
Learning
Web-based
Virtual Reality

Build and Deploy Web-based
Virtual Reality Technology
—
Srushtika Neelakantam
Tanay Pant

www.allitebooks.com

http://www.allitebooks.org

Learning
Web-based Virtual

Reality
Build and Deploy Web-based

Virtual Reality Technology

Srushtika Neelakantam

Tanay Pant

www.allitebooks.com

http://www.allitebooks.org

Learning Web-based Virtual Reality: Build and Deploy Web-based Virtual
Reality Technology

Srushtika Neelakantam Tanay Pant
Bangalore, Karnataka, India Ghaziabad, India

ISBN-13 (pbk): 978-1-4842-2709-1 ISBN-13 (electronic): 978-1-4842-2710-7
DOI 10.1007/978-1-4842-2710-7

Library of Congress Control Number: 2017935381

Copyright © 2017 by Srushtika Neelakantam and Tanay Pant

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole
or part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical
way, and transmission or information storage and retrieval, electronic adaptation, computer
software, or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the
date of publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director: Welmoed Spahr
Editorial Director: Todd Green
Acquisitions Editor: Pramila Balan
Development Editor: Matthew Moodie
Coordinating Editor: Prachi Mehta
Copy Editor: Kim Wimpsett
Compositor: SPi Global
Indexer: SPi Global
Artist: SPi Global
Cover image designed by Freepik

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC
is a California LLC and the sole member (owner) is Springer Science + Business Media
Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit
www.apress.com/rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
 versions and licenses are also available for most titles. For more information, reference our
Print and eBook Bulk Sales web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available
to readers on GitHub via the book’s product page, located at www.apress.com/978-1-4842-2709-1.
For more detailed information, please visit www.apress.com/source-code.

Printed on acid-free paper

www.allitebooks.com

mailto:orders-ny@springer-sbm.com
www.springeronline.com
mailto:rights@apress.com
www.apress.com/rights-permissions
www.apress.com/bulk-sales
www.apress.com/978-1-4842-2709-1
www.apress.com/source-code
http://www.allitebooks.org

To my beloved parents, and my brother,
without whom none of my success would be possible.

—Srushtika Neelakantam

To my parents, who gave me the dream.

—Tanay Pant

www.allitebooks.com

http://www.allitebooks.org

v

Contents at a Glance

About the Authors ��� xi

Acknowledgments �� xiii

 ■Chapter 1: Introduction to VR and WebVR �������������������������������������� 1

 ■ Chapter 2: Bringing VR to the Web and
WebVR Frameworks ��� 5

 ■ Chapter 3: Setting Up Your VR Lab and Popular
WebVR Projects �� 11

 ■Chapter 4: Introduction to A-Frame �� 17

 ■Chapter 5: From “Hello, World” to a VR Content Display �������������� 39

 ■Chapter 6: Building a VR-Based Movie Theater ���������������������������� 53

 ■Chapter 7: A-Frame Components and the Registry ���������������������� 63

 ■ Chapter 8: Version Control and Deploying Your Code
on GitHub �� 69

Index �� 81

www.allitebooks.com

http://www.allitebooks.org

vii

Contents

About the Authors ��� xi

Acknowledgments �� xiii

 ■Chapter 1: Introduction to VR and WebVR �������������������������������������� 1

Introducing Virtual Reality ��� 1

Types of VR Hardware Setup ��� 2

Web-Based Virtual Reality ��� 3

Opportunities for WebVR Applications �� 3

Current State of WebVR �� 4

Virtual Reality Devices Available in the Market ��������������������������������������� 4

Summary ��� 4

 ■Chapter 2: Bringing VR to the Web and WebVR Frameworks ��������� 5

The WebVR API �� 5

What Is MozVR? ��� 6

Is Your Browser WebVR Enabled? �� 6

WebVR Developer Tools ��� 6

A-Frame �� 6

WebVR-Boilerplate �� 8

Vizor �� 8

Summary ��� 9

www.allitebooks.com

http://www.allitebooks.org

■ Contents

viii

 ■ Chapter 3: Setting Up Your VR Lab and Popular
WebVR Projects �� 11

Google Cardboard �� 11

Oculus Rift ��� 13

HTC Vive �� 14

Other Requirements �� 14

A-Painter ��� 15

Blair Witch WebVR Experience �� 15

Quake 3 WebGL Demo �� 16

Summary ��� 16

 ■Chapter 4: Introduction to A-Frame �� 17

Introducing the A-Frame Library ��� 17

A Simple Example ��� 18

A Basic Application ��� 18

Key Features of A-Frame �� 19

The Entity-Component System �� 20

Caching Assets to Improve Performance �� 21

Mixins ��� 21

Components and Building Blocks of A-Frame �� 21

Primitives �� 22

<a-box> ��� 22

<a-camera> ��� 23

<a-cursor> ��� 23

<a-circle> �� 24

<a-collada-model> �� 25

<a-cone> ��� 26

<a-curvedimage> �� 26

www.allitebooks.com

http://www.allitebooks.org

■ Contents

ix

<a-cylinder> �� 27

<a-dodecahedron> �� 28

<a-image> ��� 28

<a-light> �� 29

<a-obj-model> ��� 29

<a-octahedron> ��� 30

<a-plane> �� 30

<a-ring> ��� 31

<a-sky> �� 31

<a-sound> ��� 32

<a-sphere> �� 32

<a-tetrahedron> �� 33

<a-torus> ��� 33

<a-torus-knot> �� 34

<a-video> ��� 34

<a-videosphere> �� 35

A-Frame Inspector ��� 35

Scene Graph ��� 36

Viewport ��� 36

Components Panel �� 37

Summary ��� 38

 ■Chapter 5: From “Hello, World” to a VR Content Display �������������� 39

Building a Simple “Hello, World” VR Application ����������������������������������� 39

bm-font-text-component �� 39

Understanding the Flow of the Application ��� 40

Building a VR Content Display Web Site �� 45

Summary ��� 52

www.allitebooks.com

http://www.allitebooks.org

■ Contents

x

 ■Chapter 6: Building a VR-Based Movie Theater ���������������������������� 53

Planning the Movie Theater ��� 53

Building 3D Models with MagicaVoxel �� 60

Getting Prebuilt Models from Clara ��� 61

Summary ��� 61

 ■Chapter 7: A-Frame Components and the Registry ���������������������� 63

Components in A-Frame �� 63

Lifecycle Methods of Components �� 64

Component�init() ��� 64

Component�update() ��� 64

Component�remove() �� 64

Component�tick() �� 64

Component�pause() and Component�play() �� 64

Built-in Components �� 65

Using A-Frame Registry Components ��� 66

Summary ��� 68

 ■ Chapter 8: Version Control and Deploying Your
Code on GitHub ��� 69

Introduction to Version Control Systems ��� 69

Advantages of Version Control �� 70

Git: All You Need to Know �� 71

Git vs� GitHub �� 72

Installing Git on Your Machine �� 72

Working with GitHub�� 73

Hosting Your VR Web Site for Free Using GitHub Pages ������������������������ 77

Summary ��� 79

Index �� 81

www.allitebooks.com

http://www.allitebooks.org

xi

About the Authors

Srushtika Neelakantam (https://srushtika.github.io) is a student in computer
science major at Sir M. Visvesvaraya Institute of Technology, Bangalore. She is a tech
speaker at Mozilla and has spoken at various national and international tech conferences.
She is a developer for the Android and web platforms. She runs a learning club in
Bangalore where she actively advocates for an open Web and teaches web literacy to
the people in her region. She is a Mozilla representative and actively contributes to the
Mozilla VR project. She’s part of the Campus Advisory Committee, which aims at making
contributions to Mozilla’s open source projects easier for students.

Tanay Pant (https://en.wikipedia.org/wiki/Tanay_Pant) is an Indian author,
speaker, hacker, innovator, and tech enthusiast. He is best known for his work on various
books about computer science, his open source contributions, and his talks at technology
conferences. He is the chief architect of Stock Wolf (www.stockwolf.net), a global virtual
stock-trading platform that aims to impart practical education about stocks and markets.
He is also an alumnus of the Mozilla Representative Program, and you can find his name
listed in the credits (www.mozilla.org/credits/) of the Firefox web browser. You can
also find articles written by him on web development at SitePoint and TutsPlus.

www.allitebooks.com

https://srushtika.github.io/
https://en.wikipedia.org/wiki/Tanay_Pant
http://www.stockwolf.net/
http://www.mozilla.org/credits/
http://www.allitebooks.org

xiii

Acknowledgments

Srushtika Neelakantam: I’d like to thank the Apress team, for their guidance throughout
publishing my first book; Ms. Pramila Balan and Ms. Prachi Mehta, for patiently handling
all my impatient queries; and all the other people at Apress, secretly and silently involved
with this book.

Thanks to Sri Krishnadevaraya Trust, the management of my college; to my
principal, Dr. M.S. Indira, for always supporting me; to my professors and mentors at my
university, Mr. Dilip. K. Sen and Dr. VijayaKarthik, who’ve always steered me in the right
direction and provided me with the right resources to achieve what I wanted; and to all
my teachers throughout my life—I have had so many wonderful things to learn from each
one of you!

Thanks to Mr. Kevin Ngo and Mr. Ram Dayal Vaishnav, for introducing me to virtual
reality and WebVR—the journey has been amazing ever since, with your guidance.
Thanks also to Mr. Shivagangadhar Kolli, for introducing me to Mozilla in my early days
of college; to Ms. Havi Hoffman, for introducing me to MozTechSpeakers and giving me
the opportunity to learn new technologies; to my mentor at Mozilla, Ms. Konstantina
Papadea, for helping me with every possible thing and providing me with the right
resources I needed to complete this book; and to my longtime friends, B.S Archana,
Athira Girish, Vineel Reddy, Galaxy Kadiyala, Harsha Vardhan, Santosh Vishwanatham,
Akshay Tiwari, Sumanth Damarla, and all my well-wishers, for always inspiring me and
supporting me in all my endeavors.

Thanks to my extended family, which consists of so many amazing people who are
always ready to share useful things and opportunities with me - you know who you are!
To my father, Mr. Manmohan Raju, for always supporting me in all my endeavors; to my
mother, Mrs. Vani Priya, for always nagging me to do the right thing; and to my amazing
little brother, Mr. Srujan Raj, for always inspiring me to learn new things.

Tanay Pant: I would like to express my warmest gratitude to the many people who saw
me through this book and to all those who provided support, read, wrote, assisted,
and offered their insights. I would like to thank my family for their huge support and
encouragement. Thank you to my father, who always inspired me to do something
different, something good, with my life. I could not have asked for a better role model in
my life! I am grateful to my mother, who has been the biggest source of positivity and a
pillar of support throughout my life.

I would like to thank Donovan Kraeker (drawvr.com) for his code contributions in
Chapter 6. I want to thank Apress for enabling me to publish this book and the Apress
team for providing smooth passage throughout the publishing process! I also would like
to thank the professors at the College of Technology – Pantnagar, who provided me with
the support I needed to write this book.

http://drawvr.com/#_blank
http://dx.doi.org/10.1007/978-1-4842-2710-7_6

■ ACknowledgments

xiv

Thank you to Dr. H. L. Mandoria, Dr. Ratnesh Prasad Srivastava, Er. Sanjay Joshi,
Er. Rajesh Shyam Singh, Er. B.K. Pandey, Er. Ashok Kumar, Er. Shikha Goswami,
Er. Govind Verma, and Er. Subodh Prasad, for your motivation. My deepest gratitude to
all the teachers who taught me from kindergarten through engineering. Last but not the
least, my thanks and appreciation go to all my friends and well-wishers, without whom
this book would not have been possible.

Thank you!

1© Srushtika Neelakantam and Tanay Pant 2017
S. Neelakantam and T. Pant, Learning Web-based Virtual Reality,
DOI 10.1007/978-1-4842-2710-7_1

CHAPTER 1

Introduction to VR and
WebVR

In this chapter, you will improve your understanding of virtual reality (VR) and web-based
virtual reality by studying the various techniques you can use to build a virtual environment
as well as web-based virtual reality. We will also cover why a web developer should learn
the various WebVR frameworks, the current state of WebVR, and finally the various VR
devices available for purchase in the market.

Introducing Virtual Reality
Virtual reality is basically a set of technologies and computer hardware that, when
combined, are used to create an immersive simulation of a three-dimensional
environment. The virtual environment is usually a replication of a real environment and
is achieved using three-dimensional settings (such as depth perception), sounds, and
instruments such as consoles to allow users to interact with it. The movement of a user is
tracked using either a head-mounted apparatus or using motion detection sensors.

Virtual reality is used in a lot of fields such as video games, engineering, education,
psychological therapy, e-commerce, marketing, and art. For example, virtual reality
is used in third-person games to provide a realistic digital environment for gamers
to interact with separate from the real world. In both engineering and education,
mechanical modeling using computer-aided design (CAD) software allows engineers
and students to manipulate and develop the models they have designed as if they were
working with a physical object.

Recently Samsung released a video on YouTube that showed people wearing VR
headsets trying to stabilize themselves on the edge of high-rise buildings. These types
of activities are used in psychological therapies. In this case, VR was helping people
overcome acrophobia. In another example, VR allows users to browse through virtual
stores and handle the objects they intend to purchase. This allows e-commerce web sites
to market their products in an effective way. Finally, Tilt Brush by Google truly awed the
world when it was first introduced. It allows users to paint with virtual paintbrushes in a
three-dimensional environment using two hand consoles. This enables artists to create
virtual pieces of art, which can be printed later using a three-dimensional printer.

Chapter 1 ■ IntroduCtIon to Vr and WebVr

2

Types of VR Hardware Setup
There are primarily two basic types of hardware setups for experiencing a virtual reality.

•	 Computer-connected: In a computer-connected VR setup, position
sensors and a high-resolution head-mounted display (HMD) are
connected to a computer system, and the various VR equipment
uses the computer system for processing jobs (see Figure 1-1).

•	 Mobile-based: A mobile-based VR setup consists only of the HMD
and is constructed with the help of a smartphone, which acts as
the display as well as providing sound output. It uses a VR mount,
which holds the smartphone and contains the lens to impart
stereoscopic vision to the user. Unlike headsets with integrated
displays that are used in computer-connected virtual reality
devices, these units are essentially enclosures that a smartphone
can be inserted into (see Figure 1-2).

Position sensor

Computer
Head-mounted display (HMD)

HDMI 2 USB

Figure 1-1. Computer-based VR setup

VR mount Smartphone Head-mounted display (HMD)

+ =

Figure 1-2. Mobile-based VR setup

Chapter 1 ■ IntroduCtIon to Vr and WebVr

3

Web-Based Virtual Reality
First conceived in the spring of 2014 at Mozilla, WebVR is an experimental JavaScript
application programming interface (API) that provides support for a large variety of
virtual reality devices via a web browser. WebVR is easy to experience because it works
seamlessly on most smartphones in such a way that a user’s experiences begin and end
in a web browser. You can just send a link to someone to share your web-based WebVR
experience with them.

The WebVR API is an amazing addition to any web developer’s toolkit. It allows you
to develop simulated environments using HTML5, CSS3, and JavaScript. Unlike with
devices such as Microsoft HoloLens and Oculus Rift, you do not need any special software
development kit (SDK) to develop VR applications or games.

With the various WebVR frameworks that have been developed, the complexity
of leveraging WebGL efficiently and writing huge chunks of JavaScript code has been
eliminated. You can now develop basic WebVR applications with just HTML5 as a
prerequisite, and the WebVR frameworks abstract away all the complicated work for you.
Using WebVR, you can create applications that run across a wide variety of platforms. In
addition, virtual reality experiences are accessible to users irrespective of the processing
power of the device because WebVR helps adjust the experience to the best that the device
can handle. This means that even low-end devices can still provide a decent VR experience.

If your browser does not support WebVR (say you’re running Safari on your Mac),
you can simply use your mouse to move your “virtual head,” or your field of view,
and use the WASD keys for moving your character (if the developer has enabled this
functionality). Hence, you can easily debug, test, and have fun developing WebVR
applications even if you have no hardware required for running WebVR applications.

Opportunities for WebVR Applications
With the release of economical and easily accessible VR mounts such as Google
Cardboard, the number of users trying VR technologies has been rising sharply.
WebVR applications do not require any special hardware for a user; they require just a
smartphone and VR mount. In addition, WebVR treats HTML5 as a first-class citizen, so
it’s easy for web developers to turn regular web sites into VR experiences.

Web sites contain a lot of data such as pictures, videos, API streams, and text, and
web developers have found ways to display all this information in a neat and concise way
using different web frameworks and libraries. Now, WebVR offers the chance to display all
these pieces of information in a realistic and impressive way in a VR environment.

For example, pictures can be displayed as portraits in a virtual art gallery. Text can
be displayed as a billboard, and the data from API streams can be dynamically used to
generate messages written on a notice board. All these different components can be
simulated realistically in a virtual environment. These are just some examples of what can
be achieved. Developers can totally revolutionize the way users experience web sites and
interact with them.

Chapter 1 ■ IntroduCtIon to Vr and WebVr

4

Current State of WebVR
There are lots of WebVR frameworks that you can employ to get started with your first
web-based virtual reality experience; they will be covered in Chapter 2. There are
also many decent visual editors for constructing VR scenes, which will help you with
professional WebVR development. Chapter 3 covers many popular projects that have
been developed using the available frameworks that will inspire you to jump-start
development using WebVR frameworks. These frameworks are being actively developed,
and new features are being added for developer communities every day. This is turning
WebVR into a huge sensation with sophisticated tools available for developing an
incredible product. The browser development teams are also evolving quickly to adapt to
the growing VR landscape.

Virtual Reality Devices Available in the Market
Virtual reality devices that can display immersive virtual environments are available
for purchase from many companies all over the world. HTC Vive, Oculus Rift, Sony
PlayStation VR, Samsung Gear VR, Google Cardboard, Google Daydream View, Microsoft
HoloLens, Razer OSVR HDK 2, Fove VR, Sulon Q, OnePlus Loop VR, LG 360 VR, Zeiss
VR One, Avegant Glyph, Zeiss VR One GX, and Homido are some of the most popular
computer-connected and mobile-based virtual reality devices available in the market.

Of these virtual reality devices, only Samsung Gear VR has Super AMOLED display
along with a proximity sensor. (AMOLED stands for “active-matrix organic light-emitting
diode.”) In Chapter 3, we will discuss which devices are best for economically practicing
the exercises given in the book.

Summary
In this chapter, you learned about virtual reality, types of hardware setups for VR devices,
web-based virtual reality, the need to develop applications utilizing web-based virtual
reality, and the current state of WebVR. You then learned about the various devices that
can run virtual reality environments available in the market.

In the next chapter, you will learn about the WebVR API and briefly look at the
W3C specifications for the WebVR API. You will also learn about MozVR and the various
WebVR frameworks that are used by WebVR developers (and that we will be using in this
book). You will also learn about the efforts being made by various browsers to support
WebVR.

http://dx.doi.org/10.1007/978-1-4842-2710-7_2
http://dx.doi.org/10.1007/978-1-4842-2710-7_3
http://dx.doi.org/10.1007/978-1-4842-2710-7_3

5© Srushtika Neelakantam and Tanay Pant 2017
S. Neelakantam and T. Pant, Learning Web-based Virtual Reality,
DOI 10.1007/978-1-4842-2710-7_2

CHAPTER 2

Bringing VR to the Web and
WebVR Frameworks

In this chapter, you will learn more about the WebVR API and quickly look at the W3C
specifications for it. You will also learn about MozVR and the various WebVR frameworks
that are used by WebVR developers (and that we will be using in this book). You will also
learn about the efforts being made by various browsers to support WebVR with the help
of MozVR’s online application.

The WebVR API
The WebVR API is an experimental JavaScript API that provides access to virtual reality
devices such as Oculus Rift, HTC Vive, Samsung Gear VR, and Google Cardboard via
a web browser. This API is currently available in the nightly builds of Firefox, in the
experimental builds of Chromium, and in Samsung Internet for Gear VR. The Editor’s
Draft of the WebVR specification has been posted on GitHub (https://w3c.github.io/
webvr/) by the World Wide Web Consortium. This specification describes support for
accessing virtual reality devices, including sensors and head-mounted displays, via the
Web. It is a pretty long document. You should try giving it a read if you are interested in
contributing to these open source browser projects and to the development of WebVR
frameworks. However, if it seems too dry, you can skip it. We’ll walk you through some of
the WebVR API specification from a high-level view in this chapter.

Hardware that enables VR applications requires high-precision and low-latency
interfaces to deliver decent and lag-free experiences. We already discussed in Chapter 1
that WebVR also aims to provide a decent experience for lower-end devices. Other
interfaces, such as device orientation events, can be repurposed to become VR input, but
doing so dilutes the interface’s original intent and often does not provide the precision
necessary for high-quality VR. The WebVR API provides purpose-built interfaces to VR
hardware, which allows developers to build realistic and comfortable VR experiences.

The best place to get involved in contributing to WebVR is the WebVR mailing
list (https://mail.mozilla.org/listinfo/web-vr-discuss). Another great place to
interact with WebVR enthusiasts is the WebVR Slack channel (https://webvr.slack.
com). Developers of these browsers as well as a lot of expert community members hang
around this channel, so it is a great place to get started.

https://w3c.github.io/webvr/
https://w3c.github.io/webvr/
http://dx.doi.org/10.1007/978-1-4842-2710-7_1
https://mail.mozilla.org/listinfo/web-vr-discuss
https://webvr.slack.com/
https://webvr.slack.com/

Chapter 2 ■ Bringing Vr to the WeB and WeBVr FrameWorks

6

What Is MozVR?
MozVR stands for the Mozilla Virtual Reality team; this team works on including
and improving support for WebVR in the Firefox web browser as well as developing
the A-Frame WebVR framework. MozVR’s web site (https://mozvr.com) consists of
information on getting started with WebVR for various devices such as iOS and Android
(using VR mounts), Oculus Rift, and HTC Vive. It also has an amazing gallery of demos
that have been built with WebVR technologies.

Is Your Browser WebVR Enabled?
If you want to know which features of WebVR are supported by which browser, then you
can make use of MozVR’s “Is WebVR Ready?” web site (https://iswebvrready.org). This
web site helps you obtain information on specific features and figure out whether they
run on a given browser. It also provides information on the state of development of these
features as well as information on how they can be enabled in case they aren’t enabled by
default in a browser.

The web site also provides information on the implementation of features such as
the WebVR API, Oculus Rift support, HTC Vive support, the Gamepad API, Gamepad
extensions, Gamepad haptics, Gamepad pose, Gamepad touchpad support, the Web
Audio API, and the Web Speech API.

WebVR Developer Tools
In the previous chapter, we discussed the current state of WebVR. We’ll now discuss some
of the frameworks and tools that are available for constructing an effective and amazing
virtual reality experience for the Web. Please note that the intention of this section is
just to get you familiar with the various tools and frameworks. Hence, this is only a brief
introduction to get you excited about the stuff that is available for developers. You will
be learning about some of these frameworks and tools in future chapters to build your
WebVR applications and will be studying them more in depth at that time.

A-Frame
A-Frame (https://aframe.io/) is an open source WebVR framework that is being
developed by the MozVR team for creating virtual reality experiences with HTML
(see Figure 2-1). You can build VR scenes that work across a wide variety of smartphones,
desktops, Oculus Rift, and HTC Vive. It basically encapsulates the complicated WebGL
and JavaScript code and allows you to build virtual reality scenes using just HTML.
A-Frame is a three.js framework, and it works on the entity-component system pattern
that we will cover more in Chapter 4. A-Frame drastically reduces the boilerplate code
and has been classically crafted for web developers. It also provides a fallback for
experiencing the same content without requiring a VR device.

https://mozvr.com/
https://iswebvrready.org/
https://aframe.io/
http://dx.doi.org/10.1007/978-1-4842-2710-7_4

Chapter 2 ■ Bringing Vr to the WeB and WeBVr FrameWorks

7

A-Frame is by far the best framework for developing web-based virtual realities; it
is also one of the fastest-evolving frameworks in this genre. There are some awesome
demo projects, along with their source code, showcased on A-Frame’s web site. A-Frame
also has an inspector that can be used to move around objects in a scene and manipulate
them. This inspector is essentially like a what-you-see-is-what-you-get (WYSIWYG) editor
for WebVR scenes that you have written using the A-Frame library. This is a relatively new
addition to A-Frame’s functionalities, and you will learn how to effectively use the editor
along with the rest of the framework in Chapter 4.

Figure 2-2 shows the default example scene opened in the online editor of the A-Frame
inspector. The various components of the scene appear on the left, and you can view
the scene from different angles. You can manipulate the objects in a three-dimensional
environment (with an x-, y-, z-axis system).

Figure 2-1. A-Frame

http://dx.doi.org/10.1007/978-1-4842-2710-7_4

Chapter 2 ■ Bringing Vr to the WeB and WeBVr FrameWorks

8

WebVR-Boilerplate
WebVR-Boilerplate (https://github.com/borismus/webvr-boilerplate) is a three.
js-based starting point for web-based virtual reality experiences. This project uses webvr-
polyfill, which is a JavaScript implementation of the WebVR specifications. webvr-polyfill
lets you view the same content if you do not have a virtual reality viewer. A-Frame uses
webvr-boilerplate and webvr-polyfill.

This project basically acts as a “getting started” example and provides a reasonable
user experience for getting in and out of virtual reality and “magic window” modes.

Vizor
Vizor (http://vizor.io/) is an online platform for creating and publishing web-based
virtual reality content. Vizor allows you to discover three-dimensional content in virtual
reality on your phone or in two dimensions in your web browser or on your tablet. Vizor
has a list of tutorials on its blog (http://blog.vizor.io), which will help you get started
with Vizor.

Vizor’s editor window has lots of features. It also has many prebuilt three-
dimensional models that you can include in your VR scene. It offers options to program
these models to add animations, group them with other models, or add them under a
hierarchy of models. There is also an option to chat with fellow community members,
which allows you to ask for help and get feedback quickly. Vizor also allows you to
publish the VR scenes that you have developed on its web site.

Figure 2-2. Online editor of A-Frame

https://github.com/borismus/webvr-boilerplate
http://vizor.io/
http://blog.vizor.io/

Chapter 2 ■ Bringing Vr to the WeB and WeBVr FrameWorks

9

Figure 2-3 shows the default layout of Vizor in Build mode.

Figure 2-3. Vizor in Build mode

Summary
In this chapter, you learned about the WebVR API and took a look at the W3C
specification for the WebVR API. You also learned about MozVR, the browsers that are
WebVR enabled, and the various WebVR frameworks and tools that are used by WebVR.
You also learned about the efforts being made by various browsers to support WebVR
with the help of MozVR’s online application.

In the next chapter, you will learn about the various hardware and software
requirements to continue with WebVR application development. You will then learn to
set up and run WebVR applications on Oculus Rift and Google Cardboard. Finally, you
will learn about the popular WebVR projects available online to get inspired by so you can
go on to build your own WebVR project.

11© Srushtika Neelakantam and Tanay Pant 2017
S. Neelakantam and T. Pant, Learning Web-based Virtual Reality,
DOI 10.1007/978-1-4842-2710-7_3

CHAPTER 3

Setting Up Your VR Lab and
Popular WebVR Projects

In this chapter, you will learn about the various hardware and software requirements to
continue with WebVR application development. You will then learn how to set up and
run WebVR applications on Oculus Rift and Google Cardboard. Finally, you will learn
about some popular WebVR projects available online to get inspired by so you can go on
to build your own WebVR project.

Google Cardboard
Google Cardboard is a virtual reality mount that is intended for use with smartphones.
It has been so named because it can be constructed using the specifications published
by Google using cardboard as the body of the VR mount. This platform is intended
as a low-cost system to increase interest and encourage developers to start building
VR applications. If you are not interested in building this yourself, you can purchase a
prebuilt Google Cardboard mount from any e-commerce store like Amazon. The cost of
the device will vary with the quality of the material that has been used to build the body of
the mount as well as the lenses. For example, a VR mount made of plastic is going to cost
more than a mount made of cardboard. Google Cardboard is the most economical option
available if you have a smartphone.

Let’s get started with Google Cardboard! First, you need to install a WebGL-
compatible web browser on your smartphone. The more processing power your phone
has and the faster it is, the better. A-Frame should work properly with mobile Safari for
iOS, Firefox for iOS, Firefox for Android, and Chrome for Android. If you are using an
iPhone, please make sure you have iOS 9.1 or greater so that the examples will work.

To start, open the web browser on your smartphone and go to A-Frame’s web site.
Our favorite demo is the Anime UI one (https://aframe.io/examples/showcase/anime-UI/).
Open it and change your phone’s orientation to landscape mode to get a better view of
the VR scene. Move your phone around and you will notice that the field of view of the VR
landscape changes. It looks like Figure 3-1.

https://aframe.io/examples/showcase/anime-UI/

Chapter 3 ■ Setting Up YoUr Vr Lab and popULar WebVr projeCtS

12

There are some things worth noticing here. First, notice that even though you are
viewing the demo in landscape orientation on a mobile screen, the movement of the
various components in the scenery with respect to each other give the whole scene a
three-dimensional look. The next thing you might notice is that your view of the scene
changes as fast as you move the smartphone. This demonstrates that the field of view
changes are tied to the accelerometer of your mobile device. Finally, notice that there is a
small VR icon on the bottom right of the screen.

This is the magic button that upon clicking will split the screen of the landscape
into two in such a way that each part of the screen fits in front of the individual lenses of
Google Cardboard for stereoscopic vision, which will help you in perceiving the WebVR
scene in 3D. You just have to open your Google Cardboard mount, fit the phone inside
the contraption, and seal the opening of the cardboard. Make sure you have carefully
stabilized your smartphone inside the cardboard and securely sealed up the VR mount.
You can now wear the Google Cardboard mount and experience the amazing VR scene
that was constructed using just HTML.

Figure 3-2 shows what the Anime UI scene looks like after you activate VR mode by
clicking the VR icon on the bottom right of the smartphone screen.

Figure 3-1. A-Frame Anime UI demo

Chapter 3 ■ Setting Up YoUr Vr Lab and popULar WebVr projeCtS

13

In the examples, we will be running all the WebVR applications that build in future
chapters in Google Cardboard for testing purposes. However, you can feel free to run your
applications in other VR mounts or devices such as Oculus Rift or HTC Vive.

Oculus Rift
Oculus Rift is a computer-connected virtual reality device that comes with a head-
mounted display and sensors called constellation and controllers. To use WebVR with
your Oculus Rift device, first you have to install the latest Oculus runtime (https://
developer3.oculus.com/downloads/). After that, you need to install either Firefox
Nightly or an experimental build of Chromium. Please note that Mac and Linux devices
are not supported by Oculus Rift and hence cannot be used for viewing WebVR content.
Ensure that your Oculus settings allow for unknown sources.

Once you have followed these steps, open A-Frame’s web site for viewing WebVR
content. Finally, click the Enter VR button to send content to the Oculus Rift headset.
You are now all set to experience WebVR content and use Oculus Rift to run and test the
applications that you will be building in later chapters of this book.

Figure 3-2. Anime UI, VR mode

https://developer3.oculus.com/downloads/
https://developer3.oculus.com/downloads/

Chapter 3 ■ Setting Up YoUr Vr Lab and popULar WebVr projeCtS

14

HTC Vive
HTC Vive is another computer-connected VR device; it has been developed by HTC and
Valve Corporation. Vive comes with sensors, an HMD, and controllers. To use WebVR
content with Firefox on Vive, you first need to install the Firefox Nightly version. Then,
download version 1.02 of the openvr_api.dll file from the OpenVR GitHub repository
(https://raw.githubusercontent.com/ValveSoftware/openvr/master/bin/win64/
openvr_api.dll). Next, save the openvr_api.dll file somewhere on your computer
where the user running Firefox can read it. In Firefox Nightly, navigate to about:config
and change the value of dom.vr.openvr.enabled to true and the value of gfx.
vr.openvr-runtime to the full path of the openvr_api.dll file. Finally, you need to restart
Firefox Nightly to be able to enjoy your WebVR content.

To run with the Chromium web browser, first install an experimental build of
Chromium. Then, in the address bar, load chrome://flags#enable-webvr and toggle
the Enable WebVR flag. Now, load chrome://flags#enable-gamepad-extensions in the
address bar and toggle the Enable Gamepad Extensions flag. Finally, launch the SteamVR
application and view the WebVR content.

Other Requirements
Once you have managed to get your hands on a VR device for testing and execution,
you can start to assemble the software requirements that you will have in order to build
web-based virtual reality applications. First, you will need a web browser. You can use any
browser that is mentioned at IsWebVRReady.org.

In addition, we will be using Git for version controlling our WebVR applications. To
install Git, download the appropriate package for your operating system from https://
git-scm.com/downloads. To test whether Git has been correctly installed on your
operating system, open your terminal, type git, and you should see the following output:

Tanays-MacBook-Air:~ tanay$ git
usage: git [--version] [--help] [-C <path>] [-c name=value]
 [--exec-path[=<path>]] [--html-path] [--man-path] [--info-path]
 [-p | --paginate | --no-pager] [--no-replace-objects] [--bare]
 [--git-dir=<path>] [--work-tree=<path>] [--namespace=<name>]
 <command> [<args>]

-----snip-----

You will also be learning to push your codebase to GitHub and deploy your WebVR
applications using GitHub Pages. That is all you’ll need in this book to start WebVR
application development.

Let’s now take a look at some of the amazing projects that have been built by people
and organizations using WebVR technologies so you can get an idea of what is possible
using WebVR.

https://raw.githubusercontent.com/ValveSoftware/openvr/master/bin/win64/openvr_api.dll
https://raw.githubusercontent.com/ValveSoftware/openvr/master/bin/win64/openvr_api.dll
https://git-scm.com/downloads
https://git-scm.com/downloads

Chapter 3 ■ Setting Up YoUr Vr Lab and popULar WebVr projeCtS

15

A-Painter
A-Painter is a Google Tilt–like creation developed by the MozVR team that allows you to
paint in virtual reality in your browser. To get started with A-Painter, head to the A-Painter
web site (https://aframe.io/a-painter/). To run this project locally, type the following
commands in your console:

git clone git@github.com:aframevr/a-painter && cd a-painter npm install
npm start

The project should now be up and running at http://localhost:8080 in your
browser. Please note that currently only the experimental Chromium build on Windows
supports the Vive controllers. (You will need to enable these flags for WebVR and the
Gamepad extensions: chrome://flags#enable-webvr and chrome://flags#enable-
gamepad-extensions.)

Blair Witch WebVR Experience
The Blair Witch WebVR experience (www.blairwitch.com/experience/) is a pretty scary
and exciting simulation of the events related to the horror movie The Blair Witch Project.
This demo (Figure 3-3) gives you ideas, not to mention goosebumps, about what kind of
interactive environments you can develop to make your WebVR a memorable experience.

Figure 3-3. Blair Witch WebVR experience

https://aframe.io/a-painter/
http://www.blairwitch.com/experience/

Chapter 3 ■ Setting Up YoUr Vr Lab and popULar WebVr projeCtS

16

Quake 3 WebGL Demo
Quake 3 WebGL Demo (http://media.tojicode.com/q3bsp/) is a mock-up of the classic
game Quake 3 (Figure 3-4). This demo gives you an idea of what is possible using WebGL,
WebVR, and artistic thinking.

Summary
In this chapter, you learned about the various hardware and software requirements for
getting started with WebVR application development. You then learned to set up and run
WebVR applications on Oculus Rift and Google Cardboard. Finally, you learned about
some popular WebVR projects to get inspired by so you can start thinking about your own
WebVR projects.

In the next chapter, you will learn about the A-Frame library for WebVR development.
Specifically, you’ll learn how to use the various components and building blocks of A-Frame,
cache assets for better performance, apply textures to objects, control the lighting and
cameras, and run WebVR applications on your system.

Figure 3-4. Quake 3 WebGL Demo

http://media.tojicode.com/q3bsp/

17© Srushtika Neelakantam and Tanay Pant 2017
S. Neelakantam and T. Pant, Learning Web-based Virtual Reality,
DOI 10.1007/978-1-4842-2710-7_4

CHAPTER 4

Introduction to A-Frame

In this chapter, you will learn about the A-Frame library for WebVR development.
Specifically, you’ll learn how to use the various components and building blocks of
A-Frame, cache assets for better performance, apply textures to objects, control the
lighting and cameras, and run WebVR applications on your system.

Introducing the A-Frame Library
The Mozilla VR team developed A-Frame (Figure 4-1) in mid-2015. A-Frame is a WebVR
framework that makes implementing virtual reality experiences quicker and easier by
letting you code with HTML without having to know the powerful yet complex WebGL.
It is open source, and the VR scenes that you can build using the A-Frame library work
across smartphones, desktop computers, and most other VR devices. The Mozilla
VR team’s goal was to interest mainstream web developers in the WebVR ecosystem.
With A-Frame, 3D virtual reality content can be easily manipulated by designers, web
developers, and a lot of other communities that do not have any experience with WebGL.

Figure 4-1. This is the A-Frame logo that includes a simple illustration of 3D objects

Chapter 4 ■ IntroduCtIon to a-Frame

18

A-Frame comes with the basic building blocks of virtual reality scenes such as
models, skies, cursors, animations, and so on. The already available templates for some
basic scenes make it easier for a web developer to get started.

You implement A-Frame in HTML with a special tag called <a-scene> that holds all
the VR content.

A Simple Example
Before coding the content for your virtual reality scene, you need to include the JavaScript
build script in the <head> tag of the HTML document.

The easiest way to do this is to include the JavaScript build from the content delivery
network (CDN), as follows:

<!-- Production Version, Minified -->
<script src="https://aframe.io/releases/0.3.2/aframe.min.js"></script>
<!-- Development Version, Uncompressed with Source Maps -->
<script src="https://aframe.io/releases/0.3.2/aframe.js"></script>

You can also download the JavaScript build to serve it locally.

•	 https://aframe.io/releases/0.3.2/aframe.min.js: Minified
version

•	 https://aframe.io/releases/0.3.2/aframe.js: Uncompressed
version with source maps

A Basic Application
The following is a simple “Hello, World” application using the A-Frame library (the result
is shown in Figure 4-2):

<!DOCTYPE>
<html>
 <head>
 <script src="https://aframe.io/releases/0.2.0/aframe.min.js"></
script>
 </head>
 <body>
 <a-scene>
 <a-box color="#4CC3D9" width="2" height="1" depth="2"
position="0 5 0" scale=" 1 2.5 1">
 </a-box>
 <a-sky color="#ECECEC"></a-sky>
 </a-scene>
 </body>
</html>

https://aframe.io/releases/0.3.2/aframe.min.js
https://aframe.io/releases/0.3.2/aframe.js

Chapter 4 ■ IntroduCtIon to a-Frame

19

Here’s an explanation of the other code:

•	 The <a-scene> tag: The complete content of the VR web site that
you are building will be contained inside this HTML tag. Apart
from being a container, it doesn’t have any other specific function.

•	 The <a-box> tag: This is a box primitive that displays a simple box.
We will discuss this in detail later in this chapter.

•	 The <a-sky> tag: The 360-degree sphere background of a virtual
reality scene is called a sky and can be specified using the <a-sky>
tag. Either it can be a plain color, which can be specified using a
hex code, or it can be a 360-degree image (also referred to as an
equirectangular image).

Hence, for the previous example, you start with the basic structure of the
HTML document. Then, inside the <head> tag, you add a reference to the JavaScript
dependency. Within the <body> tag, you add a special tag called <a-scene>, as described
in the previous list, and include all the contents of the VR web site in it.

Key Features of A-Frame
HTML is one of the easiest-to-write languages used on the Web, and virtual reality’s
association with HTML makes VR all the more usable for many developer communities.
These are some key features of A-Frame:

•	 Boilerplate code is a piece of code that has to be included in many
places through an application with little or no alteration at all.
A-Frame completely replaces the boilerplate code associated with
WebVR with a single tag: <a-scene>.

Figure 4-2. “Hello, World” application in a browser

www.allitebooks.com

http://www.allitebooks.org

Chapter 4 ■ IntroduCtIon to a-Frame

20

•	 Since the A-Frame library is compatible with many other popular
web libraries and frameworks like React.js, Angular.js, D3.js, and
so on, web developers can adapt it fairly easily.

•	 You can open the visual inspector tool in A-Frame by simply
pressing Ctrl+Alt+I in any A-Frame scene. This is supported by the
inspector component. By default, the inspector tool is already
set on the scene. You can also specify a particular build of the
inspector to option by passing a URL if you want.

The Entity-Component System
A-Frame is built on the entity-component system (ECS), as shown in Figure 4-3. It is
commonly used by the game developers and mainly stresses the inter-relationship of the
components.

An entity is a generic placeholder that has no functionality by itself, but it allows you
to associate various components with it in order to render their necessary appearance
and functionality. Components add the specific details to the entities they are plugged
into. A system manages a similar group of components and provides them with the
necessary services.

Figure 4-3 shows a rough sketch by Kevin Ngo, a VR developer who works on
A-Frame. The ECS framework allows developers to tack on various plug-and-play
components and to create their own components with customized attributes.

Figure 4-3. Kevin’s illustration of the entity-component system

Chapter 4 ■ IntroduCtIon to a-Frame

21

Caching Assets to Improve Performance
The asset management system of A-Frame is a powerful tool that allows you to place all
assets in a single place. Additionally, the assets stored and used via the asset management
system have an added advantage over those included traditionally within the individual
components/entities. These assets are preloaded when the web site is launched and are
cached for better performance during run time.

You identify an asset management system with the <a-assets></a-assets> tags,
within which you place all the assets. The following are the various assets supported by
the asset management system:

•	 <a-asset-item>: This can be a miscellaneous and infrequently
used asset like a custom 3D model.

•	 <audio>: This includes the audio files.

•	 : This includes the images.

•	 <video>: This includes the videos.

The virtual scene is completely blocked until all the assets that are included in a
particular HTML file either are fetched or error out.

Mixins
You use mixins to declare some frequently used component attributes. The components
can later use and remix one or more of these mixins. The mixins always have an ID as an
attribute, and the components access the mixins by their IDs.

<a-scene>
 <a-assets>
 <a-mixin id="black" material="color: black"></a-mixin>
 <a-mixin id="green" material="color: green"></a-mixin>
 <a-mixin id="ball" geometry="primitive: sphere"></a-mixin>
 </a-assets>
 <a-entity mixin="black sphere"></a-entity>
 <a-entity mixin="green sphere"></a-entity>
</a-scene>

The mixins are declared directly in the <a-assets> tag, as shown in the previous
code. Essentially, the mixins represent all the attributes that a particular entity should
contain. This way, it becomes easier to reuse the same kind of attributes in many entities,
without having to write them each time.

Components and Building Blocks of A-Frame
As explained earlier, a component is just a pile of data that describes the attributes of an
entity. You use these attributes to modify the appearance and functioning of the entity. For
instance, a car is an entity, and the number of gears, horsepower, and so on, are its attributes.

Chapter 4 ■ IntroduCtIon to a-Frame

22

In A-Frame, a component can be registered and configured to an entity, as shown here:

<a-entity geometry="primitive: sphere; radius: 5"
 light="type: point; color: crimson; intensity: 2.5"
 position="5 0 0">
</a-entity>

You can think of components for entities as analogous to CSS for HTML.
A lot goes on behind the scenes for these components. For instance, consider the

position component from the previous code. It is implemented as follows, which looks
fairly complex. However, this component can be readily used on the fly.

AFRAME.registerComponent('position', {
 schema: { type: 'vec3' },
 update: function () {
 var object3D = this.el.object3D;
 var data = this.data;
 object3D.position.set(data.x, data.y, data.z);
 }
});

Primitives
Primitives have a semantic name such as <a-box>. They are the entities that have their
components preset with some default attribute values. Such primitives help map the
component properties with the HTML values. They act as shorthand tools to simplify the
common entities that are otherwise complex to implement.

The <a-entity> tag is extended by all the primitives, and because of this, all the
operations that can be implemented on the <a-entity> tag can also be implemented on
the primitives, such as specifying position, adding animation, attaching components and
mixins, and so on.

The primitives API allows you to easily specify certain entities by directly using the
respective tag and enlisting the other appearance and behavior attributes.

Let’s now take a look at the various primitives offered by the A-Frame.

<a-box>
This is the simplest of all the primitives. You can use the box primitive to create a box
(cube, cuboid, bricks, and so on) of any size and color (Figure 4-4). Additionally, like any
other primitive, the box can be made to rotate or animate in a certain way by specifying
the respective attributes.

<a-box color="blue" depth="1" height="1" width="1"></a-box>

Chapter 4 ■ IntroduCtIon to a-Frame

23

You can also specify a texture to be used on the box. To do this, just add the PNG
texture image in the assets, specify an ID for it, and use the src attribute of the <a-box>
tag to specify it, as shown here:

<a-assets>

</a-assets>
<a-box src="#texture"></a-box>

<a-camera>
You can use the camera primitive to specify a particular position in the scene where the
user will be initially taken. For instance, if you have a scene with a box placed on the roof
of a room, you can use the camera primitive to position the initial view of the scene such
that the box is in the view area. To do this, you specify the position in terms of x-, y-, and
z-coordinates in the 360-degree sphere of the VR scene. By default, the camera is placed
at 0, 1.6, 0 in desktop mode and 0, 0, 0 in VR mode.

<a-camera position="0 7 5">
</a-camera>

<a-cursor>
The cursor primitive implements the click feature so that the user can interact with the
scene. By default it has a ring geometry (Figure 4-5) and is usually added as an immediate
child to the <a-camera> tag. It works a little differently than the traditional cursors since
there is no click button on a VR device or controller. With <a-cursor>, you can specify the
wait time before the click action is initiated. After the specified time elapses, the element
present at the position of the cursor is clicked.

 <a-camera>
 <a-cursor></a-cursor>
 </a-camera>

Figure 4-4. A box

Chapter 4 ■ IntroduCtIon to a-Frame

24

The cursor primitive has an attribute named fuse-timeout, which c an be used to set
the wait time (in milliseconds) for the cursor before it can trigger a fuse-based click event.
If not specified, it takes a default value of 1500.

<a-circle>
The circle primitive is similar to the box primitive. It creates a circular plane on the VR
scene (Figure 4-6).

<!-- Basic circle. -->
 <a-circle color="red" radius="10"></a-circle>
 <!-- Textured circle parallel to ground. -->
 <a-circle src="#platform" radius="20" rotation="-70 10
0"></a-circle>

Figure 4-5. The box primitive with a camera and cursor entity for triggering rotation

Chapter 4 ■ IntroduCtIon to a-Frame

25

You can make a circle parallel with the ground by rotating it around the x-coordinate
and keeping the y- and z-coordinates at 0.

<a-collada-model>
The word collada refers to collaborative design activity. This primitive allows you to
use the 3D Collada models available on the Web or created using modeling software
(Figure 4-7). You can simply include the model in the assets and refer to it using the src
attribute of this primitive.

<a-scene>
 <a-assets>
 <a-asset-item id="thor" src="thor.dae">
 </a-assets>
 <!-- Using the asset management system. -->
 <a-collada-model src="#thor"></a-collada-model>
 <!-- Defining the URL inline. Not recommended but more comfortable for web
developers. -->
 <a-collada-model src="thor.dae"></a-collada-model>
</a-scene>

Figure 4-6. The circle primitive in a browser

Chapter 4 ■ IntroduCtIon to a-Frame

26

<a-cone>
The cone primitive is used to create a 3D cone shape in a VR scene (Figure 4-8). Some of
the key attributes include the height and the radius, as shown here:

<a-cone color="tomato" radius-bottom="2" radius-top="0" height="5"
position="-15 0 4">
</a-cone>

<a-curvedimage>
The curved image primitive is used to curve the usually flat images to make them more
relevant to be included in a 360-degree VR scene. Visually, it looks like the image is pasted
onto the surface of a cylinder.

Figure 4-8. The previous code snippet displays this cone

Figure 4-7. A sample Collada model

Chapter 4 ■ IntroduCtIon to a-Frame

27

<a-curvedimage id="pana" src="#panorama-demo" transparent="true" height="2"
radius="3" theta-length="40" rotation="0 190 0" position="0 0 -2">
</a-curvedimage>

Sometimes, the image is distorted when stretched inappropriately (Figure 4-9). To avoid
this, be careful when specifying the attribute values with respect to the image’s aspect ratio.

<a-cylinder>
You can use the cylinder primitive to create 3D cylinders for implementing pipes and
curved surfaces (Figure 4-10).

<a-cylinder color="crimson" height="3" radius="1.5"></a-cylinder>

Figure 4-9. A curved image that is distorted because of an incorrect aspect ratio

Figure 4-10. The a-cylinder primitive in a browser

Chapter 4 ■ IntroduCtIon to a-Frame

28

<a-dodecahedron>
A dodecahedron is a three-dimensional model with 12 equal pentagonal faces (Figure 4-11).
This model can be implemented easily using the dodecahedron primitive.

<a-dodecahedron color="green" radius="10"></a-dodecahedron>

<a-image>
The image primitive is used to include flat-plane images as opposed to curved ones
(Figure 4-12).

<a-image src="another-image.png"></a-image>

An image can have a color attribute that can be used to give color to an image, in
which case it looks just like a 2D plane.

Figure 4-12. a-image primitive with a color attribute

Figure 4-11. A dodecahedron in a browser

Chapter 4 ■ IntroduCtIon to a-Frame

29

<a-light>
The light primitive is used to adjust the lighting in the A-Frame scene (Figure 4-13). There
can be two types of lighting types: point and ambient. As you can see from their names,
they implement the respective lighting in the scene.

<a-light type="point" color="blue" position="0 5 0"></a-light>

<a-obj-model>
Wavefront Technologies has built an advanced visualizer package, which is a 3D graphics
software package used in many sci-fi movies. The geometry definition of .OBJ is a 3D
model format for creating and sharing the 3D models.

Such 3D models can be included in a VR scene by using the obj-model primitive. Each
such model has two files, the .obj and .mtl files. Figure 4-14 shows one such 3D model.

<a-obj-model src="boat.obj" mtl="boat.mtl"></a-obj-model>

Figure 4-13. a-light illustration on a box primitive

Figure 4-14. An example of a 3D model

Chapter 4 ■ IntroduCtIon to a-Frame

30

<a-octahedron>
An octahedron is a 3D model with eight equal triangular faces (Figure 4-15). This can be
easily implemented in a VR scene using the octahedron primitive.

<a-octahedron color="#FF926B" radius="5"></a-octahedron>

<a-plane>
You can use the plane primitive to create a flat surface in a VR scene (Figure 4-16).

<a-plane src="#ground" height="100" width="100" rotation="-90 0
0"></a-plane>

Figure 4-16. a-plane primitive

Figure 4-15. An octahedron

Chapter 4 ■ IntroduCtIon to a-Frame

31

<a-ring>
You can use the ring primitive to create either a ring shape or a filled disc shape, as shown
in Figure 4-17.

<a-ring src=="#lifesaver" radius-inner="1" radius-outer="2"></a-ring>

<a-sky>
As explained earlier, the sky primitive allows you to add a 360-degree image as a
background to a particular VR scene. These images are readily available on the Internet;
alternatively, you can create a 360-degree image by using Google’s 360-degree camera
application (Figure 4-18).

<a-assets>

 </a-assets>
 <a-sky src="#sky"></a-sky>

Figure 4-17. An a-ring

Chapter 4 ■ IntroduCtIon to a-Frame

32

A 360-degree image renders perfectly as a sphere when used with the sky primitive.

<a-sound>
The sound primitive is really interesting because it allows you to wrap some sounds
within your VR scene.

<a-sound src="src: url(click.mp3)" autoplay="true" position="0 2
5"></a-sound>

The sound primitive is best experienced in VR games. It adds to the other effects for a
better experience.

<a-sphere>
The sphere primitive is different from the circle primitive in just the usual geometry. The
sphere primitive implements a 3D ball object with the required color or pattern (Figure 4-19).

<a-sphere src="#disco" radius="5" position="0 15 5"></a-sphere>

Figure 4-18. An example of a 360-degree- image

Chapter 4 ■ IntroduCtIon to a-Frame

33

<a-tetrahedron>
As the name suggests, this primitive can be used to create a tetrahedron model in a VR scene
(Figure 4-20). A tetrahedron is a polyhedron that consists of four equal triangular faces.

<a-tetrahedron color="#FF926B" radius="5"></a-tetrahedron>

<a-torus>
Love donuts? A torus (Figure 4-21) is the shape for you. This primitive implements a
donut-shaped object in a VR scene.

<a-torus color="#43A367" arc="270" radius="5" radius-tubular="0.1">
</a-torus>

Figure 4-19. a-sphere primitive used with a disco-ball image in the src attribute

Figure 4-20. A tetrahedron

Chapter 4 ■ IntroduCtIon to a-Frame

34

<a-torus-knot>
A torus knot, as shown in Figure 4-22, implements a pretzel-shaped model.

<a-torus-knot color="#B84A39" arc="180" p="2" q="7" radius="5"
radius-tubular="0.1"></a-torus-knot>

<a-video>
The video primitive allows you to include a video to be played on a flat screen inside the
VR scene.

<a-video src="backgroundvideo.mp4"></a-video>

Figure 4-21. a-torus primitive in a browser

Figure 4-22. A torus-knot primitive

Chapter 4 ■ IntroduCtIon to a-Frame

35

<a-videosphere>
The videosphere primitive is interesting in the sense that it plays the video on the surface
of a 360-degree sphere, analogous to the sky of the scene (Figure 4-23).

<a-videosphere src="spherevid.mp4"></a-videosphere>

A-Frame Inspector
The A-Frame inspector is a useful visual tool that allows developers to inspect the
A-Frame scene and make minor changes to it using a graphical user interface (GUI).

The inspector offers the following facilities:

•	 You can resize, reposition, and rotate the entities present in the
scene using the handles.

•	 Widgets allow you to tweak the properties of entities and their
components.

•	 You can visually observe the changes in attribute values in the
scene without having to switch between the code editor and the
browser.

Activate the inspector by pressing Ctrl+Alt+I. This shortcut opens the particular
scene in the inspector after having fetched its code via the CDN. You can use the same
shortcut to close the inspector and return to the scene.

You can use the inspector for any A-Frame scene unless the developer of the scene
has explicitly disabled it.

The A-frame inspector consists of the components covered in the following sections.

Figure 4-23. a-videosphere output in a browser

Chapter 4 ■ IntroduCtIon to a-Frame

36

Scene Graph
The scene graph of the A-Frame inspector is a hierarchical tree structure of the scene’s
elements. You can use the scene graph to clone, add, delete, search for, and select the
entities or to export HTML.

As the A-Frame scene is primarily coded in HTML, the entities present in the scene
graph are displayed using their HTML tag name or ID (Figure 4-24).

Viewport
The viewport is the most interesting component of the inspector (Figure 4-25). It displays
the scene along with all the scales, dimensions, positions, and so on. You can rotate,
zoom, or even pan the view in the viewport in order to check the scene from different
angles and distances.

Figure 4-24. Entities in the scene graph

Chapter 4 ■ IntroduCtIon to a-Frame

37

Additionally, the viewport allows you to select the individual entities and transform
them. This can be implemented as follows:

•	 Select: Click the entity either directly from the viewport or from
the scene graph.

•	 Transform: Transforming an entity means changing the size and/
or position of the entity in the scene, visually. After selecting
the required entity, choose one of the helper tools (translate,
rotate, scale, or local) and drag one of the three axis coordinates
(represented by red, blue, and green) around the entity to apply
the particular changes.

Components Panel
The components panel shows the components and attributes of the entity selected
(Figure 4-26). It allows you to modify the common component values of the entities used.
Each attribute might have the same or different widgets as the others.

Figure 4-25. Viewport

Chapter 4 ■ IntroduCtIon to a-Frame

38

This provides an excellent way to visually enhance the A-Frame scene after setting
up its basic layout. After you are satisfied with the visual representation with certain
values, you can copy the HTML output of individual components so that you can reuse
them in the source code in later scenarios.

Summary
In this chapter, you got a basic introduction to the A-Frame library along with the key
concepts necessary for its use. Next, you learned about the entity-component system.
You saw a way to cache the resources used in the A-Frame project in order to readily load
up the scene without any delay. You then learned about the various primitives offered
by A-Frame and checked how to use the inspector to check and tweak these scenes with
little effort.

The key to mastering A-Frame is to experiment with all these primitives in various
scenes so you can get a visual feel about how each component works.

In the next chapter, you will build a “Hello, World” VR application using A-Frame
followed by a 3D web site based on VR, from scratch.

Figure 4-26. Components panel

39© Srushtika Neelakantam and Tanay Pant 2017
S. Neelakantam and T. Pant, Learning Web-based Virtual Reality,
DOI 10.1007/978-1-4842-2710-7_5

CHAPTER 5

From “Hello, World” to a VR
Content Display

In this chapter, you will build a simple “Hello, World” application using A-Frame. After
that, you will build a simple content web site similar to an image gallery but with an
added virtual reality experience.

Building a Simple “Hello, World” VR Application
In this section, you’ll get your hands dirty on your first-ever piece of code in A-Frame.
As is customary with many frameworks or languages people learn, you’ll print “Hello,
World!” in an A-Frame VR scene.

Before we start, we’ll discuss an A-Frame component called bm-font-text-
component, which you’ll use to print the text in the VR scene. You’ll study more about
components in Chapter 7.

bm-font-text-component
bm-font-text-component is a ready-to-use A-Frame component that allows you to add
some text in a specified font and set other desired properties. It displays text and a bitmap
in A-Frame using signed distance field rendering (see Figure 5-1).

www.allitebooks.com

http://dx.doi.org/10.1007/978-1-4842-2710-7_7
http://www.allitebooks.org

Chapter 5 ■ From “hello, World” to a Vr Content display

40

Figure 5-1 shows the default font; however, you can specify any custom font you’d
like. Other most commonly used properties include the width of the text box, alignment,
color, opacity, and so on. Like any other component in the VR scene, this text does not
appear to be on a flat screen, but it gently spreads itself to appear to be curved.

To implement bm-font-text-component directly in your code, you need to include
the following JavaScript in the header of your HTML:

<script src="https://rawgit.com/bryik/aframe-bmfont-text-component/master/
dist/aframe-bmfont-text-component.min.js"></script>

Understanding the Flow of the Application
We’ll now cover everything that you’ll include in your first VR application.

The VR scene you will make will be Earth as seen from a satellite, with the sun in
the backdrop. You’ll use a simple box to add some animation, and you’ll also focus some
light on this box. Next, you’ll add the text “Hello, World!” in the default font in front of
this rotating box. Additionally, you’ll put a grid over Earth to represent the hypothetical
location coordinates.

So, the whole thing comes down to an astronaut greeting the world with that
message! Can’t imagine the scene yet? No problem. Let’s get started and things will
become understandable soon.

Let’s quickly set up the initial skeleton of the HTML document, complete with the
script references required and the <a-scene> tag.

<html>
 <head>
 <script src="https://aframe.io/releases/0.3.2/aframe.min.js"></script>
 <script src="https://rawgit.com/bryik/aframe-bmfont-text-component/
master/dist/aframe-bmfont-text-component.min.js"></script>
 </head>

Figure 5-1. Displayed using bm-font-text-component

Chapter 5 ■ From “hello, World” to a Vr Content display

41

 <body>
 </a-scene>
 </a-scene>
 </body>
</html>

Now that you have the basic skeleton in place, let’s add the <a-assets> tag inside
the <body> tag, which will include all the resources you’ll use for the scene. Initially, let’s
include the image to be used as the sky in the scene; Figure 5-2 shows the image.

<a-assets>

</a-assets>

You can find this image and all the other offline resources used in this book in this
Flickr repository: https://www.flickr.com/gp/136974235@N05/90538e.

Next, let’s add the grid on Earth like a sphere that appears when sunrise.jpg is used
as the sky. This will represent the hypothetical latitude and longitude location lines.

<a-assets>

 <img src="https://img.gs/bbdkhfbzkk/stretch/https://i.imgur.com/25P1geh.
png" id="grid" crossorigin="anonymous">

</a-assets>

Next, update the <a-scene> contents to include the sky and the grid.

Figure 5-2. sunrise.jpg

https://www.flickr.com/gp/136974235@N05/90538e

Chapter 5 ■ From “hello, World” to a Vr Content display

42

 <a-scene>
 <a-entity position="0 -10 0" geometry="primitive: plane;
width: 10000; height: 10000;" rotation="-90 0 0" material="src: #grid;
repeat: 10000 10000; transparent: true;metalness:0.6; roughness: 0.4;
sphericalEnvMap: #sky;">
 <a-entity>
<a-sky src="#sky" rotation="0 -90 0"></a-sky>
<a-scene>

In all the entities, you include an attribute called sphericalEnvMap that defines the
spherical environment map for the particular entity. Because you already have a sky set
up, you’ll refer it to the particular resource.

The VR scene now looks like Figure 5-3.

If yours doesn’t look like this, go back to the code and check for inconsistencies or
errors.

Now you’ll add a simple component, a 3D box, to try the animation and light feature.

<a-entity scale="4 4 4" geometry="primitive: box;" position="0 4 -10"
material="color: #c5b2a0; metalness:1; roughness: 0.3; sphericalEnvMap:
#sky;">
<a-animation easing="linear" attribute="rotation" dur="10000" to="0 0 360"
repeat="indefinite">
</a-animation>
</a-entity>

You can also use the <a-box> primitive to implement this box. Since you have
already learned how to use that primitive, try it now.

Figure 5-3. VR scene

Chapter 5 ■ From “hello, World” to a Vr Content display

43

Note the animation primitive included inside the box entity. The attributes are
pretty much self-explanatory. While implementing this, try changing the values of all the
attributes to understand how the scene changes with different values.

Next, throw some light on the box to add some drama and make the sun’s light more
realistic and match better with the environment.

<a-entity light="color: white; intensity: 0.5" position="-5 5
15"></a-entity>

The position of all the entities follows the x-, y-, and z- coordinate strategy. Play with
these in the inspector or manually experiment with different values to understand the
perspective.

The scene should now look like Figure 5-4.

You’ll now add the final and most important part of this A-Frame scene: the text.

<a-entity scale="5 5 5" bmfont-text="text: HELLO WORLD!; size: 1.5; height:
0.5;" position="-1 3 -7"></a-entity>

The complete “Hello World” scene looks like Figure 5-5, and Listing 5-1 shows the
complete consolidated code.

Figure 5-4. The scene now

Chapter 5 ■ From “hello, World” to a Vr Content display

44

You should experiment with different attribute values for each entity and component
used.

Listing 5-1. index.html

<html>
 <head>
 <script src="https://aframe.io/releases/0.3.2/aframe.min.js"></script>
 <script src="https://rawgit.com/bryik/aframe-bmfont-text-component/

master/dist/aframe-bmfont-text-component.min.js"></script>
 </head>
 <body>

 <a-assets>
 <img src="https://img.gs/bbdkhfbzkk/stretch/https://i.imgur.
com/25P1geh.png" id="grid" crossorigin="anonymous">
 <img src="https://img.gs/bbdkhfbzkk/2048x1024,stretch/http://i.
imgur.com/WMNH2OF.jpg" id="chrome" crossorigin="anonymous">

 </a-assets>

 <a-scene>
 <a-entity scale="5 5 5" bmfont-text="text: HELLO WORLD !; size: 1.5;

height: 0.5;" position="-1 3 -7"></a-entity>

 <a-entity scale="4 4 4" geometry="primitive: box;" position="0 4 -10"
material="color: #c5b2a0; metalness:1; roughness: 0.3; sphericalEnvMap:
#sky;">

Figure 5-5. The “Hello World” example

Chapter 5 ■ From “hello, World” to a Vr Content display

45

 <a-animation easing="linear" attribute="rotation" dur="10000" to="0
0 360" repeat="indefinite"></a-animation>
 </a-entity>

 <a-entity position="0 -10 0" geometry="primitive: plane; width: 10000;
height: 10000;" rotation="-90 0 0" material="src: #grid; repeat: 10000
10000; transparent: true;metalness:0.6; roughness: 0.4; sphericalEnvMap:
#sky;">
 </a-entity>

 <a-entity light="color: white; intensity: 0.5" position="-5 5 15">
 </a-entity>

 <a-sky src="#sky" rotation="0 -90 0"></a-sky>

 </a-scene>
 </body>
</html>

Building a VR Content Display Web Site
In this section, you’ll develop a content display web site in VR. Essentially, you’ll build
a photo gallery of four tourist destinations around the world, shown with curved
thumbnails. If one of those thumbnails is clicked, the whole sky turns into that image
as if you were standing in that spot. You will also include some basic JavaScript for
implementing the functionality.

We’ll use the <a-curved-image> primitive for the thumbnails. Let’s begin with the
basic HTML skeleton along with the a-scene tag and a sky. All the offline resources are
available in the Flickr repo at https://www.flickr.com/gp/136974235@N05/v4JeEp.

<html>
 <head>
 <meta charset="utf-8">
 <title>Let's go places</title>
 <script src="./js/aframe.min.js"></script>
 </head>
 <body>
 <a-scene auto-enter-vr>
 <a-sky id="sky" src="Images/grid1.svg" color="rgb(200,200,200)" >
 </a-sky>
 </a-scene>
 </body>
</html>

Figure 5-6 shows the scene so far.

https://www.flickr.com/gp/136974235@N05/v4JeEp

Chapter 5 ■ From “hello, World” to a Vr Content display

46

Next, following the usual flow, let’s add the images as assets.

<a-assets>

</a-assets>

Next, you add these as curved image primitives inside the <a-scene> tag, as follows:

<a-curvedimage id="swit" src="#switzerland" transparent="true"
 height="2" radius="3" theta-length="40" rotation="0 240 0" position="0 0 -2">
</a-curvedimage>

 <a-curvedimage id="curhorseshoe" src="#horseshoe" transparent="true"
 height="2" radius="3" theta-length="40" rotation="0 190 0" position="0 0 -2">
</a-curvedimage>

 <a-curvedimage id="atlantic" src="#atlanticocean" transparent="true"
 height="2" radius="3" theta-length="40" rotation="0 130 0" position="0 0 -2">
</a-curvedimage>

<a-curvedimage id="bc" src="#bc-place" transparent="true"
 height="2" radius="3" theta-length="40" rotation="0 80 0" position="0 0 -2">
</a-curvedimage>

Figure 5-6. Scene so far

Chapter 5 ■ From “hello, World” to a Vr Content display

47

If you use these same resource files, your VR scene should now look like Figure 5-7.

The text that you see on the thumbnails is not a text component but part of the
image. So, don’t worry if you have not found the text component in the code yet.

In an A-Frame scene, the cursor can be implemented using a camera entity. It needs
to have a shape and a default position. It will be used to implement the click functionality.
To let the user know that the click is being applied, you will add some animation to this
cursor.

In this case, you will make the cursor to be a ring shape, which shrinks in size to
demonstrate a click function. You’ll link this click function to the JavaScript code that will
change the sky primitive to some predefined image, depending on the thumbnail clicked.
The camera entity is implemented as follows:

<a-entity>
 <a-entity camera look-controls wasd-controls>
 <a-entity position="0 0 -3" scale="0.2 0.2 0.2"

geometry="primitive: ring; radiusOuter: 0.20;
radiusInner: 0.13;" material="color: #ADD8E6; shader:
flat" cursor="maxDistance: 30; fuse: true">

 <a-animation begin="click" easing="ease-in"
attribute="scale" fill="backwards" from="0.1 0.1
0.1" to="1 1 1" dur="150"></a-animation>

 <a-animation begin="fusing" easing="ease-in"
attribute="scale" fill="forwards" from="1 1 1"
to="0.2 0.2 0.2" dur="1500"></a-animation>

 </a-entity>
 </a-entity>
</a-entity>

Figure 5-7. The VR scene so far

Chapter 5 ■ From “hello, World” to a Vr Content display

48

The VR scene with the camera entity should now look like Figure 5-8; observe the
small blue ring-shaped element in the center of the scene. That is the cursor.

Now, it’s time to add the JavaScript. You can include JavaScript in many ways. In this
example, you will include it in the body of the HTML right after ending the <a-scene> tag.

<script>
 document.querySelector("#curhorseshoe").

addEventListener('click', function() {
 document.getElementById("sky").
 setAttribute("src","Images/Horeshoe-Bend-PS.jpg");
 });
 document.querySelector("#atlantic").addEventListener('click',

function() {
 document.getElementById("sky").
 setAttribute("src","Images/atlantic.jpg");
 });
 document.querySelector("#swit").addEventListener('click',

function() {
 document.getElementById("sky").
 setAttribute("src","Images/switzerland.jpg");
 });
 document.querySelector("#bc").addEventListener('click',

function() {
 document.getElementById("sky").
 setAttribute("src","Images/bc-place.jpg");
 });
</script>

Figure 5-8. The cursor

Chapter 5 ■ From “hello, World” to a Vr Content display

49

The document.querySelector selects an entity with the specified ID. Using this, you
get the ID of the particular curved image that is clicked by the user. Next, you need to add
an event listener to each of these selectors to identify the different curved images present
in the scene.

Inside the event listener, you get the sky primitive using the ID mentioned in the
<a-sky> tag. Next, you use the setAttribute method to set the attribute named src equal
to some value, which in this case is a path or link to the image you want to apply as the sky.

You repeat this for every curved image thumbnail and set the respective images to be
the sky on a click. See Figures 5-9 and 5-10.

Listing 5-2 shows the complete consolidated code.

Figure 5-9. Sky changed to “Landscape in Netherlands” image

Figure 5-10. Sky changed to “Horseshoe Bend” image

Chapter 5 ■ From “hello, World” to a Vr Content display

50

Listing 5-2. VR content display Web Site

<html>
 <head>
 <meta charset="utf-8">
 <title>Let's go places</title>
 <script src="./js/aframe.min.js"></script>
 </head>
 <body>
 <a-scene auto-enter-vr>
 <a-assets>

 </a-assets>

 <a-entity>
 <a-entity camera look-controls wasd-controls>
 <a-entity position="0 0 -3" scale="0.2 0.2 0.2"

geometry="primitive: ring; radiusOuter: 0.20;
radiusInner: 0.13;" material="color: #ADD8E6; shader:
flat" cursor="maxDistance: 30; fuse: true">

 <a-animation begin="click" easing="ease-in"
attribute="scale" fill="backwards" from="0.1 0.1
0.1" to="1 1 1" dur="150"></a-animation>

 <a-animation begin="fusing" easing="ease-in"
attribute="scale" fill="forwards" from="1 1 1"
to="0.2 0.2 0.2" dur="1500"></a-animation>

 </a-entity>
 </a-entity>
 </a-entity>

 <a-curvedimage id="swit" src="#switzerland" transparent="true"
 height="2" radius="3" theta-length="40" rotation="0 240 0"

position="0 0 -2">
 </a-curvedimage>

 <a-curvedimage id="curhorseshoe" src="#horseshoe"
transparent="true"

 height="2" radius="3" theta-length="40" rotation="0 190 0"
position="0 0 -2">

 </a-curvedimage>

 <a-curvedimage id="atlantic" src="#atlanticocean"
transparent="true"

 height="2" radius="3" theta-length="40" rotation="0 130 0"
position="0 0 -2">

 </a-curvedimage>

Chapter 5 ■ From “hello, World” to a Vr Content display

51

 <a-curvedimage id="bc" src="#bc-place" transparent="true"
 height="2" radius="3" theta-length="40" rotation="0 80 0"

position="0 0 -2">
 </a-curvedimage>

 <a-sky id="sky" src="Images/grid1.svg" color="rgb(200,200,200)"
></a-sky>

 </a-scene>

 <script>

 document.querySelector("#curhorseshoe").
addEventListener('click', function() {

 document.getElementById("sky").
 setAttribute("src","Images/Horeshoe-Bend-PS.jpg");
 });

 document.querySelector("#atlantic").addEventListener('click',
function() {

 document.getElementById("sky").
 setAttribute("src","Images/atlantic.jpg");
 });

 document.querySelector("#swit").addEventListener('click',
function() {

 document.getElementById("sky").

 setAttribute("src","Images/switzerland.jpg");
 });

 document.querySelector("#bc").addEventListener('click',
function() {

 document.getElementById("sky").
 setAttribute("src","Images/bc-place.jpg");
 });
 </script>
 </body>
</html>

This basic example of a content display web site explained how to use various
entities and primitives in A-Frame. Feel free to experiment with different kinds of
primitives and components (which will be discussed in Chapter 7) to understand how to
use A-Frame better.

http://dx.doi.org/10.1007/978-1-4842-2710-7_7

Chapter 5 ■ From “hello, World” to a Vr Content display

52

Summary
In this chapter, you learned how to build a basic “Hello, World” application in VR using
A-Frame. You learned about bm-text-component and used the basic entities in a scene.
Next, you learned how to build a basic content display web site from scratch where you
used the curved image primitive as well as the camera entity. We also touched upon some
basic JavaScript to implement additional interaction on the web site.

53© Srushtika Neelakantam and Tanay Pant 2017
S. Neelakantam and T. Pant, Learning Web-based Virtual Reality,
DOI 10.1007/978-1-4842-2710-7_6

CHAPTER 6

Building a VR-Based Movie
Theater

In this chapter, you will build the flagship application of this book, a VR movie theater.
This will be an advanced application that will use components such as lighting and video
display along with 3D models.

Planning the Movie Theater
First you have to plan the layout of your movie theater. Think about what your theater will
look like and what different components will be present in the scene. You should choose
these components carefully so as to give your movie theater a realistic look and feel.
When you think of a movie theater, what comes to mind? A huge hall, big screen, chairs,
speakers, pillars, and those exit signs glowing in the dark. In this chapter, you will be using
Collada models, making use of three-dimensional models that are in .dae format. You will
not have a roof on the theater and instead use a texture of a starry sky. You will also need
textures for the walls and the floor. So, let’s take a look at the finished scene to get some
inspiration (Figure 6-1). You can view the demo online at http://drawvr.com/theater/.

Figure 6-1. The theater demo

http://drawvr.com/theater/

Chapter 6 ■ Building a Vr-Based MoVie theater

54

You can find the .dae models as well as the textures that have been used in the
project in the code files on the Apress web site. However, the video file has not been
provided, so you will have to download and link to your own .mp4 video file. Please note
that currently YouTube embeds do not work with <a-video>.

Now let’s get started building your virtual reality movie theater step by step. The
following code includes meta tags for adding information about the author and for
describing the web site for the search engines to spider through the page and give you
better search engine optimization (SEO). You also include the aframe.min.js script.

<!DOCTYPE html>
<html>
 <head>
 <meta charset="utf-8">
 <title>Movie Theater WebVR Virtual Reality Experience Dying Light</
title>
 <meta name="author" content="Donovan Kraeker">
 <meta name="description" content="A Movie Theater WebVR virtual reality
example website experience using A-Frame designed by Donovan Kraeker">
 <script src="aframe.min.js"></script>
 </head>

Next, start the <body> tag and the <a-scene> tag for your virtual reality environment.
You define a new entity that is a camera and give it a default position. You also enable the
look controls by setting enabled: true. Go ahead and hide the cursor by setting cursor-
visible to enabled: false. Finally, set wasd-controls to enabled: true so that you can
move around the movie theater to see the screen from different perspectives.

<body>
 <a-scene>
 <a-entity camera position="0 1.7 7.5" look-controls="enabled: true"
cursor-visible="enabled: false" wasd-controls="enabled: true"></a-entity>

You will build the ceiling and floor of the movie theater next. The floor is a plane
that has a black texture. The ceiling is a box with the texture of stars so that it looks like
an open-roof movie theater. Figure 6-2 shows the stars texture we have used for the
example’s ceiling.

<!-- Ceiling Floor -->
<a-entity geometry=" primitive: plane; height: 24; width: 22" position="0
0.5 2" rotation="-90 0 0" material="shader: flat; roughness: 1; src:
url(images/floor.jpg)"></a-entity>
<a-entity geometry=" primitive: box; depth: 0.1; height:24; width: 22"
position="0 12.5 2" rotation="-90 0 0" material="shader: standard; side:
bottom; src: url(images/stars.jpg)"></a-entity>

Chapter 6 ■ Building a Vr-Based MoVie theater

55

You construct the front and back walls using the box geometry and set their heights
and position. You set the color of these walls to black so that it emphasizes the dark setting
of the room as is expected inside a movie theater when the movies are being shown.

<!-- Front Back Walls -->
<a-entity geometry=" primitive: box; depth: 0.1; height: 12; width: 22"
position="0 6.5 -10" material="shader: standard; color: #000"></a-entity>
<a-entity geometry=" primitive: box; depth: 0.1; height: 12; width: 22"
position="0 6.5 14" material="shader: standard; color: #000"></a-entity>

It’s time to build the side walls for the movie theater. The side walls of the theater will
be visible from the peripheral vision of the viewer at first glance. They shouldn’t be too
distracting and should complement the dark setting of the movie theater. You can use the
same box geometries for the side walls and set the height, position, and rotation. In our
example, we also set the roughness of the material to 1 and used the wall.jpg image as a
texture, as shown in Figure 6-3.

<!-- Side Walls -->
<a-entity geometry=" primitive: box; depth: 0.1; height: 12; width: 24"
position="11 6.5 2" rotation="0 90 0" material="shader: standard; roughness:
1; src: url(images/wall.jpg)"></a-entity>
<a-entity geometry=" primitive: box; depth: 0.1; height: 12; width:
24" position="-11 6.5 2" rotation="0 90 0" material="shader: standard;
roughness: 1; src: url(images/wall.jpg)"></a-entity>

Figure 6-2. Stars texture for ceiling

Chapter 6 ■ Building a Vr-Based MoVie theater

56

Now you will design the molding of the movie theater to improve its decor. You do so
by using four box geometries and setting their dimensions, color, positions, rotation, and
metalness.

<!-- Molding -->
<a-entity geometry=" primitive: box; depth: 0.5; height: 0.5; width: 24"
position="-10.75 0.5 2" rotation="0 90 0" material="shader: standard;
metalness: 0.5; color: #000"></a-entity>
<a-entity geometry=" primitive: box; depth: 0.5; height: 0.5; width: 24"
position="10.75 0.5 2" rotation="0 90 0" material="shader: standard;
metalness: 0.5; color: #000"></a-entity>
<a-entity geometry=" primitive: box; depth: 0.5; height: 0.5; width: 24"
position="-10.75 12.5 2" rotation="0 90 0" material="shader: standard;
metalness: 0.5; color: #000"></a-entity>
<a-entity geometry=" primitive: box; depth: 0.5; height: 0.5; width: 24"
position="10.75 12.5 2" rotation="0 90 0" material="shader: standard;
metalness: 0.5; color: #000"></a-entity>

You will now build the pillars for the left and right sides of the movie theater. You
can do so by using the same box geometries that you have used before. You set their
dimensions, positions, color, rotation, and metalness.

<!-- Pillars Left -->
<a-entity geometry=" primitive: box; depth: 0.5; height: 12; width: 1"
position="-10.8 6.5 -5" rotation="0 90 0" material="shader: standard;
metalness: 0.5; color: #000"></a-entity>
<a-entity geometry=" primitive: box; depth: 0.5; height: 12; width: 1"
position="-10.8 6.5 0" rotation="0 90 0" material="shader: standard;
metalness: 0.5; color: #000"></a-entity>

Figure 6-3. Wall texture

Chapter 6 ■ Building a Vr-Based MoVie theater

57

<a-entity geometry=" primitive: box; depth: 0.5; height: 12; width: 1"
position="-10.8 6.5 5" rotation="0 90 0" material="shader: standard;
metalness: 0.5; color: #000"></a-entity>
<a-entity geometry=" primitive: box; depth: 0.5; height: 12; width: 1"
position="-10.8 6.5 10" rotation="0 90 0" material="shader: standard;
metalness: 0.5; color: #000"></a-entity>

<!-- Pillars Right -->
<a-entity geometry=" primitive: box; depth: 0.5; height: 12; width: 1"
position="10.8 6.5 -5" rotation="0 90 0" material="shader: standard;
metalness: 0.5; color: #000"></a-entity>
<a-entity geometry=" primitive: box; depth: 0.5; height: 12; width: 1"
position="10.8 6.5 0" rotation="0 90 0" material="shader: standard;
metalness: 0.5; color: #000"></a-entity>
<a-entity geometry=" primitive: box; depth: 0.5; height: 12; width: 1"
position="10.8 6.5 5" rotation="0 90 0" material="shader: standard;
metalness: 0.5; color: #000"></a-entity>
<a-entity geometry=" primitive: box; depth: 0.5; height: 12; width: 1"
position="10.8 6.5 10" rotation="0 90 0" material="shader: standard;
metalness: 0.5; color: #000"></a-entity>

For building stool-like structures, you use the cylinder geometry and set its
dimensions, metalness, and color. Please note that we have designed these stools to be
closed by setting the open-ended attribute to false.

<!-- Stools -->
<a-entity geometry=" primitive: cylinder; radius: 0.2; height: 0.5"
position="10.7 9.5 -2.5" open-ended="false" material="shader: standard;
metalness: 0.5; color: #26030d"></a-entity>
<a-entity geometry=" primitive: cylinder; radius: 0.2; height: 0.5"
position="10.7 9.5 2.5" open-ended="false" material="shader: standard;
metalness:0.5; color: #26030d"></a-entity>
<a-entity geometry=" primitive: cylinder; radius: 0.2; height: 0.5"
position="10.7 9.5 7.5" open-ended="false" material="shader: standard;
metalness:0.5; color: #26030d"></a-entity>
<a-entity geometry=" primitive: cylinder; radius: 0.2; height: 0.5"
position="-10.7 9.5 -2.5" open-ended="false" material="shader: standard;
metalness:0.5; color: #26030d"></a-entity>
<a-entity geometry=" primitive: cylinder; radius: 0.2; height: 0.5"
position="-10.7 9.5 2.5" open-ended="false" material="shader: standard;
metalness:0.5; color: #26030d"></a-entity>
<a-entity geometry=" primitive: cylinder; radius: 0.2; height: 0.5"
position="-10.7 9.5 7.5" open-ended="false" material="shader: standard;
metalness:0.5; color: #26030d"></a-entity>

The speakers can just be black geometrical boxes that are perched high on the side
walls of the movie theater.

Chapter 6 ■ Building a Vr-Based MoVie theater

58

<!-- Speakers -->
<a-entity geometry=" primitive: box; depth: 0.5; height: 1; width: 0.7"
position="10.5 9.5 -7.5" rotation="-10 90 0" material="shader: standard;
roughness: 0.7; color: #000"></a-entity>
<a-entity geometry=" primitive: box; depth: 0.5; height: 1; width: 0.7"
position="-10.5 9.5 -7.5" rotation="10 90 0" material="shader: standard;
roughness: 0.7; color: #000"></a-entity>
<a-entity geometry=" primitive: box; depth: 0.5; height: 1; width: 0.7"
position="10.5 9.5 12" rotation="-10 90 0" material="shader: standard;
roughness: 0.7; color: #000"></a-entity>
<a-entity geometry=" primitive: box; depth: 0.5; height: 1; width: 0.7"
position="-10.5 9.5 12" rotation="10 90 0" material="shader: standard;
roughness: 0.7; color: #000"></a-entity>

Security is one the most important considerations when designing closed halls like
movie theaters. Let’s make a small plane, position it along the side wall, and give it the
texture of the door. Figure 6-4 shows the door texture that we have used in our code.
Please note that it follows the same design aesthetics that we set for the textures.

<!-- Other -->
<a-entity geometry=" primitive: plane; height: 2; width: 1" position="5
1.5 13.93" material="shader: flat; side: back; transparent: true; src:
url(images/door.png)"></a-entity>

Figure 6-4. Door texture

Chapter 6 ■ Building a Vr-Based MoVie theater

59

Now, you need a glowing emergency exit sign so that the audience is able to see it in
the dark in case of emergencies or when they need to hit the restroom after drinking too
many cold drinks. So, make a plane and place it on a geometrical box. In this example, we
are using the exit sign texture shown in Figure 6-5.

<a-entity geometry=" primitive: plane; height: 0.5; width: 0.6" position="5
3.5 13.93" material="shader: flat; side: back; transparent: true; src:
url(images/exit-sign.png)"></a-entity>
<a-entity geometry=" primitive: box; depth: 2; height: 16; width: 18"
position="0 2.8 -9.1" material="shader: standard; color: #000"></a-entity>

But wait, the theater isn’t really complete until it actually shows a movie, right? Use
the <a-video> tag to link to an existing video and set autoplay to true so that the video
autoloads as soon as the scene loads. Set the width and height of the video display along
with its position. Please note that you will have to edit the location and name of the video
in the src attribute of the <a-video> tag. You can also add the three-dimensional model
of a sofa by using a prebuilt three-dimensional .dae model. Finally, you add the sky using
the <a-sky> tag and set its color to black. You then wrap up the virtual reality scene, body,
and the HTML document itself.

<a-video src="videos/dying-light.mp4" autoplay="true" width="19" height="11"
position="0 5.5 -8"></a-video>
<a-model src="models/sofa.dae" scale="1 1 1" position="0 0.35 7.6"
rotation="0 90 0"></a-model>

 <!-- Lighting and background -->
 <a-sky color="#000"></a-sky>

 </a-scene>
 </body>
</html>

Figure 6-5. Exit sign texture

Chapter 6 ■ Building a Vr-Based MoVie theater

60

Your movie theater is now ready to be tested. Please note that this whole codebase
might not work on your local system. You will need to make sure you are using a local web
server or hosted web server with cross-origin resource sharing (CORS) with the correct
MIME types rather than trying to use the filesystem. If you are loading the asset from
a different domain, you will need CORS headers set on the asset. For some options, all
resources hosted on GitHub Pages are served with CORS headers. (We will be discussing
GitHub Pages as a deployment platform in the next chapter.) The scale of models is often
very large as compared to the camera. The scale might be many times bigger than the
user such that the user is inside the model and cannot see it. Try scaling it down to see
where it is. The A-Frame inspector will help with this problem.

Building 3D Models with MagicaVoxel
MagicaVoxel (https://ephtracy.github.io) is a tool for building 3D scenes and models
using voxels or blocks. MagicaVoxel makes modeling super easy, similar to building
block-based structures in Minecraft. MagicaVoxel is available for both Windows and OS
X. The best way to learn the MagicaVoxel is to play around with application controls and
study the tooltips that show up when you hover your mouse over the various options.

After creating your model, you can export it to an A-Frame scene. This allows you
to build custom models and use them in your virtual reality scenes. You can find a guide
on using MagicaVoxel at https://aframe.io/docs/0.3.0/guides/building-with-
magicavoxel.html.

Figure 6-6 shows the castle voxel made using MagicaVoxel.

Figure 6-6. Castle voxel

https://ephtracy.github.io/
https://aframe.io/docs/0.3.0/guides/building-with-magicavoxel.html
https://aframe.io/docs/0.3.0/guides/building-with-magicavoxel.html

Chapter 6 ■ Building a Vr-Based MoVie theater

61

Getting Prebuilt Models from Clara
Clara (https://clara.io/) is a web site that offers free three-dimensional models in
many formats including the .dae format that you have been using for your scenes in this
chapter. You can use the models that are available at this web site for use in your virtual
reality scene. It is a pretty amazing site for obtaining complicated and realistic models for
your WebVR application.

As an exercise, try building a virtual reality scene that displays a car showroom filled
with cars of your choice.

Summary
In this chapter, you built the flagship application of this book, a VR movie theater. You
built an advanced application that used components such as lighting and video display
along with 3D models.

In the next chapter, you will learn about components in A-Frame and how to build
them. You will also learn about the A-Frame registry, which hosts various components
that have been built by the community. Finally, you will learn how to use these
components in your WebVR scenes and enhance the quality of your scenes.

https://clara.io/

63© Srushtika Neelakantam and Tanay Pant 2017
S. Neelakantam and T. Pant, Learning Web-based Virtual Reality,
DOI 10.1007/978-1-4842-2710-7_7

CHAPTER 7

A-Frame Components and
the Registry

In this chapter, you will learn about A-Frame components and how to build them. Also,
you will learn about the A-Frame registry that hosts various components that have been
built by the community. Finally, you will learn how to use these components in your
WebVR scenes and enhance the quality of your scenes without much effort at all.

A-Frame uses the entity-component system for managing the various objects in
virtual reality scenes. Revisiting the definition of entity and components, an entity by
itself does not exhibit any behavior, appearance, or functionality. An entity, however,
can contain several components, and these components can impart characteristics to
entities. Basically, components modify the entities that are the three-dimensional objects
in virtual reality scenes. As an analogy, entities in the entity-component system are like
classes in object-oriented programming, and components are like the methods of the
class in which they exist.

The benefit of encapsulating most of the logic within components in A-Frame is that
components become reusable and modular. This allows developers to share their code
with others to use in their WebVR scenes.

Components in A-Frame
We’ll now dive deeper to explain the components in A-Frame and how they are
constructed. Components have properties that hold data. Components are registered
using AFRAME.registerComponent. You pass a component name to register components
and component definitions. Study the following example of the position component to
understand how components are registered:

AFRAME.registerComponent('position', {
 schema: { type: 'vec3' },

 update: function () {
 var object3D = this.el.object3D;
 var data = this.data;
 object3D.position.set(data.x, data.y, data.z);
 }
});

Chapter 7 ■ a-Frame Components and the registry

64

A component has to define a schema, which in turn defines its properties.
A component also has to define lifecycle methods, which handle what is to be done with
the component’s data. An important thing to note is that components in A-Frame have
full access to three.js. In the previous example code, the position component has a vec3
value and is then applied to a three.js object called object3D.

The role of a component’s schema is to define the component’s properties.
A component can have one property or several.

Lifecycle Methods of Components
The following sections cover the various lifecycle methods of components.

Component.init()
The init() function is called just once in the lifecycle of the component, which is when it
is attached to the entity.

Component.update()
The update() function is called two or more times: once during the beginning of a
component’s lifecycle and then again every time the data of the component changes.

Component.remove()
The remove() function is typically called when a component detaches itself from an
entity.

Component.tick()
The tick() function is called on every render loop of the scene, and it runs about 60 to 70
times per second.

Component.pause() and Component.play()
The two functions pause() and play() are usually invoked when the component’s entity
calls these methods. One important thing to note is that whenever an entity either pauses
or plays, all of its child entities will also follow the same behavior. These functions are
usually implemented in scenarios where asynchronous properties are used, such as in
the case of animations.

Chapter 7 ■ a-Frame Components and the registry

65

Built-in Components
Figure 7-1 shows some of the components that ship with A-Frame.

A-Frame components are so easy to build and extensible that developers have built
a large number of amazing components for use with A-Frame and have made them
available to the community. Figure 7-2 shows the components built by the community in
blue and the components shipped by A-Frame in red.

Figure 7-1. A-Frame components

Figure 7-2. Built-in and community-contributed components

Chapter 7 ■ a-Frame Components and the registry

66

All the community-contributed components are available in the A-Frame registry
(https://aframe.io/aframe-registry/), which is a curated collection of ready-to-use
A-Frame components; the registry is also available from within the A-Frame inspector.
The A-Frame team makes sure that the components work properly (Figure 7-3).

You can find lots of useful prebuilt components in the registry that you can include
in your scenes to make them much more interesting with minimal effort. This is a good
example of a tool fostering a healthy developer community, where advanced developers
help new developers with their public contributions.

Using A-Frame Registry Components
We’ll now discuss how to use the components that are available in the A-Frame registry in
your virtual reality scenes. You can browse through the available components or search
for the component that you want to include in your scene. We’ll show how to use the
mountain component in an empty scene.

First you click the download button on the component to obtain its minified
JavaScript file to include in your scene. We reached the following link by clicking the
download button on the mountain component:

https://unpkg.com/aframe-mountain-component@0.3.2/dist/aframe-mountain-
component.min.js

You can find instructions on using the components or more information about their
properties on their GitHub pages. Basically, using each component is as easy as including
a <script> tag in your HTML document. For instance, we inserted the following tag in
our HTML document to use the mountain component in our example scene:

<script src="https://unpkg.com/aframe-mountain-component@0.3.2/dist/aframe-
mountain-component.min.js"></script>

Figure 7-3. Registry

https://aframe.io/aframe-registry/

Chapter 7 ■ a-Frame Components and the registry

67

The entire HTML code looks like this:

<html>
<head>
 <title>My A-Frame Scene</title>
 <script src="https://aframe.io/releases/0.3.0/aframe.min.js"></script>
 <script src="https://unpkg.com/aframe-mountain-component@0.3.2/dist/
aframe-mountain-component.min.js"></script>
</head>

<body>
 <a-scene>
 <a-mountain color="green"></a-mountain>
 </a-scene>
</body>
</html>

In the now available <a-mountain> tag, next set the color attribute to green so
that it renders green hilly meadows. Just a single tag and the ready-made component
accomplishes your task. Figure 7-4 shows how the scene looks in a browser.

Other properties of the mountain component include the shadowColor attribute,
which is used to diffuse the color of the mountain, and the sunPosition attribute, which
allows you to set the position of the sun to shade the mountain.

As an exercise, try using different components from the A-Frame registry. Include
them in your scenes and enhance the various scenes developed in the previous chapters.
Also, try to implement the animation component for the clouds or water in your scene
to make them look even more realistic. This will help you strengthen your skills using
A-Frame and using its registry of ready-made components as well as make your life easier
and simpler.

Figure 7-4. The hilly scene

Chapter 7 ■ a-Frame Components and the registry

68

Summary
In this chapter, you learned about components in A-Frame and how to build them. You
also learned that the A-Frame registry hosts various components that have been built
by the developer community. Finally, you learned how to use these components in your
WebVR scenes and easily enhance the quality of your scenes.

In the next chapter, we will cover how to use Git and GitHub to version control your
application’s code. That chapter will complement the knowledge that you have acquired
over the course of reading this book.

69© Srushtika Neelakantam and Tanay Pant 2017
S. Neelakantam and T. Pant, Learning Web-based Virtual Reality,
DOI 10.1007/978-1-4842-2710-7_8

CHAPTER 8

Version Control and
Deploying Your Code on
GitHub

In this chapter, you will learn about version control systems (VCSs) in general, as well as
the most widely used VCS software, Git. You will also learn more about GitHub and use
it to store your project files for further collaboration and updating. Following that, you
will learn how to use your GitHub account to host your A-Frame projects for free using
GitHub Pages.

Introduction to Version Control Systems
Try to picture being in an airplane just before landing. The crew broadcasts their
reminders to put on your seat belt, put up the tray table, and open the window shades.
The crew also tells you to save your work before closing your laptop if you’ve been
working on it.

Thank you, flight crew! The work you do is probably precious to you, and therefore you
will want to make sure your work is safely saved. It could be a disaster if something as big as a
software project were lost because you forgot to save it or, worse, because of a system crash.

To help you avoid such scenarios, several version control systems are available.
Version control systems are useful for developers and designers because they allow you to
save and store each distinct version of your files. This allows you to roll back to any of the
previous versions when you run into a problem in the current version. Thus, no project is
completely lost because of errors, forgetfulness, or a crash.

VCSs are usually easy to use, providing a command-line prompt and a GUI interface
for nondeveloper users. Another benefit of using a version control system is that several
individuals can remotely collaborate on a single project without losing the integrity of
the overall project and ensuring its stability. A software project is typically organized in a
file tree structure, and the whole team works on different parts (files) of this project tree.
They are continually updating, changing, deleting, and adding new source code or other
resources to the project. All these version control issues are taken care of, by the VCS.
In other words, each developer can work on his/her part of the project without disturbing
or waiting for others. This is illustrated in Figure 8-1.

Chapter 8 ■ Version Control and deploying your Code on github

70

Most of the good VCS applications are developer friendly in a way that they do not
impose a particular workflow or methodology that might be different from a developer’s
usual working style. Most of them help developers make changes in the code without any
hassle. They make sure not to let one developer’s changes hinder the progress of other
developers’ work.

Advantages of Version Control
In the current world, it’s hard to find software that is not built using version control. Doing
this would be quite a risk. VCS is not only used in building software, but it facilitates the
smooth introduction of new software developers into these teams.

Over the past couple of years, VCS has undergone a lot of improvements in terms
of easy accessibility, security, and a lot of other aspects that make these applications
more stable and safe to use. However, some VCS software outdoes others because of the
specific benefits offered to the intended audience.

Version control systems can also be referred to as revision control systems
(RCMs) or source code management (SCM). They all mean the same thing, so don’t be
overwhelmed if you hear one of these terms. Out of all the VCS applications, the one that
is most widely used among organizations is called Git.

Figure 8-1. A VCS

Chapter 8 ■ Version Control and deploying your Code on github

71

Git is open source, as are many other VCSs available today. You will learn more
about Git in later sections. The following are the benefits of Git, which are also part of
most other VCS applications too:

•	 A stable long-term version history of every file in the project tree: As
discussed earlier, VCS applications allow you to save each version
of every file in the project. This restricts the level that one person
can screw up a project. At any point in time, you have the chance
to roll back to the last stable version of a particular file. This also
facilitates fixing bugs that are otherwise hard to find and fix. The
versions of the files saved also contain certain meta information
such as the author of the file, the last-changed date and time,
the date created, and so on. Hence, in a highly collaborative
environment, people are accountable only for what they do and
do not need to take the blame for another developer’s mistakes.

•	 Branching and merging: If teams were to work together,
concurrently, on the same document, it would make absolutely
no sense, and if the team members were to individually work, it
would not really add to the progress of the collaborative project.
Hence, VCS applications offer something called branching, which
allows developers to use one of the multiple streams of the same
file, hence facilitating them to work independently on whatever
they are trying to implement. Later, when a stable portion of the
implementation is complete, it can be merged with the main
branch, often named the master branch.,

•	 Traceability: If all the team members are allowed to write, edit,
and update the code, and solve bugs, it is equally important to be
able to trace the changes made to those documents. VCSs have
an interesting feature where they display both the previous and
updated versions of the file in a color-coded format, highlighting
the latest changes made. This can be crucial in order to solve
some frequent bugs and work effectively even with legacy code. ,

Although there are many choices of VCS applications that can be used, in this
chapter we’ll focus on Git.

Git: All You Need to Know
Git, is the most widely used VCS application among software developers all over the
world. Git has evolved through the years and has continuously received open source
contributions. Originally Git was developed by the creator of the Linux operating system
kernel, Linus Torvalds, in 2005.

Chapter 8 ■ Version Control and deploying your Code on github

72

Git today hosts an enormous number of software projects, both commercial as well
as open source. Git essentially has a distributed architecture. What this means is that
instead of having just a single central repository containing all the versions from the
history of the development of a project, each developer who works on part of that project
also has the copy of this “all versions history.” Much of the popularity of Git is attributed
to its distinct features, which are as follows:

•	 Performance: Git comes with strong performance characteristics.
It focuses on the content on the files rather than on the names,
which are mostly changed many times during the making of the
project. The branching, merging, committing, and pushing of
new versions of the document are all supported with the utmost
efficiency and accuracy.

•	 Security: The repositories created on Git are safely secured using
the SHA1 hashing algorithm for cryptography. Securing the
repositories prevents unauthorized access to the contents. At
any point in time, the complete version history is available for
retrieval by authorized members who are duly authenticated.
This is an important feature as opposed to some other VCS
applications that have no or minimal security measures, which
leads to a serious security breach within organizations.

•	 Flexibility: Git is truly flexible in the sense that it supports multiple
development styles and methodologies. Git is compatible with
existing protocols and systems. The level of version tracking
available with Git has not been observed in any of its competitive
counterparts.

Git vs. GitHub
While Git is the software that you install on your system that handles the version control
for your files, GitHub is a place where you can store all your repositories. As its name
suggests, it is a hub of Git repositories (repos), and it offers many other features.

Despite the clear differences between Git and GitHub, there still seems to be a lot of
confusion about them from new developers. To clarify, Git is not just a hosting site; it is
basically a collaboration tool where projects can be either public or private. Git is used for
open source projects that are in the making and not complete already.

Installing Git on Your Machine
Here are the ways to install Git:

•	 Linux: Git allows Linux users to install the basic Git tools via
a binary installer. You can do so with the help of any general
package management tool that is usually preinstalled in your
operating system. For instance, if you are on Fedora, you can use
yum with the following command:

$sudo yum install git-all

Chapter 8 ■ Version Control and deploying your Code on github

73

•	 If you are Ubuntu, you can use the following command, which
uses apt-get:

$sudo apt-get install git-all

•	 Mac: Git can be installed on Mac in a variety of ways. As you might
have guessed, the easiest way is to use the Xcode command-line
tools. On Mac Mavericks (10.9) or above, you can try to run the
git command on the terminal, and if the system doesn’t have it
installed already, it will prompt you to install it right there.

•	 Windows: Windows also gives you a couple of ways to install Git.
The best way is to download the official build directly from the
Git web site, which you can obtain from http://git-scm.com/
download/win. Simply navigate to the particular web page and the
download will start automatically. This project is called “Git for
Windows,” and it is separate from the actual Git project.

•	 An alternative way of installing Git on Windows includes
installing GitHub for Windows. This package includes both the
command-line version and the graphical user interface version of
Git. This is particularly useful for nondeveloper users.

These instructions are directly sourced from the official Git documentation at
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git.

Working with GitHub
We’ll now explain how to upload your A-Frame projects onto GitHub. The content
provided here is limited to the example; providing the complete working details on
GitHub is beyond the scope of this book.

As discussed earlier, GitHub provides an online collaboration tool as well as version
control for all your projects. For this, you’ll need to sign up for an account on GitHub
and create repositories to store your projects. These repositories can be either private or
public, depending on your account type. Here are the steps:

 1. Create a GitHub account.

Head over to https://github.com and sign up for an account
(Figure 8-2). Initially, when you are hosting small projects,
you can go for a free account, which is public. (Remember,
A-Frame is open source.)

http://git-scm.com/download/win
http://git-scm.com/download/win
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
https://github.com/

Chapter 8 ■ Version Control and deploying your Code on github

74

 2. Create a new repository.

After you are logged in to your account, click the “New
repository” button. The window in Figure 8-3 will be
displayed. Add the name of your repo, which is public by
default, for a free account.

Figure 8-2. GitHub

Chapter 8 ■ Version Control and deploying your Code on github

75

A repository. is like a folder inside which you store all files
related to the particular project. You can choose to initialize
the repo with a README; this is nothing but an additional
text file where you’ll later add details about the project for
someone else to understand or for yourself to revisit.

Figure 8-3. Adding a repository name

Chapter 8 ■ Version Control and deploying your Code on github

76

 3. Initialize Git in the project folder.

 a. Open the terminal or a command prompt depending on
the operating system you are working on.

 b. Navigate to the project folder via the terminal:

cd <file path>

 c. Initialize Git for the particular project:

git init

 d. Add your project contents to Git (the option A adds all the
files):

git add -A

 e. Commit the added files (the option m lets you add a
message for each commit):

git commit -m "Commit Message"

 f. Add a remote to the Git repo you earlier created on
GitHub:

git remote add origin <url of your repo>

 g. The URL of your repo is available after you’ve created a
new repo, as shown in Figure 8-4.

Chapter 8 ■ Version Control and deploying your Code on github

77

 h. Push the committed files to your GitHub repo:

git push origin master

The commit command essentially traces the changes in the project, whereas the push
command uploads the updated project to your repo.

Hosting Your VR Web Site for Free Using GitHub
Pages
GitHub Pages is a service provided to GitHub users to allow static hosting of their sites
directly from their repositories. Currently, GitHub allows a single site per account for a
personal user. These sites are publicly available for anyone to view even if the particular
repo is a private one from a paid account. Hence, care must be taken in such cases so as
not to reveal sensitive information that might cause a privacy/security breach for your
organization. GitHub recommends not using GitHub Pages to retrieve users’ sensitive
information such as passwords or credit card numbers via forms on the web site.

Although the GitHub Pages service comes with a few terms and conditions, we are
good to go using it for the basic A-Frame VR applications.

Figure 8-4. URL for repo

Chapter 8 ■ Version Control and deploying your Code on github

78

GitHub Pages can be set up as follows:

 1. Head over to https://github.com and log in to your GitHub
account.

 2. Create a new repository as follows:

<username>.github.io

Here <username> refers to the username of your GitHub
account. Make sure it is exactly the same; otherwise, this
won’t work.

 3. Open the terminal/command prompt and clone this
repository locally onto your machine.

git clone https://github.com/<username>/<username>.github.io.git

 4. Add your project files to this cloned folder locally on your
machine.

 5. Add, commit and push these files onto the repo in the same
way as discussed in the previous section.

 6. After this, head over to your GitHub repository and navigate to
the Settings tab (Figure 8-5).

Figure 8-5. Settings tab on GitHub

https://github.com/

Chapter 8 ■ Version Control and deploying your Code on github

79

 7. Scroll down until you reach the GitHub Pages section (Figure 8-6).
In that, choose the branch (master) and click Save.

Your site is now live, and you can use it to host your VR web site (or any other web site)
for free on GitHub. So, every other repository you add can be hosted under this URL. For
instance, if you have another repository named mywebvr that has the file Hello World, which
in turn has an index.html file, this file will be available on GitHub Pages at the following URL:

https://srushtika.github.io/mywebvr/Hello%20World/index.html

For a virtual reality scene, the first thing you want to do after having developed it
is to try it in your smartphone fixed in a VR headset. However, it can be tedious to host
your virtual reality scene if you don’t own a domain already, even if it is just for testing
purposes. Hence, in this particular case, GitHub Pages is a great service.

In addition, any minute changes to the code can be made directly in the hosted
version of the document in your GitHub account. This is another quite helpful feature.

Summary
In this chapter, you learned about version control systems and their advantages. You also
learned about Git, which is the most common VCS application. You also looked at how to
install it on a local system. After reviewing the difference between Git and GitHub, you learned
to use GitHub to upload your projects from your machine to the GitHub repos. Finally, you
looked at GitHub Pages and how to use the service to host your own web sites for free.

Figure 8-6. GitHub Pages section

https://srushtika.github.io/mywebvr/Hello World/index.html

81© Srushtika Neelakantam and Tanay Pant 2017
S. Neelakantam and T. Pant, Learning Web-based Virtual Reality,
DOI 10.1007/978-1-4842-2710-7

��������� A
A-Frame, 6

components and registry, 63
built-in, 65–66
lifecyclemethods (see Lifecycle

methods of components,
A-Frame)

position component, 63
schema, 64
using, 66–67

inspector, 7
online editor, 8

A-Frame library, 17
basic application, 18–19
ECS, 20

caching assets to improve
performance, 21

components and building
blocks, 21–22

Kevin’s illustration, 20
mixins, 21

example, 18
inspector, 35

components panel, 37–38
scene graph, 36
viewport, 36–37

key features, 19
primitives, 22

<a-box>, 22–23
<a-camera>, 23
<a-circle>, 24–25
<a-collada-model>, 25–26
<a-cone>, 26
<a-cursor>, 23
<a-curvedimage>, 26–27
<a-cylinder>, 27
<a-dodecahedron>, 28

<a-image>, 28
<a-light>, 29
<a-obj-model>, 29
<a-octahedron>, 30
<a-plane>, 30
<a-ring>, 31
<a-sky>, 31–32
<a-sound>, 32
<a-sphere>, 32
<a-tetrahedron>, 33
<a-torus>, 33
<a-torus-knot>, 34
<a-video>, 34
<a-videosphere>, 35

AFRAME.registerComponent, 63
A-Painter, 15

��������� B
Boilerplate code, 19

��������� C
Clara, prebuilt models, 61
Computer-based VR setup, 2
Constellation sensors, Oculus Rift, 13
Content delivery network (CDN), 18
Controllers, Oculus Rift, 13
Cross-origin resource sharing (CORS), 60

��������� D
3D Collada models, 25
Developer tools, WebVR, 6

A-Frame, 6
Vizor, 8
WebVR-Boilerplate, 8

3D models with MagicaVoxel, 60

Index

■ INDEX

82

��������� E, F
Entity-component system (ECS), 20

caching assets to improve
performance, 21

components and building
blocks, 21–22

Kevin’s illustration, 20
mixins, 21

��������� G
Git

benefits, 71
features, 71–72
Git vs. GitHub, 72
to install, 72

Linux, 72
Mac, 73
Windows, 73

Git for Windows,73. See also Git
GitHub

features, 73
Git vs. GitHub, 72
working with, 73

creating GitHub account, 73
creating new repository, 74–75
GitHub pages, 77–78
GitHub pages section, 79
initialize Git in project

folder, 76–77
settings tab on GitHub, 78

Google Cardboard, 11–13
Graphical user interface (GUI), 35

��������� H, I, J, K
“Hello, World” VR application, 39

bm-font-text-component, 39–40
understanding the flow, 40–45

HTC Vive, 14

��������� L
Lifecycle methods of components,

A-Frame
init() function, 64
pause() and play() function, 64
remove() function, 64
tick() function, 64
update() function, 64

��������� M, N
MagicaVoxel, 3D models with, 60
Mixins, 21
Mobile-based VR setup, 2
Movie theater, VR, 53

<a-scene> tag, 54
<a-video> tag, 59
<body> tag, 54
box geometry, 55–56
CORS, 60
cylinder geometry, 57
.dae models, 54
demo, 53
door texture, 58
exit sign texture, 59
security, 58
SEO, 54
side walls, 55–56
speakers, 57–58
stars texture, 54–55

MozVR, definition, 6

��������� O
Oculus Rift device, 13

��������� P
Pretzel-shaped model, 34
Primitives, 22

<a-box>, 22–23
<a-camera>, 23
<a-circle>, 24–25
<a-collada-model>, 25–26
<a-cone>, 26
<a-cursor>, 23
<a-curvedimage>, 26–27
<a-cylinder>, 27
<a-dodecahedron>, 28
<a-image>, 28
<a-light>, 29
<a-obj-model>, 29
<a-octahedron>, 30
<a-plane>, 30
<a-ring>, 31
<a-sky>, 31–32
<a-sound>, 32
<a-sphere>, 32
<a-tetrahedron>, 33
<a-torus>, 33

■ INDEX

83

<a-torus-knot>, 34
<a-video>, 34
<a-videosphere>, 35

��������� Q
Quake 3 WebGL Demo, 16

��������� R
Repository, 75
Revision control systems (RCMs).

See Version control system, 70

��������� S, T, U
Search engine optimization (SEO), 54
sphericalEnvMap, 42

��������� V
Version control systems

advantages, 70
applications, 70
benefits, 69
features, 69
Git, 71

Virtual reality (VR)
content display web site, 45

<a-curved-image> primitive, 45
a-scene tag, 45–46
camera entity, 47–48
cursor to be ring shape, 47–48
event listener, 49
example, 50–51
images as assets, 46

definition, 1
devices

popular devices, 4
Samsung Gear VR, 4

hardware setup, types, 2
computer-connected, 2
mobile-based, 2

movietheater (see VR movie theater)
usage, 1

Vizor, 8
Build mode, 9
editor window, 8

VR movie theater, 53
<a-scene> tag, 54
<a-video> tag, 59
<body> tag, 54
box geometry, 55–56
CORS, 60
cylinder geometry, 57
.dae models, 54
demo, 53
door texture, 58
exit sign texture, 59
security, 58
SEO, 54
side walls, 55–56
speakers, 57–58
stars texture, 54–55

��������� W, X, Y, Z
Web-based virtual reality, 3
WebVR

applications
current state, 4
opportunities, 3

mailing list, 5
projects, 11

A-Painter, 15
Blair Witch WebVR

experience, 15
Google Cardboard, 11–13
HTC Vive, 14
Oculus Rift, 13
Quake 3 WebGL Demo, 16
requirements, 14
VR mode, 13

Slack, 5
WebVR API

definition, 5
features, 6
purpose-built interfaces, 5

WebVR-Boilerplate, 8

www.allitebooks.com

http://www.allitebooks.org

	Contents at a Glance
	Contents
	About the Authors
	Acknowledgments
	Chapter 1: Introduction to VR and WebVR
	Introducing Virtual Reality
	Types of VR Hardware Setup
	Web-Based Virtual Reality
	Opportunities for WebVR Applications
	Current State of WebVR

	Virtual Reality Devices Available in the Market
	Summary

	Chapter 2: Bringing VR to the Web and WebVR Frameworks
	The WebVR API
	What Is MozVR?
	Is Your Browser WebVR Enabled?
	WebVR Developer Tools
	A-Frame
	WebVR-Boilerplate
	Vizor

	Summary

	Chapter 3: Setting Up Your VR Lab and Popular WebVR Projects
	Google Cardboard
	Oculus Rift
	HTC Vive
	Other Requirements
	A-Painter
	Blair Witch WebVR Experience
	Quake 3 WebGL Demo

	Summary

	Chapter 4: Introduction to A-Frame
	Introducing the A-Frame Library
	A Simple Example
	A Basic Application
	Key Features of A-Frame

	The Entity-Component System
	Caching Assets to Improve Performance
	Mixins
	Components and Building Blocks of A-Frame

	Primitives
	<a-box>
	<a-camera>
	<a-cursor>
	<a-circle>
	<a-collada-model>
	<a-cone>
	<a-curvedimage>
	<a-cylinder>
	<a-dodecahedron>
	<a-image>
	<a-light>
	<a-obj-model>
	<a-octahedron>
	<a-plane>
	<a-ring>
	<a-sky>
	<a-sound>
	<a-sphere>
	<a-tetrahedron>
	<a-torus>
	<a-torus-knot>
	<a-video>
	<a-videosphere>

	A-Frame Inspector
	Scene Graph
	Viewport
	Components Panel

	Summary

	Chapter 5: From “Hello, World” to a VR Content Display
	Building a Simple “Hello, World” VR Application
	bm-font-text-component
	Understanding the Flow of the Application

	Building a VR Content Display Web Site
	Summary

	Chapter 6: Building a VR-Based Movie Theater
	Planning the Movie Theater
	Building 3D Models with MagicaVoxel
	Getting Prebuilt Models from Clara
	Summary

	Chapter 7: A-Frame Components and the Registry
	Components in A-Frame
	Lifecycle Methods of Components
	Component.init()
	Component.update()
	Component.remove()
	Component.tick()
	Component.pause() and Component.play()

	Built-in Components
	Using A-Frame Registry Components
	Summary

	Chapter 8: Version Control and Deploying Your Code on GitHub
	Introduction to Version Control Systems
	Advantages of Version Control
	Git: All You Need to Know
	Git vs. GitHub
	Installing Git on Your Machine

	Working with GitHub
	Hosting Your VR Web Site for Free Using GitHub Pages
	Summary

	Index

