
www.allitebooks.com

http://www.allitebooks.org

Magento 2 Cookbook

Over 50 practical recipes that will help you realize the
full potential of Magento in order to build a professional
online store

Ray Bogman

Vladimir Kerkhoff

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

FM-2

Magento 2 Cookbook

Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the authors, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

First published: March 2016

Production reference: 1210316

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78588-706-2

www.packtpub.com

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

FM-3

Credits

Authors
Ray Bogman

Vladimir Kerkhoff

Reviewer
Kevin Schroeder

Commissioning Editor
Wilson D'souza

Acquisition Editor
Reshma Raman

Content Development Editor
Parshva Sheth

Technical Editors
Pranil Pathare

Manthan Raja

Copy Editor
Tasneem Fatehi

Project Coordinator
Nikhil Nair

Proofreader
Safis Editing

Indexer
Monica Ajmera Mehta

Graphics
Disha Haria

Production Coordinator
Arvindkumar Gupta

Cover Work
Arvindkumar Gupta

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

FM-5

Foreword

Ray and Vladimir have been THE BEST thing to happen to Magento ever since X.Commerce.

Ok, that may be a slight exaggeration..., but it remains true that besides the software itself,
Magento has always thrived on the dedication and enthusiasm of its large community. Ray
and Vladimir are prime examples of the literally hundreds of developers, merchants, project
managers, extension providers, event organizers, and platform evangelists that contribute
every day to help community members make the most of their Magento shop.

I met Ray and Vladimir in the early days of Magento and got to know them as two highly
engaged Magento fanatics. They built shops, extended the functionality, and pushed Magento
to its limits. Failed and succeeded more often than anyone can count. More importantly, they
were always generous enough to share their learning with the community through blog posts,
webinars, events, and as Magento Doctors!

After a not-to-be-specified number of days, the announcement—we finally have Magento 2! If
there are two people in our community capable of taking a deep dive into this new amazing
platform and giving us practical recipes, it will be Ray and Vladimir.

I look forward to seeing what we can make happen in this new chapter for Magento. A lot of
things will change and this book will help you get started with over 50 recipes.

One thing, however, will never change: don't touch the core...

Guido Jansen
Magento Community Manager

www.allitebooks.com

http://www.allitebooks.org

FM-6

About the Authors

Ray Bogman is an IT professional and Magento evangelist from the Netherlands. He
started working with computers in 1983 as a hobby at first. In the past, he has worked for
KPN, a large Dutch Telecom company, as a senior security officer.

He has been the CTO of Wild Hibiscus, Netherlands, since 2010, and cofounder and business
creator of Yireo until 2011, Jira ICT since 2005, and CTO of SupportDesk B.V., which he
cofounded in 2011.

At SupportDesk B.V., he is a Magento, Joomla, OroCRM, web / server / mobile performance
specialist, and security evangelist. His focus during the day is business/product development
and training webmasters and consultants about the power of Magento, from the basics up to
an advanced level. He has trained over 1,000 Magento and 750 Joomla experts worldwide
since 2005.

At Magento events such as Magento Developers Paradise, Meet Magento, and MagentoLive,
he has been a regular speaker since 2009.

He has participated in reviewing Mastering Magento (2012), Mastering Magento
Theme Design (2014), Magento Administration Guide (2014), Learning Magento Theme
Development (2014), and the video, Mastering Magento (2013), all by Packt Publishing.

The writing of this book was a big thing for me. I spent every free minute
with passion in writing this. I had many doubts to overcome this big
challenge as a dyslexic person. But I never thought that writing this would
give me lots of self-esteem, peace, and joy. This would not have happened
without the loving support and patience of my wife, Mette, and daughter,
Belize. Joining forces with my co-writer, Vladimir, was a lot of fun. Sharing
thoughts and insights about our Magento passion was great.

Last but not least, I would like to thank all the people who made writing
this possible.

www.allitebooks.com

http://www.allitebooks.org

FM-7

Vladimir Kerkhoff is an experienced IT professional, 4-times Magento Certified Developer
from the Netherlands, and working with Magento since late 2009.

Currently, Vladimir is the founder/owner of Genmato BV, a Magento extension development
company. He is also available for cool freelance projects. Vladimir has had a long career in
the IT industry. He started his career in 1992 in an IT company, managing customer corporate
networks (Bionet, Novell Netware, and Windows Server). In 1996, he was the cofounder and
CTO of Perfect InterNetworking Solutions (PINS), a large Dutch-managed hosting provider.
After leaving PINS in 2009, he cofounded eFulFillers offering web shop fulfilment services
based on the Magento platform.

The writing of this book was a nice new experience, forcing myself to dive
into the new Magento 2 code and learn the new methods that are available.

www.allitebooks.com

http://www.allitebooks.org

FM-8

About the Reviewer

Kevin Schroeder has more years of experience in software development and consulting
than he would like to admit. He was worked at several notable companies, including Zend as
a consultant and evangelist and Magento as a consultant with the Expert Consulting Group.
After getting his first taste in browser testing, he realized that the current tooling amounted
to cruel and unusual punishment and founded the Magium open source project under his
company, 10n Software, with the purpose of making automated browser testing almost
enjoyable and actually useful beyond just browser testing.

When he's not working on software, he is sleeping. When he's not sleeping, he is recording
music (Coronal Loop Safari and Loudness Wars) or writing books (The IBMi Programmer's
Guide to PHP, You want to do WHAT with PHP?, and Advanced Guide to PHP on the IBMi,
all published by MC Press).

I would like to thank my wife, Laurie, and my three young 'uns who, after
having me in their family, will have no problems coping with the rigors of
adult life. Supreme thanks to life's Author, about whom many books have
been written and none have been sufficient.

www.allitebooks.com

http://www.allitebooks.org

FM-9

www.PacktPub.com

eBooks, discount offers, and more
Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can search, access, and read Packt's entire library of books.

Why Subscribe?
ff Fully searchable across every book published by Packt

ff Copy and paste, print, and bookmark content

ff On demand and accessible via a web browser

www.allitebooks.com

http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
http://www.allitebooks.org

i

Table of Contents
Preface	 v
Chapter 1: Installing Magento 2 on Apache and NGINX	 1

Introduction	 1
Installing Apache	 2
Installing NGINX	 5
Installing PHP-FPM	 7
Installing HHVM	 13
Installing MySQL	 18
Installing Magento 2	 21
Installing Magento 2 on Hypernode	 33
Managing Magento 2 on Docker	 38

Chapter 2: Magento 2 System Tools	 43
Introduction	 43
Installing Magento 2 sample data via GUI	 47
Installing Magento 2 sample data via the command line	 53
Managing Magento 2 indexes via the command line	 56
Managing Magento 2 cache via the command line	 59
Managing Magento 2 backup via the command line	 64
Managing Magento 2 set mode (MAGE_MODE)	 68
Transferring your Magento 1 database to Magento 2	 71

Chapter 3: Enabling Performance in Magento 2	 79
Introduction	 79
Configuring Redis for backend cache	 80
Configuring Memcached for session caching	 89
Configuring Varnish as the Full Page Cache	 93
Configuring Magento 2 with CloudFlare	 99

ii

Table of Contents

Configuring optimized images in Magento 2	 107
Configuring Magento 2 with HTTP/2	 111
Configuring Magento 2 performance testing	 118

Chapter 4: Creating Catalogs and Categories	 125
Introduction	 125
Create a Root Catalog	 127
Create subcategories	 134
Manage attribute sets	 137
Create products	 141
Manage products in a catalog grid	 150

Chapter 5: Managing Your Store	 155
Introduction	 155
Creating shipping and tax rules	 156
Managing customer groups	 168
Configuring inventories	 170
Configuring currency rates	 174
Managing advanced pricing	 175

Chapter 6: Creating a Magento 2 Theme	 181
Introduction	 181
Creating a new theme	 182
Changing a layout XML of a Magento 2 module	 190
Adding CSS/JS to pages	 196
Using Grunt for CSS changes	 198
Adding static blocks to pages through layout XML	 202
Adding static blocks to pages through widgets	 205
Using a dynamic serving theme based on the client browser	 209
Creating theme-specific translations	 213

Chapter 7: Creating Magento 2 Extensions – the Basics	 217
Introduction	 217
Initializing extension basics	 218
Working with database models	 222
Creating tables using setup scripts	 224
Creating a web route and controller to display data	 235
Creating system configuration fields	 241
Creating a backend data grid	 246
Creating a backend form to add/edit data	 256

iii

Table of Contents

Chapter 8: Creating Magento 2 Extensions – Advanced	 267
Introduction	 267
Using dependency injection to pass classes to your own class	 268
Modifying functions with the use of plugins – Interception	 271
Creating your own XML module configuration file	 275
Creating your own product type	 282
Working with service layers/contracts	 288
Creating a Magento CLI command option	 308

Index	 317

v

Preface
Magento is one of the most successful open source e-commerce platforms out there today.
It is powerful enough to build small or enterprise businesses.

The first stable version of Magento was released in 2008. Since the beginning, lots of
merchants have chosen Magento to be their platform with great success.

The current global ecosystem of Magento includes 240+ merchants, 300+ partners, and
4500+ certified developers, and this number is growing on a daily basis.

Over the last few years, e-commerce has changed a lot, so Magento announced a new
platform that will support this. This new era of commerce is called Magento 2.

Magento 2 offers enhanced performance and scalability. The new platform is built from
scratch to enable lots of new features. It supports both B2C and B2B businesses, and will
serve the best omnichannel shopping experiences to their shoppers.

This book will provide you with the necessary insights to get a better understanding on what is
needed to build such a powerful commerce platform.

The book is divided into several recipes, which show you which steps to take to complete a
specific action. In each recipe, we have a section that explains how everything works.

It will cover installing a Magento 2 website, configuring your categories and products,
performance tuning, creating a theme, developing a module, and much more.

At the end of this book, you will gain the knowledge to start building a success website.

What this book covers
Chapter 1, Installing Magento 2 on Apache and NGINX, is a totally different ballgame
compared to Magento 1. Where Magento 1 could be installed through FTP or SSH,
Magento 2 is installable only via the command-line interface for an experienced webmaster.

Preface

vi

Chapter 2, Magento 2 System Tools, explains how to install Magento 2 via the command
shell. Magento released a new powerful tool to manage and install sample data, reindex
your database, back up your site, or flush your caches, which are just a few of the options.

Chapter 3, Enabling Performance in Magento 2, explains how to configure different types of
caching options. In Magento 2, the Full Page Cache (FPC) can be handled by Varnish to give
your store a performance boost. There are also external services that you can use as a cache.

Chapter 4, Creating Catalogs and Categories, shows you one of the major elements of a
Magento store before creating products. Creating the correct product type including attributes
is an important step in setting up a Magento store.

Chapter 5, Managing Your Store, covers setting up the correct tax rules, configuring an
inventory, and creating customer groups.

Chapter 6, Creating a Magento 2 Theme, discusses the Magento 2 blank theme and how to
use the fallback to create seasonal variations. It also explains how the new theme is set up
and where files are stored.

Chapter 7, Creating Magento 2 Extensions – the Basics, contains the basic functions required
to use extensions in a Magento 2 installation. It contains a brief introduction to new methods
introduced in the Magento 2 framework and examples on how to create basic functions.

Chapter 8, Creating Magento 2 Extensions – Advanced, explains how to use advanced
features in extensions for Magento 2. It also includes how to add unit/functional tests
as this is a new requirement for extensions listed on the new Magento Connect.

What you need for this book
The following setup is recommended for maximum enjoyment:

ff Magento 2 source code

ff A virtual Linux server (Ubuntu 15.10 or higher; DigitalOcean)

ff Hypernode (https://hypernode.com/)

ff CloudFlare (https://www.cloudflare.com/)

ff IDE (PhpStorm, NetBeans, and Sublime)

ff A Git account

Who this book is for
This book is intended primarily for intermediate to professional merchants, webmasters,
DevOps, solution integrators, and PHP developers who are interested in Magento 2.

https://hypernode.com/
https://www.cloudflare.com/

Preface

vii

It will cover the basic and advanced features of Magento 2 DevOps, performance, theming,
development, and system configuration.

Sections
In this book, you will find several headings that appear frequently (Getting ready, How to do it,
How it works, There's more, and See also).

To give clear instructions on how to complete a recipe, we use these sections as follows:

Getting ready
This section tells you what to expect in the recipe, and describes how to set up any software or
any preliminary settings required for the recipe.

How to do it…
This section contains the steps required to follow the recipe.

How it works…
This section usually consists of a detailed explanation of what happened in the previous section.

There's more…
This section consists of additional information about the recipe in order to make the reader
more knowledgeable about the recipe.

See also
This section provides helpful links to other useful information for the recipe.

Conventions
In this book, you will find a number of text styles that distinguish between different kinds of
information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"Go to your favorite browser and search using your yourdomain.com."

Preface

viii

A block of code is set as follows:

/usr/local/bin/php -f install.php -- \
--license_agreement_accepted "yes" \
--locale "en_US" \
--timezone "America/Los_Angeles" \
--default_currency "USD" \
--db_host "mysql.example.com" \

When we wish to draw your attention to a particular part of a code block, the relevant lines or
items are set in bold:

docker run --rm --name magento2 -it -p 80:80 --link mysql:mysql -e
MYSQL_USER=root -e MYSQL_PASSWORD=admin -e PUBLIC_HOST=yourdomain.com
raybogman/mage2cookbook-docker $*

Any command-line input or output is written as follows:

service apache2 status

netstat –anp | grep apache2

New terms and important words are shown in bold. Words that you see on the screen, for
example, in menus or dialog boxes, appear in the text like this: "Check on the second like for
the Server API; this should be FPM/FastCGI."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this book—
what you liked or disliked. Reader feedback is important for us as it helps us develop titles
that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention the
book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.

www.packtpub.com/authors

Preface

ix

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to
get the most from your purchase.

Downloading the example code
You can download the example code files for this book from your account at http://www.
packtpub.com. If you purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

You can download the code files by following these steps:

1.	 Log in or register to our website using your e-mail address and password.

2.	 Hover the mouse pointer on the SUPPORT tab at the top.

3.	 Click on Code Downloads & Errata.

4.	 Enter the name of the book in the Search box.

5.	 Select the book for which you're looking to download the code files.

6.	 Choose from the drop-down menu where you purchased this book from.

7.	 Click on Code Download.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

ff WinRAR / 7-Zip for Windows

ff Zipeg / iZip / UnRarX for Mac

ff 7-Zip / PeaZip for Linux

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/diagrams used
in this book. The color images will help you better understand the changes in the output. You
can download this file from https://www.packtpub.com/sites/default/files/
downloads/Magento2Cookbook_ColorImages.pdf.

http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
https://www.packtpub.com/sites/default/files/downloads/Magento2Cookbook_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/Magento2Cookbook_ColorImages.pdf

Preface

x

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you find a mistake in one of our books—maybe a mistake in the text or the code—we would be
grateful if you could report this to us. By doing so, you can save other readers from frustration
and help us improve subsequent versions of this book. If you find any errata, please report
them by visiting http://www.packtpub.com/submit-errata, selecting your book,
clicking on the Errata Submission Form link, and entering the details of your errata. Once your
errata are verified, your submission will be accepted and the errata will be uploaded to our
website or added to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come across
any illegal copies of our works in any form on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors and our ability to bring you valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at questions@
packtpub.com, and we will do our best to address the problem.

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

1

1
Installing Magento 2 on

Apache and NGINX

In this chapter, we will cover the basic tasks related to installing Magento 2 on Apache and
NGINX. You will learn the following recipes:

ff Installing Apache

ff Installing NGINX

ff Installing PHP-FPM

ff Installing HHVM

ff Installing MySQL

ff Installing Magento 2

ff Installing Magento 2 on Hypernode

ff Managing Magento 2 on Docker

Introduction
This chapter explains how to install Magento 2 on a hosting environment. When installing
a new Magento 2 instance, we can use either a Linux, Apache, MySQL, PHP (LAMP) or
Linux, NGINX, MySQL, PHP (LEMP) setup. Currently, options such as MariaDB or HHVM
are equivalent to MySQL or PHP. Only HHVM will be converted in this chapter.

We will install a clean Magento 2 setup on a hosted virtual private server (VPS) for more
advanced users and an easy-to-use installation on Hypernode.

The recipes in this chapter will primarily focus on a basic setup of how to install Magento 2.
However, in some situations, we will dive in deeper related to the subject.

Installing Magento 2 on Apache and NGINX

2

While Magento requirements differ from Magento 1, we will be using the latest and finest
version from PHP, HHVM, NGINX, Apache, Redis, MySQL, and Ubuntu.

Creating a new Magento 2 stack could bring up minor issues.
Always update to the latest available version, if possible.

Installing Apache
Throughout the following recipes, we will install the latest Apache 2.4.x version on a Software
as a Service (SaaS) platform hosted by DigitalOcean. The current Apache version supports
HTTP/2. This recipe will show you how to do this.

HTTP/2 is an optimized version of the Hypertext Transfer Protocol (HTTP),
also known as HTTP version 2 (HTTP/2). Some of the new features of HTTP/2
are a more efficient usage of network resources and network latency. HTTP/2
allows multiple concurrent connections over a single Transmission Control
Protocol (TCP) connection at once, which optimizes TCP load. Merging CSS
and JS is not necessary anymore. HTTP/2 service also provides the possibility
to use server push, which allows a proactive push of resources to the client.

Getting ready
For this recipe, you will need to create an account at DigitalOcean https://www.
digitalocean.com/. No other prerequisites are required.

How to do it...
For the purpose of this recipe, let's assume that we need to create an Apache hosting
environment. The following steps will guide you through this:

1.	 The first step is creating an account at https://cloud.digitalocean.com/
registrations. All the steps to create an account are straightforward. Confirm
your mail and update your billing profile.

2.	 Start creating your first Droplet. Choose your hostname, and select your size (2GB
CPU's or 40GB SSD Disk). Next, pick your region (DigitalOcean has many regions
available worldwide). Select your image (we will use the latest Ubuntu). Select extra
available settings such as Private Networking to run multiple servers including an
Internet network or backup and IPv6 options. If you already have an SSH key, you can
upload this:

https://www.digitalocean.com/
https://www.digitalocean.com/
https://cloud.digitalocean.com/registrations
https://cloud.digitalocean.com/registrations

Chapter 1

3

3.	 The Droplet takes approximately 60 seconds to get created. You will get an e-mail
right after including all the additional login details such as the hostname, IP address,
username, and password.

4.	 Configure your domain name, yourdomain.com, to the addressed IP address from
the Droplet:

yourdomain.com A 123.123.123.123

 www CNAME yourdomain.com

5.	 Connect your Droplet with SSH using your favorite SSH client (putty or terminal) and
change your password:
sudo ssh yourdomain.com

6.	 First, we will update your server to the latest updates available:
apt-get update && apt-get -y upgrade

Installing Magento 2 on Apache and NGINX

4

7.	 Next, we will install Apache 2 using a third-party package. Currently, Ubuntu doesn't
include the latest Apache 2.4.x with HTTP/2 support. The third-party vendor that we
will use is https://launchpad.net/~ondrej/+archive/ubuntu/apache2.
Run the following command:
echo "deb http://ppa.launchpad.net/ondrej/apache2/ubuntu wily
main" | sudo tee -a /etc/apt/sources.list.d/apache2.list

echo "deb-src http://ppa.launchpad.net/ondrej/apache2/ubuntu wily
main" | sudo tee -a /etc/apt/sources.list.d/apache2.list

8.	 Before we can install Apache 2, we need to authorize the package by installing a
signed key:
apt-key adv --keyserver keyserver.ubuntu.com --recv-keys
0x4F4EA0AAE5267A6C

9.	 Now, we will update our Ubuntu system using the latest Apache2 packages:
apt-get update && apt-get -y install apache2

10.	 Once every Apache 2 package is installed, we can check whether everything is in
order by running the following command on the shell:
apache2 -v

The output of this command is as follows:
root@mage2cookbook:~# apache2 -v

Server version: Apache/2.4.17 (Ubuntu)

If you have followed steps 1 to 9, you will be able to see if the web server is running. Go to
your favorite browser and search using your yourdomain.com.

In the DigitalOcean control panel, you can create multiple snapshots
at all times during the recipes. This will help you in restoring an old
version or just going back in time.

How it works…
Let's recap and find out what we did throughout this recipe. In steps 1 through 3, we create a
clean hosting server setup using DigitalOcean. Next, we connect the Droplet IP to your domain
name in DNS. After login via SSH, we are able to update the server and continue to the
process of installing Apache 2 via a third-party repository. Depending on the Ubuntu setup, we
need to change the version name, such as precise, trusty, wily, vivid, or xenial, to
install the software.

In step 8, we submit a key that will validate the repository before we can start installing
the Apache 2 software. In step 9, we use a simple command to update the repository
and start installing.

 https://launchpad.net/~ondrej/+archive/ubuntu/apache2.

Chapter 1

5

There's more…
If you want to check whether Apache is running fine, use one of the following commands:

service apache2 status

netstat –anp | grep apache2

Installing NGINX
Throughout the following recipes, we will install the latest NGINX 1.9.x version on a SaaS
platform hosted by DigitalOcean. The current NGINX version supports HTTP/2. This recipe
will show you how to do it.

Getting ready
For this recipe, you will need to create an account at DigitalOcean https://www.
digitalocean.com/. No other prerequisites are required.

For this cookbook, we will use a commercial SaaS hosting provider
to get a production-ready environment. You can use any other
solution out there to build on your preferred stack.

How to do it...
For the purpose of this recipe, let's assume that we need to create an NGINX hosting
environment. The following steps will guide you through this:

1.	 Follow steps 1 until 6 in the previous recipe on how to install Apache.

2.	 Then, we will update our server to the latest updates available:
apt-get update && apt-get -y upgrade

3.	 Next, we will install NGINX using the latest mainline version 1.9.x. Currently, Ubuntu
doesn't include the latest NGINX 1.9.x mainline version. The latest change log can be
viewed at http://nginx.org/en/CHANGES. Run the following command:
echo "deb http://nginx.org/packages/mainline/ubuntu/ wily nginx" |
sudo tee -a /etc/apt/sources.list.d/nginx.list

echo "deb-src http://nginx.org/packages/mainline/ubuntu/ wily
nginx" | sudo tee -a /etc/apt/sources.list.d/nginx.list

https://www.digitalocean.com/
https://www.digitalocean.com/
 http://nginx.org/en/CHANGES

Installing Magento 2 on Apache and NGINX

6

4.	 Before we can install NGINX, we need to authorize the package by installing a
signed key:
wget http://nginx.org/keys/nginx_signing.key | apt-key add nginx_
signing.key

5.	 Now, we will update our Ubuntu system using the latest NGINX packages:
apt-get update && apt-get -y install nginx

6.	 Once every NGINX package is installed, we can check whether everything is in order
by running the following command on the shell:
nginx -v

The output of this command is as follows:
root@mage2cookbook:~# nginx -v

nginx version: nginx/1.9.6

If you have followed steps 1 to 6, you will be able to see if the web server is running. Go to
your favorite browser and search using your yourdomain.com.

In the DigitalOcean control panel, you can create multiple snapshots
at all times during the recipes. This will help you in restoring an old
version or just going back in time, such as switching from Apache to
NGINX or back.

How it works…
Let's recap and find out what we did throughout this recipe. In steps 1 through 5, we used
the same Droplet to install NGINX. All steps are alike, but instead of installing Apache,
we use NGINX instead. The only big difference is that it is an official NGINX repository.

There's more…
The current market share of NGINX is around 15% worldwide compared to 50% of Apache on
active sites. Over the last couple of years, NGINX has grown and is commonly used as a stable
web server for Magento hosting:

http://news.netcraft.com/archives/2015/03/19/march-2015-web-server-
survey.html

If you want to check whether NGINX is running fine, use one of the following commands:

service nginx status

netstat -anp | grep nginx

http://news.netcraft.com/archives/2015/03/19/march-2015-web-server-survey.html
http://news.netcraft.com/archives/2015/03/19/march-2015-web-server-survey.html

Chapter 1

7

Installing PHP-FPM
Throughout the following recipes, we will install the latest PHP 7.x version on Apache and
NGINX. The current PHP-FastCGI Process Manager (PHP-FPM) will be installed through a
third-party package. This recipe will show you how to do it.

PHP 7 is the latest version of the PHP stack. It's also known as PHP Next
Generation (PHP NG) and PHP's answer to HHVM. Currently, it's two to
three times faster than PHP 5.x.
The whole code base is rewritten and uses less memory. Lots of PHP
functions are backward-compatible with the PHP 5.x code base, so
upgrading to PHP 7 should be easy.

Getting ready
For this recipe, you will need a preinstalled Apache or NGINX setup. No other prerequisites
are required.

How to do it...
For the purpose of this recipe, let's assume that we need to create an PHP-FPM hosting
environment. The following steps will guide you through this:

1. First, we will start installing PHP-FPM on Apache; later, we will do the same with NGINX.

2. Next, we will install PHP 7 on Apache 2 using a third-party package. Currently,
Ubuntu doesn't include the latest PHP 7 yet. The third-party vendor that we will
use is https://launchpad.net/~ondrej/+archive/ubuntu/php.

Run the following command:
echo "deb http://ppa.launchpad.net/ondrej/php/ubuntu wily main" |
sudo tee -a /etc/apt/sources.list.d/php.list

echo "deb-src http://ppa.launchpad.net/ondrej/php/ubuntu wily
main" | sudo tee -a /etc/apt/sources.list.d/php.list

3. As we have already used the authorized Apache package from the same vendor, we
are okay on the signed key. There is no need to install the key anymore.

4. Now, we will update our Ubuntu system using the latest PHP 7 packages:
apt-get update && apt-get -y install php7.0 php7.0-fpm php7.0-dev
php7.0-mhash php7.0-mcrypt php7.0-curl php7.0-cli php7.0-mysql
php7.0-gd php7.0-intl php7.0-xsl

https://launchpad.net/~ondrej/+archive/ubuntu/php

Installing Magento 2 on Apache and NGINX

8

5.	 Once every PHP 7 package is installed, we can check whether everything is in order
by running the following command on the shell:
php -v

The output of this command is as follows:
root@mage2cookbook:/etc/php# php -v

PHP 7.0.0 (cli) (NTS)

Copyright (c) 1997-2015 The PHP Group

Zend Engine v3.0.0-dev, Copyright (c) 1998-2015 Zend Technologies

6.	 Now, we will configure PHP-PFM with Apache. Out of the box, Apache 2 comes with a
module named mod_proxy, which we will use to connect Apache to PHP-FPM. We will
be using PHP-FPM in TCP mode instead of the Unix socket. The main reason is that
it's easy to configure and we can use it later with HHVM. The default port 9000 will be
our connector. To enable mod_proxy, run the following command on the shell:
a2enmod proxy_fcgi

7.	 Before we can connect Apache to PHP-FPM, we need to give PHP-FPM instructions to
listen to the correct internal port. Run the following command from the shell:
sed -i "s/listen =.*/listen = 127.0.0.1:9000/" /etc/php/7.0/fpm/
pool.d/www.conf

You can do this manually as well; edit the www.conf file with your favorite editor in
your PHP-FPM pool directory. Search for listen = /var/run/php/php7.0-fpm.
sock and change this to listen = 127.0.0.1:9000.

8.	 Restart your PHP-FPM process to use the altered changes. Run the following
command from the shell:
service php7.0-fpm restart

9.	 Next, we need to configure Apache using the currently set-up internal proxy_fcgi
module. The default Apache Virtual Host configuration file is located at /etc/
apache2/sites-enabled/000-default.conf. Edit this file and add the
following code just before the closing </VirtualHost> tag on one line without
any breaks:
ProxyPassMatch ^/(.*\.php(/.*)?)$ fcgi://127.0.0.1:9000/var/www/
html/$1

Chapter 1

9

The following code is for the new 000-default.conf:
<VirtualHost *:80>
ServerAdmin webmaster@localhost
DocumentRoot /var/www/html
<Directory /var/www/html>
Options Indexes FollowSymLinks
AllowOverride All
Order allow,deny
allow from all
</Directory>

ErrorLog ${APACHE_LOG_DIR}/error.log
CustomLog ${APACHE_LOG_DIR}/access.log combined

ProxyPassMatch ^/(.*\.php(/.*)?)$ fcgi://127.0.0.1:9000/var/www/
html/$1
</VirtualHost>

You can change DocumentRoot /var/www/html to any given preferred directory.
However, for the rest of the recipes, we will stay with the default.

10.	 After saving the Apache configuration, we need to restart the web server. Run the
following command from the shell:
service apache2 restart

11.	 Now, we need to check whether Apache and PHP-FPM are working fine. Go to the cd
/var/www/html directory and create the following file including content:
echo "<?php phpinfo(); ?>" > phpinfo.php

www.allitebooks.com

http://www.allitebooks.org

Installing Magento 2 on Apache and NGINX

10

12.	 If you have followed steps 1 to 11, you will be able to see if PHP-FPM works with your
web server. Go to your favorite browser and search using your yourdomain.com/
phpinfo.php.

You should now see a phpinfo page like the following screenshot. Check on the
second line for the Server API; this should be FPM/FastCGI.

If everything is working fine, we have completed the Apache PHP-FPM setup. Now let's
do the same for the NGINX and PHP-FPM setup.

As we have already installed the PHP-FPM packages in steps 1 to 5, we now need to
combine them with NGINX.

Before we continue, it is important to use either a clean DigitalOcean Droplet with
NGINX running or you can disable the Apache server using the following command
form the shell:
service apache2 stop && service nginx start

Chapter 1

11

13.	 Next, we need to configure NGINX. The default NGINX configuration file is located at
/etc/nginx/conf.d/default.conf. Remove the old configuration in this file
and add the following code:
server {
 listen 80;
 server_name yourdomain.com;

 root /var/www/html;
 index index.php index.html;

 access_log /var/log/nginx/access.log;
 error_log /var/log/nginx/error.log;

 location ~ \.php$ {

 fastcgi_index index.php;
 fastcgi_pass 127.0.0.1:9000;
 fastcgi_param SCRIPT_FILENAME
 $document_root$fastcgi_script_name;
 include fastcgi_params;
 }

 location ~ /\.ht {
 deny all;
 }
}

14.	 Save the new configuration using your favorite editor and restart your NGINX and
PHP-PFM server using the following command on the shell:
service nginx restart && service php7.0-fpm restart

A nice trick to test if your configuration is correct is as follows:
nginx –t

If you have followed steps 13 to 14, you will be able to see if PHP-FPM works with your web
server. Go to your favorite browser and search using your yourdomain.com/phpinfo.php.

You should now see a phpinfo page similar to the one on the previous page during the Apache
PHP-FPM setup. Check on the second line for the Server API; this should be FPM/FastCGI.

Installing Magento 2 on Apache and NGINX

12

Downloading the example code
You can download the example code files for this book from your
account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support
and register to have the files e-mailed directly to you.
You can download the code files by following these steps:

ff Log in or register to our website using your e-mail address
and password.

ff Hover the mouse pointer on the SUPPORT tab at the top.
ff Click on Code Downloads & Errata.
ff Enter the name of the book in the Search box.
ff Select the book for which you're looking to download the

code files.
ff Choose from the drop-down menu where you purchased this

book from.
ff Click on Code Download.

Once the file is downloaded, please make sure that you unzip or extract
the folder using the latest version of:

ff WinRAR / 7-Zip for Windows
ff Zipeg / iZip / UnRarX for Mac
ff 7-Zip / PeaZip for Linux

How it works…
Let's recap and find out what we did throughout this recipe. In steps 1 through 4, we first
install PHP-FPM from a third-party repository. The main reason that we use this repository is
that it is easy to use and well-supported. Current Ubuntu versions don't have the latest PHP 7
available yet. If you are comfortable installing PHP from source, you can do so.

All PHP modules listed in step 4 are mandatory for Magento 2 to work properly. In step 6, we
explain why we use PHP-FPM running on port 9000. Setting up a TCP port is much easier when
using multiple PHP backends, switching from Apache to NGINX, or PHP-FPM versus HHVM.

In step 7, we add an Apache module that acts as a proxy, so we are able to connect PHP-FPM
to Apache.

In step 8, we changed the PHP-FPM pool to switch from Unix sockets to TCP. If you prefer
sockets, you can do so.

In step 10, we add the ProxyPassMatch rule to our Apache configuration file, which will serve
all incoming PHP requests to the PHP-FPM server. After saving and restarting the Apache
server, we are able to test if everything works.

http://www.packtpub.com
http://www.packtpub.com/support

Chapter 1

13

In step 13, we configure NGINX to work with PHP-PFM. Creating fastcgi_pass does the trick
to connect to port 9000.

There's more…
If you want to check whether PHP-FPM is running fine, use one of the following commands:

service php7.0-fpm status

netstat -anp | grep php-fpm

To check which server is running, check the headers by running the following command:

curl -I http://mage2cookbook.com/phpinfo.php

The output of this command will be as follows:

root@mage2cookbook:~# curl -I http://mage2cookbook.com/phpinfo.php

HTTP/1.1 200 OK

Server: nginx/1.9.6

Once we switch back to Apache we will see the following:

service nginx stop && service apache2 start

root@mage2cookbook:~# curl -I http://mage2cookbook.com/phpinfo.php

HTTP/1.1 200 OK

Server: Apache/2.4.17 (Ubuntu)

Use phpinfo.php wisely on a production environment. Sharing
this information on a production website is not advised and could
expose your security risks.

Installing HHVM
Throughout the following recipes, we will install the latest HHVM 3.9.x version on Apache and
NGINX. HHVM has gained large popularity over the last couple of year and is well-known for its
high performance on Magento. While Magento 1 was not supported by default, Magento 2 is.
This recipe will show you how to do it.

HHVM (also known as the HipHop Virtual Machine) is a virtual machine for
PHP developed by Facebook, with an associated just-in-time (JIT) compiler.
Deploying HHVM on a Magento 2 website should lead to performance
improvements across your web shop.

Installing Magento 2 on Apache and NGINX

14

Getting ready
For this recipe, you will need a preinstalled Apache or NGINX setup. No other prerequisites
are required.

How to do it...
For the purpose of this recipe, let's assume that we need to create an HHVM hosting
environment. The following steps will guide you through this:

1.	 First, we will start installing HHVM on Apache; later, we will do the same with NGINX.

2.	 Next, we will install HHVM on Apache2 using the official prebuilt package by
Facebook. Run the following command on the shell:
echo "deb http://dl.hhvm.com/ubuntu wily main" | sudo tee -a /etc/
apt/sources.list.d/hhvm.list

3.	 Before we can install HHVM, we need to authorize the package by installing a
signed key:
apt-key adv --keyserver keyserver.ubuntu.com --recv-keys
0x5a16e7281be7a449

4.	 Now we will update our Ubuntu system using the latest HHVM packages:
apt-get update && apt-get -y install hhvm

5.	 Once every HHVM package is installed, we can check whether everything is in order
by running the following command on the shell:
hhvm --version

The output of this command is as follows:
root@mage2cookbook:~# hhvm --version

HipHop VM 3.10.1 (rel)

6.	 Since the setup of PHP-FPM, we have started using the internal port 9000 to handle
all traffic on PHP. Now we will use the same port for HHVM. Stop PHP-FPM as it is still
running and start HHVM using the following command from the shell:
service php7.0-fpm stop && service hhvm start

7.	 If you need to run dedicated HipHop code such as Hack (the default HipHop
programming language) in the future, you may want to change your Apache
configuration. Restart your Apache and HHVM server:
ProxyPassMatch ^/(.+\.(hh|php)(/.*)?)$ fcgi://127.0.0.1:9000/var/
www/html/$1

Chapter 1

15

8.	 Now, let's check whether HHVM and Apache are working. Create a PHP file called
hhvm.php in the /var/www/html directory:
<?php
if (defined('HHVM_VERSION')) {
 echo "HHVM";
} else {
 echo "PHP";
}

If you have followed steps 1 to 8, you will be able to see if HHVM works with your web
server. Go to your favorite browser and search using your yourdomain.com/hhvm.
php. You should now see a HHVM notice on your screen.

In newer versions of HHVM, the default phpinfo(); tag works just fine on your
screen. Go to your favorite browser and search using your yourdomain.com/
phpinfo.php:

Installing Magento 2 on Apache and NGINX

16

9.	 If everything is working fine, we have completed the Apache HHVM setup. Now let's
do the same for the NGINX and HHVM setup.

As we have already installed the HHVM packages in steps 1 to 5, we now need to
combine them with NGINX.

10.	 Before we continue, it is important to use either a clean DigitalOcean Droplet with
NGINX running or you can disable the Apache server using the following command
from the shell:
service apache2 stop && service nginx start

The following is the content of NGINX configuration file:
server {
 listen 80;
 server_name yourdomain.com;

 root /var/www/html;
 index index.php index.html;

 access_log /var/log/nginx/access.log;
 error_log /var/log/nginx/error.log;

 location ~ \.(hh|php)$ {

 fastcgi_index index.php;
 fastcgi_pass 127.0.0.1:9000;
 fastcgi_param SCRIPT_FILENAME
 $document_root$fastcgi_script_name;
 include fastcgi_params;
 }

 location ~ /\.ht {
 deny all;
 }
}

In the preceding example, we altered the location for PHP and Hack support:
location ~ \.(hh|php)$ {

11.	 You can now restart your NGINX and HHVM server to connect them using the follow
command from the shell:
service nginx restart && service hhvm restart

Chapter 1

17

12.	 Now let's check whether HHVM and NGINX are working. Create a PHP file called
hhvm.php or use the one in the previous Apache HHVM setup in the /var/www/
html directory:
<?php
if (defined('HHVM_VERSION')) {
 echo "HHVM";
} else {
 echo "PHP";
}

If you have followed steps 9 to 11, you will be able to see if HHVM works with your web server.
Go to your favorite browser and search using your yourdomain.com/hhvm.php.

You should now see a HHVM notice on your screen, but you can also use yourdomain.com/
phpinfo.php.

How it works…
Let's recap and find out what we did throughout this recipe. In steps 1 through 4, we use the
official HHVM repository and install the software. The installation process is similar to the
PHP-FPM setup. The important difference between HHVM and PHP-FPM is that HHVM does
not have additional modules to install.

In step 7, we change ProxyPassMatch a little bit, and add the .hh extension parameter
only. By default, the .hh extension is used only when creating HipHop (Hack)-dedicated code.

In step 10, we do the same procedure for NGINX. The only thing that we change is the
.hh extension in the location. As HHVM runs by default on port 9000, we do not change
anything here.

There's more…
If you want to check whether HHVM is running fine, use one of the following commands:

service hhvm status

netstat -anp | grep hhvm

To check which server is running, check the headers by running the following command:

curl -I http://mage2cookbook.com/hhvm.php

Installing Magento 2 on Apache and NGINX

18

The output of this command is as follows:

root@mage2cookbook:~# curl -I http://mage2cookbook.com/hhvm.php

HTTP/1.1 200 OK

Server: nginx/1.9.6

X-Powered-By: HHVM/3.10.1

Once we switch back to Apache, we will see the following:

service nginx stop && service apache2 start

root@mage2cookbook:~# curl -I http://mage2cookbook.com/hhvm.php

HTTP/1.1 200 OK

Server: Apache/2.4.17 (Ubuntu)

X-Powered-By: HHVM/3.10.1

Installing MySQL
Throughout the following recipes, we will install the latest MySQL 5.7.x version on Apache
and NGINX. The current MySQL version is a milestone in the open source world. Its new
performance and scalability features will be a great benefit for every Magento website.
This recipe will show you how to do it.

MySQL 5.7 is an extremely exciting new version of the world's most
popular open source database, which is two times faster than MySQL 5.6
while also improving usability, manageability, and security.

Getting ready
For this recipe, you will need a preinstalled Apache or NGINX and PHP-FPM or HHVM setup.
No other prerequisites are required.

How to do it...
Before we can install the latest MySQL version, we need to download the software in our local
system. The official MySQL APT repository provides you with a simple and convenient way to
install and update MySQL products. Always use the latest software package using apt-get.

1.	 We will now install MySQL using the official vendor package. Run the following
command from your root or home directory:
wget http://dev.mysql.com/get/mysql-apt-config_0.5.3-1_all.deb

Chapter 1

19

2.	 To download the rest of the latest MySQL package, we first install the mysql-apt-
config package. Run the following command:
dpkg -i mysql-apt-config_0.5.3-1_all.deb

During installation, it will ask which MySQL product you wish to configure. Select Server:

Next, it will ask which Server version you wish to receive. Select mysql-5.7:

Installing Magento 2 on Apache and NGINX

20

In the next screen, click on Apply:

3.	 Now, we will update our Ubuntu system using the latest MySQL packages:
apt-get update && apt-get -y install mysql-server

4.	 During installation, it will ask you several questions. The first one will be to
choose a new password for the MySQL root user. Always make sure to create a
new dedicated user only for a database; using root is just an example and not
advised on production.

5.	 Once every MySQL package is installed, we can check whether everything is in order
by running the following command on the shell:
mysql --version

The output of this command is as follows:
root@mage2cookbook:~# mysql --version

mysql Ver 14.14 Distrib 5.7.9, for Linux (x86_64)

How it works…
Let's recap and find out what we did throughout this recipe. In steps 1 through 3, we download
the official MySQL package and use a graphical interface to install the latest version. The
whole process is pretty straightforward. Remember to use a dedicated user that has all the
privileges instead of the root user.

Chapter 1

21

There's more…
If you want to check whether MySQL is running fine, use one of the following commands:

service mysql status

netstat -anp | grep mysql

After the MySQL server installation is finished, you can log in on the shell using the
following command:

mysql -u root -p

Installing Magento 2
Throughout the following recipes, we will install Magento 2 on a preconfigured SaaS platform
hosted by DigitalOcean. Installing Magento 2 differs a lot from the current Magento 1 version.
An important change is the use of Composer. We will use Composer to install all the third-party
modules and manage the core of Magento 2. This recipe will show you how to do it.

Composer is a dependency management tool for PHP. It allows you
to declare the software libraries for your project. It will help you
install or update them.

Getting ready
For this recipe, you will need a preinstalled Apache or NGINX, PHP or HHVM and MySQL setup.
No other prerequisites are required.

How to do it...
For the purpose of this recipe, let's assume that we need to create a Magento 2 hosting
environment. The following steps will guide you through this:

1.	 First, we will start installing Magento 2 on Apache; later, we will do the same with
NGINX. Throughout this recipe, you can use PHP-FPM or HHVM. For now, we will
focus only on PHP-FPM.

2.	 Installing Composer is pretty straightforward. For the rest of the recipes, we will
be installing Composer in the /usr/local/bin directory. This way, we can use
it system-wide. Run the following command on the shell in the /usr/local/bin
directory:
curl -sS https://getcomposer.org/installer | php

Installing Magento 2 on Apache and NGINX

22

If you have not installed curl yet, you may need to run the following command on
the shell:
apt-get -y install curl

To check whether Composer is working fine, run the following command:
mv composer.phar composer

./composer

You will get the following output:

While we will be using a search-friendly URL in Magento, we need to enable the
Apache mod_rewrite module before we can continue. Run the following code
on the shell:
a2enmod rewrite

Chapter 1

23

Restart your Apache server to complete the new configuration. Run the following code
on the shell:
service apache2 restart

If you see the following output on your screen, everything is correct:
root@mage2cookbook:/var/www/html# a2enmod rewrite

Enabling module rewrite.

To activate the new configuration, you need to run:

service apache2 restart

Installing Magento 2 can be done in several ways. First, we will
be showing you how to install it using the latest version from the
GitHub release branch. Download the complete package and
unzip or untar the files in your /var/www/html directory.
The URL for the latest releases is https://github.com/
magento/magento2/releases.
Make sure that your /var/www/html has no files in it anymore.
(Use the rm * command to clean up.)
Execute either of the following commands:
wget https://github.com/magento/magento2/
archive/2.0.0.zip

wget https://github.com/magento/magento2/
archive/2.0.0.tar.gz

While extracting your files, make sure to move or copy them in to
the /var/www/html directory.

3.	 Now let's set the ownership and permissions:
chown -R www-data:www-data /var/www/html

find . -type d -exec chmod 770 {} \; && find . -type f -exec chmod
660 {} \; && chmod u+x bin/magento

4.	 Now we use Composer to resolve all of our dependencies. Run the following
command on the shell:
cd /var/www/html/ && composer install

https://github.com/magento/magento2/releases
https://github.com/magento/magento2/releases

Installing Magento 2 on Apache and NGINX

24

If your installation is set up correctly, the installation will continue, using the
correct PHP modules. However, if, in some way, your PHP installing is not
correct, you may get the following error messages. Update your system and
try again:
Your requirements could not be resolved to an installable set of packages.
Problem 1
 - The requested PHP extension ext-gd * is missing
from your system.

Problem 2
 - The requested PHP extension ext-curl * is missing
from your system.

Problem 3
 - The requested PHP extension ext-intl * is missing
from your system.

5.	 During the installation process, you will get a notice to create a GitHub OAuth token.
The download rate limit is pretty small. Copy the URL from your shell window in your
browser, log in at GitHub, or create an account and token:

Chapter 1

25

Copy the generated token in the command prompt of your current shell window and
the token will be saved for future reference in /root/.composer/auth.json. You
can continue the rest of the installation.

6.	 Next, we will be using the setup wizard to continue the rest of the installation. In
Chapter 2, Magento 2 System Tools, we will be using the shell installation method.
Go to your favorite browser and run the following URL:

http://mage2cookbook.com/setup

As a result, we will get the following screen:

7.	 Now click on Agree and Setup Magento.

Installing Magento 2 on Apache and NGINX

26

8.	 Let's start analyzing the readiness of your setup. Click on the Next button:

9.	 Magento 2 now will check your hosting setup for the correct PHP version, PHP
modules, PHP settings, and file permissions, as shown in the following screenshot:

Chapter 1

27

10.	 Continue the installation flow and commit your database credentials in the
following screen:

Installing Magento 2 on Apache and NGINX

28

11.	 In Step 3, we will set up our store address and administrator address. In Advanced
Options, we are able to pick HTTPS, Apache rewrites, encryption key, and where to
store the session key:

Chapter 1

29

Step 4 gives you the opportunity to choose your time zone, currency, and language.
In Magento 2, there is a brand new option to pick which modules need to be
installed. You can easily select them by just clicking the checkbox, as shown
in the following screenshot:

www.allitebooks.com

http://www.allitebooks.org

Installing Magento 2 on Apache and NGINX

30

12.	 In Step 5, you can choose your username and password:

13.	 Now we are almost there; the final Step 6 will start installing our Magento 2 environment:

Chapter 1

31

The installation step is really fast in Magento 2 and is done within a minute
depending on your server. If you get an error in the console screen, such
as a missing database, create one via the shell with the following command:
mysql –u root –p

create database magento;

Installation of Magento 2 can be seen in the following screenshot:

14.	 Congratulations, you have successfully installed Magento 2. You will be given
administrative information on your login and store address.

For security reasons, you may want to alter the write permissions of your /app/etc
directory to only read permissions with the following command:
chmod -R 440 /var/www/html/app/etc

Installing Magento 2 on Apache and NGINX

32

Now we will focus on the configuration of Magento 2 on NGINX. We don't need
to reinstall Magento 2; we just need to alter the current NGINX setup with the
appropriate setting.

15.	 Now, let's go to the NGINX configuration directory and update default.conf
in /etc/nginx/conf.d. Open the default.conf file and change it with the
following settings:
upstream fastcgi_backend {
 server 127.0.0.1:9000;
}
server {
 listen 80;
 server_name yourdomain.com;

 set $MAGE_ROOT /var/www/html;
 set $MAGE_MODE developer;

 include /var/www/html/nginx.conf.sample;

 access_log /var/log/nginx/access.log;
 error_log /var/log/nginx/error.log;

 location ~ /\.ht {
 deny all;
 }
}

As you can see, we are now using an upstream and set $MAGE setting and have
removed the fastcgi_pass.

However, the most important element is the Magento 2 nginx.conf.sample file,
which is in the root directory of your Magento 2 instance. For now, it is easy to include
this directory but not advised on a production level. It's best that you copy this file
to your NGINX configuration directory and store it there. Don't forget to change the
following setting:
include /var/www/html/nginx.conf.sample;

16.	 Save your configuration and run the following command to check whether your
settings are correct. If not, change your configuration:
nginx -t

17.	 If your syntax is okay and the test is successful, then restart your NGINX server. Don't
forget to stop your Apache server. Run the following command on the shell:
service apache2 stop && service nginx start

Chapter 1

33

To check whether you are running NGINX, use the following command:
curl -I http://mage2cookbook.com/

root@mage2cookbook:~# curl -I http://mage2cookbook.com/HTTP/1.1
200 OKServer: nginx/1.9.6

18.	 Congratulations, you just finished the installation of Magento 2 on NGINX.

How it works…
Let's recap and find out what we did throughout this recipe. In steps 1 and 2, we install
Composer. Composer is our most important element before we can start installing Magento
2. As we are using Apache, we need to enable the mod_rewrite module, which is mandatory in
Magento 2. Next, we download the latest Magento 2 version from GitHub and unzip the code
in our directory.

In step 4, we check whether our setup is resolving all dependencies. Depending on the
outcome, we need to install or enable the additional PHP modules.

In step 5, we create a GitHub token and store it in the auth.json file. We need this because
the download rate limit is small when downloading additional software dependencies.

In step 6, we use the Magento 2 setup directory to install via the graphical user interface. All
the remaining steps till 12 are self-explanatory.

In step 14, we switch from Apache to NGINX. The configuration file contains the following
important elements: nginx.conf.sample, upstream fastcgi_backend, and $MAGE to
finish our setup. The upstream parameter makes sure that all PHP requests are connected to
PHP-FPM, the $MAGE variable connects the web directory, and include refers to the master
configuration file.

There's more…
If you want to check which Apache modules are enabled, use the following command:

apachectl -M

The equivalent for NGINX to check your modules is nginx -V.

Installing Magento 2 on Hypernode
Throughout the following recipes, we will install Magento 2 on a fully managed platform
hosted by Hypernode. Hypernode is an advanced platform for successful Magento shops.

Installing Magento 2 on Apache and NGINX

34

Hypernode is a radically different approach to Magento hosting that actively improves your
shop's performance. Its unique Magento platform is developed by Byte Internet, a Dutch
hoster with eight years of experience in hosting Magento.

Hypernode has been developed in close consultation with Magento developers, with the
objective of having Magento web shops perform to the best advantage and make its
development several times easier. This recipe will show you how to do it.

With Hypernode, you will get your own fully managed isolated cloud
server. This server has been fully configured for Magento 2. The
best and latest software such as NGINX, HHVM, PHP-FPM, Redis,
and MySQL are installed as a standard. In addition, they offer all the
tools that you, as a Magento developer, would need in order to work
comfortably: New Relic, Git, Vagrant, and Magento-specific tools such
as ModMan, N98 Magerun, Sphinx Search, and much more.

The following image illustrates working of Hypernode which can be found at https://www.
hypernode.com/:

Hypernode

Managed VPS

Unmanaged VPS

Your Magento shop

Magento Development Tools

Magento Platform Optimization

Basic Platform

Network & Hardware

Getting ready
For this recipe, you will need to create an account at Hypernode https://www.hypernode.
com/. No other prerequisites are required.

https://www.hypernode.com/
https://www.hypernode.com/
https://www.hypernode.com/
https://www.hypernode.com/

Chapter 1

35

How to do it...
For the purpose of this recipe, let's assume that we need to create a Magento 2 hosting
environment on the Hypernode platform. The following steps will guide you through this:

1.	 First, we start by creating a user account for Hypernode.

There are two options to create a Hypernode.

The first option is a default clean Magento 2 setup using the link, https://auth.
byte.nl/account/register/magento2, and committing your name, e-mail,
company name, and so on. For the following steps, make sure to submit the correct
cell number. You will get a text message to confirm that this account is valid and not
spam. Now perform steps 2 through 9 to set up Magento 2 the easy way.

If you want to start using Magento 1 before switching to Magento 2, then follow all of
the steps until step 11. To do so, use the link, https://auth.byte.nl/account/
register/hypernode/, and commit your name, e-mail, company name, and so on.
For the following steps, make sure to submit the correct cell number. You will get a
text message to confirm that this account is valid and not spam.

2.	 Now, open up your mail account, and confirm the e-mail that you received from Byte
Internet. Next, you will be prompted with a text message on your cell phone; commit
the code to continue. Make sure to pick a password for the Hypernode control panel,
which we will use later.

3.	 Next, commit your domain name, or any other name that will relate to this setup.
The name will be used to create a subdomain on the Hypernode. The name could
be called yourdomain.hypernode.io.

4.	 After submitting your domain name, creating the Hypernode will take between 20-30
minutes, or less. All current Hypernodes are created on the same hosting platform
that we used before at DigitalOcean. The difference between this setup for Magento
2 is that it is a managed setup. So we don't need to configure PHP, MySQL, NGINX,
and so on.

5.	 Now go to the Hypernode control panel to check the current status on the creation of
the Hypernode. Go to https://service.byte.nl.

https://auth.byte.nl/account/register/magento2
https://auth.byte.nl/account/register/magento2
https://auth.byte.nl/account/register/hypernode/
https://auth.byte.nl/account/register/hypernode/
https://service.byte.nl

Installing Magento 2 on Apache and NGINX

36

6.	 Click on your domain name and then click on Hypernode settings in the control panel.
Here, you will find the current status and health of your setup:

7.	 Next, we need to set up an SSH key to log in via SSH. By default, this is the only way
to log in. Go to https://service.byte.nl/sshkeymanager/ and submit your
personal key or create a new pair. It will take less than 10 minutes to auto-submit this
to your Hypernode.

8.	 Now you can log in to the Hypernode via the shell. The hostname is the same as your
domain name, which we had set up in the beginning. The username is always app.
The example should look as follows:
ssh app@yourdomain.hypernode.io

9.	 If everything worked out fine, you should now have access to the Hypernode on
http://yourdomain.hypernode.io.

https://service.byte.nl/sshkeymanager/

Chapter 1

37

10.	 By default, the current Hypernode setup has a Magento 1 preinstalled setup. We will
now switch to Magento 2 using the following commands via the shell:
n98-magerun --root-dir=/data/web/public uninstall
--installationFolder=/data/web/public –force

touch ~/nginx/magento2.flag

mkdir ~/magento2

cd ~/magento2

wget -qO- https://magento.mirror.hypernode.com/releases/magento2-
latest.tar.gz | tar xfz –

echo "create database magento2" | mysql

chmod 755 bin/magento

cat ~/.my.cnf

bin/magento setup:install --db-host=[HOSTNAME]
--dbname=[DATABASE] --db-user=app --db-password=[DATABASE_
PASSWORD] --admin-firstname=[YOURFIRSTNAME] --admin-
lastname=[YOURSURNAME] --admin-user=[ADMINNAME] --admin-
password=[ADMINPASSWORD] --adminemail=[YOUR@EMAIL.COM] --base-
url=[YOUR.HYPERNODE.IO] --language=[en_US] --timezone=[Europe/
Berlin] --currency=[EUR] --use-rewrites=1

rm -rf ~/public

mkdir ~/public

cd ~/magento2

ln -fs ../magento2/pub/* ../public

The detailed instructions can also be found on the Hypernode knowledge base,
https://support.hypernode.com/knowledgebase/installing-magento-
2-on-hypernode/. This also includes a small tutorial regarding a sample data setup.

11.	 Now open your browser and go to your domain name to check whether everything is
working correctly.

12.	 Congratulations, you just finished configuring Magento 2 on Hypernode.

https://support.hypernode.com/knowledgebase/installing-magento-2-on-hypernode/
https://support.hypernode.com/knowledgebase/installing-magento-2-on-hypernode/

Installing Magento 2 on Apache and NGINX

38

How it works…
Let's recap and find out what we did throughout this recipe. In steps 1 through 4, we create
a new Hypernode account at https://www.byte.nl/. These steps will create a new
Byte customer that stores a reference to the Hypernode. The Hypernode is auto-created in
the background on DigitalOcean. During the whole process, you will get multiple mails for
validation and additional account information regarding the Hypernode logins.

In steps 5 through 11, we need to switch from the default Magento 1 preinstalled setup to
Magento 2. All setups are self-explanatory and result in a clean Magento 2 setup located
on a managed hosting platform and ready for production.

There's more…
Hypernode provides you with a large set of tools useful for your Magento setup. Check your
service panel for the latest tools and links available. Here is a small section of some useful links:

https://yourdomain.hypernode.io/phpmyadmin/

https://support.hypernode.com/knowledgebase_category/getting-started/

https://support.hypernode.com/knowledgebase/configure-redis/

https://support.hypernode.com/knowledgebase/varnish-on-hypernode/

Managing Magento 2 on Docker
Docker is a new way of packaging your application and building containers for every single
process. It is very lightweight and easy to set up. Creating building blocks for Apache, NGINX,
MySQL, PHP, HHVM, and Magento individually and running them together can save lots of
time during development, testing, and production.

In this recipe, we will not cover the Docker fundamentals but learn how to run a Magento 2
Docker setup on your DigitalOcean Droplet using existing containers.

Getting ready
Before we can start using Magento 2 on Docker, we need to create a clean Droplet. Back up
your current Droplet by creating a snapshot. Here are some easy steps to create a snapshot
and start a new Droplet with Docker preinstalled:

1.	 Power off your current Droplet in the DigitalOcean control panel.

https://www.byte.nl/
https://support.hypernode.com/knowledgebase_category/getting-started/
https://support.hypernode.com/knowledgebase/configure-redis/
https://support.hypernode.com/knowledgebase/varnish-on-hypernode/

Chapter 1

39

2.	 Select Take Snapshot and choose a name. (This may take some time depending on
how big your current environment is.)

3.	 Select Rebuild Droplet, which is in the Destroy menu, choose Ubuntu docker
(1.9.1 on 14.04), and press Rebuild from Image.

How to do it…
For the purpose of this recipe, let's assume that we need to create a Magento 2 Docker setup.
The following steps will guide you through this:

1.	 Log in to your Docker Droplet. You can check your current Docker version with the
following command:
docker -version

2.	 Before we start pulling the Magento 2 Docker container, we first need to pull a MySQL
container. Run the following command in your shell:
docker run -d --name mysql -p 3306:3306 -e MYSQL_ROOT_
PASSWORD=admin mysql:5.6

The Docker run command will automatically download a MySQL 5.6 container, which
will run in the background once it's done.

3.	 Now we can check whether the MySQL container works. Run the dockers images
command, and then check which images are available. If you want to log in to the
container, run the following command:
docker exec -it mysql bash

You can run any other command here, and then check whether MySQL is running.
For example, run the ps --aux command and you will see the process of MySQL.

Installing Magento 2 on Apache and NGINX

40

4.	 Now we start pulling the Magento 2 Docker container to our local machine. We
are using a prebuilt Docker container hosted at the Docker hub (https://hub.
docker.com/u/raybogman/).

Run the following command to install a clean Magento 2 setup:
docker run --rm --name magento2 -it -p 80:80 --link mysql:mysql -e
MYSQL_USER=root -e MYSQL_PASSWORD=admin -e PUBLIC_HOST=yourdomain.
com raybogman/mage2cookbook-docker $*

Run the following command to install a Magento 2 setup including sample data:
docker run --rm --name magento2 -it -p 80:80 --link mysql:mysql -e
MYSQL_USER=root -e MYSQL_PASSWORD=admin -e PUBLIC_HOST=yourdomain.
com raybogman/mage2cookbook-sample-docker $*

Change the PUBLIC_HOST setting with your own IP or domain name. The
SampleData version has all of its assets to create a preinstalled Magento 2 setup.

5.	 Be patient now; this may take some time. The latest Magento 2 container is
downloaded and executed on the fly. The final phase is the execution of Apache
that will run in the foreground.

6.	 Now open your browser and, depending on your public IP or domain name,
execute this.

7.	 Now we can check whether the Magento 2 container works. Run the dockers
images command, and then check which images are available. If you want to
log in to the container, run the following command:
docker exec -it magento2 bash

You can run any other command here, and then check whether Apache 2 is running.
For example, run the ps --aux command and you will see the process of Apache 2.
All Magento 2 files are located at /var/www/magento2.

8.	 Congratulations, you have Magento 2 running using a Docker container. The login
credentials are the Magento username (admin), password (password123), and
backend URL (http://yourdomain.com/admin).

How it works…
Let's recap and find out what we did throughout this recipe. In steps 1 through 8, we create a
Docker setup for Magento 2.

In steps 2 and 3, we set up a MySQL container that will be downloaded automatically and run
in the background.

https://hub.docker.com/u/raybogman/
https://hub.docker.com/u/raybogman/

Chapter 1

41

In step 4, we download the prebuilt Magento 2 Docker container and connect it to the
MySQL container. The installation process can take some time; Magento needs to deploy
the whole setup.

In step 7, you learn how to get shell access to the Magento container and maintain it.

There's more…
To kill/shut down the current Magento 2 container, use the Ctrl + C command in the
running shell.

This Magento 2 Docker container is designed only for demo purposes, and is there to run in
the foreground and not as a daemon in the background.

Check out the source code of the Magento 2 Docker container on GitHub:

https://github.com/mage2cookbook.

Some basic commands to use Docker are as follows:

docker ps Docker running containers
docker images Docker local containers
docker exec -it bash Access to running container shell
docker rm -f $(docker ps -a -q) Remove all running containers
docker rmi -f $(docker images -q) Remove all containers

https://github.com/mage2cookbook

43

2
Magento 2

System Tools

In this chapter, we will cover the basic tasks related to managing the system tools of
Magento 2. You will learn the following recipes:

ff Installing Magento 2 sample data via GUI

ff Installing Magento 2 sample data via the command line

ff Managing Magento 2 indexes via the command line

ff Managing Magento 2 cache via the command line

ff Managing Magento 2 backup via the command line

ff Managing Magento 2 set mode (MAGE_MODE)

ff Transferring your Magento 1 database to Magento 2

Introduction
This chapter explains how to install and manage Magento 2 on a production-like environment.
We will be installing a new Magento 2 instance via the shell command with and without
sample data. Besides the setup, managing Magento 2 is different from the current Magento
version. We will be using a lot of tools from the command line so basic shell knowledge is
advised. The command-line tool in the /bin directory is similar to the current Swiss army
knife tool in the current Magento version known as n98-magerun.

Using bin/magento and Composer is one of the new key features in Magento 2 that will rock
your world.

Magento 2 System Tools

44

The recipes in this chapter will focus primarily on a more advanced setup of how to install
Magento 2 and manage it. However, in some situations, we will dive in deeper related to
the subject.

Here is an overview of all the command-line tools in Magento 2:

root@mage2cookbook:/var/www/html# bin/magento

Magento CLI version 2.0.0

Usage:

 command [options] [arguments]

Options:

 --help (-h) Display this help message

 --quiet (-q) Do not output any message

 --verbose (-v|vv|vvv) Increase the verbosity of messages: 1 for normal
output, 2 for more verbose output and 3 for debug

 --version (-V) Display this application version

 --ansi Force ANSI output

 --no-ansi Disable ANSI output

 --no-interaction (-n) Do not ask any interactive question

The following commands are available in the command-line tools in Magento 2:

Commands Description
help This displays help for a command
list This lists the commands
admin
admin:user:create This creates an administrator
admin:user:unlock This unlocks the administrator account
cache
cache:clean This cleans the cache type(s)
cache:disable This disables the cache type(s)
cache:enable This enables the cache type(s)
cache:flush This flushes the cache storage used by the cache

type(s)
cache:status This checks the cache status
catalog
catalog:images:resize This creates resized product images

Chapter 2

45

Commands Description
cron
cron:run This runs jobs by schedule
customer
customer:hash:upgrade This upgrades the customer's hash according to the

latest algorithm
deploy
deploy:mode:set This sets the application mode
deploy:mode:show This displays the current application mode
dev
dev:source-theme:deploy This collects and publishes source files for a theme
dev:tests:run This runs tests
dev:urn-catalog:generate This generates the catalog of URNs to *.xsd
dev:xml:convert This converts XML files using XSL style sheets
i18n
i18n:collect-phrases This discovers phrases in the code base
i18n:pack This saves language packages
i18n:uninstall This uninstalls language packages
indexer
indexer:info This shows allowed indexers
indexer:reindex This reindexes data
indexer:set-mode This sets the index mode type
indexer:show-mode This shows the index mode
indexer:status This shows the status of an indexer
maintenance
maintenance:allow-ips This sets the maintenance mode exempt IPs
maintenance:disable This disables the maintenance mode
maintenance:enable This enables the maintenance mode
maintenance:status This displays the maintenance mode status
module
module:disable This disables specified modules
module:enable This enables specified modules
module:status This displays the status of modules
module:uninstall This uninstalls modules installed by Composer
sampledata
sampledata:deploy This deploys sample data modules

Magento 2 System Tools

46

Commands Description
sampledata:remove This removes all sample data from composer.

json

sampledata:reset This resets sample data modules for reinstallation
theme
theme:uninstall This uninstalls the theme
info
info:adminuri This displays the Magento Admin URI
info:backups:list This prints a list of available backup files
info:currency:list This displays the list of available currencies
info:dependencies:show-
framework

This shows the number of dependencies on the
Magento framework

info:dependencies:show-
modules

This shows the number of dependencies between
modules

info:dependencies:show-
modules-circular

This shows the number of circular dependencies
between modules

info:language:list This displays a list of available language locales
info:timezone:list This displays a list of available time zones
setup
setup:backup This takes a backup of the Magento Application

code base, media, and database
setup:config:set This creates or modifies the deployment

configuration
setup:cron:run This runs a cron job scheduled for the setup

application
setup:db-data:upgrade This installs and upgrades data in the DB
setup:db-schema:upgrade This installs and upgrades the DB schema
setup:db:status This checks whether the DB schema or data require

an upgrade
setup:di:compile This generates the DI configuration and all non-

existing interceptors and factories
setup:di:compile-multi-
tenant

This generates all non-existing proxies and factories
and precompiles class definitions, inheritance
information, and plugin definitions

setup:install This installs the Magento application
setup:performance:generate-
fixtures

This generates fixtures

setup:rollback This rolls back the Magento application code base,
media, and database

Chapter 2

47

Commands Description
setup:static-content:deploy This deploys static view files
setup:store-config:set This installs the store configuration
setup:uninstall This uninstalls the Magento application
setup:upgrade This upgrades the Magento application, DB data,

and schema

Throughout this chapter, you can pick your own preferred hosting setup as we set up in
Chapter 1, Installing Magento 2 on Apache and NGINX. We will be using an NGINX-based
setup. The Apache setup is pretty straightforward; when needed, we will address specified
configuration settings when they occur.

Installing Magento 2 sample data via GUI
Installing Magento 2 via the graphical user interface (GUI) is not new. We have already done
this in Chapter 1, Installing Magento 2 on Apache and NGINX. Now, we will be installing a new
clean version including the sample data.

The sample data can be installed during and at the end of the procedure. We will be using a
composer.json file for our setup prerequisites. First, we will be installing a clean version
with sample data, and later, I will show you how to install it at the end in case you already
have a preinstalled version.

Getting ready
For this recipe, we will use a Droplet created in Chapter 1, Installing Magento 2 on Apache
and NGINX, at DigitalOcean, https://www.digitalocean.com/. We will be using NGINX,
PHP-FPM, and a Composer-based setup. No other prerequisites are required.

How to do it...
For the first step, you can either create a new Droplet or rebuild a clean Droplet based on a
Ubuntu or RedHat DigitalOcean image.

https://www.digitalocean.com/

Magento 2 System Tools

48

The option to rebuild is located in the DigitalOcean control panel in the Destroy menu and
then rebuild Droplet:

The steps to install Magento 2 sample data via GUI are as follows:

1.	 Preferably, pick the new snapshot or the already created one and press Rebuild from
Image. The rebuild will take around 60 seconds.

2.	 Now log in to your new or current Droplet. We will be referring to a new build Droplet
throughout this recipe.

Chapter 2

49

3.	 Now let's download the latest Magento 2 version including sample data. Go to
https://www.magentocommerce.com/download, pick Full Release with
Sample Data (ZIP with sample data), and unpack this in your web directory.
We refer to /var/www/html in this recipe.

If you are using a ZIP package, make sure that you install the unzip package first,
running the following command on the shell:
apt-get install unzip

4.	 Now let's set the ownership and permissions:
chown -R www-data:www-data /var/www/html

find . -type d -exec chmod 770 {} \; && find . -type f -exec chmod
660 {} \; && chmod u+x bin/magento

5.	 Now we use Composer to resolve all of our dependencies. Run the following
command from the shell:
cd /var/www/html/ && composer install

During the installation process, you will get a notice to create a GitHub OAuth token.
The download rate limit is pretty small. Copy the URL from your shell window in your
browser, log in at GitHub or create an account, and create the token. You may also
check Chapter 1, Installing Magento 2 on Apache and NGINX, for more details on
this topic.

6.	 Next, we will be using the setup wizard to continue the rest of the installation. In this
chapter, we will be using the shell installation method. Go to your favorite browser
and enter the following URL:
http://yourdomain.com/setup

Continue your flow until Step 4: Customize Your Store. As we have chosen a
Magento 2 package including sample data, all software modules are preinstalled
and listed in the advanced modules configurations list.

https://www.magentocommerce.com/download

Magento 2 System Tools

50

Here is an overview of all the modules selected by Magento that can be managed
during installation:

Chapter 2

51

7.	 Now, continue the rest of the steps and install Magento 2. Installing sample data can
take some time, so don't close or refresh your browser.

The progress bar and console log will share all details regarding the current status:

Congratulations, you just finished the installation of Magento 2 including sample data. Now
go to your browser using yourdomain.com; you will see the default Magento 2 layout theme
called Luma, as follows:

Magento 2 System Tools

52

How it works…
Let's recap and find out what we did throughout this recipe. In steps 1 through 6, we created
a Magento 2 version including sample data. The process is almost the same as we did in the
previous chapter. The most important change is that we downloaded a full version including
sample data. In this build, Magento submitted all of the media files and data sample packages
that we need to complete the process. During the graphical setup, we were able to choose
which sample data packages are needed. This process could take some time to complete.

There's more…
In the /var directory, you can find the following hidden file with the current state of the
installed sample data:

less /var/www/html/var/.sample-data-state.flag

Want to start all over again? Magento 2 has a magic uninstall option that cleans everything
on the fly, cache, and database. You can use the php bin/magento setup:uninstall
command on the shell, as shown here:

root@mage2cookbook:/var/www/html# php bin/magento setup:uninstall

Are you sure you want to uninstall Magento?[y/N]y

Starting Magento uninstallation:

Cache cleared successfully

Cleaning up database `magento2`

File system cleanup:

/var/www/html/pub/static/_requirejs

/var/www/html/pub/static/adminhtml

/var/www/html/pub/static/frontend

/var/www/html/var/cache

/var/www/html/var/composer_home

/var/www/html/var/di

/var/www/html/var/generation

/var/www/html/var/log

/var/www/html/var/page_cache

/var/www/html/var/tmp

/var/www/html/var/view_preprocessed

/var/www/html/app/etc/config.php

/var/www/html/app/etc/env.php

Chapter 2

53

Installing Magento 2 sample data via the
command line

Installing Magento 2 via the shell is not new. In the current Magento version, it was already
possible using the install.php file. The configuration looked like this:

/usr/local/bin/php -f install.php -- \
--license_agreement_accepted "yes" \
--locale "en_US" \
--timezone "America/Los_Angeles" \
--default_currency "USD" \
--db_host "mysql.example.com" \
--db_name "your_db_name" \
--db_user "your_db_username" \
--db_pass "your_db_password" \
--db_prefix "" \
--admin_frontname "admin" \
--url "http://www.examplesite.com/store" \
--use_rewrites "yes" \
--use_secure "no" \
--secure_base_url "" \
--use_secure_admin "no" \
--admin_firstname "your_first_name" \
--admin_lastname "your_last_name" \
--admin_email "your_email@example.com" \
--admin_username "your_admin_username" \
--admin_password "your_admin_password"

It was very easy to script and use multiple times on any given environment.

In Magento 2, the logic stayed the same but now, it's much easier to use. We will be using a
composer.json file for our setup prerequisites.

Getting ready
For this recipe, we will use a Droplet created in Chapter 1, Installing Magento 2 on Apache
and NGINX, at DigitalOcean, https://www.digitalocean.com/. We will be using NGINX,
PHP-FPM, and a Composer-based setup. No other prerequisites are required.

https://www.digitalocean.com/

Magento 2 System Tools

54

How to do it...
For the purpose of this recipe, let's assume that we need to create a Magento 2 hosting
environment including sample data. The following steps will guide you through this:

1.	 In this recipe, check your /root/.composer/auth.json file if you have a Magento
of GitHub repository token, username, and password. If not, create them. Here is an
example (the username and password are dummies):
{
 "http-basic": {
 "repo.magento.com": {
 "username": "256e8f49b66689ecf18b07bc3cc2ca2d",
 "password": "cb1c7ef2e14b666d8a4e99fe40c8393a"
 }
 },
 "github-oauth": {
 "github.com": "e960f7000803e2832ce5f7a637d58a666"
 }
}

You can create a Magento authentication key in the user section of the Magento
connect portal. Go to http://www.magentocommerce.com/magento-
connect/, navigate to the Developers | Secure Keys menu item, and create one.
Public Key is your username and Private Key is your password.

The GitHub token can be created under the tokens section of your GitHub account.
Go to https://github.com/settings/tokens and press Generate new token.
Copy the token in your auth.json file of your home or root directory.

2.	 Now, let's create a Composer project using the shell. Go to your web server
/var/www/html directory and use the following command:
composer create-project "magento/project-community-edition" /var/
www/html --prefer-dist --repository-url https://repo.magento.com/

3.	 Now use the following command on the shell. This will add the sample data package
to the Magento composer.json file.
php bin/magento sampledata:deploy

You may get the following error notice; ignore this once you set up the auth.json
file:
[Composer\Downloader\TransportException]

The 'https://repo.magento.com/packages.json' URL required
authentication.

You must be using the interactive console to authenticate

http://www.magentocommerce.com/magento-connect/
http://www.magentocommerce.com/magento-connect/
https://github.com/settings/tokens

Chapter 2

55

4.	 Run the following command on the shell. This will download all sample data to your
Magento 2 environment.
composer update

5.	 Make sure that you have the correct file permission before you continue:
chown -R www-data:www-data /var/www/html

The easy way to continue is to visit our setup page from the browser as we did
in the Installing Magento 2 sample data via GUI recipe of this chapter using the
http://yourdomain.com/setup URL.

6.	 We can also use the shell to finish the setup using the following script:
bin/magento setup:install \
 --db-host=localhost \
 --db-name=<your-db-name> \
 --db-user="<db-user>" \
 --db-password="<db-password>" \
 --backend-frontname=<admin-path> \
 --base-url=http://yourdomain.com/ \
 --admin-lastname=<your-lastname> \
 --admin-firstname=<your-firstname> \
 --admin-email=<your-email> \
 --admin-user=<your-admin-user> \
 --admin-password=<your-password> \

Always make sure that bin/magento has the correct permissions to
execute:
chmod 755 bin/magento

Congratulations, you just finished the installation of Magento 2 including sample data. Now
go to your browser using yourdomain.com, and you will see the default Magento 2 layout
theme called Luma.

How it works…
Let's recap and find out what we did throughout this recipe. In steps 1 through 6, we installed
Magento 2 via the command shell. Before we could continue, we needed to create an auth.
json file that stores our Magento and GitHub tokens. Without them, we may not be able to
install the software easily due to download restrictions or dependencies.

Magento 2 System Tools

56

In step 2, we used one line of code to trigger the whole download process of Magento 2.
Depending on whether this is your first call, the process can take some time. Once you install
Magento for the second time, the process installs much faster because of the locally stored
cache files.

In step 3, we used bin/magento to update the composer.json file including the sample
data packages. Then we needed to update Composer before we could install Magento 2 from
the shell; otherwise, the sample data would not be included.

In step 6, we used the bin/magento setup:install parameter to commit all of the
database, URL admin path, domain name, and user credentials to the setup of Magento 2.

There's more…
Always make sure that your system PATH is exported to your system using the following
command from the shell (where /var/www/html is your Magento root folder):

export PATH=$PATH:/var/www/html/bin

More information on environmental variables can be found here:

https://www.digitalocean.com/community/tutorials/how-to-read-and-set-
environmental-and-shell-variables-on-a-linux-vps

Managing Magento 2 indexes via the
command line

In the current version of Magento, using indexes is one of the most important key features.
Without the correct indexes, we will not be able to use Magento properly.

What do the indexes do, and why are they so important? One of the key elements is to make
things run faster. Without indexing, Magento 2 would have to calculate data on the fly. In
Magento 2, we will be using the following nine indexes:

ff Customer Grid: This indexer rebuilds the customer's grid. This is a new indexer in
Magento 2 for optimized rendering of the adminhtml backend pages.

ff Category Products: This indexer creates the association between categories and
products based on the associations that you set in the backend on the categories
and relates to the Product Categories indexer. The flat catalog indexer creates a flat
optimized table in the database.

ff Product Categories: This indexer creates the association between products and
categories based on the associations that you set in the backend on the products
and relates to the Category Products indexer. The flat product indexer creates a flat
optimized table in the database.

https://www.digitalocean.com/community/tutorials/how-to-read-and-set-environmental-and-shell-variables-on-a-linux-vps
https://www.digitalocean.com/community/tutorials/how-to-read-and-set-environmental-and-shell-variables-on-a-linux-vps

Chapter 2

57

ff Product Price: This indexer relates to the products and their advanced pricing
options based on, for example, customer group, website, and catalog discount rules.
The indexer aggregates the data in tables (catalog_product_index_price_*)
and makes the selects (sorting and filtering) much easier.

ff Product EAV: This indexer reorganizes the Entity Attribute Value (EAV) product
structure to the flat structure. The product EAV indexer is related to the Category
Products and Product Categories indexer and creates a flat optimized table in the
database.

ff Stock: This indexer rebuilds and calculates the current stock data.

ff Catalog Search: This indexer rebuilds the catalog product fulltext search.

ff Catalog Rule Product: This indexer creates and updates the created catalog price
rule set.

ff Catalog Product Rule: This indexer creates and updates the created shopping cart
price rule set.

The database table looks as follows:

The control panel of the backend looks like this:

Magento 2 System Tools

58

Getting ready
For this recipe, we will use a Droplet created in Chapter 1, Installing Magento 2 on Apache
and NGINX, at DigitalOcean, https://www.digitalocean.com/. We will be using NGINX,
PHP-FPM, and a Composer-based setup. A working Magento 2 setup is required.

How to do it...
The following are the steps to implement the recipe:

1.	 In Magento 2, we only have the option to change the Update on Save or Update by
Schedule state:

Update on Save: Index tables are updated immediately after the dictionary data
is changed

Update by Schedule: Index tables are updated by cron job according to the
configured schedule

2.	 We will be using the shell during this. This will be the only way to update your indexes.
Go to your shell and run the following command from your web server directory:
php bin/magento indexer:info

We now get an overview of all the indexers.

3.	 Now run php bin/magento indexer:status; this will give us an up-to-date
status of the current indexes.

4.	 Now run php bin/magento indexer:show-mode; this information is related to
the Update on Save or Update by Schedule modes.

5.	 We can switch the modes using the following command on the shell:
php bin/magento indexer:info realtime customer_grid

Using the mode option realtime (Update on Save) or schedule (Update by Schedule)
may set the indexer.

6.	 One of the most commonly used commands is as follows:
php bin/magento indexer:reindex

This will reindex all the indexers. However, you can also reindex them individually
using the following command:
php bin/magento indexer:reindex customer_grid

https://www.digitalocean.com/

Chapter 2

59

We can also use the following command:
php bin/magento indexer:reindex customer_grid catalog_category_
product etc…

7.	 Now you can rerun indexer:status to check whether all the indexers are up to date.

How it works…
Let's recap and find out what we did throughout this recipe. In steps 1 through 7, you learned
how to use the bin/magento indexer.

In step 5, you learned how to check what the current status is of all the indexes. In step 4,
we saw how to switch from the realtime Update on Save to the schedule Update on Schedule
modes.

In step 6, you learned how to reindex them individually.

There's more…
You can also check the current status of the indexer using MySQL. Run the following
command in the shell:

mysql -u <username> --database <dbname> -p -e "select * from indexer_
state"

Managing Magento 2 cache via the
command line

Cache management is one of the new optimized key features in Magento 2. We will be using
the following cache types:

Cache types Cache type code name Description
Configuration config Magento collects configuration

from all modules, merges it, and
saves the merged result to the
cache. This cache also contains
store-specific settings stored in the
filesystem and database.

Clean or flush this cache type after
modifying configuration files.

Magento 2 System Tools

60

Cache types Cache type code name Description
Layout layout This is the compiled page layout

(that is, the layout components
from all components).

Clean or flush this cache type after
modifying layout files.

Block HTML output block_html This is the HTML page fragments
per block.

Clean or flush this cache type after
modifying the view layer.

Collections data collections This is the result of database
queries.

If necessary, Magento cleans up
this cache automatically, but third-
party developers can put any data
in any segment of the cache.

Clean or flush this cache type if
your custom module uses logic
that results in cache entries that
Magento cannot clean.

DDL db_ddl This is the database schema.

If necessary, Magento cleans up
this cache automatically, but third-
party developers can put any data
in any segment of the cache.

Clean or flush this cache type after
you make custom changes to the
database schema (in other words,
updates that Magento does not
make itself).

One way to update the database
schema automatically is using
the magento setup:db-
schema:upgrade command.

EAV eav This is metadata related to EAV
attributes (for example, store
labels, links to related PHP code,
attribute rendering, search settings,
and so on).

You should not typically need to
clean or flush this cache type.

Chapter 2

61

Cache types Cache type code name Description
Page cache full_page This is the generated HTML pages.

If necessary, Magento cleans up
this cache automatically, but third-
party developers can put any data
in any segment of the cache.

Clean or flush this cache type after
modifying code level that affects
HTML output. It's recommended
to keep this cache enabled
because caching HTML improves
performance significantly.

Reflection reflection This removes a dependency
between the web API module and
the Customer module.

Translations translate This is the merged translations
from all modules.

Integration
configuration

config_integration This is the compiled integrations.

Clean or flush this cache after
changing or adding integrations.

Integration API
configuration

config_integration_
api

This is the compiled integration
APIs.

Web services
configuration

config_webservice This is the web API structure.

By default, we will be using Full Page Cache now in the community version, which is a great
improvement next to the web services (API) caches.

Depending on the current development, default, and production state, caches will be
different.

In the next recipes of this chapter, we will dive deeper into the use of different states.

Getting ready
When cleaning or flushing your cache, Magento will flush its content from either the var/
cache or var/full_page directory. In this recipe, we will refer to the bin/magento
cache:enable, bin/magento cache:disable, bin/magento cache:clean, or bin/
magento cache:flush options.

Magento 2 System Tools

62

How to do it...
For the purpose of this recipe, let's assume that we need to manage the Magento 2 cache
setup. The following steps will guide you through this:

1.	 Let's first check the current status using the following command:
php bin/magento cache:status

The output looks like this:

2.	 Now we will check how to enable and disable caches individually or all at once. Use
the following command to disable the caches individually:
php bin/magento cache:disable config

This will disable the cache for only config. You may pick any cache type code name.
To enable the config cache back, use the following command:
php bin/magento cache:enable config

Chapter 2

63

When skipping the cache type code name behind the command, we will be able to
enable or disable the caches all at once. It will look like this when we disable the cache:

3.	 When we want to re-enable all caches, we use php bin/magento cache:enable.
As you can see now, after enabling the caches, they are cleaned as well:

Magento 2 System Tools

64

4.	 Now let's clean the caches individually using php bin/magento cache:clean
config. By removing the cache type code name, we will be able to clean all of them
at once.

5.	 Now let's flush the caches individually using php bin/magento cache:flush
config. By removing the cache type code name, we will be able to clean all of them
at once.

Cleaning a cache type deletes all items from enabled Magento cache
types only. In other words, this option does not affect other processes
or applications because it cleans only the cache that Magento uses.
Disabled cache types are not cleaned.
Flushing a cache type purges the cache storage (such as Redis,
Memcache, and so on), which might affect other process' applications
that are using the same storage.

How it works…
Let's recap and find out what we did throughout this recipe. In steps 1 through 5, you learned
how to manage the cache in Magento 2.

In step 1, you learned how to use the status option to check what the current cache status
is. In step 2, we were able to enable or disable the caches individually.

In steps 4 and 5, you learned how to flush and clean the caches individually.

There's more…
You can also flush all cached items running the following command from the shell:

php bin/magento cache:flush -all

Keep in mind that cleaning or flushing your Full Page Cache can resolve in a cold (no-cache)
page, so warming up all pages is advised.

Managing Magento 2 backup via the
command line

Every production environment needs a proper backup plan. By default, Magento 2 has a
complete set of options to create and roll back backups.

Chapter 2

65

When creating a backup, we can use one of the following options:

Option Meaning Backup file name
--code This creates a backup from the

filesystem (excluding /var and /
pub/static

var/backups/<timestamp>_
filesystem.tgz

--media This creates a backup from the /
media directory

var/backups/<timestamp>_
filesystem_media.tgz

-db This creates a backup from the
current database

var/backups/<timestamp>_
db.gz

Besides the Magento backup options, it is always advisable to use
an alternative backup solution connected to a backup storage.

Getting ready
When creating a backup, Magento will store it in the var/backups directory. In this recipe,
we will refer to the bin/magento setup:backup and bin/magento setup:rollback
options.

How to do it...
For the purpose of this recipe, let's assume that we need to manage the Magento 2 backup
setup. The following steps will guide you through this:

1.	 Let's start creating a code-only backup using the following command:
php bin/magento setup:backup --code

Once Magento sets the maintenance code flag, the web shop is offline for everybody.
Creating a code backup takes some time. The backup will be stored in var/
backups. A clean Magento 2 code backup is around 123 MB.

2.	 Now we will create a database-only backup using the following command:
php bin/magento setup:backup --db

A clean Magento 2 database backup is around 14 MB.

3.	 For a media backup, we use the following command:
php bin/magento setup:backup --media

A clean Magento 2 media backup with sample data is around 153 MB.

Magento 2 System Tools

66

4.	 Now let's check what backups have been created, using the following command:
php bin/magento info:backup:list

This will give us an overview of what's available:
Showing backup files in /var/www/html/var/backups.

+---------------------------------+-------------+

| Backup Filename | Backup Type |

+---------------------------------+-------------+

| 1448480907_filesystem_code.tgz | code |

| 1448481232_db.gz | db |

| 1448481295_filesystem_media.tgz | media |

+---------------------------------+-------------+

5.	 Rolling back a backup is very easy. You can use the following command on the shell:
php bin/magento setup:rollback [-c|--code-file="<name>"] [-m|--
media-file="<name>"] [-d|--db-file="<name>"]

For example, to restore a database backup, we can use the following command:
php bin/magento setup:rollback -d 1448481232_db.gz

You will get the following notification to confirm your action:
You are about to remove current code and/or database tables. Are
you sure?[y/N]

While confirming the action, you could get a Segmentation fault. You
can fix this using the following command. This could be related to PHP 7.
Always use the latest version:
ulimit -s 65536

You can also store this in the .bashrc file on your system.

6.	 Congratulations, you just rolled back a backup. Pick any type to do the same. Always
flush and clean your cache once you are done.

7.	 Setting up a scheduled backup schema is a whole different ball game. We first need
to set up a cron job using the following command:
crontab -e

*/1 * * * * php /var/www/html/bin/magento cron:run

This command will create a cron schedule in the Magento 2 database.

Chapter 2

67

8.	 Creating a daily, weekly, or monthly backup can be done in the administrator
backend. Log in and navigate to Stores | Configuration | Advanced | System |
Scheduled Backup Settings:

How it works…
Let's recap and find out what we did throughout this recipe. In steps 1 through 8, you learned
how to create rollbacks and manage backups via the command line.

In step 1, we created a backup for our code base only. In step 2, we created a backup for the
database and in step 3, for all the media files.

In step 4, we listed all the created backups that are located in var/backups.

The process in step 5 is related to the rollback scenario. Depending on the backup size, rolling
back could take some time.

In steps 7 and 8, we configured a cron job to schedule our daily backup process automatically.

There's more…
You can also check the current status of the cron schedule using MySQL. Run the following
command from the shell:

mysql -u <username> --database <dbname> -p -e "select * from cron_
schedule"

Magento 2 System Tools

68

Managing Magento 2 set mode
(MAGE_MODE)

Magento 2 comes with a new feature set called MAGE_MODE. This option gives you the
configuration to run Magento in either developer, default, or production mode.

This feature is very important during development and product phases. It gives a developer
the tool to debug or created optimized caches for high performance needs.

By default, the default mode is set.

The following table describes the modes in which we can run Magento:

Mode name Description
default When no given mode is given, this is explicitly set and has the following

benefits:

•	 Static view file caching is enabled

•	 Enables automatic code compilation (code optimization)

•	 Exceptions are written to the log files.

•	 Hides the custom X-Magento-* HTTP response header
developer It has the following benefits:

•	 Disables static view file caching

•	 Enables automatic code compilation (code optimization)

•	 Shows the custom X-Magento-* HTTP response header

•	 Verbose logging

•	 Slowest performance state
production It has the following benefits:

•	 Optimized caches available

•	 Exceptions are written to the log files.

•	 Static files are not cached

When using a Development Test Acceptance Production (DTAP)
environment, it is important to run your DTA in development mode
and production on P.

Chapter 2

69

Getting ready
Always check what web server you are using; the settings for Apache and NGINX are not the
same. In this recipe, we will be showing you how to set this on both of them.

How to do it...
For the purpose of this recipe, let's assume that we need to manage the Magento 2
production or development setup. The following steps will guide you through this:

1.	 In this recipe, the setup of the MAGE_SET option is different for NGINX and Apache. In
Apache, we can use either the .htaccess file or configure this in the vhost file. We will
first look into the Apache setup. While all recipes of this chapter are based on NGINX,
it's best to skip this part and continue to the next listed topic or retrieve an DigitalOcean
Droplet that we had set up in Chapter 1, Installing Magento 2 on Apache and NGINX.

Go to the .htaccess file in your web root directory and remove the # (hash or pound
sign) at the fifth line from the top:
SetEnv MAGE_MODE developer

Change it to the following:
SetEnv MAGE_MODE production

If you are using a server-based configuration instead of the .htaccess file, use the
following then:
SetEnv MAGE_MODE "developer"

The following code is for the current 000-default.conf:
<VirtualHost *:80>
ServerAdmin webmaster@localhost
DocumentRoot /var/www/html
SetEnv MAGE_MODE "developer"
<Directory /var/www/html>
Options Indexes FollowSymLinks
AllowOverride All
Order allow,deny
allow from all
</Directory>

ErrorLog ${APACHE_LOG_DIR}/error.log
CustomLog ${APACHE_LOG_DIR}/access.log combined

ProxyPassMatch ^/(.*\.php(/.*)?)$ fcgi://127.0.0.1:9000/var/www/
html/$1
</VirtualHost>

Now continue to step 3.

Magento 2 System Tools

70

2.	 Now let's do the setup for NGINX. Go to your vhost file. If you are using the NGINX
setup from Chapter 1, Installing Magento 2 on Apache and NGINX, you will find it in
/etc/nginx/conf.d/default.conf.

Open the default.conf file and go to the following rule:
set $MAGE_MODE developer;

Change this to the following:
set $MAGE_MODE production;

Restart your NGINX server now using the following command:
service nginx restart

3.	 Check the current status in Magento using the following command:
php bin/magento deploy:mode:show

By default, it shows the default status. We now switch the status using the following:
php bin/magento deploy:mode:set production

We can also use the following command:
php bin/magento deploy:mode:set developer

This will trigger the maintenance mode and start creating all necessary optimized
static files needed.

4.	 We can also run this manually. However, first we will need to create static files in the
pub/static directory. Run the following command on the shell:
php bin/magento setup:static-content:deploy

5.	 If you want to skip the code compilation, use the --skip-compilation option, as
shown in the following command:
php bin/magento deploy:mode:set developer --skip-compilation

6.	 Remember to check your permissions and ownership of the newly created files.

Code compilation consists of caches, optimized code, optimized
dependency injection, proxies, and so on. Magento 2 needs these
files to serve an optimized code base to the client's browser.

How it works…
Let's recap and find out what we did throughout this recipe. In steps 1 through 6, you learned
configuring the development and production modes in Magento 2.

Chapter 2

71

In step 1, we configured the SetEnv parameter in the .htaccess file of Apache to set the
correct mode. There is also an option to configure this in the Apache configuration file instead.

In step 2, we configured the set $MAGE_MODE parameter in NGINX to use the correct mode.

In step 3, we used the bin/magento deploy option to tell Magento to start using the
selected mode in NGINX or Apache, and create additional static files when running in
production mode or show the correct debug headers in the developer mode.

In step 4, you learned how to deploy static content in the pub/static directory when running
in production mode. This option will trigger the whole process of merging and compiling the
correct code in the public folder.

There's more…
Use curl to check your HTTP response header to see what current state you are running,
as shown in the following:

curl -I http://mage2cookbook.com/

HTTP/1.1 200 OK

Server: nginx/1.9.6

X-Magento-Cache-Debug: HIT

Always check the current status in your HTTP header and Magento shell. Only setting the
web server configuration will not automatically trigger the Magento configuration and can
mislead you.

Transferring your Magento 1 database to
Magento 2

Moving your Magento 1 to Magento 2 may be one of the most challenging things out there.
Luckily, Magento supported us with a database migration option.

The Magento 2 Data Migration Tool is here to help you convert your products, customers,
order/sales data, store configuration, promotions/sales rules, and more to move to a clean
Magento 2 setup.

Custom code, Extensions, and Themes are out of the current scope of the Data Migration Tool.

The currently supported migrations are the Community Edition (CE) versions 1.6.x, 1.7.x,
1.8.x, and 1.9.x and Enterprise Edition (EE) versions 1.11.x, 1.12.x, 1.14.x, and 1.14.x.

Magento 2 System Tools

72

Check with your third-party extension developer for a Data Migration
Tool to move the database code base to Magento 2.

Getting ready
Before we can start migrating our system, we need to check the following:

ff Have a clean Magento 2 system running as we set up in Chapter 1, Installing
Magento 2 on Apache and NGINX.

ff Disable your cron jobs.

ff Always back up your databases and old and new Magento versions.

ff Check whether there is a network connection from the current Magento 1 to
Magento 2 server. Check the firewall for database access if needed (port 3306).

ff Only use the exact version number, so that the data-migration-tool 2.0.0 corresponds
with Magento 2.0.0.

You may copy your current production database to the
new Magento 2 server and run it there.

A migration of Magento 1 to Magento 2 has the following five phases that are important to
follow in the correct order:

1.	 Settings: Migration of the settings is step 1. This will transfer all information from the
stores, website, and system configuration.

The command is php bin/magento migrate:settings.

2.	 Data: Migration of the data is step 2. This will transfer all categories, products,
customers, orders, wishlists, ratings, and so on

The command is php bin/magento migrate:data.

3.	 Delta: Migration of the delta is step 3. This is an important step and is used to
transfer Magento 1 data to Magento 2 where new updates occur. It will update the
most recent data of customers, orders, or other customer-related data. It is common
to use this command before going live.

The command is php bin/magento migrate:delta.

4.	 Media: Migration of the media files is easy; just copy all files from /media to
/pub/media.

Chapter 2

73

5.	 Custom modules/themes: Migration of your modules or themes is out of the scope
of the migration tool. Contact your solutions provider to check whether they have
a new version available. This also applies to any custom-made themes of theme
packages bought online.

How to do it...
For the purpose of this recipe, let's assume that we need to manage a Magento 1 to
Magento 2 migration setup. The following steps will guide you through this:

1.	 First, we need to run the following command to add data-migration-tool to your
current Composer setup:
composer config repositories.data-migration-tool git https://
github.com/magento/data-migration-tool-ce

composer require magento/data-migration-tool:dev-master

Wait while all dependencies are updated.

2.	 Now check whether the migration tools are available in the bin/magento shell tool:

Commands Description
migrate
migrate:data Main migration of data
migrate:delta Migration of the data that is added to Magento after

the main migration
migrate:settings Migration of the system configuration

3.	 For this recipe, we will be using a Magento 1 database installation on our
DigitalOcean Droplet. You may pick any of your production or Magento 1 sample
data SQL dumps. We will be using a Magento 1.9.2.2 sample data SQL dump. Our
database is called magento1.

4.	 Now, we need to map the database configuration files from the Magento 1 database
to the Magento 2 database. Always make sure that you are using a clean database;
otherwise, you can run the following command:
php bin/magento setup:uninstall

Go to /var/www/html/vendor/magento/data-migration-tool/etc/ce-
to-ce and pick the correct database version mentioned in the directory. If correct,
you will see two files called config.xml.dist and map.xml.dist.

5.	 Copy config.xml.dist to config.xml using the cp command:
cp config.xml.dist config.xml

Magento 2 System Tools

74

6.	 Open your config.xml and look for the <source> tag (line 94). Change it
accurately with the database username and password:
<source>
 <database host="localhost" name="magento1" user="root"
 password="mypassword"/>
</source>
<destination>
 <database host="localhost" name="magento2" user="root"
 password="mypassword"/>
</destination>
<options>
 <source_prefix>myprefix-from-magento1</source_prefix>
 <crypt_key>mycrypt-key-from-magento1</crypt_key>
</options>

If you are using a custom prefix in your database or you wish to use your encryption
key on your Magento 2 setup, you can add this to the <options> section, as shown
in the previous code.

7.	 Now we can start step 1 of the settings migration using the following command:
php bin/magento migrate:settings /var/www/magento2/vendor/magento/
data-migration-tool/etc/ce-to-ce/1.9.2.2/config.xml

As you can see, here we are using the 1.9.2.2 version. Depending on your version,
you may change this before running the command.

The output result looks like this:
[2015-12-02 20:28:56][INFO][mode: settings][stage: integrity
check][step: Settings Step]: started

100% [============================] Remaining Time: 1 sec

[2015-12-02 20:28:56][INFO][mode: settings][stage: integrity
check][step: Stores Step]: started

100% [============================] Remaining Time: 1 sec

[2015-12-02 20:28:56][INFO][mode: settings][stage: data migration]
[step: Settings Step]: started

100% [============================] Remaining Time: 1 sec

[2015-12-02 20:28:59][INFO][mode: settings][stage: data migration]
[step: Stores Step]: started

100% [============================] Remaining Time: 1 sec

[2015-12-02 20:28:59][INFO][mode: settings][stage: volume check]
[step: Stores Step]: started

100% [============================] Remaining Time: 1 sec

[2015-12-02 20:28:59][INFO][mode: settings][stage: volume check]
[step: Stores Step]: Migration completed

Chapter 2

75

8.	 You can check your Magento 2 system configuration backend if all updated settings
are available. If so, you can continue.

9.	 If step 1 is correct, we continue to migrate our data to Magento 2 using the following
command:
php bin/magento migrate:data /var/www/magento2/vendor/magento/
data-migration-tool/etc/ce-to-ce/1.9.2.2/config.xml

The output result looks like this:

10.	 You can check your Magento 2 catalogs, products, orders, and customers if they are
all updated. If so, you can continue.

Magento 2 System Tools

76

11.	 Before you continue, make sure to reindex and flush your caches at once:
php bin/magento indexer:reindex

php bin/magento cache:clean

php bin/magento cache:flush

12.	 Now check the frontend and backend whether your data is available in Magento 2. If
not, check the migration.log file located in /var.

13.	 In this recipe, we used a default Magento 1.9.2.2 setup. After the settings and data
migration, we created a sales order in Magento 1. Now, using the delta option, we
push the data to Magento 2 using the following command:
php bin/magento migrate:delta /var/www/magento2/vendor/magento/
data-migration-tool/etc/ce-to-ce/1.9.2.2/config.xml

The output result looks like this:

14.	 Now check your sales and customer data. Congratulations, you successfully migrated
your database from Magento 1 to Magento 2.

How it works…
Let's recap and find out what we did throughout this recipe. In steps 1 through 14, you learned
how to use the Magento 2 migration tool.

In step 1, we used Composer to add an additional repository for data migration. After installing
all of the packages, they are available in the bin/magento tool. In this setup example, we
used a clean Magento 1.9.x database.

In step 4, we made sure to run on a clean Magento 2 setup. Depending on your setup, go to
vendor/magento/data-migration-tool/etc and select the correct version. Magento
2 supports the migration option for CE and EE. Once we configured the config.xml file with
the Magento 1 database information in step 6, we were ready to go.

Chapter 2

77

In step 7, we used the bin/magento migration setting to start the whole process. We started
with the setting parameter and continued with the data and delta parameters in steps
7 through 13. We must not forget the reindexing and updating of our caches before using
them. The delta parameter option can be run multiple times as it only updates the latest
information, which is helpful before going live and switching to production.

There's more…
As every Magento setup is unique, migrating from Magento 1 to Magento 2 can be hard
sometimes. In some situations, you may need to change your tables in the mapping
configuration located in vendor/magento/data-migration-tool/etc/ce-to-
ce/<version>map.xml.dist.

Resetting your setting, data, and delta migration is easy using the [-r|--reset]
parameter in your command. This allows you to rerun all migration scripts from the beginning.

Always check for the currently supported versions on the Magento GitHub Data Migration Tool
page at the following link:

https://github.com/magento/data-migration-tool-ce

There is also an alternative Data Migration Tool available
by UberTheme at https://github.com/ubertheme/
magento2_data_migration.

https://github.com/magento/data-migration-tool-ce
https://github.com/ubertheme/magento2_data_migration
https://github.com/ubertheme/magento2_data_migration

79

3
Enabling Performance

in Magento 2

In this chapter, we will cover the basic tasks related to optimizing your performance in
Magento 2. You will learn the following recipes:

ff Configuring Redis for backend cache

ff Configuring Memcached for session caching

ff Configuring Varnish as a Full Page Cache

ff Configuring Magento 2 with CloudFlare

ff Configuring optimized images in Magento 2

ff Configuring Magento 2 with HTTP/2

ff Configuring Magento 2 performance testing

Introduction
This chapter explains one of the most important elements of Magento. From the early
Magento days, performance has been a hard topic to cover. Many setups out there in the
e-commerce world are performance-great, but most of the time, the majority are having
issues. Magento 1 may not be the best performance platform out there.

However, now we have Magento 2, a brand new platform designed for performance. From the
very first day, the main Magento developers focused on a better framework and the outcome
is great. According to the latest information, Magento focused on a Google PageSpeed
ranking of 90% or more.

www.allitebooks.com

http://www.allitebooks.org

Enabling Performance in Magento 2

80

In this chapter, we will dive in deeper on how to configure Redis caching and Memcached
sessions. By default, Magento 2 supports Varnish, and we will manage all of the steps on
how to set it up.

Serving the correct catalog or product images is very important, and will save lots of
bandwidth on a desktop but most of all on a mobile device, which will have a better
user experience.

As we mentioned in Chapter 1, Installing Magento 2 on Apache and NGINX, the new HTTP/2
protocol is a very new important element in the web server configuration. We will set up a
full-force HTTP/2 configuration, including SSL.

For a high-demanding Magento 2 website serving customers all over the globe, we introduce
CloudFlare, which is a CDN provider optimized for Magento.

Without performance testing, Magento 2 will not perform well. You will learn how to create a
company-like profile, including websites, stores, catalogs, products, orders, and much more.

Throughout this recipe, you can pick your own preferred hosting setup
as we did in Chapter 1, Installing Magento 2 on Apache and NGINX.
We will be using an NGINX-based setup. The Apache setup is pretty
straightforward; when needed, we will address specified configuration
settings when they occur.

Configuring Redis for backend cache
Redis may be one of the best improvements since we used Memcache(d) or Alternative
PHP Cache (APC). For the last couple of years, Redis is available in Magento 1 and has
a big performance benefit.

What is Redis and why is it important for Magento? Well, Redis is not new; its initial release
dates to the beginning of 2009—almost as young as Magento 1. Redis is a key-value storage
database that stores the data in-memory of your web server. Besides this, the in-memory
caches are fast and also have a persistence feature that is really important when a server
reboots. All caches are not flushed during a reboot and are available in-memory when the web
server is up again.

In the beginning of the Magento 1 area, we used Memcache(d) or APC, which worked very
well but not as well as Redis. In Magento 1, Redis was used for a backend cache and session
storage most of the time. Some websites also used it as a Full Page Cache (FPC) storage.

One other great advantage of Redis is that it has multiple database containers, one for the
default cache and the other for the FPC. Although the Redis performance is better in a lot of
cases, it is not the Holy Grail. There are drawbacks to its architecture.

Chapter 3

81

Getting ready
For this recipe, we will use a Droplet created in Chapter 2, Magento 2 System Tools, at
DigitalOcean, https://www.digitalocean.com/. We will be using NGINX, PHP-FPM,
and a Composer-based setup, including sample data connected to a Redis server. No other
prerequisites are required.

How to do it…
For the purpose of this recipe, let's assume that we need to create a Magento 2 Redis setup.
The following steps will guide you through this:

1.	 First, we need to install the Redis server and Redis PHP client before we can connect
it to Magento. Follow the next step on the shell:
cd /opt

wget http://download.redis.io/releases/redis-3.0.5.tar.gz

tar xzf redis-3.0.5.tar.gz

cd redis-3.0.5

make && make install

Change the version number of the current one if needed.

2.	 Go to the /opt/redis-3.0.5/utils directory and run the following script:
./install-server.sh

3.	 Commit to the following questions: (Press Enter to all of them; the default is just fine.)
Welcome to the redis service installer

This script will help you easily set up a running redis server

Please select the redis port for this instance: [6379]

Selecting default: 6379

Please select the redis config file name [/etc/redis/6379.conf]

Selected default - /etc/redis/6379.conf

Please select the redis log file name [/var/log/redis_6379.log]

Selected default - /var/log/redis_6379.log

Please select the data directory for this instance [/var/lib/
redis/6379]

Selected default - /var/lib/redis/6379

Please select the redis executable path [/usr/local/bin/redis-
server]

https://www.digitalocean.com/

Enabling Performance in Magento 2

82

Selected config:

Port : 6379

Config file : /etc/redis/6379.conf

Log file : /var/log/redis_6379.log

Data dir : /var/lib/redis/6379

Executable : /usr/local/bin/redis-server

Cli Executable : /usr/local/bin/redis-cli

Is this ok? Then press ENTER to go on or Ctrl-C to abort.

Copied /tmp/6379.conf => /etc/init.d/redis_6379

Installing service...

Success!

Starting Redis server...

Installation successful!

4.	 Now let's test our Redis server using the following command:
redis-cli –version

service redis_6379 status

netstat –anp | grep redis

As you can see, the Redis server is running under port 6379.

5.	 The next important element is installing a PHP module that can communicate with
the Redis server. We will use PHP Redis here (https://github.com/phpredis/
phpredis).

Use the following command to install PHP Redis:
cd /opt

git clone https://github.com/phpredis/phpredis.git

cd phpredis

phpize

./configure

make && make install

https://github.com/phpredis/phpredis
https://github.com/phpredis/phpredis

Chapter 3

83

6.	 Now, we need to let PHP know there is a Redis extension available that we can use.
Run the following command:
echo "extension=redis.so" | sudo tee /etc/php5/mods-available/
redis.ini

Depending on whether you are using PHP 5 or PHP 7, you may want to change the
PHP path.

7.	 Now we need to link the Redis PHP extension to PHP-FPM and PHP CLI. Run the
following commands:
cd /

ln -s /etc/php5/mods-available/redis.ini /etc/php5/fpm/conf.d/20-
redis.ini

ln -s /etc/php5/mods-available/redis.ini /etc/php5/cli/conf.d/20-
redis.ini

8.	 If everything is correct, we can restart the PHP-FPM server to activate the Redis PHP
extension. Run the following command:
service php5-fpm restart

9.	 To make sure that the Redis PHP and Redis server are running together, we can use
the following command:
php -r "if (new Redis() == true){ echo \"\r\n OK \r\n\"; }"

By default, creating a phpinfo.php page in the root directory in Magento 2 will not
work. First, you need to create the phpinfo.php file in the /pub directory. Then, you
need to change the NGINX configuration (nginx.conf.sample) from location
~ (index|get|static|report|404|503)\.php$ { to location ~ (inde
x|get|static|report|404|503|phpinfo)\.php$ {, which is located at the
bottom of the file. In Apache, we don't have an issue like this; it works by default.

Use phpinfo.php wisely on a production environment. Sharing
this information on a production website is not advised and could
expose your security risks.

10.	 Congratulations, you just finished the Redis server and PHP Redis setup. Now let's
continue with the Magento 2 part.

Enabling Performance in Magento 2

84

11.	 Open the env.php file in Magento 2 located at /app/etc and add the following
code at the top:

Chapter 3

85

12.	 As you can see, we are using two databases—one for the default cache and one
for page_cache (Full Page Cache). Now, save your file and remove any cache in
/var/page_cache and /var/cache. Let's open up your browser and refresh
your website.

If everything is configured correctly in the env.php file, you should not get any errors
and the ar/page_cache and var/cache directories should be empty.

13.	 To check how many keys Redis received, we can run the following command from
the shell:
redis-cli

On the prompt, continue with INFO; this will give you a list of the following details:

To close the Redis terminal, use exit.

Enabling Performance in Magento 2

86

14.	 Congratulations, you just finished configuring the Redis server and PHP Redis
with Magento 2.

How it works…
Let's recap and find out what we did throughout this recipe. In steps 1 through 13, we
installed a Redis server and configured Magento 2 to store the backend cache.

In step 1, we installed Redis from source and compiled the code. This version is more stable
than the default one available in Ubuntu. After compiling the code, we are able to use an
install script to create a working setup running on port 6379.

After installing and testing the code in steps 3 and 4, we start installing the PHP Redis
module. This code is pulled from GitHub and compiled from source.

In step 6, we created a redis.ini file, which is linked in step 7 with the correct PHP module
directory. Before we can test it, we need to restart the PHP-FPM server and use a simple PHP
command to test if everything is working fine.

In step 11, we added an additional piece of code to the env.php file, which will tell
Magento 2 to store all of the cache in Redis as of now.

There's more…
If you are interested in monitoring your Redis server, the next step is interesting. Clone
PHPRedMin (https://github.com/sasanrose/phpredmin) in your Magento 2 root
directory, /var/www/html. Make sure to change the ownership to www-data for the owner
and group.

Go to your /var/www/html/pub directory and create a symbolic link using the following
command:

ln –s ../phpredmin/public phpredmin

Chown the ownership of the symbolic link with the following command:

chown -h www-data:www-data phpredmin

https://github.com/sasanrose/phpredmin

Chapter 3

87

Go to to your NGINX configuration directory, /etc/nginx/conf.d, open the default.conf
file, and including the following content below error_log:

location ~ ^/phpredmin/.+\.php {
 fastcgi_split_path_info ^(.+\.php)(/.+)$;

 set $fsn /index.php;
 if (-f $document_root$fastcgi_script_name) {
 set $fsn $fastcgi_script_name;
 }

 # php5-fpm
 fastcgi_pass fastcgi_backend;
 fastcgi_index index.php;

 fastcgi_param SCRIPT_FILENAME $document_root$fsn;
 fastcgi_param PATH_INFO $fastcgi_path_info;
 fastcgi_param PATH_TRANSLATED $document_root$fsn;

 include fastcgi_params;
}

Now save and restart your NGINX server with service nginx restart.

Before we can continue, we need to add a cronjob rule to gather our Redis data and show it in
PHPRedMin. Add the following rule to your crontab.

Open crontab using crontab –e:

* * * * * cd /var/www/html/pub/phpredmin && php index.php cron/index

Enabling Performance in Magento 2

88

Open your browser and surf to http://yourdomain.com/phpredmin, and press Stats in
the top menu. Now you should see the following information:

On a production site, you will want to add an IP block so
that only you can gain access.

Chapter 3

89

Configuring Memcached for session caching
As Magento 2 does not support Redis session caching from the beginning, we need to
use Memcached instead. Memcached has been around for a long time and was used
in Magento 1, since the beginning, as backend and session caching.

Memcached is a distributed memory caching system. It is a flexible in-memory storage
container to cache data. As the session handler in the PHP Redis does not support session
locking, we use Memcached instead. Keep in mind that Memcached is not persisted, so
after restarting the server or daemon, all the data is gone. This could have an impact on a
production environment—lost sessions or baskets.

Getting ready
For this recipe, we will use a Droplet created in Chapter 2, Magento 2 System Tools, at
DigitalOcean, https://www.digitalocean.com/. We will be using NGINX, PHP-FPM, and
a Composer-based setup including sample data connected to a Memcached server. No other
prerequisites are required.

How to do it…
For the purpose of this recipe, let's assume that we need to create a Magento 2 Memcached
setup. The following steps will guide you through this:

1.	 First, we need to install the Memcached server and Memcached PHP client before we
can connect it to Magento. Follow the next step on the shell:
apt-get install -y libevent-dev

apt-get install –y memcached

2.	 Now let's test our Memcached server using the following command:
memcached –V

service memcached status

netstat –anp | grep memcached

As you can see, the Memcached server is running under port 11211.

3.	 The next important element is installing a PHP module that can communicate with
the Memcached server. We will be using the PHP Memcached extension and not the
PHP Memcache extension (without the d at the end). The PHP Memcached (d) will be
supporting PHP 7.

Use the following command to install PHP Memcached:
apt-get install php5-memcached

https://www.digitalocean.com/

Enabling Performance in Magento 2

90

We can also use the following command to install it:
apt-get install php-memcached (php7)

4.	 Now let's check whether PHP has the correct Memcached extension installed. Run
the following command:
cat /etc/php5/mods-available/memcached.ini

Now you should see the Memcached extension called extension=memcached.so.

Depending on whether you are using PHP 5 or PHP 7, you may want to change the
PHP path.

5.	 If everything is correct, we can restart the PHP-FPM server to activate the
Memcached PHP extension. Run the following command:
service php5-fpm restart

6.	 To make sure that the Memcached PHP and Memcached servers are running
together, we can check using the following command:
php -r "if (new Memcached() == true){ echo \"\r\n OK \r\n\"; }"

It can also be checked using the following command:
echo "stats settings" | nc localhost 11211

By default, creating a phpinfo.php page in the root directory in Magento 2 will not
work. First, you need to create the phpinfo.php file in the /pub directory. Then, you
need to change the NGINX configuration from location ~ (index|get|static|
report|404|503)\.php$ { to location ~ (index|get|static|report|4
04|503|phpinfo)\.php$ {, which is located at the bottom of the file. In Apache,
we don't have an issue like this; it works by default.

Use phpinfo.php wisely on a production environment. Sharing
this information on a production website is not advised and could
expose your security risks.

7.	 Congratulations, you just finished the Memcached server and PHP Memcached
setup. Now let's continue with the Magento 2 part.

8.	 Open the env.php file in Magento 2 located at /app/etc and change the following
code in the session section:
'session' =>
 array (
 'save' => 'files',
),

Chapter 3

91

Change the preceding code to the following:
'session' =>
 array (
 'save' => 'memcached',
 'save_path' => 'localhost:11211'
),

This is shown in the following screenshot:

Enabling Performance in Magento 2

92

9.	 Now save your file and remove any caches and sessions in var/page_cache,
var/cache and var/session. Restart your website using the following command:
service nginx restart && service php-fpm restart

Let's open up your browser and refresh your website.

If everything is configured correctly in the env.php file, you should not get any errors
and the /var/session directory should be empty.

10.	 To check how many keys Memcached received, we can run the following command
from the shell:
echo "stats items" | nc localhost 11211

11.	 Congratulations, you just finished configuring the Memcached server and PHP
Memcached with Magento 2.

How it works…
Let's recap and find out what we did throughout this recipe. In steps 1 through 11, we
installed a Memcached server and configured Magento 2 to store the sessions.

In steps 1 through 3, we installed the default Ubuntu Memcached server and PHP
Memcached client modules. Depending on whether we are using PHP 5 or 7, we pick a
different one. Before this, we make sure to restart the PHP-FPM server and test if everything
is working correctly.

In step 8, we added an additional piece of code to the env.php file, which will tell Magento 2
to store all of the sessions in Memcached as of now.

There's more…
If you are interested in monitoring your Memcached server, the next step is interesting. Clone
the memcached.php file from the GitHub Gist (https://gist.github.com/raybogman/
b8b7b4d21bf34ed9dd76) in your Magento 2 root directory, /var/www/html/pub. Make
sure to change the ownership to www-data for the owner and group.

By default, creating a memcached.php page in the root directory in Magento 2 will not
work. First, you need to store the memcached.php file in the /pub directory. Then, you
need to change the NGINX configuration from location ~ (index|get|static|repo
rt|404|503)\.php$ { to location ~ (index|get|static|report|404|503|mem
cached)\.php$ {, which is located at the bottom of the file. In Apache, we don't have an
issue like this; it works by default.

https://gist.github.com/raybogman/b8b7b4d21bf34ed9dd76
https://gist.github.com/raybogman/b8b7b4d21bf34ed9dd76

Chapter 3

93

Once installed correctly, the page will look as follows:

Note that this Memcached viewer is an outdated version created in 2008
by Harun Yayli and is not maintained anymore. Use it wisely.
As an alternative, you can also use https://github.com/
clickalicious/phpMemAdmin.

Configuring Varnish as the Full Page Cache
Varnish may be one of the most interesting elements described in this book, besides Magento
2, of course. What is Varnish and why is it that important? Well, Varnish is like a Ferrari,
very fast on the track but hard to maintain or tune. In technical terms, Varnish is an HTTP
accelerator designed for heavy websites. Magento users love fast websites.

By default, Varnish support is now included in Magento 2. In Magento 1, we commonly used
Turpentine by Nexcess (https://github.com/nexcess/magento-turpentine). The
configuration of Varnish is not for the faint-hearted. Varnish includes a Varnish Configuration
Language (VCL) file, which holds all the elements to be cached or not.

Setting up a Varnish server may be simple; configuring the VCL is not. Magento 2 provides a
default VCL file that works out of the box, but be aware of any custom extensions or layout
updates. Any customization has to be added manually in the VCL file before Varnish can
cache them.

https://github.com/clickalicious/phpMemAdmin
https://github.com/clickalicious/phpMemAdmin
https://github.com/nexcess/magento-turpentine

Enabling Performance in Magento 2

94

By default, Varnish does not support HTTPS; you may
need an SSL proxy such as NGINX or Apache to do this.

Getting ready
For this recipe, we will use a Droplet created in Chapter 2, Magento 2 System Tools, at
DigitalOcean, https://www.digitalocean.com/. We will be using NGINX, PHP-FPM,
and a Composer-based setup including sample data connected to a Varnish server. No other
prerequisites are required.

How to do it…
For the purpose of this recipe, let's assume that we need to create a Magento 2 Varnish
setup. The following steps will guide you through this:

1.	 First, we need to install the Varnish server before we can connect it to Magento.
Follow the next step on the shell:
apt-get install –y apt-transport-https

By default, all current Ubuntu versions support apt-transport-https.

2.	 Let's create a new Varnish repository using the following code:
echo "deb https://repo.varnish-cache.org/ubuntu/ trusty
varnish-4.1" | sudo tee -a /etc/apt/sources.list.d/varnish-cache.
list

3.	 Add the Varnish key to our system using the following command:
curl https://repo.varnish-cache.org/GPG-key.txt | apt-key add -

4.	 Now we can update our server so that the Varnish software is made available for use.
Run the following command:
apt-get update && apt-get install -y varnish

service varnish start

5.	 Now let's test our Varnish server using the following command:
varnishd –V

service varnish status

netstat –anp | grep varnish

As you can see, the Varnish server is running under ports 6081 and 6082.

https://www.digitalocean.com/

Chapter 3

95

6.	 Before we can use Varnish as a frontend server, we need to change the NGINX or
Apache port. In NGINX, we use the following command:
sed -i 's/80/8080/' /etc/nginx/conf.d/default.conf

We are using port 8080 as an internal port.

Your configuration file could look as follows:
server {
 listen 8080;

 server_name yourdomain.com;

7.	 Now let's update the Varnish server. We need to change the default port 6081 to 80.
Use the following command to change the /etc/default/varnish file:
sed -i 's/6081/80/' /etc/default/varnish

8.	 By default, there is a small bug in the Ubuntu system that is using the new systemd
setup. The systemd servers will not update their configuration script after a restart
or reboot. Let's update this manually using the following command:
sed -i 's/6081/80/' /lib/systemd/system/varnish.service

Update the systemd process with the following code:
systemctl daemon-reload

9.	 Next, we restart the Varnish and NGINX (or Apache) servers. Run the following
command:
service varnish restart && service nginx restart

10.	 Now you can check whether Varnish and NGINX are running on the correct port. Use
the following command:
netstat -upnlt | egrep 'varnish|nginx'

11.	 Congratulations, Varnish is running on port 80 and NGINX is running on port 8080.

12.	 Now update Magento. Log in to the backend of your Magento site, navigate to Stores
| Configuration | Advanced | System | Full Page Cache, and select Varnish
Caching in the drop-down menu. If you are running Varnish on the same server as
your website, you are okay with the localhost and backend port 8080. It's better to
install Varnish on a single dedicated server. You may need to change these settings
correctly. Export the correct VCL for the Varnish file. As we are using Varnish 4, we will
download it.

Enabling Performance in Magento 2

96

Always make sure that Magento is running in the developer mode when setting up
Varnish. When ready to launch, we can switch to the production mode:

13.	 Copy the file to the server and replace the current /etc/varnish/default.vcl
file. Now open the file and change backend default to the following:
backend default {
 .host = "127.0.0.1";
 .port = "8080";
}

Chapter 3

97

14.	 Now let's restart the Varnish server to use the current VCL setup and flush our
Magento cache:
service varnish restart

php bin/magento cache:clean

php bin/magento cache:flush

15.	 Using the Magento 2 developer mode is necessary; it will show us an X-Magento-
Cache-Debug notice. Use the following command to see if we have received a
cache HIT:
curl -I http://yourdomain.com

The output of this command should be as follows:
root@mage2cookbook:~# curl -I http://mage2cookbook.com

HTTP/1.1 200 OK

Date: Mon, 14 Dec 2015 19:15:40 GMT

Content-Type: text/html; charset=UTF-8

X-Frame-Options: SAMEORIGIN

X-Content-Type-Options: nosniff

X-XSS-Protection: 1; mode=block

X-Magento-Cache-Control: max-age=86400, public, s-maxage=86400

Pragma: no-cache

Expires: -1

Cache-Control: no-store, no-cache, must-revalidate, max-age=0

Vary: Accept-Encoding

Age: 1127

X-Magento-Cache-Debug: HIT

Accept-Ranges: bytes

Connection: keep-alive

16.	 Congratulations, you just finished configuring a Varnish server with Magento 2.

How it works…
Let's recap and find out what we did throughout this recipe. In steps 1 through 16, we
installed and configured Varnish to speed up the full page caching.

In steps 1 through 4, we added the official repository to our system and installed Varnish.

In steps 6 and 7, we changed the NGINX port to 8080 instead of 80, and the Varnish port
to 80. Now, Varnish will be our gatekeeper after restarting the NGINX and Varnish servers.

Enabling Performance in Magento 2

98

In step 12, we told Magento to start communicating with the Varnish server so that all
frontend cacheable data is stored here.

There's more…
The current lifetime of the cache is 86,400 seconds, which is one day. So, installing a cache
warmer will speed up your pages after an automatic cache flush by Magento. Always keep in
mind that by default, all the pages are cold (without a cache hit) and the first GET (page view)
can take longer. Varnish needs to build up the cache before customers can benefit from it.

Check out the following Varnish tools to monitor all the incoming data live:

varnishstat

The output of this command will be as follows:

Chapter 3

99

Now, let's execute the following command:

Varnishlog

The output of this command will be as follows:

Configuring Magento 2 with CloudFlare
Are you managing an international-based brand-serving customer all over the globe? Then,
using a Content Delivery Network (CDN) is the best idea. CDNs are a well-known technique to
manage high-traffic websites. It is commonly used to distribute static assets such as images,
CSS, and JavaScript as quickly as possible to the nearest location of the customers, which
decreases the download times of the website.

Enabling Performance in Magento 2

100

The modern CDNs have much more to offer than just serving the assets to the customer.
Currently, they improve the user experience with optimized HTML output, merging and
deferring JavaScript, TCP optimization, and much more. Basic or advanced security is
also top-of-mind, such as (D)DoS protection, SSL, Web Application Firewall (WAF),
and much more.

Before using a CDN on production, test which CDN provider fits
best for your purpose. Make sure that the POP locations that they
serve match your customer locations.

Getting ready
For this recipe, we will use a Droplet created in Chapter 2, Magento 2 System Tools, at
DigitalOcean, https://www.digitalocean.com/. We will be using NGINX, PHP-FPM,
and a Composer-based setup including sample data connected to the CloudFlare CDN.
No other prerequisites are required.

How to do it…
For the purpose of this recipe, let's assume that we need to create a Magento 2 Varnish
setup. The following steps will guide you through this:

1.	 First, we need to create an account at CloudFlare. Go to https://www.
cloudflare.com/a/sign-up and complete the supplied form.

2.	 Now add a website URL. Choose the default URL of your Magento website,
(We can add more URLs under the same CloudFlare account later.) and
press Scan DNS Records:

https://www.digitalocean.com/
https://www.cloudflare.com/a/sign-up
https://www.cloudflare.com/a/sign-up

Chapter 3

101

3.	 Once completed, we need to verify that all of our DNS records are listed. This step is
really important so make sure to check your current DNS settings and compare or
add them to your CloudFlare DNS setup. By default, CloudFlare cannot match all the
DNS records automatically.

Enabling Performance in Magento 2

102

Changing your records in this screen will not change anything in production yet. We
still need to adjust the primary and secondary Nameservers before everything works.
We will do this as shown in the following screenshot:

Chapter 3

103

4.	 Choose your CloudFlare plan. Let's start with the Free Website plan. In a production
environment, upgrading to a Pro or Business account is simple; just complete the
billing form and you are all set. All new features will be available on the fly and
ready to use:

5.	 Now we need to update our Nameservers. CloudFlare will list the Nameservers that
we need to complete the last step.

Depending on your current DNS provider, this could be a simple or hard step.
Changing the Nameservers is not always allowed by your provider.

When ordering a new domain, check whether your provider allows
you to change the Nameservers. Choosing the correct domain
provider is not always a simple job.

Enabling Performance in Magento 2

104

6.	 After changing the Nameservers, we need to wait a maximum of 24 hours. The time
depends on how quickly your current DNS provider updates them.

You can check your e-mail or refresh the CloudFlare dashboard to check whether your
domain is Active:

7.	 Let's go to the DNS dashboard and check whether our domain name is served using
the CloudFlare accelerated and protection technique.

Once the cloud is orange, including an arrow passing through, then you are
connected. Click on the cloud icon to change it:

8.	 Let's check whether the DNS server is serving the correct records and CloudFlare is
working. Run the following command on the shell of your current server:
dig yourdomain.com NS +short

The output looks as follows:
root@mage2cookbook:~# dig mage2cookbook.com NS +short

rocky.ns.cloudflare.com.

kate.ns.cloudflare.com.

Chapter 3

105

You can also use the following command to check the IPs:
dig yourdomain.com +short

The output looks as follows:
root@mage2cookbook:~# dig mage2cookbook.com +short

104.18.56.216

104.18.57.216

9.	 Congratulations, you just finished configuring a CloudFlare CDN server with
Magento 2.

How it works…
Let's recap and find out what we did throughout this recipe. In steps 1 through 9, we installed
CloudFlare as a CDN to optimize our worldwide performance.

In steps 1 through 8, we created an account and moved our domain to the CloudFlare DNS. In
step 7, we activated the orange cloud in DNS to start using the CDN optimization.

There's more…
If you are interested in how to test the performance of the CloudFlare setup, stay put. Here are
some basic commands that you can use:

time curl --I http://yourdomain.com

The output looks as follows:

time curl -I http://mage2cookbook.com

HTTP/1.1 200 OK

X-Magento-Cache-Debug: HIT

Server: cloudflare-nginx

CF-RAY: 257330a8444d2bd6-AMS

real 0m0.198s

user 0m0.006s

sys 0m0.005s

Enabling Performance in Magento 2

106

Without CloudFlare, it looks as follows:

time curl -I http://mage2cookbook.com

HTTP/1.1 200 OK

X-Magento-Cache-Debug: HIT

real 0m0.253s

user 0m0.011s

sys 0m0.010s

Keep in mind that this current website is using Varnish. Our Magento 2 server is located in
New York while our test server is located in Amsterdam. As you can see, in this test, we save
0.055s. This test is done from server to server. Doing a test from server to real browser
clients on a desktop, or mobile device, will result in larger numbers. Larger numbers result in
slower connections, which will result in lesser user experience.

Another great load testing tool is Siege. Using Siege helps you to understand how many
concurrent clients can visit your website during high loads. We will just cover the basics of
Siege here. Install Siege on another Droplet somewhere else in the world. Use the following
command to install Siege:

apt-get install siege

Now let's run the following command. We will simulate 50 concurrent users for a period of
three minutes. The –d option is the internal delay, in seconds, for which the users sleeps:

siege -c50 -d10 -t3M http://yourdomain.com

Without CloudFlare, the output looks as follows:

siege -c50 -d10 -t3M http://mage2cookbook.com

Transactions: 1732 hits

Availability: 100.00 %

Elapsed time: 179.79 secs

Data transferred: 15.47 MB

Response time: 0.18 secs

Transaction rate: 9.63 trans/sec

Throughput: 0.09 MB/sec

Concurrency: 1.71

Successful transactions: 1732

Chapter 3

107

Failed transactions: 0

Longest transaction: 0.34

Shortest transaction: 0.15

With CloudFlare, the output looks as follows:

siege -c50 -d10 -t3M http://mage2cookbook.com

Transactions: 1716 hits

Availability: 100.00 %

Elapsed time: 179.74 secs

Data transferred: 14.05 MB

Response time: 0.10 secs

Transaction rate: 9.55 trans/sec

Throughput: 0.08 MB/sec

Concurrency: 0.96

Successful transactions: 1716

Failed transactions: 0

Longest transaction: 0.62

Shortest transaction: 0.08

In the last test, we can see that the Response time is 0.10 seconds compared to 0.18 seconds.

The test Droplet that we used was located in Amsterdam using two CPUs and 4 GB memory.
For a real browser test, it is best to use tools such as Chrome developer tools. Those timings
are more accurate and give you a better idea of the real user experience. Testing on a mobile
device is a totally different ball game and is out of the scope of this book.

Configuring optimized images in Magento 2
Running a Magento store can be difficult—configuring the server, creating store views, and
adding categories and products. Everyone knows that every product needs at least one
product image. In some setups, we even have more than one. From this single master image,
multiple thumbs are created, such as base image, small image, swatch image, and thumbnail.

By default, images are not optimized for the web when saving them in Photoshop. Images
shown on a website are not exactly the same as images for print. The Exchangeable Image
File (EXIF) data, for example, is not needed, and by removing this metadata, you can save lots
of bytes. The smaller the image, the faster it's shown in the browser of the customer.

Enabling Performance in Magento 2

108

Here is an example of EXIF data (not optimized). The current file size is 620,888 bytes:

EXIF Data

File:
 ExifByteOrder: Big-endian (Motorola, MM)
 CurrentIPTCDigest: 50bb6030364fbdfb1842e98de0e81efe
 ImageWidth: 1024
 ImageHeight: 768
 EncodingProcess: Baseline DCT, Huffman coding
 BitsPerSample: 8
 ColorComponents: 3
 YCbCrSubSampling: YCbCr4:4:4 (1 1)

Storing all these images on your Magento server will result in slower pages and slower
rendering of them. Almost 70% of all the content from a single page is filled with images:

So, optimizing images is not only important for desktop users, but also for mobile users. The
less data they need to download, the better the user experience. Besides this, it's great for
your search ranking optimization, battery consumption, and bandwidth/data plan.

By default, Magento 1 did not optimize the created catalog and CMS
images. This could be optimized using software binaries such as
jpegtran, jpegoptim, and OptiPNG.
If you don't have the option to install these, you could use Rapido image
optimizer (https://www.rapido.nu/), which is a SaaS-based
image optimizer for Magento. It is also the only optimizer that checks for
the best available optimization per image and tunes all the images in the
image cache directory on a daily basis.

https://www.rapido.nu/

Chapter 3

109

Getting ready
For this recipe, we will use a Droplet created in Chapter 2, Magento 2 System Tools, at
DigitalOcean, https://www.digitalocean.com/. We will be using NGINX, PHP-FPM, and
a Composer-based setup including sample data for image optimization. No other prerequisites
are required.

How to do it…
For the purpose of this recipe, let's assume that we need to optimize all Magento 2 images.
The following steps will guide you through this:

1.	 By default, Magento 2 now uses an optimized GD2 PHP library, which is installed
during the installation. The following command should be used during installation:
apt-get install php5-gd

Instead, we can also use the following command:
apt-get install php7.0-gd

To make sure that GD is installed correctly, run the following command:
php -i | grep gd

Run the following command to test which version of GD you are running:
echo '<?php var_dump(gd_info()); ?>' > gd.php

php gd.php

The output looks as follows:
root@mage2cookbook:/var/www/magento2/pub# php gd.php

array(13) {

 ["GD Version"]=>

 string(9) "2.1.1-dev"

2.	 Now let's log in to the backend of your Magento 2 control panel and navigate to the
Stores | Configuration | Advanced | Developer section.

Here, you will find the following options:

�� Template Settings

�� JavaScript Settings

�� CSS Settings

�� Image Processing Settings

�� Static Files Settings

https://www.digitalocean.com/

Enabling Performance in Magento 2

110

We first make sure that our Image Adapter is set to PHP GD2. We don't use the
ImageMagick setting here. In the There's more… section of this recipe, you can find
more information on this.

3.	 Next, we change the CSS Settings, JavaScript Settings, Static Files Settings, and
Template Settings. In the Template Settings, adjust Minify HTML to YES.

Next, enable JavaScript Bundling, Merge JavaScript, and Minify JavaScript to YES.

Next, enable Merge CSS and Minify CSS to YES.

Last but not least, enable Static Files to YES. Save all the settings.

4.	 Before we have all the optimized code available, we need to recompile all static
assets. Let's assume that we are preparing for production. Run the following
code on the shell:
php bin/magento deploy:mode:set production

Before running the code, make sure to change your Apache or NGINX configuration to
set $MAGE_MODE production;(Nginx) or SetEnv MAGE_MODE production
(Apache). In Managing Magento 2, set mode (MAGE_MODE) recipe of Chapter 2,
Magento 2 System Tools, we covered everything in detail.

After running this code, make sure to change your user and group permissions. Run
the following command:
chown –R www-data:www-data *

5.	 Congratulations, you just finished configuring optimized images, JavaScript, and CSS
with Magento 2. The following image is a screenshot from the Google PageSpeed
insight page (https://developers.google.com/speed/pagespeed/
insights/), where you can test your own pages:

https://developers.google.com/speed/pagespeed/insights/
https://developers.google.com/speed/pagespeed/insights/

Chapter 3

111

How it works…
Let's recap and find out what we did throughout this recipe. In steps 1 through 5, we
configured the image optimizing technique, which is now by default available in Magento 2.

In step 1, we installed the PHP GD library and tested it. In step 2, we configured the Magento
backend to start using the optimization by selecting the GD option and additional merging for
JS and CSS.

In step 4, we ran the bin/magento production mode to start optimizing all of the code.

There's more…
Besides the PHP GD2 library, Magento 2 offers the option to switch to the ImageMagick
library (http://www.imagemagick.org/). In basis, this library works great for image
optimization, but during some tests, we found out that the GD2 had a smaller output. Besides
the difference in size, ImageMagick generated files in the baseline (renders top-down) format
instead of the progressive (renders from blurry to sharp) format that GD2 does.

Using progressive is the best commonly used format for web pages. It starts as a blurry
image and turns sharp when done. It improves the user experience by loading the images
incrementally.

If you still want to use ImageMagick, here are some basic commands. Run the following code
on your shell. Then, switch to ImageMagick in your Magento configuration backend:

apt-get install -y imagemagick --fix-missing

apt-get install -y php5-imagick

service php-fpm restart

php -i | grep imagick

Configuring Magento 2 with HTTP/2
December 17, 2015, is the day Google mentioned that HTTPS pages have top priority by
default. Many Magento websites still use the default SSL pages or, even worse, don't use
SSL at all.

Well, this will change now if your website depends on Google's search ranking. Using HTTP/2
in your setup is a must for high-performing and secure websites. The new protocol will be the
new standard for fast and secure browsing.

http://www.imagemagick.org/

Enabling Performance in Magento 2

112

HTTP/2 has many new benefits such as multiple TCP connections, cache pushing (server
push), data compression, and much more. By default, HTTP/2 does not need SSL, but many
browsers out there will support it only when configured using SSL. NGINX, for example,
supports HTTP/2 only when configured including SSL; Apache, on the other hand, supports
both, with or without SSL.

So, it is mandatory that we start using HTTP/2 including SSL for a safer and faster web.

Getting ready
For this recipe, we will use a Droplet created in Chapter 2, Magento 2 System Tools, at
DigitalOcean, https://www.digitalocean.com/. We will be using NGINX, PHP-FPM,
and a Composer-based setup including sample data for HTTP/2. No other prerequisites
are required.

How to do it…
For the purpose of this recipe, let's assume that we need to create a Magento 2 using HTTP/2
including SSL. The following steps will guide you through this:

1.	 First, we need to configure and create an SSL certificate. Open openssl.conf
located in /etc/ssl with your favorite editor:
vi /etc/ssl/openssl.conf

Go to line 127 [req_distinguished_name] and change or add the settings
regarding your company and domain. Change the following lines; here is an example:
countryName_default = Some-CountryName
stateOrProvinceName_default = Some-State
localityName_default = Some-CityName
0.organizationName_default = Some-CompanyName
organizationalUnitName_default = Some-DepartmentName
commonName_default = Some-DomainName
emailAddress_default = Some-Email

https://www.digitalocean.com/

Chapter 3

113

The following screenshot depicts an example of the same:

2.	 After saving your openssl.conf file, we can create the *.csr and *.key files. We
need the *.csr file and send it to our SSL provider. You may pick any SSL provider.
Run the following command to generate them:
openssl req -new -newkey rsa:2048 -nodes -keyout yourname.key -out
yourname.csr

Enabling Performance in Magento 2

114

Change yourname with any given name. When running the command, questions
will be asked; hit enter to prompt when the default is okay. Here is a screenshot
of the process:

Check your certificate before you submit it. Run the following code to confirm
your settings:
openssl req -in yourname.csr -text -noout

In this example, we used a wildcard SSL certificate. The wildcard starts with
*.yourdomain.com. We use a wildcard to create unlimited subdomain names,
which we will use later to create localized domain names such as de.yourdomain.
com or fr.yourdomain.com.

If you don't need a wildcard domain and would rather use www.yourdomain.com or
a naked domain such as yourdomain.com, commit this in your openssl.conf file.

3.	 Submit the *.csr file to your SSL provider and continue all the steps necessary.
Depending on your provider, it can take minutes or hours. For the purpose of
demonstration, we used https://www.buy-certificate.com/. On this website,
there is an option to create a 30-day free SSL certificate. The whole process takes
two to three minutes.

https://www.buy-certificate.com/

Chapter 3

115

4.	 Now let's download the ZIP file from your mail account to your Droplet and open it in
your root directory. Unzip the yourdomain-com.zip file by running the following
command:
unzip mage2cookbook-com.zip

5.	 Your ZIP contains the following files (or similar ones):
Archive: mage2cookbook-com.zip

inflating: mage2cookbook-com.cer

inflating: readme.txt

inflating: RapidSSLSHA256CA-G3.cer

inflating: GeoTrustGlobalCA.cer

inflating: siteseal_nw4all.html

6.	 Now we will merge the certificate and CA authority key. Use the following command
on the shell:
cat mage2cookbook-com.cer RapidSSLSHA256CA-G3.cer > mage2cookbook-
com-2015.cert

7.	 Now let's copy the mage2cookbook-com-2015.cert file to /etc/ssl/cert using
the following command:
cp mage2cookbook-com-2015.cert /etc/ssl/cert

8.	 Move the generated mage2cookbook.key to /etc/ssl/private using the
following command: (Let's assume that you are running the openssl reg
command in the /etc/ssl directory.)
mv /etc/ssl/mage2cookbook.key /etc/ssl/private

9.	 Now let's create a symbolic link of the keys. Run the following command:
ln -s /etc/ssl/private/mage2cookbook-com.key /etc/ssl/
mage2cookbook-com.key

ln -s /etc/ssl/certs/mage2cookbook-com-2015.cer /etc/ssl/
mage2cookbook-com.cert

Try to list all the files in the /etc/ssl directory using the following command. You
should see the names of the files that we linked:
ll /etc/ssl

10.	 Now let's go to the NGINX configuration directory and update default.conf in
/etc/nginx/conf.d. Open the default.conf file and change it with the
following settings:
upstream fastcgi_backend {
 server 127.0.0.1:9000;
}

Enabling Performance in Magento 2

116

server {
 listen 80;
 listen 443 ssl http2;

 server_name yourdomain.com;

 set $MAGE_ROOT /var/www/html;
 set $MAGE_MODE developer;

 ssl_certificate /etc/ssl/yourdomain-com.cert;
 ssl_certificate_key /etc/ssl/yourdomain-com.key;

 include /var/www/html/nginx.conf.sample;

 access_log /var/log/nginx/access.log;
 error_log /var/log/nginx/error.log;

 location ~ /\.ht {
 deny all;
 }
}

As you can see, we created a new listen 443 ssl http2 section. Besides the
listen section, we also created ssl_certificate and ssl_certificate_key.

The http2 flag in the listen section covers the entire HTTP/2 configuration.

11.	 Now, all you have to do is restart NGINX to use your new settings. Run the following
command:
service nginx restart

12.	 Before we can test Magento in our browser, we need to flush and clean the cache.
We also need to update Magento's configuration with the new secure URL. Run the
following commands:
php bin/magento setup:store-config:set --base-url-secure="https://
yourdomain.com/"

php bin/magento setup:store-config:set --use-secure-admin="1"

php bin/magento setup:store-config:set --use-secure="1"

php bin/magento setup:static-content:deploy

php bin/magento cache:clean

php bin/magento cache:flush

Chapter 3

117

Next, we go to https://www.sslshopper.com/ssl-checker.html and
check our setup. Commit your domain name in the box and submit. If everything is
configured correctly, the output should look as follows:

13.	 Congratulations, you just finished configuring HTTP/2 with Magento 2. To test your
HTTP/2 protocol, go to https://tools.keycdn.com/http2-test and submit
yourdomain.com.

How it works…
Let's recap and find out what we did throughout this recipe. In steps 1 through 13, we created
an SSL certificate, which we need to configure HTTP/2 in NGINX.

In step 1, we configured the openssl.conf file with our domain and business data.
In step 2, we created a certificate request that we will be sending to the SSL provider.

In step 4, we downloaded the provided certificate file and unzipped the content. In step 6, we
merged the domain certificate and certificate authority file into a single one. This file was then
copied to the SSL directory.

https://www.sslshopper.com/ssl-checker.html
https://tools.keycdn.com/http2-test

Enabling Performance in Magento 2

118

In step 6, we copied the private key to the SSL private directory before we started creating a
symlink of the private key and merge certificate in the /etc/ssl directory. The main reason
why we stored the files in the private and cert directory is maintenance. When replacing or
updating keys or certificates in the future, we only need to create a new symlink while our
NGINX or Apache configuration can stay the same.

In step 10, we updated the NGINX configuration and added the ssl_certificate
parameter including the correct SSL directory. In the listen parameter, we added
the http2 flag behind the 443 ssl flag and restarted the NGINX server.

In step 12, we configured the HTTPS domains using the bin/magento setup:store-
config:set option.

There's more…
Setting up Magento 2 including SSL and HTTP/2 is pretty straightforward. However, by default,
the only URLs that serve HTTPS are customer/account/login/, customer/account/
create/, checkout/, checkout/cart/, contact/, and sales/guest/form/.
Currently, it's mandatory to have a full HTTPS website (Google: HTTPS as a ranking signal).

It is easy to update the Magento configuration to serve every URL on HTTPS using the
following command:

php bin/magento setup:store-config:set --base-url="https://yourdomain.
com/"

php bin/magento setup:static-content:deploy

php bin/magento cache:clean

php bin/magento cache:flush

When using Varnish in your setup, make sure to offload your SSL. Varnish
does not support SSL. The best common setup is NGINX as an SSL Proxy on
the frontend, rather than Varnish, and in the backend, NGINX or Apache.

Configuring Magento 2 performance testing
Performance, performance, performance! This may be one of the most used words in the
Magento 1 period. Every Magento website benefits from a great performing platform, and
every customer loves it.

However, before we can create a great performing website, all sorts of elements have to be
conquered. One of the missing elements in Magento 1 was creating sample data based on
a company profile. As every Magento website is unique, so is performance testing based on
their profile. Some companies have only one website, store catalog, and store view. Others
have 800 websites and are converting one million orders per day.

Chapter 3

119

Magento 2 now provides us with the option to run a profile that creates sample data based on
your company profile. By default, there are four sample data profiles. Depending on the profile,
creating the sample data may take a long time, so keep this in mind.

After creating the sample data based on your profile, you can start doing performance-based
testing. Based on this profile, you may need to scale up or tune one of the components before
going into production.

Getting ready
For this recipe, we will use a Droplet created in Chapter 2, Magento 2 System Tools, at
DigitalOcean, https://www.digitalocean.com/. We will be using NGINX, PHP-FPM, and
a Composer-based setup including Magento 2 (without sample data). No other prerequisites
are required.

How to do it…
For the purpose of this recipe, let's assume that we need to run a Magento 2 performance
test. The following steps will guide you through this:

1.	 Before we can start generating a profile, we need a clean setup. Run the following
command to start with a clean Magento 2 instance:
rm -rf * /var/www/html

composer create-project --repository-url=https://repo.magento.com/
magento/project-community-edition /var/www/html --prefer-dist

chown -R www-data:www-data /var/www/html

2.	 Now let's install Magento 2 without sample data. Run the following command. We will
be using the same procedure as we used in Installing Magento 2 sample data via the
command line recipe of Chapter 2, Magento 2 System Tools:
bin/magento setup:install \
 --db-host=localhost \
 --db-name=<your-db-name> \
 --db-user="<db-user>" \
 --db-password="<db-password>" \
 --backend-frontname=<admin-path> \
 --base-url=http://yourdomain.com/ \
 --admin-lastname=<your-lastname> \
 --admin-firstname=<your-firstname> \
 --admin-email=<your-email> \
 --admin-user=<your-admin-user> \
 --admin-password=<your-password> \
 --use-rewrites=1 \
 --cleanup-database \

https://www.digitalocean.com/

Enabling Performance in Magento 2

120

3.	 After completing the install via the shell, we need to compile our code before we can
start using it. Run the following command on the shell:
php bin/magento setup:di:compile-multi-tenant

chown -R www-data:www-data /var/www/html

4.	 Check in your browser whether everything is working correctly before starting the
small data profile. We use the small data profile because it does not take too long to
run. Run the following command:
php bin/magento setup:perf:generate-fixtures /var/www/html/setup/
performance-toolkit/profiles/ce/small.xml

5.	 All data profiles are located in the setup/performance-toolkit/profiles/
directory. Depending on whether you are running CE or EE, you need to choose
one of the subdirectories.

6.	 Depending on the profile that you ran, the output looks as follows:

Chapter 3

121

7.	 Now you can open a browser and surf to yourdomain.com, and check whether
everything is correct. You can also log in to the backend of your Magento website
and check all the created settings.

8.	 Congratulations, you just finished creating profiles for performance testing with
Magento 2. Now you can choose your favorite performance test tool and test
your server:

Enabling Performance in Magento 2

122

How it works…
Let's recap and find out what we did throughout this recipe. In steps 1 through 8, we created
sample data to test the performance of the Magento 2 website.

In steps 1 and 2, we started with a clean Magento 2 setup using Composer and
bin/magento setup:install.

In step 3, we needed to compile our Magento code base before we could input the
sample data.

In step 4, we ran a generated fixture profile using the bin/magento setup:perf option.
Depending on the profile, Magento will start creating all of the required data. Running a large
profile set can take up to several hours. Adjusting the profile is self-explanatory.

There's more…
If the default profile does not fit your needs, you can create a custom profile. For example,
copy the small.xml file to mycustom.xml in the same directory and open the file in your
favorite editor. Run the following command on the shell:

cd /var/www/html/setup/performance-toolkit/profiles/ce/small.xml

cp small.xml mycustom.xml

vi mycustom.xml

Now you can change data such as websites, store_groups, store_views, simple_
products, configurable_products, categories, categories_nesting_level,
catalog_price_rules, catalog_target_rules, cart_price_rules, cart_price_
rules_floor, customers, tax_rates_file, and orders:

Chapter 3

123

Save your file, and use the following command:

Esc + :wq

Before we start, you need to check whether your setup is clean. Otherwise, start with step 1 of
the recipe.

Now we can run the mycustom.xml file with the following command:

php bin/magento setup:perf:generate-fixtures /var/www/html/setup/
performance-toolkit/profiles/ce/mycustom.xml

Running the profile can take some time. Be aware to adjust your
server setup accordingly. An extra large profile can take up to a
couple of hours to create.

125

4
Creating Catalogs and

Categories

In this chapter, we will cover the basic tasks related to creating a catalog and products in
Magento 2. You will learn how to:

ff Create a Root Catalog

ff Create subcategories

ff Manage attribute sets

ff Create products

ff Manage products in a catalog grid

Introduction
This chapter explains how to set up a vanilla Magento 2 store. If Magento 2 is totally new
to you, then lots of new basic whereabouts are pointed out. Are you currently working with
Magento 1? If so, not much has changed since then.

Creating Catalogs and Categories

126

The new backend of Magento 2 is the biggest improvement of them all. The design is built
responsively and has a great user experience. Compared to Magento 1, this is a great
improvement. The menu is located vertically on the left of the screen and works great on
desktop and mobile environments:

Within this chapter, we will learn how to set up a website with multiple domains using different
catalogs and products. Depending on the website, store, and store view setup, we can create
different subcategories, URLs, and products for any domain name.

There are a number of different ways customers can browse your store, but one of the most
effective is layered navigation. Layered navigation is located in your catalog and holds
product features to sort or filter. We will learn how to create product attributes for use in
layered navigation.

Every website benefits from great search engine optimization (SEO). We will learn how to
define catalog URLs for catalogs.

Without products, the most important element of the website is missing. We will be creating
different types of product in our multi-website setup.

Throughout this chapter we will cover the basics of how to set up
a multi-domain setup. Additional tasks required to complete a
production setup are beyond the scope of this chapter.

Chapter 4

127

Create a Root Catalog
The first thing we need to do when setting up a vanilla Magento 2 website is define our
website, store, and store view structure.

So what is the difference between website, store, and store view, and why is it important?

ff Website is the top-level container and the most important of the three. It is the parent
level of the entire store and used, for example, to define domain names, different
shipping methods, payment options, customers, orders, and so on.

ff Stores can be used to define, for example, different store views with the same
information. A store is always connected to a Root Catalog that holds all the
categories and subcategories. One website can manage multiple stores, but every
store has a different Root Catalog. When using multiple stores, it is not possible to
share one basket. The main reason for this has to do with the configuration setup,
where shipping, catalog, customer, inventory, taxes, and payment settings are not
shareable between different sites.

ff Store view is the lowest level and mostly used to handle different localizations.
Every store view can have a different language. Besides using store views just for
localizations, they can also be used for Business to Business (B2B), hidden private
sales pages (with noindex and nofollow), and so on. The option where we use the
Base Link URL, for example, (yourdomain.com/myhiddenpage) is easy to set up.

The website, store, and store view structure is shown in the following image:

Creating Catalogs and Categories

128

Getting ready
To step through this recipe, you will use a Droplet created in Chapter 2, Magento 2 System
Tools, at DigitalOcean (https://www.digitalocean.com/). We will be using an NGINX,
PHP-FPM, Composer-based setup with Magento 2 preinstalled. No other prerequisites
are required.

How to do it...
For the purpose of this recipe, let's assume that we need to create a multi-website setup
including three domains (yourdomain.com, yourdomain.de, and yourdomain.fr) and
separated Root Catalogs. The following steps will guide you through this:

1.	 First we need to update our NGINX. We need to configure the additional domains
before we can connect them to Magento. Make sure that all domain names are
connected to your server and DNS is configured correctly.

Go to /etc/nginx/conf.d, open the default.conf file, and include the following
content at the top of your file:
map $http_host $magecode {
 hostnames;
 default base;
 yourdomain.de de;
 yourdomain.fr fr;
}

2.	 Your configuration should look like this now:
map $http_host $magecode {
 hostnames;
 default base;
 yourdomain.de de;
 yourdomain.fr fr;
}

upstream fastcgi_backend {
 server 127.0.0.1:9000;
}
server {
 listen 80;
 listen 443 ssl http2;

 server_name yourdomain.com;

 set $MAGE_ROOT /var/www/html;

https://www.digitalocean.com/

Chapter 4

129

 set $MAGE_MODE developer;

 ssl_certificate /etc/ssl/yourdomain-com.cert;
 ssl_certificate_key /etc/ssl/yourdomain-com.key;

 include /var/www/html/nginx.conf.sample;

 access_log /var/log/nginx/access.log;
 error_log /var/log/nginx/error.log;

 location ~ /\.ht {
 deny all;
 }
}

3.	 Now let's go to the Magento 2 configuration file in /var/www/html/ and open the
nginx.conf.sample file. Go to the bottom and look for:
location ~ (index|get|static|report|404|503)\.php$

Now we add the following lines to the file under fastcgi_pass fastcgi_
backend;:
fastcgi_param MAGE_RUN_TYPE website;
fastcgi_param MAGE_RUN_CODE $magecode;

4.	 Your configuration should look like this now (this is only a small section of the bottom):
location ~ (index|get|static|report|404|503)\.php$ {
 try_files $uri =404;
 fastcgi_pass fastcgi_backend;

 fastcgi_param MAGE_RUN_TYPE website;
 fastcgi_param MAGE_RUN_CODE $magecode;

 fastcgi_param PHP_FLAG "session.auto_start=off \n
 suhosin.session.cryptua=off";
 fastcgi_param PHP_VALUE "memory_limit=256M \n
 max_execution_time=600";
 fastcgi_read_timeout 600s;
 fastcgi_connect_timeout 600s;
 fastcgi_param MAGE_MODE $MAGE_MODE;

 fastcgi_index index.php;
 fastcgi_param SCRIPT_FILENAME
 $document_root$fastcgi_script_name;
 include fastcgi_params;
}

Creating Catalogs and Categories

130

The current setup uses the MAGE_RUN_TYPE website variable. You may change
website to store, depending on your setup preferences. When changing the
variable, you need your default.conf mapping codes as well.

5.	 Now all you have to do is restart NGINX and PHP-FPM to use your new settings. Run
the following command:
service nginx restart && service php-fpm restart

6.	 Before we continue, we need to check if our web server is serving the correct codes.
Run the following command in the Magento 2 web directory:
var/www/html/pub

echo "<?php header("Content-type: text/plain"); print_r($_SERVER);
?>" > magecode.php

Don't forget to update your nginx.conf.sample file with the new magecode code.
It's located on the bottom of your file and should look like this:
location ~ (index|get|static|report|404|503|magecode)\.php$ {

Restart NGINX and open the file in your browser. The output should look as follows.
As you can see, the created MAGE_RUN variables are available:

7.	 Congratulations, you just finished configuring NGINX including additional domains.
Now let's continue connecting them in Magento 2.

8.	 Log in to the backend and go to Stores | All Stores. By default, Magento 2 has one
Website, Store, and Store View setup. Now click on Create Website and commit the
following details:

Name My German Website

Code de

Next, click on Create Store and commit the following details:

Website My German Website

Name My German Website

Root Category Default Category (we will change this later)

Chapter 4

131

Next, click on Create Store View and commit the following details:

Store My German Website

Name German

Code de

Status Enabled

Repeat the same steps for the French domain. Make sure that the Code in Website
and Store View is fr.

9.	 The next important step is to connect the websites with the domain name. Go to
Stores | Configuration | Web | Base URLs. Change the Store View scope at the top
to My German Website. You will be prompted when switching; press OK to continue.
Now uncheck the checkbox called Use Default from the Base URL and Base Link
URL fields and commit your domain name. Now click Save Config and continue the
same procedure for the other website. The output should look like this:

10.	 Save your entire configuration and clear your cache. Now go to Products |
Categories and click on Add Root Category with the following data:

Name Root German

Is Active Yes

Page Title My German Website

Creating Catalogs and Categories

132

Perform the same steps for the French domain. You may add additional information
here but it is not needed. Changing the current Root Category called Default
Category to Root English is also optional but advised.

Save your configuration and go to Stores | All Stores and change all of the stores to
the appropriate Root Catalog we just created. Every Root Category should now have a
dedicated Root Catalog.

11.	 Congratulations, you just finished configuring Magento 2 including additional domains
and dedicated Root Categories. Now let's open up a browser and surf to the domain
names you created: yourdomain.com, yourdomain.de, and yourdomain.fr.

How it works…
Let's recap and find out what we did throughout this recipe. In steps 1 through 11, we created
a multi-store setup for .com, .de, and .fr domains using a separate Root Catalog.

In steps 1 through 4, we configured the domain mapping in the NGINX default.conf file.
Then we added the fastcgi_param MAGE_RUN code to the nginx.conf.sample file; this
will manage which website or store view to request within Magento.

In step 6, we used an easy test method to check if all domains run the correct MAGE_RUN code.

In steps 7 through 9, we configure the website, store, and store view names and codes for the
given domain names.

In step 10, we created additional Root Catalogs for the remaining German and French stores.
They are then connected to the previously created store configuration. All stores have their
own Root Catalog now.

There's more…
Are you able to buy additional domain names, but would like to try setting up a multi-store?
Here are some tips to create one. Depending on whether you are using Windows, Mac OS, or
Linux, the following options apply:

ff Windows: Go to C:\Windows\System32\drivers\etc and open up the
hosts file as an administrator. Add the following (change the IP and domain
name accordingly):
123.456.789.0 yourdomain.de
123.456.789.0 yourdomain.fr
123.456.789.0 www.yourdomain.de
123.456.789.0 www.yourdomain.fr

Chapter 4

133

Save the file and click on the Start button. Search then for cmd.exe and commit
the following:
ipconfig /flushdns

ff Mac OS: Go to the /etc/ directory, open up the hosts file as a superuser, and add
the following (change the IP and domain name accordingly):
123.456.789.0 yourdomain.de
123.456.789.0 yourdomain.fr
123.456.789.0 www.yourdomain.de
123.456.789.0 www.yourdomain.fr

Save the file and run the following command on the shell:
dscacheutil -flushcache

Depending on your Mac version, check out the different commands here:
http://www.hongkiat.com/blog/how-to-clear-flush-dns-cache-in-
os-x-yosemite/

ff Linux: Go to the /etc/ directory, open up the hosts file as a root user, and add the
following (change the IP and domain name accordingly):
123.456.789.0 yourdomain.de
123.456.789.0 yourdomain.fr
123.456.789.0 www.yourdomain.de
123.456.789.0 www.yourdomain.fr

Save the file and run the following command on the shell:
service nscd restart

Depending on your Linux version, check out the different commands here: http://
www.cyberciti.biz/faq/rhel-debian-ubuntu-flush-clear-dns-cache/

Open up your browser and surf to the custom domains.

These domains only work on your PC. You can copy these IP and
domain names on as many PC as you prefer. This method also works
great when you are developing or testing and your production domain
is not available on your development environment.

http://www.hongkiat.com/blog/how-to-clear-flush-dns-cache-in-os-x-yosemite/
http://www.hongkiat.com/blog/how-to-clear-flush-dns-cache-in-os-x-yosemite/
http://www.cyberciti.biz/faq/rhel-debian-ubuntu-flush-clear-dns-cache/
http://www.cyberciti.biz/faq/rhel-debian-ubuntu-flush-clear-dns-cache/

Creating Catalogs and Categories

134

Create subcategories
After creating the foundation of the website, we need to set up a catalog structure. Setting up
a catalog structure is not difficult but needs to be well thought out.

Some websites have an easy setup using two levels, while others sometimes use five or more
subcategories. Always keep in mind user experience: your customer needs to crawl the pages
easily. Keep it simple! The following image shows a simple catalog structure:

Getting ready
To step through this recipe, you will use a Droplet created in Chapter 2, Magento 2 System
Tools, at DigitalOcean (https://www.digitalocean.com/). We will be using an NGINX,
PHP-FPM, Composer-based setup with Magento 2 preinstalled. No other prerequisites
are required.

https://www.digitalocean.com/

Chapter 4

135

How to do it...
For the purpose of this recipe, let's assume that we need to set up a catalog including
subcategories. The following steps will guide you through this:

1.	 First, log in to the backend of Magento 2 and then go to Products | Categories.

Since we have already created Root Catalogs, we start with using the Root English
catalog first.

2.	 Click on the Root English catalog on the left and then select the Add Subcategory
button above the menu. Now commit the following and repeat all steps again for the
other Root Catalogs:

Name Shoes (Schuhe) (Chaussures)

Is Active Yes

Page Title Shoes (Schuhe) (Chaussures)

Name Clothes (Kleider) (Vêtements)

Is Active Yes

Page Title Clothes (Kleider) (Vêtements)

3.	 Since we created the first level of our catalog, we can continue with the second level.
Now click on the first level, which you need to extend with subcategories, and select
the Add Subcategory button. Commit the following and repeat all steps again for the
other Root Catalogs:

Name Men (Männer) (Hommes)

Is Active Yes

Page Title Men (Männer) (Hommes)

Name Women (Frau) (Femmes)

Is Active Yes

Page Title Women (Frau) (Femmes)

Creating Catalogs and Categories

136

4.	 Congratulations, you just finished configuring subcategories in Magento 2.
Now let's open up a browser and surf to the domain names you created earlier:
yourdomain.com, yourdomain.de, and yourdomain.fr. Your categories
should now look as follows:

How it works…
Let's recap and find out what we did throughout this recipe. In steps 1 through 4, we created
subcategories for the English, German, and French stores. In this recipe, we created a
dedicated Root Catalog for every website. This way, every store can be configured using their
own tax and shipping rules.

There's more…
In our example, we only submitted Name, Is Active, and Page Title. You may continue to
commit the Description, Image, Meta Keywords, and Meta Description fields. By default,
the URL key is similar to the Name field; you can change this depending on your SEO needs.

Every category or subcategory has a default page layout defined by the theme. You may need
to override this. Go to the Custom Design tab and click the Page Layout drop-down menu. We
can choose from the following options: 1 column, 2 columns with left bar, 2 columns with
right bar, 3 columns, and Empty layout.

Chapter 4

137

Manage attribute sets
Every product has a unique DNA; some, such as shoes, could have different colors, brands,
and sizes, while a snowboard could have weight, length, torsion, manufacturer, and style.

Setting up a website with all the attributes does not make sense. Depending on the products
you sell, you should create attributes specific to each website.

When creating products for your website, attributes are the key element and need to
be thought through. What and how many attributes do you need? And how many values
do you need? These are all types of question that could have a great impact on your website;
and don't forget performance. Creating an attribute such as color and having 100,000 of
different key values stored will not improve your overall speed and user experience. Always
think things through.

After creating the attributes, we combine them in attribute sets, which can be picked when
starting to create a product. Some attributes can be used more than once, while others are
unique to one product or attribute set.

Getting ready
To step through this recipe, you will use a Droplet created in Chapter 2, Magento 2 System
Tools, at DigitalOcean (https://www.digitalocean.com/). We will be using an NGINX,
PHP-FPM, Composer-based setup with Magento 2 preinstalled. No other prerequisites
are required.

How to do it...
For the purpose of this recipe, let's assume that we need to create product attributes and
sets. The following steps will guide you through them:

1.	 First, log in to the backend of Magento 2 and go to Stores | Products.

Since we are using a vanilla setup, only system attributes and one attribute set are
installed. Now click on Add New Attribute and commit the following data in the
Properties tab:

Attribute Properties
Default label shoe_size

Catalog Input Type for Store Owners Drop-down
Values Required No

https://www.digitalocean.com/

Creating Catalogs and Categories

138

Manage Options (values of your attribute)
English Admin French German
4 4 35 35
4.5 4.5 35 35
5 5 35-36 35-36
5.5 5.5 36 36
6 6 36-37 36-37
6.5 6.5 37 37
7 7 37-38 37-38
7.5 7.5 38 38
8 8 38-39 38-39
8.5 8.5 39 39
Advanced Attribute Properties
Scope Global
Unique Value No
Add to Column Options Yes
Use in Filer Options Yes

Since we have already set up a multi-website selling shoes and clothes,
we will stick with this. The attributes we need for selling shoes are:
shoe_size, shoe_type, width, color, gender, and occasion.

Continue the rest of the chart accordingly (http://www.shoesizingcharts.com).

2.	 Click on Save and Continue Edit now and continue on the Manage Labels tab with
the following information:

Manage Titles (Size, Color, and so on)
English French German
Size Taille Größe

3.	 Click on Save and Continue Edit now and continue on the Storefront Properties tab
with the following information:

Storefront Properties
Use in Search No
Comparable in Storefront No
Use in Layered Navigation Filterable (with result)
Use in Search Result Layered Navigation No

http://www.shoesizingcharts.com

Chapter 4

139

Storefront Properties
Position 0
Use for Promo Rule Conditions No
Allow HTML Tags on Storefront Yes
Visible on Catalog Pages on Storefront Yes
Used in Product Listing No
Used for Sorting in Product Listing No

4.	 Click on Save Attribute now and clear the cache. Depending on whether you set up
index management accordingly through the Magento 2 cronjob, it will automatically
update the newly created attribute.

5.	 The configuration for the additional shoe_type, width, color, gender,
and occasion attributes can be downloaded at https://github.com/
mage2cookbook/chapter4.

6.	 After creating all of the attributes, we combine them in an attribute set called Shoes.
Go to Stores | Attribute Set, click Add Attribute Set, and commit the following data:

Edit Attribute Set Name
Name Shoes

Based On Default

7.	 Now click in the Groups section, click on the Add New button, and commit the group
name called Shoes.

8.	 The newly created group is now located at the bottom of the list. You may need to
scroll down before you see it. It is possible to drag and drop the group higher up in
the list.

9.	 Now drag and drop the created shoe_size, shoe_type, width, color, gender,
and occasion attributes in the group and save the configuration. The cronjob
notice is automatically updated, depending on your settings.

https://github.com/mage2cookbook/chapter4
https://github.com/mage2cookbook/chapter4

Creating Catalogs and Categories

140

10.	 Congratulations, you just finished creating attributes and attribute sets in Magento 2.
These can be seen in the following screenshot:

How it works…
Let's recap and find out what we did throughout this recipe. In steps 1 through 10, we created
attributes that will be used in an attribute set. The attributes and sets are the fundamentals
for every website.

In steps 1 through 5, we created multiple attributes to define all details about the shoes and
clothes we would like to sell. Some attributes are later used as configurable values on the
frontend while others only indicate the gender or occasion.

In steps 6 through 9, we connect the attributes to the related attribute set. Thus, when
creating a product, all the correct elements are available.

There's more…
After creating the Shoe attribute set, continue by creating an attribute set for Clothes.

Use the following attributes to create the set: color, occasion, apparel_type, sleeve_
length, fit, size, length, and gender.

Chapter 4

141

Follow the same steps we performed before to create a new attribute set. You may reuse the
color, occasion, and gender attributes. Details of all the attributes can be found here:
https://github.com/mage2cookbook/chapter4#clothes-set.

The following screenshot shows the Clothes attribute set:

Create products
Eventually, after creating attributes and sets, it comes down to adding products. Magento 2
uses the same types of product as Magento 1. This also includes Magento 2 Enterprise.

The product types we can choose from are: Simple Product, Configurable Product, Grouped
Product, Virtual Product, Bundle Product, Downloadable Product, and, for the Enterprise
Edition (EE), Gift Card.

Depending on the products you would like to sell, you may use one or two of the types. The
most used types are Simple and Configurable Products because they rely on one another
when you sell shoes, for example.

https://github.com/mage2cookbook/chapter4#clothes-set

Creating Catalogs and Categories

142

Product type definitions are as follows:

ff Simple Product: A Simple Product in Magento is a physical product. There are
no options such as size or color that the end user can pick during the order. One
example of a Simple Product type is a broom or umbrella.

ff Configurable Product: A combination of Simple Products organized with different
colors, sizes, or other attributes is called a Configurable Product. One example of a
Configurable Product is a shoe or shirt.

ff Grouped Product: A Grouped Product is a collection of Simple Products related to
one another. Each Simple Product could be sold separately, but is cheaper as a set.
One example of a Grouped Product is a camera plus a photo bag and memory card.
This set might offer a special price.

ff Virtual Product: A Virtual Product is a non-physical product. One example of a Virtual
Product is a service warranty for your computer or a membership.

ff Bundle Product: A Bundle Product is an extension of a Grouped Product. A Grouped
Product does not have the option to configure different choices. But this can be
managed using a Bundle Product. One example of a Bundle Product is a building a
computer; a customer can choose from a set of different hard disks, monitors, CPUs,
memory, and so on.

ff Downloadable Product: A Downloadable Product is a non-physical product. One
example of a Downloadable Product is software or an eBook; you can download
them online.

ff Gift Card (EE only): A Gift Card can be a physical, virtual, or combined product. This is
used as a store credit and can be sold as a gift.

Besides the regular ones, it is possible you may need extra options, depending on your
product base. In Magento 1, additional third-party modules, such as Configurable Bundles,
Events, Training, Rental, and Recurring, could be bought and installed to manage this.

Using product types is now easier than ever. Magento 2 created a user-friendly flow for
configuring Configurable Products on the fly.

Getting ready
To step through this recipe, you will use a Droplet created in Chapter 2, Magento 2 System
Tools, at DigitalOcean (https://www.digitalocean.com/). We will be using an NGINX,
PHP-FPM, Composer-based setup with a single Magento 2 website, Root Catalog, store view,
categories, and attributes preinstalled. No other prerequisites are required.

https://www.digitalocean.com/

Chapter 4

143

How to do it...
For the purpose of this recipe, let's assume that we need to create Configurable Product for
Magento 2. The following steps will guide you through them:

1.	 First, log in to the backend of Magento 2 and go to Products | Catalog. Click on the
Add Product button and continue with the following information:

Product Details
Name Ellis Flat
SKU shw005
Price 250.00
Tax Class Taxable Goods
Images and Videos Download the images here: https://github.com/

mage2cookbook/chapter4

Quantity 100
Weight Yes
Categories Shoes
Description Suede upper. Rubber 0.5" heel. Domestic.

2.	 Now hit the Save button. As you can see, you stay in the same screen while your data
is being saved. When you want to Save & Close then choose from the drop-down
arrow and continue.

3.	 Open a new tab in your browser, click the drop-down arrow in the top-right corner, and
choose Customer View. This trick will open up a new tab and launch your home page.

4.	 Go to your Shoes menu and the newly created product should be visible. In some
situations, it is best to clear your cache first if you are having issues.

https://github.com/mage2cookbook/chapter4
https://github.com/mage2cookbook/chapter4

Creating Catalogs and Categories

144

5.	 Congratulations, you just finished creating a Simple Product in Magento 2.

Now let's go back to our backend and open up the newly created product. Next we are
going to set our attribute set we created earlier in this chapter. This option is located
above the Product Details title. Here we choose the Shoes attribute set, as shown in
the following screenshot:

6.	 After choosing the option, you will see that Magento 2 has loaded a new menu called
Shoes under the Search Engine Optimization menu.

7.	 Next scroll to the bottom and open up the Configurations drop-down menu. Click the
Create Configurations button. This is shown in the following screenshot:

Chapter 4

145

8.	 Next we will use one of the brand new features of Magento 2. This workflow
helps to create Configurable Product on the fly. Depending on the attributes,
the list of attributes could be long. For now, we pick the shoe_size option.
Continue to the next step by hitting the Next button in the top-right corner,
as shown in the following screenshot:

Creating Catalogs and Categories

146

9.	 A list shows all the attribute values we created earlier. Click Select All and continue
to the next step, as shown in the following screenshot:

10.	 Step 3: Bulk Images, Price, and Quantity to create a Configurable Product is an
important step. Commit a price and quantity here, otherwise the product will not
show up on the screen (adjusting the value later is straightforward using the same
flow). Select Apply single price to all SKUs and Apply single quantity to each SKU
and fill in 250 for the Price and 100 for the Quantity. Continue to the next step, as
shown in the following screenshot:

Chapter 4

147

11.	 Depending on the values in the attribute list, Associated Products are created. Now
click the Generate Products button and all of them are created, as shown in the
following screenshot:

Creating Catalogs and Categories

148

12.	 Now save the new setup and check in your browser; the result should be as shown in
the following screenshot:

13.	 Congratulations, you just finished creating a Configurable Product in Magento 2.

14.	 Now go to https://github.com/mage2cookbook/chapter4#creating-
products and continue to the rest of the Shoes and Clothes products. After
creating a minimum of two products, our catalog navigation filter (layered navigation)
pops up and looks like this:

https://github.com/mage2cookbook/chapter4#creating-products
https://github.com/mage2cookbook/chapter4#creating-products

Chapter 4

149

How it works…
Let's recap and find out what we did throughout this recipe. In steps 1 through 13, we created
a Configurable Product using the new Magento workflow.

In steps 1 through 4, we created a Simple Product and connected it to the attribute set. This
product will be the starting point for creating a Configurable Product.

In steps 8 through 11, we used the configurations workflow to select the attributes related to
this product and set its values. Depending on the setup, we can apply a single price, image, or
quantity to all of the Simple Products created during this process.

Creating Catalogs and Categories

150

There's more…
By default, when creating a product, Magento 2 starts with a Virtual Product. When changing
settings such as Weight (Does this have a weight?) to Yes, the product switches to a Simple
Product. The same goes for Downloadable and Configurable Product.

This new technique is stunning and a great benefit for store owners. Everybody can now
create and change products on the fly.

Bundle and Grouped Products, on the other hand, are more like Magento 1. You first need
to choose the product type using the drop-down arrow in the Add Product button and then
continue the same flow, as shown in the following screenshot:

Manage products in a catalog grid
Managing products on a daily basis may not be one of the most entertaining tasks. The
product grid in Magento 1 is, out of the box, not the best tool. Lots of merchants install a
third-party extension for better use and configuration. Depending on the extension, it is
possible to tune the grid accordingly.

Now the new Magento 2 catalog grid is better than ever. Every backend user can create their
own view and select the appropriate attributes for the best view ever.

Besides all the fancy features, the product grid loads asynchronously, which means that the
page refreshes its data in the background. This is great for performance and user experience.

Chapter 4

151

Getting ready
To step through this recipe, you will use a Droplet created in Chapter 2, Magento 2 System
Tools, at DigitalOcean (https://www.digitalocean.com/). We will be using an NGINX,
PHP-FPM, Composer-based setup including a single Magento 2 website, Root Catalog,
store view, categories, and attributes and four configurable products preinstalled. No other
prerequisites are required.

How to do it...
For the purpose of this recipe, let's assume that we need to a create a custom product grid in
Magento 2. The following steps will guide you through this:

1.	 First, log in to the backend of Magento 2 and go to Products | Catalog. Depending
on the previous recipe, you will have a list which looks as follows:

https://www.digitalocean.com/

Creating Catalogs and Categories

152

2.	 Click in the top-right corner on the arrow to the right of Columns. By default, Magento
lists 12 options. Now select URL key, and deselect the SKU, Visibility, and Websites
checkboxes. Then point your mouse at the grid again. Be aware there is no Save
button. The grid should look as follows:

3.	 Now click on the Default View button, and click Save View As…. Pick a name and
click the right arrow to save your work. The grid view should now look like this:

Chapter 4

153

4.	 You can create as many views as necessary. Keep in mind that all created views
only apply to the user who has created them. Currently, there is no shareable grid
view option.

5.	 If you ever need to update the status of Enabled or Disabled, go to the left drop-down
Actions menu and choose Change status.

6.	 Use the Update attributes option in the drop-down Actions menu to update one
of the attributes. First select the products which you need to update. Then click on
Update attributes, as shown in the following screenshot:

7.	 Next go to shoe_type, mark checkbox and select the appropriate option, and
click Save.

8.	 Congratulations, you just finished managing the product grid catalog in Magento 2.

How it works…
Let's recap and find out what we did throughout this recipe. In steps 1 through 8, we created
a custom grid for the catalog view. You can create as many grids as you like and select your
preferred attributes in it. Saving the new grid views is straightforward.

Creating Catalogs and Categories

154

There's more…
If you like managing attributes in your grid or columns, go to Stores | Product and select one
of the attributes. In the Properties tab, look for Advanced Attribute Properties. At the bottom,
change Add to Column Options and Use in Filter Options appropriately, as shown in the
following screenshot:

155

5
Managing Your Store

In this chapter, we will cover the basic tasks related to creating a catalog and products in
Magento 2. You will learn the following:

ff Creating shipping and tax rules

ff Managing customer groups

ff Configuring inventories

ff Configuring currency rates

ff Managing advanced pricing

Introduction
Although we've created categories and products, we are not yet ready to go online. Depending
on the country or state we live in and ship to, we have to levy additional charges such as VAT
and shipping fees.

These shipping fees and tax rates need to be configured correctly according to the website
or store view. Shipping options can be straightforward from free shipping to advanced
calculations. But keep in mind that, depending on the situation, it is not as easy as it looks
and could take some time to set up.

Besides shipping and tax, we should not forget the inventory. Without the correct inventory
setup, we could create issues when it comes to stock management. Magento 2 uses the
same inventory setup as Magento 1, and is straightforward to configure out of the box.

Are you selling products overseas and need to use different currency rates? Magento 2 is your
best friend. This functionality in a multi-store setup is easy to configure.

Managing Your Store

156

Some products may depend on special prices related to customer groups. Creating B2C or
B2B groups is straightforward and can be connected to advanced pricing within the product
types. These prices will be shown after login or store view.

Lots of system configuration features are basically the same as in
Magento 1. Within this chapter we will cover the basics and show
Magento 2-specific features when they apply.

Creating shipping and tax rules
The topic of shipping is so huge that you could write a book about it. The options related, for
example, to width, length and height, breakable, edible, and so on, are endless.

After configuring these attributes for a product, we can start relating them to our shipping
setup and shipping vendor. Magento has a huge selection of shipping vendors to choose from.
It's important to choose the right vendor and the correct Magento extension. This could be
challenging. Do not immediately pick the cheapest shipping vendor. Check the quality of their
service, their specialty when it comes to shipping your products, and their Magento extension.

Creating the correct tax rules is not for the fainthearted. Are you in the USA, Europe, Asia, or
somewhere else? Every country has its own tax rules. Always check with the local authorities
to find out which rules to apply.

Getting ready
To step through this recipe, you will use a Droplet created in Chapter 2, Magento 2 System
Tools at DigitalOcean https://www.digitalocean.com/. We will be using an NGINX,
PHP-FPM, Composer-based setup including sample data. No other prerequisites are required.

How to do it…
For the purpose of this recipe, let's assume that we need to create shipping and tax rules for
the European Union. The shipping rules apply to a Table Rates setup using a local shipping
vendor. The following steps will guide you through them.

1.	 First we start setting up the shipping rates. Go to Stores | Configuration | Sales.
We have three menus to choose from. Let's start with the Shipping Settings first.
Click on the Menu tab. You see two drop-down menus called Origin and Shipping
Policy Parameters.

Now complete the entire field set related to your company. This is the starting point.
When using the Shipping Policy, just mark it Yes and commit your policy. Here is an
example of how a policy could look:

https://www.digitalocean.com/

Chapter 5

157

Please be assured that your items will ship out within two days of
purchase. We determine the most efficient shipping carrier for your
order. The carriers that may be used are: TNT, DHL, United Parcel
Service (UPS), or FedEx. Sorry but we cannot ship to P.O. Boxes.

2.	 Now continue to the Multishipping Settings menu. By default, we stay with the Allow
Shipping to Multiple Addresses option.

3.	 Next, we click Shipping Methods. The default shipping options in Magento 2 are:
Free Shipping, Flat Rate, Table Rates, UPS, USPS, FedEx, and DHL.

Since the scope of this recipe is Table Rates, using Free Shipping and Flat Rate is
pretty straightforward.

Managing Your Store

158

Now click on the Table Rates drop-down arrow, and commit the following information:

Chapter 5

159

In the Condition drop-down menu we use the Weight vs. Destination option. Beside
this option we also can choose from Price vs. Destination or # (number) of items
vs. Destination. Depending on your needs, pick one of them. Since we are using
the Weight option, we need to make sure that our entire product set has the correct
weight configured.

4.	 For the purpose of this recipe, disable the Flat Rate option in the menu.

5.	 Now click Save Config and update your cache.

6.	 Next we need to switch to the correct website using the Store View switcher in the
Stores | Configuration menu. Click the drop-down arrow in the top-left menu, and
select Main Website (or the name of your website):

7.	 Confirm the pop-up window to continue and check the Table Rates options. Now we
have two new options visible. The Export CSV gives us a comma-separated file called
tablesrates.csv that we need to complete. Download the file and open up a
spreadsheet editor, such as MS Excel, OpenOffice Calc, or Google Docs Spreadsheet.

Since we are using the Weight vs. Destination option, the CSV schema looks
as follows:

Country Region/State Zip/Postal Code Weight (and above) Shipping Price
NLD * * 0 6.95
NLD * * 50 9.95
NLD * * 100 14.50
DEU * * 0 10.50
DEU * * 50 17.50
DEU * * 100 22.50

Managing Your Store

160

Country Region/State Zip/Postal Code Weight (and above) Shipping Price
FRA * * 0 10.50
FRA * * 50 17.50
FRA * * 100 22.50

In this example, we use a wildcard for the Region/State and Zip/Postal Code.
You can replace this wildcard with the appropriate value. Upload your saved
tablesrates.csv file in the Import section and click Save Config, and
clean the cache:

8.	 Before we can verify it is working, we need to update the weight of the product
we want to sell. Go to Products | Catalog and update your grid using the weight
attribute. Check out the Manage products in a catalog grid recipe of Chapter 4,
Creating Catalogs and Categories for how to do this.

9.	 Now let's edit Joust Duffle Bag from the sample data. Set the Weight to 50 and
click Save & Close. Do the same for Strive Shoulder Pack (49) and Crown Summit
Backpack (51). Your product grid should now look as follows:

Chapter 5

161

10.	 Finally, we can test if the checkout and shipping fee are configured correctly. Open up
a browser, add the Joust Duffle Bag to you basket, and check it out. Complete your
personal data and check the shipping Table Rate at the bottom.

We only used German, French, and Dutch codes in this example. If you want to have
your country shipping fees in the Table Rate CSV file, update them accordingly:

Managing Your Store

162

11.	 Congratulations, you just finished configuring shipping rules in Magento 2.

12.	 Next we continue to configure the appropriate tax rules. Since we cannot cover all the
different tax rules worldwide, we will stick for now with the European Union. Import to
the following tax_rates.csv file to System | Import/Export Tax Rates. The file can be
downloaded from https://github.com/mage2cookbook/chapter5.

13.	 To check if all tax rates are created, go to Stores | Tax Zone and Rates. You see a
large list of all rates and countries.

All rates apply to the current tax regulation of the European Union
with effect from the 1st of January 2015. The calculated tax is
based on the country of the seller.

14.	 Now go to Stores | Tax Rules and click on Rule 1. For this example we change the
Name to EU Customers. Now let's select all the EU countries with the (standard)
tax Rate and click Save Rule:

In this example we set the default rule to the high tax rate. Create a new rule when
you are selling services or products that have a lower tax rate. But don't forget to
create a new Product Tax Class in the Additional Settings. This class can then be
used in every product type where it applies.

https://github.com/mage2cookbook/chapter5

Chapter 5

163

15.	 Next we need to configure the tax system setup. Go to Stores | Configuration |
Sales | Tax. Depending on your production setup, using a multi domain with different
shipping vendors and warehouse configuration may change. Always use the Store
View switcher on the top to change the settings according to the domain or country
you are selling in. The following examples will give you an overview of a basic setup
created in Magento 2 Enterprise Edition. In the Magento 2 Community Edition some
features, such as Gift Wrapping and Printed Card Prices, will not be shown:

Managing Your Store

164

Chapter 5

165

16.	 Change the setting and click Save Config.

17.	 Since we are using the Magento 2 sample data, we are ready to perform the test.
Every product is configured with the Taxable Goods Tax Class.

Managing Your Store

166

18.	 Finally, we can test if the checkout and tax rates are configured correctly. Open up a
browser and add the Joust Duffle Bag to your basket and check it out. Complete your
personal data and check the Review & Payments step on the right in the checkout.
The Order Summary should now look like this:

19.	 Congratulations, you just finished configuring tax rules in Magento 2.

Chapter 5

167

How it works…
Let's recap and find out what we did throughout the preceding recipe. In Steps 1 through 10,
we configured a shipping method called Table Rates to handle all the shipping. We used the
Weight vs. Destination option. Using this option we needed to update all our products with
the correct weight attribute value.

In Steps 12 through 18, we configured tax rules for the European Union using a tax_rates.csv
file from GitHub. By using this file, it was easy to configure the appropriate tax rule. In Step 15,
we gave an example of how a system configuration for a store view could look.

There's more…
Depending on where you live or are sending products to, using the correct measuring units
in Magento 2 is important. This new feature helps us to configure whether we calculate
the weight in lbs (pounds) or kgs (kilograms). We can find this new option in Stores |
Configuration | General | Locale Options. Here is an example showing the Weight Unit field:

Managing Your Store

168

Managing customer groups
Everybody knows that every website is different. Some sites only sell products to Business to
Consumer (B2C) while others sell to Business to Business (B2B) or both.

In the B2C market it is pretty common to only have one customer group called Retailer. While
the B2B market is related to the Wholesaler. Beside these two, we could also have groups
such as Platinum, Gold, Silver, Special members, or groups based on their location. So the
options are unlimited. Setting up the correct infrastructure for your customers helps you to
segment these groups and offer them different prices.

Magento offers by default the following groups: General, NOT LOGGED IN, Retailer,
and Wholesale.

By default, all groups are related to the Tax Class: Retail Customer.
You may need to change this depending on your locale regulations.

Getting ready
To step through this recipe, you will use a Droplet created in Chapter 2, Magento 2 System
Tools at DigitalOcean https://www.digitalocean.com/. We will be using an NGINX,
PHP-FPM, Composer-based setup including sample data. No other prerequisites are required.

How to do it…
For the purpose of this recipe, let's assume that we need to add additional customer groups.
We want to create the following groups: Platinum, Gold, and Silver. The following steps will
guide you through this.

1.	 First login to the backend of Magento, and go to Stores | Other Settings |
Customer Groups.

2.	 Click on the Add New Customer Group button and create three new groups for
Platinum, Gold, and Silver. Connect them to the Tax Class: Retail Customer for now
and click Save Customer Group.

3.	 Make sure to update your indexers. When you have your crontab configured
correctly, you do not have to worry about this. Magento 2 will update this for
you every minute.

4.	 Now click on Customers | All Customers in the default menu. Select all the
customers you want to upgrade to another group by marking them on the left
of the grid.

https://www.digitalocean.com/

Chapter 5

169

5.	 Click on the drop-down Actions menu and choose Assign a Customer Group. A new
menu will be listed where we can pick one of the newly created groups. Select one of
the options, and click OK in the pop-up window:

6.	 To confirm the changes are OK, click the edit link on the right. In the Customer View
tab we see the Personal Information and the listed Customer Group:

7.	 Congratulations, you have just finished configuring Customer Groups in Magento 2.

Managing Your Store

170

How it works…
Let's recap and find out what we did throughout the preceding recipe. In Steps 1 through 6,
we configured different Customer Groups and connected them to the appropriate customer.

There's more…
Creating customers groups basically does nothing. It is the relation to marketing or
segmentation that makes the difference. In Magento 2, we got Catalog and Cart Price Rules.
When combining them with the Customers Group we are able to create member discounts.

Go to Marketing | Promotions | Catalog Price Rules, or Cart Price Rules and click Add New
Rule. In the General Information section we see the Customer Groups list.

Now go ahead and create a new rule and use one of the groups. Here is an example. Create
a new rule called Platinum 25%, and select the Customer Groups Platinum. Now go to
the Actions tab menu and choose the Apply rule: Percent of product price discount. In
the Discount Amount commit 25. This is the amount of percent the Platinum member gets
discounted from the total of his shopping cart.

Make sure when testing that the customer login is in this group.

Configuring inventories
When selling physical products, it makes sense that every product in the warehouse is related
to inventory or stock management. Configuring and managing stock is a day-to-day job. A
basic inventory setup in Magento 2 is straightforward and comparable to Magento 1. With
growth, a product inventory management (PIM) system will be needed.

Getting ready
To step through this recipe, you will use a Droplet created in Chapter 2, Magento 2 System
Tools at DigitalOcean https://www.digitalocean.com/. We will be using an NGINX,
PHP-FPM, Composer-based setup including sample data. No other prerequisites are required.

https://www.digitalocean.com/

Chapter 5

171

How to do it…
For the purpose of this recipe, let's assume that we need to configure an inventory for a
Magento 2 setup. The following steps will guide you through this.

1.	 First, log in to the backend of Magento and go to Stores | Configuration | Catalog |
Inventory. You will see two menu options: Stock Options and Product Stock Options.

In Stock Options you can configure the following:

All options are self-explanatory. One of the more interesting options is Display Out of
Stock Products. This can be used to show the product even when it is currently not
available. Some websites have a limited stock amount; by using this, the product is not
always removed from the web, which is bad for search engine optimization (SEO).

2.	 In Product Stock Options you can configure the following. All options are
self-explanatory. Interesting options here are Out-of-Stock Threshold, Minimum Qty
Allowed in Shopping Cart and Automatically Return Credit Memo Item to Stock.

Managing Your Store

172

The Out-of-Stock Threshold is set as Global, which means that it is related to all
the products. Minimum Qty Allowed in Shopping Cart is related to the Customer
Groups we created in the Managing customer groups recipe. Configuring the correct
Minimum Qty amount helps to set the default before the discount rule applies.
Automatically Return Credit Memo Item to Stock is helpful in managing credit
orders. After creating a credit order, all items are updated in the current stock:

3.	 After configuring all elements, click Save Config and update your cache.

4.	 Now go to Products | Catalog and click edit on the Joust Duffle Bag product. On
the product page we have two options to change the current stock. The first option is
Quantity in the Product Detail tab in Basic Settings. This option is straightforward.
The second, more detailed option is in the Advanced Settings tab called Advanced
Inventory. These options here only relate to this product. Depending on the
configuration, you are able to override the Config Setting of the system.

Chapter 5

173

In Advanced Inventory you can configure the following. All options are self-explanatory.
Interesting options are Qty Uses Decimals and Allow Multiple Boxes for Shipping.

The Qty Uses Decimals setting determines whether decimals will be used in the
quantity field for the product (for example, 3.5 yards) or not.

The Allow Multiple Boxes for Shipping setting determines whether multiple boxes
will be used for the product during shipping (for example, custom build computer incl.
monitor) or not:

5.	 Congratulations, you just finished configuring inventory management in Magento 2.

Managing Your Store

174

How it works…
Let's recap and find out what we did throughout the preceding recipe. In Steps 1 through 4,
we configured an inventory on a global system level and an advanced product inventory level.
Depending on your system setup, you can change them in line with the website or store view.

There's more…
Depending on your setting, it is best to check your low stock on a daily basis. Go to Reports |
Products | Low Stock. All products with a low stock setting will be listed here.

Configuring currency rates
Every website selling products uses some kind of currency. Without a valid currency things
would start to get messy.

Configuring these currencies is pretty straightforward. The most interesting part is the
currency rate exchange. Every day this rate needs to be checked and updated. Decreases in
value are important on the product you sell. So choosing the correct default currency needs to
be considered appropriately.

Getting ready
To step through this recipe, you will use a Droplet created in Chapter 2, Magento 2 System
Tools at DigitalOcean https://www.digitalocean.com/. We will be using an NGINX,
PHP-FPM, Composer-based setup including sample data. No other prerequisites are required.

How to do it…
For the purpose of this recipe, let's assume that we need to configure three currencies—US
Dollar, Euro, and Pound Sterling—with Magento 2. The following steps will guide you through
this.

1.	 First log in to the backend of Magento. Go to Stores | Configuration | General
| Currency Setup and select the Base Currency. Now select Default Display
Currency. When running a multi website or store view, you may need to switch
to the appropriate website or store view to change the value.

2.	 Next select in the multi select window a currency from British Pound Sterling, Euro,
and US Dollar. Hold down the Ctrl key as you select from the list and click Save
Config. Make sure you update your cache.

3.	 Now go to Stores | Currency Symbols to check if they are correct. Make adjustments
when needed.

https://www.digitalocean.com/

Chapter 5

175

4.	 Now go to Stores | Currency Rates and click on the Import button. Depending
on the default currency, the exchange rate between GBP, EUR, or USD is calculated.
Check if the rates are correct and click Save Currency Rates. Make sure you update
your cache:

5.	 Next open up a new browser and go to your home page. In the top right corner
there is a drop-down with all the listed currencies. Select one of them to test if the
currencies are correct.

6.	 Congratulations, you just finished configuring currency rates in Magento 2.

How it works…
Let's recap and find out what we did throughout the preceding recipe. In Steps 1 through
5, we configured additional currency for our website. Depending on the currencies you are
selling, this can be updated in the backend. On the frontend, customers can easily switch
and buy in their preferred currency.

There's more…
Would you like to update the currency rates on a daily, weekly, or monthly basis? Go to Stores
| Configuration | General | Currency Setup | Scheduled Import Setting and Enable this
depending on your needs. This service will update the rates on the selected time basis.

Managing advanced pricing
Selling products can be hard. Lots of websites are selling the same product. But how can we
attract new customers and persuade them to buy our goods?

Many websites have the same default retail price shown on their site. When using advanced
pricing we can show special prices within a particular date range, or display tier prices for our
beloved platinum members.

Managing Your Store

176

Another option could be using a minimum advertised price (MAP). This feature is useful
if your product manufacturer has established a Manufacturer's Suggested Retail Price
(MSRP), and you want to sell the product at a price lower than the MSRP. What this feature
basically does is hide the product price display in your catalog and only shows this during
product purchase.

Getting ready
To step through this recipe, you will use a Droplet created in Chapter 2, Magento 2 System
Tools at DigitalOcean https://www.digitalocean.com/. We will be using an NGINX,
PHP-FPM, Composer-based setup including sample data. No other prerequisites are required.

How to do it…
For the purpose of this recipe, let's assume that we need to create advanced pricing for some
of our products in Magento 2. The following steps will guide you through this.

1.	 First log in to the backend of Magento, go to Products | Catalog and open Joust
Duffle Bag.

2.	 Now click on the Advanced Pricing menu on the left and set a new Special Price
from the date range you prefer.

3.	 Now update your Tier Price using the Platinum, Gold, and Silver Customer Groups.

4.	 Finally, set the new price for the Manufacturer's Suggested Retail Price and choose
the correct Display Actual Price option.

You can choose from Use Config, On Gesture, In Cart, and Before Order
Confirmation.

�� Use Config: The default configuration located in Stores | Configuration |
Sales | Sales | Minimum Advertised Price.

�� On Gesture: Product prices are shown in the catalog pages but only when
the user clicks on the link, which shows the price in a pop-up.

�� In Cart: Customers can see product prices when products have been added
to the cart.

https://www.digitalocean.com/

Chapter 5

177

�� Before Order Confirmation: Product prices are shown on the checkout page:

Managing Your Store

178

5.	 Next open up a new browser and go to http://yourdomain.com/joust-
duffle-bag.html. Depending on your configuration, it should look as follows:

6.	 Congratulations, you just finished managing advanced pricing in Magento 2.

Chapter 5

179

How it works…
Let's recap and find out what we did throughout the preceding recipe. In Steps 1 through
5, we configured advanced pricing using a special price, a tier price, and the minimum
advertised price in a product.

181

6
Creating a

Magento 2 Theme

In this chapter, we will cover some basics on how to build your own theme based on the
Magento 2 blank theme and add/change pages of built-in modules through layout XML
through the following recipes:

ff Creating a new theme

ff Changing a layout XML of a Magento 2 module

ff Adding CSS/JS to pages

ff Using Grunt for CSS changes

ff Adding static blocks to pages through layout XML

ff Adding static blocks to pages through widgets

ff Using a dynamic serving theme based on the client browser

ff Creating theme-specific translations

Introduction
Theming is an important part of building your e-commerce website; making it easy for users to
navigate and SEO-friendly will make sure that your conversion will be optimized.

In Magento 2, theming has changed in a big way; it's easier to optimize your theme with the
more granular way of controlling what is outputted through the layout configurations.

In this chapter, we will see some basics on how to build your own theme extended from the
Magento blank theme, which can also be used to extend any other theme you want to use as
a starting point.

Creating a Magento 2 Theme

182

In order to understand the way theming is done, you should know how to work with Less, CSS,
XML, and PHP.

Creating a new theme
Themes in Magento 2 are set up a bit differently than Magento 1. Some of these changes are
as follows:

ff Smaller layout files per layout handle

ff Less (default) implementation with an internal Less preprocessor

ff Extended layout methods to move and change blocks

ff Magento UI library for default components, such as forms, buttons, and more

ff Installable through Composer

ff Fallback to module layout, templates, and other public files

ff Static file generation to improve page load times

In this sample theme, the files are located in app/design/frontend/<Vendor>/<Theme>.
When a theme is installed through Composer, it will be installed in the vendor directory.

Getting ready
In order to work with themes, you should have a basic knowledge of XML, HTML, CSS, and
Less as these are used to build your theme.

How to do it…
The following are the steps to create a new theme:

1.	 First, we start by creating the theme definition file:

app/design/frontend/Genmato/default/theme.xml

<?xml version="1.0"?>
<theme xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:n
oNamespaceSchemaLocation="urn:magento:framework:Config/etc/theme.
xsd">
 <title>M2 Cookbook Sample Theme</title>
 <parent>Magento/blank</parent>
 <media>
 <preview_image>media/preview.png</preview_image>
 </media>
</theme>

Chapter 6

183

2.	 Create preview.png for how your theme will look like. (This file needs to be present,
but you can start with a blank file and replace this later when your theme is done.)
Place this preview image under app/design/frontend/Genmato/default/
media/.

3.	 In order to have it installable through Composer, we need to create a composer.
json file:

app/design/frontend/Genmato/default/composer.json

{
 "name": "genmato/sample-theme",
 "description": "Genmato Sample Theme",
 "require": {
 "php": "~5.5.0|~5.6.0|~7.0.0",
 "magento/theme-frontend-blank": "100.0.*",
 "magento/framework": "100.0.*"
 },
 "type": "magento2-theme",
 "version": "1.0.0",
 "license": [
 "OSL-3.0",
 "AFL-3.0"
],
 "autoload": {
 "files": [
 "registration.php"
]
 }
}

4.	 In order to register the theme when loaded through Composer, it needs
registration.php:

app/design/frontend/Genmato/default/registration.php

<?php
\Magento\Framework\Component\ComponentRegistrar::register(
\Magento\Framework\Component\ComponentRegistrar::THEME,
'frontend/Genmato/default',
__DIR__
);

Creating a Magento 2 Theme

184

5.	 Create a static file directory structure in your theme:

app/design/frontend/Genmato/default

web/
web/css/source/
web/fonts/
web/images/
web/js/

6.	 Define your logo file and size:
app/design/frontend/Genmato/default/Magento_Theme/layout/
default.xml

<?xml version="1.0"?>
<page xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="urn:magento:framework:
 View/Layout/etc/page_configuration.xsd">
 <body>
 <referenceBlock name="logo">
 <arguments>
 <argument name="logo_file" xsi:type="string">
 images/genmato.svg</argument>
 <argument name="logo_img_width" xsi:type="number">
 372</argument>
 <argument name="logo_img_height" xsi:type="number">
 84</argument>
 </arguments>
 </referenceBlock>
 <referenceBlock name="report.bugs" remove="true"/>
 </body>
</page>

7.	 Place your logo file in app/design/frontend/Genmato/default/web/images/; in this
example, an SVG is used but you can also define a PNG or JPG file.

8.	 It is possible to configure your own image sizes for the different images; when
generating the static content, all images will be created in the width/height
configured in this file:

app/design/frontend/Genmato/default/etc/view.xml

<?xml version="1.0"?>
<view xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="urn:magento:framework:
 Config/etc/view.xsd">
 <media>
 <images module="Magento_Catalog">

Chapter 6

185

 <image id="category_page_grid" type="small_image">
 <width>240</width>
 <height>300</height>
 </image>
 </images>
 </media>
</view>

9.	 Create your theme style (Less) file. In this file, all overrides for styles used in the blank
theme and Magento UI framework can be specified. This can be used to change
default colors in your theme:

app/design/frontend/Genmato/default/web/css/source/_theme.less

@page__background-color: @color-gray20;
@primary__color: @color-gray80;

@genmato__green: #009A4E;
@genmato__blue: #0089CF;

@link__color: @genmato__green;
@link__hover__color: darken(@link__color, 10%);

@button-primary__background: @genmato__green;
@button-primary__border: darken(@genmato__green, 40%);
@button-primary__color: @color-black;

@button-primary__hover__background: darken(@genmato__green, 10%);
@button-primary__hover__border: darken(@genmato__green, 50%);
@button-primary__hover__color: @color-black;

@navigation__background: @genmato__blue;

10.	 After all the files are uploaded to the Magento 2 installation, refresh the cache:
bin/magento cache:clean

11.	 Next, generate the static content:
bin/magento setup:static-content:deploy

Creating a Magento 2 Theme

186

You can rerun this command every time you make changes to your theme
and need to regenerate the CSS from the Less files. Make sure that you
remove your theme-generated files from the following locations:
pub/static/frontend/<Theme Vendor>

var/view_preprocessed/css/frontend/<Theme Vendor>

Otherwise, the changes in the Less files in your theme will not be used as
the preprocessor checks if there is already a generated CSS file available.
Check the Using Grunt for CSS changes recipe of this chapter on how to
use live reloading of CSS changes without the need of recompiling.

12.	 The theme should now be available to select for your store. In order to change the
theme, go to the following:

Stores | [General] Design | Design Theme

This can be seen in the following screenshot:

Choose the newly created theme from the drop-down list and save the
configuration change.

13.	 Navigate to your store frontend and check whether the new theme is visible. The
theme used in this example looks as follows:

Chapter 6

187

How it works…
The theme configuration in Magento 2 is more powerful than in Magento 1, allowing you to
have better control on changing elements that are available from installed modules. The way
in which the fallback is configured makes it easier to create different variants of a theme by
defining the parent theme only. During compilation of the theme, all the files are gathered
from the right parent and merged into your theme. This improves page rendering as there is
no more layout merging done. All static elements such as CSS and images are pregenerated.
Building themes for distribution and changing them afterward is now also much easier and
can be done without modifying the bought theme.

During the bin/magento setup:static-content:deploy command, the system
collects all the Less files from the following:

ff Current active theme

ff The defined parent theme(s); this is done recursively for all parents until there is no
parent defined

ff The module files

Creating a Magento 2 Theme

188

Next, it will use the built-in PHPLess module to merge all these files into the configured CSS
files. In this example, it generated a styles-m.css and styles-l.css as configured in the
blank theme (Magento/blank/Magento_Theme/default_head_blocks.xml):

<page xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="urn:magento:framework:
 View/Layout/etc/page_configuration.xsd">
 <head>
 <css src="css/styles-m.css" />
 <css src="css/styles-l.css" media="screen and (min-width:
 768px)"/>
 <css src="css/print.css" media="print" />
 </head>
</page>

The styles files are built from styles-m.less and styles-l.less (found in Magento/
blank/web/css/) and define all the Less files that should be included. The two files are the
definition files for the mobile and desktop versions of the layout. These external Less files are
included through the default @import command used in Less. They also contain a special
@magento_import command (which has to be commented out in order to avoid breaking
the Less preprocessor). During compilation of the theme, Magento replaces these imports
with a regular @import command but with a resolved path to the corresponding file location
based on the fallback file found. During compilation, all files are stored at the pub/static/
frontend/<Vendor>/<theme> location and served as static files to improve load times.

Adding theme variants
Creating a variant of a theme, for example, for seasonal promotions, is easy to add. Here, it
is only necessary to create a new theme that has a parent to the default/normal theme; all
separate themes need to be located in their own directories. The theme only needs the files
that are different from the parent theme; this can be just CSS changes or static files used as
backgrounds in the theme.

Layout files
In Magento 2, the layout files are split per layout handle; this makes it easier to modify a
specific page only. A layout handle is a unique identifier for the layout definitions that are used
to build the page. There are three different types of layout handles:

ff page type layout handles: These identify the page based on the full action names of
the controller (customer_account_create)

ff page layout handles: These are added identifiers based on a product type shown
(catalog_product_view_type_downloadable)

ff custom handles: These are added custom identifiers not referencing to any page

Chapter 6

189

Every file is located in the corresponding Module directory, so for the customer_account_
create page handle, the layout file would be located in [Theme Directory]/Magento_
Customer/layout/customer_account_create.xml. In the design and building of the
pages, the layout is configured based on containers and defines the basic structure of a
page (such as the header, footer, and columns—left, main, and right). In the containers, the
content is added using blocks; every block has a template and block class assigned that is
used to render the HTML for that block. It is possible to have multiple blocks assigned to a single
container, allowing you to assign the order in which they must be shown. During generation, all
layout files are merged together for each layout handle, allowing you to modify the output in the
theme without the need of including the complete original files from the module.

Template files
Template files are phtml files containing the HTML and PHP code to build the specified
content. In order to change or add data with a template in your theme, you will need to copy
the original template file to your theme, for example, to change the account registration
form, the <customer-module-dir>/view/frontend/templates/form/register.
phtml file needs to be copied to <theme-dir>/Magento_Customer/templates/form/
register.phtml and can be edited there.

Magento UI library
In Magento 2, there is a UI library available that includes basic interface CSS-class elements
that can be used in the templates. The following components are available:

ff actions-toolbar

ff breadcrumbs

ff buttons

ff drop-downs

ff forms

ff icons

ff layout

ff loaders

ff messages

ff pagination

ff popups

ff ratings

ff sections

ff tabs and accordions

ff tables

Creating a Magento 2 Theme

190

ff tooltips

ff typography

ff list of theme variables

The CSS definition of all these elements can be altered to find out what variables to alter;
check out <magento-root>/lib/web/css/source/lib/variables. In order to modify
the way an element is rendered, you can look up the required variable and add your own
definition in the <theme-directory>/web/css/source/_theme.less theme file.

Changing a layout XML of a Magento 2
module

In order to customize the layout to your own requirements, you can just add it to your theme
and make the required changes. In order to change a layout from a Magento 2 module, you
will need to locate the module and layout handle that you want to alter.

Getting ready
In this recipe, we will change the order of some elements on the product view page based on
the theme created in the previous recipe.

How to do it…
The following steps will show you how to change elements defined in a layout file to match
your desired design:

1.	 Create the layout handle file for the Magento_Catalog module:
app/design/frontend/Genmato/default/Magento_Catalog/layout/
catalog_product_view.xml

<?xml version="1.0"?>
<page layout="1column"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="urn:magento:framework:
 View/Layout/etc/page_configuration.xsd">
 <body>
 <move element="product.info.stock.sku"
 destination="product.info.price"
 after="product.price.final"/>
 <move element="product.info.review"
 destination="product.info.main"
 before="product.info.price"/>

Chapter 6

191

 <remove name="report.bugs"/>
 </body>
</page>

2.	 Upload the file to your Magento 2 installation and refresh the cache:
bin/magento cache:clean

3.	 Next, generate the static content:
bin/magento setup:static-content:deploy

Make sure that you remove your theme-generated files from the following locations:

pub/static/frontend/<Theme Vendor>

var/view_preprocessed/css/frontend/<Theme Vendor>

Otherwise, the changes in the Less files in your theme will not be used as the
preprocessor checks if there is already a generated CSS file available.

4.	 Navigate to a product page to see the changes:

Creating a Magento 2 Theme

192

How it works…
In the layout XML files, there are a few commands available to change the way in which a page
is rendered. Here is a short description of every available command.

<container>
A container defines a structural layout block that does not produce its own content and can
hold other blocks and/or containers. The output of the content generated by the children
can be rendered in any valid HTML 5 tag with the option to specify an ID or class used for the
element. Here is an example of the product.info.stock.sku container and the blocks
that are added:

<container name="product.info.stock.sku" label="Product auxiliary
 info" htmlTag="div" htmlClass="product-info-stock-sku">
 <container name="product.info.type" before="-"/>
 <block class="Magento\Catalog\Block\Product\View\Description"
 name="product.info.sku" template=
 "product/view/attribute.phtml" after="product.info.type">
 <arguments>
 <argument name="at_call" xsi:type="string">getSku</argument>
 <argument name="at_code" xsi:type="string">sku</argument>
 <argument name="css_class" xsi:type="string">sku</argument>
 <argument name="at_label"
 xsi:type="string">default</argument>
 <argument name="add_attribute"
 xsi:type="string">itemprop="sku"</argument>
 </arguments>
 </block>
</container>

A block generates content from the specified class and assigned template file. In the
arguments of the block, it's possible to specify the load order using the before and
after tags. Depending on the class specified, it's possible to pass information using the
<argument> tag:

<block class="Magento\Catalog\Block\Product\View\Description"
 name="product.info.overview" template=
 "product/view/attribute.phtml" group="detailed_info"
 after="product.info.extrahint">
 <arguments>
 <argument name="css_class"
 xsi:type="string">overview</argument>
 </arguments>
</block>

Chapter 6

193

Arguments passed to the class can be the class methods or magic setters/getters and can be
accessed in the template. The preceding css_class argument assigned can be requested in
the template through $this->getCssClass();.

referenceContainer/referenceBlock
In order to add a block or container to an element specified in another layout file, you will need
to reference this element. This way it's possible to add blocks to both the main content area
and sidebar in the same layout file:

<referenceContainer name="product.info.type">
 <block class="Magento\Catalog\Block\Product\View\Type\Simple"
 name="product.info.simple" as="product_type_data"
 template="product/view/type/default.phtml"/>
 <container name="product.info.simple.extra"
 after="product.info.simple" as="product_type_data_extra"
 label="Product Extra Info"/>
</referenceContainer>

move
The move command allows you to change the location where the element is shown to another
element. In this recipe, the SKU information was placed after the product.price.final
block in the product.info.price container, where the default location would be the first
block shown.

remove
The remove command will remove the block referenced with the name parameter; this will
cause it not to be rendered on the page.

update
With the update instruction, it is possible to include a layout handle. This allows you to include
a set of instructions defined once to multiple layouts. An example of this is the customer
account; here, all account menu options for logged in users are defined in the customer_
account.xml layout file:

<page xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 layout="2columns-left" xsi:noNamespaceSchemaLocation=
 "urn:magento:framework:View/Layout/etc/page_configuration.xsd"
 label="Customer My Account (All Pages)"
 design_abstraction="custom">
 <body>
 <attribute name="class" value="account"/>
 <referenceContainer name="sidebar.main">

Creating a Magento 2 Theme

194

 <block class="Magento\Framework\View\Element\Html\Links"
 name="customer_account_navigation" before="-"
 template="Magento_Customer::account/navigation.phtml">
 <block class=
 "Magento\Framework\View\Element\Html\Link\Current"
 name="customer-account-navigation-account-link">
 <arguments>
 <argument name="label" xsi:type="string"
 translate="true">Account Dashboard</argument>
 <argument name="path"
 xsi:type="string">customer/account</argument>
 </arguments>
 </block>
 <block class=
 "Magento\Framework\View\Element\Html\Link\Current"
 name="customer-account-navigation-account-edit-link">
 <arguments>
 <argument name="label" xsi:type="string"
 translate="true">Account Information</argument>
 <argument name="path"
 xsi:type="string">customer/account/edit</argument>
 </arguments>
 </block>
 <block class=
 "Magento\Framework\View\Element\Html\Link\Current"
 name="customer-account-navigation-address-link">
 <arguments>
 <argument name="label" xsi:type="string"
 translate="true">Address Book</argument>
 <argument name="path"
 xsi:type="string">customer/address</argument>
 </arguments>
 </block>
 </block>
 </referenceContainer>
 </body>
</page>

This file is then included in the customer_account_index.xml layout (and other pages
using this menu):

<page xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 layout="2columns-left" xsi:noNamespaceSchemaLocation=
 "urn:magento:framework:View/Layout/etc/page_configuration.xsd">
 <update handle="customer_account"/>
 <body>
 <referenceBlock name="page.main.title">

Chapter 6

195

 <action method="setPageTitle">
 <argument translate="true" name="title"
 xsi:type="string">My Dashboard</argument>
 </action>
 </referenceBlock>
 <referenceContainer name="content">
 <block class="Magento\Framework\View\Element\Template"
 name="customer_account_dashboard_top" as="top"/>
 <block class="Magento\Customer\Block\Account\Dashboard\Info"
 name="customer_account_dashboard_info" as="info" template=
 "account/dashboard/info.phtml" cacheable="false"/>
 <block class="Magento\Customer\Block\Account\Dashboard\
 Address" name="customer_account_dashboard_address"
 as="address" template="account/dashboard/address.phtml"
 cacheable="false"/>
 </referenceContainer>
 </body>
</page>

Overriding template files
Templates are loaded in the following order:

1.	 Active theme, where it looks for the file in <theme>/<Module_
Namespace>_<Module_name>/template/<requested template>.

2.	 Parent theme(s) (until no parent is found).

3.	 Module directory.

In order to override a template in your theme, it is possible to create your own version of the
file. For example, to replace the left navigation file from the catalog module, copy the file
from the original location <Magento_Catalog path>/view/frontend/templates/
navigation/left.phtml to your theme location <theme>/Magento_Catalog/
templates/navigation/left.phtml. Here, you can apply your own changes necessary
to suit your theme.

Another option is to change the template file assigned through a layout change; this can be
useful if you want to change the template only for a specific product, category, or other page
handle available. For this, you need to create a new layout file based on the file handle where
you reference the block where you want to update the template. Using the <action> method,
setTemplate, you can now specify the new template you want to use:

<referenceBlock name="[blockname]">
 <arguments>
 <argument name="template" xsi:type="string">[Module
 name]::[path to template]</argument>
 </arguments>
</referenceBlock>

Creating a Magento 2 Theme

196

Adding CSS/JS to pages
Adding your own CSS or JS to every or specific page can also be done through a layout XML
file. The source of a file that you want to include can come from the following:

ff An external source hosted remotely

ff Module-specific, which is mainly used by JavaScript

ff Theme-specific, which is mainly used when adding CSS but can also be used to add
custom JavaScript

Getting ready
In order to include CSS or JavaScript to a page, you first need to know where you want
to include your files and where the file is located that you want to include. In this recipe,
we will see how to include both an external CSS and JavaScript file and a theme JavaScript
and CSS file.

How to do it…
This recipe is based on the theme created in the Creating a new theme recipe of this chapter.

1.	 To add a new source (CSS or JS) to all pages, the configuration is done through the
default_head_blocks.xml file. It is also possible to add it to a single page only
through the layout file for that layout handle:
app/design/frontend/Genmato/default/Magento_Theme/layout/
default_head_blocks.xml

<?xml version="1.0"?>
<page xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="urn:magento:framework:
 View/Layout/etc/page_configuration.xsd">
 <head>
 <link src=
 'https://fonts.googleapis.com/css?family=Open+Sans'
 type='text/css' src_type="url"/>
 <link src='https://ajax.googleapis.com/ajax/libs/
 jqueryui/1.11.4/jquery-ui.min.js' src_type="url"/>
 <link src="js/sample.js"/>
 <css src="css/sample.css" />
 </head>
</page>

Chapter 6

197

2.	 Add the custom JavaScript code (just the basic file here):

app/design/frontend/Genmato/default/web/js/sample.js

require([
 'jquery',
], function ($) {
 jQuery(document).ready(function () {
 // You jQuery code here
 });
});

3.	 Add your custom stylesheet Less file:

app/design/frontend/Genmato/default/web/css/sample.less

you can add your own Less code here!

4.	 Upload the file to your Magento 2 installation and refresh the cache:
bin/magento cache:clean

5.	 Next, generate the static content:
bin/magento setup:static-content:deploy

Make sure that you remove your theme-generated files from the following locations:

pub/static/frontend/<Theme Vendor>

var/view_preprocessed/css/frontend/<Theme Vendor>

Otherwise, the changes in the Less files in your theme will not be used as the
preprocessor checks if there is already a generated CSS file available.

Refresh the page and make sure that the new CSS and JS files are added to the
header of the source of your page.

How it works…
During the generation process, the XML tags that are added to the head component are
converted depending on what is supplied in the configuration.

External files
When adding files from an external source, you need to specify src_type=url. Otherwise,
the supplied source will be converted into a file on the local filesystem and result in an error
loading the resource.

Creating a Magento 2 Theme

198

JavaScript files
Magento 2 uses RequireJS to manage all JavaScript and its dependencies; this means that it's
not possible to just include an extra JS file and use functions that are available with jQuery. In
order to use calls to jQuery functions, you need to add this dependency in your JS file; this will
make sure that the jQuery library is loaded before your code is executed.

CSS files
When including a CSS file, the CSS is generated from a Less file, which is done automatically
by the Magento preprocessor when the specified CSS isn't found and there is a .less file
found with the same name.

Removing a file in the header
It is also possible to remove a file from the header; this can be useful if you want to remove an
included resource from a parent theme. To remove a CSS, JavaScript, or font from the header,
you can use the <remove> tag where you reference the path that you want to remove. For
example, to remove the styles-l.css file from the page, you can use the following:

<theme>/Magento_Theme/layout/default_head_blocks.xml

<page xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="urn:magento:framework:
 View/Layout/etc/page_configuration.xsd">
 <head>
 <remove src="css/styles-l.css"/>
 </head>
</page>

Using Grunt for CSS changes
Making changes during the development of your theme can take some time while you are
waiting on removing the compiled files, recompiling, and reloading. To optimize the workflow
and speed up the reloading of the changes, it is possible to use the built-in client-side Less
compiler based on a JavaScript compilation. Using this client compiler might not work fast
enough for you and require manual reloads. Another option is to use the Grunt tool to watch
changes made in the .less files. In this recipe, we will see how to make use of this tool and
update CSS files without the manual removing of files and refreshing the browser.

Getting ready
Using Grunt should only be needed on your local development setup; for production systems,
you should use the built-in Magento Less compiler. Grunt is built on Node.js; in order to use it,
you should first install Node.js in your system.

Chapter 6

199

How to do it…
This recipe will explain how to install, configure, and use Grunt to monitor file changes and
recompile the CSS scripts. This recipe is based on the theme configured in the Creating a new
theme recipe of this chapter. When you use it on your own theme, change the names/files
according to your theme needs:

1.	 First, we need to install the Grunt command-line tool. As Grunt is a Node.js package,
this installation is done through the Node.js package manager (npm):
npm install –g grunt-cli

2.	 To install Grunt in your Magento project directory, navigate to the Magento 2 root
directory of your installation and run the following:
npm install grunt –-save-dev

3.	 After installing Grunt, the Node.js dependencies in your Magento project should be
updated. To do so, run the following command from your Magento directory:
npm install
npm update

4.	 To allow Grunt to recompile your own theme, it should be declared in the dev/
tools/grunt/configs/themes.js file. This file configures the paths used to
monitor file changes and the files that should be created. Add the following code to
the file:
genmato: {
 area: 'frontend',
 name: 'Genmato/default',
 locale: 'en_US',
 files: [
 'css/styles-m',
 'css/styles-l',
 'css/sample'
],
 dsl: 'less'
},

5.	 Run the initial setup of your theme files; this will create symlinks from the pub/
static/frontend/Genmato/default theme directory to the source theme files
(located in app/design/frontend/Genmato/default):
grunt exec:genmato

Creating a Magento 2 Theme

200

The following output displays the processing done by Grunt:

6.	 Now that the symlinks are created, the Less files should be compiled; this will create
the theme CSS files as they were configured in the themes.js file in step 4:
grunt less:genmato

This can be seen in the following screenshot:

7.	 In order to display the CSS changes made automatically, install the LiveReload plugin
for your browser from http://livereload.com/extensions/. When the plugin
is installed, click on the icon to activate the live reloading of the CSS files. This should
be done only on your local website URL.

8.	 When making changes to the Less files in your theme, the Grunt watcher should
be activated:
grunt watch

This will detect the changes once you save a theme Less file and trigger the
compilation of your Less code to a CSS file.

http://livereload.com/extensions/

Chapter 6

201

9.	 Now you can make all your necessary changes, for example, we could change the
color of the navigation background:

app/design/frontend/Genmato/default/web/css/source/_theme.less

@genmato__orange: #FCBF45;
@navigation__background: @genmato__orange;

After saving the file, the compilation of the CSS is triggered and a new CSS file is
stored for your theme:

10.	 The live reload plugin will detect the changed CSS files and reload and apply them in
your browser without reloading the page, which should now display the new color for
the navigation background:

How it works…
The Grunt watch command looks for changes made to the Less files in the template directory.
When a change is detected, it will trigger the recompilation of the CSS files of the theme. To
see what files Grunt is watching, you can run the watch command with the –v option:

grunt watch –v

This will display all modules loaded and give you more debugging information for which file
has been changed and the actions that it is running.

Creating a Magento 2 Theme

202

When using the Grunt method and deploy feature in Magento in the same setup, make sure
that you run the command starting from step 5 again; otherwise, the file changes will not
be detected.

LiveReload
When using the LiveReload plugin, it will create a web socket connection to the LiveReload
service running on TCP port 35729. Through this socket, Grunt will notify when the
compilation of the CSS file is completed and what file has changed so that the LiveReload
plugin can reload that file and apply it in the browser:

Adding static blocks to pages through
layout XML

With static blocks, it is possible to add content to pages that you can manage through the
Magento backend. There are two ways to add a static block to your page. In this recipe,
we will see how to add a static block through layout XML.

Getting ready
To add a static block to a page, you need to know on which page you want this block to be
displayed and in what block or container.

How to do it…
This recipe shows you how to add a static block to the footer on all pages, based on the theme
created in the Creating a new theme recipe of this chapter:

1.	 Create a new static block through the Magento backend. Go to the Content menu
option and select Blocks under the Elements menu. Next, click on the Add New
Block button to create a new block. Create the block with the content you want and
click on Save Block:

Chapter 6

203

2.	 To add this block to the footer of your theme on all pages, it should be added to the
Magento_Theme default.xml layout file:
app/design/frontend/Genmato/default/Magento_Theme/layout/
default.xml

<page xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="urn:magento:framework:
 View/Layout/etc/page_configuration.xsd">
 <body>
 <referenceBlock name="logo">
 <arguments>
 <argument name="logo_file"
 xsi:type="string">images/genmato.svg</argument>
 <argument name="logo_img_width"
 xsi:type="number">372</argument>
 <argument name="logo_img_height"
 xsi:type="number">84</argument>
 </arguments>
 </referenceBlock>

Creating a Magento 2 Theme

204

 <referenceBlock name="report.bugs" remove="true"/>
 <referenceContainer name="footer">
 <block class="Magento\Cms\Block\Block"
 name="footer-sample">
 <arguments>
 <argument name="block_id"
 xsi:type="string">footer-sample</argument>
 </arguments>
 </block>
 </referenceContainer>
 </body>
</page>

3.	 After uploading the file to your Magento installation, refresh the cache:
bin/magento cache:clean

4.	 Open your browser and (re)load the website to check whether your content is now
visible on the website.

How it works…
The code in this recipe adds the created block to the referenced footer container; here, we
add a new block with the Magento\Cms\Block\Block class and pass an argument with
block_id of the created block. The block_id specified must match the Identifier used
when creating the block.

Adding a block to a single page
To add a block to a single page, for example, before the Contact Us form, create a new file,
app/design/frontend/Genmato/default/Magento_Contact/layout/contact_
index_index.xml, and add the following content:

<page xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="urn:magento:framework:
 View/Layout/etc/page_configuration.xsd">
 <body>
 <referenceContainer name="content">
 <block class="Magento\Cms\Block\Block" name="contact-sample"
 before="contactForm">
 <arguments>
 <argument name="block_id" xsi:type="string">[your block
 identifier]</argument>
 </arguments>
 </block>
 </referenceContainer>
 </body>
</page>

Chapter 6

205

In order to have the created block before the form, we reference the content area and add
the block with specifying the before argument.

Adding static blocks to pages through
widgets

Adding a static block to a page can also be done with the Magento widgets system; this allows
you to add blocks to pages without the knowledge of how layout XML works.

How to do it…
In this recipe, we will see step by step how to add a static block to the home page:

1.	 Create a new static block through the Magento backend. Go to the Content menu
option and select Blocks under the Elements menu. Next, click on the Add New
Block button to create a new block. Create the block with the content you want and
click on Save Block:

Creating a Magento 2 Theme

206

2.	 Create a new widget. Go to the Content menu option and select Widgets under the
Elements menu. Next, click on the Add Widget button to create a new widget. Select
the CMS Static Block option for the Type field and the theme that you want to apply
this widget to under Design Theme. After this, click on the Continue button:

3.	 Specify the Widget Title, Assign to Store Views, and Sort Order properties:

Chapter 6

207

4.	 Specify the layout options; here, we configure the page and container where the
content must be visible. It is possible to select multiple locations for the same block:

5.	 The last step is to select the block to display. For this, go to the Widget Options tab
and click on the Select Block button. From the list shown, you can now select the
block that you want to add:

6.	 Refresh the cache:
bin/magento cache:clean

7.	 Refresh the home page and check whether the created block is shown.

How it works…
The widget created will build the layout XML for the details that you have selected and will be
loaded from the database while generating the layout. It is possible to add multiple Layout
Updates and select multiple locations where the widget should be shown.

Creating a Magento 2 Theme

208

Available widgets
By default, Magento ships with the following widgets:

CMS Page Link
The CMS Page Link widget will allow you to add a link to a page that you specify; this can be
useful to add a link to the footer.

CMS Static Block
The CMS Static Block widget will add a static block to the location that you specify (as shown
in this recipe).

Catalog Category Link
The Catalog Category Link widget adds a link to a specific category that you specify.

Catalog New Products List
The Catalog New Products List widget allows you to add a list of products to a page; here, you
can select the amount of products that you want to show and if you want to display only new
products or all products.

Catalog Product Link
With the Catalog Product Link widget, it is possible to create a link to a specific product.

Catalog Product List
To display a list of products on your page, you can use the Catalog Product List widget.
With this widget, you can control the products shown based on your own conditions
(product attributes).

Orders and Returns
This will add a block to allow customers to search for their orders and view the status or
request for a return (Enterprise).

Recently Compared Products
This will add a block that shows the products that are added to the compare products list.

Recently Viewed Products
This will add a block that shows the products that have been viewed by the user.

Chapter 6

209

Using a dynamic serving theme based on
the client browser

Using a responsive theme allows you to build a single theme that has the same look and
feel through all devices and will also generate more traffic and slower loads on devices with
a smaller viewport if you don't want to show the same information to them. With dynamic
serving, you can assign a custom theme with your own layout configuration based on the
User-Agent string that is sent by the client browser. This allows you to show only the content
that is relevant to that user's device; this can be useful for images shown on the home page
and also with the way you display your product details.

Getting ready
In order to use dynamic serving, you must first know what devices you want to show a
different layout for.

How to do it…
In this recipe, we will see how to create a new theme that depends on the theme created in
the Creating a new theme recipe of this chapter. Remove the desktop definition CSS and show
this theme to users of the iPhone only.

1.	 Create the theme definition file:

app/design/frontend/Genmato/mobile/theme.xml

<theme xmlns:xsi="http://www.w3.org/2001/XMLSchema-
 instance" xsi:noNamespaceSchemaLocation=
 "urn:magento:framework:Config/etc/theme.xsd">
 <title>M2 Cookbook Sample Mobile Theme</title>
 <parent>Genmato/default</parent>
 <media>
 <preview_image>media/preview.png</preview_image>
 </media>
</theme>

2.	 Create preview.png for how your theme will look. (This file needs to be present but
you can start with a blank file and replace this later when your theme is done.) Place
this preview image under app/design/frontend/Genmato/mobile/media/.

3.	 To install the theme through Composer, we need to create a composer.json file:

app/design/frontend/Genmato/mobile/composer.json

{
 "name": "genmato/mobile-theme",

Creating a Magento 2 Theme

210

 "description": "Genmato Sample Mobile Theme",
 "require": {
 "php": "~5.5.0|~5.6.0|~7.0.0",
 "genmato/default-theme": "1.0.*",
 "magento/framework": "100.0.*"
 },
 "type": "magento2-theme",
 "version": "1.0.0",
 "license": [
 "OSL-3.0",
 "AFL-3.0"
],
 "autoload": {
 "files": [
 "registration.php"
]
 }
}

4.	 In order to register the theme when loaded through Composer, it needs
registration.php:

app/design/frontend/Genmato/mobile/registration.php

<?php
\Magento\Framework\Component\ComponentRegistrar::register(
 \Magento\Framework\Component\ComponentRegistrar::THEME,
 'frontend/Genmato/mobile,
 __DIR__
);

5.	 Create a static file directory structure in your theme:

app/design/frontend/Genmato/mobile

web/
web/css/source/
web/fonts/
web/images/
web/js/

Chapter 6

211

6.	 Remove the desktop CSS file as specified by the parent blank theme:
app/design/frontend/Genmato/mobile/Magento_Theme/layout/
default_head_blocks.xml

<?xml version="1.0"?>
<page xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="urn:magento:framework:
 View/Layout/etc/page_configuration.xsd">
 <head>
 <remove src="css/styles-l.css"/>
 </head>
</page>

7.	 Add a custom static block to the mobile home page:
app/design/frontend/Genmato/mobile/Magento_Cms/layout/cms_
index_index.xml

<?xml version="1.0"?>
<page xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="urn:magento:framework:
 View/Layout/etc/page_configuration.xsd">
 <body>
 <referenceContainer name="content">
 <block class="Magento\Cms\Block\Block"
 name="homepage-content">
 <arguments>
 <argument name="block_id"
 xsi:type="string">sample-homepage</argument>
 </arguments>
 </block>
 </referenceContainer>
 </body>
</page>

8.	 After uploading the files to your Magento installation, refresh the cache to load the
new theme:
bin/magento cache:clean

Creating a Magento 2 Theme

212

9.	 In the Magento backend, navigate to the store theme configuration:

Stores | Configuration | [General] Design.

Here, we can create the design exception based on the user agent that is sent by the
browser:

10.	 After saving the configuration, the cache must be refreshed again:
bin/magento cache:clean

11.	 Now, the theme shown should be different when the website is accessed through an
iPhone and normal browser on your desktop.

How it works…
During the page load process, the theme for the request is selected. When a User-Agent
exception is found, the Magento\Framework\View\DesignExceptions class'
getThemeByRequest method will check whether it matches the User-Agent sent by the
client. If there is a match found, the theme specified will be used; otherwise, the default
theme will be used.

The mobile theme used in this recipe only has a small number of changes; you can further
optimize your theme by optimizing every page and removing components that aren't
necessary to be displayed on the device that the theme is designed for.

Chapter 6

213

Creating theme-specific translations
Magento offers a powerful system to translate strings used in templates, e-mails, and other
components. There are several locations where you can place translations; they are loaded in
the following order:

1.	 Magento database (inline translations).

2.	 Theme translations located in <theme>/i18n/<locale>.csv.

3.	 Parent theme translations (until no further parent is specified).

4.	 Translation packages located in app/i18n/<locale>.

5.	 Module translations located in <module>/i18n/.

Getting ready
In this recipe, we will change a translation for the en_US language; if you want, you can add
other languages to your theme also.

How to do it…
This recipe will use the theme created in the Creating a new theme recipe of this chapter, but
you can apply it to your own custom theme also.

1.	 Create your local translations file:

app/design/frontend/Genmato/default/i18n/en_US.csv

"Add to Cart","Buy"

2.	 After uploading the file to your Magento installation, refresh the cache:
bin/magento cache:clean

Creating a Magento 2 Theme

214

3.	 If you now reload the page, the new translation should be visible:

How it works…
In Magento, all translatable strings are used in the following ways:

ff Template files (.phtml):
<?php echo __('[text to translate]') ?>

ff UI component templates:

ff XML files:
<item name="label" xsi:type="string" translate="true">[text to
translate]</item>

ff JavaScript files: (To use translations in JavaScript files, you need to include the mage/
translate module through RequireJS.)
define (['jquery', 'mage/translate'], function ($) {...});

ff Next, you can use the translation in your script:
$.mage.__('<text to translate>');

The translation files in the theme are stored as a comma-separated file, where you can specify
the original word/phrase and translation in the following format:

"[original string]","[translation]"

Chapter 6

215

It is important that you place only a single translation on a line. Additionally, the original string
must match the case; otherwise, no translation can be done.

Some translations use dynamic values in the translation; these translations are created with
%x (where x is a number) in the string:

"Quantity was recalculated from %1 to %2","Quantity was
 recalculated from %1 to %2"

Generating a translation file
In Magento 2, there is now an easy option to generate a translation file for your theme
or module. To generate the custom translations file for your theme, you can use the
following command:

bin/magento i18n:collect-phrases –output="
 /app/design/frontend/Genmato/default/i18n/en_US.csv"
 app/design/frontend/Genmato/default

This command will output only translatable strings that are used in your template. It will not
include files from your parent theme(s) or module template files. The generated file can now
be edited and, if necessary, you can add extra lines with translations for phrases that are not
used in your own theme but you still want to translate.

217

7
Creating Magento 2

Extensions – the Basics

In this chapter, we will cover the basics on how to create your own Magento 2 extensions with
the following recipes:

ff Initializing extension basics

ff Working with database models

ff Creating tables using setup scripts

ff Creating a web route and controller to display data

ff Creating system configuration fields

ff Creating a backend data grid

ff Creating a backend form to add/edit data

Introduction
Now that we have installed and configured Magento 2, we will see the basics on how to create
a new Magento 2 extension. If you are familiar with creating an extension for Magento 1.x,
you will notice that there are some concepts that look a lot like how it is done in Magento 1.
However, as the code is a completely new framework, there are also lots of changes in the
module structure and necessary files.

Some of the major changes that change the way a extension is created are as follows:

ff A new module structure: The directory structure has changed, moving all parts of
an extension into a single container, and files are no longer spread between different
locations. This makes it easier to maintain an extension.

Creating Magento 2 Extensions – the Basics

218

ff Configuration files: In Magento 2, the configuration of an extension is split into
multiple smaller files that are validated by an XML Schema Definition (XSD) schema.
Additionally, some configuration files can be area-specific (adminhtml, frontend, cron,
and api) to overwrite the general settings.

ff Namespaces and dependency injection: In Magento 2, the code uses PHP
namespaces to identify class names. Additionally, classes necessary are no longer
loaded through Mage::getModel() (or similar functions), but injected into your
class through a dependency injection.

Initializing extension basics
The way in which a new extension is built in Magento 2 is a bit different than it was in
Magento 1. The major change is that all files are now included in the extension directory.
This makes it easier to manage and remove.

The location of an extension is also different; there are no longer separate codepools as used
in Magento 1 (core, community, and local). Depending on the way the extension is installed,
the extension will be running from the vender directory when installed through Composer. For
project-specific extensions, it is also possible to place them in app/code.

Getting ready
When developing an extension, it is advised to run Magento 2 in developer mode as this will
give better error messages explaining what went wrong and make debugging a lot easier.

To display all PHP errors and activate developer mode, activate the display_errors setting
in app/bootstrap.php and run the following command:

bin/magento deploy:mode:set developer

The code used in this chapter is based on naming the module Genmato_Sample and all files
will be placed in the following:

app/code/Genmato/Sample/

How to do it…
Follow these steps to initialize a new extension:

1.	 Create the module initialization file:

etc/module.xml:

<?xml version="1.0"?>
<config xmlns:xsi="http://www.w3.org/2001/
 XMLSchema-instance" xsi:noNamespaceSchemaLocation=

Chapter 7

219

 "urn:magento:framework:Module/etc/module.xsd">
 <module name="Genmato_Sample" setup_version="0.1.3">
 <sequence>
 <module name="Magento_Store"/>
 </sequence>
 </module>
</config>

2.	 Create the module registration file:

registration.php

<?php

\Magento\Framework\Component\ComponentRegistrar::register(
 \Magento\Framework\Component\ComponentRegistrar::MODULE,
 'Genmato_Sample',
 __DIR__
);

3.	 Create the module composer.json file:

composer.json

{
 "name": "genmato/sample",
 "description": "Genmato Magento2 Sample extension",
 "keywords": ["magento2", "genmato", "m2sample"],
 "type": "magento2-module",
 "license": "OSL-3.0",
 "require": {
 "php": "~5.5.0|~5.6.0|~7.0.0"
 },
 "autoload": {
 "files": ["registration.php"],
 "psr-4": {
 "Genmato\\Sample\\": ""
 }
 }
}

4.	 Enable the module with Magento. To do this, run the following command:
bin/magento module:enable Genmato_Sample

5.	 Run the upgrade command to register the module:
bin/magento setup:upgrade

Creating Magento 2 Extensions – the Basics

220

How it works…
The module declaration in step 1 registers the module in Magento; here, the version number
and dependencies are also specified to manipulate the load order. The following XML nodes
are available:

ff Module name: Genmato_Sample

ff Setup version: 0.1.3 is used for the setup/upgrade scripts creating database
schemas

ff Sequence: Here we can define the modules that this extension is depending on

With the use of Composer, modules can be placed in two locations currently. In order for
the autoloader to know what file to load when a class is instantiated, the path needs to be
registered. Through registration.php from step 2, the (__DIR__) location is stored for a
specified package. The registration can be done for the following types of packages:

ff MODULE: This is for extensions/modules

ff LIBRARY: This is for extensions that are used as a library

ff THEME: This is for themes

ff LANGUAGE: This is for language packs

In order to use Composer to install the module, it is required to add a composer.json file to
the module. The most important elements in this file are as follows:

ff Name: The extension package name is in the format of <vendor
name>/<extension name>; it is important to only use lowercase letters.
This name is also used to install the extension through Composer.

ff Type: This defines the package type; the possible options are as follows:

�� magento2-module: Extensions/modules

�� magento2-theme: Themes

�� magento2-language: Language packages

ff require: This defines the packages needed to be installed on the system for
this package to work. During installation of the package, Composer will check the
requirements and try to install the missing packages. When it's not possible to install
them, the installation will fail.

ff Autoload: This element is to specify information that needs to be loaded through
the Composer autoloader.

Chapter 7

221

There's more…
In order to install packages in your project, they have to be available for Composer to install.
There are a few options available to install packages from:

ff Magento marketplace: Currently, installing Magento 2 through Composer is done
from the Magento repository. In the future, paid and free modules/packages bought
through the marketplace will be available through the same repository through your
account. This will make installing and managing packages easy.

ff From version control repository: For private packages that you use in your project,
it is possible to install them directly from your version control repository; for this, you
need to add the following to the composer.json file located in your Magento 2
installation root:
{
 "repositories": [
 {
 "type": "vcs",
 "url": "https://github.com/[github
 account]/[package]"
 }
]
}

ff Packagist: For freely available packages, it is also possible to register them on
Packagist, which is the default repository that is available in Composer to install
packages. To add a Magento 2 extension to Packagist, you will need to store the
extension in a public repository, which can be GitHub (http://www.github.com)
or BitBucket (http://www.bitbucket.com).

On Packagist, you can submit your package by specifying your extension
repository URL:

http://www.github.com
http://www.bitbucket.com

Creating Magento 2 Extensions – the Basics

222

Every package is now installable by running the following command in your Magento 2
installation root:

composer require <vendor-name>/<module-name>

Working with database models
Storing data in a database table is handled through a Model class; this model holds the data.
While saving the data, a ResourceModel is used, and this class is the link between the
Model and database table, and all CRUD operations go through the ResourceModel. When
loading a set of records, a Collection is used; it is possible to apply filters to this collection.

Getting ready
Using database models requires that the module configuration is done correctly; otherwise,
the autoloader won't be able to find the files to load.

How to do it…
The following steps in this recipe will add the database models to your module:

1.	 Create the Model class:

Model/Demo.php

<?php
namespace Genmato\Sample\Model;
use Magento\Framework\Model\AbstractModel;
class Demo extends AbstractModel
{
 /**
 * Initialize resource model
 * @return void
 */
 protected function _construct()
 {
 $this->_init('Genmato\Sample\Model\ResourceModel\
 Demo');
 }
}

Chapter 7

223

2.	 Create the ResourceModel class:

Model/ResourceModel/Demo.php

<?php
namespace Genmato\Sample\Model\ResourceModel;
use Magento\Framework\Model\ResourceModel\Db\AbstractDb;
class Demo extends AbstractDb
{
 /**
 * Initialize resource model
 * @return void
 */
 protected function _construct()
 {
 $this->_init('genmato_demo', 'demo_id');
 }
}

3.	 Create the Collection class:

Model/ResourceModel/Demo/Collection.php

<?php
namespace Genmato\Sample\Model\ResourceModel\Demo;
use Magento\Framework\Model\ResourceModel\Db\Collection\
AbstractCollection;
class Collection extends AbstractCollection
{
 /**
 * @var string
 */
 protected $_idFieldName = 'demo_id';

 /**
 * Define resource model
 * @return void
 */
 protected function _construct()
 {
 $this->_init('Genmato\Sample\Model\Demo',
 'Genmato\Sample\Model\ResourceModel\Demo');
 }
}

Creating Magento 2 Extensions – the Basics

224

How it works…
The Model class specifies the used ResourceModel in the constructor through the _init()
function. When the save() function is called on a Model, it will call the save() function on
the ResourceModel; see the save() function in AbstractModel that is extended:

/**
* Save object data
*
* @return $this
* @throws \Exception
*/
public function save()
{
 $this->_getResource()->save($this);
 return $this;
}

Here, _getResource() returns an instance of the class specified in the _init() function.

In the ResourceModel class constructor, the _init() function is called to specify the
genmato_demo database table and primary key in the demo_id table. This will be used when
creating the queries necessary to load or save the data. Depending on the action performed
(save new, save existing, or delete), a corresponding query is generated using an INSERT,
UPDATE, or DELETE query. This is handled by the framework and is built (currently) on the
Zend_Db_Adapter_Pdo_Mysql class.

In the Collection class, both Model and ResourceModel are specified in the _init()
function. ResourceModel is necessary to connect to the database and load the records
from the right database table, allowing you to use filters to select the records necessary. The
collection is then represented as an array of Models to allow all functionality available to
models (magic getters/setters, adding data, and delete/save).

Creating tables using setup scripts
When using database models, as explained in the previous recipe, the corresponding tables
needs to be created during setup. These operations are placed in setup scripts and executed
during the installation of an extension.

Chapter 7

225

Getting ready
While running the installation of a module, there are four files executed to create schemas
and insert data. To create schemas, the files used are as follows:

Setup/InstallSchema.php

Setup/UpgradeSchema.php

The installation file is executed only when there is no record in the setup_module table
for the module. The upgrade file is executed only when the current version number in the
setup_module table is lower than the version configured in your etc/module.xml file.

When it's necessary to insert default values into a table or new EAV attributes need to be
created, these actions need to be configured in the following files:

Setup/InstallData.php

Setup/UpgradeData.php

Magento keeps track of which version is installed for an extension in the setup_module
table; here, the current installed version for the schema and data is stored:

How to do it…
Follow these steps to create your database tables:

1.	 The following is the table schema installation:

Setup/InstallSchema.php

<?php
namespace Genmato\Sample\Setup;

use Magento\Framework\Setup\InstallSchemaInterface;

Creating Magento 2 Extensions – the Basics

226

use Magento\Framework\Setup\ModuleContextInterface;
use Magento\Framework\Setup\SchemaSetupInterface;
use Magento\Framework\DB\Adapter\AdapterInterface;

class InstallSchema implements InstallSchemaInterface
{
 public function install(SchemaSetupInterface $setup,
 ModuleContextInterface $context)
 {
 $installer = $setup;

 $installer->startSetup();

 /**
 * Create table 'genmato_demo'
 */
 $table = $installer->getConnection()->newTable(
 $installer->getTable('genmato_demo')
)->addColumn(
 'demo_id',
 \Magento\Framework\DB\Ddl\Table::TYPE_SMALLINT,
 null,
 ['identity' => true, 'nullable' => false, 'primary'
 => true],
 'Demo ID'
)->addColumn(
 'title',
 \Magento\Framework\DB\Ddl\Table::TYPE_TEXT,
 255,
 ['nullable' => false],
 'Demo Title'
)->addColumn(
 'creation_time',
 \Magento\Framework\DB\Ddl\Table::TYPE_TIMESTAMP,
 null,
 [],
 'Creation Time'
)->addColumn(
 'update_time',
 \Magento\Framework\DB\Ddl\Table::TYPE_TIMESTAMP,
 null,
 [],
 'Modification Time'
)->addColumn(

Chapter 7

227

 'is_active',
 \Magento\Framework\DB\Ddl\Table::TYPE_SMALLINT,
 null,
 ['nullable' => false, 'default' => '1'],
 'Is Active'
)->addIndex(
 $setup->getIdxName(
 $installer->getTable('genmato_demo'),
 ['title'],
 AdapterInterface::INDEX_TYPE_FULLTEXT
),
 ['title'],
 ['type' => AdapterInterface::INDEX_TYPE_FULLTEXT]
)->setComment(
 'Demo Table'
);
 $installer->getConnection()->createTable($table);

 $installer->endSetup();
 }
}

2.	 Trigger the execution of the setup scripts:
bin/magento setup:upgrade

How it works…
In Magento 2, the running of the setup scripts is no longer triggered by the first request after
flushing the cache; to initiate the running of these scripts, run the command specified in step
2. When running the upgrade command, all modules are evaluated on their current version
and module version in the configuration file. First, all schema installations/updates are
executed, and next, the data installations/updates are processed.

The InstallData and InstallSchema files are executed only when there is no prior
registration of the extension in the setup_module table. To run the installation files during
testing, it is possible to remove the module row from the table and run the bin/magento
setup:upgrade command.

Creating Magento 2 Extensions – the Basics

228

The available methods to create a new table are defined in the Magento\Framework\DB\
Adapter\AdapterInterface\Table class and are as follows:

ff addColumn: This adds a new column to the table; this method has the following
parameters:

�� name: This is the name of the table

�� type: This is the table type; the available column types are
defined as constants in the Magento\Framework\DB\Adapter\
AdapterInterface\Table class as TYPE_*:

TYPE_BOOLEAN

TYPE_SMALLINT

TYPE_INTEGER

TYPE_BIGINT

TYPE_FLOAT

TYPE_NUMERIC

TYPE_DECIMAL

TYPE_DATE

TYPE_TIMESTAMP

TYPE_DATETIME

TYPE_TEXT

TYPE_BLOB

TYPE_VARBINARY

�� size: This specifies the size of the column

�� options: This is used to specify extra column options; the available options
are as follows:

unsigned: This is only for number types; allows True/False (default: False)

precision: This is only for decimal and numeric types (default: calculated
from size parameter or 0 if not set)

scale: This is only for decimal and numeric types (default: calculated from
size parameter or 10 if not set)

default: The default value is used when creating a new record

nullable: In case a column is NULL (default: True)

primary: This makes a column a primary key

primary_position: This is only for primary keys and sets the sort order
for the primary keys

Chapter 7

229

identity/auto_increment: This auto-increments a column on inserting
a new record (used to identify a unique record ID)

�� comment: This is the description of the column

ff addForeignKey: This adds a foreign key relation to another table; the parameters
allowed are as follows:

�� fkName: This is the name of the foreign key

�� column: This is the column used as the foreign key

�� refTable: This is the table where the key references to

�� refColumn: This is the column name in the referenced table

�� onDelete: This sets the action to be performed when deleting a record; the
available options are (constants as defined in Magento\Framework\DB\
Adapter\AdapterInterface\Table):

ACTION_CASCADE

ACTION_RESTRICT

ACTION_SET_DEFAULT

ACTION_SET_NULL

ACTION_NO_ACTION

ff addIndex: This adds a column to the search index; the available parameters are as
follows:

�� indexName: This is the name used for the index

�� fields: These are the column(s) used for the index (can be a single column
or an array of columns)

�� options: This is an array with extra options; currently, only the option type is
used to specify the index type

When changing an existing table, it is possible to use the following methods; these are the
methods that can be used directly on the $installer->getConnection() class:

ff dropTable: This removes a table from the database; the available parameters are
as follows:

�� tableName: This is the name of the table to delete

�� schemaName: This is the optional schema name used

Creating Magento 2 Extensions – the Basics

230

ff renameTable: This renames a table from the database; the available parameters
are as follows:

�� oldTableName: This is the current name of the table

�� newTableName: This is the new name for the table

�� schemaName: This is the optional schema name

ff addColumn: This adds an extra column to a table; the available parameters are as
follows:

�� tableName: This is the name of the table to alter

�� columnName: This is the name of the new column

�� definition: This is an array with the following parameters:

Type: Column type

Length: Column size

Default: Default value

Nullable: If a column can be NULL

Identify/Auto_Increment: Used as an identity column

Comment: Column description

After: Specify where to add the column

�� schemaName: This is the optional schema name

ff changeColumn: This changes the column name and definition; the available
parameters are as follows:

�� tableName: This is the name of the table to change

�� oldColumnName: This is the current column name

�� newColumnName: This is the new name for the column

�� definition: This is the table definition; see addColumn for available
values

�� flushData: This flushes the table cache

�� schemaName: This is the optional schema name

ff modifyColumn: This changes the column definition; the available parameters are as
follows:

�� tableName: This is the name of the table

�� columnName: This is the column name to change

�� definition: This is the table definition; see addColumn for available
values

Chapter 7

231

�� flushData: This flushes the table cache

�� schemaName: This is the optional schema name

ff dropColumn: This removes a column from the table; the available parameters are as
follows:

�� tableName: This is the name of the column

�� columnName: This is the name of the column to remove

�� schemaName: This is the optional schema name

ff addIndex: This adds a new index; the available parameters are as follows:

�� tableName: This is the name of the table to change

�� indexName: This is the name of the index to add

�� fields: These are the columns to be used as the index

�� indexType: This is the type of index; the available options (constants
defined in (Magento\Framework\DB\Ddl\Table\AdapterInterface)
are as follows:

INDEX_TYPE_PRIMARY

INDEX_TYPE_UNIQUE

INDEX_TYPE_INDEX

INDEX_TYPE_FULLTEXT

�� schemaName: This is the optional schema name

ff dropIndex: This removes an index from a table; the available parameters are as
follows:

�� tableName: This is the name of the column

�� indexName: This is the name of the index

�� schemaName: This is the optional schema name

ff addForeignKey: This adds a new foreign key; the available parameters are as
follows:

�� fkName: This is the name of the foreign key

�� tableName: This is the name of the table

�� columnName: This is the name of the column used in the foreign key

�� refTableName: This is the name of the referenced table

�� refColumnName: This is the name of the referenced column

�� onDelete: This is the action to perform on delete (see the preceding
addForeignKey description for available options)

Creating Magento 2 Extensions – the Basics

232

�� purge: This removes invalid data (default: false)

�� schemaName: This is the optional schema name

�� refSchemaName: This is the option-referenced schema name

There's more…
When, in a later version of the extension, there are extra fields necessary (or the current fields
need to be changed), this is handled through the UpgradeSchema function, upgrade:

Setup/UpgradeSchema.php

<?php
namespace Genmato\Sample\Setup;

use Magento\Framework\DB\Ddl\Table;
use Magento\Framework\Setup\UpgradeSchemaInterface;
use Magento\Framework\Setup\ModuleContextInterface;
use Magento\Framework\Setup\SchemaSetupInterface;

class UpgradeSchema implements UpgradeSchemaInterface
{
 public function upgrade(SchemaSetupInterface $setup,
 ModuleContextInterface $context)
 {
 $setup->startSetup();

 if (version_compare($context->getVersion(), '0.1.1', '<')) {
 $connection = $setup->getConnection();

 $column = [
 'type' => Table::TYPE_SMALLINT,
 'length' => 6,
 'nullable' => false,
 'comment' => 'Is Visible',
 'default' => '1'
];
 $connection->addColumn($setup->getTable('genmato_demo'),
 'is_visible', $column);
 }

 $setup->endSetup();
 }
}

Chapter 7

233

As this file is run every time the module version is different than the currently installed
version, it is necessary to check the current version that is installed to execute only the
updates necessary:

if (version_compare($context->getVersion(), '0.1.1', '<')) {

The preceding statement will make sure that the schema changes are executed only if the
current version is less than 0.1.1.

Data installation
In order to provide default content during installation (this can be records in a table or adding
extra attributes to some entity), the data installation function is used:

Setup/InstallData.php

<?php
namespace Genmato\Sample\Setup;

use Genmato\Sample\Model\Demo;
use Genmato\Sample\Model\DemoFactory;
use Magento\Framework\Setup\InstallDataInterface;
use Magento\Framework\Setup\ModuleContextInterface;
use Magento\Framework\Setup\ModuleDataSetupInterface;

class InstallData implements InstallDataInterface
{
 /**
 * Demo factory
 *
 * @var DemoFactory
 */
 private $demoFactory;

 /**
 * Init
 *
 * @param DemoFactory $demoFactory
 */
 public function __construct(DemoFactory $demoFactory)
 {
 $this->demoFactory = $demoFactory;
 }

 /**
 * {@inheritdoc}

Creating Magento 2 Extensions – the Basics

234

 * @SuppressWarnings(PHPMD.ExcessiveMethodLength)
 */
 public function install(ModuleDataSetupInterface $setup,
 ModuleContextInterface $context)
 {
 $demoData = [
 'title' => 'Demo Title',
 'is_active' => 1,
];

 /**
 * Insert demo data
 */
 $this->createDemo()->setData($demoData)->save();

 }

 /**
 * Create demo
 *
 * @return Demo
 */
 public function createDemo()
 {
 return $this->demoFactory->create();
 }
}

In this example, there is one record created in the table created during setup. For this, the
DemoFactory class is injected through dependency injection into the constructor function
of this class. DemoFactory is an automatically created class that allows you to instantiate a
class (in this case, Genmato\Sample\Model\Demo) without injecting this directly into the
constructor. Here, this is done in the createDemo function:

$this->demoFactory->create();

Similar to SchemaUpgrade, there is also a DataUpgrade option to insert data while
upgrading to a newer version.

Chapter 7

235

Creating a web route and controller to
display data

In order to display data from your extension on the frontend (the public part of the website),
the following is necessary:

ff A configured route

ff A controller handling the request

ff A layout file to specify what to show

ff The block class as specified in the layout file

ff A template file (optional)

How to do it…
Follow these steps to extend your module with a frontend web route and output data from a
template file:

1.	 Create a route in the frontend area:

etc/frontend/routes.xml

<?xml version="1.0"?>
<config xmlns:xsi="http://www.w3.org/2001/
 XMLSchema-instance" xsi:noNamespaceSchemaLocation=
 "urn:magento:framework:App/etc/routes.xsd">
 <router id="standard">
 <route id="sample" frontName="sample">
 <module name="Genmato_Sample" />
 </route>
 </router>
</config>

2.	 Create the controller that handles the request and renders the output:

Controller/Index/Index.php

<?php
namespace Genmato\Sample\Controller\Index;
use Magento\Framework\App\Action\Action;

class Index extends Action
{
 /**
 * @var \Magento\Framework\View\Result\PageFactory

Creating Magento 2 Extensions – the Basics

236

 */
 protected $resultPageFactory;

 /**
 * @param \Magento\Framework\App\Action\Context $context
 * @param \Magento\Framework\View\Result\PageFactory
 resultPageFactory
 */
 public function __construct(
 \Magento\Framework\App\Action\Context $context,
 \Magento\Framework\View\Result\PageFactory
 $resultPageFactory
)
 {
 $this->resultPageFactory = $resultPageFactory;
 parent::__construct($context);
 }

 /**
 * Renders Sample Index
 */
 public function execute()
 {
 return $this->resultPageFactory->create();
 }
}

3.	 Create the layout file to specify what to display:

view/frontend/layout/sample_index_index.xml

<?xml version="1.0"?>
<page xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 layout="1column" xsi:noNamespaceSchemaLocation=
 "urn:magento:framework:View/Layout/etc/
 page_configuration.xsd">
 <head>
 <title>Sample DemoList</title>
 </head>
 <body>
 <referenceContainer name="content">
 <block class="Genmato\Sample\Block\DemoList"
 name="demoList" template=
 "Genmato_Sample::list.phtml" />
 </referenceContainer>
 </body>
</page>

Chapter 7

237

4.	 In order to show the data, the Block class is called to render the template specified:

Block/DemoList.php

<?php
namespace Genmato\Sample\Block;

use Magento\Framework\View\Element\Template;
use Genmato\Sample\Model\ResourceModel\Demo\Collection as
 DemoCollection;
use Magento\Store\Model\ScopeInterface;

class DemoList extends Template
{
 /**
 * Demo collection
 *
 * @var DemoCollection
 */
 protected $_demoCollection;

 /**
 * Demo resource model
 *
 * @var \Genmato\Sample\Model\ResourceModel\Demo\
 CollectionFactory
 */
 protected $_demoColFactory;

 /**
 * @param Template\Context $context
 * @param \Genmato\Sample\Model\ResourceModel\Demo\
 CollectionFactory $collectionFactory
 * @param array $data
 * @SuppressWarnings(PHPMD.ExcessiveParameterList)
 */
 public function __construct(
 Template\Context $context,
 \Genmato\Sample\Model\ResourceModel\Demo\
 CollectionFactory $collectionFactory,
 array $data = []
) {
 $this->_demoColFactory = $collectionFactory;
 parent::__construct(
 $context,

Creating Magento 2 Extensions – the Basics

238

 $data
);
 }

 /**
 * Get Demo Items Collection
 * @return DemoCollection
 */
 public function getDemoItems()
 {
 if (null === $this->_demoCollection) {
 $this->_demoCollection =
 $this->_demoColFactory->create();
 }
 return $this->_demoCollection;
 }
}

5.	 In the template, the data collected in the Block class can be used to build the page:

view/frontend/templates/list.phtml

<table>
 <tr>
 <td>ID</td>
 <td>Title</td>
 </tr>
 <?php foreach($block->getDemoItems() as $item): ?>
 <tr>
 <td><?php echo $item->getId(); ?></td>
 <td><?php echo $item->getTitle();?></td>
 </tr>
 <?php endforeach; ?>
</table>

6.	 Refresh the cache to update the configuration:
bin/magento cache:clean

Chapter 7

239

In your browser, open http://[your hostname]/sample/index/index/. This
will result in the following page when you access the URL:

If you have not set the deploy mode to developer, it is possible that
the accessed URL will not render. If this is the case, you need to run
the compile command:
bin/magento setup:di:compile

How it works…
When a request is received in the application, the path is evaluated and executed in the
following order:

1.	 A request is received by index.php.

2.	 The index.php file creates a bootstrap:
$bootstrap = \Magento\Framework\App\Bootstrap::create(BP, $_
SERVER);

3.	 The bootstrap creates a new HTTP application:
$app = $bootstrap->createApplication('Magento\Framework\App\
Http');

4.	 The bootstrap application is started:
$bootstrap->run($app);

http://[your

Creating Magento 2 Extensions – the Basics

240

5.	 In the run function of the bootstrap class, the created application is launched:
$response = $application->launch();

6.	 The application launch function will instantiate the frontcontroller and dispatch
the request:
$frontController = $this->_objectManager->get(
 'Magento\Framework\App\FrontControllerInterface');
$result = $frontController->dispatch($this->_request);

7.	 The frontcontroller loops through all the available configured controllers
and checks whether there is a match. When a match is found, the controller is
instantiated and the execute method is called:
$result = $actionInstance->execute();

8.	 This will evaluate the layout file for the route loaded and render the blocks that are
specified there.

To activate a route on the frontend, it needs to be configured by specifying the first part of the
URL. This first part maps the request to the extension that will handle the request.

Here, frontName (sample) is mapped to the extension, Genmato_Sample, allowing it to
handle all requests on the frontend.

In order to handle the request to a URL, there needs to be a controller. In Magento 2, the
controller now handles only one action (whereas Magento 1 has a controller that has the
option to handle multiple actions). Every request consists of three parts:

[route]/[controller]/[action]

[route]: This is the configured frontName

[controller]: This is the path to identify the controller

[action]: This is the action that is executed (the PHP class)

In this case, a request is made to the following:

http://example.com/sample/

This will result with a request to the following:

http://example.com/sample/index/index

This will load the following file:

Genmato\Sample\Controller\Index\Index.php

Chapter 7

241

The executed controller relies on the layout file to render the page by including the specified
blocks in the page. Just like the controllers, the layout files are now separate files per page
handle. The name of the file is built in the same way as the controllers:

[route]_[controller]_[action].xml

This makes it easier to change a specific page handle in a theme.

The loaded Block class is the location to handle the collection of the data necessary to be
shown in the template (just like in Magento 1). Here, we load the collection from the database
so that it can be used in the template.

Creating system configuration fields
In Magento, it is possible to store configuration values for global/website or store in the
backend. These values can be used to store simple module settings such as API -keys, module
enable/disable options, or any setting that you might require for your module. The data is
stored in the core_config_data table.

Getting ready
As the configuration fields are only accessible through the backend web pages, the
configuration file is stored in the etc/adminhtml directory.

How to do it…
Create your own configuration options with the following step:

1.	 Create the system configuration file:

etc/adminhtml/system.xml

<?xml version="1.0"?>
<config xmlns:xsi="http://www.w3.org/2001/
 XMLSchema-instance" xsi:noNamespaceSchemaLocation=
 "urn:magento:module:Magento_Config:etc/system_file.xsd">
 <system>
 <section id="sample" translate="label" type="text"
 sortOrder="2000" showInDefault="1" showInWebsite="1"
 showInStore="1">
 <label>Sample Configuration</label>
 <tab>general</tab>
 <resource>Genmato_Sample::config_sample</resource>
 <group id="demo" translate="label" type="text"
 sortOrder="100" showInDefault="1" showInWebsite="1"
 showInStore="1">

Creating Magento 2 Extensions – the Basics

242

 <label>Sample</label>
 <field id="header" translate="label" type="text"
 sortOrder="1" showInDefault="1" showInWebsite="1"
 showInStore="1">
 <label>Header Title</label>
 </field>
 <field id="selectsample" translate="label"
 type="select" sortOrder="2" showInDefault="1"
 showInWebsite="1" showInStore="1">
 <label>Sample Select</label>
 <source_model>Genmato\Sample\Model\Config\Source\
 DemoList</source_model>
 </field>
 </group>
 </section>
 </system>
</config>

How it works…
The Magento store configuration is divided in separate sections and contains multiple
groups of configuration fields. Every section is assigned to a main tab that is displayed
above the sections.

Creating a new tab
When the configuration options that you want to add can't fit in one of the existing tabs, it
is possible to add your own through the system.xml file. For this, add the following to your
system configuration file:

<tab id="<unique tab name>" translate="label"
 sortOrder="<sort order>" class="<class>">
 <label>[label]</label>
</tab>

In the configuration, you can use the following attributes:

ff id: This is a unique identifier for the tab, which is also used to reference to the tab in
your sections

ff translate: This specifies the elements that need to be available for translation (in
this case, only the label field is available)

ff sortOrder: This is the numeric value to use to sort the tabs

ff class: This is the optional class name for your tab

The label element is used as the visible name of the tab in the configuration; it is important to
make it as descriptive as possible for customers to understand.

Chapter 7

243

Creating a new section
Every section is shown below the tab referenced in the configuration. In every section, multiple
groups can be configured that can hold multiple fields. Adding a new section can be done by
adding the following to your system.xml file:

<section id="<unique_section_name>" translate="label"
 type="<text>" sortOrder="<sort order>" showInDefault="<0/1>"
 showInWebsite="<0/1>" showInStore="<0/1>">
 <class>[class]</class>
 <header_css>[header_css]</header_css>
 <label>[label]</label>
 <tab>[tab]</tab>
 <resource>[resource]</resource>
</section>

The attributes used are as follows:

ff id: This is the unique section identifier

ff translate: This specifies the elements that need to be available for translation (in
this case, only the label field is available)

ff type: This is the type of field used (normally text)

ff sortOrder: This is the numeric value to use to sort the sections

ff showInDefault: This shows sections in the default store configuration

ff showInWebsite: This displays sections in the website configuration

ff showInStore: This displays sections in the store configuration

The available elements in this configuration are as follows:

ff class: This is the class used for the section

ff header_css: This is the CSS class to use in the text header for the section

ff label: This is the text to display in the section

ff tab: This is the reference to the tab where the section should be added

ff resource: This is the access control list (ACL) resource referenced, which is used
to check whether the user logged in has access to the section

Creating Magento 2 Extensions – the Basics

244

Creating a new group
In a section, it is possible to create multiple groups; they are displayed as separate fieldsets
that can be expanded/collapsed and can hold one or multiple fields. To create a new group,
add the following (in the section to hold the group) to the system.xml file:

<group id="<group_id>" translate="label" type="text"
 sortOrder="<sort order>" showInDefault="<0/1>"
 showInWebsite="<0/1>" showInStore="<0/1>">
 <label>[label]</label>
</group>

The attributes to configure a group are as follows:

ff id: This is the unique ID for the group (in the section)

ff translate: These are the fields that needs to be translated, in this case, only the
label option

ff type: This is the field type (text in this case)

ff sortOrder: This is the numeric value used to sort the groups

ff showInDefault: This shows a group in the default store configuration

ff showInWebsite: This shows a group in the website configuration

ff showInStore: This shows a group in the store configuration

The label element is shown as the heading of the group.

Creating a new field
Every group can have one or multiple fields. In the database, the configuration is stored as a
path build, <section>/<group>/<field>. A new config field can be one of the following
types: text input, textarea, select, multiselect, or a custom data renderer. To add a field, add
the following to a group:

<field id="<field_id>" translate="label" type="<type>"
 sortOrder="<sort order>" showInDefault="<0/1>"
 showInWebsite="<0/1>" showInStore="<0/1>">
 <label>[comment]</label>
 <comment>[comment]</comment>
</field>

The attributes used for the field configuration are as follows:

ff id: This is the unique ID of the field in the group

ff translate: These are the fields that need to be translated (can be the label,
comment, tooltip, or hint elements)

Chapter 7

245

ff type: This is the input type, which can be the following:

�� text: Default text input field

�� textarea: Text area input

�� obscure: Password input

�� select: Drop-down select

This needs a source_model element to specify the available options
to select.

multiselect: This is the multiple item select box. This needs a source_model
element to specify the available options to select.

image: This is the image upload with a preview if the file is uploaded. This needs
different backend_model (to store the uploaded file), upload_dir (to specify
where to save the file), and base_url (path used to build the URL to access from the
frontend) elements.

ff sortOrder: This is the numeric value used to sort the fields in the group

ff showInDefault: This shows fields in the default store configuration

ff showInWebsite: This shows fields in the website configuration

ff showInStore: This shows fields in the store configuration

There are also some extra elements available to configure the field:

ff label: This is the label, which shows in front of the input field

ff comment: This is the comment shown below the input field

ff tooltip: This is the text shown when hovering the question mark

ff frontend_class: This is the class used for the field

ff frontend_model: This is the custom frontend model (block) that will be used to
render the input area

ff backend_model: This is the backend model used when saving the data to process
inserted values

ff source_model: This is the data source used for select and multiselect fields

ff depends: This is the option to hide/show a field based on a value used by another
field, for example:
<depends>
 <field id="[field_name_to_check]">[value_to show]</field>
</depends>

When [field_name_to_check] has the [value_to_show] value, the field will
be visible, if it contains a different value, then the field is hidden for the user.

Creating Magento 2 Extensions – the Basics

246

There's more…
To get the data stored in the sample/demo/header field, add the following to the template
Block class in our template block:

Block/DemoList.php

/**
* Get Header from configuration value
* @return string
*/
public function getHeader()
{
 return $this->_scopeConfig->getValue('sample/demo/header',
 ScopeInterface::SCOPE_STORE);
}

The _scopeConfig class is injected through dependency injection (DI) into the Block class
in the constructor and allows us to read data stored in the configuration.

Next, we want to display the data in our template by adding the following line at the top
of the file:

view/frontend/templates/list.phtml

<p><?php echo $this->getHeader();?></p>

Creating a backend data grid
Adding a page to the backend requires, just like the frontend, a configured route, controller,
and layout file. In order to display a grid page to show data from a table, there are currently
three ways available:

ff Creating a grid container and specifying the fields to display and data source to use
in the grid class. This method is similar to how a grid is built in Magento 1 and is not
really flexible/easy to extend. An example of how this is used can be found in the CMS
Page module:

Magento\Cms\Block\Adminhtml\Page

Magento\Cms\Block\Adminhtml\Page\Grid

Chapter 7

247

ff Using this method, there is only a grid container Block class created. The grid fields
and options are defined in the layout XML file. This makes it possible to extend the
grid easily by adding extra fields to the XML. An example of this can be found in the
Customer Group code in the following:

Magento\Customer\view\adminhtml\layout\customer_group_index.xml

ff The last option is fully configured through XML and gives the option to specify the
data source, quick search, available advanced filters, mass actions, row actions, and
columns to show. It also gives you the option to customize the columns shown in the
backend by the user.

In this example, we will use the last option to build a grid. As this option uses quite a large set
of files and long XML listings, the complete code can be found on GitHub (https://github.
com/Genmato/M2_Sample).

How to do it…
The following steps will describe how to add a backend data grid:

1.	 Configure routes for use in the adminhtml area:

etc/adminhtml/routes.xml

<?xml version="1.0"?>
<config xmlns:xsi="http://www.w3.org/2001/
 XMLSchema-instance" xsi:noNamespaceSchemaLocation=
 "urn:magento:framework:App/etc/routes.xsd">

 <router id="admin">
 <route id="sample" frontName="sample">
 <module name="Genmato_Sample"
 before="Magento_Backend" />
 </route>
 </router>
</config>

2.	 Create the Controller for the backend:

Controller/Adminhtml/Demolist/Index.php

<?php
namespace Genmato\Sample\Controller\Adminhtml\Demolist;

use Magento\Backend\App\Action\Context;
use Magento\Framework\View\Result\PageFactory;

https://github.com/Genmato/M2_Sample
https://github.com/Genmato/M2_Sample

Creating Magento 2 Extensions – the Basics

248

use Magento\Backend\App\Action as BackendAction;

class Index extends BackendAction
{
 /**
 * @var PageFactory
 */
 protected $resultPageFactory;

 /**
 * @param Context $context
 * @param PageFactory $resultPageFactory
 */
 public function __construct(
 Context $context,
 PageFactory $resultPageFactory
) {
 parent::__construct($context);
 $this->resultPageFactory = $resultPageFactory;
 }
 /**
 * Check the permission to run it
 *
 * @return bool
 */
 protected function _isAllowed()
 {
 return $this->_authorization->isAllowed(
 'Genmato_Sample::demolist');
 }

 /**
 * Index action
 *
 * @return \Magento\Backend\Model\View\Result\Page
 */
 public function execute()
 {
 /** @var \Magento\Backend\Model\View\Result\Page
 $resultPage */
 $resultPage = $this->resultPageFactory->create();
 $resultPage->setActiveMenu('Genmato_Sample::demolist');
 $resultPage->addBreadcrumb(__('CMS'), __('CMS'));

Chapter 7

249

 $resultPage->addBreadcrumb(__('Demo List'), __('Demo
 List'));
 $resultPage->getConfig()->getTitle()->prepend(__('Demo
 List'));

 return $resultPage;
 }
}

3.	 Control the access to the page through the ACL:

etc/acl.xml

<?xml version="1.0"?>
<config xmlns:xsi="http://www.w3.org/2001/
 XMLSchema-instance" xsi:noNamespaceSchemaLocation=
 "urn:magento:framework:Acl/etc/acl.xsd">
 <acl>
 <resources>
 <resource id="Magento_Backend::admin">
 <resource id="Magento_Backend::content">
 <resource id="Magento_Backend::content_elements">
 <resource id="Genmato_Sample::demolist"
 title="Demo List" sortOrder="10" />
 </resource>
 </resource>
 </resource>
 </resources>
 </acl>
</config>

4.	 The following is the layout file to specify the grid uiComponent used:

view/adminhtml/layout/sample_demolist_index.xml

<?xml version="1.0"?>
<page xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="urn:magento:framework:
 View/Layout/etc/page_configuration.xsd">
 <update handle="styles"/>
 <body>
 <referenceContainer name="content">
 <uiComponent name="sample_demolist_listing"/>
 </referenceContainer>
 </body>
</page>

Creating Magento 2 Extensions – the Basics

250

5.	 Create the uiComponent configuration:

The referenced uiComponent configuration is quite large. In the sample code (on
GitHub), this file can be found at the following:
https://github.com/mage2cookbook/M2_Sample/blob/master/view/
adminhtml/ui_component/sample_demolist_listing.xml

6.	 Add resources used in uiComponent to the dependency injection configuration:

etc/di.xml

<?xml version="1.0"?>
<config xmlns:xsi="http://www.w3.org/2001/
 XMLSchema-instance" xsi:noNamespaceSchemaLocation=
 "urn:magento:framework:ObjectManager/etc/config.xsd">
 <preference for="Genmato\Sample\Model\DemoInterface"
 type="Genmato\Sample\Model\Demo" />

 <type name="Magento\Framework\View\Element\UiComponent\
 DataProvider\CollectionFactory">
 <arguments>
 <argument name="collections" xsi:type="array">
 <item name="sample_demolist_listing_data_source"
 xsi:type="string">Genmato\Sample\Model\
 ResourceModel\Demo\Grid\Collection</item>
 </argument>
 </arguments>
 </type>
 <type name="Genmato\Sample\Model\ResourceModel\Demo\
 Grid\Collection">
 <arguments>
 <argument name="mainTable" xsi:type="string">
 genmato_demo</argument>
 <argument name="eventPrefix" xsi:type="string">
 sample_demolist_grid_collection</argument>
 <argument name="eventObject" xsi:type="string">
 sample_demolist_collection</argument>
 <argument name="resourceModel" xsi:type="string">
 Genmato\Sample\Model\ResourceModel\Demo</argument>
 </arguments>
 </type>
 <virtualType name="DemoGridFilterPool" type="Magento\
 Framework\View\Element\UiComponent\DataProvider\
 FilterPool">
 <arguments>
 <argument name="appliers" xsi:type="array">

https://github.com/mage2cookbook/M2_Sample/blob/master/view/adminhtml/ui_component/sample_demolist_listing.xml
https://github.com/mage2cookbook/M2_Sample/blob/master/view/adminhtml/ui_component/sample_demolist_listing.xml

Chapter 7

251

 <item name="regular" xsi:type="object">
 Magento\Framework\View\Element\UiComponent\
 DataProvider\RegularFilter</item>
 <item name="fulltext" xsi:type="object">
 Magento\Framework\View\Element\UiComponent\
 DataProvider\FulltextFilter</item>
 </argument>
 </arguments>
 </virtualType>
 <virtualType name="DemoGridDataProvider" type="Magento\
 Framework\View\Element\UiComponent\DataProvider\
 DataProvider">
 <arguments>
 <argument name="collection" xsi:type="object"
 shared="false">Genmato\Sample\Model\ResourceModel\
 Demo\Collection</argument>
 <argument name="filterPool" xsi:type="object"
 shared="false">DemoGridFilterPool</argument>
 </arguments>
 </virtualType>
</config>

7.	 Add the mass action controller:

Controller/Adminhtml/Demolist/MassDelete.php

<?php
namespace Genmato\Sample\Controller\Adminhtml\Demolist;

use Magento\Framework\Controller\ResultFactory;
use Magento\Backend\App\Action\Context;
use Magento\Ui\Component\MassAction\Filter;
use Genmato\Sample\Model\ResourceModel\Demo\CollectionFactory;
use Magento\Backend\App\Action;

class MassDelete extends Action
{

 /**
 * @var CollectionFactory
 */
 protected $collectionFactory;

 /**
 * @param Context $context
 * @param Filter $filter

Creating Magento 2 Extensions – the Basics

252

 * @param CollectionFactory $collectionFactory
 */
 public function __construct(Context $context, Filter
 $filter, CollectionFactory $collectionFactory)
 {
 $this->filter = $filter;
 $this->collectionFactory = $collectionFactory;
 parent::__construct($context);
 }

 /**
 * Execute action
 *
 * @return \Magento\Backend\Model\View\Result\Redirect
 */
 public function execute()
 {
 $collection = $this->filter->getCollection(
 $this->collectionFactory->create());
 $collectionSize = $collection->getSize();

 foreach ($collection as $item) {
 $item->delete();
 }

 $this->messageManager->addSuccess(__('A total of %1
 record(s) have been deleted.', $collectionSize));

 /** @var \Magento\Backend\Model\View\Result\Redirect
 $resultRedirect */
 $resultRedirect = $this->resultFactory->create(
 ResultFactory::TYPE_REDIRECT);
 return $resultRedirect->setPath('*/*/');
 }
}

8.	 Add options to the menu:

etc/adminhtml/menu.xml

<?xml version="1.0"?>
<config xmlns:xsi="http://www.w3.org/2001/
 XMLSchema-instance" xsi:noNamespaceSchemaLocation=
 "urn:magento:module:Magento_Backend:etc/menu.xsd">
 <menu>

Chapter 7

253

 <add id="Genmato_Sample::demolist" title="Demo List"
 module="Genmato_Sample" sortOrder="10"
 parent="Magento_Backend::content_elements"
 action="sample/demolist"
 resource="Genmato_Sample::demolist"/>
 </menu>
</config>

How it works…
The controller and layout file are the same for the frontend, only the backend is protected
through an ACL. This allows administrators to create specific user rules and allow access only
to the selected pages.

The resource access is checked in the controller in the following function:

protected function _isAllowed()

The uiComponent configuration
As the complete configuration through uiComponent results in a large XML file, we will explain
some parts on how they are configured and hook in to the system.

Data source
The data source is specified through the XML node:

<listing>
<dataSource name="sample_demolist_listing_data_source">
<argument name="dataProvider" xsi:type="configurableObject">
<argument name="class" xsi:type="string">
 DemoGridDataProvider</argument>

The specified data class, DemoGridDataProvider, is configured through dependency
injection and specified in the etc/di.xml file. Here, DemoGridDataProvider corresponds
to the Genmato\Sample\Model\ResourceModel\Demo\Collection collection.
Additionally, DemoGridFilterPool and the collection are configured through this file to load
the data.

Mass actions for grid
It is also easy to specify multiple mass actions to be used in the grid; you can specify the title,
action to execute, and optional message alert box:

<massaction name="listing_massaction">
 <argument name="data" xsi:type="array">
 <item name="config" xsi:type="array">

Creating Magento 2 Extensions – the Basics

254

 <item name="selectProvider" xsi:type="string">
 sample_demolist_listing.sample_demolist_listing.
 sample_demolist_columns.ids</item>
 <item name="indexField" xsi:type="string">demo_id</item>
 </item>
 </argument>
 <action name="delete">
 <argument name="data" xsi:type="array">
 <item name="config" xsi:type="array">
 <item name="type" xsi:type="string">delete</item>
 <item name="label" xsi:type="string" translate
 ="true">Delete</item>
 <item name="url" xsi:type="url" path=
 "sample/demolist/massDelete"/>
 <item name="confirm" xsi:type="array">
 <item name="title" xsi:type="string"
 translate="true">Delete items</item>
 <item name="message" xsi:type="string" translate="true">
 Are you sure you want to delete selected items?
 </item>
 </item>
 </item>
 </argument>
 </action>
</massaction>

In this example, we add an option to delete records from the database. In order to delete the
records from the database, you need to create a controller that handles the removal of the
records. You need to create a Controller class for every action you specify, this controller
contains your custom code to be executed.

By adding the menu option in the Content menu below the Pages menu item, the page can
be accessed through the backend. This link action will go to the specified sample/demolist
URL that will result in the full URL:

http://example.com/admin/sample/demolist/

Chapter 7

255

The resource argument defines the ACL that is used to show/hide the menu option
depending on the user rights:

When clicking on the menu option, the resulting page will look as follows:

Creating Magento 2 Extensions – the Basics

256

See also
For more information about uiComponents that are available, you can refer to the following:

http://devdocs.magento.com/guides/v2.0/ui-components/ui-component.
html

Creating a backend form to add/edit data
If you want to add a new record or edit an existing record, it is possible to create a form to
have a user friendly way to process the data. In this example, we will see how to create a form
to edit an existing record. The path used to add a record will be as follows:

http://example.com/admin/sample/demolist/new/

This will require the controller name to be new, but as this is a reserved word in PHP, the class
name used will be newAction. The execute function is not only used to add a new record, but
it can also be used to edit an existing record. In the following code, only the execute action is
shown; see the sample code for the complete source.

Getting ready
In this recipe, we will add the option to add or edit records; for this, the route used in the
previous chapter is used, only new controllers and blocks are shown.

How to do it…
Follow these steps to add a form to your module:

1.	 Add the controller:

Controller/Adminhtml/Demolist/NewAction.php

<?php
namespace Genmato\Sample\Controller\Adminhtml\Demolist;
use Magento\Backend\App\Action;
class NewAction extends Action
{
 public function execute()
 {
 $demoId = $this->getRequest()->getParam('demo_id');

http://devdocs.magento.com/guides/v2.0/ui-components/ui-component.html
http://devdocs.magento.com/guides/v2.0/ui-components/ui-component.html
http://example.com/admin/sample/demolist/new/

Chapter 7

257

 $this->_coreRegistry->register('current_demo_id',
 $demoId);

 /** @var \Magento\Backend\Model\View\Result\Page
 $resultPage */
 $resultPage = $this->resultPageFactory->create();
 if ($demoId === null) {
 $resultPage->addBreadcrumb(__('New DemoList'),
 __('New DemoList'));
 $resultPage->getConfig()->getTitle()->prepend(__('New
 DemoList'));
 } else {
 $resultPage->addBreadcrumb(__('Edit DemoList'),
 __('Edit DemoList'));
 $resultPage->getConfig()->getTitle()->
 prepend(__('Edit DemoList'));
 }
 // Build the edit form
 $resultPage->getLayout()->addBlock(
 'Genmato\Sample\Block\Adminhtml\Demo\Edit',
 'demolist', 'content')
 ->setEditMode((bool)$demoId);

 return $resultPage;
 }
}

2.	 Create the Form container:

Block/Adminhtml/Demo/Edit.php

<?php
namespace Genmato\Sample\Block\Adminhtml\Demo;
use Magento\Backend\Block\Widget\Form\Container;
class Edit extends Container
{
 /**
 * Remove Delete button if record can't be deleted.
 *
 * @return void
 */
 protected function _construct()
 {
 $this->_objectId = 'demo_id';
 $this->_controller = 'adminhtml_demo';

Creating Magento 2 Extensions – the Basics

258

 $this->_blockGroup = 'Genmato_Sample';
 parent::_construct();
 $demoId = $this->getDemoId();
 if (!$demoId) {
 $this->buttonList->remove('delete');
 }
 }

 /**
 * Retrieve the header text, either editing an existing
 record or creating a new one.
 *
 * @return \Magento\Framework\Phrase
 */
 public function getHeaderText()
 {
 $demoId = $this->getDemoId();
 if (!$demoId) {
 return __('New DemoList Item');
 } else {
 return __('Edit DemoList Item');
 }
 }

 public function getDemoId()
 {
 if (!$this->demoId) {
 $this->demoId=$this->coreRegistry->
 registry('current_demo_id');
 }
 return $this->demoId;
 }
}

3.	 Build the form by defining the fields and types that are used:

Block/Adminhtml/Demo/Edit/Form.php

<?php
namespace Genmato\Sample\Block\Adminhtml\Demo\Edit;
use Magento\Customer\Controller\RegistryConstants;
use Magento\Backend\Block\Widget\Form\Generic;
class Form extends Generic
{
 /**

Chapter 7

259

 * Prepare form for render
 *
 * @return void
 */
 protected function _prepareLayout()
 {
 parent::_prepareLayout();

 /** @var \Magento\Framework\Data\Form $form */
 $form = $this->_formFactory->create();

 $demoId = $this->_coreRegistry->registry(
 'current_demo_id');
 /** @var \Genmato\Sample\Model\DemoFactory $demoData */
 if ($demoId === null) {
 $demoData = $this->demoDataFactory->create();
 } else {
 $demoData = $this->demoDataFactory->create()->load(
 $demoId);
 }

 $yesNo = [];
 $yesNo[0] = 'No';
 $yesNo[1] = 'Yes';

 $fieldset = $form->addFieldset('base_fieldset',
 ['legend' => __('Basic Information')]);

 $fieldset->addField(
 'title',
 'text',
 [
 'name' => 'title',
 'label' => __('Title'),
 'title' => __('Title'),
 'required' => true
]
);

 $fieldset->addField(
 'is_active',
 'select',
 [
 'name' => 'is_active',

Creating Magento 2 Extensions – the Basics

260

 'label' => __('Active'),
 'title' => __('Active'),
 'class' => 'required-entry',
 'required' => true,
 'values' => $yesNo,
]
);

 $fieldset->addField(
 'is_visible',
 'select',
 [
 'name' => 'is_visible',
 'label' => __('Visible'),
 'title' => __('Visible'),
 'class' => 'required-entry',
 'required' => true,
 'values' => $yesNo,
]
);

 if ($demoData->getId() !== null) {
 // If edit add id
 $form->addField('demo_id', 'hidden', ['name' =>
 'demo_id', 'value' => $demoData->getId()]);
 }

 if ($this->_backendSession->getDemoData()) {
 $form->addValues($this->_backendSession->
 getDemoData());
 $this->_backendSession->setDemoData(null);
 } else {
 $form->addValues(
 [
 'id' => $demoData->getId(),
 'title' => $demoData->getTitle(),
 'is_active' => $demoData->getIsActive(),
 'is_visible' => $demoData->getIsVisible(),
]
);
 }

 $form->setUseContainer(true);
 $form->setId('edit_form');
 $form->setAction($this->getUrl('*/*/save'));

Chapter 7

261

 $form->setMethod('post');
 $this->setForm($form);
 }
}

4.	 Add the Save action controller, which is called when pressing the Submit button:

Controller/Adminhtml/Demolist/Save.php

<?php
namespace Genmato\Sample\Controller\Adminhtml\Demolist;
use Magento\Backend\App\Action;
class Save extends Action
{
 /**
 * Save DemoList item.
 *
 * @return \Magento\Backend\Model\View\Result\Page|\
 Magento\Backend\Model\View\Result\Redirect
 */
 public function execute()
 {
 $id = $this->getRequest()->getParam('demo_id');
 $resultRedirect = $this->resultRedirectFactory->
 create();
 try {
 if ($id !== null) {
 $demoData = $this->demoFactory->create()->
 load((int)$id);
 } else {
 $demoData = $this->demoFactory->create();
 }
 $data = $this->getRequest()->getParams();
 $demoData->setData($data)->save();

 $this->messageManager->addSuccess(__('Saved DemoList
 item.'));
 $resultRedirect->setPath('sample/demolist');
 } catch (\Exception $e) {
 $this->messageManager->addError($e->getMessage());
 $this->_getSession()->setDemoData($data);

 $resultRedirect->setPath('sample/demolist/edit',
 ['demo_id' => $id]);
 }
 return $resultRedirect;
 }
}

Creating Magento 2 Extensions – the Basics

262

How it works…
In the controller, the demo_id parameter is stored in the Magento registry; this makes the
data available to retrieve in the same request in other blocks/models to do further processing
with it. Additionally, the Genmato\Sample\Block\Adminhtml\Demo\Edit class is loaded.
This class will generate the container for the form and load the Genmato\Sample\Block\
Adminhtml\Demo\Edit\Form class that will generate the form to be shown.

Building the form
Every form is built from the following:

$form = $this->_formFactory->create();

As it is not possible to add fields to a form directly, you need to create a fieldset first. It is
possible to add multiple fieldsets to a single form and assign multiple form fields to a fieldset.
To create a fieldset, use the following command:

$fieldset = $form->addFieldset('[name]', ['legend' => __([heading])]);

Adding a form field
Adding a form field to the fieldset is done as follows:

$fieldset->addField([elementId], [type], [config], [after]);

This method has the following parameters:

ff elementId: This is the unique name of the form field element.

ff type: This defines the type of element that is used as the input field. This can be
your own class that implements the Magento\Framework\Data\Form\Element\
AbstractElement class or one of the following:

�� button

�� checkbox

�� checkboxes

�� column

�� date

�� editablemultiselect

�� editor

�� fieldset

�� file

�� gallery

Chapter 7

263

�� hidden

�� image

�� imagefile

�� label

�� link

�� multiline

�� multiselect

�� note

�� obscure

�� password

�� radio

�� radios

�� reset

�� select

�� submit

�� text

�� textarea

�� time

These input types are rendered from the classes found under the Magento\
Framework\Data\Form\Element\ directory.

ff config: This is an array of extra configuration data; some of the options are as
follows:

�� name: This is the name of the element from the data model that holds the
data

�� label: This is the text that is used as a label

�� title: This is the text that is used as the field title parameter

�� class: This is the optional class for the input field, which can be used for
form validation

�� required: This is optional. This is set if a field is required to have data.

�� value: This is the value used for select/multiselect

ff after: This is the optional parameter to specify where the form field needs to be
placed; use elementId of the form field that you want to place this field after.

Creating Magento 2 Extensions – the Basics

264

Loading the data
In order to display the data currently stored for the record that we want to edit, the stored
demo_id is retrieved from the registry:

$demoId = $this->_coreRegistry->registry('current_demo_id');

Next, we check whether there is a valid value stored as demoId and load the data from the
database (or just set an empty object):

/** @var \Genmato\Sample\Model\DemoFactory $demoData */
if ($demoId === null) {
 $demoData = $this->demoDataFactory->create();
} else {
 $demoData = $this->demoDataFactory->create()->load($demoId);
}

Now that the data is loaded, it is possible to set this data to the form fields:

$form->addValues(
 [
 'id' => $demoData->getId(),
 'title' => $demoData->getTitle(),
 'is_active' => $demoData->getIsActive(),
 'is_visible' => $demoData->getIsVisible(),
]
);

Saving the data
When submitting the form to save the data, the action and method should be set to the URL
that handles the save action:

$form->setAction($this->getUrl('*/*/save'));
$form->setMethod('post');

The URL */*/save maps to the Controller/Adminhtml/Demolist/Save controller and
will handle the save action.

Chapter 7

265

In the controller, we first load the current record to load all the current values:

if ($id !== null) {
 $demoData = $this->demoFactory->create()->load((int)$id);
} else {
 $demoData = $this->demoFactory->create();
}

Next, we retrieve the submitted data, store it in the loaded object, and save the object:

$data = $this->getRequest()->getParams();
$demoData->setData($data)->save();

267

8
Creating Magento 2

Extensions – Advanced

In this chapter, we will cover some of the more advanced features when building Magento 2
extensions in the following recipes:

ff Using dependency injection to pass classes to your own class

ff Modifying functions with the use of plugins – Interception

ff Creating your own XML module configuration file

ff Creating your own product type

ff Working with service layers/contracts

ff Creating a Magento CLI command option

Introduction
In the previous chapter, we explained the basics on how to create a Magento 2 extension/
module, including how to store data in a database and create a frontend page and backend
grid with a form to add/edit data. In this chapter, we will explain some more advanced
functions that can be used while developing custom extensions. The first two recipes are
informational and describe the basic usage of dependency injection and plugins. The other
recipes are examples on how to add your custom XML configuration file and commands to the
Magento CLI tool.

Creating Magento 2 Extensions – Advanced

268

Using dependency injection to pass classes
to your own class

In Magento 2, they introduced the usage of dependency injection, which is a well-known
design pattern that changes the way you use resources in the code. Using dependency
injection, all the required resources are created when the class is instantiated instead of
creating an object (through the Magento 1.x Mage class) when necessary. The benefit of
this is that it is easier to use unit testing as it is possible to mock the required objects.

Getting ready
In this example, we will see how to create a new record in the demolist model created in
the previous chapter. The record is created using an observer on the sales_order_place_
after event that is dispatched after a new order is saved.

How to do it…
Follow these steps on how to use dependency injection:

1.	 First, we declare the Observer to listen to the event that we want:

etc/events.xml:

<config xmlns:xsi="http://www.w3.org/2001/
 XMLSchema-instance" xsi:noNamespaceSchemaLocation=
 "urn:magento:framework:Event/etc/events.xsd">
 <event name="sales_order_place_after">
 <observer name="sample" instance=
 "Genmato\Sample\Observer\PlaceOrder"/>
 </event>
</config>

2.	 Next, we create the Observer class as defined in step 1:

Observer/PlaceOrder.php:

<?php
namespace Genmato\Sample\Observer;

use Magento\Framework\Event\ObserverInterface;
use Magento\Framework\Event\Observer as EventObserver;
use Genmato\Sample\Model\DemoFactory;

class PlaceOrder implements ObserverInterface
{

Chapter 8

269

 /**
 * @var DemoFactory
 */
 protected $demoFactory;

 /**
 * @param DemoFactory $demoFactory
 */
 public function __construct(DemoFactory $demoFactory)
 {
 $this->demoFactory = $demoFactory;
 }

 /**
 * Add record to demoList when new order is placed
 *
 * @param EventObserver $observer
 * @return void
 */
 public function execute(EventObserver $observer)
 {
 /** @var \Magento\Sales\Model\Order $order */
 $order = $observer->getEvent()->getOrder();

 $demoList = $this->demoFactory->create();

 $demoList->setTitle(__('New order (%1) placed!',
 $order->getIncrementId()));

 try {
 $demoList->save();
 } catch (\Exception $ex) {
 // Process error here....
 }

 }
}

3.	 Refresh the cache:
bin/magento cache:clean

Creating Magento 2 Extensions – Advanced

270

How it works…
In the Observer class defined in step 2, the object that we need to create a new record in is
injected into the constructor function:

public function __construct(DemoFactory $demoFactory)

During the instantiation of the class, the necessary classes are injected by the Magento 2
dependency injection (DI) framework. In this case, it adds the Genmato\Sample\Model\
DemoFactory class to the constructor. This class is not a real existing class; this is because
the class that we want to use is a non-injectable class. A non-injectable class is a class that you
create yourself through the new [classname] command or the Mage::getModel() call in
Magento 1.x. With the use of dependency injection, creating a new object should be handled by
the object manager, but in order to be able to use unit testing, it is not advisable to create the
object directly in the code. To solve this, the Magento framework uses autogenerated classes. In
this example, the generated class is stored in var/generation/Genmato/Sample/Model/
DemoFactory.php:

<?php
namespace Genmato\Sample\Model;

/**
 * Factory class for @see \Genmato\Sample\Model\Demo
 */
class DemoFactory
{
 /**
 * Object Manager instance
 *
 * @var \Magento\Framework\ObjectManagerInterface
 */
 protected $_objectManager = null;

 /**
 * Instance name to create
 *
 * @var string
 */
 protected $_instanceName = null;

 /**
 * Factory constructor
 *
 * @param \Magento\Framework\ObjectManagerInterface
 $objectManager

Chapter 8

271

 * @param string $instanceName
 */
 public function __construct(\Magento\Framework\
 ObjectManagerInterface $objectManager, $instanceName =
 '\\Genmato\\Sample\\Model\\Demo')
 {
 $this->_objectManager = $objectManager;
 $this->_instanceName = $instanceName;
 }

 /**
 * Create class instance with specified parameters
 *
 * @param array $data
 * @return \Genmato\Sample\Model\Demo
 */
 public function create(array $data = array())
 {
 return $this->_objectManager->create($this->_instanceName,
 $data);
 }
}

In this case, the autogenerated class is a Factory class that has only the create()
function available. In the create function, the object manager is used to instantiate the
Genmato\Sample\Model\Demo class; this object can then be used to load an existing
record or create a new record and save the data stored in the object.

Modifying functions with the use of plugins –
Interception

One of the biggest problems in Magento 1.x was that changing the behavior of a function in
a class that didn't have an event trigger had to be rewritten. This works fine if only a single
rewrite for a class was used, but when using a large number of extensions, there is a risk
that multiple extensions rewrite the same class, which can result in unpredictable results.

In Magento 2, this problem is partly solved by introducing Interception in the form of plugins.
With the use of plugins, it is possible to modify a function in three places:

ff Before execution: With the before plugin, it is possible to (pre)process any data given
to the original function by modifying the original function arguments; this allows you
to replace the original method or change the input variables and supply them to the
original method.

Creating Magento 2 Extensions – Advanced

272

ff Around execution: In the around plugin, you can modify both the input and output
values of the original function. In your own function, you decide what action to do
before the original function call and what will be done after it.

ff After execution: The after plugin takes the result generated from the original
function, modifies the result, and the modified result is then returned to the caller of
the original function.

Getting ready
The use of plugins is controlled through di.xml. It is possible to use the global from etc/ or
the area specific from etc/[area]; in this case, we will use the global, which means that it is
used in all areas.

How to do it…
Create the following files in this recipe to try the use of plugins:

1.	 To enable the plugins, add the following lines to di.xml:

etc/di.xml

<type name="Magento\Cms\Model\Page">
 <plugin name="sample_before" type=
 "Genmato\Sample\Plugin\BeforePage" sortOrder="1"/>
</type>

<type name="Magento\Catalog\Model\Product">
 <plugin name="sample_around" type=
 "Genmato\Sample\Plugin\AroundProduct" sortOrder="1"/>
</type>

<type name="Magento\Cms\Model\Page">
 <plugin name="sample_after" type=
 "Genmato\Sample\Plugin\AfterPage" sortOrder="1"/>
</type>

2.	 The following is the before plugin class:

Plugin/BeforePage.php

<?php
namespace Genmato\Sample\Plugin;

use Magento\Cms\Model\Page;

class BeforePage

Chapter 8

273

{
 public function beforeSetContent(Page $subject, $content)
 {
 return $subject->setContent('<!--'.$content.'-->');
 }
}

3.	 The following is the around plugin class:

Plugin/AroundProduct.php

<?php

namespace Genmato\Sample\Plugin;

use Magento\Catalog\Model\Product;

class AroundProduct
{
 public function aroundSave(Product $subject, \Closure
 $proceed)
 {
 $subject->setMyCustomAttribute('sample');

 $return = $proceed();

 $subject->setMyCustomAttribute('');

 return $return;
 }
}

4.	 The following is the after plugin class:

Plugin/AfterPage.php

<?php
namespace Genmato\Sample\Plugin;

use Magento\Cms\Model\Page;

class AfterPage
{

 public function afterGetTitle(Page $subject, $result)
 {

Creating Magento 2 Extensions – Advanced

274

 return 'SAMPLE: '.$result;
 }

}

5.	 To refresh the cache, execute the following command:
bin/magento cache:clean

How it works…
All configured interceptors/plugins are evaluated during initialization. When a call is made to
a function that is extended through a plugin, all plugin functions are executed based on the
configured sortOrder as configured in di.xml. If there are multiple plugins that extend the
same original function, they are executed in the following sequence:

1.	 The before plugin with the lowest sortOrder

2.	 The around plugin with the lowest sortOrder

3.	 Other before plugins (from the lowest to highest sortOrder)

4.	 Other around plugins (from the lowest to highest sortOrder)

5.	 The after plugin with the highest sortOrder

6.	 Other after plugins (from the highest to lowest sortOrder)

There are some limitations on where you can use plugins; it is not possible to use plugins for
the following:

ff Final methods/classes

ff Non-public methods

ff Class methods (such as static methods)

ff Inherited methods

ff __construct

ff Virtual types

If you need to modify one of these types listed, the only option to do this is to rewrite
(preference) your class through di.xml.

Chapter 8

275

Creating your own XML module configuration
file

In Magento 1.x, it was possible to use the .xml file to include custom configuration options
that might be necessary for an extension. This is no longer possible with Magento 2 because
the XML files are all validated against a schema and anything other than predefined options
are not allowed. To solve this, it is possible to generate your own custom XML file to set up the
parameters that you need. This also allows other extensions to define settings as the output is
generated from all modules that have this file configured.

Getting ready
In order to use your own XML configuration file, it is important that you generate a valid
schema (XSD) file that will be used to validate the XML files when they are merged.

How to do it…
The following steps show you how to define a custom XML configuration file for your module:

1.	 First, we create the Reader for the XML file and define the name of the file that
should be read from all modules:

Model/Sample/Reader.php

<?php
namespace Genmato\Sample\Model\Sample;

use Magento\Framework\Config\Reader\Filesystem;
use Magento\Framework\Config\FileResolverInterface;
use Magento\Framework\Config\ConverterInterface;
use Genmato\Sample\Model\Sample\SchemaLocator;
use Magento\Framework\Config\ValidationStateInterface;

class Reader extends Filesystem
{
 protected $_idAttributes = [
 '/table/row' => 'id',
 '/table/row/column' => 'id',
];

 /**
 * @param FileResolverInterface $fileResolver
 * @param ConverterInterface $converter

Creating Magento 2 Extensions – Advanced

276

 * @param SchemaLocator $schemaLocator
 * @param ValidationStateInterface $validationState
 * @param string $fileName
 * @param array $idAttributes
 * @param string $domDocumentClass
 * @param string $defaultScope
 */
 public function __construct(
 FileResolverInterface $fileResolver,
 ConverterInterface $converter,
 SchemaLocator $schemaLocator,
 ValidationStateInterface $validationState,
 $fileName = 'sample.xml',
 $idAttributes = [],
 $domDocumentClass = 'Magento\Framework\Config\Dom',
 $defaultScope = 'global'
) {
 parent::__construct(
 $fileResolver,
 $converter,
 $schemaLocator,
 $validationState,
 $fileName,
 $idAttributes,
 $domDocumentClass,
 $defaultScope
);
 }
}

2.	 To validate the schema, the Reader must know where to find the schema file:

Model/Sample/SchemaLocator.php

<?php
namespace Genmato\Sample\Model\Sample;

use Magento\Framework\Config\SchemaLocatorInterface;
use Magento\Framework\Config\Dom\UrnResolver;

class SchemaLocator implements SchemaLocatorInterface
{
 /** @var UrnResolver */

Chapter 8

277

 protected $urnResolver;

 public function __construct(UrnResolver $urnResolver)
 {
 $this->urnResolver = $urnResolver;
 }

 /**
 * Get path to merged config schema
 *
 * @return string
 */
 public function getSchema()
 {
 return $this->urnResolver->getRealPath(
 'urn:genmato:module:Genmato_Sample:/etc/sample.xsd');
 }

 /**
 * Get path to pre file validation schema
 *
 * @return string
 */
 public function getPerFileSchema()
 {
 return $this->urnResolver->getRealPath(
 'urn:genmato:module:Genmato_Sample:/etc/sample.xsd');
 }
}

3.	 A single class is used to get the merged data and cache the XML:

Model/Sample/Data.php

<?php
namespace Genmato\Sample\Model\Sample;

use Magento\Framework\Config\Data\Scoped;
use Genmato\Sample\Model\Sample\Reader;
use Magento\Framework\Config\ScopeInterface;
use Magento\Framework\Config\CacheInterface;

class Data extends Scoped
{
 /**

Creating Magento 2 Extensions – Advanced

278

 * Scope priority loading scheme
 *
 * @var array
 */
 protected $_scopePriorityScheme = ['global'];

 /**
 * @param Reader $reader
 * @param ScopeInterface $configScope
 * @param CacheInterface $cache
 * @param string $cacheId
 */
 public function __construct(
 Reader $reader,
 ScopeInterface $configScope,
 CacheInterface $cache,
 $cacheId = 'sample_config_cache'
) {
 parent::__construct($reader, $configScope, $cache,
 $cacheId);
 }
}

4.	 Add the XSD schema file:

etc/sample.xsd

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xs:element name="table">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="row" maxOccurs="unbounded"
 minOccurs="0">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="column"
 maxOccurs="unbounded" minOccurs="0">
 <xs:complexType>
 <xs:sequence>
 <xs:element type="xs:string"
 name="label">
 <xs:annotation>

Chapter 8

279

 <xs:documentation>from first xml
 from second xmlthey apear in
 both xmls with the same path
 and id and second one overrides
 the value for `attr1` from
 first xml from first
 xml</xs:documentation>
 </xs:annotation>
 </xs:element>
 </xs:sequence>
 <xs:attribute type="xs:string"
 name="id" use="optional"/>
 <xs:attribute type="xs:byte"
 name="sort" use="optional"/>
 <xs:attribute type="xs:string"
 name="attr1" use="optional"/>
 <xs:attribute type="xs:string"
 name="disabled" use="optional"/>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 <xs:attribute type="xs:string" name="id"
 use="optional"/>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
</xs:schema>

5.	 Add the configuration file for your module:

etc/sample.xml

<?xml version="1.0"?>
<table xmlns:xsi="http://www.w3.org/2001/
 XMLSchema-instance" xsi:noNamespaceSchemaLocation=
 "urn:genmato:module:Genmato_Sample:/etc/sample.xsd">
 <row id="row1">
 <column id="col1" sort="10" attr1="val1">
 <label>Col 1</label>
 </column>
 </row>
 <row id="row2">
 <column id="col1" sort="10" attr1="val1">
 <label>Col 1</label>
 </column>

Creating Magento 2 Extensions – Advanced

280

 <column id="col2" sort="20" disabled="true"
 attr1="val2" >
 <label>Col 2</label>
 </column>
 <column id="col3" sort="15" attr1="val1">
 <label>Col 3</label>
 </column>
 </row>
</table>

6.	 Get and display the merged data: (This is optional; in this example, we display the
data through a frontend route.)

Controller/Index/Sample.php

<?php
namespace Genmato\Sample\Controller\Index;

use Magento\Framework\App\Action\Action;
use Magento\Framework\App\Action\Context;
use Magento\Framework\View\Result\PageFactory;
use Genmato\Sample\Model\Sample\DataFactory;

class Sample extends Action
{
 /**
 * @var PageFactory
 */
 private $resultPageFactory;

 /** @var DataFactory $dataReader */
 private $dataReader;

 /**
 * @param Context $context
 * @param PageFactory $resultPageFactory
 * @param DataFactory $dataReader
 */
 public function __construct(
 Context $context,
 PageFactory $resultPageFactory,
 DataFactory $dataReader
)
 {

Chapter 8

281

 $this->dataReader = $dataReader;
 parent::__construct($context);
 }

 /**
 * Renders Sample
 */
 public function execute()
 {
 $myConfig = $this->dataReader->create();
 print_r($myConfig->get());
 }
}

7.	 Refresh the cache using the following command:
bin/magento cache:clean

8.	 Now you can check the result data using the following command:

http://example.com/sample/index/sample/

How it works…
The configuration reader defines the file that is used in the ($fileName = 'sample.xml')
constructor. Make sure that the filename used is unique; otherwise, configuration data from
another module will be merged and validation will fail as it won't match the schema that you
defined. A solution could be to use <vendor>_<module>.xml as the filename.

In the constructor, SchemaLocator is also defined; this will define the schema (XSD file)
that is used to validate the XML. To be able to get the schema file independent from where
the module is installed (vendor/ or app/code), the schema location is built from the
defined URN: urn:genmato:module:Genmato_Sample:/etc/sample.xsd. This URN is
parsed and translated to the directory where the module is installed, which is done through
ComponentRegistrar, and the module location is registered in registration.php as
described in Chapter 7, Creating Magento 2 Extensions – the Basics.

It is possible to get all data using the read() method on the Reader class, this will result
in re-reading and merging all XML files, which will impact every request. This can delay the
website; therefore, the Data class is added. Here, Reader is injected through the constructor.
To get the data, you can call the get() method of the Data class. This will read and merge
all XML files if they are not cached and return the cached version when available. If you don't
supply an argument to the get() method, it will return all data, but it's also possible to
specify a node that you would like.

Creating Magento 2 Extensions – Advanced

282

The Data class can be added everywhere that you need to get your configuration data; for
this, you add Genmato\Sample\Model\Sample\DataFactory to the constructor. This
autogenerated class allows you to instantiate your configuration data class:

$myConfig = $this->dataReader->create();

This gets a value from the configuration:

$myConfig->get('<node>');

Creating your own product type
In Magento 2, it is easy to add your own product type, which can be useful when you want to
add some special features that are not available through the default product types. In this
recipe, we will see a minimal new product type that calculates the price based on the cost of
the product; you can easily extend it further to fit your own needs.

Getting ready
Every product type has its own unique code specified, and it's important to use a short code to
identify your product type.

How to do it…
The following steps in this recipe show you how to create a (minimal) new product type:

1.	 First, we need to declare the new product type:

etc/product_types.xml

<?xml version="1.0"?>
<config xmlns:xsi="http://www.w3.org/2001/XMLSchema-
 instance" xsi:noNamespaceSchemaLocation="urn:
 magento:module:Magento_Catalog:etc/product_types.xsd">
 <type name="demo" label="Demo Product"
 modelInstance="Genmato\Sample\Model\Product\Type\Demo"
 indexPriority="80" sortOrder="80">
 <priceModel instance=
 "Genmato\Sample\Model\Product\Type\Demo\Price" />
 <customAttributes>
 <attribute name="refundable" value="true"/>
 <attribute name="taxable" value="true"/>
 </customAttributes>
 </type>
</config>

Chapter 8

283

2.	 Now, we create modelInstance as configured in the product type definition; this is
the minimal product type code definition. You can add your own functions that would
be necessary to your product here:

Model/Product/Type/Demo.php

<?php
namespace Genmato\Sample\Model\Product\Type;

use Magento\Catalog\Model\Product\Type\AbstractType;

class Demo extends AbstractType
{
 /**
 * Product-type code
 */
 const TYPE_CODE = 'demo';

 /**
 * Delete data specific for Simple product-type
 *
 * @param \Magento\Catalog\Model\Product $product
 * @return void
 */
 public function deleteTypeSpecificData(
 \Magento\Catalog\Model\Product $product)
 {
 }
}

3.	 To calculate the price based on the cost attribute, priceModel is specified. This
class holds the code to get the price of a product. Here, we use a fixed value of
1.25*cost attribute. It is also possible to get this value from another attribute or
system configuration field:

Model/Product/Type/Demo/Price.php

<?php
namespace Genmato\Sample\Model\Product\Type\Demo;

use Magento\Catalog\Model\Product\Type\Price as
 ProductPrice;

class Price extends ProductPrice
{

 /**

Creating Magento 2 Extensions – Advanced

284

 * Default action to get price of product
 *
 * @param Product $product
 * @return float
 */
 public function getPrice($product)
 {
 return $product->getData('cost')*1.25;
 }
}

4.	 By default, the cost attribute is only available for all product types; therefore, we need
to add our product type to the apply_to field of the cost attribute. This will be done
through an UpgradeData script:

Setup/UpgradeData.php

<?php
namespace Genmato\Sample\Setup;

use Magento\Eav\Setup\EavSetup;
use Magento\Eav\Setup\EavSetupFactory;
use Magento\Framework\Setup\UpgradeDataInterface;
use Magento\Framework\Setup\ModuleContextInterface;
use Magento\Framework\Setup\ModuleDataSetupInterface;
use Magento\Catalog\Model\Product;

/**
 * @codeCoverageIgnore
 */
class UpgradeData implements UpgradeDataInterface
{
 /**
 * EAV setup factory
 *
 * @var EavSetupFactory
 */
 private $eavSetupFactory;

 /**
 * Init
 *
 * @param EavSetupFactory $eavSetupFactory
 */

Chapter 8

285

 public function __construct(EavSetupFactory
 $eavSetupFactory)
 {
 $this->eavSetupFactory = $eavSetupFactory;
 }

 /**
 * {@inheritdoc}
 * @SuppressWarnings(PHPMD.ExcessiveMethodLength)
 */
 public function upgrade(ModuleDataSetupInterface $setup,
 ModuleContextInterface $context)
 {
 if (version_compare($context->getVersion(), '0.8.4',
 '<')) {
 /** @var EavSetup $eavSetup */
 $eavSetup = $this->eavSetupFactory->create(['setup'
 => $setup]);

 $fieldList = [
 'price',
 'special_price',
 'special_from_date',
 'special_to_date',
 'minimal_price',
 'cost',
 'tier_price',
 'weight',
];

 // make these attributes applicable to demo product
 foreach ($fieldList as $field) {
 $applyTo = explode(
 ',',
 $eavSetup->getAttribute(Product::ENTITY, $field,
 'apply_to')
);
 if (!in_array('demo', $applyTo)) {
 $applyTo[] = 'demo';
 $eavSetup->updateAttribute(
 Product::ENTITY,
 $field,
 'apply_to',

Creating Magento 2 Extensions – Advanced

286

 implode(',', $applyTo)
);
 }
 }
 }
 }
}

5.	 Specify the available product types that can be used to create an order:

etc/sales.xml

<?xml version="1.0"?>
<config xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi
:noNamespaceSchemaLocation="urn:magento:module:Magento_Sales:etc/
sales.xsd">
 <order>
 <available_product_type name="demo"/>
 </order>
</config>

6.	 Optionally, it is possible to specify a custom renderer to create the Invoice and
Creditmemo PDF documents:

etc/pdf.xml

<?xml version="1.0"?>
<config xmlns:xsi="http://www.w3.org/2001/
 XMLSchema-instance" xsi:noNamespaceSchemaLocation=
 "urn:magento:module:Magento_Sales:etc/pdf_file.xsd">
 <renderers>
 <page type="invoice">
 <renderer product_type="demo">Magento\Sales\Model\
 Order\Pdf\Items\Invoice\DefaultInvoice</renderer>
 </page>
 <page type="creditmemo">
 <renderer product_type="demo">Magento\Sales\Model\
 Order\Pdf\Items\Creditmemo\DefaultCreditmemo
 </renderer>
 </page>
 </renderers>
</config>

Chapter 8

287

7.	 As we added a data upgrade script, it is necessary to increment setup_version
in the module configuration. In this case, the version has been updated from 0.8.3
to 0.8.4. This is used in the upgrade script to execute only if the installed version is
lower than the new version.

etc/module.xml

<?xml version="1.0"?>
<config xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xs
i:noNamespaceSchemaLocation="urn:magento:framework:Module/etc/
module.xsd">
 <module name="Genmato_Sample" setup_version="0.8.4">
 <sequence>
 <module name="Magento_Store"/>
 </sequence>
 </module>
</config>

8.	 After this, run the upgrade command to update the attributes specified in the
upgrade command. The cache is flushed at the same time to read the updated
configuration.

How it works…
The new defined product type is now available in the backend to create a new product. The
attributes used are similar to a simple product, and you can add your own fields if necessary.
The priceModel instance specified will calculate the product price on rendering on the
frontend; in this case, the cost attribute is used and multiplied by 1.25.

While creating the product, it is possible to set the Cost attribute in the Advanced Pricing tab.
In this example, we used a product cost of €25.00:

Creating Magento 2 Extensions – Advanced

288

When the product is saved and requested on the frontend, the price will be calculated based
on the preceding values and result in a final price of €31.25:

In the configuration of the new product type (in product_types.xml), it is also possible to
specify the following items:

ff indexerModel: This is to specify a custom indexer for your product type

ff stockIndexerModel: This is to specify a custom indexer to manage the stock of
your product type

Working with service layers/contracts
A service layer/contract is a fixed interface to get and store data without knowing the
underlying layer. It is possible to swap the way the data is stored without changing the
service layer.

A service layer consists of three interface types:

ff Data interface: A data interface is a read-only presentation of a record, and
therefore, this type of interface only has getters to represent a data record.

ff Repository interface: A repository interface gives access to read and write (and
delete) data. Every repository interface has the following methods:

�� getList: This returns a list of records based on the (optionally) provided
search parameters

�� get: This loads the data from the database and returns a data interface for
the specified ID

�� save: This saves the record specified in the data interface

�� delete: This deletes the record specified in the data interface

�� deleteById: This deletes the record specified by the ID

ff Management interface: In a management interface, it is possible to specify special
management functions that are not related to the repository.

Chapter 8

289

Using a service layer also makes it easy to extend your module to access the web API; you only
need to add a declaration in the appropriate XML to configure the link from the API command
to the right interface.

How to do it…
In this recipe, we will add the option to read, create, or delete a record through a service
layer contract:

1.	 Create a repository interface where the available commands are declared:

Api/DemoRepositoryInterface.php

<?php
namespace Genmato\Sample\Api;

interface DemoRepositoryInterface
{
 /**
 * Save demo list item.
 *
 * @api
 * @param \Genmato\Sample\Api\Data\DemoInterface $demo
 * @return \Magento\Customer\Api\Data\GroupInterface
 * @throws \Magento\Framework\Exception\InputException If
 there is a problem with the input
 * @throws \Magento\Framework\Exception\
 NoSuchEntityException If a group ID is sent but the
 group does not exist
 * @throws \Magento\Framework\Exception\State\
 InvalidTransitionException
 *If saving customer group with customer group code that
 is used by an existing customer group
 * @throws \Magento\Framework\Exception\LocalizedException
 */
 public function save(
 \Genmato\Sample\Api\Data\DemoInterface $demo);

 /**
 * Get demo list item by ID.
 *
 * @api
 * @param int $id
 * @return \Genmato\Sample\Api\Data\DemoInterface
 * @throws \Magento\Framework\Exception\
 NoSuchEntityException If $groupId is not found

Creating Magento 2 Extensions – Advanced

290

 * @throws \Magento\Framework\Exception\LocalizedException
 */
 public function getById($id);

 /**
 * Retrieve demo list items.
 *
 * The list of demo items can be filtered
 *
 * @api
 * @param \Magento\Framework\Api\SearchCriteriaInterface
 $searchCriteria
 * @return \Genmato\Sample\Api\Data\
 DemoSearchResultsInterface
 * @throws \Magento\Framework\Exception\LocalizedException
 */
 public function getList(\Magento\Framework\Api\
 SearchCriteriaInterface $searchCriteria);

 /**
 * Delete demo list item.
 *
 * @api
 * @param \Genmato\Sample\Api\Data\DemoInterface $demo
 * @return bool true on success
 * @throws \Magento\Framework\Exception\StateException If
 customer group cannot be deleted
 * @throws \Magento\Framework\Exception\LocalizedException
 */
 public function delete(
 \Genmato\Sample\Api\Data\DemoInterface $demo);

 /**
 * Delete demolist by ID.
 *
 * @api
 * @param int $id
 * @return bool true on success
 * @throws \Magento\Framework\Exception\
 NoSuchEntityException
 * @throws \Magento\Framework\Exception\StateException If
 customer group cannot be deleted
 * @throws \Magento\Framework\Exception\LocalizedException
 */
 public function deleteById($id);
}

Chapter 8

291

2.	 Create the repository resource model. Here, the defined functions from the interface
have the actual code:

Model/ResourceModel/DemoRepository.php

<?php
namespace Genmato\Sample\Model\ResourceModel;

use Genmato\Sample\Model\DemoRegistry;
use Genmato\Sample\Model\DemoFactory;
use Genmato\Sample\Api\Data\DemoInterface;
use Genmato\Sample\Api\Data\DemoInterfaceFactory;
use Genmato\Sample\Api\Data\DemoExtensionInterface;
use Genmato\Sample\Api\Data\
 DemoSearchResultsInterfaceFactory;
use Genmato\Sample\Model\Demo;
use Genmato\Sample\Model\ResourceModel\Demo as
 DemoResource;
use Genmato\Sample\Model\ResourceModel\Demo\Collection;
use Genmato\Sample\Api\DemoRepositoryInterface;

use Magento\Framework\Exception\CouldNotDeleteException;
use Magento\Framework\Exception\CouldNotSaveException;
use Magento\Framework\Exception\NoSuchEntityException;
use Magento\Framework\Api\SearchCriteriaInterface;
use Magento\Framework\Reflection\DataObjectProcessor;
use Magento\Framework\Api\ExtensionAttribute\
 JoinProcessorInterface;

class DemoRepository implements DemoRepositoryInterface
{

 /** @var DemoRegistry */
 private $demoRegistry;

 /** @var DemoFactory */
 private $demoFactory;

 /** @var DemoInterfaceFactory */
 private $demoDataFactory;

 /** @var Demo */
 private $demoResourceModel;

 /**
 * @var DataObjectProcessor
 */

Creating Magento 2 Extensions – Advanced

292

 private $dataObjectProcessor;

 /**
 * @var DemoSearchResultsInterfaceFactory
 */
 protected $searchResultsFactory;

 /**
 * @var JoinProcessorInterface
 */
 protected $extensionAttributesJoinProcessor;

 /**
 * @param DemoRegistry $demoRegistry
 * @param DemoFactory $demoFactory
 * @param DemoInterfaceFactory $demoDataFactory
 * @param DemoResource $demoResourceModel
 * @param DataObjectProcessor $dataObjectProcessor
 * @param DemoSearchResultsInterfaceFactory
 $searchResultsFactory
 * @param JoinProcessorInterface
 $extensionAttributesJoinProcessor
 */
 public function __construct(
 DemoRegistry $demoRegistry,
 DemoFactory $demoFactory,
 DemoInterfaceFactory $demoDataFactory,
 DemoResource $demoResourceModel,
 DataObjectProcessor $dataObjectProcessor,
 DemoSearchResultsInterfaceFactory
 $searchResultsFactory,
 JoinProcessorInterface
 $extensionAttributesJoinProcessor
) {
 $this->demoRegistry = $demoRegistry;
 $this->demoFactory = $demoFactory;
 $this->demoDataFactory = $demoDataFactory;
 $this->demoResourceModel = $demoResourceModel;
 $this->dataObjectProcessor = $dataObjectProcessor;
 $this->searchResultsFactory = $searchResultsFactory;
 $this->extensionAttributesJoinProcessor =
 $extensionAttributesJoinProcessor;
 }
 /**
 * {@inheritdoc}
 */
 public function save(DemoInterface $demo)

Chapter 8

293

 {
 /** @var Demo $demoModel */
 $demoModel = $this->demoFactory->create();

 if ($demo->getId()) {
 $demoModel->load($demo->getId());
 }
 $demoModel
 ->setTitle($demo->getTitle())
 ->setIsVisible($demo->getIsVisible())
 ->setIsActive($demo->getIsActive());

 try {
 $demoModel->save();
 } catch (\Exception $exception) {
 throw new CouldNotSaveException(__($exception->
 getMessage()));
 }
 return $demoModel->getData();
 }

 /**
 * {@inheritdoc}
 */
 public function getById($id)
 {
 $demoModel = $this->demoRegistry->retrieve($id);
 $demoDataObject = $this->demoDataFactory->create()
 ->setId($demoModel->getId())
 ->setTitle($demoModel->getTitle())
 ->setCreationTime($demoModel->getCreationTime())
 ->setUpdateTime($demoModel->getUpdateTime())
 ->setIsVisible($demoModel->getIsVisible())
 ->setIsActive($demoModel->getIsActive());
 return $demoDataObject;
 }

 /**
 * {@inheritdoc}
 */
 public function getList(SearchCriteriaInterface
 $searchCriteria)
 {
 $searchResults = $this->searchResultsFactory->create();
 $searchResults->setSearchCriteria($searchCriteria);

 /** @var Collection $collection */

Creating Magento 2 Extensions – Advanced

294

 $collection = $this->demoFactory->create()->
 getCollection();
 foreach ($searchCriteria->getFilterGroups() as
 $filterGroup) {
 foreach ($filterGroup->getFilters() as $filter) {
 $condition = $filter->getConditionType() ?: 'eq';
 $collection->addFieldToFilter($filter->getField(),
 [$condition => $filter->getValue()]);
 }
 }
 $searchResults->setTotalCount($collection->getSize());
 $sortOrders = $searchCriteria->getSortOrders();
 if ($sortOrders) {
 /** @var SortOrder $sortOrder */
 foreach ($sortOrders as $sortOrder) {
 $collection->addOrder(
 $sortOrder->getField(),
 ($sortOrder->getDirection() ==
 SortOrder::SORT_ASC) ? 'ASC' : 'DESC'
);
 }
 }
 $collection->setCurPage($searchCriteria->
 getCurrentPage());
 $collection->setPageSize($searchCriteria->
 getPageSize());
 /** @var DemoInterface[] $demos */
 $demos = [];
 /** @var Demo $demo */
 foreach ($collection as $demo) {
 /** @var DemoInterface $demoDataObject */
 $demoDataObject = $this->demoDataFactory->create()
 ->setId($demo->getId())
 ->setTitle($demo->getTitle())
 ->setCreationTime($demo->getCreationTime())
 ->setUpdateTime($demo->getUpdateTime())
 ->setIsVisible($demo->getIsVisible())
 ->setIsActive($demo->getIsActive());

 $demos[] = $demoDataObject;
 }
 $searchResults->setTotalCount($collection->getSize());
 return $searchResults->setItems($demos);
 }

 /**
 * Delete demo list item.

Chapter 8

295

 *
 * @param DemoInterface $demo
 * @return bool true on success
 * @throws \Magento\Framework\Exception\StateException If
 customer group cannot be deleted
 * @throws \Magento\Framework\Exception\LocalizedException
 */
 public function delete(DemoInterface $demo)
 {
 return $this->deleteById($demo->getId());
 }

 /**
 * Delete demo list item by ID.
 *
 * @param int $id
 * @return bool true on success
 * @throws \Magento\Framework\Exception\
 NoSuchEntityException
 * @throws \Magento\Framework\Exception\StateException If
 customer group cannot be deleted
 * @throws \Magento\Framework\Exception\LocalizedException
 */
 public function deleteById($id)
 {
 $demoModel = $this->demoRegistry->retrieve($id);

 if ($id <= 0) {
 throw new \Magento\Framework\Exception\
 StateException(__('Cannot delete demo item.'));
 }

 $demoModel->delete();
 $this->demoRegistry->remove($id);
 return true;
 }

}

3.	 Create the registry class; this stores the loaded records:

Model/DemoRegistry.php

<?php
/**
* Sample
*

Creating Magento 2 Extensions – Advanced

296

* @package Genmato_Sample
* @author Vladimir Kerkhoff <support@genmato.com>
* @created 2015-12-23
* @copyright Copyright (c) 2015 Genmato BV,
 https://genmato.com.
*/
namespace Genmato\Sample\Model;

use Genmato\Sample\Api\Data\DemoInterface;
use Magento\Framework\Exception\NoSuchEntityException;

class DemoRegistry
{
 /**
 * @var array
 */
 protected $registry = [];

 /**
 * @var DemoFactory
 */
 protected $demoFactory;

 /**
 * @param DemoFactory $demoFactory
 */
 public function __construct(DemoFactory $demoFactory)
 {
 $this->demoFactory = $demoFactory;
 }

 /**
 * Get instance of the Demo Model identified by an id
 *
 * @param int $demoId
 * @return Demo
 * @throws NoSuchEntityException
 */
 public function retrieve($demoId)
 {
 if (isset($this->registry[$demoId])) {
 return $this->registry[$demoId];
 }
 $demo = $this->demoFactory->create();

Chapter 8

297

 $demo->load($demoId);
 if ($demo->getId() === null || $demo->getId() !=
 $demoId)
 {
 throw NoSuchEntityException::singleField(
 DemoInterface::ID, $demoId);
 }
 $this->registry[$demoId] = $demo;
 return $demo;
 }

 /**
 * Remove an instance of the Demo Model from the registry
 *
 * @param int $demoId
 * @return void
 */
 public function remove($demoId)
 {
 unset($this->registry[$demoId]);
 }
}

4.	 Create a data interface; here, the available attributes (getters and setters) are defined:

Api/Data/DemoInterface.php

<?php
namespace Genmato\Sample\Api\Data;

use Genmato\Sample\Api\Data\DemoExtensionInterface;
use Magento\Framework\Api\ExtensibleDataInterface;

interface DemoInterface extends ExtensibleDataInterface
{

 const ID = 'id';
 const TITLE = 'title';
 const CREATION_TIME = 'creation_time';
 const UPDATE_TIME = 'update_time';
 const IS_ACTIVE = 'is_active';
 const IS_VISIBLE = 'is_visible';

 /**
 * Get id
 *

Creating Magento 2 Extensions – Advanced

298

 * @api
 * @return int|null
 */
 public function getId();

 /**
 * Set id
 *
 * @api
 * @param int $id
 * @return $this
 */
 public function setId($id);

 /**
 * Get Title
 *
 * @api
 * @return string
 */
 public function getTitle();

 /**
 * Set Title
 *
 * @api
 * @param string $title
 * @return $this
 */
 public function setTitle($title);

 /**
 * Get Is Active
 *
 * @api
 * @return bool
 */
 public function getIsActive();

 /**
 * Set Is Active
 *
 * @api
 * @param bool $isActive

Chapter 8

299

 * @return $this
 */
 public function setIsActive($isActive);

 /**
 * Get Is Visible
 *
 * @api
 * @return bool
 */
 public function getIsVisible();

 /**
 * Set Is Active
 *
 * @api
 * @param bool $isVisible
 * @return $this
 */
 public function setIsVisible($isVisible);

 /**
 * Get creation time
 *
 * @api
 * @return string
 */
 public function getCreationTime();

 /**
 * Set creation time
 *
 * @api
 * @param string $creationTime
 * @return $this
 */
 public function setCreationTime($creationTime);

 /**
 * Get update time
 *
 * @api
 * @return string
 */

Creating Magento 2 Extensions – Advanced

300

 public function getUpdateTime();

 /**
 * Set update time
 *
 * @api
 * @param string $updateTime
 * @return $this
 */
 public function setUpdateTime($updateTime);

 /**
 * Retrieve existing extension attributes object or create
 a new one.
 *
 * @api
 * @return DemoExtensionInterface|null
 */
 public function getExtensionAttributes();

 /**
 * Set an extension attributes object.
 *
 * @api
 * @param DemoExtensionInterface $extensionAttributes
 * @return $this
 */
 public function setExtensionAttributes(
 DemoExtensionInterface $extensionAttributes);
}

5.	 Create the data mapping class:

Model/Data/Demo.php

<?php
namespace Genmato\Sample\Model\Data;

use Magento\Framework\Api\AbstractExtensibleObject;
use Genmato\Sample\Api\Data\DemoInterface;
use Genmato\Sample\Api\Data\DemoExtensionInterface;

class Demo extends AbstractExtensibleObject implements
 DemoInterface
{

 /**

Chapter 8

301

 * Get id
 *
 * @return int|null
 */
 public function getId()
 {
 return $this->_get(self::ID);
 }

 /**
 * Set id
 *
 * @param int $id
 * @return $this
 */
 public function setId($id)
 {
 return $this->setData(self::ID, $id);
 }

 /**
 * Get code
 *
 * @return string
 */
 public function getTitle()
 {
 return $this->_get(self::TITLE);
 }

 /**
 * Set code
 *
 * @param string $title
 * @return $this
 */
 public function setTitle($title)
 {
 return $this->setData(self::TITLE, $title);
 }

 /**
 * Get Is Active
 *

Creating Magento 2 Extensions – Advanced

302

 * @return bool
 */
 public function getIsActive()
 {
 return $this->_get(self::IS_ACTIVE);
 }

 /**
 * Set Is Active
 *
 * @param bool $isActive
 * @return $this
 */
 public function setIsActive($isActive)
 {
 return $this->setData(self::IS_ACTIVE, $isActive);
 }

 /**
 * Get Is Visible
 *
 * @return bool
 */
 public function getIsVisible()
 {
 return $this->_get(self::IS_VISIBLE);
 }

 /**
 * Set Is Active
 *
 * @param bool $isVisible
 * @return $this
 */
 public function setIsVisible($isVisible)
 {
 return $this->setData(self::IS_VISIBLE, $isVisible);
 }

 /**
 * Get creation time
 *
 * @return string
 */

Chapter 8

303

 public function getCreationTime()
 {
 return $this->_get(self::CREATION_TIME);
 }

 /**
 * Set creation time
 *
 * @param string $creationTime
 * @return $this
 */
 public function setCreationTime($creationTime)
 {
 return $this->setData(self::CREATION_TIME,
 $creationTime);
 }

 /**
 * Get update time
 *
 * @return string
 */
 public function getUpdateTime()
 {
 return $this->_get(self::UPDATE_TIME);
 }

 /**
 * Set update time
 *
 * @param string $updateTime
 * @return $this
 */
 public function setUpdateTime($updateTime)
 {
 return $this->setData(self::UPDATE_TIME, $updateTime);
 }

 /**
 * {@inheritdoc}
 *
 * @return DemoExtensionInterface|null
 */
 public function getExtensionAttributes()

Creating Magento 2 Extensions – Advanced

304

 {
 return $this->_getExtensionAttributes();
 }

 /**
 * {@inheritdoc}
 *
 * @param DemoExtensionInterface $extensionAttributes
 * @return $this
 */
 public function setExtensionAttributes(
 DemoExtensionInterface $extensionAttributes)
 {
 return $this->_setExtensionAttributes(
 $extensionAttributes);
 }
}

6.	 Create the search results interface; this is used in the getList command:

Api/Data/DemoSearchResultsInterface.php

<?php
namespace Genmato\Sample\Api\Data;

use Genmato\Sample\Api\Data\DemoInterface;
use Magento\Framework\Api\SearchResultsInterface;

interface DemoSearchResultsInterface extends
 SearchResultsInterface
{
 /**
 * Get demo item list.
 *
 * @api
 * @return DemoInterface[]
 */
 public function getItems();

 /**
 * Set demo item list.
 *
 * @api
 * @param DemoInterface[] $items

Chapter 8

305

 * @return $this
 */
 public function setItems(array $items);

}

7.	 Bind the interfaces through di.xml by adding the following lines:

etc/di.xml

 <preference for="Genmato\Sample\Api\
 DemoRepositoryInterface"
 type="Genmato\Sample\Model\ResourceModel\
 DemoRepository" />

 <preference for="Genmato\Sample\Api\Data\DemoInterface"
 type="Genmato\Sample\Model\Data\Demo" />
 <preference for="Genmato\Sample\Api\Data\
 DemoSearchResultsInterface"
 type="Magento\Framework\Api\SearchResults" />

8.	 Add the Test controller; here, we test the working of the service layer: (This is
optional.)

Controller/Index/Test.php

<?php
namespace Genmato\Sample\Controller\Index;

use Magento\Framework\App\Action\Action;
use Magento\Framework\App\Action\Context;
use Magento\Framework\View\Result\PageFactory;
use Magento\Framework\Api\SearchCriteriaBuilder;
use Genmato\Sample\Api\DemoRepositoryInterface;
use Genmato\Sample\Model\Data\DemoFactory;
use Genmato\Sample\Api\Data\DemoInterface;

class Test extends Action
{
 /**
 * @var PageFactory
 */
 private $resultPageFactory;

 /** @var DemoRepositoryInterface */

Creating Magento 2 Extensions – Advanced

306

 private $demoRepository;

 /** @var DemoFactory */
 private $demo;

 /**
 * @var SearchCriteriaBuilder
 */
 private $searchCriteriaBuilder;
 /**
 * @param Context $context
 * @param PageFactory $resultPageFactory
 * @param DemoRepositoryInterface $demoRepository
 * @param SearchCriteriaBuilder $searchCriteriaBuilder
 * @param DemoFactory $demoFactory
 */
 public function __construct(
 Context $context,
 PageFactory $resultPageFactory,
 DemoRepositoryInterface $demoRepository,
 SearchCriteriaBuilder $searchCriteriaBuilder,
 DemoFactory $demoFactory
)
 {
 $this->demoRepository = $demoRepository;
 $this->searchCriteriaBuilder = $searchCriteriaBuilder;
 $this->demo = $demoFactory;
 parent::__construct($context);
 }

 /**
 * Renders Sample
 */
 public function execute()
 {
 echo '<pre>';

 // Create new record through service layer/contract

 /** @var DemoInterface $demoRecord */
 $demoRecord = $this->demo->create();
 $demoRecord->setIsActive(1)
 ->setIsVisible(1)

Chapter 8

307

 ->setTitle('Test through Service Layer');

 $demo = $this->demoRepository->save($demoRecord);
 print_r($demo);

 // Get list of available records
 $searchCriteria = $this->searchCriteriaBuilder->
 create();
 $searchResult = $this->demoRepository->
 getList($searchCriteria);
 foreach ($searchResult->getItems() as $item) {
 echo $item->getId().' => '.$item->getTitle().'
';
 }
 }

}

9.	 Refresh the cache and generated data:
bin/magento setup:upgrade

10.	 Access the result of the test URL:

http://example.com/sample/index/test/

How it works…
The service layer/contract defines the methods and data format through these interfaces.

DemoRepositoryInterface
This interface describes the available methods, input, and output that is expected. The actual
logic for the methods is done by the Model\ResourceModel\ DemoRepository class.
In di.xml, there is a preference created that will use DemoRepository instead of the
Interface class:

<preference for="Genmato\Sample\Api\DemoRepositoryInterface"
 type="Genmato\Sample\Model\ResourceModel\DemoRepository" />

DemoInterface
In this interface, the available getters and setters for the object are described. Just like
RepositoryInterface, the actual processing of the data is mapped through di.xml to
the Data\Demo class:

<preference for="Genmato\Sample\Api\Data\DemoInterface"
 type="Genmato\Sample\Model\Data\Demo" />

Creating Magento 2 Extensions – Advanced

308

See also
In the next recipe, we will see how the getById, deleteById, list, and save methods can
be used in your own code.

Creating a Magento CLI command option
With Magento 2, there is a command-line interface (CLI) available to run several tasks. The
bin/magento command replaces the separate shell scripts that were used in Magento
1. This command is based on the Symfony Console component and looks just like n98-
magerun that is available for Magento 1. Just like the rest of Magento 2, it's possible to
extend the CLI tool with your own commands.

Getting ready
Adding commands to the CLI script requires some knowledge of the Symfony Console
component. This recipe also uses the service layer created in the previous recipe.

How to do it…
In this recipe, we will add four options to the bin/magento CLI command with the
following steps:

1.	 Create the AddCommand class; this is used to create a new record through the CLI:

Console/Command/AddCommand.php

<?php
namespace Genmato\Sample\Console\Command;

use Genmato\Sample\Api\DemoRepositoryInterface;
use Genmato\Sample\Model\Data\DemoFactory;
use Genmato\Sample\Api\Data\DemoInterface;

use Symfony\Component\Console\Input\InputOption;
use Symfony\Component\Console\Input\InputArgument;
use Symfony\Component\Console\Command\Command;
use Symfony\Component\Console\Input\InputInterface;
use Symfony\Component\Console\Output\OutputInterface;
use Symfony\Component\Console\Question\ConfirmationQuestion;

class AddCommand extends Command

Chapter 8

309

{

 /** @var DemoRepositoryInterface */
 private $demoRepository;

 /** @var DemoFactory */
 private $demoFactory;

 /**
 * AddCommand constructor.
 * @param DemoRepositoryInterface $demoRepository
 * @param DemoFactory $demoFactory
 * @param null $name
 */
 public function __construct(
 DemoRepositoryInterface $demoRepository,
 DemoFactory $demoFactory,
 $name = null)
 {
 parent::__construct($name);

 $this->demoRepository = $demoRepository;
 $this->demoFactory = $demoFactory;
 }

 /**
 * {@inheritdoc}
 */
 protected function configure()
 {
 $this->setName('demo:add')
 ->setDescription('Add demo record')
 ->addArgument('title',InputArgument::OPTIONAL,
 'Title')
 ->addOption('active', null, InputOption::VALUE_NONE,
 'Active')
 ->addOption('visible', null, InputOption::VALUE_NONE,
 'Visible')
 ;
 }

 /**
 * {@inheritdoc}
 */

Creating Magento 2 Extensions – Advanced

310

 protected function execute(InputInterface $input,
 OutputInterface $output)
 {
 $title = $input->getArgument('title');
 $active = $input->getOption('active')? 1:0;
 $visible = $input->getOption('visible')? 1:0;
 if (!$title) {
 $dialog = $this->getHelper('dialog');

 $title = $dialog->ask($output, '<question>Enter the
 Title:</question> ',false);
 $active = $dialog->ask($output, '<question>Should
 record be active: [Y/n]</question> ','y');
 $active = (strtolower($active) == 'y') ? 1:0;
 $visible = $dialog->ask($output, '<question>Should
 record be visible: [Y/n]</question> ','y');
 $visible = (strtolower($visible) == 'y') ? 1:0;
 }

 /** @var DemoInterface $demoRecord */
 $demoRecord = $this->demoFactory->create();
 $demoRecord->setIsActive($active)
 ->setIsVisible($visible)
 ->setTitle($title);

 try {
 $demo = $this->demoRepository->save($demoRecord);
 $output->writeln('New record created (id='.$demo->
 getId().')');
 }catch (\Exception $ex) {
 $output->writeln('<error>'.$ex->
 getMessage().'</error>');
 }
 }
}

2.	 Create the delete option class; this is used to delete a record through the CLI:

Console/Command/DeleteCommand.php

<?php
namespace Genmato\Sample\Console\Command;

use Genmato\Sample\Api\DemoRepositoryInterface;

use Symfony\Component\Console\Input\InputOption;

Chapter 8

311

use Symfony\Component\Console\Command\Command;
use Symfony\Component\Console\Input\InputInterface;
use Symfony\Component\Console\Output\OutputInterface;
use Symfony\Component\Console\Question\ConfirmationQuestion;

class DeleteCommand extends Command
{

 /** @var DemoRepositoryInterface */
 private $demoRepository;

 public function __construct(
 DemoRepositoryInterface $demoRepository,
 $name = null)
 {
 parent::__construct($name);

 $this->demoRepository = $demoRepository;
 }

 /**
 * {@inheritdoc}
 */
 protected function configure()
 {
 $this->setName('demo:delete')
 ->setDescription('Delete demo record')
 ->addOption(
 'id',
 null,
 InputOption::VALUE_REQUIRED,
 'Demo record ID to delete'
)
 ->addOption(
 'force',
 null,
 InputOption::VALUE_NONE,
 'Force delete without confirmation'
);
 }

 /**
 * {@inheritdoc}

Creating Magento 2 Extensions – Advanced

312

 */
 protected function execute(InputInterface $input,
 OutputInterface $output)
 {
 $helper = $this->getHelper('question');

 $id = $input->getOption('id');

 try {
 if (!$input->getOption('force')) {
 $data = $this->demoRepository->getById($id);
 $output->writeln('Id :' . $data->getId());
 $output->writeln('Title :' . $data->
 getTitle());
 $question = new ConfirmationQuestion('Are you sure
 you want to delete this record? ', false);

 if (!$helper->ask($input, $output, $question)) {
 return;
 }
 }

 $data = $this->demoRepository->deleteById($id);
 if ($data) {
 $output->writeln('<info>Record deleted!</info>');
 } else {
 $output->writeln('<error>Unable to delete
 record!</error>');
 }
 } catch (\Exception $ex) {
 $output->writeln('<error>'.$ex->
 getMessage().'</error>');
 }
 }
}

3.	 Create the get option class; this is used to list a single record through the CLI:

Console/Command/GetCommand.php

<?php

namespace Genmato\Sample\Console\Command;

use Genmato\Sample\Api\DemoRepositoryInterface;

use Symfony\Component\Console\Command\Command;

Chapter 8

313

use Symfony\Component\Console\Input\InputArgument;
use Symfony\Component\Console\Input\InputOption;
use Symfony\Component\Console\Input\InputInterface;
use Symfony\Component\Console\Output\OutputInterface;

class GetCommand extends Command
{

 /** @var DemoRepositoryInterface */
 private $demoRepository;

 public function __construct(
 DemoRepositoryInterface $demoRepository,
 $name = null)
 {
 parent::__construct($name);

 $this->demoRepository = $demoRepository;
 }

 /**
 * {@inheritdoc}
 */
 protected function configure()
 {
 $this->setName('demo:get')
 ->setDescription('Get demo records')
 ->addOption(
 'id',
 null,
 InputOption::VALUE_REQUIRED,
 'Demo record ID to display'
);
 }

 /**
 * {@inheritdoc}
 */
 protected function execute(InputInterface $input,
 OutputInterface $output)
 {
 $id = $input->getOption('id');

 try {

Creating Magento 2 Extensions – Advanced

314

 $data = $this->demoRepository->getById($id);

 $table = $this->getHelper('table');
 $table
 ->setHeaders(array(__('ID'), __('Title'),
 __('Created'), __('Updated'), __('Visible'),
 __('Active')))
 ->setRows([[
 $data->getId(),
 $data->getTitle(),
 $data->getCreationTime(),
 $data->getUpdateTime(),
 $data->getIsVisible() ? __('Yes') : __('No'),
 $data->getIsActive() ? __('Yes') : __('No')
]]);
 $table->render($output);
 } catch (\Exception $ex) {
 $output->writeln('<error>'.$ex->
 getMessage().'</error>');
 }
 }
}

4.	 Create the list option class; this is used to list the available records through the CLI:

Console/Command/ListCommand.php

<?php
namespace Genmato\Sample\Console\Command;

use Magento\Framework\Api\SearchCriteriaBuilder;
use Genmato\Sample\Api\DemoRepositoryInterface;

use Symfony\Component\Console\Command\Command;
use Symfony\Component\Console\Input\InputInterface;
use Symfony\Component\Console\Output\OutputInterface;

class ListCommand extends Command
{

 /** @var DemoRepositoryInterface */
 private $demoRepository;

 /**
 * @var SearchCriteriaBuilder
 */

Chapter 8

315

 private $searchCriteriaBuilder;

 public function __construct(
 DemoRepositoryInterface $demoRepository,
 SearchCriteriaBuilder $searchCriteriaBuilder,
 $name = null)
 {
 parent::__construct($name);

 $this->demoRepository = $demoRepository;
 $this->searchCriteriaBuilder = $searchCriteriaBuilder;
 }

 /**
 * {@inheritdoc}
 */
 protected function configure()
 {
 $this->setName('demo:list')->setDescription('List demo
 records');
 }

 /**
 * {@inheritdoc}
 */
 protected function execute(InputInterface $input,
 OutputInterface $output)
 {
 // Get list of available records
 $searchCriteria = $this->searchCriteriaBuilder->
 create();
 $searchResult = $this->demoRepository->
 getList($searchCriteria);
 $rows = [];
 foreach ($searchResult->getItems() as $item) {
 $rows[] = [$item->getId(), $item->getTitle()];
 }

 $table = $this->getHelper('table');
 $table
 ->setHeaders(array(__('ID'), __('Title')))
 ->setRows($rows)
 ;
 $table->render($output);
 }
}

Creating Magento 2 Extensions – Advanced

316

5.	 Register the commands so that they are available for the CLI by adding the following
lines to the di.xml configuration file:

etc/di.xml

<type name="Magento\Framework\Console\CommandList">
 <arguments>
 <argument name="commands" xsi:type="array">
 <item name="demoadd" xsi:type="object">
 Genmato\Sample\Console\Command\AddCommand</item>
 <item name="demolist" xsi:type="object">
 Genmato\Sample\Console\Command\ListCommand</item>
 <item name="demoget" xsi:type="object">
 Genmato\Sample\Console\Command\GetCommand</item>
 <item name="demodelete" xsi:type="object">
 Genmato\Sample\Console\Command\DeleteCommand</item>
 </argument>
 </arguments>
</type>

6.	 Refresh the cache and generated data:
bin/magento setup:upgrade

7.	 Check whether the added commands are available by running the following
command:
bin/magento

How it works…
Registering new commands works by registering new items through di.xml with the
Magento\Framework\Console\CommandList class. In the XML file, every item that we
want to add is listed with a unique name and the class that is used for this command.

In the class listed, there are two methods that are used:

ff configure: In the configure method, the command is added with the following
parameters:

�� setName: This is the option used for the command

�� setDesciption: This is a short description of the command, which is
shown in the command listing

�� setArgument (optional): This sets arguments necessary for the command

�� setOption (optional): This sets options necessary for the command

ff execute: This is the actual method that is executed; here, the logic that you want to
perform is located

317

Index
A
access control list (ACL) resource 243
advanced pricing

managing 176-179
Alternative PHP Cache (APC) 80
Apache

installing 2-5
URL 2
version 2, URL 4

attribute sets
managing 137-141

B
backend cache

Redis, configuring 80-88
backend data grid

creating 246-252
uiComponent configuration 253

backend form
adding 262, 263
creating 262
creating, to add/edit data 256-262
data, loading 264
data, saving 264
URL 256

BitBucket
URL 221

Business to Business (B2B) 127, 168
Business to Consumer (B2C) 168

C
catalog grid

products, managing 150-154

CloudFlare
about 80
Magento 2, configuring with 99-107
URL 100

command line
used, for installing Magento 2

sample data 53-56
used, for managing Magento 2 backup 65-67
used, for managing Magento 2 cache 59-64
used, for managing Magento 2 indexes 56-59

command-line interface (CLI command option)
creating 308-316

Community Edition (CE) 71
Composer 21, 43
connect portal

URL 54
controller

creating, to display data 235-241
CSS changes

Grunt, using for 198-200
CSS/JS

adding, to pages 196, 197
CSS files 198
external files 197
file in header, removing 198
JavaScript files 198

curl 71
currency rates

configuring 174, 175
customer groups

managing 168-170

D
data

displaying, web route and controller creation
for 235-241

318

database models
working with 222-224

data interface 288
Data Migration Tool 71
DemoInterface 307
DemoRepositoryInterface 307
dependency injection (DI)

about 250
used, for passing classes to

own class 268-271
Development Test Acceptance

Production (DTAP) 68
DigitalOcean

URL 128, 134, 137
Docker

Magento 2, managing 38-41
URL 40

dynamic serving theme
using, client browser based 209-212

E
Enterprise Edition (EE)

about 141
version 71

Entity Attribute Value (EAV) 57
environmental variables

URL 56
Exchangeable Image File (EXIF) data 107
extension

basics, initializing 218-220
creation, ways 217, 218
packages, installing from 221, 222

F
Full Page Cache (FPC)

about 80
Varnish, configuring as 93-99

functions
modifying, plugins used 271-274

G
GitHub Data Migration Tool

URL 77
GitHub Gist

URL 92

GitHub token
URL 54

Google PageSpeed ranking 79
graphical user interface (GUI)

used, for installing Magento 2
sample data 47-52

Grunt
LiveReload plugin 202
using, for CSS language 198-202

H
HHVM (HipHop Virtual Machine)

installing 13-17
HTTP version 2 (HTTP/2)

about 2
Magento 2, configuring with 111-118
URL 117

Hypernode
Magento 2, installing 34-38
URL 34-38

Hypernode knowledge base
URL 37

Hypertext Transfer Protocol (HTTP) 2

I
ImageMagick library

URL 111
interception 271, 272
inventories

configuring 170-174

J
just-in-time (JIT) compiler 13

L
layered navigation 126
layout files 188
layout XML

<container> 192
changing, for Magento 2 module 190, 191
move command 193
referenceContainer/referenceBlock 193
remove command 193
template files, overriding 195

319

update command 193, 194
used, for adding static blocks

to pages 202-204
Linux, Apache, MySQL, PHP (LAMP) 1
Linux, NGINX, MySQL, PHP (LEMP) 1
LiveReload plugin

about 202
URL 200

Luma 51

M
Magento

setup, URL 38
Magento 1 database

about 73
transferring, to Magento 2 71-77

Magento 2
about 126
backup managing, via command line 64-67
cache managing, via command line 59-64
configuring, HTTP/2 used 111-117
configuring, with CloudFlare 99-107
Docker container, URL 41
indexes managing, via command line 56-59
indexes 56
installing 21-33
installing, on Hypernode 33-38
managing, on Docker 38-41
optimized images, configuring 107-111
performance testing, configuring 118-123
theme 182
URL 23, 49

Magento 2 sample data
installing, graphical user interface (GUI)

used 47-52
installing, via command line 53-56

Magento 2 set mode (MAGE_MODE)
managing 68-71

management interface 288
Manufacturer's Suggested Retail

Price (MSRP) 176
Memcached

configuring, for session caching 89-93
viewer 93

minimum advertised price (MAP) 176
mod_proxy module 8

mod_rewrite module 22
module

layout XML, changing 190, 191
MySQL

installing 18-21
root user 20

N
Nexcess

URL 93
NGINX

installing 5, 6
URL 5, 6

Node.js package manager (npm) 199

O
optimized images

in Magento 2, configuring 107-111

P
page_cache 85
pages

CSS/JS, adding 196, 197
static blocks, adding to pages through layout

XML 202-204
PageSpeed

URL 110
performance testing

configuring 118-123
PHP-FastCGI Process Manager (PHP-FPM)

installing 7-13
PHP Next Generation (PHP NG) 7
PHP Redis

URL 82
PHPRedMin

URL 86
plugins

used, for modifying functions 271-274
product inventory management (PIM)

system 170
products

bundle 142
configurable 142
creating 141-150
downloadable 142

320

gift card 142
grouped 142
managing, in catalog grid 150-154
simple 142
virtual 142

product-type
creating 282-288

proxy_fcgi module 8

R
Rapido image

URL 108
Redis

configuring, for backend cache 80
repository interface 288
Root Catalog 127-133

S
sample data

URL 49
search engine optimization (SEO) 126, 171
segmentation fault 66
service layers/contracts

data interface 288
DemoInterface 307
DemoRepositoryInterface 307
management interface 288
repository interface 288
working with 288-307

session caching
Memcached, configuring 89-93

setup scripts
used, for creating tables 224-233

shipping and tax rules
creating 156-167

Software as a Service (SaaS) platform 2
software binaries 108
SSH key

URL 36
static blocks

adding, to pages through
layout XML 202-204

adding, to pages through widgets 205-207
adding, to single page 204, 205

subcategories
creating 134-136

Swiss army knife tool 43
Symfony Console component 308
system configuration fields

creating 241
new field, creating 244-246
new group, creating 244
new section, creating 243
new tab, creating 242

T
tables

creating, setup scripts used 224-233
data installation 233, 234

template files 189
theme

about 181
layout files 188
new theme, creating 182-188
template files 189
UI library 189
variants, adding 188

theme-specific translations
creating 213-215
translation file, generating 215

Transmission Control Protocol (TCP) 2

U
UberTheme

URL 77
Ubuntu

URL 7
uiComponent configuration

data source 253
mass actions, for grid 253-255
URL 250, 256

UI library 189

V
Varnish

configuring, as Full Page Cache 93-99
Varnish Configuration Language (VCL) file 93
virtual private server (VPS) 1

321

W
Web Application Firewall (WAF) 100
web route

creating, to display data 235-241
widgets

Catalog Category Link 208
Catalog New Products List 208
Catalog Product Link 208
Catalog Product List 208
CMS Page Link 208
CMS Static Block 208
Orders and Returns 208
Recently Compared Products 208
Recently Viewed Products 208
used, for adding static blocks

to pages 205-207

X
XML module configuration file

creating 275-281
XML Schema Definition (XSD) schema 218

	Cover
	Copyright
	Credits
	Foreword
	About the Authors
	About the Reviewer
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Installing Magento 2 on Apache and NGINX
	Introduction
	Installing Apache
	Installing NGINX
	Installing PHP-FPM
	Installing HHVM
	Installing MySQL
	Installing Magento 2
	Installing Magento 2 on Hypernode
	Managing Magento 2 on Docker

	Chapter 2: Magento 2
System Tools
	Introduction
	Installing Magento 2 sample data via GUI
	Installing Magento 2 sample data via the command line
	Managing Magento 2 indexes via the command line
	Managing Magento 2 cache via the command line
	Managing Magento 2 backup via the command line
	Managing Magento 2 set mode
(MAGE_MODE)
	Transferring your Magento 1 database to Magento 2

	Chapter 3: Enabling Performance in Magento 2
	Introduction
	Configuring Redis for backend cache
	Configuring Memcached for session caching
	Configuring Varnish as the Full Page Cache
	Configuring Magento 2 with CloudFlare
	Configuring optimized images in Magento 2
	Configuring Magento 2 with HTTP/2
	Configuring Magento 2 performance testing

	Chapter 4: Creating Catalogs and Categories
	Introduction
	Create a Root Catalog
	Create subcategories
	Manage attribute sets
	Create products
	Manage products in a catalog grid

	Chapter 5: Managing Your Store
	Introduction
	Creating shipping and tax rules
	Managing customer groups
	Configuring inventories
	Configuring currency rates
	Managing advanced pricing

	Chapter 6: Creating a
Magento 2 Theme
	Introduction
	Creating a new theme
	Changing a layout XML of a Magento 2 module
	Adding CSS/JS to pages
	Using Grunt for CSS changes
	Adding static blocks to pages through
layout XML
	Adding static blocks to pages through widgets
	Using a dynamic serving theme based on the client browser
	Creating theme-specific translations

	Chapter 7: Creating Magento 2 Extensions – the Basics
	Introduction
	Initializing extension basics
	Working with database models
	Creating tables using setup scripts
	Creating a web route and controller to display data
	Creating system configuration fields
	Creating a backend data grid
	Creating a backend form to add/edit data

	Chapter 8: Creating Magento 2 Extensions – Advanced
	Introduction
	Using dependency injection to pass classes to your own class
	Modifying functions with the use of plugins – Interception
	Creating your own XML module configuration file
	Creating your own product type
	Working with service layers/contracts
	Creating a Magento CLI command option

	Index

