marionette.js:

class SampleCollectionView extends Marionette.
CollectionView<SampleModel> {
 constructor(options: any = {}) {
 super(options);
 }
}
var view = new SampleCollectionView({
 collection : collection,
 el:$("#divOutput"),
 childView : SampleView
});

Application Architecture

[262]

Controllers
Some frameworks feature Controllers. Controllers are usually in charge of handling
the lifecycle of specific models and their associated views. They are responsible
for instantiating connection models and collections with their respective views
and collection views as well as disposing them before handling the control over
to another controller.

Interaction in MVC applications is organized around controllers and actions.
Controllers can include as many action methods as needed, and an action typically
has one-to-one mapping with user interactions.

We are going to take a look at a small code snippet that uses an MV* framework
known as Chaplin. Just like Marionette.js, Chaplin is a framework based on
Backbone.js. The following code snippet defines a class that inherits from the
base Controller class, which is defined by Chaplin:

class LikesController extends Chaplin.Controller {

 public beforeAction() {
 this.redirectUnlessLoggedIn();
 }

 public index(params) {
 this.collection = new Likes();
 this.view = new LikesView({collection: this.collection});
 }

 public show(params) {
 this.model = new Like({id: params.id});
 this.view = new FullLikeView({model: this.model});
 }
}

In the preceding code snippet, we can see that the controller is named
LikesController, and it has two actions named index and show respectively.
We can also observe a method named beforeAction that is executed by Chaplin
before an action is invoked.

Chapter 9

[263]

Events
An event is an action or occurrence detected by the program that may be handled
by the program. MV* frameworks usually distinguish two kinds of events:

• User events: Applications allow users to interact with it by triggering and
handling user events, such as clicking on a button, scrolling, or submitting
a form. User events are usually handled in a view.

• Application events: The application can also trigger and handle events. For
example, some frameworks trigger an onRender event when a view has been
rendered or an onBeforeRouting event when a controller action is about to
be invoked.

Application events are a good way to adhere to the Open/Close element of the
SOLID principle. We can use events to allow developers to extend a framework
(by adding event handlers) without having to modify the framework itself.

Application events can also be used to avoid direct communication between two
components. We will cover more about them later in this chapter when we focus
on a component known as Mediator.

Router and hash (#) navigation
The router is responsible for observing URL changes and passing the execution flow
to a controller's action that matches the URL.

The majority of frameworks use a combination of a technique known as hash
navigation and the usage of the HTML5 History API to handle changes in the
URL without reloading the page.

In an SPA, the links usually contain the hash (#) character. This character was
originally designed to set the focus on one of the DOM elements on a page, but it is
used by MV* frameworks to navigate without needing to fully reload the web page.

In order to understand this concept, we are going to implement a really basic Router
from scratch. We are going to start by taking a look at how a route—a plain object
used to represent a URL—looks in the majority of MV* frameworks:

class Route {
 public controllerName : string;
 public actionName : string;

Application Architecture

[264]

 public args : Object[];

 constructor(controllerName : string, actionName : string, args :
 Object[]){
 this.controllerName = controllerName;
 this.actionName = actionName;
 this.args = args;
 }
}

The router observes the changes in the web browser's URL. When the URL changes,
the router parses it and generates a new route instance.

A really basic router could look as follows:

class Router {
 private _defaultController : string;
 private _defaultAction : string;

 constructor(defaultController : string, defaultAction : string) {
 this._defaultController = defaultController || "home";
 this._defaultAction = defaultAction || "index";
 }

 public initialize() {

 // observe URL changes by users
 $(window).on('hashchange', () => {
 var r = this.getRoute();
 this.onRouteChange(r);
 });
 }

 // Encapsulates reading the URL
 private getRoute() {
 var h = window.location.hash;
 return this.parseRoute(h);
 }

 // Encapsulates parsing an URL
 private parseRoute(hash : string) {
 var comp, controller, action, args, i;
 if (hash[hash.length - 1] === "/") {
 hash = hash.substring(0, hash.length - 1);
 }

Chapter 9

[265]

 comp = hash.replace("#", '').split('/');
 controller = comp[0] || this._defaultController;
 action = comp[1] || this._defaultAction;

 args = [];
 for (i = 2; i < comp.length; i++) {
 args.push(comp[i]);
 }
 return new Route(controller, action, args);
 }

 private onRouteChange(route : Route) {
 // invoke controller here!
 }
}

In the second part of this chapter, we are going to develop an entire
SPA framework from scratch, and we will use an extended version
of the preceding class.

The preceding class takes the name of the default constructor and the name of the
default action as its constructor arguments. The controller named home and the
action named index are used as the default values when no arguments are passed
to the constructor.

The method named initialize is used to create an event listener for the
hashchange event. Web browsers trigger this event when the window.location.
hash value changes.

For example, let's consider the current URL to be http://localhost:8080. A user
then clicks on the following link:

View Tasks

When the link is clicked, the window.location.hash value will change to "task/
index". The URL in the browser navigation panel will change, but the hash character
will prevent the page from fully reloading. The router will then invoke its getRoute
method to transform the URL into a new instance of the Route class by using the
parseRoute method.

The URL follows the following name convection:

#conrollerName/actionName/arg1/arg2/arg3/argN

Application Architecture

[266]

This means that the task/index URL is transformed into:

new Route("task", "index", []);

The majority of MV* frameworks use the HTML History API to hide
the hash (#) character from the URL, but we will not implement this
feature in our framework.

The instance of the Route class is passed to the onRouteChange method, which is
responsible for invoking the controller that matches the route.

1. Router 2. Controller

We have omitted the implementation of the onRouteChange
method on purpose but will refer to this function in the Mediator
and Dispatcher sections later in this chapter.

This is basically how hash navigation and routers work. As we can expect, in a
real framework, a router has many additional features, but the preceding example
should help us gain a good understanding of how routing works in the majority of
MV* frameworks.

Mediator
Some MV* frameworks introduce a component known as Mediator. The mediator
is a simple object all other modules use to communicate with each other.

The mediator usually implements the publish/subscribe design pattern (also known
as pub/sub). This pattern enables modules to not depend on each other. Instead
of making direct use of other parts of the application, modules communicate
through events.

Modules can listen for and react to events but also publish events of their own to
give other modules the chance to react. This ensures loose coupling of application
modules, while still allowing for ease of information exchange.

Chapter 9

[267]

The mediator can also help us to allow developers to extend our framework (by
subscribing to events) without actually having to modify the framework itself. As
we saw in Chapter 4, Object-Oriented Programming with TypeScript, this is a good
thing because it adheres to the Open/Close principle in the SOLID principles.

We are going to avoid the internal details of how a mediator works for now, but we
can take a look at an example of the public interface of a mediator:

interface IMediator {
 publish(e : IAppEvent) : void;
 subscribe(e : IAppEvent) : void;
 unsubscribe(e : IAppEvent) : void;
}

In the previous section, we omitted the details about how the router invokes a
controller because the framework that we are going to develop will use a mediator:

class Router {
 // ...
 private onRouteChange(route : Route) {
 this.meditor.publish(new AppEvent("app.dispatch", route, null));
 }
}

The preceding code snippet showcases how the router avoids invoking the
controller's action directly, and instead, it publishes an event using a mediator.

1. Router 2. Mediator 3. Controller

Dispatcher
There was something in the previous code snippet that may have caught your
attention: the event name is app.dispatch.

The app.dispatch event refers to an entity known as Dispatcher. This means that
the router is sending an event to the dispatcher and not to a controller:

class Dispatcher {
 // ...
 public initialize() {
 this.meditor.subscribe(
 new AppEvent("app.dispatch", null, (e: any, data? : any) => {
 this.dispatch(data);

Application Architecture

[268]

 })
);
 }

 // Create and dispose controller instances
 private dispatch(route : IRoute) {
 // 1. Dispose previous controller
 // 2. Create instance of new controller
 // 3. Invoke controller action using Mediator
 }
 // ...
}

As we can see in this code snippet, the dispatcher is responsible for the creation of
new controllers and the disposal of old controllers. When a router finishes parsing
a URL, it will pass an instance of the Route class to the dispatcher using a mediator.
The dispatcher then disposes the previous controller creates an instance of the new
controller, and invokes the controller action using a mediator.

1. Router 2. Mediator 3. Dispatcher

4. Controller

Client-side rendering and Virtual DOM
We are already familiar with the basics of client-side rendering. We know client-
side rendering requires a template and some data to generate HTML as output, but
we haven't mentioned some performance details that we need to consider when
selecting an MV* framework.

Manipulating the DOM is one of the main potential performance bottlenecks in
SPAs. For this reason, it is interesting to compare how frameworks render the views
internally before we decide to work with one or another.

Some frameworks render a view whenever the model changes, and there are two
possible ways to know when a model has changed:

• The first one is to check for changes using an interval (this operation is
sometimes referred as a dirty check)

• The second option is to use an observable model

Chapter 9

[269]

The observable approach is much more efficient than using a time interval because
the observable model will only consume processing time when it has actually
changed. On the other hand, the interval will consume processing time even
when the model has not changed.

When to render is important, but we also need to consider how to render.
Some frameworks manipulate the DOM directly and others use an in-memory
representation of the DOM known as Virtual DOM. Virtual DOM is much more
efficient because JavaScript is able to manipulate the in-memory representation
of the DOM much faster than the DOM itself.

User interface data binding
User interface (UI) data binding is a design pattern that aims to simplify
development of graphic UI applications. UI data binding binds UI elements
to an application domain model.

A binding creates a link between two properties such that when one changes, the
other one is updated to the new value automatically. Bindings can connect properties
on the same object, or across two different objects. Most MV* frameworks include
some sort of binding implementation between views and models.

One-way data binding
One-way data binding is a type of UI data binding. This type of data binding only
propagates changes in one direction.

In the majority of MV* frameworks, this means that any changes in the model
are propagated to the view. On the other hand, any changes in the view are not
propagated to the model.

Application Architecture

[270]

Two-way data binding
Two-way binding is used to ensure that any changes to the view are propagated
to the model and any changes in the model are propagated to the view.

Data flow
Some of the latest MV* frameworks have introduced new approaches and
techniques. One of these new concepts is the unidirectional data flow architecture
(introduced by Flux).

This unidirectional data flow architecture is based on the idea that changing the
value of a variable should automatically force recalculation of the values of variables
that depend on its value.

In an MVC application, a controller handles multiple Models and Views. Sometimes,
a View uses more than one model, and when two-way data binding is used, we can
end up with a complicated flow of data to follow. The following diagram illustrates
such a scenario:

Chapter 9

[271]

In this diagram, action does not refer to the actions in a controller.
Action here refers to user or application events.

Dataflow architecture attempts to solve this problem by restricting the flow of
data to one unique channel and direction. By doing so, the flow of data within
the application components becomes much easier to follow. The following
diagram illustrates the flow of data in an application that uses unidirectional
data flow architecture:

Application Architecture

[272]

The preceding diagram illustrates how the data always moves in the same direction.

In Flux's unidirectional data flow architecture, all the actions are directed to the
dispatcher. The dispatcher in Flux is like the dispatcher in our framework, but
instead of passing the execution flow to a controller, it passes the execution flow
to a store.

Stores are in charge of retrieving and manipulating data and can be compared
with Models in MVC. Once the data has been modified in some way, it is passed
to the views.

Views, just like in MVC, are responsible for rendering the data as HTML and handling
user events (actions). If the event requires some data to be modified in some way,
the Views will send an action to the dispatcher instead of manipulating its model, as
would happen in an application with two-way data binding support.

The data always moves in the same direction and in circles, which makes the
execution flow of a large dataflow application much easier to debug and predict
than that of a two-way data binding MVC application.

Web components and shadow DOM
Some frameworks use the term web component to refer to reusable user interface
widgets. Web components allow developers to define custom HTML elements.
For example, we could define a new HTML <map> tag to display a map. Web
components can import their own dependencies and use client-side templates
to render their own HTML using a technology known as shadow DOM.

Shadow DOM allows the browser to use HTML, CSS, and JavaScript within a web
component. Shadow DOM is useful when developing large applications because it
helps to prevent CSS, HTML, and JavaScript conflicts between components.

Some of the existing MV* frameworks (for example, Polymer) can be
used to implement real web components. While other frameworks
(for example, React) use the term web components to refer to reusable
user interface widgets, those components cannot be considered
real web components because they don't use the web components
technology stack (custom elements, HTML templates, shadow DOM
and HTML imports).

Chapter 9

[273]

Choosing an application framework
We can create a SPA from scratch, but usually we pick up an existing framework
before creating our own. One of the main problems of choosing a JavaScript SPA
framework is that there are too many choices.

The latest and greatest JavaScript framework comes around every sixteen minutes.

 - Allen Pike

I would personally recommend considering a framework or another depending on
the features that you think that you will need to achieve your goals.

For example, if we are going to work on an application with not really complex
views and forms, Backbone.js or one of its derivations (Marionette.js, Chaplin, and so
on) should work for us. However, if our application is expected to have many forms
and complex views, Ember.js or AngularJS might be a better option.

If you need some extra help when choosing one framework over
another, you should visit http://todomvc.com. TodoMVC is a project
that offers the same application (a task manager) implemented using
MV* concepts in most of the popular JavaScript MV* frameworks today.

http://todomvc.com

Application Architecture

[274]

Writing an MVC framework from scratch
Now that we have a good idea about the common components of an MV* application
framework, we are going to try to implement our own framework from scratch.

The framework that we are about to develop has not been designed
to be used in a real professional environment. Real MV* frameworks
have thousands of features and have been under intense development
for months and even years before becoming stable.
This framework has been developed not to be the most efficient or
the most maintainable MV* framework available, but to be a good
learning resource.

Our application will feature controllers, templates, views, and models as well as
a router, a mediator, and a dispatcher. Let's take a look at the role of each of these
components in our framework:

• Application: This is the root component of an application. The application
component is in charge of the initialization of all the internal components of
the framework (mediator, router, and dispatcher).

• Mediator: The mediator is in charge of the communication between all the
other components in the application.

• Application Events: Application events are used to send information from
one component to another. An application event is identified by an identifier
known as a topic. The components can publish application events as well as
subscribe and unsubscribe to application events.

• Router: The router observes the changes in the browser URL and creates
instances of the Route class that are then sent to the Dispatcher using an
application event.

• Routes: These are used to represent a URL. The URLs use naming
conventions that can be used to identify which controller and action should
be invoked.

• Dispatcher: The dispatcher receives instances of the Route class, which are
used to identify the required controller. The dispatcher can then dispose the
previous controller and create a new controller instance if necessary. Once
the controller has been initialized, the dispatcher passes the execution flow to
the controller using an application event.

Chapter 9

[275]

• Controllers: Controllers are used to initialize views and models. Once the
views and models are initialized, the controller passes the execution flow to
one or more models using an application event.

• Models: Models are in charge of the interaction with the HTTP API as well
as data manipulation in memory. This involves data formatting as well
as operations such as the addition or deletion of data. Once the Model has
finished manipulating the data, it is passed to one or more views using
an application event.

• Views: Views are in charge of the load and compilation of templates. Once
the template has been loaded, the views wait for data to be sent by the
models. When the data is received, it is combined with the templates to
generate HTML code, which is appended to the DOM. Views are also in
charge of the binding and unbinding of UI events (click, focus, and so on).

The following diagram can help us to understand the interaction between the
available components:

Now that we have a basic idea about the overall architecture of our framework,
let's start a new project.

Application Architecture

[276]

Prerequisites
Just like we have been doing in the previous chapters of this book, it is recommended
to create a new project and configure an automated development workflow
using Gulp.

You can try to create the framework and final application following the steps
described in the following sections, or you can download the companion source code
to get a copy of the finished application.

We are going to start by installing the following runtime dependencies with npm:

npm init

npm install animate.css bootstrap datatables handlebars jquery q --
save

We also need to install the following development dependencies:

npm browser-sync browserify chai gulp gulp-coveralls gulp-tslint
gulp-typescript gulp-uglify karma karma-chai karma-mocha karma-sinon
mocha run-sequence sinon vinyl-buffer vinyl-source-stream --save-dev

Now, let's install the required type definition files using tsd:

tsd init

tsd install jquery bootstrap handlebars q chai sinon mocha
jquery.dataTables highcharts --save

The application uses the following directory tree:

├── LICENSE
├── README.md
├── css
│ └── site.css
├── data
│ ├── nasdaq.json
│ └── nyse.json
├── gulpfile.js
├── index.html
├── karma.conf.js
├── node_modules
├── package.json
├── source
│ ├── app
│ │ └── // Chapter 10
│ └── framework
│ ├── app.ts
│ ├── app_event.ts

Chapter 9

[277]

│ ├── controller.ts
│ ├── dispatcher.ts
│ ├── event_emitter.ts
│ ├── framework.ts
│ ├── interfaces.ts
│ ├── mediator.ts
│ ├── model.ts
│ ├── route.ts
│ ├── router.ts
│ ├── tsconfig.json
│ └── view.ts
├── test
├── tsd.json
└── typings

We will be working on the files located under the source folder during this chapter.
In the next chapter, we will create an application using our framework. Most of the
files of this application will be located under the app folder.

Now that we have a basic idea about the overall architecture of our framework, let's
proceed to implement each of its components.

The final version of the entire framework and application is included in
the companion source code.

Application events
We are going to use application events that allow the communication between two
components. For example, when a model finishes receiving the response of an HTTP
API, the response of the request will be sent from the model to a view using an
application event.

As we saw in Chapter 4, Object-Oriented Programming with TypeScript, one of the
SOLID principles is the dependency inversion principle, which states that we should
not depend upon concretions (classes) and should depend upon abstractions instead
(interfaces). We are going to try to follow the SOLID principles, so let's get started by
creating a new file named interfaces.ts inside the framework folder and declaring
the IAppEvent interface:

interface IAppEvent {
 topic : string;
 data : any;
 handler: (e: any, data : any) => void;
}

Application Architecture

[278]

An application event contains an identifier or topic and some data or an event
handler. We will understand these properties better once we get to publish and
subscribe to some events.

Let's continue by creating a new file named app_event.ts inside the framework
folder and copy the following code into it:

/// <reference path="./interfaces"/>

class AppEvent implements IAppEvent {
 public guid : string;
 public topic : string;
 public data : any;
 public handler: (e: Object, data? : any) => void;

 constructor(topic : string, data : any, handler: (e: any, data? :
any) => void) {
 this.topic = topic;
 this.data = data;
 this.handler = handler;
 }
}
export { AppEvent };

The preceding code snippet declares a class named AppEvent which implements the
IappEvent interface.

Mediator
As we already know, the mediator is a component that implements the pub/
sub design pattern and is used to avoid the direct communication between two
components.

Let's add a new interface to the interfaces.ts file:

interface IMediator {
 publish(e : IAppEvent) : void;
 subscribe(e : IAppEvent) : void;
 unsubscribe(e : IAppEvent) : void;
}

Chapter 9

[279]

As we can see in this code snippet, the IMediator interface exposes the three
methods necessary to implement the publish/subscribe design pattern, as follows:

• publish: This is used to trigger events. When we publish an event, all the
event subscribers receive it.

• subscribe: This is used to subscribe to an event, or in other words, set an
event handler for an event.

• unsubscribe: This is used to unsubscribe to an event, or in other words,
remove an event handler for an event type.

Now, let's proceed to create a new file named mediator.ts under the framework
folder and add the following code to it:

/// <reference path="./interfaces"/>

class Mediator implements IMediator {
 private _$: JQuery;
 private _isDebug;

 constructor(isDebug : boolean = false) {
 this._$ = $({});
 this._isDebug = isDebug;
 }

 public publish(e : IAppEvent) : void {
 if(this._isDebug === true) { console.log(new Date().getTime(),
 "PUBLISH", e.topic, e.data); }
 this._$.trigger(e.topic, e.data);
 }

 public subscribe(e : IAppEvent) : void {
 if(this._isDebug === true) { console.log(new Date().getTime(),
 "SUBSCRIBE", e.topic, e.handler); }
 this._$.on(e.topic, e.handler);
 }

 public unsubscribe(e : IAppEvent) : void {
 if(this._isDebug === true) { console.log(new Date().getTime(),
 "UNSUBSCRIBE", e.topic, e.data); }
 this._$.off(e.topic);
 }
}
export { Mediator };

Application Architecture

[280]

The preceding code snippet declares a class named Mediator, which implements the
IMediator interface. The Mediator constructor has a default (false) parameter that
is used to indicate if we are using the debug mode.

The debug mode is useful because when it is enabled, we will be able to observe
all the calls to the publish, subscribe, and unsubscribe methods of the mediator
without the need to use a debugger. In the following screenshot, we can observe the
kind of information that we can expect to see in the browser console when the debug
mode is enabled:

The publish, subscribe, and unsubscribe methods use the jQuery trigger, on,
and off methods respectively to execute event listeners as well as create and remove
event listeners when requested.

The default constructor also initializes a private property named _$. The value of this
property is just an empty jQuery object in memory. This object is used by jQuery to
add and remove event handlers when the trigger, on, and off method are invoked.

It important to mention that if the mediator is cleared from memory, its _$ property
will also be cleared from memory and all the application event handlers will be lost.
In the following section, we will see how the App class ensures that the mediator is
never cleared from memory.

Chapter 9

[281]

Application
The application class is the root component of an application. The application class
is in charge of the initialization of the main components of an application (router,
mediator, and dispatcher).

We are going to start by declaring a couple of interfaces required by the application
class, so let's add the following interfaces to the interfaces.td file:

interface IAppSettings {
 isDebug : boolean,
 defaultController : string;
 defaultAction : string;
 controllers : Array<IControllerDetails>;
 onErrorHandler : (o : Object) => void;
}

interface IControllerDetails {
 controllerName : string;
 controller : { new(...args : any[]): IController ;};
}

The IAppSettings interface is used to indicate the available application settings.
We can use the application settings to enable the debug mode, set the name of the
default controller and action, set the available controllers, and set a global error
handler. Let's take a look at the actual implementation of the application class:

/// <reference path="./interfaces"/>

import { Dispatcher } from "./dispatcher";
import { Mediator } from "./mediator";
import { AppEvent } from "./app_event";
import { Router } from "./router";

class App {
 private _dispatcher : IDispatcher;
 private _mediator : IMediator;
 private _router : IRouter;
 private _controllers : IControllerDetails[];
 private _onErrorHandler : (o : Object) => void;

 constructor(appSettings : IAppSettings) {
 this._controllers = appSettings.controllers;
 this._mediator = new Mediator(appSettings.isDebug || false);

Application Architecture

[282]

 this._router = new Router(this._mediator,
 appSettings.defaultController, appSettings.defaultAction);
 this._dispatcher = new Dispatcher(this._mediator,
 this._controllers);
 this._onErrorHandler = appSettings.onErrorHandler;
 }

 public initialize() {
 this._router.initialize();
 this._dispatcher.initialize();
 this._mediator.subscribe(new AppEvent("app.error", null, (e:
 any, data? : any) => {
 this._onErrorHandler(data);
 }));
 this._mediator.publish(new AppEvent("app.initialize", null,
 null));
 }
}
export { App };

The preceding code snippet declares a class named App that takes the
implementation of IAppSettings as its only constructor argument. The class
constructor initializes the class properties (dispatcher, mediator, router, controller
and global error handler).

When we create a new application, it automatically creates a new mediator, and it is
passed to both the router and the dispatcher. This means that one unique instance of
the mediator is shared by all the components in the application, or in other words,
the mediator is a singleton: it stays in memory for the entire application lifecycle.

After creating an instance of the App class, we must invoke the initialize method
to start the execution of the application. We will later see that when the router is
initialized, it uses the mediator to subscribe to the app.initialize event.

The initialize method calls the initialize method of some of the application
components (router and dispatcher). It then sets an event handler for global errors
and publishes the app.initialize event.

The mediator then invokes the event handler for the app.initialize event by the
router. This explains how the execution flow is passed from the application class to
the router class.

Chapter 9

[283]

Route
In order to be able to understand the implementation of the router class, we need
to learn about some of its dependencies first. The first of these dependencies is the
Route class.

The Route class implements the Route interface. This interface was previously
explained in this chapter, so we will not go into its details again.

interface IRoute {
 controllerName : string;
 actionName : string;
 args : Object[];
 serialize() : string;
}

We have also included the implementation of the Route class previously in this
chapter, but the method named serialize was omitted on purpose. The serialize
method transforms an instance of the Route class into a URL.

/// <reference path="./interfaces"/>

class Route implements IRoute {
 public controllerName : string;
 public actionName : string;
 public args : Object[];

 constructor(controllerName : string, actionName : string, args :
 Object[]){
 this.controllerName = controllerName;
 this.actionName = actionName;
 this.args = args;
 }

 public serialize() : string {
 var s, sargs;
 sargs = this.args.map(a => a.toString()).join("/");
 s = `${this.controllerName}/${this.actionName}/${sargs}`;
 return s;
 }
}
export { Route };

Application Architecture

[284]

Event emitter
The router also has a dependency in the EventEmitter class. This class is
particularly important because every single component (except the application
component) in the entire framework extends it.

As we already know, all the components use a mediator to communicate with each
other. The mediator is a singleton, which means that every single component in our
application needs to be provided with access to the mediator instance.

The EventEmitter class is used to reduce the amount of boilerplate code that is
necessary to achieve this and to provide developers with some helpers that facilitate
the publication and subscription of multiple application events:

interface IEventEmitter {
 triggerEvent(event : IAppEvent);
 subscribeToEvents(events : Array<IAppEvent>);
 unsubscribeToEvents(events : Array<IAppEvent>);
}

Now, let's create a file named event_emitter.ts under the framework directory
and copy the following code into it:

/// <reference path="./interfaces"/>

import { AppEvent } from "./app_event";

 class EventEmitter implements IEventEmitter{
 protected _metiator : IMediator;
 protected _events : Array<IAppEvent>;

 constructor(metiator : IMediator) {
 this._metiator = metiator;
 }

 public triggerEvent(event : IAppEvent){
 this._metiator.publish(event);
 }

 public subscribeToEvents(events : Array<IAppEvent>) {
 this._events = events;
 for(var i = 0; i < this._events.length; i++) {
 this._metiator.subscribe(this._events[i]);
 }

Chapter 9

[285]

 }

 public unsubscribeToEvents() {
 for(var i = 0; i < this._events.length; i++) {
 this._metiator.unsubscribe(this._events[i]);
 }
 }
 }
 export { EventEmitter };

When the subscribeToEvents method is invoked, the _events property is used to
store the events to which a component is subscribed.

When a component decides to remove its event handlers by using the
unsubscribeToEvents method, we don't need to pass the full list of events
again because the event emitter uses the events property to remember them.

Router
The router observes the URL for changes and generates instances of the Route class
that are then passed to the dispatcher using an application event. The Router class
implements the IRouter interface:

interface IRouter extends IEventEmitter {
 initialize() : void;
}

Let's take a look at the internal implementation of the Router class:

/// <reference path="./interfaces"/>

import { EventEmitter } from "./event_emitter";
import { AppEvent } from "./app_event";
import { Route } from "./route";

class Router extends EventEmitter implements IRouter {
 private _defaultController : string;
 private _defaultAction : string;

 constructor(metiator : IMediator, defaultController : string,
 defaultAction : string) {
 super(metiator);
 this._defaultController = defaultController || "home";
 this._defaultAction = defaultAction || "index";

Application Architecture

[286]

 }

 public initialize() {

 // observe URL changes by users
 $(window).on('hashchange', () => {
 var r = this.getRoute();
 this.onRouteChange(r);
 });

 // be able to trigger URL changes
 this.subscribeToEvents([

 // used to trigger routing on app start
 new AppEvent("app.initialize", null, (e: any, data? : any)
 => {
 this.onRouteChange(this.getRoute());
 }),

 // used to trigger URL changes from other components
 new AppEvent("app.route", null, (e: any, data? : any) => {
 this.setRoute(data); }),
]);
 }

 // Encapsulates reading the URL
 private getRoute() {
 var h = window.location.hash;
 return this.parseRoute(h);
 }

 // Encapsulates writting the URL
 private setRoute(route : Route) {
 var s = route.serialize();
 window.location.hash = s;
 }

 // Encapsulates parsing an URL
 private parseRoute(hash : string) {
 var comp, controller, action, args, i;
 if (hash[hash.length - 1] === "/") {
 hash = hash.substring(0, hash.length - 1);
 }

Chapter 9

[287]

 comp = hash.replace("#", '').split('/');
 controller = comp[0] || this._defaultController;
 action = comp[1] || this._defaultAction;

 args = [];
 for (i = 2; i < comp.length; i++) {
 args.push(comp[i]);
 }
 return new Route(controller, action, args);
 }

 // Pass control to the Dispatcher via the Mediator
 private onRouteChange(route : Route) {
 this.triggerEvent(new AppEvent("app.dispatch", route, null));
 }
}
export { Router };

We have seen this class previously in this chapter, but there are some significant
differences here. This time the Route class extends the EventEmitter class takes
a mediator and the names of the default controller and default action as its
constructor arguments.

The initialize method now includes a call to the subscribeToEvents method,
which is used to add an application event handler for the app.initialize event.
This event is used to ensure that the router parses the URL when the application
launches for the first time. The router observes the URL for changes, but when the
application is launched for the first time, there are no changes in the URL, and the
application does not invoke any controller. The router uses the app.initialize
event handler to solve this problem.

The router is also subscribed to the app.route event. The event handler of this
event uses a method named setRoute to set the browser's URL. The app.route
application event is used to allow other components to navigate to a route.

Finally, we can find the method named parseRoute, which is used to transform a
URL into an instance of the Route class, and the onRouteChange method, which is
used to publish an app.dispatch application event.

Application Architecture

[288]

Dispatcher
The dispatcher is a component used to create and dispose controllers when needed.
Disposing controllers is important because a controller can use a large number of
models and views, which can consume a considerable amount of memory.

If we have many controllers, the amount of memory consumed could become
a performance issue. One of the main goals of the dispatcher is to prevent this
potential issue.

The dispatcher implements the IDispatcher and IEventEmitter interfaces:

interface IDispatcher extends IEventEmitter {
 initialize() : void;
}

Let's take a look at the implementation of the dispatcher class:

/// <reference path="./interfaces"/>

import { EventEmitter } from "./event_emitter";
import { AppEvent } from "./app_event";

class Dispatcher extends EventEmitter implements IDispatcher {
 private _controllersHashMap : Object;
 private _currentController : IController;
 private _currentControllerName : string;

 constructor(metiator : IMediator, controllers :
 IControllerDetails[]) {
 super(metiator);
 this._controllersHashMap = this.getController(controllers);
 this._currentController = null;
 this._currentControllerName = null;
 }

We should be starting to become familiar with how the mediator works at this point.
Every component inherits from the EventEmitter class and uses its methods to
subscribe to some events in the method named initialize.

Later in this chapter, we will be able to observe that some classes (Controllers,
Views, and Models) also have a method named dispose, which is used to unsubscribe
to the methods to which the component subscribed in the initialize method.

 // listen to app.dispatch events
 public initialize() {
 this.subscribeToEvents([

Chapter 9

[289]

 new AppEvent("app.dispatch", null, (e: any, data? : any) => {
 this.dispatch(data);
 })
]);
 }

This hash map is used to be able to find a controller as fast as possible when a new
route needs to be dispatched The following method is used to generate a hash map
that uses the controller name as the key and the controller constructor as values:

private getController(controllers : IControllerDetails[]) : Object {
 var hashMap, hashMapEntry, name, controller, l;

 hashMap = {};
 l = controllers.length;

 if(l <= 0) {
 this.triggerEvent(new AppEvent(
 "app.error",
 "Cannot create an application without at least one
 contoller.",
 null));
 }

 for(var i = 0; i < l; i++) {
 controller = controllers[i];
 name = controller.controllerName;
 hashMapEntry = hashMap[name];
 if(hashMapEntry !== null && hashMapEntry !== undefined) {
 this.triggerEvent(new AppEvent(
 "app.error",
 "Two controller cannot use the same name.",
 null));
 }
 hashMap[name] = controller.controller;
 }
 return hashMap;
 }

The following method is responsible for the creation, initialization, and disposal of
controller instances; the code is commented to facilitate its understanding:

private dispatch(route : IRoute) {
 var Controller =
 this._controllersHashMap[route.controllerName];

 // try to find controller

Application Architecture

[290]

 if (Controller === null || Controller === undefined) {
 this.triggerEvent(new AppEvent(
 "app.error",
 `Controller not found: ${route.controllerName}`,
 null));
 }
 else {
 // create a controller instance
 var controller : IController = new
 Controller(this._metiator);

 // action is not available
 var a = controller[route.actionName];
 if (a === null || a === undefined) {
 this.triggerEvent(new AppEvent(
 "app.error",
 `Action not found in controller: ${route.controllerName}
 - + ${route.actionName}`,
 null));
 }
 // action is available
 else {
 if(this._currentController == null) {
 // initialize controller
 this._currentControllerName = route.controllerName;
 this._currentController = controller;
 this._currentController.initialize();
 }
 else {
 // dispose previous controller if not needed
 if(this._currentControllerName !== route.controllerName) {
 this._currentController.dispose();
 this._currentControllerName = route.controllerName;
 this._currentController = controller;
 this._currentController.initialize();
 }
 }
 // pass flow from dispatcher to the controller
 this.triggerEvent(new AppEvent(
 `app.controller.${this._currentControllerName}
 .${route.actionName}`,
 route.args,
 null
));

Chapter 9

[291]

 }
 }
 }
}
export { Dispatcher };

After disposing the previous controller (if necessary) and creating a new controller,
this controller is initialized. When a controller is initialized, its initialize method
is invoked, and as we know, it is then that a component subscribes to some events.

When the dispatcher publishes the following application event, the controller
is already subscribed to it and the execution flow is passed to the controller's
event handler:

`app.controller.${this._currentControllerName}.
${route.actionName}`

Controller
Controllers are in charge of the initialization and disposal of views and models. Since
controllers must be disposable by the dispatcher, a controller must implement the
dispose method from the IController interface:

interface IController extends IEventEmitter {
 initialize() : void;
 dispose() : void;
}

The models and views are set as properties of the classes that extend the Controller
class. The Controller class itself does not provide us with any functionality, as it is
meant to be implemented by developers when working on an application.

/// <reference path="./interfaces"/>

import { EventEmitter } from "./event_emitter";
import { AppEvent } from "./app_event";

class Controller extends EventEmitter implements IController {

 constructor(metiator : IMediator) {
 super(metiator);
 }

 public initialize() : void {

Application Architecture

[292]

 throw new Error('Controller.prototype.initialize() is abstract you
must implement it!');
 }

 public dispose() : void {
 throw new Error('Controller.prototype.dispose() is abstract you
must implement it!');
 }
}
export { Controller };

Even though it is not forced by the framework, it is recommended you use the
mediator to pass the control to one of the models (not views) from the controller.

Model and model settings
Models are used to interact with a web service and transform the data returned by
it. Models allow us to read, format, update, or delete the data returned by a web
service. Models implement the IModel and IEventEmitter interfaces:

interface IModel extends IEventEmitter {
 initialize() : void;
 dispose() : void;
}

A model needs to be provided with the URL of the web service that it consumes.
We are going to use a class decorator named ModelSettings to set the URL of the
service to be consumed.

We could inject the service URL via its constructor, but it is considered a bad practice
to inject data (as opposed to a behavior) via a class constructor. The decorator
includes some comments to facilitate its understanding:

/// <reference path="./interfaces"/>

import { EventEmitter } from "./event_emitter";

function ModelSettings(serviceUrl : string) {
 return function(target : any) {
 // save a reference to the original constructor
 var original = target;

 // a utility function to generate instances of a class
 function construct(constructor, args) {
 var c : any = function () {

Chapter 9

[293]

 return constructor.apply(this, args);
 }
 c.prototype = constructor.prototype;
 var instance = new c();
 instance._serviceUrl = serviceUrl;
 return instance;
 }

 // the new constructor behaviour
 var f : any = function (...args) {
 return construct(original, args);
 }

 // copy prototype so intanceof operator still works
 f.prototype = original.prototype;

 // return new constructor (will override original)
 return f;
 }
}

In the next chapter, we will be able to apply the decorator as follows:

@ModelSettings("./data/nasdaq.json")
class NasdaqModel extends Model implements IModel {
//...

Let's take a look at the internal implementation of the Model class:

class Model extends EventEmitter implements IModel {

 // the values of _serviceUrl must be set using the ModelSettings
 decorator
 private _serviceUrl : string;

 constructor(metiator : IMediator) {
 super(metiator);
 }

 // must be implemented by derived classes
 public initialize() {
 throw new Error('Model.prototype.initialize() is abstract and
 must implemented.');
 }

 // must be implemented by derived classes

Application Architecture

[294]

 public dispose() {
 throw new Error('Model.prototype.dispose() is abstract and
 must implemented.');
 }

 protected requestAsync(method : string, dataType : string, data) {
 return Q.Promise((resolve : (r) => {}, reject : (e) => {}) => {
 $.ajax({
 method: method,
 url: this._serviceUrl,
 data : data || {},
 dataType: dataType,
 success: (response) => {
 resolve(response);
 },
 error : (...args : any[]) => {
 reject(args);
 }
 });
 });
 }

 protected getAsync(dataType : string, data : any) {
 return this.requestAsync("GET", dataType, data);
 }

 protected postAsync(dataType : string, data : any) {
 return this.requestAsync("POST", dataType, data);
 }

 protected putAsync(dataType : string, data : any) {
 return this.requestAsync("PUT", dataType, data);
 }

 protected deleteAsync(dataType : string, data : any) {
 return this.requestAsync("DELETE", dataType, data);
 }
}
export { Model, ModelSettings };

Just like in the case of the controllers, the initialize and dispose methods
are meant to be implemented by the derived models, so they don't contain any
logic here.

Chapter 9

[295]

The requestAsync method is used to retrieve data from a web service or static file.
As we can see, the method uses the jQuery AJAX API and Q's Promises.

The class also includes the getAsync, postAsync, putAsync, and deleteAsync
methods, which are helpers to perform GET, POST, PUT, and DELETE requests
respectively.

Even though it is not forced by the framework, it is recommended you use the
mediator to pass the control to one of the views from the model.

View and view settings
Views are used to render templates and handle UI events. Just like the rest of the
components in our application, the View class extends the EventEmitter class:

interface IView extends IEventEmitter {
 initialize() : void;
 dispose() : void;
}

A view needs to be provided with the URL of the template that it consumes. We are
going to use a class decorator named ViewSettings to set the URL of the template to
be consumed.

We could inject the template URL via its constructor, but it is considered a bad
practice to inject data (as opposed to a behavior) via a class constructor. The
decorator includes some comments to facilitate its understanding:

/// <reference path="./interfaces"/>

import { EventEmitter } from "./event_emitter";
import { AppEvent } from "./app_event";

function ViewSettings(templateUrl : string, container : string) {
 return function(target : any) {
 // save a reference to the original constructor
 var original = target;

 // a utility function to generate instances of a class
 function construct(constructor, args) {
 var c : any = function () {
 return constructor.apply(this, args);
 }
 c.prototype = constructor.prototype;

Application Architecture

[296]

 var instance = new c();
 instance._container = container;
 instance._templateUrl = templateUrl;
 return instance;
 }

 // the new constructor behaviour
 var f : any = function (...args) {
 return construct(original, args);
 }

 // copy prototype so instanceof operator still works
 f.prototype = original.prototype;

 // return new constructor (will override original)
 return f;
 }
}

In the next chapter, we will be able to apply the decorator as follows:

@ViewSettings("./source/app/templates/market.hbs", "#outlet")
class MarketView extends View implements IView {
//...

Let's take a look at the View class. Just like in the case of the controllers and models,
the initialize and dispose methods are meant to be implemented by the derived
views, so they don't contain any logic here.

class View extends EventEmitter implements IView {

 // the values of _container and _templateUrl must be set using
 the ViewSettings decorator
 protected _container : string;
 private _templateUrl : string;

 private _templateDelegate : HandlebarsTemplateDelegate;

 constructor(metiator : IMediator) {
 super(metiator);
 }

 // must be implemented by derived classes
 public initialize() {
 throw new Error('View.prototype.initialize() is abstract and
 must implemented.');

Chapter 9

[297]

 }

 // must be implemented by derived classes
 public dispose() {
 throw new Error('View.prototype.dispose() is abstract and must
 implemented.');
 }

The view class includes two new methods (named bindDomEvents and
unbindDomEvents) that must be implemented by their derived classes. As we can
guess from their names, these methods should be used to set (bindDomEvents) and
unset (unbindDomEvents) UI event handlers:

 // must be implemented by derived classes
 protected bindDomEvents(model : any) {
 throw new Error('View.prototype.bindDomEvents() is abstract
 and must implemented.');
 }

 // must be implemented by derived classes
 protected unbindDomEvents() {
 throw new Error('View.prototype.unbindDomEvents() is abstract
 and must implemented.');
 }

The following asynchronous methods use promises and are used to load a
template (loadTemplateAsync), compile it (compileTemplateAsync), cache it
(getTemplateAsync), and render it (renderAsync)—all the methods are private
except renderAsync, which is mean to be used by the derived views:

 // asynchroniusly loads a template
 private loadTemplateAsync() {
 return Q.Promise((resolve : (r) => {}, reject : (e) => {}) => {
 $.ajax({
 method: "GET",
 url: this._templateUrl,
 dataType: "text",
 success: (response) => {
 resolve(response);
 },
 error : (...args : any[]) => {
 reject(args);
 }
 });
 });

Application Architecture

[298]

 }

 // asynchroniusly compile a template
 private compileTemplateAsync(source : string) {
 return Q.Promise((resolve : (r) => {}, reject : (e) => {}) => {
 try {
 var template = Handlebars.compile(source);
 resolve(template);
 }
 catch(e) {
 reject(e);
 }
 });
 }
 // asynchroniusly loads and compile a template if not done
 already
 private getTemplateAsync() {
 return Q.Promise((resolve : (r) => {}, reject : (e) => {}) => {
 if(this._templateDelegate === undefined ||
 this._templateDelegate === null) {
 this.loadTemplateAsync()
 .then((source) => {
 return this.compileTemplateAsync(source);
 })
 .then((templateDelegate) => {
 this._templateDelegate = templateDelegate;
 resolve(this._templateDelegate);
 })
 .catch((e) => { reject(e); });
 }
 else {
 resolve(this._templateDelegate);
 }
 });
 }

 // asynchroniusly renders the view
 protected renderAsync(model) {
 return Q.Promise((resolve : (r) => {}, reject : (e) => {}) => {
 this.getTemplateAsync()
 .then((templateDelegate) => {
 // generate html and append to the DOM
 var html = this._templateDelegate(model);

Chapter 9

[299]

 $(this._container).html(html);

 // pass model to resolve so it can be used by
 // subviews and DOM event initializer
 resolve(model);
 })
 .catch((e) => { reject(e); });
 });
 }
}
export { View, ViewSettings };

Framework
The framework file is used to provide access to all the components in the framework
from one single file. This means that when we implement an application using our
framework, we will not need to import a different file for each component:

/// <reference path="./interfaces"/>

import { App } from "./app";
import { Route } from "./route";
import { AppEvent } from "./app_event";
import { Controller } from "./controller";
import { View, ViewSettings } from "./view";
import { Model, ModelSettings } from "./model";

export { App, AppEvent, Controller, View, ViewSettings, Model,
ModelSettings, Route };

Summary
In this chapter, we understood what a single-page web application is, what its
common components are, and what the main characteristics of this architecture are.

We also created our own MV* framework. This practical experience and knowledge
will help us to understand many of the available MV* frameworks.

In the next chapter, we will try to put in practice many of the concepts that we have
learned in this book by creating a full SPA using the framework that we created in
this chapter.

[301]

Putting Everything Together
In this chapter, we are going to put into practice the majority of the concepts that we
have covered in the previous chapters.

We will develop a small single-page web application using the SPA framework that
we developed in Chapter 9, Application Architecture.

This application will allow us to find out how the NASDAQ and NYSE stocks are
doing on a particular day. It will not be a very large application, but it will be big
enough to demonstrate the advantages of working with TypeScript and using a
good application architecture.

We will write some classes and several functions. Some of these functions will be
asynchronous (Chapter 1, Introducing TypeScript; Chapter 3, Working with Functions;
Chapter 4, Object-Oriented Programming with TypeScript; and Chapter 5, Runtime).
We will also consume some decorators provided by our SPA framework
(Chapter 8, Decorators).

To complete the chapter, we will create an automated build to facilitate the
development process (Chapter 2, Automating Your Development Workflow), improve the
application performance (Chapter 6, Application Performance), and ensure that it works
correctly by writing some unit and integration tests (Chapter 7, Application Testing).

In this chapter, we will aim to help you gain confidence with TypeScript and the
SPA architecture. We need to focus on the SOLID principles and the separation of
concerns. Our goal is to create an application that is maintainable and testable, and
an application that can grow over time and which components can be reused in
future applications.

Putting Everything Together

[302]

Prerequisites
In this application, we will use the tools and the directory tree that we created in the
previous chapter. You can use the tsd.json and package.json files included in
the companion source code to install the required npm packages and type definition
files. Refer to the prerequisites section under the Writing an MVC framework from
scratch section in Chapter 9, Application Architecture, for additional information about
the prerequisites of this application.

The application's requirements
We will develop a small application that will allow users to see a list of stock symbols.
A stock symbol represents a company that trades its shares on a stock exchange.

The application home page will display stock symbols from two popular stock
exchanges: NASDAQ (National Association of Securities Dealers Automated
Quotations) and NYSE (New York stock exchange).

As you can see in the following screenshot, the web application requires a top
menu containing links that allow the user to see the stock symbols in one of the
aforementioned stock exchanges. The list of stock symbols will be displayed in a
table, which will include some basic details about the stocks, such as the price of
a share in the last sale or the name or the company:

Chapter 10

[303]

The last column in the table contains some buttons that will allow users to navigate
to a second screen that displays a stock quote. A stock quote is just a summary of the
pricing performance details of the stock for a given period of time.

The stock quote screen will display a line graph that is used by the brokers to see
how the price of the shares (the y axis) has evolved over time (the x axis). We can
display multiple lines to visualize the evolution of the opening price (the price of the
shares at the beginning of the day), the closing price (the price of a share at the end of
the day), the high price (the highest selling price of the share in a given day), and the
low price (the lowest selling price of the share in a given day).

The application's data
As we explained in the previous chapter, we need an application backend that allows
us to query the data from a web browser using AJAX requests in order to develop an
SPA. This means that we are going to need an HTTP API.

We will use a freely available public HTTP API that will allow us to obtain real
stock quote data. For the list of available stock symbols, we will use static JSON files.
These JSON files have been generated by transforming a CSV file available on the
NASDAQ website. The external HTTP API will also provide the line graph data.

Putting Everything Together

[304]

In total, we will be using three sets of data:

• Market data: This data is stored in static JSON files. These files have been
generated from a CSV file provided by the NASDAQ official website and
can be found in the companion example.

• Stock quote data: This has been provided by an external web service.
The external data provider that we will use in this example is a company
called Markit, specializing in financial information services. We will use
their market data API (v2), which is available for free and has been well
documented at http://dev.markitondemand.com/.

• Chart data: This is also provided in a web service by Markit.

The application's architecture
We will develop an SPA using our own framework. As we saw in the previous
chapter, our framework can map a URL with an action in a controller.

Our application will have three main screens. Each screen uses a different URL,
as follows:

• #market/nasdaq displays stocks in the NASDAQ stock market
• #market/nyse displays stocks in the NYSE stock market
• #symbol/quote/{symbol} displays a stock quote for the selected stock symbol

Each of the main URLs mentioned earlier will be implemented as a controller's
action in our application. In the previous chapter, you saw that URLs adhere to the
following naming convention: #controllerName/actionName/arg1/arg2/argN.

If we extrapolate this naming convention to the URLs mentioned in the
preceding list, we can deduce that our application will have two controllers:
MarketController and SymbolController.

The MarketController controller will be implemented using two models and
one view:

• NasdaqModel: This loads a list of NASDAQ stocks from a static JSON file
• NyseModel: This loads a list of NYSE stocks from a static JSON file
• MarketView: This renders the list of either the NASDAQ or NYSE stocks

http://dev.markitondemand.com/

Chapter 10

[305]

Each component communicates with the other using application events and the
mediator. The execution order of the market screen looks as follows:

3. MarketView

2. NasdaqModel

2. NyseModel

1. MarketController

The SymbolController controller will be implemented using two models and
two views:

• QuoteModel: This loads a stock quote for the selected symbol
• ChartModel: This loads symbol performance data points for the last year
• ChartView: This displays stock performance in an interactive chart
• SymbolView: This displays the last price change for the selected symbol

Each component communicates with the other using application events and the
mediator. The execution order of the stock quote screen looks as follows:

1. SymbolController 2. QuoteModel 3. SymbolView 4. ChartModel 5. ChartView

The application's file structure
Presented in this section is the folder structure of the application we are going to
build. In the root directory, you can find the application access point (index.html),
as well as some of the automation tools' configuration files (gulpfile.js, karma.
conf.js, package.json, and so on). You can also observe the typings folder,
which contains some type definition files.

Just as in the previous chapters, the application source code is located under the
source directory. The unit and integration tests are located in the test folder. The
following is the folder structure of the application:

├── LICENSE
├── README.md
├── css
│ └── site.css
├── data
│ ├── nasdaq.json

Putting Everything Together

[306]

│ └── nyse.json
├── gulpfile.js
├── index.html
├── karma.conf.js
├── node_modules
├── package.json
├── source
│ ├── app
│ │ ├── controllers
│ │ │ ├── market_controller.ts
│ │ │ └── symbol_controller.ts
│ │ ├── main.ts
│ │ ├── models
│ │ │ ├── chart_model.ts
│ │ │ ├── nasdaq_model.ts
│ │ │ ├── nyse_model.ts
│ │ │ └── quote_model.ts
│ │ ├── templates
│ │ │ ├── market.hbs
│ │ │ └── symbol.hbs
│ │ └── views
│ │ ├── chart_view.ts
│ │ ├── market_view.ts
│ │ └── symbol_view.ts
│ └── framework
│ └── framework.ts (Chapter 9)
├── test
│ ├── app
│ └── framework
├── tsd.json
└── typings

Under the source directory, you can observe two folders, named app and
framework. We created all the files under the framework directory in the previous
chapter. This time, we will focus on the application, which means we will be working
under the app directory most of the time.

Inside the app directory, you can find some directories named controllers,
models, templates, and views. As you can guess, these directories are used to store
controllers, models, templates, and views respectively.

You can also find the main.ts file inside the app directory. This file is the application's
entry point, but because we are going to use ES6 modules, we are not going to be able
to load this file in a web browser using a <script/> tag.

Chapter 10

[307]

Configuring the automated build
Just as we did in Chapter 2, Automating Your Development Workflow, we need to create
a configuration file to configure the desired Gulp tasks. So let's create a file named
gulpfile.js and import the required Gulp plugins:

var gulp = require("gulp"),
 browserify = require("browserify"),
 source = require("vinyl-source-stream"),
 buffer = require("vinyl-buffer"),
 tslint = require("gulp-tslint"),
 tsc = require("gulp-typescript"),
 karma = require("karma").server,
 coveralls = require('gulp-coveralls'),
 uglify = require("gulp-uglify"),
 runSequence = require("run-sequence"),
 header = require("gulp-header"),
 browserSync = require("browser-sync"),
 reload = browserSync.reload,
 pkg = require(__dirname + "/package.json");

We need to remember that before we can import one of these packages, we must first
install them using npm.

Once the plugins have been imported, we can proceed to write our first task, which is
used to check for some basic name convention rules and to avoid some bad practices
(the TypeScript files are under the source and tests directories):

gulp.task("lint", function() {
 return gulp.src([
 "source/**/**.ts",
 "test/**/**.test.ts"
])
 .pipe(tslint())
 .pipe(tslint.report("verbose"));
});

We also need another task to compile our TypeScript code into JavaScript code. As
we are working with decorators, we need to ensure that we are using TypeScript 1.5
or higher and that the experimentalDecorators compiler settings and target are
configured as in the following code snippet:

var tsProject = tsc.createProject({
 target : "es5",
 module : "commonjs",

Putting Everything Together

[308]

 experimentalDecorators: true,
 typescript: typescript
});

Once we have set up the compiler options, we can proceed to write some tasks.
The first one will compile the application code:

gulp.task("build", function() {
 return gulp.src("src/**/**.ts")
 .pipe(tsc(tsProject))
 .js.pipe(gulp.dest("build/source/"));
});

The second one will compile the unit test and integration test code. We need to use
a new project object to avoid potential runtime issues:

var tsTestProject = tsc.createProject({
 target : "es5",
 module : "commonjs",
 experimentalDecorators: true,
 typescript: typescript
});

gulp.task("build-test", function() {
 return gulp.src("test/**/*.test.ts")
 .pipe(tsc(tsTestProject))
 .js.pipe(gulp.dest("/build/test/"));
});

The two previous tasks should be enough to generate JavaScript, but because we
are using CommonJS modules, we need to write a task to bundle the CommonJS
modules into a package that can be loaded and executed in a web browser. As we
saw in Chapter 2, Automating Your Development Workflow, we will create a few Gulp
tasks that use Browserify for this purpose.

We need a task to bundle the application code:

gulp.task("bundle-source", function () {
 var b = browserify({
 standalone : 'TsStock',
 entries: "build/source/app/main.js",
 debug: true
 });

 return b.bundle()
 .pipe(source("bundle.js"))

Chapter 10

[309]

 .pipe(buffer())
 .pipe(gulp.dest("bundled/source/"));
});

We further need a task to bundle the application's unit tests:

gulp.task("bundle-unit-test", function () {
 var b = browserify({
 standalone : 'test',
 entries: "build/test/bdd.test.js",
 debug: true
 });

 return b.bundle()
 .pipe(source("bdd.test.js"))
 .pipe(buffer())
 .pipe(gulp.dest("bundled/test/"));
});

We need a final task to bundle the application's integration tests:

gulp.task("bundle-e2e-test", function () {
 var b = browserify({
 standalone : 'test',
 entries: "build/test/e2e.test.js",
 debug: true
 });

 return b.bundle()
 .pipe(source("e2e.test.js"))
 .pipe(buffer())
 .pipe(gulp.dest("bundled/e2e-test/"));
});

We will return to the gulpfile.js configuration file later in this chapter to add
some additional tasks that will be in charge of running the application and its
automated tests, as well as some optimizations.

Until now, we have been working on the configuration of an
automated development workflow. From now on, we will focus
on the application components. A component is composed of four
core elements: template, style rules, services, and the component's
logic. You will be able to find the style rules and templates in
the companion code samples, but we will mainly focus on the
TypeScript files (services and the component's logic) here.

Putting Everything Together

[310]

The application's layout
Let's create a new file, named index.html, under the application's root directory.
The following code snippet is an altered version of the real index.html page,
which is included with the companion source code:

 <ul class="nav navbar-nav">

 NASDAQ

 NYSE

 <div id="outlet">
 <!-- HTML GENERATED BY VIEWS GOES HERE -->
 </div>

As you can see in the preceding HTML snippet, the code has two important elements.
The first significant element is the URL of the two links. These links include the hash
character (#), and they will be processed by the application's router.

The second significant element is the element that uses outlet as ID. This node
is used by our framework as a container where the DOM of each new page is
dynamically generated and added to the page.

Implementing the root component
As you saw in the previous chapter, the root component of our custom MVC
framework is the App component. So, let's create a new file, named main.ts,
under the source/app directory.

We can access all the interfaces in the framework by adding a reference to the
source/interfaces.ts as follows:

/// <reference path="../framework/interfaces"/>

We can then access all the components in the framework by importing the
framework/framework.ts file:

import { App, View } from "../framework/framework";

Chapter 10

[311]

Our application will have two controllers. The files don't exist yet but we can
add the two import statements anyway:

import { MarketController } from
"./controllers/market_controller";
import { SymbolController } from
"./controllers/symbol_controller";

At this point, we need to create an object literal that implements the IAppSettings
interface. This object allows us to set some basic configuration, such as the name
of the default controller or action, or a global error handler. However, the most
important field in the object literal is the controller field, which must be an array of
IControllerDetails. If you need additional details about the IControllerDetails,
refer to the previous chapter.

var appSettings : IAppSettings = {
 isDebug : true,
 defaultController : "market",
 defaultAction : "nasdaq",
 controllers : [
 { controllerName : "market", controller : MarketController },
 { controllerName : "symbol", controller : SymbolController }
],
 onErrorHandler : function(e : Object) {
 alert("Sorry! there has been an error please check out the console
for more info!");
 console.log(e.toString());
 }
};

We can then create the App instance and invoke the initialize method to start
executing it:

var myApp = new App(appSettings);
myApp.initialize();

At this point, our code does not compile because we have not defined the
MarketController and SymbolController controllers yet. Let's define our
first controller.

Putting Everything Together

[312]

Implementing the market controller
Let's create a new file named market_controller.ts under the app/controllers
directory. We need to import the Controller and AppEvent entities from the
framework along with some entities that are not available yet (NyseModel,
NasdaqModel and MarketView).

/// <reference path="../../framework/interfaces"/>

import { Controller, AppEvent } from "../../framework/framework";
import { MarketView } from "../views/market_view";
import { NasdaqModel } from "../models/nasdaq_model";
import { NyseModel } from "../models/nyse_model";

In an application that uses our framework, a controller must extend the base
Controller class and implement the IController class:

class MarketController extends Controller implements IController {

We are not forced to declare the views and models used by the controller as its
properties, but it is recommended:

 private _marketView : IView;
 private _nasdaqModel : IModel;
 private _nyseModel : IModel;

It is also recommended that you set the value of all the controller's dependencies
inside the controller constructor:

 constructor(metiator : IMediator) {
 super(metiator);
 this._marketView = new MarketView(metiator);
 this._nasdaqModel = new NasdaqModel(metiator);
 this._nyseModel = new NyseModel(metiator);
 }

Instead of setting the value of all the controller's dependencies
inside the controller constructor, it would be even better to use an
IoC container to automatically inject the controller's dependencies
via its constructor. Though, implementing an IoC container is not
a simple task, it is beyond the scope of this book.

Chapter 10

[313]

We must implement the initialize method. The initialize method is the place
where a controller should do the following:

• Subscribe to one application event for each action available in the controller.
In this case, the controller has two actions (the nasdaq and nyse methods).

• Initialize views by invoking the View.initialize() method. In this case,
there is only one view (marketView).

• Initialize models by invoking the Model.initialize() method. In this case,
there are two models (nasdaqModel and nyseModel).
 public initialize() : void {

 // subscribe to controller action events
 this.subscribeToEvents([
 new AppEvent("app.controller.market.nasdaq", null, (e, args
 : string[]) => { this.nasdaq(args); }),
 new AppEvent("app.controller.market.nyse", null, (e, args :
 string[]) => { this.nyse(args); })
]);

 // initialize view and models events
 this._marketView.initialize();
 this._nasdaqModel.initialize();
 this._nyseModel.initialize();
 }

The dispose method is the opposite of the initialize method. If an event handler
was created in the initialize method, it should be destroyed in the dispose method.
The unsubscribeToEvents helper will unsubscribe all the events that were subscribed
using the subscribeToEvents helper:

 // dispose views/models and stop listening to controller actions
 public dispose() : void {

 // dispose the controller events
 this.unsubscribeToEvents();

 // dispose views and model events
 this._marketView.dispose();
 this._nasdaqModel.dispose();
 this._nyseModel.dispose();
 }

Putting Everything Together

[314]

As you saw in the previous chapter, the dispatcher uses the controller's initialize
and dispose methods to free some memory when it is not needed any more. If we
forget to dispose one of the views used by the controller in its dispose method,
the view could end up staying in memory forever.

The actions of a controller should not perform any kind of data manipulation
(models should be in charge of that) or user interface events management (views
should be in charge of that). Ideally, a controller's actions should only publish one
or more application events so the execution flow goes from the controller to one or
more models.

In the case of the nasdaq action, the controller publishes one of the events to which
the nasdaq model subscribed when the initialize method of NasdaqModel was
invoked:

 // display NASDAQ stocks
 public nasdaq(args : string[]) {
 this._metiator.publish(new AppEvent("app.model.nasdaq.change",
 null, null));
 }

In the case of the nyse action, the controller publishes one of the events to which
the nyse model was subscribed when the initialize method of NyseModel was
invoked:

 // display NYSE stocks
 public nyse(args : string[]) {
 this._metiator.publish(new AppEvent("app.model.nyse.change",
 null, null));
 }
}
export { MarketController };

Implementing the NASDAQ model
Let's create a new file named nasdaq_model.ts under the app/models directory.
We can then import the Model, AppEvent, and ModelSettings from our framework
and declare a new class named NasdaqModel. The new class must extend the base
Model class and implement the IModel interface.

We will also use the ModelSettings decorator to indicate the path of a web service
or static data file. In this case, we will use a static data file, which can be found in the
companion source code:

/// <reference path="../../framework/interfaces"/>

import { Model, AppEvent, ModelSettings } from "../../framework/

Chapter 10

[315]

framework";
@ModelSettings("./data/nasdaq.json")
class NasdaqModel extends Model implements IModel {

 constructor(metiator : IMediator) {
 super(metiator);
 }

The model will subscribe to the app.model.nasdaq.change event when the
initialize method is invoked. This is actually the event that the controller's
action published to pass the execution flow from the controller to the model:

 // listen to model events
 public initialize() {
 this.subscribeToEvents([
 new AppEvent("app.model.nasdaq.change", null, (e, args) => {
 this.onChange(args); })
]);
 }

Just like in the previous controller, the unsubscribeToEvents helper will unsubscribe
all the events that were subscribed using the subscribeToEvents helper:

 // dispose model events
 public dispose() {
 this.unsubscribeToEvents();
 }

This is the event handler of the app.model.nasdaq.change event. The event handler
uses the getAsync method to load the data from the service URL that we previously
specified using the ModelSettings decorator. The getAsync method is inherited
from the base Model class, which we implemented in the previous chapter.

The getAsync method returns a promise; if the promise is fulfilled, the data is
formatted and then passed to a view:

 private onChange(args) : void {
 this.getAsync("json", args)
 .then((data) => {

 // format data
 var stocks = { items : data, market : "NASDAQ" };

 // pass controll to the market view
 this.triggerEvent(new AppEvent("app.view.market.render",
 stocks, null));
 })

Putting Everything Together

[316]

 .catch((e) => {
 // pass control to the global error handler
 this.triggerEvent(new AppEvent("app.error", e, null));
 });
 }
}
export { NasdaqModel };

Implementing the NYSE model
Let's create a new file named nyse_model.ts under the app/models directory.
The NyseModel class is almost identical to the NasdaqModel class, so we will not
go into too much detail:

@ModelSettings("./data/nyse.json")
class NyseModel extends Model implements IModel {
 // ...
}
export { NyseModel };

All we need to do is copy the contents of the nasdaq_model.ts file into the
nyse_model.ts file and replace (case sensitive) nasdaq with nyse.

This kind of code duplication is known as a code smell. A code smell
indicates that something is wrong and we need to refactor (improve)
it. We could avoid a lot of code duplication by using Generic types.
However generic types were not used here because we though that
showcasing the usage of decorators would be more valuable for the
readers of this book.

Implementing the market view
Let's create a new file named market_view.ts under the app/views directory.
We can then import the AppEvent, ViewSettings, and Route components from
our framework and declare a new class named MarketView. The new class must
extend the base View class and implement the IView interface.

We will also use the ViewSettings decorator to indicate the path, a Handlebars
template, and a selector, which is used to find the DOM element that will be used
as the parent node of the view's HTML:

/// <reference path="../../framework/interfaces"/>

import { View, AppEvent,ViewSettings, Route } from "../../framework/
framework";

Chapter 10

[317]

@ViewSettings("./source/app/templates/market.hbs", "#outlet")
class MarketView extends View implements IView {

 constructor(metiator : IMediator) {
 super(metiator);
 }

This view is subscribed to the app.view.market.render event and its handler
invokes the renderAsync method, which has been inherited from the base view
class. This method returns a promise, which is fulfilled if the template passed to
the ViewSettings decorator has been loaded and compiled successfully.

For the promise to be fulfilled, the view must be successfully rendered and appended
to the DOM element that matches the selector passed to the ViewSettings decorator:

 initialize() : void {
 this.subscribeToEvents([
 new AppEvent("app.view.market.render", null, (e, args : any)
 => {
 this.renderAsync(args)
 .then((model) => {
 // set DOM events
 this.bindDomEvents(model);
 })
 .catch((e) => {
 // pass control to the global error handler
 this.triggerEvent(new AppEvent("app.error", e,
 null));
 });
 }),
]);
 }

Just like in the previous controller and model, the unsubscribeToEvents helper will
unsubscribe all the events that were subscribed to using the subscribeToEvents
helper:

 public dispose() : void {
 this.unbindDomEvents();
 this.unsubscribeToEvents();
 }

Putting Everything Together

[318]

Views are responsible for the management of user events. The components in
our framework use the initialize method to subscribe to application events,
and the dispose method to unsubscribe to application events. In the case of user
events, we will use the bindDomEvents method to set the user events, and the
unbindDomEvents method to dispose of them:

 // initializes DOM events
 protected bindDomEvents(model : any) {
 var scope = $(this._container);
 // handle click on "quote" button
 $(".getQuote").on('click', scope, (e) => {
 var symbol = $(e.currentTarget).data('symbol');
 this.getStockQuote(symbol);
 });

 // make table sortable and searchable
 $(scope).find('table').DataTable();
 }

 // disposes DOM events
 protected unbindDomEvents() {
 var scope = this._container;
 $(".getQuote").off('click', scope);
 var table = $(scope).find('table').DataTable();
 table.destroy();
 }

One of the user events observes clicks on the quote buttons. When the event is
triggered, the following event handler is invoked:

 private getStockQuote(symbol : string) {
 // navigate to route using route event
 this.triggerEvent(new AppEvent(
 "app.route",
 new Route("symbol", "quote", [symbol]),
 null));
 }
}

As you can see, this event handler creates a new route and publishes an
app.route event. This will cause the router to navigate to the quote action
in the SymbolController: export { MarketView };

Chapter 10

[319]

Implementing the market template
The template loaded and compiled by MarketView looks as follows:

<div class="panel panel-default fadeInUp animated">
 <div class="panel-body">
 <h2>{{market}}</h2>
 <table class="table table-responsible table-condensed">
 <thead>
 <tr>
 <th>Symbol</th>
 <th>Name</th>
 <th>Last Sale</th>
 <th>Market Capital</th>
 <th>IPO year</th>
 <th>Sector</th>
 <th>industry</th>
 <th>Quote</th>
 </tr>
 </thead>
 <tbody>
 {{#each items}}
 <tr>
 <td><span class="label label-
 default">{{Symbol}}</td>
 <td>{{{Name}}}</td>
 <td>{{LastSale}}</td>
 <td>{{MarketCap}}</td>
 <td>{{IPOyear}}</td>
 <td>{{Sector}}</td>
 <td>{{industry}}</td>
 <td>
 <button class="btn btn-primary btn-sm getQuote"
 data-symbol="{{Symbol}}">
 <span class="glyphicon glyphicon-stats" aria-
 hidden="true">
 Quote
 </button>
 </td>
 </tr>
 {{/each}}
 </tbody>
 </table>
 </div>
</div>

Putting Everything Together

[320]

Implementing the symbol controller
Let's create a new file named symbol_controller.ts under the app/controllers
directory. This file will contain a new controller named SymbolController. The
implementation of this controller is largely similar to the implementation of the
MarketController controller, so we are going to avoid going into too much detail.

The main difference between this controller and the previous controller is that the
new controller uses two new models (QuoteModel and ChartModel) and two new
views (SymbolView and ChartView):

/// <reference path="../../framework/interfaces"/>

import { Controller, AppEvent } from "../../framework/framework";
import { QuoteModel } from "../models/quote_model";
import { ChartModel } from "../models/chart_model";
import { SymbolView } from "../views/symbol_view";
import { ChartView } from "../views/chart_view";

class SymbolController extends Controller implements IController {
 private _quoteModel : IModel;
 private _chartModel : IModel;
 private _symbolView : IView;
 private _chartView : IView;

 constructor(metiator : IMediator) {
 super(metiator);
 this._quoteModel = new QuoteModel(metiator);
 this._chartModel = new ChartModel(metiator);
 this._symbolView = new SymbolView(metiator);
 this._chartView = new ChartView(metiator);
 }

 // initialize views/ models and strat listening to controller
 actions
 public initialize() : void {

 // subscribe to controller action events
 this.subscribeToEvents([
 new AppEvent("app.controller.symbol.quote", null, (e, symbol
 : string) => { this.quote(symbol); })
]);

Chapter 10

[321]

 // initialize view and models events
 this._quoteModel.initialize();
 this._chartModel.initialize();
 this._symbolView.initialize();
 this._chartView.initialize();
 }

 // dispose views/models and stop listening to controller actions
 public dispose() : void {

 // dispose the controller events
 this.unsubscribeToEvents();

 // dispose views and model events
 this._symbolView.dispose();
 this._quoteModel.dispose();
 this._chartView.dispose();
 this._chartModel.dispose();
 }

It is also important to notice that the quote action passes the control to the
QuoteModel model:

 public quote(symbol : string) {
 this.triggerEvent(new AppEvent("app.model.quote.change",
 symbol, null));
 }
}
export { SymbolController };

Implementing the quote model
Let's create a new file named quote_model.ts under the app/models directory.
This is the third model that we have implemented so far. This means that you
should be familiar with the basics already, but there are some minor additions
in this particular model. The first thing that you will notice is that the web service
is no longer a static file:

/// <reference path="../../framework/interfaces"/>

import { Model, AppEvent, ModelSettings } from "../../framework/
framework";

Putting Everything Together

[322]

@ModelSettings("http://dev.markitondemand.com/Api/v2/Quote/jsonp")
class QuoteModel extends Model implements IModel {

 constructor(metiator : IMediator) {
 super(metiator);
 }

 // listen to model events
 public initialize() {
 this.subscribeToEvents([
 new AppEvent("app.model.quote.change", null, (e, args) => {
 this.onChange(args); })
]);
 }

 // dispose model events
 public dispose() {
 this.unsubscribeToEvents();
 }

The second thing that you should notice is that the onChange function invokes a new
function (formatModel) when the promise returned by getAsync is fulfilled:

 private onChange(args) : void {
 // format args
 var s = { symbol : args };
 this.getAsync("jsonp", s)
 .then((data) => {

 // format data
 var quote = this.formatModel(data);

 // pass controll to the market view
 this.triggerEvent(new AppEvent("app.view.symbol.render",
 quote, null));
 })
 .catch((e) => {
 // pass control to the global error handler
 this.triggerEvent(new AppEvent("app.error", e, null));
 });
 }

Chapter 10

[323]

The new function just formats the response of the web services to be displayed in
a user-friendly manner. We could have done this formatting inside the promise
fulfillment callback. Using a separate function makes the code significantly cleaner.

 private formatModel (data) {
 data.Change = data.Change.toFixed(2);
 data.ChangePercent = data.ChangePercent.toFixed(2);
 data.Timestamp = new
 Date(data.Timestamp).toLocaleDateString();
 data.MarketCap = (data.MarketCap / 1000000).toFixed(2) + "M.";
 data.ChangePercentYTD = data.ChangePercentYTD.toFixed(2);
 return { quote : data };
 }
}
export { QuoteModel };

Implementing the symbol view
Let's create a new file named symbol_view.ts under the app/views directory.
The SymbolView view receives the stock data formatted by the QuoteModel model
through the mediator using the app.view.symbol.render event:

/// <reference path="../../framework/interfaces"/>

import { View, AppEvent,ViewSettings } from "../../framework/
framework";

@ViewSettings("./source/app/templates/symbol.hbs", "#outlet")
class SymbolView extends View implements IView {

 constructor(metiator : IMediator) {
 super(metiator);
 }

This view is just like MarketView; it subscribes to some events using the
initialize method, and later disposes of those events using the dispose
method. The SymbolView view can also initialize and dispose of user events
using the bindDomEvents and unbindDomEvents methods.

Putting Everything Together

[324]

However, there is one significant difference between SymbolView and MarketView.
After the promise returned by renderAsync has been fulfilled and the user events
have been initialized, the execution flow is passed to another model via the app.
model.chart.change event. At this point, the stock quote screen is visible but it is
missing the chart.

 initialize() : void {
 this.subscribeToEvents([
 new AppEvent("app.view.symbol.render", null, (e, model :
 any) => {
 this.renderAsync(model)
 .then((model) => {
 // set DOM events
 this.bindDomEvents(model);

 // pass control to chart View
 this.triggerEvent(new
 AppEvent("app.model.chart.change", model.quote.Symbol,
 null));
 })
 .catch((e) => {
 this.triggerEvent(new AppEvent("app.error", e,
 null));
 });
 }),
]);
 }

 public dispose() : void {
 this.unbindDomEvents();
 this.unsubscribeToEvents();
 }

 // initializes DOM events
 protected bindDomEvents(model : any) {
 var scope = $(this._container);
 // set DOM events here
 }

 // disposes DOM events
 protected unbindDomEvents() {
 var scope = this._container;
 // kill DOM events here
 }
}
export { SymbolView };

Chapter 10

[325]

Implementing the chart model
Let's create a new file named chart_model.ts under the app/models directory.
This is the last model that we will implement:

/// <reference path="../../framework/interfaces"/>

import { Model, AppEvent, ModelSettings } from "../../framework/
framework";

@ModelSettings("http://dev.markitondemand.com/Api/v2/InteractiveChart/
jsonp")
class ChartModel extends Model implements IModel {

 constructor(metiator : IMediator) {
 super(metiator);
 }

 // listen to model events
 public initialize() {
 this.subscribeToEvents([
 new AppEvent("app.model.chart.change", null, (e, args) => {
 this.onChange(args); })
]);
 }

 // dispose model events
 public dispose() {
 this.unsubscribeToEvents();
 }

This time, we will need to format both the request and the response. We need to
encode the request parameter because the web service requires a group of settings
that cannot be sent as parameters in the URL without encoding it first.

The onChange method uses the browser's JSON.stringify function to transform
the required web service arguments (a JSON object) into a string. The string is then
encoded using the browser's encodeURIComponent function so it can be used as a
parameter in the URL.

Putting Everything Together

[326]

The response is formatted using a method named formatModel:

 private onChange(args) : void {

 // format args (more info at http://dev.markitondemand.com/)
 var p = {
 Normalized : false,
 NumberOfDays : 365,
 DataPeriod : "Day",
 Elements :[
 { Symbol : args , Type : "price", Params :["ohlc"] }
]
 };
 var queryString = "parameters=" +
 encodeURIComponent(JSON.stringify(p));

 this.getAsync("jsonp", queryString)
 .then((data) => {

 // format data
 var chartData = this.formatModel(args, data);

 // pass controll to the market view
 this.triggerEvent(new AppEvent("app.view.chart.render",
 chartData, null));
 })
 .catch((e) => {
 // pass control to the global error handler
 this.triggerEvent(new AppEvent("app.error", e, null));
 });
 }

This function is used to format the response from dev.markitondemand.com,
so it can be used by Highcharts with ease. Highcharts is a library that allow us to
render graphs on the client side:

 private formatModel(symbol, data) {
 // more info at http://dev.markitondemand.com/
 // and http://www.highcharts.com/demo/line-time-series
 var chartData = {
 title : symbol,
 series : []
 };

Chapter 10

[327]

 var series = [
 { name : "open", data :
 data.Elements[0].DataSeries.open.values },
 { name : "close", data :
 data.Elements[0].DataSeries.close.values },
 { name : "high", data :
 data.Elements[0].DataSeries.high.values },
 { name : "low", data :
 data.Elements[0].DataSeries.low.values }
];

 for(var i = 0; i < series.length; i++) {
 var serie = {
 name: series[i].name,
 data: []
 }

 for(var j = 0; j < series[i].data.length; j++){
 var val = series[i].data[j];
 var d = new Date(data.Dates[j]).getTime();
 serie.data.push([d, val]);
 }

 chartData.series.push(serie);
 }
 return chartData;
 }
}
export { ChartModel };

Implementing the chart view
Let's create a new file named chart_view.ts under the app/views directory. This
is the last view that we will implement. This view is almost identical to the previous
ones, but there is one significant difference. As the chart is rendered by Highcharts
and not Handlebars, we will avoid passing a template URL to the ViewSettings
decorator:

/// <reference path="../../framework/interfaces"/>

import { View, AppEvent,ViewSettings } from "../../framework/
framework";

Putting Everything Together

[328]

@ViewSettings(null, "#chart_container")
class ChartView extends View implements IView {

 constructor(metiator : IMediator) {
 super(metiator);
 }

The ChartView view is subscribed to the app.view.chart.render event. The event
handler is invoked when the ChartModel model has been loaded and formatted,
but since we don't need to render a Handlebars template, we will not invoke the
renderAsync method here (as we did in all the previous views), and we will invoke
a method named renderChart instead:

 initialize() : void {
 this.subscribeToEvents([
 new AppEvent("app.view.chart.render", null, (e, model : any) =>
{
 this.renderChart(model);
 this.bindDomEvents(model);
 }),
]);
 }

 public dispose() : void {
 this.unbindDomEvents();
 this.unsubscribeToEvents();
 }

 // initializes DOM events
 protected bindDomEvents(model : any) {
 var scope = $(this._container);
 // set DOM events here
 }

 // disposes DOM events
 protected unbindDomEvents() {
 var scope = this._container;
 // kill DOM events here
 }

Chapter 10

[329]

The renderChart method uses the Highcharts API (http://api.highcharts.
com/highcharts) to transform the data returned by ChartModel into a nice looking
interactive chart:

 private renderChart(model) {
 $(this._container).highcharts({
 chart: {
 zoomType: 'x'
 },
 title: {
 text: model.title
 },
 subtitle: {
 text : 'Click and drag in the plot area to zoom in'
 },
 xAxis: {
 type: 'datetime'
 },
 yAxis: {
 title: {
 text: 'Price'
 }
 },
 legend: {
 enabled: true
 },
 tooltip: {
 shared: true,
 crosshairs: true
 },
 plotOptions: {
 area: {
 marker: {
 radius: 0
 },
 lineWidth: 0.1,
 threshold: null
 }
 },
 series: model.series
 });
 }
}
export { ChartView };

http://api.highcharts.com/highcharts
http://api.highcharts.com/highcharts

Putting Everything Together

[330]

Testing the application
We can test this application using the same set of tools that we used in the previous
chapters of this book. As you already know, in order to run our unit test, we need to
create a Gulp task like the following one:

gulp.task("run-unit-test", function(cb) {
 karma.start({
 configFile : "karma.conf.js",
 singleRun: true
 }, cb);
});

We have used the Karma test runner, and we need to set its configuration using
the karma.conf.js file. The karma.conf.js file is almost identical to the one that
we used in Chapter 7, Application Testing, and will not be included here for the sake
of brevity.

We also need a task to run some end-to-end tests:

gulp.task('run-e2e-test', function() {
 return gulp.src('')
 .pipe(nightwatch({
 configFile: 'nightwatch.json'
 }));
});

The nightwatch.json file is almost identical the one that we used in Chapter 7,
Application Testing, and thus will not be included here.

Refer to the companion source code to see the content of nightwatch.json and the
karma.conf.js file, as well as some examples of unit tests and E2E tests.

Preparing the application for a
production release
Now that the application has been implemented and tested, we can prepare it for
release in a production environment.

Chapter 10

[331]

In this section, we will implement two Gulp tasks. The first task is used to compress
the output JavaScript code. Compressing the JavaScript code will improve both the
loading and execution performance of our application:

gulp.task("compress", function() {
 return gulp.src("bundled/source/bundle.js")
 .pipe(uglify({ preserveComments : false }))
 .pipe(gulp.dest("dist/"))
});

The second Gulp task that we will implement is used to add a copyright header.
The task uses some of the fields from the npm configuration file (package.json) to
generate a string, which contains the copyright details. The string is then added to
the top of the compressed JavaScript file that was generated by the previous task:

gulp.task("header", function() {

 var pkg = require("package.json");

 var banner = ["/**",
 " * <%= pkg.name %> v.<%= pkg.version %> - <%= pkg.description
 %>",
 " * Copyright (c) 2015 <%= pkg.author %>",
 " * <%= pkg.license %>",
 " * <%= pkg.homepage %>",
 " */",
 ""].join("\n");

 return gulp.src("dist/bundle.js")
 .pipe(header(banner, { pkg : pkg }))
 .pipe(gulp.dest("dist/"));
});

We could also create some extra Gulp tasks to improve the performance of our
application further. For example, we could create a task to generate a cache manifest
(a simple text file that lists the resources the browser should cache for offline access)
to implement client-side caching.

Putting Everything Together

[332]

Summary
In this chapter, we created an MVC application that allowed us to find out how
the NASDAQ and NYSE stocks were doing on a particular day. This application
is a single-page web application, and its architecture makes its components easy
to extend, reuse, maintain, and test.

The application showcases many of the concepts that we covered in the previous
chapters. We created an automated build, and we used many functions, classes,
modules, and other core language features. We also used modules and worked with
some asynchronous functions, and we used some decorators. The automated build
performs some tasks that will help us to improve the application performance and
ensures that it works correctly.

This application is not a very large JavaScript application. However, the application is
large enough to showcase the ways in which TypeScript can help us develop complex
applications that are ready to grow and adapt to changes with ease.

I hope you enjoyed this book and feel eager to learn more about TypeScript.

If you are up for a challenge and you would like to reinforce your TypeScript skills,
try the following:

You can try to achieve 100 percent test coverage in the application that we have
developed over the last two chapters. You can improve our custom SPA the
framework and introduce features such as using an IoC container or using a
unidirectional dataflow.

You can also visit the TodoMVC website (http://todomvc.com/) to find examples
of integration between TypeScript and popular MV* frameworks, such as Ember.js or
Backbone.js, to learn how to use a production-ready SPA framework.

http://todomvc.com/

[333]

Index
Symbols
@name decorator 245
@parameterTypes decorator 245
@returnType decorator 245
@type decorator 245

A
action 271
after() function 215
aggregation 105
Akamai

URL 175
AMD modules 133
annotations

about 233
and decorators 232
class decorators 233-235
decorator factory 242, 243
decorators with arguments 244
method decorators 236-238
parameter decorators 240-242
property decorators 238, 239
reflection metadata API 245-248

Any type 8
application 281, 282
application events 274-278
application programming interface

(API) 125
apply method 145, 146
applyMixins method 114
architecture, single-page application (SPA)

about 304
MarketController controller,

implementing 304

arithmetic operators 13
arrow function 84, 85
assertion 194
assignment operators 15, 16
association 105
asynchronous code

testing 217, 218
asynchronous flow control, types

composite 96
concurrent 95
series 95
waterfall 95

asynchronous functions
about 97
async 97, 98
await 97, 98

asynchronous module definition (AMD) 99
asynchronous programming

about 83
arrow functions 84-86
asynchronous functions 97, 98
callback hell 86-90
callbacks 83
generators 96
higher order functions 83
promises 90-95

Atom
about 30-32
URL 30, 31

B
beforeEach() function 215, 223
before() function 215

[334]

behavior-driven development (BDD)
about 201
URL 201

bind method 147
BitBucket

URL 34
bitwise operators 14, 15
Bower

about 41
URL 41

browserified function 49
Browserify

URL 135, 136
Browser Object Model (BOM) 12, 140
BrowserSync

URL 57

C
callback 83
callback hell 86-90
call method 145
Central Processing Unit (CPU) 166
Chai

about 198
TDD, versus BDD 219
URL 219
used, for creating specs 213-217
used, for creating suites 213-217
used, for creating test assertions 213-217

Chaplin 262
chart model, single-page application (SPA)

implementing 325, 326
circular dependency

about 136-138
URL 138

class 101
class decorators 233-235
client-side rendering 252
closures

about 158-160
private members, using with 162-164
static variables, using with 160-162

collections 260
collection views 261
CommonJS modules

runtime 134

comparison operators 13, 14
complex type serialization 248
components, TypeScript

compiler 4
IDE integration 4
language 4
language services 4

composition 105, 106
configuration testing 189
constructor 101
Continuous Integration (CI) tools 58
controller 262, 275,292
createElement property 73

D
data, single-page application (SPA)

about 303
chart data 304
market data 304
stock quote data 304

data types
any 9
array 8
Boolean 8
enum 8
number 8
string 8
void 9

declaration files 42
decorator factory 242-244
decorators

and annotations 232
prerequisites 231
with arguments 244

DefinitelyTyped
about 42
URL 43

dependency inversion (DI) principle
about 126
URL 127

depth of inheritance tree (DIT) 109
design time code 2
development workflow

about 29
Continuous Integration (CI) tools 58
package management tools 38

[335]

prerequisites 30
scaffolding tools 59
synchronized cross-device testing 55
task runners 43
test runner 53

diamond problem 110
dispatcher 267, 288-291
Document Object Model (DOM) 42, 140
don't repeat yourself (DRY) 79
double-selection structure (if else) 16
do-while expression 19
dummy 195

E
end-to-end (E2E) test

about 199
creating, with Nightwatch.js 227
running, with Nightwatch.js 210-212
running, with Selenium 210-212

Error class 189
ES6 modules

design time 131, 132
runtime 131, 132

event emitter 284, 285
event loop

about 141-143
frames 141, 142
heap 143
queue 142
stack 142

events
about 263
application events 263
user events 263

Exception class 190
exception handling

about 189
Error class 190
throw statements 190
try catch statements 190

exceptions
asserting 218, 219

execution time code 2
external modules

about 132
design time 132

F
file structure, single-page application

(SPA) 305-309
flow control statements

about 16
double-selection structure (if else) 16
do-while expression 19
for-in statement 20
for statement 20
inline ternary operator (?) 17
multiple-selection structure (switch) 17, 18
single-selection structure (if) 16
while expression 19

frames per second (FPS) 179
functions, TypeScript

declaring 64, 65
expressions 64, 65
function scope 73-6
generics 79-81
immediately functions 76-79
overloading 71, 72
specialized overloading signature 72, 73
tag functions 82, 83
tagged templates 82, 83
types 65, 66
URL 70
with default parameters 68
with optional parameters 66, 67
with rest parameters 69-71
working with 64

G
garbage collection 73
generators

about 96
URL 59

generic classes 115-117
generic constraints

about 118-121
multiple types 122

Git
about 33
URL 33, 36-38

GitHub
about 33
URL 33, 179

[336]

Google Analytics
URL 188

Google PageSpeed Insights
URL 176

GPU performance analysis
about 179
frames per second (FPS) 179, 180

Graphics Processor Unit (GPU) 166
Grunt

URL 43
Gulp

about 197
tasks execution order, managing 51, 52
URL 53
used, for building application 204-207

gulp src function 45

H
handlebars

URL 88
Hard Disk Drive (HDD) 167
HAR viewer

URL 188
hash (#) navigation 263-265
heap 143
higher order functions 83
HTTP Archive (HAR) 188

I
immediately invoked function

expression (IIFE) 76, 149
independent (free) variables 158
inheritance

about 107-109
mixins 109-114

initialize method 282, 313
inline ternary operator (?) 17
instanceof operator 236
instance properties

about 150
versus class properties 149-152

interfaces 24, 104
interface segregation principle (ISP) 125

Inversion of Control (IoC) 127
Istanbul

about 197
URL 196

item views 260

J
Java documentation

URL 200
JQuery 39

K
Karma

about 197
URL 210
used, for running unit test 207-210
configuration, URL 55

L
language features

about 4-6
ambient declarations 12
arithmetic operators 13
classes 22
comparison operators 13, 14
const 10
flow control statements 16
functions 21
interfaces 24
let 10
modules 25
type aliases 11
type guards 11
types 7
union types 10
var 10
variables 8

Last In First Out (LIFO) 142
layout, single-page application (SPA) 310
Liskov substitution principle (LSP) 123, 124
load testing 188
logical operators 14

[337]

M
mark phase 186
mark-and-sweep algorithm 186
market controller, single-page

application (SPA)
implementing 312-314

market template, single-page
application (SPA)

implementing 319
market view, single-page application (SPA)

implementing 316-318
Markit

about 304
URL 304

mediator 266, 274, 278-280
memory leak

about 183
issues, preventing 186

method decorators
about 236-238
invoking 237

method overriding 108
mixin 109, 110 111
Mocha

about 198
TDD, versus BDD 219
used, for creating specs 213-217
used, for creating suites 213-217
used, for creating test assertions 213-216

mocks 196
model

about 259, 292-295
settings 292-295

Model-View-Controller (MVC) 258
Model-View-Presenter (MVP) 258
Model-View-ViewModel (MVVM) 258
Modernizr

about 140
URL 140

module loader
about 129
Browserify 130
RequireJS 130
SystemJS 130

modules
about 25, 129, 130
AMD modules 133
CommonJS modules 134
ES6 modules 131, 132
external modules 132
SystemJS modules 136
UMD modules 135

multiple inheritance 109
multiple-selection structure (switch) 17, 18
MV* architecture 258
MVC framework

prerequisites 276, 277
writing, from scratch 274, 275

MVC framework components
application 274, 281, 282
application events 274, 277, 278
controller 291, 292
controllers 275
dispatcher 288-291
event emitter 284, 285
framework 299
mediator 274-280
models 275, 292-295
model settings 292-295
router 274, 285, 287
routes 274, 283
view 295-297
views 275
view settings 295-297

MV* frameworks
application framework, selecting 273
client-side rendering 268
collections 260
collection views 261
components 259
controllers 262
data flow 270-272
dispatcher 267, 268
events 263
features 259
hash (#) navigation 263-266
item views 260
mediator 266, 267
model 259

[338]

router 263-265
shadow DOM 272
user interface (UI) data binding 269
Virtual DOM 268
web components 272

N
namespaces 127-129
NASDAQ model, single-page

application (SPA)
implementing 314, 315

National Association of Securities
Dealers Automated Quotations
(NASDAQ) 302

netsniff.js file
URL 188

network performance
and user experience 174, 175
best practices and rules 176-178

New York stock exchange (NYSE) 302
next()function 96
Nightwatch.js

about 199
URL 212
used, for creating end-to-end tests 227
used, for running end-to-end (E2E)

test 210-213
Node.js

about 30
URL 6, 30

node package manager (npm)
about 38-40, 302
URL 38

npm init command 38
NYSE model, single-page application (SPA)

implementing 316

O
Object.defineProperty function 239
Object.getOwnPropertyDescriptor()

method 236
object-oriented programming (OOP) 100
object prototype, accessing

person.getPrototypeOf(person) 157
person.__proto__ 158
person.prototype 157

onSubmit() function 224
optional static type notation 7

P
package.json configuration

URL 40
package management tools

about 38
Bower 41
npm 38-41
tsd 42

parameter decorators 240-242
performance analysis

about 169
CPU performance analysis 180-183
garbage collector 185
GPU performance analysis 179
memory performance analysis 183-185
network performance 169-174
timing API data points 174
user experience 174

performance automation
about 186
monitoring automation 187, 188
optimization automation 187
testing automation 188, 189

performance-bookmarklet
about 171
URL 171

performance metrics
about 167
availability 167
bandwidth 168
latency 168
processing speed (clock rate) 168
response time 168
scalability 169

performance monitoring automation
about 187
real-browser monitoring 187
real user monitoring (RUM) 187
simulated browsers 187

performance testing automation
about 188
configuration testing 189
load testing 188

[339]

soak testing 189
spike testing 189
stress testing 189

Person class 101
PhantomJS

about 188, 199
URL 188

prerequisites, application testing
about 196
Chai 198
Gulp 197
Istanbul 197
Karma 197
Mocha 198
Nightwatch.js 199
PhantomJS 199
Selenium 199
Sinon.JS 198
type definitions 198

prerequisites, development workflow
about 30
Atom 30-32
Git 33
GitHub 33
Node.js 30

private members
using, with closures 162-164

promises
about 90-95
fulfilled state 90
pending state 90
rejected state 90

property decorators 238, 239
property shadowing 157
prototypes

about 148, 149
chain 156, 157
inheritance 152-156
instance properties, versus class

properties 149-152
of object, accessing 157, 158

publish/subscribe design pattern (pub/sub)
about 266
publish method 279
subscribe method 279
unsubscribe 279

Q
queue 142

R
Random Access Memory (RAM) 166
Reflect.getMetadata() function 248
reflection metadata API 245-248
render method 224
requestAsync method 295
RequireJS

URL 133
resources

Central Processing Unit (CPU) 166
Graphics Processor Unit (GPU) 166
Hard Disk Drive (HDD) 167
network throughput 167
Random Access Memory (RAM) 166
Solid State Drive (SSD) 167

resource timing
URL 169

response time
about 168
service time 168
transmission time 168
wait time 168

root component, single-page
application (SPA)

implementing 310, 311
router 254, 263-265, 274, 285-287
routes 283
runtime environment 140

S
scaffolding tool 59-61
Selenium

about 199
used, for running end-to-end (E2E)

test 210-213
serialize method 283
shadow DOM 272
shooter function 159
single-page application (SPA)

architecture 252-257, 304, 305
automated build, configuring 307-309
chart model, implementing 325, 326

[340]

chart view, implementing 327-329
data 303, 304
file structure 305, 306
layout 310
market controller, implementing 312, 313
market template, implementing 319
market view, implementing 316-318
NASDAQ model, implementing 314, 315
NYSE model, implementing 316
preparing, for production release 330, 331
prerequisites 302
requisites 302, 303
root component, implementing 310, 311
symbol controller, implementing 320, 321
symbol view, implementing 323, 324
testing 330

single-selection structure (if) 16
Sinon.JS

about 198
URL 225
used, for testing spies 220-224
used, for testing stubs 220-226

soak testing 189
software testing

about 194
assertion 194
dummy 195
mocks 196
specs 195
spies 195
stub 195
suites 195
test case 195
test coverage 196

SOLID principles
about 100, 123
dependency inversion (DI)

principle 100, 126
interface segregation principle

(ISP) 100, 125
Liskov substitution principle

(LSP) 100, 123, 124
open/closed principle (OCP) 100
single responsibility principle (SRP) 100

Solid State Drive (SSD) 167
source control tools 33-37

specs
about 195
creating, with Chai 213-217
creating, with Mono 213-216

spies
about 195
testing, with Sinon.JS 220-224

spike testing 189
stack 142
static variables

using, with closures 160, 161
stress testing 189
stubs

about 195
testing, with Sinon.JS 220-226

suites
about 195
creating, with Chai 213-217
creating, with Mono 213-216

sweep phase 186
symbol controller, single-page

application (SPA)
implementing 320, 321
quote model, implementing 321-323

symbol view, single-page application (SPA)
implementing 323

synchronized cross-device testing
about 55-57

SystemJS modules
about 136
mistakes, URL 136
URL 136

T
tag function 82
task runners

about 43-45
Gulp tasks execution order,

managing 51, 52
TypeScript application,

optimizing 48-51
TypeScript code, compiling 46, 47
TypeScript code quality, checking 45

Template Strings 72

[341]

test assertions
creating, with Chai 213-216
creating, with Mocha 213-217

test case 195
test coverage

about 196
reports, generating 228-230

test-driven development (TDD)
about 200
versus BDD, with Chai 219

test infrastructure
application, building with Gulp 204-206
E2E tests, running with

Nightwatch.js 210-213
E2E tests, running with Selenium 210-213
setting up 203, 204
unit test, running with Karma 207-210

testing planning
about 200
BDD 201
behavior-driven development (BDD) 201
TDD 200
term test plan 201
test types 201

test runner
about 53-55
Karma 53

test types
end-to-end (E2E) tests 202
full integration tests 202
partial integration tests 202
performance / load tests 202
regression tests 202
unit test 202
user acceptance tests (UAT) 202

this operator
about 144
apply method 145-148
bind method 145-148
call method 145-148
in function context 144, 145
in global context 144
URL 144

TodoMVC
URL 273

Trace Event Profiling Tool
URL 180

transpiler 4
Travis CI

configuration options, URL 58
documentation, URL 59
URL 58

try catch statement 91
type definition file 42
type guards 11
Type inference 7
TypeScript

architecture 2
asynchronous programming 83
classes 22, 23 101-104
code, compiling 46, 47
code quality, checking 45
components 3
example 26, 27
functions, working with 21, 22, 64
language features 4
plugins, URL 6
URL 4

TypeScript Definitions (tsd) 42
types, language features

about 7
optional static type notation 7

U
universal module definition (UMD) 99, 135
unsubscribeToEvents method 285
user interface (UI) data binding

about 269
one-way data binding 269
two-way data binding 270

V
validateEmail method 103
View class

container property 86
service property 87
template property 86

views
about 275-297
settings 295-297

[342]

Visual Studio (VS)
about 3
URLs 31

W
web components 272
web performance analysis

prerequisites 166
resources 166

web workers 143
while expression 19

Y
YSlow

URL 177

Thank you for buying
Learning TypeScript

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Mastering TypeScript
ISBN: 978-1-78439-966-5 Paperback: 364 pages

Build enterprise-ready, industrial strength web
applications using TypeScript and leading JavaScript
frameworks

1. Focus on test-driven development to help build
quality applications that are modular, scalable,
maintainable, and adaptable.

2. Practical examples that show you how to use
TypeScript with popular JavaScript frameworks
including Backbone, Angular, Node.js, require.
js, and Marionette.

3. Enhance your TypeScript knowledge with
in-depth discussions on language features,
third-party libraries, declaration files, and so on
using practical scenarios.

TypeScript Essentials
ISBN: 978-1-78398-576-0 Paperback: 182 pages

Develop large scale responsive web applications
with TypeScript

1. Explore the key features of TypeScript to
develop web applications of your own.

2. Take advantage of the static typing system to
improve the web development experience and
add stability to your code.

3. Discover how to effectively use type
annotations, declaration files, and ECMA script
integration with lots of code and examples.

Please check www.PacktPub.com for information on our titles

Mastering JavaScript Design
Patterns
ISBN: 978-1-78398-798-6 Paperback: 290 pages

Discover how to use JavaScript design patterns
to create powerful applications with reliable and
maintainable code

1. Learn how to use tried and true software
design methodologies to enhance your
Javascript code.

2. Discover robust JavaScript implementations
of classic as well as advanced design patterns.

3. Packed with easy-to-follow examples that
can be used to create reusable code and
extensible designs.

Mastering AngularJS Directives
ISBN: 978-1-78398-158-8 Paperback: 210 pages

Develop, maintain, and test production-ready
directives for any AngularJS-based application

1. Explore the options available for creating
directives, by reviewing detailed explanations
and real-world examples.

2. Dissect the life cycle of a directive and
understand why they are the base of the
AngularJS framework.

3. Discover how to create structured,
maintainable, and testable directives through a
step-by-step, hands-on approach to AngularJS.

 Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	Acknowledgments
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Introducing TypeScript
	The TypeScript architecture
	Design goals
	TypeScript components

	TypeScript language features
	Types
	Optional static type notation

	Variables, basic types, and operators
	Var, let, and const
	Union types
	Type guards
	Type aliases
	Ambient declarations
	Arithmetic operators
	Comparison operators
	Logical operators
	Bitwise operators
	Assignment operators

	Flow control statements
	The single-selection structure (if)
	The double-selection structure (if…else)
	The inline ternary operator (?)
	The multiple-selection structure (switch)
	The expression is tested at the top of the loop (while)
	The expression is tested at the bottom of the loop (do…while)
	Iterate on each object's properties (for…in)
	Counter controlled repetition (for)

	Functions
	Classes
	Interfaces
	Namespaces

	Putting everything together
	Summary

	Chapter 2: Automating Your Development Workflow
	A modern development workflow
	Prerequisites
	Node.js
	Atom
	Git and GitHub

	Source control tools
	Package management tools
	npm
	Bower
	tsd

	Task runners
	Checking the quality of the TypeScript code
	Compiling the TypeScript code
	Optimizing a TypeScript application
	Managing the Gulp tasks' execution order

	Test runners
	Synchronized cross-device testing
	Continuous Integration tools
	Scaffolding tools
	Summary

	Chapter 3: Working with Functions
	Working with functions in TypeScript
	Function declarations and function expressions
	Function types
	Functions with optional parameters
	Functions with default parameters
	Functions with rest parameters
	Function overloading
	Specialized overloading signatures
	Function scope
	Immediately invoked functions
	Generics
	Tag functions and tagged templates

	Asynchronous programming in TypeScript
	Callbacks and higher-order functions
	Arrow functions
	Callback hell
	Promises
	Generators
	Asynchronous functions – async and await

	Summary

	Chapter 4: Object-Oriented Programming with TypeScript
	SOLID principles
	Classes
	Interfaces
	Association, aggregation, and composition
	Association
	Aggregation
	Composition

	Inheritance
	Mixins

	Generic classes
	Generic constraints
	Multiple types in generic type constraints
	The new operator in generic types

	Applying the SOLID principles
	The Liskov substitution principle
	The interface segregation principle
	The dependency inversion principle

	Namespaces
	Modules
	ES6 modules – runtime and design time
	External modules – design time only
	AMD modules – runtime only
	CommonJS modules – runtime only
	UMD modules – runtime only
	SystemJS modules – runtime only

	Circular dependencies
	Summary

	Chapter 5: Runtime
	The environment
	The runtime
	Frames
	Stack
	Queue
	Heap
	The event loop

	The this operator
	The this operator in the global context
	The this operator in a function context
	The call, apply, and bind methods

	Prototypes
	Instance properties versus class properties
	Prototypal inheritance
	The prototype chain
	Accessing the prototype of an object
	The new operator

	Closures
	Static variables with closures
	Private members with closures

	Summary

	Chapter 6: Application Performance
	Prerequisites
	Performance and resources
	Performance metrics
	Availability
	The response time
	Processing speed
	Latency
	Bandwidth
	Scalability

	Performance analysis
	Network performance analysis
	Network performance and user experience
	Network performance best practices and rules

	GPU performance analysis
	Frames per second (FPS)

	CPU performance analysis
	Memory performance analysis
	The garbage collector

	Performance automation
	Performance optimization automation
	Performance monitoring automation
	Performance testing automation

	Exception handling
	The Error class
	The try…catch statements and throw statements

	Summary

	Chapter 7: Application Testing
	Software testing glossary
	Assertions
	Specs
	Test cases
	Suites
	Spies
	Dummies
	Stubs
	Mocks
	Test coverage

	Prerequisites
	Gulp
	Karma
	Istanbul
	Mocha
	Chai
	Sinon.JS
	Type definitions
	PhantomJS
	Selenium and Nightwatch.js

	Testing planning and methodologies
	Test-driven development
	Behavior-driven development (BDD)
	Tests plans and test types

	Setting up a test infrastructure
	Building the application with Gulp
	Running the unit test with Karma
	Running E2E tests with Selenium and Nightwatch.js

	Creating test assertions, specs, and suites with Mocha and Chai
	Testing the asynchronous code
	Asserting exceptions
	TDD versus BDD with Mocha and Chai

	Test spies and stubs with Sinon.JS
	Spies
	Stubs

	Creating end-to-end tests with Nightwatch.js
	Generating test coverage reports
	Summary

	Chapter 8: Decorators
	Prerequisites
	Annotations and decorators
	The class decorators
	The method decorators
	The property decorators
	The parameter decorators
	The decorator factory
	Decorators with arguments
	The reflection metadata API

	Summary

	Chapter 9: Application Architecture
	The single-page application architecture
	The MV* architecture
	Common components and features in the MV* frameworks
	Models
	Collections
	Item views
	Collection views
	Controllers
	Events
	Router and hash (#) navigation
	Mediator
	Dispatcher
	Client-side rendering and Virtual DOM
	User interface data binding
	One-way data binding
	Two-way data binding

	Data flow
	Web components and shadow DOM

	Choosing an application framework
	Writing an MVC framework from scratch
	Prerequisites
	Application events
	Mediator
	Application
	Route
	Event emitter
	Router
	Dispatcher
	Controller
	Model and model settings
	View and view settings
	Framework

	Summary

	Chapter 10: Putting Everything Together
	Prerequisites
	The application's requirements
	The application's data
	The application's architecture
	The application's file structure
	Configuring the automated build
	The application's layout
	Implementing the root component
	Implementing the market controller
	Implementing the NASDAQ model
	Implementing the NYSE model
	Implementing the market view
	Implementing the market template
	Implementing the symbol controller
	Implementing the quote model

	Implementing the symbol view
	Implementing the chart model
	Implementing the chart view
	Testing the application
	Preparing the application for a production release
	Summary

	Index

