
[1]

www.allitebooks.com

http://www.allitebooks.org

Mastering Android Application
Development

Take your Android knowledge to the next level with
this advanced Android application guide, which shows
you how to make even better Android apps that users
will love

Antonio Pachón Ruiz

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Mastering Android Application Development

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author(s), nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: October 2015

Production reference: 1231015

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78588-422-1

www.packtpub.com

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

Credits

Author
Antonio Pachón Ruiz

Reviewers
BJ Peter DeLaCruz

Kyrre Havik Eriksen

Ankit Garg

Commissioning Editor
Veena Pagare

Acquisition Editor
Reshma Raman

Content Development Editor
Rashmi Suvarna

Technical Editor
Parag Topre

Copy Editor
Shruti Iyer

Project Coordinator
Judie Jose

Proofreader
Safis Editing

Indexer
Monica Ajmera Mehta

Graphics
Disha Haria

Abhinash Sahu

Production Coordinator
Conidon Miranda

Cover Work
Conidon Miranda

www.allitebooks.com

http://www.allitebooks.org

About the Author

Antonio Pachón Ruiz is a software engineer with a master's degree in mobile
technologies. He has more than five years of experience working as an Android
developer and has developed a large number of apps.

Antonio was born in southern Spain and currently lives in London working as an
Android contractor; he works part time developing for different companies, such as
TomTom, MasterCard, and the UK giant, British Telecom. His experience extends
from small start-ups to big telecom companies. Video streaming apps, newsreader
apps, Voice over IP, voice authentication, e-commerce, online payments, navigation,
and games are some of the technologies Antonio has worked on.

He is also the director of SuitApps, a venture outsourcing apps remotely for other
companies, where he leads and coaches a team of developers and UI/UX designers.

Apart from the app development industry, Antonio has experience in the online
teaching industry as an instructor of a course about getting started with Android
with more than 8,000 students and a five-star rating.

I would like to extend great thanks to Sarah Lyon for her patience,
help, and support during the writing sessions, making the book
more readable and providing the images and assets needed.

I would also like to thank everyone from the SuitApps team and
my amazing friends, including Sarah Lyon, a UI/UX designer; Jose
Luis Neira, an Android developer; Alex Nabrozidis, an expert in
Android-automated testing; and Unathi Chonco, an iOS developer.

Finally, I would like to thank the Packt Publishing team, especially
Rashmi Suvarna and Reshma Raman.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

BJ Peter DeLaCruz graduated with a master's degree in computer science from
the University of Hawaii at Manoa. He started his career as a software developer
at Referentia Systems, Inc. in Honolulu, Hawaii, where he helped develop a
network performance management software called LiveAction. After working at
Referentia, he was hired as a Java web developer by the University of Hawaii where
he upgraded Laulima, a learning management system based on Sakai that the
university uses for traditional face-to-face, online, and hybrid classes. He is currently
employed by Hawaii Information Consortium (https://portal.ehawaii.gov/),
where he develops web applications for the State of Hawaii.

BJ is a successful Android developer with seven Android apps published on Google
Play. He is certified by Oracle in Java 8 programming and holds three certifications
from CompTIA: Security+, Cloud+, and Storage+ Powered by SNIA.

BJ has also reviewed Gradle in Action, Manning Publications and Learning Android
Application Testing, Packt Publishing.

During his free time, he teaches himself Japanese, reads books on the Japanese
culture, and watches anime. BJ also enjoys shooting videos and uploading them to
YouTube.

You can learn more about him by visiting his website, www.bjpeter.com, or contact
him directly via e-mail at bj.peter.delacruz@gmail.com.

I would like to thank God, Paushali Desai, and Judie Jose for giving
me the opportunity to review this book.

www.allitebooks.com

https://portal.ehawaii.gov/
www.bjpeter.com
http://www.allitebooks.org

Kyrre Havik Eriksen is an independent and curious person with a master's
degree in informatics from University of Oslo, Norway. He works full time as a
Java developer, but in his spare time he studies Android, game development with
Löve 2D and libGDX, and Ruby. He is currently working on getting his pet project,
Tag Story (http://tagstory.no/), up and running. Tag Story is an interactive and
social mobile game, designed to let you experience the psychical environment in a
new and exciting way.

Ankit Garg works as a mobile engineer for AOL. He works in product research
and development team. He has around 5 years of experience in developing mobile
applications and is really passionate about making user-friendly mobile apps.

www.allitebooks.com

http://tagstory.no/
http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers,
and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib
today and view 9 entirely free books. Simply use your login credentials for immediate access.

www.allitebooks.com

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com
http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

[i]

Table of Contents
Preface vii
Chapter 1: Getting Started 1

Introducing Material Design 2
Introducing Android 6 Marshmallow 4

Runtime permissions 5
Power-saving optimizations 6
Text selection 7
Fingerprint authentication 7
Direct share 8

Creating MasteringAndroidApp 9
Getting the tools ready 10
Summary 12

Chapter 2: Designing our App 13
Selecting an app-navigation pattern 13

Basic structure 14
The dashboard pattern 16
The sliding panel 17
Tabs 19

Fragments 21
Understanding the importance of fragments 22
The Fragment Manager 24
Fragments stack 25

ViewPager 27
Adapter 27
Sliding tabs 29
Customizing tabs 30

Transitions 31
Summary 33

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Chapter 3: Creating and Accessing Content from the Cloud 35
Creating your own cloud database 36

Parse 36
Adding the Parse SDK to our project 37
Android's Application class 39
Creating the database 40

Storing and consuming content from Parse 42
Storing content 43
Consuming content 44
Displaying content 47

Google Volley and OkHttp 49
Google Volley 50
OkHttp 52
A lightning-fast network 52

JSON and Gson 53
Summary 57

Chapter 4: Concurrency and Software Design Patterns 59
Concurrency in Android 60

Handlers and threads 61
Introducing AsyncTasks 62
Understanding services 64

A type of service – IntentService 65
Introducing loaders 65

The importance of patterns 66
The Singleton pattern 67

Singleton in the Application class 68
The Observer pattern 70
Introducing the Adapter pattern 72

Summary 73
Chapter 5: Lists and Grids 75

Starting with lists 76
Using ListViews with built-in views 77
Creating a custom Adapter 81
Recycling views 88
Applying the ViewHolder pattern 89

Introducing RecyclerView 93
Using list, grid, or stack 93
Implementing RecyclerView 95
Clicking on RecyclerView items 100

Summary 104

Table of Contents

[iii]

Chapter 6: CardView and Material Design 105
CardView and UI design tips 106

Introducing CardView 106
Design-time layout attributes 109
Working with custom fonts in Android 111

The design support library 114
Introducing TabLayout 114
Toolbar, action bar, and app bar 116
Adding motion with CoordinatorLayout 117
Back navigation and up navigation 122

Summary 124
Chapter 7: Image Handling and Memory Management 125

Downloading images 126
The traditional way of downloading images 126
Downloading images with Volley 131
Introducing Picasso 133

Mastering images 134
Vector drawables 134
Animating with AnimatedVectorDrawable 136
Working with the nine patch 137

Memory management 139
Detecting and locating leaks 139
Preventing leaks 142

Activity and context references 142
Using WeakReference 142

Summary 143
Chapter 8: Databases and Loaders 145

Creating the database 146
The database contract 147
The database open helper 148
Database Access Object 152

Performing a query 155
Using a raw query 156
Introducing cursors 156

Content providers 163
Sync database with UI 171

Implementing CursorLoader 171
RecyclerView and CursorAdapter 174
Introducing pull to refresh with SwipeRefreshLayout 179

Summary 181

Table of Contents

[iv]

Chapter 9: Push Notifications and Analytics 183
Push notifications 184

Sending and receiving notifications using GCM 186
Push notifications with Parse 190
Using NotificationCompat 192

The importance of analytics 193
Analytics with Parse 194
The error report 198

Summary 200
Chapter 10: Location Services 201

Configuring the project 202
Getting the API key 203

Displaying the debug certificate fingerprint 203
Creating a Google Developer Console project 204

Configuring AndroidManifest.xml 205
Adding the map 207

Adding the fragment 207
Implementing MapFragment 210

Adding a marker 212
Retrieving data from Parse 212
Displaying a marker for each location 213
Adding a title to a marker 215

Summary 216
Chapter 11: Debugging and Testing on Android 217

Logs and the debug mode 218
Working with logs 218

Using Timber, the log wrapper 220
Debugging our app 220

Testing on Android 222
Unit tests with Robolectric 222

Robolectric configuration 223
Our first unit test 223
Running unit tests 225

Integration tests with Espresso 226
Espresso configuration 227
Writing an integration test 228
Running integration tests 231

Testing from a UI perspective 232
Launching The Monkey 232
Recording UI tests with MonkeyTalk 234

Continuous integration 235
Summary 237

Table of Contents

[v]

Chapter 12: Monetization, the Build Process, and Release 239
Using build variants 240

Creating build types 241
Product flavors 242

Monetization in Android 243
Key points in advertisement monetization 244
Adding advertisements with AdToApp 248

Releasing our app to Play Store 251
Code obfuscation 252
Exporting the app 254
Uploading our app to Play Store 257

Creating a publisher account 257
The Google Play Developer console 258
Publishing an app 261
Uploading the APK file 261
Preparing the store listing 263

Summary 267
Index 269

[vii]

Preface
This book is a practical guide to learning the development of advanced Android
apps. This book helps master the core concepts of Android and quickly apply the
knowledge in real-life projects. Throughout the book, an app is created, evolved in
every chapter, so that the reader can easily follow and absorb the concepts.

The book is divided into twelve chapters. The first three chapters are focused on
the design of the app, explaining the basic concepts of design and the programming
patterns used in Android. The next few chapters aim to improve the application,
accessing the server side to download the information to be shown in the app. Once
the app is functionally complete, it is improved using Material Design components
and other third-party libraries.

Before finishing, extra services are added to the app, such as location services,
analytics, crash reports, and monetization. Finally, the app is exported, explaining
the different build types and certificates, and uploaded to Play Store, ready to be
distributed.

What this book covers
Chapter 1, Getting Started, explains the basics of Android 6 Marshmallow and
important concepts of Material Design. We will set up the tools needed to start
developing and, optionally, we will install an ultrafast emulator that is quicker than
the Android default one, which will help us test our app along the book.

Chapter 2, Designing our App, introduces the first step of creating an app—designing
the navigation— and the different navigation patterns. We will apply the Tabs
pattern with sliding screens, explaining and using Fragments, which is a key
component in the Android app development.

Preface

[viii]

Chapter 3, Creating and Accessing Content from the Cloud, covers all that is necessary
to display information from the Internet in our app. This information can be on
an external server or API. We will create our own server using Parse, and we will
access it with advanced network requests using Volley and OKHttp, processing the
information and converting it into usable objects using Gson.

Chapter 4, Concurrency and Software Design Patterns, talks about concurrency in
Android and the different mechanisms to handle it, such as AsyncTask, Services,
Loaders, and more. The second part of this chapter talks about the most common
programming patterns used in Android.

Chapter 5, Lists and Grids, discusses lists and grids, starting with ListViews. It explains
how this component evolved in RecyclerView, and as an example, it shows how to
create a list with different types of elements on it.

Chapter 6, CardView and Material Design, focuses on improving the app from a user
interface perspective and introduces Material Design, explaining and implementing
features such as CardView, Toolbar, and CoordinatorLayout.

Chapter 7, Image Handling and Memory Management, mostly talks about displaying
images in our app that are downloaded from the Internet using different
mechanisms such as Volley or Picasso. It also covers different types of images, such
as Vector Drawable and Nine patch. Finally, it talks about memory management and
preventing, detecting, and locating memory leaks.

Chapter 8, Databases and Loaders, essentially explains how databases work in Android,
what content providers are, and how to get the database to communicate directly
with the views using CursorLoaders.

Chapter 9, Push Notifications and Analytics, talks about how to implement push
notification using Google Cloud Messaging and Parse. The second part of the chapter
talks about analytics, which is critical to understand how users behave with our app,
to capture error reports, and to keep our app free of bugs.

Chapter 10, Location Services, introduces MapView by implementing an example in
the app from the initial setup in the developer console to the final map view in the
app showing locations markers.

Chapter 11, Debugging and Testing on Android, talks mostly about testing. It covers unit
test, integration, and user interface tests. It also discusses using different tools and
best practices on the market to develop a maintainable app through automated tests.

Chapter 12, Monetization, the Build Process, and Release, shows how to monetize the app
and explains the key concepts of advertisement monetization. It shows how to export
an app with different build types and, finally, how to upload and market this app in
Google Play Store.

Preface

[ix]

What you need for this book
Your system must have following software to execute the code mentioned in this book:

• Android Studio 1.0 or later versions
• Java 1.7 or later versions
• Android 4.0 or later versions

Who this book is for
If you are a Java or project developer with some experience in Gradle and want to
become an expert, then this book is for you. Basic knowledge of Gradle is essential.

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames and dummy URLs are shown as follows: "We can include other contexts
through the use of the include directive."

A block of code is set as follows:

<uses-permission android:name="android.permission.INTERNET" /> <uses-
permission android:name="android.permission.ACCESS_NETWORK_STATE"
/> <uses-permission android:name="android.permission.WRITE_EXTERNAL_
STORAGE" />

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

<uses-permission android:name="android.permission.INTERNET" /> <uses-
permission android:name="android.permission.ACCESS_NETWORK_STATE"
/> <uses-permission android:name="android.permission.WRITE_EXTERNAL_
STORAGE" />

New terms and important words are shown in bold. Words that you see on the
screen, for example, in menus or dialog boxes, appear in the text like this: "Clicking
the Next button moves you to the next screen."

Preface

[x]

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http://www.packtpub.com/support
and register to have the files e-mailed directly to you.

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/
diagrams used in this book. The color images will help you better understand the
changes in the output. You can download this file from http://www.packtpub.com/
sites/default/files/downloads/4221OS_ColorImages.pdf.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/sites/default/files/downloads/4221OS_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/4221OS_ColorImages.pdf

Preface

[xi]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

[1]

Getting Started
We will start the book with an overview of Material Design and Android 6
Marshmallow. The new Material Design concept from Google has been a revolution
in the way apps look and feel.

During the course of the book, we will build an app called MasteringAndroidApp.
In this chapter, we will explain what the app is about. In this app, we will put into
practice all the concepts and theory explained in every chapter. At the end of the
book, we should have a rich app, full of features, which can be easily modified to
create your own version and uploaded to the Google Play Store.

We will ensure that we have all the necessary tools, downloading the latest version
of Android and introducing Genymotion, the quickest emulator for Android,
strongly recommended for this book.

• Material Design
• Key points for Android 6 Marshmallow
• Overview of the App
• Getting the tools ready

 ° Android Studio
 ° SDK Manager

• Genymotion

Getting Started

[2]

Introducing Material Design
As mentioned earlier, Material Design was a revolution in the way apps look
and feel. You have probably heard of this concept before, but what is it exactly?

Material Design is a new visual language created by Google, used on all the
platforms, websites, and mobile devices that are based on materials, meaningful
transitions, animations, and responsive interactions.

The material is a metaphor of an element that can be seen on the surface; it consists
of layers that can have different heights and widths, but their thickness is always
one unit, as with sheets of paper. We can place materials above each other, which
introduces a depth element to the view, a Z coordinate. In the same way, we can have
a sheet of paper on top of another, casting shadows and defining a visual priority.

The content is displayed on the materials but they don't add thickness to it. The
content can be displayed in any shape and color; it can be a plain background color,
a text, a video, and many other things. It is limited within the bounds of the material.

The material can expand and the content can expand with it, but the content can
never expand more than the material. We can't have two materials at the same Z
position. One of them always has to be below or on top of the other. If we interact
with the materials, we always interact at the top layer level. For instance, a touch
event will be performed in the top layer and won't go through to the layers below.
You can change the size and shape of the materials and the two materials can be
merged into one, but they can't bend or fold.

Chapter 1

[3]

This is an example of an app using the Material Design style; we can see cards
with shadows, different content, and an app bar with a navigation drawer. All
these components will be explained in the course of this book, and we will aim
to build an app using the same style.

Material design also came with important UI elements, such as RecyclerView.
This is a view that will replace ListView, which came earlier in Android, to
create any kind of a scrollable list of elements. We'll work with these components
in Chapter 5, Lists and Grids, starting with the basic version of ListView, evolving
it to understand how RecyclerView was born, and finishing with an example of it.

The CardView was another major UI element introduced. We can see one in the
previous image; it's a component with a background and shadows that can be
customized to fit all the content that we want. We will work with it in Chapter 6,
CardView and Material Design, where we'll also introduce the next component—
design support library.

Design support library is a must have library that includes animations, FAB (Floating
Action Button), and the navigation drawer. You've probably already seen the sliding
menu that comes from the left in other apps. Design support library offers support
for these components in previous Android versions, allowing us to use Material
Design features in older versions.

All of the above are features from a UI and programming perspective, but
Material design also introduced different features for our phone, such as a new
notification management system with different priority levels. For instance, we
can say which notifications are important and establish a time frame when we
don't want to be disturbed.

Getting Started

[4]

Another thing that we can't miss is the battery consumption improvement in
this version, which can save up to 90 minutes of battery compared to previous
Android versions, and it is due to a new Android runtime called ART. To explain
it in a nontechnical way, it translates the app to a language that can be understood
by Android faster when the app is installed. The previous runtime, Dalvik, had to
do this translation while executing our app rather than just once at the installation.
This helps the app consume less battery and run faster.

Introducing Android 6 Marshmallow
One of the main changes in this version has to do with the permissions for apps.
Before Android M, we were used to accepting the permissions of an app when we
were about to download it; the play store showed us a list of permissions that an
app has, and we needed to accept them in order to download and install it.

Chapter 1

[5]

Runtime permissions
This has changed with the introduction of runtime permissions. The idea here is to
accept the permission only when you need it. For instance, WhatsApp might not
need access to your microphone until your make a call or leave a voice message.

This is something we need to take into account when we develop an app; it is a
change for the developer who now needs to control what is to be done if the user
doesn't accept the permission. Previously, we didn't have to do any controlling
because it was an all-or-none choice at installation time; now, we have to consider
the decision of the user at runtime.

Downloading the example code
You can download the example code files from your account at
http://www.packtpub.com for all the Packt Publishing books you
have purchased. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have the
files e-mailed directly to you.

http://www.packtpub.com
http://www.packtpub.com/support

Getting Started

[6]

Power-saving optimizations
There is another improvement regarding the battery life of our phones since Lollipop;
this time, Google has introduced two new states: doze mode and app standby.

Doze mode improves the sleep efficiency of idle devices. If we turn off the screen
and are not using the phone, we enter the idle state. Previously, applications could
do network operations and continue working in the background; now, with the
introduction of doze mode, the system periodically allows our apps to work in
the background and perform other pending operations for a brief period of time.
Again, this brings in some consideration while developing; for instance, in this
mode, our apps can't access the network.

App standby is an induced idle mode for an app that has not been used for a while
and doesn't have any processes running in the background. It is used for an app
if it does not show any notifications and if the user has not explicitly asked it to
be exempt from optimization. This idle mode prevents the app from accessing the
network and executing pending jobs. When the power cable is connected, all apps in
a standby state are released, and the idle restrictions are removed.

Chapter 1

[7]

Text selection
In the previous versions, when a user selected text, a set of actions appeared on the
action bar, such as copy, cut, and paste. With this version, we can show these actions
and more, in a floating bar that will be presented above the selection:

Fingerprint authentication
In this version of Android, we can authenticate the use of our fingerprint.
The authentication can be at a device level to unlock the phone, not just to
unlock a specific app; so, we can authenticate users in our app based on how
recently they unlocked their device.

Getting Started

[8]

We have a new object available, FingerprintManager, which will be in charge of the
authentication and allow us to show a dialog requesting the fingerprint. We would
need a device with a fingerprint sensor in order to use this feature.

Direct share
Direct share is a new addition to simplify the content sharing process. Previously,
if we were in the gallery and wanted to share a picture to a contact in WhatsApp,
we had to click on Share, find WhatsApp in the list of apps, and then find a contact
inside WhatsApp to share this content. This process will be simplified, showing a
list of contacts with whom you can share the information directly:

These are the main new features that have been released with Android 6
Marshmallow; the complete list can be seen at http://developer.android.com/
preview/index.html.

http://developer.android.com/preview/index.html
http://developer.android.com/preview/index.html

Chapter 1

[9]

Creating MasteringAndroidApp
Now that we've seen the main features of the latest Android version, we can
introduce the app that we are going to develop during the book. This app will
include most of these features, but we will also spend time in the components
widely used in previous Android versions.

To master Android, we should be prepared to understand legacy code; for instance,
we might have to work on an app that still uses ListView instead of RecyclerView,
which is new. We will not always create apps from scratch with the latest components,
especially if we are professional Android developers. Also, looking at previous
components will help us understand the natural evolution of these components to
have a better idea of how they are now.

We will start creating this app totally from scratch, starting with the initial design,
having a look at the most used design and navigation patterns in Android, such as
tabs at the top, a sliding menu on the left side, and so on.

The app that we will develop, MasteringAndroidApp, is one with server-side
interaction. This app will show information that is stored in the cloud, and we will
create the cloud component, making our app communicate with it. The topic we
have chosen for the app is a job listing board, where we will create job offers on the
server side, and the users of the app can read these offers and receive notifications.

You can easily customize the topic; this will be an example where you can change
the information and create your own app with the same structure. In fact, it's better
if you think of your own idea because we will discuss how to publish the app in
Play Store and how to monetize it; we will add adverts, which will generate revenue
when the users click on it. So, if you apply what you learn using your idea, by the
time you finish the book, you will have an app ready to be distributed.

We will develop the app explaining the programming patterns that are most used in
Android as well as concurrency techniques and different methods to connect to rest
APIs or servers.

We'll not only be focusing on the backend, but also on the UI; by displaying the
information in an efficient way, using lists and grids, downloading images from the
Internet, and customizing fonts and views with the latest material design features.

We will learn the mechanism for debugging our apps, managing logs, and consider
the memory usage while learning how to identify and prevent memory leaks.

Our app will have an offline mode based on a database, where we will store the
content from the cloud. So, if the mobile loses connection, we can still show the
information available when we were last online.

www.allitebooks.com

http://www.allitebooks.org

Getting Started

[10]

To complete our app, we will add extra features such as push notifications, crash
reports, and analytics.

To finish, we will see how the Android build system works, exporting our app
in different versions as well as obfuscating the code to protect it and prevent
decompiling.

We have compressed a huge amount of information that will help you to master
Android by the end of the book; however, before starting with our app, let's get
the tools ready.

Getting the tools ready
The tools that we will need during the book are the latest version of Android Studio,
an Android SDK updated to Android M or later. It is also recommended that you
have Genymotion, an emulator to test the app.

First, we need to download and install Android Studio, the
official tool to develop in Android. It can be downloaded from
http://developer.android.com/sdk/index.html.

At the top of the website, you will have a link to download it depending on your
OS version.

http://developer.android.com/sdk/index.html

Chapter 1

[11]

Once it's installed, we need to download an Android M SDK, which will provide all
the classes and resources necessary to develop an app for a specific Android version.
This is done through SDK Manager, a tool included inside Android Studio.

We can click on Tools | Android | SDK Manager or find a shortcut in the uppermost
bar of Android Studio.

Once we open SDK manager, we will see a list of the available SDK platforms and
SDK tools. We need to ensure that the latest version available is installed.

With this, we have all that we need to develop our app. In order to test it, it would
be ideal to have Genymotion, which is an Android emulator that will help us test
our app on different devices.

The reason we use this emulator instead of the Android default one is primarily the
speed. Deploying an app in Genymotion is even quicker than using a physical device.
Apart from this, we benefit from other features, such as resizable windows, copying
and pasting from our computer, and other smaller details that are time consuming
with the default emulator. It can be downloaded from https://www.genymotion.
com.

https://www.genymotion.com
https://www.genymotion.com

Getting Started

[12]

All we need to do is install it, and once opened, we can add emulators with the same
features included with existing devices.

Summary
In this chapter, we went through the important changes in the latest versions of
Android, highlighting Android Marshmallow and Material Design.

We explained what we will do in the app that we'll be building through the course
of this book and the tools that we'll need to create it.

In the next chapter, we will look at the existing design patterns in Android and
start designing our app.

[13]

Designing our App
In this chapter, we will think of an idea for an app and transform that idea into a real
app, create a basic structure to be displayed on the screen, and choose an appropriate
navigation pattern to move between them.

After taking a look at the most commonly used navigation pattern, we will proceed
with implementing the tabs pattern composed by fragment and ViewPager.

During this, we will do a review of our knowledge of fragments to be able to explain
the advanced concepts. We will also discuss the importance of FragmentManager
and the fragments back-stack.

To finish, we will add some good-looking animations to our screen transitions.
Therefore, we will cover the following topics in this chapter:

• Selecting an app navigation pattern
• Mastering fragments
• Implementing tabs and ViewPager
• Animated transitions between screens

Selecting an app-navigation pattern
Let's imagine that one day you wake up feeling inspired; you have an idea for an
app that you believe can become more popular than WhatsApp. Without losing time,
you would want to turn this app idea into reality! This is why it's important for you
to learn how to design an app and choose the most appropriate navigation pattern.
Not to sound uninspiring, but you'll find that 99 percent of your ideas will already be
on Google Play Store. It's simply a fact that there are hundreds of thousands of apps
available, and the number is always increasing! So, you can either decide to improve
upon the already existing ones or keep brainstorming until you have something
original.

Designing our App

[14]

In order to make the app a reality, the first step is to visualize the app in your mind;
for this, we need to identify the basic components. We need to simplify the idea on
screen, and we need to move between screens.

Bear in mind that you are creating this app for Android users. These users are used
to using navigation patterns such as the sliding panel, which is used in apps such as
Gmail, Facebook, and Spotify.

We will take a look at three different and commonly used navigation patterns
that guarantee that the user won't get lost in our app and will understand the app
structure instantly.

Basic structure
In order to draw our screens (note that I am not referring to activities or fragments
yet; by screen I mean what the user can literally see on screen at any point during
the execution of our app), we need to identify the key points of our idea. We need to
establish the use cases, speaking in software development terms.

Let's start by giving shape to the app that we will build during the course of this
book: MasteringAndroidApp. It's difficult to visualize all the details in your mind at
first, so we will start by identifying the components that we know we need for sure
and later fill in the gaps if there are any.

We know from the previous chapter that we have a presentation screen, which
shows the logo of the app for a few seconds while downloading data from the
Internet if needed.

In this app, we will also have a screen with a list of the information coming from
the Internet, with individual items that the user can click on to get more detailed
information.

As the main option, we will show a contact screen with MapView showing my
location and contact data.

To finish, we need a Preferences or Settings screen, where we can turn on and off
the notifications and deactivate ads or purchase extras.

Chapter 2

[15]

Now, we are ready to create a mock-up. Have a look at the following image:

At the top, we have the entry point of our application, which is the splash screen.
The navigation here is straightforward; we can navigate to the next screen in a
straight line, and there are no buttons or any other possible flow.

On the next level, we have a screen with the list of items (which is a screen with
contact information), a map view, and a settings screen. These three screens are at
the same level in our app, so they have the same importance.

Finally, we have a third level of navigation, which is the detailed view of an item of
the list.

The only way we can open this screen is by clicking on an element of the list; so, the
entry point of this screen is the list screen.

Designing our App

[16]

Now that we have a basic structure and flow created, we will look through the
different extensively used navigation patterns in order to decide which one would
work best for our app.

For more information on the app structure and similar information on
material design, refer to the following links:
https://developer.android.com/design/patterns/app-
structure.html

http://www.google.com/design/spec/patterns/app-
structure.html#

The dashboard pattern
The dashboard pattern is one of the first patterns used in Android. It consists of a
set of elements displayed on the main screen as a matrix of icons. In the following
image, we can see one of the first versions of the Facebook app on the left-hand side,
and to the right, a customization of the pattern from Motor Trend:

This view is great for apps that aim to display a very limited number of options
clearly; there are no more than two elements per row with a number of rows that fits
on the screen.

These icons clearly display symbols of the main functionality with all the options
at the same level. It's an ideal pattern for apps that have a large target audience; it's
straightforward and self explanatory, so anyone can navigate it.

https://developer.android.com/design/patterns/app-structure.html
https://developer.android.com/design/patterns/app-structure.html
http://www.google.com/design/spec/patterns/app-structure.html#
http://www.google.com/design/spec/patterns/app-structure.html#

Chapter 2

[17]

Even though this design seems old, given that it was extensively used in the first
versions of Android and is used less nowadays, its usage depends on your needs, so
don't let this put you off. The Motor Trends app shown in the preceding image had a
very original implementation of this pattern.

If the elements don't fit on the screen and we need to scroll in order to discover them,
we need to reconsider the pattern. The same thing applies when we have too few
elements; there are better options for these cases. In our particular example, we have
three main elements, so we will not use this pattern.

The sliding panel
This pattern is well known thanks to apps such as Gmail and Facebook. It presents
a layout at the top level of the UI; screens come out from the left or right when we
perform a swipe gesture or click on the top left or right button, which usually is an
icon displayed with three horizontal lines—also know as the Hamburger icon.

This pattern is perfect if we have a large number of options at the same level in our
app, and it can be combined with other patterns, such as the tabs pattern.

The implementation of this panel can be done with the DrawerLayout class, which
is composed of two child views: a FrameLayout with the content and the navigation
drawer, which can be ListView or any other custom layout containing the options.

For this, execute the following code:

<android.support.v4.widget.DrawerLayout xmlns:android="http://schemas.
android.com/apk/res/android"
 android:id="@+id/drawer_layout"
 android:layout_width="match_parent"
 android:layout_height="match_parent" >

 <FrameLayout
 android:id="@+id/frame_container"
 android:layout_width="match_parent"
 android:layout_height="match_parent" />

 <ListView
 android:id="@+id/drawer_list"
 android:layout_width="240dp"
 android:background="#fff"
 android:layout_height="match_parent"
 android:layout_gravity="start" />

 </android.support.v4.widget.DrawerLayout>

Designing our App

[18]

Once we select an element in this side panel, a child appears in the middle of the
screen; this child can help you navigate to a subchild but never to an element of
the main menu. The child and sub child navigation can be managed with the back
button or the up navigation in the action bar.

We can close the panel by clicking on an item and know whether the panel is closed
or open by setting a drawer listener, ActionBarDrawerToggle, which contains the
onDrawerClosed(View drawerView) and onDrawerOpened(View drawerView)
methods.

Ensure that you use ActionBarDrawerToggle from android.support.v7.app; the
one included in v4 is deprecated.

Another big advantage of this pattern is that it allows group navigation via a
main item on the menu that can be expanded into subitems. As you can see in the
following example, Item 4 has three options inside it in a drop-down menu:

An example of a drawer layout

This would not be suitable for our app as we don't have enough options to make the
most of this pattern. Also, as this pattern can be combined with the tabs pattern, it
makes more sense from an educational perspective to develop our example with this
pattern.

Chapter 2

[19]

Tabs
The tabs pattern is a pattern that you have probably seen and used before.

It shows a fixed menu with components at the same level. Note that when we have
tabs, the menu is always visible, which doesn't happen in the sliding and dashboard
patterns. This looks very similar to a web interface and is very user friendly
considering that the user probably already knows this pattern.

The following pattern has two variants: fixed and sliding tabs. If we only have a
small number of menu items that can fit on the screen, the first variant will be the
most suitable as it shows the users all the items at once.

Sliding tabs are usually used when all the items don't fit on the screen or when they
do fit but we know that more items will be added and won't fit in the future.

The implementation of the two variants is slightly different, so we need to consider
future changes when deciding the variant. Here, we can see an implementation of a
sliding variant:

Remember that for platform consistency, we must place the tabs at the top
of the screen; otherwise, people will think that you are an iOS developer!

Designing our App

[20]

Here are some features and formatting specifications from the material design
guidelines for you to follow:

• Present tabs as a single row. Wrap tab labels to a second line if needed and
then truncate.

• Do not include a set of tabbed content within a tab.
• Highlight the tab corresponding to the visible content.
• Group tabs together hierarchically. Connect a group of tabs with its content.
• Keep tabs adjacent to their content. It helps maintain the relationship

between the two with less ambiguity.

In the following image, we can see an example of scrolling/sliding tabs with a
submenu:

The graphic specifications while designing tabs along with more
information about label specs can be found at http://www.
google.com/design/spec/components/tabs.html#.

Now that we know the basics of app navigation, we can explore the components
that we need to implement these patterns. The main components, as you know, are
activities and fragments. We are going to implement an example of sliding tabs with
three fragments.

http://www.google.com/design/spec/components/tabs.html#
http://www.google.com/design/spec/components/tabs.html#

Chapter 2

[21]

Fragments
In this section, we are going to review briefly the key concepts of fragments to
explain advanced features and components, such as Fragment Manager and the
fragments back stack.

In our example, we will create an activity called MainActivity and four fragments:
ListFragment, ContactFragment, SettingsFragment, and DetailsFragment. For
this, you can create a fragments package and double-click on the package to go to
New | Fragment | Blank Fragment. Take a look at the following dialog box:

For now, you can create them without the fragment factory methods and the
interface callbacks. We will cover these later in the chapter.

Our project so far should look like this in the Project view:

Designing our App

[22]

Understanding the importance of fragments
A fragment represents a behavior or a portion of the user interface in an activity.
You can combine multiple fragments in a single activity to build a multipane UI and
reuse a fragment in multiple activities. You can think of a fragment as a modular
section of an activity that has its own lifecycle and receives its own input events,
which you can add or remove while the activity is running (sort of like a subactivity
that you can reuse in different activities).

Chapter 2

[23]

The fragment lifecycle is slightly different from the activity lifecycle. The first
difference we notice is the use of the OnAttach() and OnDetach() methods, which
connect the fragment to the activity.

Using onCreate(), we can create the view in OnCreateView(); after this we can call
getView() in our fragment, and it won't be null.

The onActivityCreated() method tells the fragment that its activity has been
completed on its own Activity.onCreate().

There are two ways to display a fragment:

The first way is to have the fragment in our layout XML. This will create our
fragment when the view containing it is inflated. Execute the following code:

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/
android"
 android:orientation="horizontal"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent">

 <fragment android:name="com.example.android.MyFragment"
 android:id="@+id/headlines_fragment"
android:layout_width="match_parent"
 android:layout_height="match_parent" />
</LinearLayout>

The second way is to create our fragment programmatically and tell Fragment
Manager to display it in a container. For this, you can use the following code:

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/
android"
 android:orientation="horizontal"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent">

 <Framelayout android:id="@+id/fragment_container"
android:layout_width="match_parent"
 android:layout_height="match_parent" />

</LinearLayout>

Designing our App

[24]

After this, inflate a FrameLayout container where the fragment will be inserted using
the following lines of code:

Myfragment fragment = MyFragment.newInstance();
getSupportFragmentManager().beginTransaction()
 .add(R.id.fragment_container, fragment).commit();

To finish with the key concepts, it is important to explain why Android examples
create the fragments using the MyFragment.newInstance(params) factory method
instead of using the default new MyFragment(params) constructor. Take a look at
the following code:

public class MyFragment extends Fragment {

 // Static factory method that returns a new fragment
 // receiving a parameter and initializing the fragment's arguments

 public static MyFragment newInstance(int param) {
 MyFragment fragment = new MyFragment();
 Bundle args = new Bundle();
 args.putInt("param", param);
 fragment.setArguments(args);
 return fragment;
 }
}

The reason behind this pattern is that Android only recreates Fragments using the
default constructor; therefore, if we have a constructor with parameters, it will be
ignored, and the parameters will be lost.

Note that we send the parameters in a bundle as arguments, allowing
the fragment to retrieve the parameter if it has to be recreated (due to a
device orientation change, we use the back navigation).

The Fragment Manager
The Fragment Manager is an interface used to interact with the fragments inside
an activity. This means that any operation, such as adding, replacing, removing, or
finding a fragment, has to be done through it.

To obtain Fragment Manager, our Activity needs to extend from
FragmentActivity, which will allows us to call getFragmentManager() or
getSupportFragmentManager() preferably that maintain backwards compatibility
using the Fragment Manager included in Android.support.v4.

Chapter 2

[25]

If we want to use nested fragments, we can manage them with
getChildFragmentManager(). You cannot inflate a layout into a fragment when this
layout includes <fragment>. Nested fragments are only supported when added to a
fragment dynamically.

Now, we will discuss some scenarios that we will face sooner or later while working
with fragments. Imagine that we have an activity with two fragments, A and B.

A typical scenario is that we are in a fragment and we want to execute a method from
the activity. In this case, we have two options; one is to implement a public method
in MyActivity, for instance doSomething(), so that we can cast getActivity to our
activity and call the ((MyActivity)getActivity).doSomething(); method.

The second way is to make our activity implement an interface defined in our
fragment, and make the instance of the activity a listener of this interface in our
fragment during the onAttach(Activity) method. We will explain this software
pattern in Chapter 4, Concurrency and Software Design Patterns. For the other way
around, to get an Activity to communicate with a fragment (if we don't have
fragment A instantiated in a variable in our activity), we can find the fragment in the
manager. A fragment can be found using the ID of the container or a tag that we will
take a look at in the following section:

FragmentManager fm = getSupportFragmentManger();
FragmentA fragmentA = fm.findFragmentById(R.id.fragment_container);
fragmentA.doSomething(params);

The final scenario would be in fragment A and speaking to B; for this, we just need
to retrieve the manager from the activity and find the fragment. Run the following
code:

FragmentManager fm = getActivity().getSupportFragmentManger();
FragmentA fragmentA = fm.findFragmentById(R.id.fragment_container);
fragmentA.doSomething(params);

Fragments stack
We have been speaking about finding a fragment in fragment manager and this is
possible thanks to the Fragment Manager stack of fragments where we can add or
remove fragments during transactions.

When we want to display a fragment dynamically, we can decide whether we want
to add the fragment to the stack or not. Having the fragment on the stack allows us
to navigate back to the previous fragment.

Designing our App

[26]

This is important for our example; if the user is on the first tab and clicks on an
item on the list, we want him/her to see the details screen, DetailsFragment.
Now, if the user is on DetailsFragment and clicks on the back button, we don't
want him/her to leave the App; we want the app to navigate back to the fragment
stack. This is why when we add DetailsFragment, we have to include the
addToBackStack(String tag) option. The tag can either be null, or it can be a
String type that will allow us to find this new fragment by the tag. It will look
similar to the following:

FragmentTransaction ft = getFragmentManager().beginTransaction();
ft.replace(R.id.simple_fragment, newFragment);
ft.addToBackStack(null);
ft.commit();

To clarify further, if we wanted to navigate between three fragments, A to B to C, and
then navigate back, having a stack will allow us to go C to B to A. However, if we
don't add the fragments to the back stack or if we add or replace them in the same
container, A to B to C, this will leave us with only the C fragment and without the
back navigation.

Now, to implement the back navigation in DetailsFragment, we have to let the
activity know that when I click on back, I want to first navigate back in the fragment
before quitting the app, as it does by default. This can be done by overriding
onKeyDown and handling the fragment navigation if there is more than one fragment
in the back stack. Run the following command:

@Override
public boolean onKeyDown(int keyCode, KeyEvent event) {
if (keyCode == KeyEvent.KEYCODE_BACK && getSupportFragmentManager.
getBackStackEntryCount > 1) {
getSupportFragment.popBackStack();
return true;
}
return super.onKeyDown(keyCode, event);
}

Chapter 2

[27]

ViewPager
Continuing with our example, we have two ways of navigating between fragments
on MainActivity: either by tapping on the tabs or by swiping between the
fragments. To achieve this, we will use ViewPager, including the sliding tabs inside
it, which is a very elegant solution with minimal code and includes synchronization
between swipe and tabs.

ViewPager can be used to slide any kind of view. We could create a gallery of images
with ViewPager; it is very common to see tutorials in the first run of some apps
where you can slide the screen with instructions on how the app works, and this is
achieved with ViewPager. To add ViewPager to MainActivity, we can simply copy
and paste the following code:

<?xml version="1.0" encoding="utf-8"?>
<android.support.v4.view.ViewPager
xmlns:android="http://schemas.android.com/apk/res/android"
android:id="@+id/pager"
android:layout_width="match_parent"
android:layout_height="match_parent" />

At the end of the ViewPager section, we will see how to use different third party
libraries to improve the experience with tabs and also how to create these tabs
manually in case we want our custom solution.

Adapter
ViewPager works with an adapter; the adapter is the element in charge of
creating every page that we swipe. In the particular case of swiping fragments,
there are extensions of the Adapter class called FragmentPagerAdapter and
FragmentStatePagerAdapter that we can use:

• FragmentStatePagerAdapter saves the state of the page, destroys it when it
does not appear on screen, and recreates it when necessary, similar to what
ListView does with its rows.

• FragmentPagerAdapter keeps all the pages in memory; therefore, it doesn't
have the computing cost associated with saving and restoring the state while
swiping. The number of pages we can have depends on the memory.

Designing our App

[28]

Depending on the number of elements, we can choose one or the other. If we were
creating an app to read the news, where you could swipe between lots of news
articles with images and different content, we wouldn't try to have all of them in the
memory.

We have three fixed tabs, so we will choose FragmentPagerAdapter. We will
create a package adapter and create a MyPagerAdapter class that will extend
FragmentPagerAdapter. While extending it, we are asked to override the
getCount() and getItem(int i) methods, which return the count of the items and
return an item in a given position.

After creating a constructor and completing the methods, our class will look similar
to the following code:

public class MyPagerAdapter extends FragmentPagerAdapter {

 public MyPagerAdapter(FragmentManager fm) {
 super(fm);
 }

 @Override
 public Fragment getItem(int i) {
 switch (i) {
 case 0 :
 return new ListFragment();
 case 1 :
 return new ContactFragment();
 case 2 :
 return new SettingsFragment();
 default:
 return null;
 }
 }

 @Override
 public int getCount() {
 return 3;
 }
}

Chapter 2

[29]

To finish, we need to set the adapter to the pager in MainActivity. Execute the
following code:

public class MainActivity extends FragmentActivity {

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 MyPagerAdapter adapter = new MyPagerAdapter(getSupportFragmen
tManager());
 ViewPager viewPager = (ViewPager) findViewById(R.id.pager);
 viewPager.setAdapter(adapter);

 }

}

Sliding tabs
At this point in our example, we are able to swipe between our fragments. Now, we
will add tabs using PagerTabStrip or PagerTitleStrip.

There is a very elegant way to achieve this, which is including PageTabStrip in the
XML tag of ViewPager. Execute the following code:

<?xml version="1.0" encoding="utf-8"?>
<android.support.v4.view.ViewPager
xmlns:android="http://schemas.android.com/apk/res/android"
android:id="@+id/pager"
android:layout_width="match_parent"
android:layout_height="wrap_content">

 <android.support.v4.view.PagerTabStrip
 android:id="@+id/pager_title_strip"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_gravity="top"
 android:background="#33b5e5"
 android:textColor="#fff"
 android:textSize="20dp"
 android:paddingTop="10dp"
 android:paddingBottom="10dp" />

</android.support.v4.view.ViewPager>

www.allitebooks.com

http://www.allitebooks.org

Designing our App

[30]

Here, PagerTabStrip will find the tile of the page, and for each page, it will display
a tab. We need to add the getPageTitle method in MyPagerAdapter, which will
return a string for every page. In our case, this would be the name of the sections:
list, contacts, and settings. For this, you can use the following code:

@Override
public CharSequence getPageTitle(int position) {
 switch (position) {
 case 0 :
 return "LIST";
 case 1 :
 return "CONTACT";
 case 2 :
 return "SETTINGS";
 default:
 return null;
 }
}

Run the app, and voila! We have a fluent tab and sliding navigation supporting
Android 1.6 (API 4) implemented really easily:

Customizing tabs
There is a long story behind tabs in Android; initially, tabs were implemented with
TabActivity but this was deprecated in API 13 and evolved into FragmentTabHost.

So, I happily developed an app with TabHost following the Android documentation,
and I realized this had to be changed. At first, I crossed my fingers hoping that the
deprecation wouldn't affect my app until some users complained about crashes.
Then, inevitably, I had to remove my deprecated TabHost and find a new way.

Chapter 2

[31]

At first, FragmentTabHost seemed a good way to have fixed tabs, but it didn't allow
tabs with icons on them. Upon having this problem and finding other people with
the same problem in Stack Overflow at http://stackoverflow.com/ (a website
where we can ask questions and find answers on Android and other topics), I
decided to find another way.

In API 11, the concept of ActionBar.Tab appeared, which was a class that allowed
us to add tabs to the action bar. Finally, I found a way to have tabs in my app,
which resulted in happy users! But this joy didn't last for long; ActionBar.Tab was
deprecated again!!

This is something that would end up the patience of any developer; this made
me create my own tabs as buttons in LinearLayout. Setting a click listener on the
buttons and when clicking on a tab I was swiping the ViewPager to the right page,
and the other way around, when detecting a page swipe on the ViewPager I was
selecting the right tab. It was worth the effort because it allowed me to have all the
freedom that I wanted with the tabs design, and more importantly gave me the
satisfaction that it would always work (unless one day they deprecate LinearLayout
or Button!).

You can always leave your own implementation as the last option. Nowadays, if
you don't like the sliding tabs design, you have other alternatives from third-party
libraries, such as ViewPagerIndicator and PagerSlidingTabStrip.

To learn more about this, you can check out the following links:
https://github.com/JakeWharton/ViewPagerIndicator

https://github.com/astuetz/PagerSlidingTabStrip

Transitions
Small details such as creating our own animations from the screen transitions will
polish our app and really make it look more professional.

Our example is perfect to talk about transitions as we have two types of screen
transitions:

• The first one is a transition between Activities, from SplashActivity to
MainActivity

• The second one (not implemented yet) is a transition between fragments,
where ListFragment is replaced with DetailsFragment

http://stackoverflow.com/
https://github.com/JakeWharton/ViewPagerIndicator
https://github.com/astuetz/PagerSlidingTabStrip

Designing our App

[32]

For the transitions between activities, we need to call overridePendingTransition
just before starting the new activity. The method receives two animations as
parameters, and these animations can be in an XML file created by us or be chosen
from the already created animations in Android. Run the following command:

overridePendingTransition(android.R.anim.fade_in, android.R.anim.fade_
out);

In our example, we don't allow back navigation to SplashActivity; however, if we
were in a transition between activities where we wanted to have the same transition
when we click on back, we would have to override the back key press and set our
transition there. For this, you can run the following command:

@Override public void onBackPressed() {
 super.onBackPressed(); overridePendingTransition(android.R.a
nim.fade_in, android.R.anim.fade_out);
}

In the case of fragments, we need to specify the transition in the
FragmentTransaction object. Using the object animator, we can define this in two
files: enter.xml and exit.xml. Execute the following code:

FragmentTransaction transaction = getFragmentManager().
beginTransaction();
transaction.setCustomAnimations(R.animator.enter, R.animator.exit);
transaction.replace(R.id.container, new DetailsFragment());
transaction.commit();

enter.xml

<?xml version="1.0" encoding="utf-8"?>
<set>
 <objectAnimator
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:duration="1000"
 android:propertyName="y"
 android:valueFrom="2000"
 android:valueTo="0"
 android:valueType="floatType" />
</set>

Chapter 2

[33]

exit.xml
<?xml version="1.0" encoding="utf-8"?>
<set>
 <objectAnimator
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:duration="1000"
 android:propertyName="y"
 android:valueFrom="0"
 android:valueTo="-2000"
 android:valueType="floatType" />
</set>

For Android Lollipop and the later versions, you can set the transition directly to the
Fragment. Use the following snippet:

Fragment f = new MyFragment();
f.setEnterTransition(new Slide(Gravity.RIGHT));
f.setExitTransition(new Slide(Gravity.LEFT));

Summary
At the end of this chapter, you should have an understanding of the basic
navigation patterns and be able to translate the idea of an app in your mind into
the real structure of an Android app. Fragments are a key concept in Android
development, and we have spent enough time in this chapter mastering them with
a review of Fragment Manager and the fragments back stack and by learning how
to face common problems such as communication between them. We considered a
working example of ViewPager with PagerTabStrip showing the tile of the pages
as tabs, which you now know how to customize if needed. We have a skeleton of
an app; this project can be saved at this stage and used as a template for your future
developments. We are ready to continue evolving our app.

In the next chapter, we will see how to create and access the content that will
populate our fragments and ViewPager to bring our app to life.

[35]

Creating and Accessing
Content from the Cloud

In this chapter, we will learn how to consume content from the Web using our
application; this content could be a list of items inside an XML or JSON file
(something that we wish to display), retrieved from the Internet. For instance, if we
were building an app that shows the current weather conditions, we would need to
contact an external API to retrieve all the information needed.

We will create our own cloud database in Parse, a service that allows us to do this
really quickly without the hassle of creating and maintaining our own servers.
Apart from this, we will populate the database with information to be displayed in
MasteringAndroidApp.

We will also cover best practices regarding network requests with Google Volley,
using the ultrafast HTTP library, OkHttp, and parsing the requested objects
efficiently with Gson. We will cover the following topics in this chapter:

• Creating your own cloud database
• Consuming content from Parse
• Google Volley and OkHttp
• Parsing objects with Gson

Creating and Accessing Content from the Cloud

[36]

Creating your own cloud database
At this stage of the project, we have to start modeling our own version of
MasteringAndroidApp. Feel free to develop your own ideas and use the database for
your own data. Follow this example as a guide; you don't necessarily have to copy
all the lines of code exactly as I write them. In fact, if you develop your own example
at the end of this book, you will have something that you can use. For instance, you
can create an app for your own personal use, such as a task reminder, travel diary,
personal photo gallery—or anything else that is suitable for storage in the cloud.

You could also try to monetize this app; in this case, you should try to develop
something interesting for users. For instance, it can be a news feed reader or recipes
reader for food; it can be any app where you can submit content to the cloud and
notify users that new content is available.

During this process, we will explain the importance of the Application class, which
is used to set up Parse in our project.

Parse
Parse is free if you have less than 30 requests per second. I imagine that if you have
enough users requesting information from your app 30 times per second, which is
1,800 per minute, you can surely afford to upgrade to a paid account or even build
your own server! This service is a very easy and reliable way to have the server side
covered for your app. It also provides a push notifications service and analytics,
that's another point in favor.

We will proceed with creating a new account; after this, we need to name our
application in Parse. Here, I will use MasteringAndroid. Once you name the
application, you will be on the main page of your account. We need to navigate to
Data Service | Mobile | Android | Native Java.

Chapter 3

[37]

The following image shows the data services as a cloud:

Adding the Parse SDK to our project
To access the data service from our app, we need to install the Parse SDK (System
Development Kit). For this, Parse refers us to a quick start guide, which contains
all of the code, including the API Keys for our application, that is ready to be copied
and pasted into our project.

Basically, we need to complete two steps:

1. The first one is to download a .jar library file that we need to copy into the
libs folder in our project. After copying it, we need to tell our build system
to include this library in our application. To do this, we need to find the
build.gradle file inside our Application folder (be careful, there are two
build.gradle files in our project) and add the following lines:
dependencies {
 compile 'com.parse.bolts:bolts-android:1.+'
 compile fileTree(dir: 'libs', include: 'Parse-*.jar')
}

Creating and Accessing Content from the Cloud

[38]

2. In the following image, you can see the two files named build.gradle; the
one that is selected is the right one:

3. The second step is to initialize the Parse SDK in our project; for this, we can
navigate directly to https://www.parse.com/apps/quickstart?app_
id=masteringandroidapp. Replace your own app ID in the link or find the
link by clicking on your home page, as in the following screenshot:

https://www.parse.com/apps/quickstart?app_id=masteringandroidapp
https://www.parse.com/apps/quickstart?app_id=masteringandroidapp

Chapter 3

[39]

4. After clicking on quickstart guide, go to Data | Mobile | Android | Native
| Existing Project.

5. It will ask you to add the INTERNET and ACCESS_NETWORK_STATE permissions
to your AndroidManifest.xml file if they are not already added.

Android's Application class
The next thing we can take note of is that we need to add the code to initialize Parse
to our Application class; however, our Application class is not created by default
in our project. We need to create and understand what the Application class is and
how it works.

To create an Application class, we will right-click on our package and create a
new Java class called MAApplication extending Application. Once this extends
Application, we can override the onCreate method. Then, we will right-click inside
our class | Generate. | Override Methods | onCreate.

This will override the onCreate method, and we will be ready to implement our
own functionality there. The onCreate method is called every time our Application
is created; therefore, it's the right place to initialize our libraries and third-party
SDKs. Now, you can copy and paste the Parse initialization lines as seen in quick
start guide:

Be careful, this is unique, and for your own account you should
have your own keys.

Parse.initialize(this, "yourKeyHere", "yourKeyHere");

To finish, we need to tell our app that we have a new Application class and that
that's the one we want to use; if we don't do this, our Application class won't be
recognized and onCreate won't be called.

In our manifest, inside the <application> tag, we need to set the attribute name to
match our own application. Execute the following code:

<application
 android:name="MApplication "
 android:icon="@drawable/ic_launcher"
 android:label="@string/app_newname"
>

Creating and Accessing Content from the Cloud

[40]

The Application class encapsulates everything in our app; the activities are contained
in the application, and subsequently, the fragments are contained in the Activities.
If we need a global variable in our app that needs to be accessed by all Activities/
Fragments, this would be the right place to have it. In the next chapter, we will
see how we can create this global variable. The following diagram is the graphic
structure of an app:

Creating the database
As we know, the example that we will create during this book is an app that will
have Android-related job offers; therefore, we need to create a database to store these
job offers.

The database can be changed during development (this will be more difficult to do
when the app is released and has users). However, for now we will look at the big
picture, creating the whole system rather than having a final version of the database
with all the fields completed.

To create a table, click on the Core section as shown in the following screenshot:

Chapter 3

[41]

First, create a table by clicking on the + Add Class button and call it JobOffer with
the following attributes, which can be added by clicking on the Col+ button:

• objectId: This is created by default: String
• title: This is the job title: String
• description: This is the job description: String
• salary: This indicates the salary or daily rate: String
• company: This indicates the company offering the job: String
• type: This indicated the type of employee, which is permanent, contract, or

freelancer: String
• imageLink: This is the image of the company: String.
• Location: This indicates the location of the job: String
• createdAt , updatedAt: This is the date of the job; the columns are created

with a default date

To add data to the tables, select the table on the left and click on + Row. We only
need to complete the columns that we created; the columns created by default, such
as the ID or date, will be completed automatically. So far, our table should look as
follows:

Feel free to add more details, such as the contact person, e-mail, and mobile number.
You could also add more tables; for instance, a new JobType table containing the
type of job and the field type instead of String would be Relation<JobType>.

We have what we need for our example; the next thing to do is consume this data
using our app.

Creating and Accessing Content from the Cloud

[42]

Storing and consuming content from
Parse
Parse is a very powerful tool that allows us to not only consume content very easily
but also to store content in the cloud database from our device, which is a tedious
task to do using the traditional method.

For example, if we wanted to upload an image to a custom server from our device,
we would have to create a POST request and send a form with the right encoding,
while attaching the picture as a FileBody object in MultiPartEntity and importing
the Apache HTTP libraries:

HttpClient httpclient = new DefaultHttpClient();
HttpPost httppost = new HttpPost("URL TO SERVER");

MultipartEntity mpEntity = new MultipartEntity(HttpMultipartMode.
BROWSER_COMPATIBLE);
File file = new File(filePath);
mpEntity.addPart("imgField", new FileBody(file, "application/octet"));

httppost.setEntity(mpEntity);
HttpResponse response = httpclient.execute(httppost);

Now, let's have a look at the Parse alternative:

ParseFile imgFile = new ParseFile ("img.png", ImgByteArray);

ParseObject myParseObject = new ParseObject ("ParseClass");
 myParseObject.put("imageField", imgFile);
 myParseObject.saveInBackground();

Let's not forget error handling on Parse. In a very elegant way, you can simply write:

imageObj.saveInBackground(new SaveCallback() {
 @Override
 public void done(ParseException e) {
 if (e == null) {
 //Successful
 } else {
 //Error
 }
 }
});

Chapter 3

[43]

Storing content
To elaborate on the simplicity of Parse, we will upload job offers to our Parse Cloud
from our app.

To achieve this, we can create a button inside Contact Fragment, which we will set
to invisible in the final version of the app as we don't want the users to upload job
offers themselves.

With this button, we will create ParseObject, which is similar to a map. We
will add the fields that we want to complete, and after this we will call the
saveInBackground() method, which is the method that will upload the object.
Execute the following code:

view.findViewById(R.id.addJobOffer).setOnClickListener(new View.
OnClickListener() {
 @Override
 public void onClick(View view) {

 ParseObject jobOffer = new ParseObject("JobOffer");

 jobOffer.put("title", "Android Contract");
 jobOffer.put("description", "6 months rolling contract. /n The
client" +
 "is a worldwide known digital agency");
 jobOffer.put("type", "Contract");
 jobOffer.put("salary", "450 GBP/day");
 jobOffer.put("company", "Recruiters LTD");
 jobOffer.put("imageLink", "http://.....recruitersLTD_logo.png");
 jobOffer.put("location","Reading, UK");

 jobOffer.saveInBackground();
 }
});

If, in your own version of MasteringAndroidApp, you want the user to upload
content, you could display a dialog with EditText for every field so that the user can
write the job offer, press upload, and have you send the jobOffer object with the
fields written by the user.

Run the app, navigate to Contact, and click on the button. If the data is uploaded
correctly, upon opening the Parse Cloud database in a browser, you should see an
extra row with the job offer just uploaded.

Creating and Accessing Content from the Cloud

[44]

Remember to add the permissions in AndroidManifest.xml,
android.permission.ACCESS_NETWORK_STATE, and android.
permission.INTERNET.

Consuming content
Our objects in the Parse Cloud have an object identifier by default; it is the objectId
field. Let's start retrieving an object by the ID, and after this, we can retrieve a list of
all the objects with and without filters. Run the following code:

ParseQuery<ParseObject> query = ParseQuery.getQuery("JobOffer");
query.getInBackground("yourObjectID", new GetCallback<ParseObject>() {
 public void done(ParseObject object, ParseException e) {
 if (e == null) {
 // object will be our job offer
 } else {
 // something went wrong
 }
 }
});

The ParseQuery object will perform a query over the network asynchronously when
the network request is finished. The method; done (the ParseObject object,
ParseException e), which is included in the callback, will be executed.

A good way to test the result is to print a log; in cases where the exception is null,
it means that everything is okay.

if (e == null) {
 Log.d("PARSE_TEST",object.getString("Title"));
} else {
 // something went wrong
}

We could extract every field from ParseObject and create a JobOffer class in our
app with a constructor whose parameters match the fields of the object. Use the
following snippet:

JobOffer myJobOffer = new JobOffer(object.getString("title), object.
getString("description"), …);

Chapter 3

[45]

However, there is a better way to do this. We can create a JobOffer class that
extends ParseObject and where all fields will be automatically converted into
variables in our class. This way, we can use our own class in a very convenient way
instead of ParseObject:

public void done(JobOffer jobOffer, ParseException e)

Don't forget to add the @ParseClassName("Name") annotation at the top of the class
to let Parse know which object from the Cloud we want to instantiate and to register
the subclass before initiating parse in MAApplication:

public class MAApplication extends Application {

 @Override
 public void onCreate() {
 super.onCreate();

 // Enable Local Datastore.
 Parse.enableLocalDatastore(this);

 ParseObject.registerSubclass(JobOffer.class);

 Parse.initialize(this, "KEY", "KEY");
 }

}

@ParseClassName("JobOffer")
public class JobOffer extends ParseObject {

 public JobOffer() {
 // A default constructor is required.
 }

 public String getTitle() {
 return getString("title");
 }

 public void setTitle(String title) {
 put("title", title);
 }

Creating and Accessing Content from the Cloud

[46]

 public String getDescription() {
 return getString("description");
 }

 public void setDescription(String description) {
 put("description", description);
 }

 public String getType() {
 return getString("type");
 }

 public void setType(String type) {
 put("type", type);
 }
 //Continue with all the fields..

}

Now that we have our custom class created, it's even easier to get a list with all the
job offers. If we want, we can filter it with a parameter. For instance, I could retrieve
all the permanent jobs with the following query:

ParseQuery< JobOffer > query = ParseQuery.getQuery("JobOffer");
query.whereEqualTo("type", "Permanent");
query.findInBackground(new FindCallback<JobOffer>() {
 public void done(List<JobOffer> jobsList, ParseException e) {
 if (e == null) {
 Log.d("score", "Retrieved " + jobsList.size() + " jobs");
 } else {
 Log.d("score", "Error: " + e.getMessage());
 }
 }
});

Chapter 3

[47]

Displaying content
Once the list of objects is retrieved, it is possible to create ListView and an Adapter
that receives the objects as the parameters. To finish with Parse, we will use another
feature that allows us to create an adapter directly from the result of the query; so,
we don't have to create an Adapter class ourselves.

In both cases, we need to create ListView and view for the rows of the list. For now,
just displaying the title and the first line of the description will do. We will customize
this and add an image in Chapter 7, Image Handling and Memory Management. Create a
row_job_offer.xml layout as follows:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/
android"
 android:orientation="vertical" android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:padding="10dp">

 <TextView
 android:id="@+id/rowJobOfferTitle"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="Title"
 android:textColor="#555"
 android:textSize="18sp"
 />

 <TextView
 android:id="@+id/rowJobOfferDesc"
 android:layout_marginTop="5dp"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="Description"
 android:textColor="#999"
 android:textSize="16sp"
 android:maxLines="1"
 android:ellipsize="marquee"
 />

</LinearLayout>

Creating and Accessing Content from the Cloud

[48]

We are now ready to create ParseQueryAdapter and customize the getItemView()
method. The huge advantage of this adapter is that we don't need to download data
with a query because it is automatically done; basically, we can show a list of items
from the cloud creating an adapter. It has never been so easy!

To override a method from a class—in this case, we want to override
getItemView—we could create a subclass, a MyQueryAdapter class that extends
ParseQueryAdapter and overrides the method inside this subclass. This is a good
solution, especially if we want to instantiate the object more than once in our app.

However, there is a way to override methods from a class without having to extend
it; we can add { } after the object instantiation. For instance, refer to the following
code:

Object object = new Object() {

 //Override methods here

 }

Using this approach, I can create a new ParseQueryAdapter and customize
getItemView, as in the following code:

ParseQueryAdapter<JobOffer> parseQueryAdapter = new ParseQueryAdapter<
JobOffer>(getActivity(),"JobOffer") {

 @Override
 public View getItemView(JobOffer jobOffer, View v, ViewGroup parent)
{

 if (v == null) {
 v = View.inflate(getContext(), R.layout.row_job_offer, null);
 }

 super.getItemView(jobOffer, v, parent);

 TextView titleTextView = (TextView) v.findViewById(R.
id.rowJobOfferTitle);
 titleTextView.setText(jobOffer.getTitle());
 TextView descTextView = (TextView) v.findViewById(R.
id.rowJobOfferDesc);
 descTextView.setText(jobOffer.getDescription());

 return v;
 }

};

Chapter 3

[49]

We will now create ListView in the layout of our ListFragment, find this view in
OnCreateView, set the adapter to the list, and that's all. No more code is needed to
retrieve the items and display them. If your list is empty, ensure that you import
com.packtpub.masteringandroidapp.fragments.ListFragment; instead of
android.support.v4.app.ListFragment in MyPagerAdapter; they are different
objects, and using the latter would lead to an empty android built-in ListFragment
being displayed.

Google Volley and OkHttp
To master Android, we can't depend on a solution such as Parse. As developers, we
must be prepared to face different server-side solutions. We can't always work with
ParseObjects because we need to be able to do an HTTP Post request and consume
the data in the JSON or XML format. However, this doesn't mean that we have to do
all of this manually; we can use Google's official libraries to help us with parsing the
data and the network requests.

For this, we will take a look at Google Volley, a powerful library, to manage our
network requests. We will also discuss OkHttp, an ultrafast HTTP client, and
combining the two them to get an amazing solution for network requests.

Creating and Accessing Content from the Cloud

[50]

Google Volley
According to the official definition and list of features from https://developer.
android.com/training/volley/index.html, "Volley is an HTTP library that makes
networking for Android apps easier and, most importantly, faster".

Volley offers the following benefits:

• Automatic scheduling of network requests
• Multiple concurrent network connections
• A transparent disk and memory response caching with a standard HTTP

cache coherence
• Support for request prioritization
• Cancellation of request API; this means that you can cancel a single request,

or set blocks or scopes of requests to cancel
• Ease of customization; for example, for retry and backoff
• Strong ordering, which makes it easy to correctly populate your UI with data

fetched asynchronously from the network
• Debugging and tracing tools

Before Volley was born, managing network requests in Android was a hard task.
Almost every application performs network requests. Features such as customizing
retries—in case a connection fails and we need to try again—and managing
concurrent network connections usually needed to be implemented manually by the
developer. Nowadays, we are used to these kinds of libraries, but if we think about
the situation some years ago, Volley is an excellent solution to this problem.

Before taking a look at how to create a request, we need to understand the concept of
the Volley request queue object, RequestQueue. Every request performed by Volley
must be added to this queue in order for it to be executed. The idea behind this is to
have one single request queue in our application where all the network requests can
be added and accessed by us from any part of our app. We will see how we can have
an instance of an object that can be accessed globally in, Chapter 4, Concurrency and
Software Design Patterns. Take a look at the following request:

// Instantiate the RequestQueue.
RequestQueue queue = Volley.newRequestQueue(this);

https://developer.android.com/training/volley/index.html
https://developer.android.com/training/volley/index.html

Chapter 3

[51]

This request queue will use the following HttpURLConnection or
AndroidHttpClient methods only if the Android version of the device is later than
Gingerbread; HttpURLConnection is unreliable in versions earlier than Gingerbread.

// If the device is running a version >= Gingerbread...
if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.GINGERBREAD) {
 // ...use HttpURLConnection for stack.
} else {
 // ...use AndroidHttpClient for stack.
}

When the request queue is instantiated, we just need to add a request to it. For
instance, a network requests https://www.google.com, which logs the response:

String url ="https://www.google.com";

// Request a string response from the provided URL.
StringRequest stringRequest = new StringRequest(Request.Method.GET,
url,
 new Response.Listener<String>() {
 @Override
 public void onResponse(String response) {
 // Display the first 500 characters of the response string.
 Log.d("Volley","Response is: "+ response.substring(0,500));
 }
}, new Response.ErrorListener() {
 @Override
 public void onErrorResponse(VolleyError error) {
 Log.d("Volley","That didn't work!");
 }
});

// Add the request to the RequestQueue.
queue.add(stringRequest);

The request will be performed, and the onResponse(…) or onErrorResponse(…)
method will be called in the application main thread, also known as the UI thread.
We will explain the threads in Android in more detail in Chapter 4, Concurrency and
Software Design Patterns.

https://www.google.com

Creating and Accessing Content from the Cloud

[52]

OkHttp
OkHttp is an HTTP and SPDY client for Android and Java from the company,
Square. It is not an alternative to Volley as it doesn't include a request queue. In fact,
we could use OkHttp as an underlying layer for Volley, as we will see in the next
section.

According to the official definition, "HTTP is the way modern applications network. It's
how we exchange data and media. Doing HTTP efficiently makes your stuff load faster and
saves bandwidth".

If we don't need to handle requests in a queue, prioritize requests, or schedule
requests, we could use OkHttp directly in our app; we don't necessarily need Volley.

For example, the following method prints the contents of a response from a given
URL:

OkHttpClient client = new OkHttpClient();

String run(String url) throws IOException {

 Request request = new Request.Builder()
 .url(url)
 .build();

 Response response = client.newCall(request).execute();
 return response.body().string();

}

Apart from being an easier way to do the requests than using AsyncTask or
HttpUrlConnection, what convinces us to use OkHttp is the SPDY (speedy)
protocol, which processes, tokenizes, simplifies, and compresses HTTP requests.

A lightning-fast network
If we want to keep the features of Volley to be able to have a flexible and manageable
queue of requests and have quicker connections using the protocol SPDY, we can
combine Volley and OkHttp.

Chapter 3

[53]

This is really easy to do; while instantiating the request queue, we can specify which
HttpStack method we want:

RequestQueue queue = Volley.newRequestQueue(this, new OkHttpStack());

Here, OkHttpStack is a class that we will create ourselves by extending HurlStack,
which will use OkUrlFactory. This OkUrlFactory will open a URL connection;
this will be done internally and there is no need to override the createConnection
method:

/**
 * An HttpStack subclass
 * using OkHttp as transport layer.
 */
public class OkHttpStack extends HurlStack {

 private final OkUrlFactory mFactory;

 public OkHttpStack() {
 this(new OkHttpClient());
 }

 public OkHttpStack(OkHttpClient client) {
 if (client == null) {
 throw new NullPointerException("Null client.");
 }
 mFactory = new OkUrlFactory(client);
 }
}

JSON and Gson
As an Android developer, sooner or later you will have to work with network
requests in the JSON format. In some cases, you may also find XML, which makes
it more tedious to translate to an object. It is important to know how to perform a
network request by sending parameters in JSON and also how to consume data in
the JSON format.

Creating and Accessing Content from the Cloud

[54]

JSON and GSON are two different things; we need to understand the difference.
JSON, or JavaScript Object Notation, is an open standard format that uses human-
readable text to transmit data objects consisting of attribute–value pairs. It is used
primarily to transmit data between a server and web application as an alternative to
XML. This is an example of a JSON file; as you can see, we can have different types
of attributes, and we can have nested JSON structures:

{
 "firstName": "Antonio",
 "lastName": "Smith",
 "isDeveloper": true,
 "age": 25,
 "phoneNumbers": [
 {
 "type": "home",
 "number": "212 555-1234"
 },
 {
 "type": "office",
 "number": "646 555-4567"
 }
],
 "children": [],
 "spouse": null
}

Following are two examples of sending a network request with parameters as JSON.
These examples cover Volley and OkHttp, which we discussed earlier in this chapter:

//With Volley

public void post(String param1, String param2, String url) {

 Map<String, String> params = new HashMap<String, String>();
 params.put("param1",param1);
 params.put("param2",param2);

 JsonObjectRequest stringRequest = new JsonObjectRequest(Request.
Method.POST, url, new JSONObject(params), new Response.
Listener<JSONObject>() {

 @Override
 public void onResponse(JSONObject responseJSON) {

 }, new Response.ErrorListener() {

Chapter 3

[55]

 @Override
 public void onErrorResponse(VolleyError error) {
 }
 });

 // Add the request to the RequestQueue.
 requestQueue.add(stringRequest);
 }

 //With OkHttp

 public static final MediaType JSON
 = MediaType.parse("application/json; charset=utf-8");

 String post(String url, String json) throws IOException {
 RequestBody body = RequestBody.create(JSON, json);
 Request request = new Request.Builder()
 .url(url)
 .post(body)
 .build();
 Response response = client.newCall(request).execute();
 return response.body().string();

 }

 //To create a JSONObject from a string

 JSONObject responseJSON = new JSONObject(String json);

Gson (Google Gson) is an open source Java library used to serialize and deserialize
Java objects to (and from) JSON.

If we were downloading the job offers for our application from a custom server in
JSON, it would be in the following format:

{
 "title": "Senior Android developer",
 "description": "A developer is needed for…",
 "salary": "25.000 € per year",
 .
 .
 .
}

Creating and Accessing Content from the Cloud

[56]

Again, we don't want to create a new object manually and set all the parameters by
retrieving them from JSON; what we want to do is create a JobOffer object from
JSON. This is called deserialization.

To use this, we need to import the GSON library as a dependency in build.gradle:

dependencies {
compile 'com.google.code.gson:gson:2.2.4'
}

Gson has the fromJSON and toJSON methods to serialize and deserialize,
respectively. The fromJson method takes the JSON code to convert, and the class of
the object that we want it to be converted into, as the input. Use the following code:

Gson gson = new Gson();
JobOffer offer = gson.fromJson(JSONString, JobOffer.class);

If instead of a single object we had a list, which is the typical scenario while
requesting data, we would need an extra step to get the type:

Gson gson = new Gson();
Type listType = new TypeToken<List<JobOffer>>(){}.getType();
List<JobOffer> listOffers = gson.fromJson(JSONString, listType);

To finish, if we want the fields in our class to have a different name than the fields of
the JSON code to be deserialized, we can use annotations as follows:

import com.google.gson.annotations.SerializedName;

public class JobOffer extends ParseObject {

 @SerializedName("title")
 private String title;

 @SerializedName("description")
 private String desc;

 @SerializedName("salary")
 private String salary;

Chapter 3

[57]

Summary
At the end of this chapter, you should be able to create your own database in Parse
and consume content from the application. You should also have all the necessary
knowledge to master network requests using Volley and OkHttp, especially while
performing network requests and exchanging data in the JSON format.

In the next chapter, we will explain in further detail, some of the patterns used in this
chapter for the HTTP libraries. For instance, we will understand what a callback is
and which pattern it follows, as well as other commonly used software patterns in
Android.

[59]

Concurrency and Software
Design Patterns

As a developer, you not only have to write code that works, but also to use existing
solutions whenever possible so that you can maintain your code better in the future.
If other developers ever have to work on your project, they will quickly understand
what you are doing. We can achieve this thanks to software design patterns.

In order to understand the patterns correctly, we need a basic overview of how
concurrency works in Android. We will clarify what a UI thread is and talk about
the different mechanisms used to delay events in a thread.

We will cover the most commonly used patterns in Android, which will help us
further understand Android features and development techniques and become
better developers.

• Concurrency
 ° Handlers and threads
 ° AsyncTask
 ° Service
 ° IntentService
 ° Loader

• Patterns in Android
 ° Singleton
 ° Adapter and holder
 ° Observer

Concurrency and Software Design Patterns

[60]

Concurrency in Android
If you are an Android user, you are probably aware of ANR messages. It might not
ring a bell for you, so take a look at the following image:

Activity Not Responding (ANR) happens when there is code running in the UI or
main thread that blocks user interaction for more than 5 seconds.

In Android, an application runs a single thread, called the User Interface thread.
We will explain what a thread is in a way that even readers with no programming
background will understand. We can visualize a thread as a column of instructions
or messages executed by the CPU. These instructions come from different places;
they come from our application as well as the OS. This thread is used to handle the
response from the user, lifecycle methods, and system callbacks.

The CPU processes messages sequentially, one after another; if it's busy, the message
will wait in a queue to be executed. Therefore, if we perform long operations in our
application and send many messages to the CPU, we will not let UI messages be
executed, and this will result in the mobile not responding for the user.

Chapter 4

[61]

The solution to this problem seems obvious: if one thread isn't enough, we can use
more than one. For instance, if we make a network request, this will be done in
another thread, and when it finishes, it will communicate with the main thread to
display the data that was requested.

Only the main or UI thread can access the UI; so, if we perform any background
calculations in another thread, we have to tell the main thread to display the result
of these calculations because we can't do it directly from there.

Handlers and threads
The messages that we have described previously run in a queue called
MessageQueue, which is unique to each thread. A handler can send messages
to this queue. When we create a handler, it is associated with the MessageQueue
of the thread where it is created.

A handler is used for two situations:

• Sending a delayed message to the same thread
• Sending a message to another thread

This is why, in our SplashActivity, we will use the following code:

new Handler().postDelayed(new Runnable() {
 @Override
 public void run() {

 Intent intent = new Intent(SplashActivity.this, MainActivity.
class)

 startActivity(intent);
 }
},3000);

When you create a new Handler() method, ensure that you
import the Android.OS handler.

Here, we used the postDelayed(Runnable, time) method to send a message
with a delayed time. In this case, the message is a runnable object that represents
a command than can be executed.

Concurrency and Software Design Patterns

[62]

When there is a method inside the runOnUIThread() activity that allows us to send a
runnable object to the UI thread, you don't need to create a handler to communicate
with it. This is very useful when we have the context of the activity and want to run
something on the UI, for example posting updates to the UI from a task that's being
executed in the background.

If we look at the Android source code of the method, we can see that it simply uses a
handler to post the runnable object in the UI thread:

public final void runOnUiThread(Runnable action) {
 if (Thread.currentThread() != mUiThread) {
 mHandler.post(action);
 } else {
 action.run();
 }
}

Usually, threads are manually created when we want to perform a long task in the
background and want to manage parallel thread executions. Threads have a run()
method where the instructions are executed and must be started after its creation
in order to start executing run():

Thread thread = new Thread(){

 @Override
 public void run() {
 super.run();
 }
};

thread.start();

The drawback of creating threads and handlers to perform background tasks is its
manual handling, and if we have many of them, we could easily end up with an
application that is impossible to read. Android has other mechanisms to perform
tasks, such as AsyncTask.

Introducing AsyncTasks
This is probably something you saw at the beginner level, but we will take a look
at it from the concurrency perspective. An Asynctask is based on a thread and a
handler and is meant to be an easy way to perform a job in the background and
post UI updates.

Chapter 4

[63]

An AsyncTask needs to be subclassed to be used, and it has four methods that
can be overridden: onPreExecute, doInBackground, onProgressUpdate, and
onPostExecute.

The OnPreExecute method is called before doing any work in the background;
this means that it's still on the UI thread and is used to initialize variables and
progress before starting the task.

The doInBackground method is executed in the background thread. Here, you
can call onProgressUpdate, which posts an update to the UI thread, for instance,
by increasing the value of ProgressBar to display the progress of the task.

The last method, onPostExecute, is called when the background task is finished
and is running on the UI thread.

Let's consider as an example: an AsyncTask that takes x seconds to be completed
in the background, updating the progress every second. The progress bar object
is sent as a parameter in the constructor, and the number of seconds is sent as a
parameter in the execute method, which is retrieved in doInBackground. Note
that in the following code, the <Integer,Integer,Void> types refer to the types
of input parameters, progress update, and on-post execute, respectively:

public class MyAsyncTask extends AsyncTask<Integer,Integer,Void> {

 ProgressBar pB;

 MyAsyncTask(ProgressBar pB) {
 this.pB = pB;
 }

 @Override
 protected void onPreExecute() {
 super.onPreExecute();
 pB.setProgress(0);
 }

 @Override
 protected void onProgressUpdate(Integer... values) {
 super.onProgressUpdate(values);
 pB.setProgress(values[0]);
 }

 @Override
 protected Void doInBackground(Integer... integers) {

Concurrency and Software Design Patterns

[64]

 for (int i = 0; i < 10; i++){
 try {
 Thread.sleep(1000);
 } catch (InterruptedException e) {
 e.printStackTrace();
 }
 onProgressUpdate(new Integer[]{i});
 }
 return null;
 }

 @Override
 protected void onPostExecute(Void o) {
 super.onPostExecute(o);
 Log.d("AsyncTask","Completed");
 }

}

Having created an AsyncTask class, here's how we can execute it:

new MyAsyncTask(progressBar).execute(new Integer[]{10});

If we execute more than one AsyncTask at a time, they will run sequentially by
default in versions from Android 3.0 onward. If we want to run them in parallel,
we will have to create an executor and call executeOnExecutor() with the
THREAD_POOL_EXECUTOR parameter.

As for limitations, we should mention that AsyncTask always has to be executed
from the main thread and that you can't call execute() twice in the same object;
therefore, they cannot loop.

Understanding services
An AsyncTask is ideal while downloading a file or performing any short operation
where you want to notify the UI when the task is finished. However, there are
situations in Android where you need to perform a very long task that might not
need UI interaction. For instance, you can have an application that opens a socket
(a direct channel) with the server to stream audio for a radio listening app.

A service will run even if the app is not on the screen; it runs in the background
but uses the main thread by default. Therefore, if we want to perform long tasks,
we need to create a thread inside the service. It has to be declared in the manifest,
and it can also be used from another application if we declare it public.

Chapter 4

[65]

As opposed to AsyncTask, services can be triggered from any thread; they are
triggered with the onStartService() method and stopped with onStopService().

Optionally, services could be bound to a component; once you bind the components,
onBind() is called. When binding takes place, we have an interface available to the
component to interact with the service.

A type of service – IntentService
IntentService is a subclass of services that can be triggered from an intent.
It creates a thread and includes callbacks to know when the task is finished.

The idea behind IntentService is that if you don't need to run a task in parallel, it
is easier to implement a service that receives intents and manages them sequentially
with a notification when the job is done.

Services run constantly as we call onStart; however, IntentService is created
but runs in small intervals, only from when it receives the intent and until it finishes
the tasks.

As a real example, we can think of an application that needs to perform short tasks
in the background when the app is not on the screen. This could be the case of a
newsreader app that stores the news in your device to give you offline access to it.
It could be an app from a newspaper that publishes articles daily, allowing users
to read them when they are in a plane or in commute on a train without a network
connection.

The idea would be that when the article is published, users receive a push
notification while the app is in the background. This notification will trigger
an intent to download the article so that without any extra user interaction,
the article is there the next time they open the app.

Downloading the article is a small and repetitive task that needs to be done when
the app is in the background, in a thread, and without the need to be in parallel,
which is the perfect scenario for IntentService.

Introducing loaders
To finish with the concurrency section, we will have a quick overview of the Loader
class. The purpose of a loader is to make it easier to asynchronously load data in
an activity and, therefore, in a fragment. From Android 3.0 onward, every activity
has LoaderManager to manage the loaders used in it. In an application based on
fragment navigations, it is possible to perform background operations at the activity
level even when you switch between fragments.

Concurrency and Software Design Patterns

[66]

Loaders load data from a source; when this source changes, it automatically refreshes
the information, which is why loaders are perfect to use with a database. For instance,
once we connect the loader to a database, this database can be modified, and the
change will be captured by the loader. This will allow us to refresh the UI, instantly
reflecting the changes to the user.

In Chapter 8, Databases and Loaders, we will implement CursorLoader to query the
database that we will create in MasteringAndroidApp.

The importance of patterns
When a software developer has to develop a feature or a component with a certain
functionality, it can usually be done in different ways; it can be done with different
code or with a different structure. It is very likely that the same problem has been
solved by other developers so many times that the solution is abstracted from
particular implementations and transformed into a pattern. Rather than invent the
wheel again, it is preferable to know and implement these patterns.

When developing on Android, we use patterns every day even if we aren't aware
of it. Most of the time, we use implementations of the patterns built in Android. For
instance, when we want to perform a click on a button and set OnClickListener—
in other words, wait for the onClick() method to be called—we use an observer
pattern implementation. If we create a popup, AlertDialog, we use AlertDialog.
Builder, which uses the Builder pattern. There are many examples, but what we
want is to be able to implement these solutions to our own problems.

There are different types of patterns grouped in four categories, and these are some
examples of the ones that we find while developing Android apps:

• Creation
 ° Singleton
 ° Builder
 ° Factory method

• Behavioral
 ° Observer
 ° Strategy
 ° Iterator

Chapter 4

[67]

• Structural
 ° Adapter
 ° Façade
 ° Decorator

• Concurrency
 ° Lock
 ° Scheduler
 ° Read-write lock

To complete MasteringAndroidApp, we have to implement patterns from the
first three groups. With respect to the fourth group (concurrency), we need to
have an idea of concurrency in Android, but we will not implement a concurrency
pattern ourselves.

Patterns are usually represented by UML diagrams.
According to Wikipedia (http://en.wikipedia.org/
wiki/Class_diagram), "in software engineering, a class
diagram in the Unified Modeling Language (UML) is a type of
static structure diagram that describes the structure of a system
by showing the system's classes, their attributes, operations (or
methods), and the relationships among objects".

The Singleton pattern
The software design pattern, Singleton, restricts the creation of an object to a single
instance. The idea is to access this single object globally.

This pattern is implemented by creating the object if has not been created before or
returning the existing instance if created. Following is the UML diagram:

Singleton()

getInstance() : Singleton+

singleton : Singleton

Singleton

http://en.wikipedia.org/wiki/Class_diagram
http://en.wikipedia.org/wiki/Class_diagram

Concurrency and Software Design Patterns

[68]

On certain occasions, we want an object to be globally accessible, and we want it to
be unique in our app. For instance, while using Volley, we want to maintain a unique
request queue to have all the requests in the same queue, and we want it to be accessed
globally because we will need to add a request from any fragment or activity.

Here is a basic example of a singleton implementation:

public class MySingleton {

 private static MySingleton sInstance;

 public static MySingleton getInstance(){
 if (sInstance == null) {
 sInstance = new MySingleton();
 }
 return sInstance;
 }
}

To understand the implementation, remember that in Java, a static variable is
associated with the class and not with the object. In the same way, a static method
can be called without creating an instance of the class.

Having a static method means that it can be called from anywhere in our app.
We can call MySingleton.getInstance(), and it will always return the same
instance. The first time, it will create it and return it; the subsequent times,
it will return the one created.

There is a downside to using singleton and testing frameworks; we will talk about
this in Chapter 11, Debugging and Testing on Android.

Singleton in the Application class
We can adapt a Singleton implementation to Android. Given that the onCreate
method in the Application class is called only once when we open our app and that
the Application object won't be destroyed, we can implement the getInstance()
method in our application.

Upon applying these changes, our application class will look similar to the following:

public class MAApplication extends Application {

 private static MAApplication sInstance;

 @Override

Chapter 4

[69]

 public void onCreate() {
 super.onCreate();

 sInstance = this;

 // Enable Local Datastore.
 Parse.enableLocalDatastore(this);

 ParseObject.registerSubclass(JobOffer.class);

 Parse.initialize(this, "KEy", "KEY");
 }

 private static MAApplication getInstance(){
 return sInstance;
 }
}

Now, I can call MAAplication.getInstance() from anywhere in the app and
create member variables in the application class that can be accessed globally
via the singleton MAAplication object. For instance, in the case of Volley, I can
create RequestQueue in OnCreate() and then retrieve it at any time from the
MAAplication object. Execute the following code:

private RequestQueue mRequestQueue;

@Override
public void onCreate() {
 super.onCreate();

 sIntasnce = this;

 mRequestQueue = Volley.newRequestQueue(this);
 .
 .
 .
}

public RequestQueue getRequestQueue(){
 return mRequestQueue;
}

Concurrency and Software Design Patterns

[70]

Following this approach, we have one singleton, which is our Application class;
the rest of the globally accessible objects are member variables. The other option
is to create a new singleton class to store the volley requests queue and one new
request singleton for every globally accessed object needed.

Don't use this approach to persist data in the Application class. For
example, if we go to the background by clicking on the home button,
Android might need memory after a while and will kill the app. So,
the next time you open the app, a new instance will be created even
if it looks as though we are returning to the previous instance. This
is fine if you initialize all the variables in onCreate again and don't
modify their state later. Avoid having setters to ensure this.

The Observer pattern
This pattern is widely used in Android. Most of the network libraries that we
discussed implement this pattern, and if you are an Android developer, you have
surely used it plenty of times—we need to implement it even to detect a click on
a button.

The observer pattern is based on an object, the observer, which registers other objects
to notify them of a state change; here, the objects listening to the state changes are the
observers. This pattern can be used to create a publish/subscribe system:

+registerObserver(observer)

+unregisterObserver(observer)

+notifyObservers()

notifyObservers()

for observer in observerCollection

call observer.notify()

Subject

+observerCollectionObserver

ConcreteObserverA ConcreteObserverB

+notify() +notify()

+notify()

Chapter 4

[71]

The following is an implementation of a pattern that registers multiple observes:

public class MyObserved {

 public interface ObserverInterface{
 public void notifyListener();
 }

 List<ObserverInterface> observersList;

 public MyObserved(){
 observersList = new ArrayList<ObserverInterface>();
 }

 public void addObserver(ObserverInterface observer){
 observersList.add(observer);
 }

 public void removeObserver(ObserverInterface observer){
 observersList.remove(observer);
 }

 public void notifyAllObservers(){
 for (ObserverInterface observer : observersList){
 observer.notify();
 }
 }
}

public class MyObserver
implements MyObserved.ObserverInterface {

 @Override
 public void notify(){
 //Do something
 }
}

The observer, as you will notice, can be any object that implements the interface—
ObserverInterface. This interface is defined in the observed object.

Concurrency and Software Design Patterns

[72]

If we compare this to the way that we handle a click on a button in Android, we
perform myButton.setOnClickListener(observer). Here, we add an observer
that waits for the click; this observer implements the OnClick() method, which is
the method that notifies in our case.

Looking at Volley, when we create a network request, we have to specify two
listeners as a parameter: Response.Listener and Response. ErrorListener,
which call onResponse() and onErrorResponse(), respectively. This is a clear
implementation of the observer pattern.

We will implement an example of a variant of the observer pattern,
a publish/subscribe pattern, in Chapter 6, CardView and Material Design.

Introducing the Adapter pattern
The Adapter is an element that we use in Android while creating ListView or
ViewPager, but it is also a well-known design pattern. We will take a look at the
definition of both and their relationship.

On one hand, an Adapter as a design pattern is one that acts as a bridge between two
incompatible interfaces. It allows two different interfaces to work together. It's the
same concept as a real-world adapter, such as an SD card to micro SD card adapter,
which allows two incompatible systems to work together. As the diagram shows,
the adapter is called with the new required method, but internally, it calls the old
method from the adaptee.

On the other hand, an Adapter from android.widget.Adapter is an object that
we use to create the view for every row on a list or for every page in a view pager.
Therefore, it adapts the data, a set of elements, and a set of views.

Chapter 4

[73]

To implement an adapter, we have to extend BaseAdapter and override the
getView() and getCount() methods. With these two methods, the adapter
will know how many views it has to create and how the views are created.

We will go further into this topic in the next chapter while working with ListViews,
and we will talk about the ViewHolder pattern, which is a particular pattern used in
Android while working with Adapters and lists.

Summary
At the end of this chapter, you should be able to understand concurrency in
Android and all the different mechanisms to work with it. You should know that
there is a main thread where the UI is updated and that we can create background
threads to perform other tasks. You must also know the difference between having
the app perform a task in the background (in other words, not on the screen) and
having the app perform tasks in a background thread. You should also know the
importance of software design patterns and be able to implement some of them.

In the next chapter, we will take a look at how to work with list views, we will
implement an adapter, and we will discover a new pattern, ViewHolder, which will
be the key to understanding the difference between ListView and RecyclerView
introduced in Android Lollipop.

[75]

Lists and Grids
In this chapter, we will work with lists and grids. A list or a matrix of elements
can be found in almost every app on the market. Knowing how to display a list of
elements on Android is something that you learn at a basic level; however, there is a
lot to expand on and understand.

It's important to know which patterns we can use here, how to recycle the view, and
how to display different kinds of elements with different views in the same list.

With this in mind, we will be able to understand why RecyclerView is the successor
of ListView, and we will learn how to implement a list with this component.
Therefore, we will cover the following in this chapter:

• Starting with lists
 ° ListView
 ° The custom adapter
 ° Recycling views
 ° Using the ViewHolder pattern

• Introducing RecyclerView
 ° List, grid, or stack
 ° Implementation

• OnItemClick

Lists and Grids

[76]

Starting with lists
If you have heard of RecyclerView, you might wonder why we are going through
ListView. The RecyclerView widget is new; it came out with Android Lollipop, and
is a revolution when displaying a list of items; it can do it vertically and horizontally,
as a list or as a grid, or with nice animations among other improvements.

Answering the question, even if RecyclerView is more efficient and flexible in some
scenarios, it needs extra coding to achieve the same result, so there are still reasons to
use ListView. For example, there is no onItemClickListener() for item selection
in RecyclerView, and there is no visual feedback when we click on an item. If we
don't need customization and animations, for instance for a simple data picker
popup, this could be a dialog where we just have to select a country. In this case, it's
perfectly fine to use ListView rather than RecyclerView.

Another reason to start with ListView is that RecyclerView solves most of the
problems presented when working with ListViews. Therefore, by starting with
ListView and solving these problems, we will fully understand how RecyclerView
works and why it is implemented this way. Thus, we will explain individually the
patterns that are used to have a global idea of the component.

Here is an example of the basic AlertDialog with the purpose of selecting an item;
here, the use of ListView makes perfect sense:

Chapter 5

[77]

Using ListViews with built-in views
When you first implement ListView, it might seem trivial and easy; however,
when you spend more time with Android, you realize how complex it can get. You
can very easily find performance and memory issues by just having a large list of
elements with an image on every row. It can be difficult to customize the list if you
try to implement a complex UI; for example, having the same list displaying different
items, creating different rows with different views, or even trying to group some
items while showing a section title can be a headache.

Let's start with the shortest way to implement a list, using the Android built-in item
layout, which is created to be used in simple lists as discussed before. In order to
show the list, we will include it in AlertDialog, which will be shown when we
tap on a button in the settings fragment. I will set the text of the button to Lists
Example.

The first step is to create the button in settings_fragment.xml; once created,
we can set the click listener to the button. Now, we understand a bit more about
software patterns instead of setting the click listener in the following way:

view.findViewById(R.id.settingsButtonListExample).
setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View view) {
 //Show the dialog here
 }
});

We will do it in a more structured way, especially because we know that in the
settings screen, there will be a good number of buttons, and we want to handle
all the clicks in the same place. Instead of creating onClickListener inside the
method call, we will make the Fragment implement OnClikListener by setting
onClickListener to this. The this keyword refers to the whole fragment here,
so the fragment will be listening for the click in the onClick method, which is
mandatory to implement once the Fragment implements View.OnClickListener.

The OnClick() method receives a view, which is the view clicked on. If we compare
that view's ID with the ID of the button, we will know whether the button or the
other view where we set clickListener has been clicked.

Lists and Grids

[78]

Just type implements View.OnClickListener when defining the class, and you
will be asked to implement the mandatory methods:

/**
* Settings Fragment
*/
public class SettingsFragment extends Fragment implements View.
OnClickListener {

 @Override
 public View onCreateView(LayoutInflater inflater, ViewGroup
container,
 Bundle savedInstanceState) {
 // Inflate the layout for this fragment
 View view = inflater.inflate(R.layout.fragment_settings,
container, false);

 view.findViewById(R.id.settingsButtonListExample).
setOnClickListener(this);

 view.findViewById(R.id.ViewX).setOnClickListener(this);

 view.findViewById(R.id.imageY).setOnClickListener(this);

 return view;
 }

 @Override
 public void onClick(View view) {
 switch (view.getId()){
 case (R.id.settingsButtonListExample) :
 showDialog();
 break;
 case (R.id.viewX) :
 //Example
 break;
 case (R.id.imageY) :
 //Example
 break;

 //...
 }

Chapter 5

[79]

 }

 public void showListDialog(){
 //Show Dialog here
 }
}

You will notice that we also move the logic to show the list dialog to an external
method, keeping the structure easy to read in onClick();.

Continuing with the dialog, we can show an AlertDialog that has a setAdapter()
property, which automatically binds the items with an internal ListView.
Alternatively, we could create a view for our dialog with ListView on it and then set
the adapter to that ListView:

/**
* Show a dialog with different options to choose from
*/
public void showListDialog(){

 AlertDialog.Builder builder = new AlertDialog.
Builder(getActivity());

 final ArrayAdapter<String> arrayAdapter = new ArrayAdapter<String>(
 getActivity(),
 android.R.layout.select_dialog_singlechoice);
 arrayAdapter.add("Option 0");
 arrayAdapter.add("Option 1");
 arrayAdapter.add("Option 2");

 builder.setTitle("Choose an option");

 builder.setAdapter(arrayAdapter,
 new DialogInterface.OnClickListener() {
 @Override
 public void onClick(DialogInterface dialogInterface, int i) {
 Toast.makeText(getActivity(),"Option choosen "+i, Toast.LENGTH_
SHORT).show();
 dialogInterface.dismiss();
 }
 });

 builder.show();
}

www.allitebooks.com

http://www.allitebooks.org

Lists and Grids

[80]

This dialog will show a message indicating the option clicked. We have used
android.R.layout.select_dialog_singlechoice as a view for our rows.

These are a few different examples of built-in layouts for lists, which will depend on
the theme of our application. The dialog won't look the same in 4.4 KitKat and in 5.0
Lollipop, for instance, in android.R.layout.simple_list_item_1, this is how it
will look:

Here's what android.R.layout.simple_list_item_2 with two rows will look
similar to:

This is an example of android.R.layout.simpleListItemChecked, where we can
change the choice mode to multiple or single:

This is android.R.layout.activityListItem, where we have an icon and text:

Chapter 5

[81]

We can access these built-in layout components to tweak the view a bit more when
creating the layout. These components are named android.resource.id.Text1,
android.resource.id.Text2, android.resource.id.Icon, and so on.

Now, we have an idea of how to create lists with the functionality and views ready
to be used. It's time to create our own Adapter and implement the functionality and
the view manually.

Creating a custom Adapter
When you look for a job, apart from looking at offers, you would also be handing
your CV to different software companies or to IT recruitment companies that will
find a company for you.

In our contact fragment, we will create a list sorted by country, displaying the
contact details of these companies. There will be two different rows: one for the
country header and another one for the company details.

We can create another table in our Parse database, called JobContact, with the
following fields:

We will request the job contacts from the server and build a list of items that will be
sent to the Adapter to build the list. In the list, we will send two different elements:
the company and the country. What we can do is generate a list of items and add the
two as objects. Our two classes will look similar to the following:

@ParseClassName("JobContact")
public class JobContact extends ParseObject {

 public JobContact() {
 // A default constructor is required.
 }

Lists and Grids

[82]

 public String getName() {
 return getString("name");
 }

 public String getDescription() {
 return getString("description");
 }

 public String getCountry() {
 return getString("country");
 }

 public String getEmail() {
 return getString("email");
 }

}

public class Country {

 String countryCode;

 public Country(String countryCode) {
 this.countryCode = countryCode;
 }

}

Once we download the information sorted by country from http://www.parse.com,
we can build our list of items, iterating through the parse list and adding a country
header when a different country is detected. Execute the following code:

public void retrieveJobContacts(){
 ParseQuery<JobContact> query = ParseQuery.getQuery("JobContact");
 query.orderByAscending("country");
 query.findInBackground(new FindCallback<JobContact>() {
 @Override
 public void done(List<JobContact> jobContactsList, ParseException
e) {

http://www.parse.com

Chapter 5

[83]

 mListItems = new ArrayList<Object>();
 String currentCountry = "";
 for (JobContact jobContact: jobContactsList) {
 if (!currentCountry.equals(jobContact.getCountry())){
 currentCountry = jobContact.getCountry();
 mListItems.add(new Country(currentCountry));
 }
 mListItems.add(jobContact);
 }
 }
 });
}

Now that we have our list with the headers included we are ready to create the
Adapter based on this list, which will be sent as a parameter in the constructor. The
best way to customize an Adapter is to create a subclass extending BaseAdapter.
Once we do this, we will be asked to implement the following methods:

public class JobContactsAdapter extends BaseAdapter {
 @Override
 public int getCount() {
 return 0;
 }

 @Override
 public Object getItem(int i) {
 return null;
 }

 @Override
 public long getItemId(int i) {
 return 0;
 }

 @Override
 public View getView(int i, View view, ViewGroup viewGroup) {
 return null;
 }
}

Lists and Grids

[84]

These methods will have to be implemented according to the data that we want to
display; for instance, getCount() will have to return the size of the list. We need
to implement a constructor receiving two parameters: the list and the context. The
context will be necessary to inflate the list in the getView() method. This is how the
adapter will look without implementing getView():

public class JobContactsAdapter extends BaseAdapter {

 private List<Object> mItemsList;
 private Context mContext;

 public JobContactsAdapter(List<Object> list, Context context){
 mItemsList = list;
 mContext = context;
 }

 @Override
 public int getCount() {
 return mItemsList.size();
 }

 @Override
 public Object getItem(int i) {
 return mItemsList.get(i);
 }

 @Override
 public long getItemId(int i) {
 //Not needed
 return 0;
 }

 @Override
 public View getView(int i, View view, ViewGroup viewGroup) {
 return null;
 }
}

Chapter 5

[85]

In our case, we can create two different views; so, apart from the mandatory
methods, we need to implement two extra methods:

@Override
public int getItemViewType(int position) {
 return mItemsList.get(position) instanceof Country ? 0 : 1;
}

@Override
public int getViewTypeCount() {
 return 2;
}

The getItemViewType method will return 0 if the element is a country or 1 if the
element is a company. With the help of this method, we can implement getView().
In case it's a country, we inflate row_job_country.xml, which contains ImageView
and TextView; in case it's a company, we inflate row_job_contact.xml, which
contains three text views:

@Override
public View getView(int i, View view, ViewGroup viewGroup) {

 View rowView = null;
 switch (getItemViewType(i)){

 case (0) :
 rowView = View.inflate(mContext, R.layout.row_job_country,null);
 Country country = (Country) mItemsList.get(i);
 ((TextView) rowView.findViewById(R.id.rowJobCountryTitle)).
setText(country.getName());
 ((ImageView) rowView.findViewById(R.id.rowJobCountryImage)).
setImageResource(country.getImageRes(mContext));
 break;

 case (1) :
 rowView = View.inflate(mContext, R.layout.row_job_contact,null);
 JobContact company = (JobContact) mItemsList.get(i);
 ((TextView) rowView.findViewById(R.id.rowJobContactName)).
setText(company.getName());
 ((TextView) rowView.findViewById(R.id.rowJobContactEmail)).
setText(company.getEmail());
 ((TextView) rowView.findViewById(R.id.rowJobContactDesc)).
setText(company.getDescription());
 }

 return rowView;
}

Lists and Grids

[86]

To finish, we can create ListView in contact_fragment.xml and set the
adapter to this list. However, we will take a shortcut and use android.support.
v4.ListFragment; this is a fragment that already inflates a view with ListView
and contains the setListAdapter() method, which sets an adapter to the built-
in ListView. Extending from this fragment, our ContactFragment class will look
similar to the following code:

public class ContactFragment extends android.support.v4.app.
ListFragment {

 List<Object> mListItems;

 public ContactFragment() {
 // Required empty public constructor
 }

 @Override
 public void onViewCreated(View view, Bundle bundle) {
 super.onViewCreated(view,bundle);
 retrieveJobContacts();
 }

 public void retrieveJobContacts(){
 ParseQuery<JobContact> query = ParseQuery.getQuery("JobContact");
 query.orderByAscending("country");
 query.findInBackground(new FindCallback<JobContact>() {
 @Override
 public void done(List<JobContact> jobContactsList,
ParseException e) {
 mListItems = new ArrayList<Object>();
 String currentCountry = "";
 for (JobContact jobContact: jobContactsList) {
 if (!currentCountry.equals(jobContact.getCountry())){
 currentCountry = jobContact.getCountry();
 mListItems.add(new Country(currentCountry));
 }
 mListItems.add(jobContact);
 }
 setListAdapter(new JobContactsAdapter(mListItems,getActivi
ty()));
 }
 });
 }
}

Chapter 5

[87]

Upon calling the retrieveJobContacts() method after the view has been created,
we achieve the following result:

The flags that we have displayed are images in the drawable folder whose name
matches the country code, drawable/ "country_code" .png. We can display them by
setting the resource identifier to ImageView and retrieving it with the following
method inside the Country class:

public int getImageRes(Context ctx){
 return ctx.getResources().getIdentifier(countryCode, "drawable",
ctx.getPackageName());
}

This is a basic version of ListView with two different types of rows. This version is
still far from perfect; it lacks performance. It does not recycle the views, and it finds
the IDs of the widget every time we create a row. We will explain and solve this
problem in the following section.

Lists and Grids

[88]

Recycling views
While working with ListView, we need to keep in mind that the number of rows is
a variable and we always want the list to feel fluent even if we scroll as quickly as we
can. Hopefully, Android helps us a lot with this task.

When we scroll through ListView, the views that are not visible anymore on one
side of the screen are reused and displayed again on the other side. This way,
android saves inflation of the views; when it inflates, a view has to go through
the xml nodes, instantiating every component. This extra computation can be the
difference between a fluent and staggering list.

The getView() method receives as a parameter one of the views that are to be
recycled or null if there are no views to be recycled.

To take advantage of this view recycling, we need to stop creating a view every time
and reuse the view coming as a parameter. We still need to change the value of the
text views and widget inside the row on a recycled view because it has the initial
values that correspond to its previous position. In our example, we have an extra
complication; we cannot recycle a country view to be used for a company view, so
we can only recycle views of the same view type. However, again, Android does that
check for us using internally the getItemViewType method that we implemented:

@Override
public View getView(int i, View view, ViewGroup viewGroup) {

Chapter 5

[89]

 switch (getItemViewType(i)){

 case (0) :
 if (view == null){
 view = View.inflate(mContext, R.layout.row_job_country,null);
 }
 Country country = (Country) mItemsList.get(i);
 ((TextView) view.findViewById(R.id.rowJobCountryTitle)).
setText(country.getName());
 ((ImageView) view.findViewById(R.id.rowJobCountryImage)).
setImageResource(country.getImageRes(mContext));
 break;

 case (1) :
 if (view == null){
 view = View.inflate(mContext, R.layout.row_job_contact,null);
 }
 JobContact company = (JobContact) mItemsList.get(i);
 ((TextView) view.findViewById(R.id.rowJobContactName)).
setText(company.getName());
 ((TextView) view.findViewById(R.id.rowJobContactEmail)).
setText(company.getEmail());
 ((TextView) view.findViewById(R.id.rowJobContactDesc)).
setText(company.getDescription());
 }

 return view;
}

Applying the ViewHolder pattern
Note that in getView(), every time we want to set a text to TextView, we search
this TextView in row view with the findViewById() method; even when the row is
recycled, we still find the TextView again to set the new value.

We can create a class called ViewHolder, which holds the reference to the widget by
saving the computation of the widget search inside the row. This ViewHolder class
will only contain references to the widgets, and we can keep a reference between a
row and its ViewHolder class through the setTag() method. A View object allows us
to set an object as a tag and retrieve it later; we can add as many tags as we want by
specifying a key for this tag: setTag(key) or getTag(key). If no key is specified, we
can save and retrieve the default tag.

Lists and Grids

[90]

Following this pattern for the first time that we create the view, we will create the
ViewHolder class and set it as a tag to the view. If the view is already created and we
are recycling it, we will simply retrieve the holder. Execute the following code:

@Override
public View getView(int i, View view, ViewGroup viewGroup) {

 switch (getItemViewType(i)){

 case (0) :
 CountryViewHolder holderC;
 if (view == null){
 view = View.inflate(mContext, R.layout.row_job_country,null);
 holderC = new CountryViewHolder();
 holderC.name = (TextView) view.findViewById(R.
id.rowJobCountryTitle);
 holderC.flag = (ImageView) view.findViewById(R.
id.rowJobCountryImage);
 view.setTag(view);
 } else {
 holderC = (CountryViewHolder) view.getTag();
 }
 Country country = (Country) mItemsList.get(i);
 holderC.name.setText(country.getName());
 holderC.flag.setImageResource(country.getImageRes(mContext));
 break;
 case (1) :
 CompanyViewHolder holder;
 if (view == null){
 view = View.inflate(mContext, R.layout.row_job_contact,null);
 holder = new CompanyViewHolder();
 holder.name = (TextView) view.findViewById(R.
id.rowJobContactName);
 holder.email = (TextView) view.findViewById(R.
id.rowJobContactEmail);
 holder.desc = (TextView) view.findViewById(R.
id.rowJobOfferDesc);
 view.setTag(holder);
 } else {
 holder = (CompanyViewHolder) view.getTag();
 }
 JobContact company = (JobContact) mItemsList.get(i);
 holder.name.setText(company.getName());

Chapter 5

[91]

 holder.email.setText(company.getEmail());
 holder.desc.setText(company.getDescription());
 }

 return view;
}

private class CountryViewHolder{

 public TextView name;
 public ImageView flag;

}

private class CompanyViewHolder{

 public TextView name;
 public TextView email;
 public TextView desc;

}

To simplify this code, we can create a method called bindView() inside each holder;
it will get a country or company object and populate the widgets:

CountryViewHolder holderC;
if (view == null){
 view = View.inflate(mContext, R.layout.row_job_country,null);
 holderC = new CountryViewHolder(view);
 view.setTag(view);
} else {
 holderC = (CountryViewHolder) view.getTag();
}
holderC.bindView((Country)mItemsList.get(i));
break;

private class CountryViewHolder{

 public TextView name;
 public ImageView flag;

Lists and Grids

[92]

 public CountryViewHolder(View view) {
 this.name = (TextView) view.findViewById(R.id.rowJobCountryTitle);
 this.flag = (ImageView) view.findViewById(R.
id.rowJobCountryImage);
 }

 public void bindView(Country country){
 this.name.setText(country.getName());
 this.flag.setImageResource(country.getImageRes(mContext));
 }

}

We will now finish with the list of ListView performance improvements. If there
are images or long operations to load a view, we need to create AsyncTask method
inside getView() so as to avoid heavy operation while scrolling. For instance, if we
want to display an image downloaded from the Internet on every row, we would
have a LoadImageAsyncTask method, which we will execute with the holder and the
URL to download the image from. When the Asynctask method finishes, it will have
a reference to the holder and will therefore be able to display the image:

public View getView(int position, View convertView,
ViewGroup parent) {

 ...

 new LoadImageAsyncTask(list.get(position).getImageUrl, holder)
 .executeOnExecutor(AsyncTask.THREAD_POOL_EXECUTOR, null);

 return convertView;
}

Now that we know all of the different techniques to improve the performance of
a ListView, we are ready to introduce RecyclerView. By applying most of these
techniques in the implementation, we will be able to identify it easily.

Chapter 5

[93]

Introducing RecyclerView
The RecyclerView was introduced in Android 5.0 Lollipop and was defined by
Google as a more flexible and advanced version of ListView. It is based on an
Adapter class similar to ListView, but it enforces the use of a ViewHolder class to
improve performance and modularity, as we have seen in the previous section. The
flexibility comes in when we decouple the item representation from the component
and allow animations, item decorations, and layout managers to do the work.

The RecyclerView handles the adding and removing of animations using
RecyclerView.ItemAnimator, which we can subclass to customize the animations.
If you display data from a source or if the data changes, for instance by adding or
removing items, you can call notifyItemInserted() or notifyItemRemoved() to
trigger the animations.

To add separators, group items, or highlight an item, we can use RecyclerView.
ItemDecoration.

One of the main differences in utilizing ListView is the use of layout managers to
position the items. With ListView, we know that our items will always be displayed
vertically, and if we want to have a grid, we can use GridView. Layout managers
make our list more flexible in that we can display elements as we want and can even
create our own layout manager.

Using list, grid, or stack
By default, we have three built-in layout managers: LinearLayoutManager,
GridLayoutManager, and StaggeredLayoutManager.

The LinearLayoutManager displays the items aligned in a list, where we can specify
the orientation—vertical or horizontal.

Lists and Grids

[94]

The GridLayoutManager displays the items as a matrix, where we can specify the
columns and rows:

The StaggereGriddLayoutManager displays the items in a staggered way; these
items can have different widths or heights, and we can control how they are
displayed with setGapStrategy().

Chapter 5

[95]

Implementing RecyclerView
Continuing with MasteringAndroidApp, we will implement again the list of job
offers, removing ParseQueryAdapter and using RecyclerView instead. We will
still query the data from Parse, but this time, what we will do is save the list of items
in a variable and use it to build RecyclerView.Adapter, which will be used by
RecyclerView.

The RecyclerView is included in the v7 support library; the best way to include it in
our project is to open the project structure, click on the dependencies tab, and search
for RecyclerView. A list of results will be presented as shown in the following
screenshot:

This is the equivalent of adding the following line to the build.gradle
dependencies:

dependencies {
 compile fileTree(dir: 'libs', include: ['*.jar'])
 compile 'com.android.support:appcompat-v7:21.0.3'
 compile 'com.parse.bolts:bolts-android:1.+'
 compile fileTree(dir: 'libs', include: 'Parse-*.jar')
 compile 'com.mcxiaoke.volley:library-aar:1.0.1'
 compile 'com.android.support:recyclerview-v7:21.0.3'
}

Once the line is added, we will click on Sync Gradle with Project files to update the
dependencies and get ready to use RecyclerView in our XML.

Lists and Grids

[96]

Open fragment_list.xml and replace the existing ListView with RecyclerView,
as follows:

<android.support.v7.widget.RecyclerView
 android:id="@+id/my_recycler_view"
 android:scrollbars="vertical"
 android:layout_width="match_parent"
 android:layout_height="match_parent"/>

If you don't get any errors after adding it, the dependency was added correctly.

The next step is to create the adapter. This adapter is slightly different from the
adapter that we created for the job contacts; instead of extending BaseAdapter,
we will extend RecyclerView.Adapter <RecyclerView.MyViewHolder>,
which is an adapter that implements the ViewHolder pattern after creating the
JobOfferAdapter adapter class. However, before extending, we have to create an
internal MyViewHolder class extending RecylcerView.ViewHolder. So far, we have
the following code:

public class JobOffersAdapter {

 public class MyViewHolder extends RecyclerView.ViewHolder{

 public TextView textViewName;
 public TextView textViewDescription;

 public MyViewHolder(View v){
 super(v);
 textViewName = (TextView)v.findViewById(R.id.rowJobOfferTitle);
 textViewDescription = (TextView)v.findViewById(R.
id.rowJobOfferDesc);
 }
 }
}

Now is when we extend the JobOffersAdapter class from RecyclerView.
Adapter<JobsOfferAdapter.MyViewHolder>. We will be asked to implement the
following methods:

@Override
public MyViewHolder onCreateViewHolder(ViewGroup parent, int viewType)
{
 return null;
}

Chapter 5

[97]

@Override
public void onBindViewHolder(MyViewHolder holder, int position) {

}

@Override
public int getItemCount() {
 return 0;
}

Following the same approach as in JobsContactsAdapter, we create a constructor
by receiving the list of job offers and implement the adapter methods based on that
list.

OnBindViewHolder receives the holder with a position; all we need to do is get the
job offer in that position on the list and update the holder text views with these
values. OnCreateViewHolder will inflate the view; in this case, we only have one
type, so we ignore the ViewType parameter. We will show here an alternative way to
inflate the view: using the context of the parent, which comes as a parameter.

Finally, getItemCount will return the number of job offers. As you complete all of
the above tasks, our new Adapter will be created with the following code:

public class JobOffersAdapter extends RecyclerView.
Adapter<JobOffersAdapter.MyViewHolder> {

 private List<JobOffer> mOfferList;

 public JobOffersAdapter(List<JobOffer> offersList) {
 this.mOfferList = offersList;
 }

 @Override
 public MyViewHolder onCreateViewHolder(ViewGroup parent, int
viewType) {
 View v = LayoutInflater.from(parent.getContext()).inflate(R.
layout.row_job_offer, parent, false);
 return new MyViewHolder(v);
 }

 @Override
 public void onBindViewHolder(MyViewHolder holder, int position) {
 holder.textViewName.setText(mOfferList.get(position).getTitle());
 holder.textViewDescription.setText(mOfferList.get(position).
getDescription());

Lists and Grids

[98]

 }

 @Override
 public int getItemCount() {
 return mOfferList.size();
 }

 public class MyViewHolder extends RecyclerView.ViewHolder{

 public TextView textViewName;
 public TextView textViewDescription;

 public MyViewHolder(View v){
 super(v);
 textViewName = (TextView)v.findViewById(R.id.rowJobOfferTitle);
 textViewDescription = (TextView)v.findViewById(R.
id.rowJobOfferDesc);
 }
 }
}

That is all that we need from the adapter side; now, we need to initialize
RecyclerView and set a layout manager along with the adapter. The adapter has to
be instantiated using the list of objects from Parse in the same way that we retrieved
our job contacts in the previous Adapter. First, in OnCreateView, we will initialize
RecyclerView:

public class ListFragment extends android.support.v4.app.Fragment {

 public List<JobOffer> mListItems;
 public RecyclerView mRecyclerView;

 public ListFragment() {
 // Required empty public constructor
 }

 @Override
 public View onCreateView(LayoutInflater inflater, ViewGroup
container,
 Bundle savedInstanceState) {

Chapter 5

[99]

 // Inflate the layout for this fragment
 View view = inflater.inflate(R.layout.fragment_list, container,
false);

 mRecyclerView = (RecyclerView) view.findViewById(R.id.my_recycler_
view);

 // use this setting to improve performance if you know that
changes
 // in content do not change the layout size of the RecyclerView
 mRecyclerView.setHasFixedSize(true);

 // use a linear layout manager
 mRecyclerView.setLayoutManager(new LinearLayoutManager(getActivi
ty()));

 //Retrieve the list of offers
 retrieveJobOffers();

 return view;
 }

In the end, we will call retrieveOffers(), which is an async operation. Only when
the result is retrieved from Parse will we be able to create the adapter and set it to the
list:

public void retrieveJobOffers(){

 ParseQuery<JobOffer> query = ParseQuery.getQuery("JobOffer");
 query.findInBackground(new FindCallback<JobOffer>() {

 @Override
 public void done(List<JobOffer> jobOffersList, ParseException e) {
 mListItems = jobOffersList;
 JobOffersAdapter adapter = new JobOffersAdapter(mListItems);
 mRecyclerView.setAdapter(adapter);
 }

 });
}

Lists and Grids

[100]

The best way to test all that we set to work is to see if there are any errors in the
console. If all runs fine, you should be able to see the list of offers, as in the following
screenshot:

We have intentionally added a repeated job offer, which we will delete in order
to see the removing animations included by default in RecyclerView. We will
implement this functionality in a long click listener. The click listener is performed
only to open the offer in the detail view. We will see how to do this in the next
section.

Clicking on RecyclerView items
In ListView, it was quite easy to detect a click on an item; we could simply perform
ListView.setOnItemClickLister and setOnItemLongClickListener for long
clicks. However, this implementation is not as quick with RecyclerView; the
flexibility comes at a cost.

There are two approaches to implementing an item click here: one is to create a class
that implements RecyclerView.OnItemTouchListener and calls the RecyclerView
method, addOnItemTouchListener, as follows:

mrecyclerView.addOnItemTouchListener(new MyRecyclerItemClickListe
ner(getActivity(), recyclerView, new MyRecyclerItemClickListener.
OnItemClickListener() {

 @Override
 public void onItemClick(View view, int position){
 // ...
 }

Chapter 5

[101]

 @Override
 public void onItemLongClick(View view, int position){
 // ...
 }
}));

public class MyRecyclerItemClickListener implements RecyclerView.
OnItemTouchListener
{
 public static interface OnItemClickListener
 {
 public void onItemClick(View view, int position);
 public void onItemLongClick(View view, int position);
 }

 private OnItemClickListener mListener;
 private GestureDetector mGestureDetector;

 public MyRecyclerItemClickListener(Context context, final
RecyclerView recyclerView, OnItemClickListener listener)
 {
 mListener = listener;

 mGestureDetector = new GestureDetector(context, new
GestureDetector.SimpleOnGestureListener()
 {
 @Override
 public boolean onSingleTapUp(MotionEvent e)
 {
 return true;
 }

 @Override
 public void onLongPress(MotionEvent e)
 {
 View child = recyclerView.findChildViewUnder(e.getX(),
e.getY());

 if(child != null && mListener != null)
 {
 mListener.onItemLongClick(child, recyclerView.
getChildPosition(child));
 }
 }

Lists and Grids

[102]

 });
 }

 @Override
 public boolean onInterceptTouchEvent(RecyclerView view, MotionEvent
e)
 {
 View child = view.findChildViewUnder(e.getX(), e.getY());

 if(child != null && mListener != null && mGestureDetector.
onTouchEvent(e))
 {
 mListener.onItemClick(child, view.getChildPosition(child));
 }

 return false;
 }

 @Override
 public void onTouchEvent(RecyclerView view, MotionEvent motionEvent)
{
 //Empty
 }
}
@Override
public void onRequestDisallowInterceptTouchEvent(RecyclerView view){
 //Empty
}

The benefit of this approach is that we define what to do inside onClick in each
activity or fragment. The logic of the click is not on the view, and once we build this
component, we can reuse it in different apps.

The second approach is to set and manage the click inside ViewHolder. We will have
a problem here if we want to reuse this ViewHolder in a different part of the app or
in another app because the logic of the click is inside the view and we might want
to have a different logic in different fragments or activities. However, this approach
makes it easier to detect clicks on different components inside the same row. For
instance, if we had a small icon to delete and another one to share the offer inside the
row, this approach would make much more sense. This way, we can set the click on
the job name in every row and a long click listener in the whole row:

public class MyViewHolder extends RecyclerView.ViewHolder implements
View.OnClickListener, View.OnLongClickListener{

Chapter 5

[103]

 public TextView textViewName;
 public TextView textViewDescription;

 public MyViewHolder(View v){
 super(v);
 textViewName = (TextView)v.findViewById(R.id.rowJobOfferTitle);
 textViewDescription = (TextView)v.findViewById(R.
id.rowJobOfferDesc);
 textViewName.setOnClickListener(this);
 v.setOnLongClickListener(this);
 }

 @Override
 public void onClick(View view) {
 switch (view.getId()){
 case R.id.rowJobOfferTitle :
 //Click
 break;
 }
 }

 @Override
 public boolean onLongClick(View view) {
 //Delete the element here
 return false;
 }
}

You should be able to judge which implementation to use in every situation and
argue in its favor. To be able to test this, we are going to delete an element after
a long tap (we should have a confirmation dialog here to avoid deleting items
by mistake but we will skip this part). The element will be deleted locally to
display the remove animation. Note that we are not deleting this element from
the source in Parse; all we need to do is to delete the element from the list and call
notifyItemRemoved to trigger the notification. We will know which item is clicked
on with the getPosition() method.

@Override
public boolean onLongClick(View view) {
 mOfferList.remove(getPosition());
 notifyItemRemoved(getPosition());
 return true;
}

Lists and Grids

[104]

Summary
At the end of this chapter, you will know how to implement an Adapter, how to
handle different types of items in lists, and how and why we apply the ViewHolder
pattern. You first learned this along with the ListView class and manually
implemented the recycling view techniques. As a result, you will be able to fully
understand the features and how RecyclerView works in showing different ways to
display the items and implement item click listeners.

In the next chapter, we will discover a new component introduced along with
RecyclerView in Android 5.0— CardView. We will combine this with RecyclerView
to have a flexible and professional-looking list of cards.

[105]

CardView and Material
Design

In the first part of this chapter, we will improve our app significantly from a UI
perspective and make it look professional by starting with a new widget: CardView.
We will learn how to use design time attributes, which will improve our designing
and development speed, and we will use a third party library to include custom
fonts in an easy way in our entire app.

The second part will be focused on the design support library, adding material
design concepts to our app, improving the tabs, and adding a parallax effect to the
job offer view. During this, we will clarify what a toolbar, action bar, and app bar is,
and how to implement up navigation from the app bar.

• CardView and UI tips:
 ° CardView
 ° Design time layout attributes
 ° Custom fonts

• Design support library:

 ° TabLayout
 ° Toolbar, action bar, and app bar
 ° CoordinatorLayout
 ° Up navigation

CardView and Material Design

[106]

CardView and UI design tips
At the moment, our application displays the job offers in a row with two text views;
it displays the information needed and we can say that the app is fine as it is and it
serves its purpose. However, we can still make a useful app and have a professional,
good-looking interface at the same time, allowing us to be original and different
from the competition. For instance, to show job offers, we can simulate a job board
with adverts pinned on it. For this, we can use the CardView widget, which will give
it depth and the appearance of a paper card. We will change the font of our app.
A simple change such as this makes a big difference; when we change the default
font to a custom font, the app from the users' eyes is a customized one, where the
developer has taken care of the smallest details.

Introducing CardView
CardView was released with Android 5.0. It is a view with rounded corners and
an elevation with shadows, thus providing a depth feel and simulating a card.
Combining this with a recycler view, we get a great-looking list of items, with a
behavior and look consistent with many apps. The following image is an example of
a list with CardView and custom fonts:

Chapter 6

[107]

While working with CardView, keep in mind that the rounded corners are
implemented differently depending on the Android version. Padding is added to
avoid clipping the child views in versions prior to Android 5.0, as also to achieve the
shadow effect. In versions later than Android 5.0, shadows are displayed based on
the property elevation from CardView, and any child intersecting with the rounded
corners is clipped.

To start using CardView, we need to add it as a dependency from the project
structure window or add the following line to the dependencies inside build.
gradle:

dependencies {
 ...
 compile 'com.android.support:cardview-v7:21.0.+'
}

We can modify our row_job_offer.xml file with a base view as CardView with
the content inside. This CardView will have some elevation and rounded corners.
To set these attributes, we need to import CardView's own attributes by adding the
following schema to the XML:

xmlns:card_view="http://schemas.android.com/apk/res-auto"

The following code will create the new layout:

<?xml version="1.0" encoding="utf-8"?>
<android.support.v7.widget.CardView
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:card_view="http://schemas.android.com/apk/res-auto"
 android:orientation="vertical" android:layout_width="match_parent"
 android:layout_height="170dp"
 android:layout_margin="10dp"
 card_view:cardElevation="4dp"
 card_view:cardCornerRadius="4dp"
 >
 <LinearLayout
 android:orientation="vertical"
 android:layout_width="wrap_content"
 android:padding="15dp"
 android:layout_height="wrap_content">
 <TextView
 android:id="@+id/rowJobOfferTitle"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="Title"

CardView and Material Design

[108]

 android:textColor="#555"
 android:textSize="18sp"
 android:layout_marginBottom="20dp"
 />
 <TextView
 android:id="@+id/rowJobOfferDesc"
 android:layout_marginTop="5dp"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 android:text="Description"
 android:textColor="#999"
 android:textSize="16sp"
 />
 </LinearLayout>
</android.support.v7.widget.CardView>

We found a texture of a corkboard set it as a background, and on every card, we
added a pin with an ImageView object at the top. The following is the achieved
result:

Chapter 6

[109]

The app looks much better than before; now, it's really a job board. By displaying the
same information—the same two TextView with the title and job description—and
simply changing the appearance, it evolved from a demo app to an app that could
perfectly be launched in the Play Store.

We can continue improving this by changing the font, but before this, we will
introduce the design time layout attributes, which will make the design of a view
easier and quicker.

Design-time layout attributes
When working with design-time attributes, I always remember a funny story that
took place in one of my first jobs. I had to display a list of contacts, so when I created
the view of the contact, I used dummy data, which is used to assign some text while
you create the view so that you can see the size, color, and general look in the design
view.

The contact that I created was named Paco el churrero, or Frank the churros maker.
Paco is a synonym for Francisco, and a churro—if you don't know—is a fried dough
pastry. Anyway, this dummy data was changed to a proper contact name, and
when the contact list was shown, these contacts were retrieved from a server. I can't
remember whether I was in a hurry to release the app, I forgot to do it, or I simply
missed it, but the app went live that way. I started to work on another component,
and all was fine until one day, when there was a problem on the server side, and the
server was sending empty contacts. The app was unable to override the dummy data
with the contact name, and Paco el churrero was shown as a contact! Hopefully, the
server was fixed before any user noticed.

After this, I created the view with dummy data, and once I was happy with the view,
I removed the dummy data. However, with this approach, when I was asked for a UI
change, I had to add the dummy data again.

With the release of Android Studio 0.2.11, the design-time layout attributes were
born. These allow us to display text or any attribute in the design view that won't be
there when you run the app; this data is only visible in the design view.

To use these, we need to add the namespace tools to our layout. The namespace
is always defined in the root element of the view; you can find the line,
xmlns:android="http://schemas.android.com/apk/res/android, and add the
tools right after it. Use the following code:

<FrameLayout
xmlns:android="http://schemas.android.com/apk/res/android
xmlns:tools="http://schemas.android.com/tools"

CardView and Material Design

[110]

To test this, we will add dummy text to the job offer and job description TextView:

<TextView
 android:id="@+id/rowJobOfferTitle"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 tools:text="Title of the job"
 android:textColor="#555"
 android:textSize="18sp"
 android:layout_marginBottom="20dp"
 />
<TextView
 android:id="@+id/rowJobOfferDesc"
 android:layout_marginTop="5dp"
 android:layout_width="fill_parent"
 android:layout_height="wrap_content"
 tools:text="Description of the job"
 android:textColor="#999"
 android:textSize="16sp"
 android:ellipsize="marquee"
 />

If you have problems rendering the design view, change the Android version or the
theme, as in the following image. If the problem persists, ensure that you have the
latest version of Android Studio and the latest Android API downloaded:

Chapter 6

[111]

Once the view is rendered, we can see the job offer with the title and description
from the design-time attributes.

You can use any attribute, text color, background color, and even image source,
which is really useful when you create a view which contains an image that will be
downloaded from the internet when the app is running, but you need a preview
image to see how the view looks while creating it.

Working with custom fonts in Android
When working with customs fonts on Android, there is an amazing open source
library—Calligraphy by Chris Jenkins—that allows us to set a default font for our
whole app. This means that every widget with text, a Button, TextView, and EditText
will show this font by default and we don't have to set the font individually for every
single item in our app. Let's take a look at this in more detail and consider a few
arguments in favor of Calligraphy.

CardView and Material Design

[112]

If we want to apply a custom font, the first thing that we need to do is to place
that font in the assets folder of our app. If we don't have this folder, we need to
create it inside the main method, at the same level as java and src. Create a second
folder, fonts, inside assets and place the font there. In our example, we will use
the Roboto font; it can be obtained from Google fonts at https://www.google.com/
fonts#UsePlace:use/Collection:Roboto. When the font is downloaded, the app
structure should look similar to the following screenshot:

Once the font is in its place, we need to create a Typeface object from this font and
set it to myTextView:

Typeface type = Typeface.createFromAsset(getAssets(),"fonts/Roboto-
Regular.ttf");
myTextView.setTypeface(type);

If we now wanted to apply the same font to all the components in our app, such as
tabs, the title, and job offer cards, we would have to repeat the same code in different
places around our app. Apart from this, we will also have performance issues.
Creating a font from an asset requires access to the file; it is an expensive operation.
If we changed the typeface for the job title and the job description inside the adapter,
the view of our app wouldn't be fluent while scrolling anymore. This brings in extra
considerations; for instance, we would have to load the typeface once in a static class
and use it along with the app. Calligraphy handles all of this for us.

https://www.google.com/fonts#UsePlace:use/Collection:Roboto
https://www.google.com/fonts#UsePlace:use/Collection:Roboto

Chapter 6

[113]

Another good reason to use calligraphy is that it allows us to set the font in the
XML, so we can have different fonts in the same view and there is no need to set
the typeface programmatically. We just need to add the fontPath attribute to the
widget and optionally the ignore attribute to avoid warnings of Android Studio not
detecting fontPath:

<TextView android:text="@string/hello_world" android:layout_
width="wrap_content" android:layout_height="wrap_content"
fontPath="fonts/Roboto-Bold.ttf"
tools:ignore="MissingPrefix"/>

Now that we have explained the advantages of calligraphy, we can use it in our app.
Add the following line to the dependencies in build.gradle:

compile 'uk.co.chrisjenx:calligraphy:2.1.0'

To apply a default font, add the following code to Oncreate() inside
MAApplication:

CalligraphyConfig.initDefault(new CalligraphyConfig.Builder().
setDefaultFontPath("fonts/Roboto-Regular.ttf").setFontAttrId(R.attr.
fontPath).build());

And the following to any activity where we want to display the default font:

@Override protected void attachBaseContext(Context newBase) {super.att
achBaseContext(CalligraphyContextWrapper.wrap(newBase)); }

To finish, we can find a handwriting font that we like and set it to the card's title and
description, which would look similar to the following output:

CardView and Material Design

[114]

The design support library
The design support library introduces material design components in an official
way and is compatible with all the versions of Android starting with Android 2.1.
Material design is a new design language introduced with Android Lollipop. Before
this library was released, we watched videos and considered examples of apps using
these components, but there was no official way to use it. This established a baseline
for the apps to follow; therefore, to master Android, we need to master material
design. You can compile it using the following line:

compile 'com.android.support:design:22.2.0'

This library includes a visual component as the input text with floating text, floating
action buttons, TabLayout…, and so on. However, material design is not only about
visual components; it's about movement and transitions between its elements, and
for this reason, CoordinatorLayout has been introduced.

Introducing TabLayout
The TabLayout design library allows us to have fixed or scrollable tabs with text,
icons, or a customized view. As you would remember from the first instance of this
in the book, customizing tabs wasn't very easy to do, and to change from scrolling to
fixed tabs, we needed different implementations.

Now, we want to change the color and design of the tabs to be fixed; what we have
to do first is go to activity_main.xml and add TabLayout, removing the previous
PagerTabStrip tab. Our view will look as follows:

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout
 android:layout_height="fill_parent"
 android:layout_width="fill_parent"
 android:orientation="vertical"
 xmlns:android="http://schemas.android.com/apk/res/android">
 <android.support.design.widget.TabLayout
 android:id="@+id/tab_layout"
 android:layout_width="match_parent"
 android:layout_height="50dp"/>
 <android.support.v4.view.ViewPager
 android:id="@+id/pager"
 android:layout_width="match_parent"
 android:layout_height="wrap_content">
 </android.support.v4.view.ViewPager>
</LinearLayout>

Chapter 6

[115]

When we have this, we need to add tabs to the Layout tab. There are two ways to do
this; one is to create tabs and add them manually as follows:

tabLayout.addTab(tabLayout.newTab().setText("Tab 1"));

The second way, which is how we will implement the tabs, is to set the view pager to
TabLayout. Our MainActivity.java class should look as follows:

public class MainActivity extends ActionBarActivity {

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);

 MyPagerAdapter adapter = new MyPagerAdapter(getSupportFragmentMan
ager());
 ViewPager viewPager = (ViewPager) findViewById(R.id.pager);
 viewPager.setAdapter(adapter);

 TabLayout tabLayout = (TabLayout) findViewById(R.id.tab_layout);

 tabLayout.setupWithViewPager(viewPager);
 }

 @Override
 protected void attachBaseContext(Context newBase) {
 super.attachBaseContext(CalligraphyContextWrapper.wrap(newBase));
 }

}

If we don't specify any color, TabLayout uses the default color from the theme, and
the position of the tabs is fixed. Our new tab bar will look as follows:

CardView and Material Design

[116]

Toolbar, action bar, and app bar
Before proceeding to add motion and animations to our app, we need to clarify the
concepts of toolbar, action bar, app bar, and AppBarLayout as these may cause a bit
of confusion.

The action and app bar are the same component; "app bar" is just a new name that
the action bar has acquired in material design. This is the opaque bar fixed at the
top of our activity that usually shows the title of the app, navigation options, and
displays different actions. The icon will or won't be displayed depending on the
theme:

Since Android 3.0, the Holo theme or any of its descendants is used by default, and
these show the action bar.

Let's move on to the next concept—toolbar. Introduced in API 21, Android Lollipop,
it is a generalization of the action bar that doesn't need to be fixed at the top of the
activity. We can specify whether a toolbar is acting as the activity action bar with the
setActionBar() method. This means that a toolbar will or won't act as an action bar
depending on what we want.

If we create a toolbar and set it as an action bar, we must use a theme with the
.NoActionBar option to avoid having a duplicated action bar with the one that
comes by default in a theme and the toolbar that we just converted into the action
bar.

A new element called AppBarLayout has been introduced in the design support
library. It is LinearLayout, intended to contain the toolbar to display animations
based on scrolling events. We can specify the behavior while scrolling in the children
with the app:layout_scrollFlag. AppBarLayout attribute. It is intended to be
contained in CoordinatorLayout, and the component is introduced in the design
support library as well, which we will describe in the following section.

Chapter 6

[117]

Adding motion with CoordinatorLayout
The CoordinatorLayout allows us to add motion to our app, connecting touch
events and gestures with views. We can coordinate a scroll movement with the
collapsing animation of a view, for instance. These gestures or touch events are
handled with the Coordinator.Behaviour class, and AppBarLayout already has
this private class. If we want to use this motion with a custom view, we will have to
create this behavior ourselves.

The CoordinatorLayout can be implemented in the top level of our app, so we
can combine this with the application bar or any elements inside our activity or
fragment. It also can be implemented as a container to interact with its child views.

Continuing with our app, we are going to show a full view of a job offer when we
click on a card. This will be displayed in a new activity. This activity will contain a
toolbar showing the title of the job offer and logo of the company. If the description
is long, we will need to scroll down to read it; at this moment, we want to collapse
the logo at the top as it is not relevant anymore. In the same way, while scrolling
back up, we want it to expand again. To control the collapsing of the toolbar, we will
need CollapsingToolbarLayout.

The description will be contained in NestedScrollView, which is a scroll view from
the Android v4 support library. The reason for using NestedScrollView is that this
class can propagate the scroll events to the toolbar, while ScrollView can't. Ensure
that compile 'com.android.support:support-v4:22.2.0' is up to date.

We will see how to download images in the next chapter, so for now, we can just
place an image from the drawable folder to implement the CoordinatorLayout
functionality. In the next chapter, we will load the corresponding image for every
company offering a job.

Our offer detail view, activity_offer_detail.xml, will look as follows:

<android.support.design.widget.CoordinatorLayout
xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 android:id="@+id/main_content"
 android:layout_width="match_parent"

CardView and Material Design

[118]

 android:layout_height="match_parent">
 <android.support.design.widget.AppBarLayout
 android:id="@+id/appbar"
 android:layout_height="256dp"
 android:layout_width="match_parent">
 <android.support.design.widget.CollapsingToolbarLayout
 android:id="@+id/collapsingtoolbar"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 app:layout_scrollFlags="scroll|exitUntilCollapsed">
 <ImageView
 android:id="@+id/logo"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:scaleType="centerInside"
 android:src="@drawable/googlelogo"
 app:layout_collapseMode="parallax" />
 <android.support.v7.widget.Toolbar
 android:id="@+id/toolbar"
 android:layout_height="?attr/actionBarSize"
 android:layout_width="match_parent"
 app:layout_collapseMode="pin"/>
 </android.support.design.widget.CollapsingToolbarLayout>
 </android.support.design.widget.AppBarLayout>
 <android.support.v4.widget.NestedScrollView
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:paddingLeft="20dp"
 android:paddingRight="20dp"
 app:layout_behavior="@string/appbar_scrolling_view_behavior">
 <TextView
 android:id="@+id/rowJobOfferDesc"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:text="Long scrollabe text"
 android:textColor="#999"
 android:textSize="18sp"
 />
 </android.support.v4.widget.NestedScrollView>
</android.support.design.widget.CoordinatorLayout>

Chapter 6

[119]

As you can see, the CollapsingToolbar layout reacts to the scroll flag and tells
its children how to react. The toolbar will be pinned at the top, always staying
visible, app:layout_collapseMode="pin". However, the logo disappears with
a parallax effect, app:layout_collapseMode="parallax". Don't forget to add
to the NestedScrollview attribute, app:layout_behavior="@string/appbar_
scrolling_view_behavior", and clean the project to generate this string resource
internally. If you have problems, you can set the string directly, "android.support.
design.widget.AppBarLayout$ScrollingViewBehavior", and this will help you
identify the issue.

When we click on a job offer, we need to navigate to OfferDetailActivity, and we
need to send the information of the offer. As you probably know from the beginner
level, to send information between activities, we use intents. In these intents, we can
put data or serialized objects. To be able to send an object of the JobOffer type, we
have to create a JobOffer class that implements Serializable. Once we do this, we
can detect the click on the element in JobOffersAdapter, as follows:

public class MyViewHolder extends RecyclerView.ViewHolder implements
View.OnClickListener, View.OnLongClickListener{

 public TextView textViewName;
 public TextView textViewDescription;

 public MyViewHolder(View v){
 super(v);
 textViewName = (TextView)v.findViewById(R.id.rowJobOfferTitle);
 textViewDescription = (TextView)v.findViewById(R.
id.rowJobOfferDesc);
 v.setOnClickListener(this);
 v.setOnLongClickListener(this);
 }

 @Override
 public void onClick(View view) {
 Intent intent = new Intent(view.getContext(), OfferDetailActivity.
class);
 JobOffer selectedJobOffer = mOfferList.get(getPosition());
 intent.putExtra("job_title", selectedJobOffer.getTitle());
 intent.putExtra("job_description",selectedJobOffer.
getDescription());
 view.getContext().startActivity(intent);
 }

CardView and Material Design

[120]

Once we start the activity, we need to retrieve the title and set it to the toolbar. Add a
long text to the TextView description inside NestedScrollView to test with dummy
data first. We want to be able to scroll to test the animation:

public class OfferDetailActivity extends AppCompatActivity {

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_offer_detail);

 String job_title = getIntent().getStringExtra("job_title");

 CollapsingToolbarLayout collapsingToolbar =
 (CollapsingToolbarLayout) findViewById(R.id.collapsingtoolbar);
 collapsingToolbar.setTitle(job_title);

 }

}

Finally, ensure that your styles.xml file in the folder values uses a theme with no
action bar by default:

<resources>

 <!-- Base application theme. -->
 <style name="AppTheme" parent="Theme.AppCompat.Light.NoActionBar">
 <!-- Customize your theme here. -->
</style>

</resources>

We are now ready to test the behavior. Launch the app and scroll down. Take a look
at how the image collapses and the toolbar is pinned at the top. It will look similar to
the following screenshot:

Chapter 6

[121]

We are missing an attribute to achieve a nice effect in the animation. Just collapsing
the image doesn't collapse it enough; we need to make the image disappear in a
smooth way, replaced by the background color of the toolbar.

Add the contentScrim attribute to CollapsingToolbarLayout, and this will fade in
the image as it collapses using the primary color of the theme, which is the same as
the one used by the toolbar at the moment:

<android.support.design.widget.CollapsingToolbarLayout
 android:id="@+id/collapsingtoolbar"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 app:layout_scrollFlags="scroll|exitUntilCollapsed"
 app:contentScrim="?attr/colorPrimary">

With this attribute, the app looks better when collapsed and expanded:

CardView and Material Design

[122]

We just need to style the app a bit more by changing colors and adding padding to
the image; we can change the colors of the theme in styles.xml:

<resources>
 <!-- Base application theme. -->
 <style name="AppTheme" parent="Theme.AppCompat.Light.NoActionBar">
 <item name="colorPrimary">#8bc34a</item>
 <item name="colorPrimaryDark">#33691e</item>
 <item name="colorAccent">#FF4081</item>
 </style>
</resources>

Resize AppBarLayout to 190dp and add 50dp paddingLeft and paddingRight to
ImageView to achieve the following result:

Back navigation and up navigation
There are two ways of navigating to the previous screen. The one called back
navigation is the navigation performed with the back button, which can be a
hardware or software button depending on the device.

The Up navigation is a navigation method introduced with the action bar in Android
3.0; here, we can go back to the previous screen using an arrow pointing left, which
is displayed in the action bar, as shown in the image to the right in the following
screenshot:

Chapter 6

[123]

On some occasions we need to override the functionality of the back navigation. For
instance, if we have a custom WebView and we navigate through a browser, when we
click on back, the back button will cause us to leave the activity by default; however,
what we want is to go back in the history of the browser's usage:

@Override
public void onBackPressed() {
 if (mWebView.canGoBack()) {
 mWebView.goBack();
 return;
 }

 // Otherwise defer to system default behavior.
 super.onBackPressed();
}

Apart from this, the back navigation is implemented by default, unlike the
Up navigation. To implement the Up navigation, we need an action bar (or a
toolbar acting as an action bar), and we need to activate this navigation with the
setDisplayHomeAsUpEnabled(true) method. Inside onCreate in our activity, we
will add the following lines to set our toolbar as an action bar and to activate the Up
navigation:

final Toolbar toolbar = (Toolbar) findViewById(R.id.toolbar);
setSupportActionBar(toolbar);
getSupportActionBar().setDisplayHomeAsUpEnabled(true);

This will display the back arrow at the top of our activity, as shown in the following
screenshot. But at the moment, we won't have any functionality:

Once this is activated, we need to capture the click in the back arrow of the action
bar. This will be detected as an action selection in the menu with the android.R.id.
home ID; we just need to add the following code to our activity:

@Override
public boolean onOptionsItemSelected(MenuItem item) {
 switch (item.getItemId()) {
 case android.R.id.home:
 finish();
 return true;
 }
 return super.onOptionsItemSelected(item);
}

CardView and Material Design

[124]

Summary
Our application has drastically changed in this chapter; we changed the job offer
list completely and it now looks similar to a nice list of handwritten paper cards
pinned onto a corkboard. At the same time, you learned concepts from material
design and how to work with the application bar and the toolbar. There are more
widgets in the design support library, such as InputText or FloatingButton, that
are very easy to implement. It is as easy as adding a widget to a view, which is
why we focused on the more difficult components such as CoordinatorLayout or
CollapsingToolbarLayout.

In the next chapter, we will see how to download the logo of the company, advertise
the job directly from a URL, talk about memory management, and take a look at how
to make sure we don't have memory leaks in our app.

[125]

Image Handling and Memory
Management

In this chapter, we will take a look at how to show images downloaded from a
URL. We will discuss how to do this using the Android native SDK as well as the
commonly used third-party libraries. We will consider key concepts and features
such as download, compression, cache systems, and storage in memory or disk.

We will also discuss what a nine patch is and how to create it, and we will speak
about the different size and density folder for drawables by introducing vector
drawables.

The final section will be focused on memory management. Identifying memory leaks
in our app is a critical task, which usually happens while working with images.
We will take a look at the common mistakes that can lead to these leaks as well as
general tips on how to prevent them.

• Displaying images from the network
 ° The traditional way
 ° Volley ImageDownloader
 ° Picasso

• Images
 ° Vector drawables
 ° Animated vector drawables
 ° Nine patch

Image Handling and Memory Management

[126]

• Memory management
 ° Detecting and locating leaks

• Preventing leaks

Downloading images
Downloading an image and displaying it with the help of ImageView can be done
in a single line. Since Android development started, this is something that every
developer has done. Android is a technology that is more than five years old, so
we can expect this technique to be quite advanced and to find-third party solutions
that facilitate it. That said, this book wouldn't be called Mastering Android if it didn't
explain the process of downloading an image and displaying it without any third-
party library.

It is good to use the latest library in your apps, but it is better to understand the
solution that you are implementing, and it is even better to be able to build this
library yourself.

While working with images, we need to handle everything from network connection
to the downloading of array bytes and their conversion to Bitmap. On some
occasions, it makes sense to store the images on a disk so that the next time we open
the app, these images will already be there.

Even if we are able to display an image, the matter doesn't finish here; we should
be able to manage the downloading of images inside a list view. The downloading,
storing, and displaying of systems need to be in sync for the app to work without
glitches and have a fluent list that can scroll without problems. Keep in mind that
when we scroll through a list, the views are recycled. This means that if we scroll
fast, we might start the downloading of an image. By the time this download
finishes, the view will not be visible on the screen anymore, or it will be recycled in
another view.

The traditional way of downloading images
To display an image without using any third-party libraries (an image hosted on the
Internet with a URL), we need to establish a connection using HttpURLConnection.
We would need to open an input stream and consume the information, which can
be transformed into a Bitmap image with the factory method, BitmpapFactory.
decodeStream(InputStream istream). We could convert it from an input stream
to a file so that the image could be stored in the disk and accessed later. For the
moment, let's try to download it first and convert it into a Bitmap image, which we
will keep in the memory and show in ImageView.

Chapter 7

[127]

We will show the logo of the company in OfferDetailActivity for every offer.
Remember that in Parse, we created a database, and with it we created a field called
imageLink. You just need to fill that field with the URL of the logo of that company.

We need to have the image link in OfferDetailActivity; for this, we need to send
an extra parameter in the intent in JobOfferAdapter for when we tap on a card. Use
the following code:

@Override
public void onClick(View view) {
 Intent intent = new Intent(view.getContext(), OfferDetailActivity.
class);
 JobOffer offer = mOfferList.get(getPosition());
 intent.putExtra("job_title", offer.getTitle());
 intent.putExtra("job_description",offer.getDescription());
 intent.putExtra("job_image",offer.getImageLink());
 view.getContext().startActivity(intent);
}

The method in charge of the image download will be a static method that can be
called from anywhere in the app. This method will be placed in the ImageUtils class
inside a package called utils. We will first check whether the URL is correct, and
after this, we will consume the content from HttpURLConnection, converting the
input stream into a Bitmap image as we explained before:

public static Bitmap getImage(String urlString) {

 URL url = null;

 try {
 url = new URL(urlString);
 } catch (MalformedURLException e) {

Image Handling and Memory Management

[128]

 return null;
 }

 HttpURLConnection connection = null;
 try {
 connection = (HttpURLConnection) url.openConnection();
 connection.connect();
 int responseCode = connection.getResponseCode();
 if (responseCode == 200) {
 return BitmapFactory.decodeStream(connection.getInputStream());
 } else
 return null;
 } catch (Exception e) {
 return null;
 } finally {
 if (connection != null) {
 connection.disconnect();
 }
 }
}

We will create a method called displayImageFromUrl() that receives ImageView
and a string with the link to do all the work instead of having all this logic inside
onCreate. In onCreate, we just need to retrieve the parameters and call the method:

String imageLink = getIntent().getStringExtra("job_image");
ImageView imageViewLogo = (ImageView) findViewById(R.id.logo);

displayImageFromUrl(imageViewLogo,imageLink);

At this stage, we can be tempted to call ImageUtils.getImage(link) and set
Bitmap to ImageView. However, we are missing one thing; we can't just call the
method that opens a network connection in the main activity thread. We need to do
this in the background, or we would get an exception. An AsyncTask method is a
nice solution to this problem:

String imageLink = getIntent().getStringExtra("job_image");
ImageView imageViewLogo = (ImageView) findViewById(R.id.logo);

displayImageFromUrl(imageViewLogo,imageLink);

Chapter 7

[129]

public void displayImageFromUrl(ImageView imageView, String link){

 new AsyncTask<Object,Void,Bitmap>(){

 ImageView imageView;
 String link;

 @Override
 protected Bitmap doInBackground(Object... params) {
 imageView = (ImageView) params[0];
 link = (String) params[1];

 return ImageUtils.getImage(link);
 }

 @Override
 protected void onPostExecute(Bitmap bitmap) {
 super.onPostExecute(bitmap);
 imageView.setImageBitmap(bitmap);
 }

 }.execute(imageView, link);
}

Depending on the shape and background of the images used, it will look better
with the ImageView attribute, scaleType, with the centerInside or centerCrop
value. The CenterInside value will scale down the image to ensure that it fits in
the recipient while keeping the proportions. The CenterCrop value will scale up the
image until it fills the smallest side of the recipient. The rest of the image will go out
of the bounds of ImageView.

At the beginning of the chapter, I mentioned that this could have been done just
with a single line of code, but as you can see, doing it by ourselves takes much
more than one line and involves different concepts such as background threading,
HttpURLConnection, and so on. This is just the beginning; we implemented the
simplest possible scenario. If we were setting the image in the same way in the rows
of a list view, we would have problems. One of these problems would be firing
infinite AsyncTask calls while scrolling. This could be controlled if we had a queue
with a maximum number of AsyncTask and a cancellation mechanism to ignore or
cancel the requests of the views that are not on the screen.

Image Handling and Memory Management

[130]

When we launch the AsyncTask, we have a reference to ImageView, and in
PostExecute, we set Bitmap to it. This downloading operation can take some
time so that ImageView can be recycled while scrolling. This means that we are
downloading an image for ImageView that is recycled in a different position on the
list to display a different element. For instance, if we had a list of contacts with their
faces, we would see the faces of people with the wrong names. To solve this, what
we can do is set the String with the image link to ImageView as a tag, myImageView.
setTag(link). If the view is recycled, it will have a different item with a new link;
therefore, we can check in onPostExecute, just before displaying the image, whether
the link that we have now is the same as the one in the ImageView tag.

These are two common problems and their respective solutions, but we haven't
finished here. The most tedious thing, if we continue down this road, is to create a
cache system. Depending on the application and on the situation, we might want to
permanently store a downloaded image. For instance, if we were creating a music
app with a list of your favorite albums, it would make sense to store the cover of an
album in the disk. If you are going to see the list of favorites every time you open
the app and we know that the cover is not going to change, why not store the image
permanently so that the next time we open the app, it loads much quicker and
doesn't consume any data? For the user, it would mean seeing the first screen loaded
instantly all the time and be a huge improvement to the user's experience. To do this,
we need to download the image on a file and have a third method to read the image
from the file later, including the logic to check whether we already have this image
downloaded or it's the first time that we have asked for it.

Another example can be a newsfeed reader app. We know that the images are
going to change almost every day, so there is no point in keeping them on the disk.
However, we might still want to keep them in memory while navigating through
the app not to download them again in the same session while coming back to an
activity from another. In this case, we need to keep an eye on the memory usage.

It's time to introduce some third-party libraries to help us with this topic. We can
start with Volley, the same Volley that we implemented for network requests.

Chapter 7

[131]

Downloading images with Volley
Volley offers two mechanisms to request images. The first mechanism,
ImageRequest, is very similar to what we have just done with an AsyncTask using
Volley's request queue and resizing the image on demand. This is the constructor for
a request:

public ImageRequest(String url, Response.Listener<Bitmap> listener,
int maxWidth, int maxHeight, Config decodeConfig, Response.
ErrorListener errorListener) { … }

The maxWidth and maxHeight params will be used to resize the image; if we don't
want to resize, we can set the value to 0. This is a method in our example used to
fetch the image:

public void displayImageWithVolley(final ImageView imageView, String
url){

 ImageRequest request = new ImageRequest(url,
 new Response.Listener<Bitmap>() {
 @Override
 public void onResponse(Bitmap bitmap) {
 imageView.setImageBitmap(bitmap);
 }
 }, 0, 0, null,
 new Response.ErrorListener() {
 public void onErrorResponse(VolleyError error) {

 }
 });

 MAApplication.getInstance().getRequestQueue().add(request);
}

The second mechanism, the really interesting one, is ImageLoader. It handles
multiple requests at the same time and is the mechanism to use in a list view for the
reasons we explained in the previous section. We can create the cache mechanism
that we want it to use—memory or disk.

Image Handling and Memory Management

[132]

It works using a special type of ImageView: NetworkImageView. When the
ImageLoader object is ready, we can simply download an image with one line using
NetworkImageView:

myNetworkImageView.setImage(urlString, imageloader);

It allows us to perform different operations such as setting a default image or setting
an image in case the request fails. Use the following code:

myNetworkImageView.sesetDefaultImageResId(R.id.default_image);
myNetworkImageView.setErroImageResId(R.id.image_not_found);

The complexity here, if there is any, comes when we implement ImageLoader.
First, we need to create it in the same way that we did with RequestQueue in the
Application class so that it can be accessed from anywhere in our app:

@Override
public void onCreate() {
 super.onCreate();

 sInstance = this;

 mRequestQueue = Volley.newRequestQueue(this);

 mImageLoader = new ImageLoader(mRequestQueue, new myImageCache());

The constructor needs a cache implementation. Google is an example of a memory-
based cache whose size is equal to three screens worth of images:

public class LruBitmapCache extends LruCache<String, Bitmap>
implements ImageCache {

 public LruBitmapCache(int maxSize) {
 super(maxSize);
 }

 public LruBitmapCache(Context ctx) {
 this(getCacheSize(ctx));
 }

 @Override
 protected int sizeOf(String key, Bitmap value) {
 return value.getRowBytes() * value.getHeight();
 }

Chapter 7

[133]

 @Override
 public Bitmap getBitmap(String url) {
 return get(url);
 }

 @Override
 public void putBitmap(String url, Bitmap bitmap) {
 put(url, bitmap);
 }

 // Returns a cache size equal to approximately three screens worth
of images.
 public static int getCacheSize(Context ctx) {
 final DisplayMetrics displayMetrics = ctx.getResources().
 getDisplayMetrics();
 final int screenWidth = displayMetrics.widthPixels;
 final int screenHeight = displayMetrics.heightPixels;
 // 4 bytes per pixel
 final int screenBytes = screenWidth * screenHeight * 4;

 return screenBytes * 3;
 }
}

We can see that choosing between cache implementations is a manual process; we
have to create the class with the implementation required and set it in the constructor
of ImageLoader. That is why, the next library that we are going to see was a
revolution when it came out.

Introducing Picasso
The same people that created OkHttp brought Picasso to the Android community.
Picasso allows us to download and display an image in one line of code without
creating an ImageLoader and with a cache implementation that automatically works
using disk and memory. It includes image transformation, ImageView recycling, and
request cancellations. All of this is free. It is unbelievable what the people at Square
are bringing to the community.

Image Handling and Memory Management

[134]

If this is not enough, the debug mode will display indicators in the images, a small
triangle in the corner with different colors to indicate when we download an image
for the first time (which is when it comes from the network), when it comes from the
memory cache, and when it comes from the disk cache:

Mastering images
There are two concepts that we must cover in this book before finishing this chapter
about images. As you know, the images can be placed in multiple folders depending
on the density of the screen—from low-density drawable-ldpi to high-density
drawable-hdpi, extra extra-extra high-density drawable-xxxhdpi, and possibly
more in the future. When we do this, we need to consider whether we want top
quality images in all screens or a light APK. Replicating images will increase the
size of our installer. This problem will disappear with the following component
introduced in Android 5.0.

Vector drawables
These drawables are based on vector graphics; vector graphics can be scaled up and
scaled down without losing any quality. With this, we just need a single drawable,
and it will have excellent quality no matter the screen we use for it, be it an Android
watch or an Android TV.

Chapter 7

[135]

Vector drawables are defined in the same way that we define a shape—in an XML
file. This is a simple vectordrawable.xml file:

<vector xmlns:android="http://schemas.android.com/apk/
res/android" android:height="64dp" android:width="64dp"
android:viewportHeight="600" android:viewportWidth="600">
 <group>
 <path android:fillColor="@color/black_primary"
android:pathData="M12 36l17-12-17-12v24zm20-24v24h4V12h-4z" />
 </group>
</vector>

Note that the vector tag has a height and a width; if we set this drawable in
ImageView and the size is smaller than the container, it will look pixelated.

You may be asking yourself, where do we get the pathData attribute from? You
will probably have a .svg image, a format for scalable graphics. This image can be
opened with a text editor, and you should be able to see something similar to the
path data here:

<svg xmlns="http://www.w3.org/2000/svg" width="48" height="48"
viewBox="0 0 48 48">
 <path d="M12 36l17-12-17-12v24zm20-24v24h4V12h-4z"/>
</svg>

Google provides a pack of material design icons, and these icons come with an SVG
version; with this, you can start adding infinite scalable images to your app. The path
that we displayed is a media player icon from this pack of icons.

Vector drawable will be added to the design support libraries, so it will be possible
to use it with the previous versions of Android, not only 5.0.

The next component might not be included in the design support library, so we will
have to consider if we want to use it or not, depending on how extensive version 5.0
and above is. In any case, it's worth explaining it because sooner or later, it will be
seen more due to its amazing results.

Image Handling and Memory Management

[136]

Animating with AnimatedVectorDrawable
As the name suggests, AnimatedVectorDrawable is a vector drawable with
animations, and it is an important feature. These animations are not only rotation,
scale, alpha, and so on, which are the ones we have seen previously in Android;
these animations also allow us to transform the pathData attribute of the drawable.
This means that we can have an image that changes shape or one that converts into
another image.

This brings an infinite number of UI possibilities. For instance, we could have a play
button converted into a semicircle that keeps spinning as a progress bar or a play
button that transforms into a pause button.

We can define traditional animations, such a rotation, as follows:

<objectAnimator
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:duration="6000"
 android:propertyName="rotation"
 android:valueFrom="0"
 android:valueTo="360" />

Here's how we can define the shape transformation from a triangle to a rectangle:

<set
 xmlns:android="http://schemas.android.com/apk/res/android">
 <objectAnimator
 android:duration="3000"
 android:propertyName="pathData"
 android:valueFrom="M300,70 l 0,-70 70,70 0,0 -70,70z"
 android:valueTo="M300,70 l 0,-70 70,0 0,140 -70,0 z"
 android:valueType="pathType"/>
</set>

To combine them together in an AnimatedVectorDrawable object, execute the
following code:

<animated-vector
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:drawable="@drawable/vectordrawable" >
 <target
 android:name="rotationGroup"

Chapter 7

[137]

 android:animation="@anim/rotation" />
 <target
 android:name="v"
 android:animation="@anim/path_morph" />
</animated-vector>

This is restricted to the paths with the same length and the same length of
commands.

Working with the nine patch
Before explaining what a nine patch is, I will show you when it's needed. If we were
doing a messaging application and we had to display what a user writes inside
a chat bubble, we could think about creating TextView and setting an image of a
message bubble as a background. If the message is very long, this is what happens
without and with a nine patch background respectively.

We can see that the first image is stretched, and it looks bad; however, we don't want
to stretch the borders. What we want is to keep the borders the same but make the
text area taller or wider depending on the message.

A nine patch image is an image that can be resized based on its content, but it
involves leaving some areas without any stretching. It can be created from an image
in a PNG file. Basically, it's the same PNG file with one pixel extra on every side
and saved with the extension, .9.png. When we place this in the drawable folder,
Android will know that in the extra pixel, there is information to know which areas
to stretch and which ones to not.

Image Handling and Memory Management

[138]

If you look at the image, you will see that the extra pixel lines to the left and to the
top are used to specify which content is scalable, and the lines to the bottom and
to the right are used to specify which space can be filled. We want to fill the box
completely, but we only want to scale a certain part to the left.

Android provides a tool to create these nine patch images, and you can find them in
your SDK folder under tools. Just open draw9patch and drag an image into it.

Chapter 7

[139]

Memory management
Every Java developer has heard of the garbage collector (GC); this is a mechanism
that automatically frees the resources in memory for us. On some occasions, we can
prevent the garbage collector from freeing some resources; if the resources keep
growing, we will inevitably see OutOfMemoryError.

If this happens, we need to locate the leak and then stop it. In this section, we will
take a look at how to locate the source of the problem and a series of good practices
to prevent this from happening.

This is not something to look into only when an error has occurred; our app might
have leaks, not big enough to be detected with a quick test, that can lead to an error
in a device with a smaller memory heap. Therefore, it's good to do a quick check on
the memory levels before releasing an app.

Detecting and locating leaks
Android Studio provides a quick way to check the memory status. At the bottom
window, you will find a tab called Memory next to logcat and the ADB logs.

If you click on the small truck icon, which we call the garbage collector, you will see
how the free memory increases.

Image Handling and Memory Management

[140]

Don't take this as a reference to the free memory because the heap is dynamic. This
means that the heap can be 64 MB at first; we have 60 MB allocated and 4 MB free,
but we allocate 10 MB more. The heap can grow higher, and we will end up having a
128 MB heap, with 70MB allocated and 58 MB free.

To detect a leak, we need to take the reference of the memory allocated. Click on the
garbage collector constantly and navigate through the app, open and close activities,
load images, scroll the lists, and perform these actions multiple times. If the allocated
memory keeps growing and never goes down, it means that we are leaking memory
and preventing some resources from being collected. We can roughly locate in which
activity or fragment the leak is happening as we will see the increase always at the
same point (assuming we don't have more than one leak).

To locate the source more precisely, we need to use Android Device Monitor:

Select your app process and click on Update Heap:

Chapter 7

[141]

Once this is selected, we can see the allocations of the objects; this will be a good lead
in case of bitmap or thread leaks:

If we still have no clear idea of what is leaking the memory, we can click on the
Dum HPROF file button and open this file with MAT, a memory analyzer tool from
Eclipse. We will have to download Eclipse for this.

When we import the file, we can double-click in our process and click on List
Objects, which will identify what is happening. For instance, we can see how many
objects we have in an activity and how much heap is being used:

Image Handling and Memory Management

[142]

Preventing leaks
Better than fixing a memory leak is to not have it in the first place. If, during
development, we keep in mind the most common causes of leaks, this will save us
problems in the future.

Activity and context references
Activity references are one of the main causes of this problem. It's very common
to send a reference of our activity to a download listener or to an event listener. If
a reference to our activity is held in another object, this will prevent the garbage
collector from freeing our activity. For instance, if we change the orientation, our
activity will be created again by default, and the old activity with the old orientation
will be destroyed.

Remember to unsubscribe from the listeners in the onDestroy method of our
Activity and keep an eye on the objects where you send the Context; this is a strong
reference to our Activity.

Using WeakReference
By default, when we create an object in Java, it is created with a hard reference.
Objects different from null with hard references won't be garbage collected.

An object that contains only weak references will be garbage collected in the next
cycle. The same object can have more than one reference; therefore, if we need to
use an object temporarily, we can create a weak reference to it, and when the hard
references are removed, it will be garbage collected.

This is a real-world example included in the Facebook SDK source code. They create
a custom popup called ToolTipPopup, which looks similar to the following image:

Chapter 7

[143]

This popup needs an anchor view, and this anchor view is referenced with a weak
reference:

private final WeakReference<View> mAnchorViewRef;

The reason behind this is that by the time the popup is shown, we don't need the
anchor view anymore. Once the popup is displayed, the anchor view can be set to
null or made to disappear, and it won't affect us. Therefore, with a weak reference,
if the original anchor view is destroyed and loses its hard references, it will also free
the weak referenced object in the ToolTipPopup class.

Summary
In this chapter, you learned how to download an image without any help from third-
party libraries in order to understand their usage. An overview of Volley and Picasso
leaves us ready to implement any app with perfect handling. We also spent some
time with images that are added into our app, such as vector drawables and nine
patch images. To finish the chapter, we saw how to manage memory problems in our
app, and more importantly, how to prevent them.

In the next chapter, we will create an SQLite database. We will export this database
through a content provider and sync the UI data with this content provider through
CursorLoader.

[145]

Databases and Loaders
In this chapter, we will create a SQLite database following a database contract and
perform read/write operations using a database called DAO (Data Access Object).
We will also explain the difference between a query and a raw query.

You will learn what a content provider is and how to create it, which will allow us
to make this database accessible from CursorLoader. We will access the content
provider through a content resolver and query different tables of the database at the
same time, and you will learn how to use a join query in a content provider.

With CursorLoader, we'll be able to synchronize a list view with a database by
creating a mechanism, where if we store or modify any data in the database, the
changes will automatically be reflected in our view.

To finish, we will add the popular feature pull to refresh in order to update the
content on demand. So, in this chapter, the following topics will be covered:

• Creating the database
 ° Database Contract
 ° Database Open Helper
 ° Database Access Object

• Creating and accessing content providers
 ° Content Provider
 ° Content Resolver

• Syncing the database with UI
 ° CursorLoader
 ° RecyclerView and CursorAdapter

• Pull to refresh

Databases and Loaders

[146]

Creating the database
To understand how databases work in Android, we will continue working on our
example app, MasteringAndroidApp, creating a database to store the job offers that
will be used to see the content in offline mode. This means that if we open the app
once, the job offers will be kept in the device allowing us to see the information if
opened without an Internet connection.

There are four mechanisms to persist data in Android:

• Shared preferences: These preferences are used to store basic information in
a key-value structure

• The internal storage: This storage saves files that are private to your app
• The external storage: This storage saves files which can be shared with other

apps
• The SQLite database: This database, based on the popular SQL, allows us to

write and read information in a structured way

We can create simple structures, such as one-table databases, as well as complex
structures with more than one table. We can combine the output of different tables to
create complex queries.

We will create two tables so as to show how to create a join query using the content
provider.

There will be a table for the companies, with the company ID, some information
about them, name, website, extra information, and so on. A second table will include
the job offers; this will also need to contain a column with the companies' IDs. If we
want to have a tidy structure rather than having a big table with numerous fields, it's
preferable to have the company information in the company table and the job offer in
the job table, with just a reference to the company.

We won't alter the data structure in Parse for the sake of clarity and in order to focus
on SQLite. Therefore, we will download the content and manually split the company
and the job offer data, inserting them into separate tables.

Our company table will have the following structure:

RowId Name Image_link
0 Yahoo ….
1 Google …

Chapter 8

[147]

The rowId column is automatically added by Android, so we don't need to specify
this column during the creation of the table.

The following table is the table of job offers:

RowId Title Description Salary Location Type Company_id
24 Senior

Android..
2x developers 55.000 London,UK permanent 1

25 Junior
Android..

Dev with
experience
on..

20.000 London,UK permanent 0

We will create a view as a result of joining these two tables; here, the join will be
based on the company_id:

Title Description Salary Location Type Company
ID

Name Image_link

Senior
Android

2x
developers..

55.000 London,UK permanent 1 Google …

Junior
Android

Dev with
experience
on..

20.000 London,UK permanent 0 Yahoo …

This view will allow us to obtain all the data that we need in a single row.

The database contract
The database contract is a class where we define the name of our database and the
name for all the tables and columns as constants.

It serves two purposes: firstly, it is a good way to have an idea of the structure of the
database at first sight.

To create a database package and the DatabaseContract.java class, use the
following code:

public class DatabaseContract {

 public static final String DB_NAME = "mastering_android_app.db";

 public abstract class JobOfferTable {

Databases and Loaders

[148]

 public static final String TABLE_NAME = "job_offer_table";

 public static final String TITLE = "title";
 public static final String DESC = "description";
 public static final String TYPE = "type";
 public static final String SALARY = "salary";
 public static final String LOCATION = "location";
 public static final String COMPANY_ID = "company_id";
 }

 public abstract class CompanyTable {

 public static final String TABLE_NAME = "company_table";

 public static final String NAME = "name";
 public static final String IMAGE_LINK = "image_link";
 }
}

Secondly, using a reference to the constant avoids mistakes and allows us to make
only one change in the value of a constant and propagate this over our entire app.

For instance, while creating this table in the database, we need to use the SQL
sentence, CREATE TABLE "name"…; what we will do is use the name of the table from
the contract with CREATE TABLE DatabaseContract.CompanyTable.TABLE_NAME….

The database contract is just the first step. It doesn't create a database; it's just
a file that we use as a schema. To create the database, we need the help of
SQLiteOpenHelper.

The database open helper
The open helper is a class that manages the creation and updating of the database.
Updating is an important aspect that we need to keep in mind. Consider that we
upload an app to Play Store, and after some time, we want to change the structure
of the database. For instance, we want to add a column to a table without losing the
data that the users of previous versions have stored in the old schema. Uploading
a new version to Play Store, which deletes the previous information when the user
updates our app, is not good for user experience at all.

Chapter 8

[149]

To know when a database needs to be updated, we have a static integer with the
database version that we have to manually increase if we alter the database, as
follows:

/**
* DATABASE VERSION
*/
private static final int DATABASE_VERSION = 1;

We need to create a DatabaseOpenHelper class that extends SQLiteOpenHelper.
While extending this class, we are asked to implement two methods:

@Override
public void onCreate(SQLiteDatabase db) {
 //Create database here
}

@Override
public void onUpgrade(SQLiteDatabase db, int oldVersion, int
newVersion) {
 //Update database here
}

SQLiteOpenHelper will automatically call onCreate when we create an object of
this class. However, it will only call this if the database is not created before and only
once. In the same way, it will call onUpgrade when we increase the database version.
That's why we need to send the params with the database name and the current
version when we create an object of this class:

public DBOpenHelper(Context context){
 super(context, DatabaseContract.DB_NAME, null, DATABASE_VERSION);
}

Let's start with the creation of the database; the onCreate method needs to execute a
SQL sentence on the database to create the table:

db.execSQL(CREATE_JOB_OFFER_TABLE);
db.execSQL(CREATE_COMPANY_TABLE);

Databases and Loaders

[150]

We will define these sentences in static variables, as follows:

/**
* SQL CREATE TABLE JOB OFFER sentence
*/
private static final String CREATE_JOB_OFFER_TABLE = "CREATE TABLE "
+ DatabaseContract.JobOfferTable.TABLE_NAME + " ("
+ DatabaseContract.JobOfferTable.TITLE + TEXT_TYPE + COMMA
+ DatabaseContract.JobOfferTable.DESC + TEXT_TYPE + COMMA
+ DatabaseContract.JobOfferTable.TYPE + TEXT_TYPE + COMMA
+ DatabaseContract.JobOfferTable.SALARY + TEXT_TYPE + COMMA
+ DatabaseContract.JobOfferTable.LOCATION + TEXT_TYPE + COMMA
+ DatabaseContract.JobOfferTable.COMPANY_ID + INTEGER_TYPE + ")";

By default, Android creates a column_id column, which is unique and
autoincremental in every row; therefore, we don't need to create a column ID in the
companies table.

As you can see, we also have the commas and types in the variable to avoid
mistakes. It's very common to miss a comma or make a mistake when writing the
sentence directly, and it's very time consuming to find the error:

/**
* TABLE STRINGS
*/
private static final String TEXT_TYPE = " TEXT";
private static final String INTEGER_TYPE = " INTEGER";
private static final String COMMA = ", ";

We've seen how to create our tables, now we have to manage the update. In this case,
we will simply drop the previous information and create the database again because
there is no important information in the table. Once the app is opened after the
update, it will download the job offers again and populate the new database:

@Override
public void onUpgrade(SQLiteDatabase db, int oldVersion, int
newVersion) {
 db.execSQL(DROP_JOB_OFFER_TABLE);
 db.execSQL(DROP_COMPANY_TABLE);
 onCreate(db);
}

/**
* SQL DELETE TABLE SENTENCES
*/

Chapter 8

[151]

public static final String DROP_JOB_OFFER_TABLE = "DROP TABLE IF
EXISTS "+ DatabaseContract.JobOfferTable.TABLE_NAME;
public static final String DROP_COMAPNY_TABLE = "DROP TABLE IF EXISTS
"+ DatabaseContract.CompanyTable.TABLE_NAME;

Our complete version of the class will appear as the following:

public class DBOpenHelper extends SQLiteOpenHelper {

 private static final int DATABASE_VERSION = 1;

 /**
 * TABLE STRINGS
 */
 private static final String TEXT_TYPE = " TEXT";
 private static final String INTEGER_TYPE = " INTEGER";
 private static final String COMMA = ", ";

 /**
 * SQL CREATE TABLE sentences
 */
 private static final String CREATE_JOB_OFFER_TABLE = "CREATE TABLE "
 + DatabaseContract.JobOfferTable.TABLE_NAME + " ("
 + DatabaseContract.JobOfferTable.TITLE + TEXT_TYPE + COMMA
 + DatabaseContract.JobOfferTable.DESC + TEXT_TYPE + COMMA
 + DatabaseContract.JobOfferTable.TYPE + TEXT_TYPE +

 COMMA + DatabaseContract.JobOfferTable.SALARY + TEXT_TYPE +

 COMMA + DatabaseContract.JobOfferTable.LOCATION + TEXT_TYPE +

 COMMA + DatabaseContract.JobOfferTable.COMPANY_ID +

 INTEGER_TYPE + ")";

 private static final String CREATE_COMPANY_TABLE = "CREATE TABLE "
 + DatabaseContract.CompanyTable.TABLE_NAME + " ("
 + DatabaseContract.CompanyTable.NAME + TEXT_TYPE + COMMA
 + DatabaseContract.CompanyTable.IMAGE_LINK + TEXT_TYPE + ")";

 /**
 * SQL DELETE TABLE SENTENCES
 */

Databases and Loaders

[152]

 public static final String DROP_JOB_OFFER_TABLE = "DROP TABLE IF
EXISTS "+ DatabaseContract.JobOfferTable.TABLE_NAME;
 public static final String DROP_COMPANY_TABLE = "DROP TABLE IF
EXISTS "+ DatabaseContract.CompanyTable.TABLE_NAME;

 public DBOpenHelper(Context context){
 super(context, DatabaseContract.DB_NAME, null, DATABASE_VERSION);
 }

 @Override
 public void onCreate(SQLiteDatabase db) {
 db.execSQL(CREATE_JOB_OFFER_TABLE);
 db.execSQL(CREATE_COMPANY_TABLE);
 }

 @Override
 public void onUpgrade(SQLiteDatabase db, int oldVersion, int
newVersion) {
 db.execSQL(DROP_COMPANY_TABLE);
 db.execSQL(DROP_JOB_OFFER_TABLE);
 onCreate(db);
 }
}

Database Access Object
Database Access Object, commonly known as DAO, is an object that manages all
access to the database from the app. Conceptually, it's a class in the middle of the
database and our app:

Chapter 8

[153]

It's a pattern usually used in J2EE (Java 2 Enterprise Edition) on the server side. In
this, the implementation of the database can be changed and added an extra layer
of independency to, thus allowing the change in database implementation without
changing any data in the app. Even if we do not change the implementation of
the database in Android, (it will always be a SQLite database retrieved through
SQLiteOpenHelper), it still makes sense to use this pattern. From a structural point
of view, we will have all our database access operations in the same place. Also,
using a DAO as a singleton with synchronized methods prevents issues such as
trying to open the database from two different places at the same time, which can
be locked if we are writing. Of course, the possibility to retrieve this singleton from
anywhere in the app makes access to the database really easy as well.

In the next section, we'll take a look at how to create a content provider, which is an
element that can replace our DAO object; however, content providers are tedious
to implement if what we want is to just store and read data from the database. Let's
continue with MasteringAndroidApp, creating a class called MasteringAndroidDAO,
which will store the job offers and companies and show the information from the
database in order to have an offline-working app.

This class will be a singleton with two public synchronized methods: one to store job
offers (in the job offer table and the company table) and another to read them. Even
if we split the information into two tables, while reading we will merge it again so
that we can keep displaying the job offers with our current adapter without making
major changes. Through this, you will learn how to join two tables in a query.

If a method is synchronized, we guarantee that it can't be executed from two places
at the same time. Therefore, use the following code:

public class MasteringAndroidDAO {

 /**
 * Singleton pattern
 */
 private static MasteringAndroidDAO sInstane = null;

 /**
 * Get an instance of the Database Access Object
 *
 * @return instance
 */

Databases and Loaders

[154]

 public static MasteringAndroidDAO getInstance(){
 if (sInstane == null){
 sInstane = new MasteringAndroidDAO();
 }
 return sInstane;
 }

 public synchronized boolean storeOffers(Context context,
List<JobOffer> offers){
 //Store offers
 }

 public synchronized List<JobOffer> getOffersFromDB(Context context){
 //Get offers
 }

}

We will start with the storeOffers() method. The first thing that we need to do
is open the database with DatabaseOpenHelper, and after this we need to start a
transaction in the database. We will store a list of items, so it doesn't make sense to
perform a transaction for each item. It's much more efficient if we open a transaction,
perform all the insert operations that we need, and end the transaction after this,
committing all the changes in a batch:

try {
 SQLiteDatabase db = newDBOpenHelper(context).getWritableDatabase();

 db.beginTransaction();
 //insert single job offer
 db.setTransactionSuccessful();
 db.endTransaction();
 db.close();
} catch (Exception e){
 Log.d("MasteringAndroidDAO",e.toString());
 return false;
}

Don't forget to close the database at the end with db.close().
Otherwise, it will remain open and consume resources, and we will
get an exception if we try to open it again.

Chapter 8

[155]

If we only had to insert data in a single table, we would only need to create a
ContentValue object—a key-value object built based on the columns that we want
to store—and call db.insert(contentValue). However, our example is a little bit
more complicated. To store a job offer, we need to know the company ID, and to
obtain this ID, we need to ask our database if the company is already stored on it.
If it's not, we need to store it and know which ID was assigned to it because, as we
mentioned before, the ID is automatically generated and increased.

To find out if the company is already on the table, we need to perform a query
searching all the rows to see if any row matches the name of the company that we are
searching. There are two ways of performing a query: query() and rawQuery().

Performing a query
A query needs the following parameters:

• tableColumns: This is the projection. We might want to return the columns
that we want to return in the cursor in the whole table. In this case, it will be
null, equivalent to SELECT * FROM. Alternatively, we might want to return
just one column, new String[]{"column_name"}, or even a raw query.
(here, new String[]{SELECT ….}).

• whereClause: Usually, the "column_name > 5" condition is used; however,
in case the parameters are dynamic, we use "column_name > ?". The
question mark is used to specify the position of the parameters, which will
come under the following whereArgs parameters.

• whereArgs: These are the parameters inside the where clause that will
replace the question marks.

• groupBy (having, orderby, and limit): These are the rest of the params,
which can be null if not used.

In our case, this is how we will ask if a company exists on the database. It will return
a cursor with just one column, which is all we need to obtain the ID:

Cursor cursorCompany = db.query(DatabaseContract.CompanyTable.TABLE_
NAME,
 new String[]{"rowid"},
 DatabaseContract.CompanyTable.NAME +" LIKE ?",
 new String[]{offer.getCompany()},
 null,null,null);

The benefit of using QueryBuilder instead of rawQuery is the protection against SQL
injections. At the same time, it's less prone to error. Performance-wise, it does not
have any advantage as it creates rawQuery internally.

Databases and Loaders

[156]

Using a raw query
A raw query is just a string with the SQL query. In our example, it would be as
follows:

String queryString = "SELECT rowid FROM company_table WHERE name LIKE
'?'";
Cursor c = sqLiteDatabase.rawQuery(queryString, whereArgs);

In most cases, a raw query is more readable and needs less code to be implemented.
In this case, a user with bad intentions could add more SQL code in the whereArgs
variable to obtain more information, produce an error, or delete any data. It doesn't
prevent SQL injection.

Introducing cursors
When we call query() or rawQuery(), the result is returned in a cursor. A cursor is
a collection of rows with many methods to access and iterate it. It should be closed
when no longer used.

The shortest way to iterate a cursor is to call moveToNext() in a loop, which is a
method that returns false if there is no next:

Cursor c = query….
while (c.moveToNext()) {
 String currentName =
 c.getString(c.getColumnIndex("column_name"));
}

To read this information, we have different methods, such as getString(), which
receives the index of the column of the value needed.

To know if a company is already on the table, we can execute a query, which will
return a collection of rows with just one column of integers with the ID. If there is a
result, the ID will be in the column with the 0 index:

public int findCompanyId(SQLiteDatabase db, JobOffer offer){
 Cursor cursorCompany = db.query(DatabaseContract.CompanyTable.TABLE_
NAME,
 new String[]{"rowid"},
 DatabaseContract.CompanyTable.NAME +" LIKE ?",
 new String[]{offer.getCompany()},
 null,null,null);

 int id = -1;

Chapter 8

[157]

 if (cursorCompany.moveToNext()){
 id = cursorCompany.getInt(0);
 }
 return id;
}

Another option is to define the column with the name of the company as unique
and to specify to ignore the conflicts using insertWithOnConflict. This way, if the
company is already on the database or just inserted, it will return the ID:

db.insertWithOnConflict(DATABASE_TABLE, null, initialValues,
SQLiteDatabase.CONFLICT_IGNORE);

We can create a method for the query and get the ID from the cursor if there is a
result. If not, the result will be -1. Before storing the job offer, we will check if the
company exists. If not, we will store the company, and the ID will be returned during
the insert:

public boolean storeOffers(Context context, List<JobOffer> offers){

 try {
 SQLiteDatabase db = new DBOpenHelper(context).
getWritableDatabase();

 db.beginTransaction();

 for (JobOffer offer : offers){

 ContentValues cv_company = new ContentValues();
 cv_company.put(DatabaseContract.CompanyTable.NAME, offer.
getCompany());
 cv_company.put(DatabaseContract.CompanyTable.IMAGE_LINK,offer.
getImageLink());

 int id = findCompanyId(db,offer);

 if (id < 0) {
 id = (int) db.insert(DatabaseContract.CompanyTable.TABLE_
NAME,null,cv_company);
 }

 ContentValues cv = new ContentValues();
 cv.put(DatabaseContract.JobOfferTable.TITLE,offer.getTitle());
 cv.put(DatabaseContract.JobOfferTable.DESC,offer.
getDescription());

Databases and Loaders

[158]

 cv.put(DatabaseContract.JobOfferTable.TYPE, offer.getType());
 cv.put(DatabaseContract.JobOfferTable.DESC, offer.
getDescription());
 cv.put(DatabaseContract.JobOfferTable.SALARY,offer.getSalary());
 cv.put(DatabaseContract.JobOfferTable.LOCATION,offer.
getLocation());
 cv.put(DatabaseContract.JobOfferTable.COMPANY_ID,id);

 db.insert(DatabaseContract.JobOfferTable.TABLE_NAME,null,cv);
 }

 db.setTransactionSuccessful();
 db.endTransaction();

 db.close();

 } catch (Exception e){
 Log.d("MasteringAndroidDAO", e.toString());
 return false;
 }

 return true;
}

Before testing this, it would be ideal to have the method to read from the database
ready so that we can check that everything is stored correctly. The idea is to query
both tables at the same time with a join query so as to get back a cursor with all the
fields that we need.

In SQL, this would be a SELECT * FROM job_offer_table JOIN company_table
ON job_offer_table.company_id = company_table.rowid … query.

We need to do this in a query using the name of the tables from the database
contract. This is how it will look:

public List<JobOffer> getOffersFromDB(Context context){

 SQLiteDatabase db = new DBOpenHelper(context).getWritableDatabase();

 String join = DatabaseContract.JobOfferTable.TABLE_NAME + " JOIN " +
 DatabaseContract.CompanyTable.TABLE_NAME + " ON " +

Chapter 8

[159]

 DatabaseContract.JobOfferTable.TABLE_NAME+"."+DatabaseContract.
JobOfferTable.COMPANY_ID
 +" = " + DatabaseContract.CompanyTable.TABLE_NAME+".rowid";

 Cursor cursor = db.query(join,null,null,null,null,null,null);

 List<JobOffer> jobOfferList = new ArrayList<>();

 while (cursor.moveToNext()) {
 //Create job offer from cursor and add it
 //to the list
 }

 cursor.close();
 db.close();

 return jobOfferList;
}

The next step is to create a job offer object from a cursor row and add it to the job
offer list:

while (cursor.moveToNext()) {

 JobOffer offer = new JobOffer();
 offer.setTitle(cursor.getString(cursor.
getColumnIndex(DatabaseContract.JobOfferTable.TABLE_NAME)));
 offer.setDescription(cursor.getString(cursor.
getColumnIndex(DatabaseContract.JobOfferTable.DESC)));
 offer.setType(cursor.getString(cursor.
getColumnIndex(DatabaseContract.JobOfferTable.TYPE)));
 offer.setSalary(cursor.getString(cursor.
getColumnIndex(DatabaseContract.JobOfferTable.SALARY)));
 offer.setLocation(cursor.getString(cursor.
getColumnIndex(DatabaseContract.JobOfferTable.LOCATION)));
 offer.setCompany(cursor.getString(cursor.
getColumnIndex(DatabaseContract.CompanyTable.NAME)));
 offer.setImageLink(cursor.getString(cursor.
getColumnIndex(DatabaseContract.CompanyTable.IMAGE_LINK)));

 jobOfferList.add(offer);
}

Databases and Loaders

[160]

For this example, we will clear the database when we add new data. For this, we will
create a method in MasteringAndroidDAO:

/**
* Remove all offers and companies
*/
public void clearDB(Context context)
{
 SQLiteDatabase db = new DBOpenHelper(context).getWritableDatabase();
 // db.delete(String tableName, String whereClause, String[]
whereArgs);
 // If whereClause is null, it will delete all rows.
 db.delete(DatabaseContract.JobOfferTable.TABLE_NAME, null, null);
 db.delete(DatabaseContract.CompanyTable.TABLE_NAME, null, null);
}

Once the database access object has all the methods that we will need, we have to
move to ListFragment and implement the logic. The ideal flow would be to first
show the data from the database and fire the download to get the new job offers. In
the background, the offers will be updated and the list will be refreshed when the
update is finished. We will do this with the content provider and a cursor loader
that connects the database automatically with the list view. For this example, to test
the DAO, we will simply show the data from the database if there is no internet
connection or get a new list of job offers. When the new list is downloaded, we will
clear the database and store the new offers.

If we wanted to build a system that keeps a history of the job offers instead of
clearing the database, what we would have to do is check if there are any new offers
coming from the server that are not stored already in the database and save only the
new offers. This can be easily done by creating a new column with the ID from Parse
so that we can compare job offers with a unique identifier.

To check if there is an Internet connection, we will ask the connectivity manager
using the following code:

public boolean isOnline() {
 ConnectivityManager cm =
 (ConnectivityManager) getActivity().getSystemService(Context.
CONNECTIVITY_SERVICE);
 NetworkInfo netInfo = cm.getActiveNetworkInfo();
 return netInfo != null && netInfo.isConnectedOrConnecting();
}

Chapter 8

[161]

In the onCreateView method, we need to ask whether or not there is a connection. If
there is a connection, we can download a new list of offers, which will be shown and
stored in the database, thus clearing the previous offers:

@Override
public View onCreateView(LayoutInflater inflater, ViewGroup container,
Bundle savedInstanceState) {
 // Inflate the layout for this fragment
 View view = inflater.inflate(R.layout.fragment_list, container,
false);

 mRecyclerView = (RecyclerView) view.findViewById(R.id.my_recycler_
view);

 // use this setting to improve performance if you know that changes
 // in content do not change the layout size of the RecyclerView
 mRecyclerView.setHasFixedSize(true);

 // use a linear layout manager
 mRecyclerView.setLayoutManager(new LinearLayoutManager(getActivi
ty()));

 //Retrieve the list of offers

 if (isOnline()){
 retrieveJobOffers();
 } else {
 showOffersFromDB();
 }

 return view;
}

public void retrieveJobOffers(){
 ParseQuery<JobOffer> query = ParseQuery.getQuery("JobOffer");
 query.findInBackground(new FindCallback<JobOffer>() {

 @Override
 public void done(List<JobOffer> jobOffersList, ParseException e) {
 MasteringAndroidDAO.getInstance().clearDB(getActivity());

Databases and Loaders

[162]

 MasteringAndroidDAO.getInstance().storeOffers(getActivity(),
jobOffersList);
 mListItems = MasteringAndroidDAO.getInstance().
getOffersFromDB(getActivity());
 JobOffersAdapter adapter = new JobOffersAdapter(mListItems);
 mRecyclerView.setAdapter(adapter);
 }

 });
}

public void showOffersFromDB(){
 mListItems = MasteringAndroidDAO.getInstance().
getOffersFromDB(getActivity());
 JobOffersAdapter adapter = new JobOffersAdapter(mListItems);
 mRecyclerView.setAdapter(adapter);
}

At the moment, we will create the adapter with a new list of elements. If we want
to update the list view on the screen with new job offers and we use this method, it
will restart the adapter, which will make the list empty for a second and move the
scrolling position to the top. We shouldn't create an adapter to refresh the list; the
existing adapter should update the list of elements.

To do this, we would have to create an updateElements() method in the adapter
that replaces the current list of offers and calls notifiyDataSetChanged(), causing
the adapter to refresh all the elements. If we know exactly how many elements we
have updated, we can use notifyItemInserted() or notifyRangeItemInserted()
to update and animate only the new elements added, which works more efficiently
than notifyDataSetChanged().

There is no need to do this synchronization of the view with the data manually.
Android provides us with CursorLoader, a mechanism that connects the list
view with the database directly. So, all we need to do is store the new offers in the
database, and the list view will automatically reflect our changes. However, all of
this automation comes at a cost; it needs a content provider to work.

Chapter 8

[163]

Content providers
A content provider is very similar to the concept of a DAO; it is an interface between
the data and the app that allows different apps to exchange information. We can
decide whether we want it to be public or not, whether we want other apps to be
able to get data from it, and whether it will only be used internally in our app. The
data can be stored in a database such as the one we are about to create. It can be
stored in files; for instance, if we want access to videos or pictures from the gallery,
we'll use an Android built-in media content provider. Alternatively, it can be
obtained from the network:

A content provider must be declared in the manifest as it is a component of our app
and also specify whether or not it will be accessible to other apps, which is controlled
by the attribute exported. Let's start by creating our own content provider.

Databases and Loaders

[164]

To create a content provider, create a MAAProvider class and extend
ContentProvider. We will be asked to implement the following methods:

public class MAAProvider extends ContentProvider {

 @Override
 public boolean onCreate() {
 return false;
 }

 @Override
 public Cursor query(Uri uri, String[] projection, String selection,
String[] selectionArgs, String sortOrder) {
 return null;
 }

 @Override
 public Uri insert(Uri uri, ContentValues values) {
 return null;
 }

 @Override
 public int delete(Uri uri, String selection, String[] selectionArgs)
{
 return 0;
 }

 @Override
 public int update(Uri uri, ContentValues values, String selection,
String[] selectionArgs) {
 return 0;
 }

 @Override
 public String getType(Uri uri) {
 return null;
 }
}

Chapter 8

[165]

The OnCreate method will be called when the provider is started; it will initialize
all the elements required for the provider to work. The provider will start at the
same time as the application. The system knows which provider to start because
it's defined in the manifest. The next four methods are the methods to access and
manage the data. The final method returns the MIME type of the object.

As we mentioned before, there are different content providers in the phone that
we can use; for example, we can access the SMS, contacts, or media items from the
gallery using a content provider. So, there must be a way to identify and access each
one of them. This is done with a URI (Uniform Resource Identifier), which is a
string similar to a URL that we use to go to a website in the browser.

A URI is composed of a prefix, "content://", followed by a string identifier, called
authority. It is usually the name of the class plus the package "com.packtpub.
masteringandoridapp.MAAProvider" followed by a slash and the name of the
table, for instance "/company_table". It is also followed optionally by a slash and
the number of the row inside the table "/2".

Therefore, the complete URI for the company table will be "content://com.
packtub.masteringandroidapp.MAAProvider/company_table.

The complete URI for the company with ID number 2 will be "content://com.
packtub.masteringandroidapp.MAAProvider/company_table/2". This URI
would be represented as company_table/# in a general way, where # will be
replaced by an integer.

Given that we have two different tables and a third one, which is the result of the
join (which can be accessed to get all the elements on the table or to get a single row),
we have six possible URIs:

• content://com.packtub.masteringandroidapp.MAAProvider/company_
table

• content://com.packtub.masteringandroidapp.MAAProvider/company_
job_offer

• content://com.packtub.masteringandroidapp.MAAProvider/offer_
join_company

• content://com.packtub.masteringandroidapp.MAAProvider/company_
table/#

• content://com.packtub.masteringandroidapp.MAAProvider/company_
job_offer/#

• content://com.packtub.masteringandroidapp.MAAProvider/offer_
join_company/#

Databases and Loaders

[166]

We have only one content provider; in theory, this provider can implement the
query, insert, update, delete, and getType methods for all six URIs, each with
six different implementations. Therefore, when we perform myMAAProvider.
insert(URI …), we will need to have an if statement to see which of the tables
needs an insert and choose the right implementations. It would be something similar
to this:

@Override
public Uri insert(Uri uri, ContentValues values) {
 if (uri.equals("content://com.packtub.masteringandroidapp.
MAAProvider/company_table")){
 //Do an insert in company_table
} else if (uri.equals("content://com.packtub.masteringandroidapp.
MAAProvider/offer_table")){
//Do an insert in offer table
} else if ... {
 .
 .
 .
}
}

As you can see by comparing the strings, this doesn't seem right, and if we add a URI
with an integer at the end, we would need some mechanism to verify that "company_
table/2" corresponds to the general URI, "company_table/#". This is why we have
UriMatcher. UriMatcher, which will contain a list of the possible URL's associated
with an integer. So, when it receives a URI, it will tell us which integer to use while
using string patterns.

After creating UriMatcher and defining all the possible cases, we can just add the
possible cases to UriMatcher and call UriMatcher.match(Uri uri), which will
return an integer with the case. All we need to do is a switch to check which case we
are in:

public class MAAProvider extends ContentProvider {

 public final String authority = "com.packtpub.masteringandroidapp.
MAAProvider";

 private UriMatcher mUriMatcher;

 private static final int COMPANY_TABLE = 0;
 private static final int COMPANY_TABLE_ROW = 1;
 private static final int OFFER_TABLE = 2;

Chapter 8

[167]

 private static final int OFFER_TABLE_ROW = 3;
 private static final int JOIN_TABLE = 4;
 private static final int JOIN_TABLE_ROW = 5;

 @Override
 public boolean onCreate() {
 mUriMatcher = new UriMatcher(UriMatcher.NO_MATCH);
 mUriMatcher.addURI(authority,DatabaseContract.CompanyTable.TABLE_
NAME,COMPANY_TABLE);
 mUriMatcher.addURI(authority,DatabaseContract.CompanyTable.TABLE_
NAME+"/#",COMPANY_TABLE_ROW);
 mUriMatcher.addURI(authority,DatabaseContract.JobOfferTable.TABLE_
NAME,OFFER_TABLE);
 mUriMatcher.addURI(authority,DatabaseContract.JobOfferTable.TABLE_
NAME+"/#",OFFER_TABLE_ROW);
 mUriMatcher.addURI(authority,DatabaseContract.OFFER_JOIN_
COMPANY,JOIN_TABLE);
 mUriMatcher.addURI(authority,DatabaseContract.OFFER_JOIN_
COMPANY+"/#",JOIN_TABLE_ROW);

 mDB = new DBOpenHelper(getContext()).getWritableDatabase();

 return true;
 }

 @Override
 public Cursor query(Uri uri, String[] projection, String selection,
String[] selectionArgs, String sortOrder) {
 switch (mUriMatcher.match(uri)){
 case COMPANY_TABLE:
 //Query company table
 break;
 case COMPANY_TABLE_ROW:
 //Query company table by id
 break;
 .
 .

We can start implementing the query method to get a list of offers merged with
companies and set it to the adapter to check that everything is working well so far.
We need to have the following variable with the database:

private SQLiteDatabase mDB;

Databases and Loaders

[168]

This will be assigned in onCreate as follows:

mDB = new DBOpenHelper(getContext()).getWritableDatabase();

Also, in the query method, we need to create a query for the six possibilities, as
follows:

@Override
public Cursor query(Uri uri, String[] projection, String selection,
String[] selectionArgs, String sortOrder) {
 switch (mUriMatcher.match(uri)){
 case COMPANY_TABLE:
 return mDB.query(DatabaseContract.CompanyTable.TABLE_NAME, project
ion,selection,selectionArgs,null,null,sortOrder);
 case COMPANY_TABLE_ROW:
 selection = "rowid LIKE "+uri.getLastPathSegment();
 return mDB.query(DatabaseContract.CompanyTable.TABLE_NAME, project
ion,selection,selectionArgs,null,null,sortOrder);
 case OFFER_TABLE:
 return mDB.query(DatabaseContract.JobOfferTable.TABLE_NAME, projec
tion,selection,selectionArgs,null,null,sortOrder);
 case OFFER_TABLE_ROW:
 selection = "rowid LIKE "+uri.getLastPathSegment();
 return mDB.query(DatabaseContract.JobOfferTable.TABLE_NAME, projec
tion,selection,selectionArgs,null,null,sortOrder);
 case JOIN_TABLE:
 return mDB.query(DBOpenHelper.OFFER_JOIN_COMPANY, projection,selec
tion,selectionArgs,null,null,sortOrder);
 case JOIN_TABLE_ROW:
 selection = "rowid LIKE "+uri.getLastPathSegment();
 return mDB.query(DBOpenHelper.OFFER_JOIN_COMPANY, projection,selec
tion,selectionArgs,null,null,sortOrder);
 }
 return null;
}

We need to do this with the DBOpenHelper.OFFER_JOIN_COMPANY variable defined
as follows:

public static final String OFFER_JOIN_COMPANY = DatabaseContract.
JobOfferTable.TABLE_NAME + " JOIN " +
DatabaseContract.CompanyTable.TABLE_NAME + " ON " +
DatabaseContract.JobOfferTable.TABLE_NAME+"."+DatabaseContract.
JobOfferTable.COMPANY_ID
+" = " + DatabaseContract.CompanyTable.TABLE_NAME+".rowid";Content
Resolver

Chapter 8

[169]

To access a content provider, we will use ContentResolver. It is a general instance
that provides access to all the content providers available as well as to CRUD
operations (create, read, update, and delete):

ContentResolver cr = getContentResolver();

To use the content resolver, we need a URI for the content provider. We can create it
from a string variable right before making the call:

Uri uriPath = Uri.parse("content://"+MAAProvider.authority + "/" +
DatabaseContract.OFFER_JOIN_COMPANY);
Cursor cursor = cr.query(uriPath, null, null, null, null);

Alternatively, we can define a list of URI in the provider as a static variable access to
them.

If we try to run this code now, we would get the error, 'failed to find provider info for
com.packtub.masteringandroidapp.MAAProvider'. This means that the system can't find
the provider because we haven't added it to the manifest yet.

To add a provider, we need to add the <provider> element within the
<application> tag; it needs the path and name of our provider and the authority. In
our case, both are the same:

.

.

.
 <activity
 android:name=".OfferDetailActivity"
 android:label="@string/title_activity_offer_detail" >
 </activity>
 <provider android:name="com.packtpub.masteringandroidapp.
MAAProvider"
 android:authorities="com.packtpub.masteringandroidapp.
MAAProvider">
 </provider>
</application>

Even if we display the data with CursorLoader and do not use the list of offers
content, it wouldn't be a bad idea to create a temporary method that displays the
list of offers from the content provider. It helps ensure that the content provider
is accessible and returns the expected data before going further down in the
CursorLoader road:

public void showOffersFromContentProvider(){
 ContentResolver cr = getActivity().getContentResolver();

Databases and Loaders

[170]

 Uri uriPath = Uri.parse("content://"+MAAProvider.authority + "/" +
DatabaseContract.OFFER_JOIN_COMPANY);
 Cursor cursor = cr.query(uriPath, null, null, null, null);

 List<JobOffer> jobOfferList = new ArrayList<>();
 while (cursor.moveToNext()) {

 JobOffer offer = new JobOffer();
 offer.setTitle(cursor.getString(cursor.
getColumnIndex(DatabaseContract.JobOfferTable.TITLE)));
 offer.setDescription(cursor.getString(cursor.
getColumnIndex(DatabaseContract.JobOfferTable.DESC)));
 offer.setType(cursor.getString(cursor.
getColumnIndex(DatabaseContract.JobOfferTable.TYPE)));
 offer.setSalary(cursor.getString(cursor.
getColumnIndex(DatabaseContract.JobOfferTable.SALARY)));
 offer.setLocation(cursor.getString(cursor.
getColumnIndex(DatabaseContract.JobOfferTable.LOCATION)));
 offer.setCompany(cursor.getString(cursor.
getColumnIndex(DatabaseContract.CompanyTable.NAME)));
 offer.setImageLink(cursor.getString(cursor.
getColumnIndex(DatabaseContract.CompanyTable.IMAGE_LINK)));

 jobOfferList.add(offer);
 }
 JobOffersAdapter adapter = new JobOffersAdapter(jobOfferList);
 mRecyclerView.setAdapter(adapter);
}

By replacing the call to showOffersFromDB() with
showOffersFromContentProvider(), we should see exactly the same information
in the same order:

if (isOnline()){
 retrieveJobOffers();
} else {
 showOffersFromContentProvider();
}

The CursorLoader object can be easily implemented once the provider is created. At
this stage, we can say that most of the job is done.

Chapter 8

[171]

Sync database with UI
When we use CursorLoader with a content provider, the data returned in the cursor
is directly connected with the data in the database in such a way that one change in
the database is reflected instantly in the UI. When we have this system working, all
we need to worry about is storing the data in the database and updating the data.
When we have this system ready, we will discuss how to implement the popular pull
to refresh system to update the job offers at the time the user wants. The goal is to
add a new job offer in Parse, pull the list to refresh, and see the new element come
instantly, all handled in the background through the content provider.

Implementing CursorLoader
To complete this goal, the next step is to create CursorLoader. We talked about
loaders previously in the book; as we mentioned, they are a mechanism to load data
in the background. This one specifically will return the data in a cursor and load it
from a content provider. It will also refresh the data when any change in the source
is detected.

To start using CursorLoader, our Activity or Fragment—FragmentList in our
case—needs to implement LoaderManager.LoaderCallback<Callback>. This
interface will ask us to implement the following methods:

public class ListFragment extends android.support.v4.app.Fragment
implements LoaderManager.LoaderCallbacks<Cursor>

@Override
public Loader<Cursor> onCreateLoader(int id, Bundle args) {
 return null;
}

@Override
public void onLoadFinished(Loader<Cursor> loader, Cursor data) {

}

@Override
public void onLoaderReset(Loader<Cursor> loader) {

}

Databases and Loaders

[172]

Let's start with the first method—onCreateLoader. This method receives an integer
ID as a parameter, which will be the ID of our loader. We can have more than one
loader working in the same activity, so we will assign an ID to them in order to be
able to identify them. Our loader will be defined as:

public static final int MAA_LOADER = 1;

The OnCreateLoader method will be executed when we tell LoaderManager to
initialize our loader. This can be done in onCreateView():

getLoaderManager().initLoader(MAA_LOADER, null, this);

This method has to create all the different loaders that can be initialized (they can
be different types of loaders); in our case, we will only have one, which will be
CursorLoader. It will query the table and join the offers' table with the companies'
table as a result. The string with the content URI has been defined previously in
MAAProvider:

public static final String JOIN_TABLE_URI = "content://" +
MAAProvider.authority + "/" + DatabaseContract.OFFER_JOIN_COMPANY;
@Override
public Loader<Cursor> onCreateLoader(int loaderID, Bundle bundle)
{
 switch (loaderID) {
 case MAA_LOADER:
 return new CursorLoader(
 getActivity(), // Parent activity context
 Uri.parse(MAAProvider.JOIN_TABLE_URI),
 // Table to query
 null, // Projection to return
 null, // No selection clause
 null, // No selection arguments
 null // Default sort order
);
 default:
 //Invalid ID
 return null;
 }
}

Chapter 8

[173]

When we tell the loader manager to initialize our loader, it automatically creates it
and starts running the query to the database; asynchronously, it will call the second
method implemented, which is onLoadFinished. In this method, as an example, we
can retrieve the cursor and display the data, just as we did before while getting the
cursor from the content resolver. By moving the code that we use to create the job
offer from the course to a static method in the JobOffer class, our onLoadFinished
method will look similar to the following:

@Override
public void onLoadFinished(Loader<Cursor> loader, Cursor cursor) {

 List<JobOffer> jobOfferList = new ArrayList<>();

 while (cursor.moveToNext()) {
 jobOfferList.add(JobOffer.createJobOfferfromCursor(cursor));
 }

 JobOffersAdapter adapter = new JobOffersAdapter(jobOfferList);
 mRecyclerView.setAdapter(adapter);
}

This solution queries the database in the background and asynchronously displays
the result, but it is still far from perfect. We will iterate through the cursor to create
a list of objects, and after this, we will send the list to the adapter, which is iterating
over the list again to create the elements. What if we had an adapter that could build
the list directly from the cursor? The solution to our problem exists, and it's called
CursorAdapter. However, before moving to this, we need to implement the third
method, which is still pending.

The third method, onLoaderReset, is called when the data is not valid. This could
happen, for instance, if the source has changed. It removes the reference to the
cursor, preventing memory leaks and is commonly used along with CursorAdapter.
This one is the easiest of the three to implement. In our example, we can leave it
empty; we won't have any memory leak because we will not use our cursor outside
the method. If we were using CursorAdapter, there would be a reference to it
outside our onLoadFinished method and we would need to set the adapter to null:

@Override
public void onLoaderReset(Loader<Cursor> loader) {
 //mAdapter.changeCursor(null);
}

Databases and Loaders

[174]

RecyclerView and CursorAdapter
The CursorAdapter class creates an adapter based on a cursor and is intended to be
used with ListsView. It extends from BaseAdapter.

The cursor passed to the adapter must have a column named _id. To do this, we
don't need to change our database; we can simply rename the field from rowid to
_id in the CursorLoader creation.

This is an example of a basic CursorAdapter:

SimpleCursorAdapter mAdapter =
new SimpleCursorAdapter(
 this, // Current context
 R.layout.list_item, // Layout for a single row
 null, // No Cursor yet
 mFromColumns, // Cursor columns to use
 mToFields, // Layout fields to use
 0 // No flags
);

Once it is created, we can pass it the new cursor in onLoadFinished:

mAdapter.changeCursor(cursor);

This solution is perfect if you are working with ListView; unfortunately,
RecyclerView works with RecyclerView.Adapter and is not compatible with
BaseAdapter. Therefore, the CursorLoader class can't be used with RecyclerViews.

At this point, we have two alternatives: one is to find an open source solution, such
as CursorRecyclerAdapter (https://gist.github.com/quanturium/46541c81
aae2a916e31d#file-cursorrecycleradapter-java) and include this class in our
app.

The second option is to create our own. To do this, we will create a
JobOfferCursorAdapter class which extends from RecyclerView.
Adapter<JobOffersAdapter.MyViewHolder>. This class, as with JobOfferAdapter,
will have the onCreateView and onBindView methods. They are implemented in the
same way, with the exception that the job offers are in a cursor and not in a list. To
get JobOffer from a cursor row, we will create an extra method called getItem(int
position). Apart from this, we need the getCount method, which will return the
cursor size, and a changeCursor method, which will allow us to change the cursor in
the adapter. Take a look at the following code:

public class JobOfferCursorAdapter extends RecyclerView.
Adapter<JobOfferCursorsAdapter.MyViewHolder>{

https://gist.github.com/quanturium/46541c81aae2a916e31d#file-cursorrecycleradapter-java
https://gist.github.com/quanturium/46541c81aae2a916e31d#file-cursorrecycleradapter-java

Chapter 8

[175]

 Cursor mDataCursor;

 @Override
 public int getItemCount() {
 return (mDataCursor == null) ? 0 : mDataCursor.getCount();
 }

 public void changeCursor(Cursor newCursor) {
 //If the cursors are the same do nothing
 if (mDataCursor == newCursor){
 return;
 }

 //Swap the cursors
 Cursor previous = mDataCursor;
 mDataCursor = newCursor;

 //Notify the Adapter to update the new data
 if (mDataCursor != null){
 this.notifyDataSetChanged();
 }

 //Close previous cursor
 if (previous != null) {
 previous.close();
 }
 }

 private JobOffer getItem(int position) {
 //To be implemented
 return null;
 }

 @Override
 public JobOfferCursorAdapter.MyViewHolder
onCreateViewHolder(ViewGroup parent, int viewType) {
 //To be implemented
 return null;
 }

Databases and Loaders

[176]

 @Override
 public void onBindViewHolder(MyViewHolder holder, int position) {
 //To be implemented
 }

 private class MyViewHolder..

}

The getItem method needs to get Joboffer from a row in the cursor. To do this,
we first need to move the cursor to this position with the moveToPosition(int
position) method, and after this, we can extract the values for this row:

private Object getItem(int position) {
 mDataCursor.moveToPosition(position);
 return JobOffer.createJobOfferfromCursor(mDataCursor);
}

With this method ready, we can implement the rest of the functionality on the
adapter based on the previous JobOffersAdapter:

@Override
public MyViewHolder onCreateViewHolder(ViewGroup parent, int viewType)
{
 View v = LayoutInflater.from(parent.getContext()).inflate(R.layout.
row_job_offer, parent, false);
 return new MyViewHolder(v);
}

@Override
public void onBindViewHolder(JobOfferCursorAdapter.MyViewHolder
holder, int position) {
 JobOffer jobOffer = getItem(position);
 holder.textViewName.setText(jobOffer.getTitle());
 holder.textViewDescription.setText(jobOffer.getDescription());
}

public class MyViewHolder extends RecyclerView.ViewHolder implements
View.OnClickListener{

 public TextView textViewName;
 public TextView textViewDescription;

Chapter 8

[177]

 public MyViewHolder(View v){
 super(v);
 textViewName = (TextView)v.findViewById(R.id.rowJobOfferTitle);
 textViewDescription = (TextView)v.findViewById(R.
id.rowJobOfferDesc);
 v.setOnClickListener(this);
 }

 @Override
 public void onClick(View view) {
 Intent intent = new Intent(view.getContext(), OfferDetailActivity.
class);
 JobOffer selectedJobOffer = getItem(getAdapterPosition());
 intent.putExtra("job_title", selectedJobOffer.getTitle());
 intent.putExtra("job_description",selectedJobOffer.
getDescription());
 intent.putExtra("job_image",selectedJobOffer.getImageLink());
 view.getContext().startActivity(intent);
 }
}

With our own CursorAdapter adapted to RecyclerView completed, we are ready
to create the cursor and set the appropriate cursor when our loader manager has
finished. In OncreateView, we will retrieve new data from the server and upload the
view with the current data at the same time:

mAdapter = new JobOfferCursorAdapter();
mRecyclerView.setAdapter(mAdapter);

getLoaderManager().initLoader(MAA_LOADER, null, this);

retrieveJobOffers();

return view;

To display the data, we will change the cursor after the loader manager has finished:

@Override
public void onLoadFinished(Loader<Cursor> loader, Cursor cursor) {
 Log.d("ListFragment", "OnLoader Finished :" + cursor.getCount());
 mAdapter.changeCursor(cursor);
}

@Override
public void onLoaderReset(Loader<Cursor> loader) {
 mAdapter.changeCursor(null);
 Log.d("ListFragment", "OnLoader Reset :");
}

Databases and Loaders

[178]

This works perfectly fine when there is previous data in the database. However,
if we try to uninstall the app and run this the first time, we will see that the list is
empty. Also, looking at the logs, we can see that we are storing the new job offers in
the background correctly:

07-25 16:45:42.796 32059-32059/com.packtpub.masteringandroidapp D/
ListFragment: OnLoader Finished :0
07-25 16:45:43.507 32059-32059/com.packtpub.masteringandroidapp D/
ListFragment: Storing offers :7

What is happening here is that the changes in our database are not currently being
detected, but this is very easy to fix when we use CursorLoaders. There is no need
to manually register a content observer or restart the loader; we can set a listener in
the cursor that CursorLoader uses and simply notify it when we make any change in
the database. In our provider, we can set the notification URI to the cursor:

case JOIN_TABLE:
Cursor cursor = mDB.query(DBOpenHelper.OFFER_JOIN_COMPANY, projection
,selection,selectionArgs,null,null,sortOrder);
cursor.setNotificationUri(getContext().getContentResolver(), uri);
return cursor;

Whenever the database changes, we can call:

Context.getContentResolver().notifyChange(Uri.parse(MAAProvider.JOIN_
TABLE_URI), null);

As a result, CursorLoader will automatically refresh the list. If we were doing the
insert, update, or delete operations from the content provider, we could have had
this line just before these operations to notify of any content change. In our example,
we will simply add it manually after we have stored the new data in the database
coming from Parse. You can use the following code for this:

public void done(List<JobOffer> jobOffersList, ParseException e) {
 Log.d("ListFragment","Storing offers :"+jobOffersList.size());
 MasteringAndroidDAO.getInstance().clearDB(getActivity());
 MasteringAndroidDAO.getInstance().storeOffers(getActivity(),
jobOffersList);
 getActivity().getContentResolver().notifyChange(Uri.parse
 (MAAProvider.JOIN_TABLE_URI), null);
}

We can now uninstall the App and install it again, and we will see that the list is
empty for a few seconds while the offers are downloaded in the background. As
soon as the download finishes, the cursor loader will refresh the list, and all the
offers will appear. To put the icing on the cake, we will implement the pull-to-refresh
feature.

Chapter 8

[179]

Introducing pull to refresh with
SwipeRefreshLayout
With this feature, the user can refresh the list at any time, by scrolling up when
the list view is at the top. This is a popular feature seen in apps, such as Gmail and
Facebook.

To achieve this functionality, Google released a component called
SwipeRefreshLayout, which is included in the v4 support library. Prior to revision
21 of this library, this was displayed as a horizontal line at the top of the screen that
changed colors. Later, it was changed to a circle with a semicircle that rotates with
the swipe movement.

To use this, we need to wrap our list with this element in the view:

<android.support.v4.widget.SwipeRefreshLayout xmlns:android="http://
schemas.android.com/apk/res/android" android:id="@+id/
swipeRefreshLayout" android:layout_width="match_parent"
android:layout_height="match_parent">
 <android.support.v7.widget.RecyclerView android:id="@+id/
my_recycler_view" android:scrollbars="vertical" android:layout_
width="match_parent" android:layout_height="match_parent" />
</android.support.v4.widget.SwipeRefreshLayout>

Databases and Loaders

[180]

We can create a class variable called mSwipeRefreshLayout and set an onRefresh
listener that will be called when the user wants to refresh:

mSwipeRefreshLayout = (SwipeRefreshLayout) view.findViewById(R.
id.swipeRefreshLayout);
mSwipeRefreshLayout.setOnRefreshListener(new SwipeRefreshLayout.
OnRefreshListener() {
 @Override
 public void onRefresh() {
 retrieveJobOffers();
 }
});

When the data is downloaded, we need to call setRefresh with the false value to
stop the circle spinning forever:

@Override
public void done(List<JobOffer> jobOffersList, ParseException e) {
 Log.d("ListFragment","Storing offers :"+jobOffersList.size());
 MasteringAndroidDAO.getInstance().clearDB(getActivity());
 MasteringAndroidDAO.getInstance().storeOffers(getActivity(),
jobOffersList);
 getActivity().getContentResolver().notifyChange(Uri.
parse(MAAProvider.JOIN_TABLE_URI), null);
 mSwipeRefreshLayout.setRefreshing(false);
}

While refreshing, it should look similar to the following screenshot:

Chapter 8

[181]

We can also change the colors of the arrow while rotating with the
SwipeRfreshLayout and setColorScheme() methods. Just define three colors in the
XML and set the three IDs of the different colors:

<resources>
 <color name="orange">#FF9900</color>
 <color name="green">#009900</color>
 <color name="blue">#000099</color>
</resources>

setColorSchemeResources(R.color.orange, R.color.green, R.color.blue);

We have achieved our goal. There is an easy way to test if the whole system works,
from SwipeToRefreshLayout to the background Parse request, content provider,
database, and cursor loader. We can open the app, and while we are on the list
screen, we will go to Parse and create a new job offer, return to the app, and swipe to
refresh. We should see the new job offer appearing after the refresh.

Summary
In this chapter, you learned how to create a database, use a database contract, and
a database open helper. We saw the pattern of the DAO and made basic operations
with it. Additionally, we replaced the DAO with a content provider, explaining how
the URI matcher works and accessing it through a content resolver.

This allowed us to use CursorLoader with our own implementation of
CursorAdapter, which is compatible with RecyclerView, to have a system where
the UI is synchronized with the database. To finish the chapter, we saw how to use
the popular feature, pull to refresh, to update the content on demand.

In the next chapter, we will take a look at how to add push notifications to our
application as well as analytics services with an overview of the differences between
the current analytics and push notification options available in the market.

[183]

Push Notifications
and Analytics

We will start the chapter by talking about push notifications. You will learn how to
implement custom solutions with notifications using Google Cloud Messaging, both
on the server side and app side. Then, we will add notifications with Parse to our
example. To finish with notifications, we will display our custom notifications using
NotificationCompat.

In the second half of the chapter, we will talk about analytics. Having analytics
to track what the user does in our app is essential to know how the user behaves,
allowing us to identify patterns and improve the experience. We will implement
one example with Parse and take an overview of the most popular solutions in the
market.

• Push notifications
 ° Sending and receiving with GCM
 ° Notifications from Parse
 ° NotificationCompat

• Analytics
 ° Analytics with Parse

• Error report

Push Notifications and Analytics

[184]

Push notifications
Push notifications are important to engage users and provide real-time updates.
They are useful to remind the user that there is an action pending. For instance,
in the Qkr! app created by MasterCard, one can order food and drink in some
restaurants, and if the user hasn't paid after a considerable period of time, they
send a notification to remind the user that he/she needs to pay before leaving the
restaurant.

They also work very well when we need to tell the user that we have new content or
that other users have sent them a message. Any change that happens on the server
side and requires informing the user is the perfect scenario to use notifications.

Notifications can also be sent locally from our own app; for example, we can
schedule an alarm and show a notification. They don't necessarily have to be sent
from a server.

They are shown at the top of the screen in the status bar, in a place called the
notification area.

The minimum information required for a notification is an icon, a title, and detail
text. With the arrival of material design, we can customize the notifications in
different ways; for instance, we can add different actions to them:

Chapter 9

[185]

If we scroll down from the top of the screen, we will show the notification drawer
where we can see all the information displayed by the notifications:

Notifications shouldn't be used as part of two-way channel communication. If our
app needs constant communication with the server, as in the case of messaging apps,
we should consider using sockets, XMPP, or any other messaging protocol. In theory,
notifications are not reliable, and we can't control when exactly they will be received.

However, don't abuse notifications; they are a good reason for a user to uninstall
your app. Try to keep them to a minimum and use them only when necessary.

You can assign a priority level to a notification, and Android Lollipop onward, you
can filter the notifications you want to receive based on this priority level.

These are the key points and concepts you should have in mind while working with
notifications. Before going into more theory, we will practice sending notifications to
our app.

Push Notifications and Analytics

[186]

Sending and receiving notifications using GCM
There are different solutions on the market to send push notifications; one of these
is Parse, which has a friendly control panel where anyone can easily send push
notifications. We will use Parse as an example, but first, it's good to understand how
this works internally and how we can build our own system to send notifications.

GCM (Google Cloud Messaging) uses push notifications, which we will send to
our mobile. Google has servers called GCM connection servers that handle this
process. If we want to send a push notification, we need to tell these servers first, and
they will send it to our device later. We need to create a server or use a third-party
server, which will communicate with the GCM servers over HTTP or XMPP as the
communication can be done using both protocols.

As we said earlier, we can't control exactly when a message is received because we
have no control over the GCM server. It queues the message and dispatches it when
the device is online.

To create our custom solution, the first thing we need to do is enable the messaging
services on our app from the Google developers' website at https://developers.
google.com/mobile/add?platform=android.

https://developers.google.com/mobile/add?platform=android
https://developers.google.com/mobile/add?platform=android

Chapter 9

[187]

After you create the app, enable GCM messaging, and you will be provided with a
Sender ID and a Server API Key. The sender ID was previously known as project
number.

If we want to receive GCM messages, we need to register our client, which is our
mobile app, with this project. To do this, our app will use the GCM API to register and
obtain a token as confirmation. When this is done, the GCM servers will know that
your device is ready to receive push notifications from this particular project/sender.

We need to add the play services to use this API:

 compile "com.google.android.gms:play-services:7.5.+"

The registration is done through the Instance ID API, calling instanceID.getToken
with the SenderID as a parameter:

InstanceID instanceID = InstanceID.getInstance(this);
String token = instanceID.getToken(getString(R.string.gcm_
defaultSenderId),
GoogleCloudMessaging.INSTANCE_ID_SCOPE, null);

We need to call this asynchronously and keep a Boolean variable in our app to
remember whether we have been successfully registered. Our token can change with
time, and we'll know when it happens with the onRefreshToken() callback. The
token needs to be sent to our server:

@Override
public void onTokenRefresh() {
 //Get new token from Instance ID with the code above
 //Send new token to our Server
}

Push Notifications and Analytics

[188]

Once this is done, we need to create a GCMListener and add some permissions to the
Android manifest:

<uses-permission android:name="android.permission.GET_ACCOUNTS" />
<uses-permission android:name="android.permission.WAKE_LOCK" />
<uses-permission android:name="com.google.android.c2dm.permission.
RECEIVE" />

<permission android:name="com.example.gcm.permission.C2D_MESSAGE"
 android:protectionLevel="signature" />
<uses-permission android:name="com.example.gcm.permission.C2D_MESSAGE"
/>

<application ...>
 <receiver
 android:name="com.google.android.gms.gcm.GcmReceiver"
 android:exported="true"
 android:permission="com.google.android.c2dm.permission.SEND" >
 <intent-filter>
 <action android:name="com.google.android.c2dm.intent.RECEIVE" />
 <category android:name="com.example.gcm" />
 </intent-filter>
 </receiver>
 <service
 android:name="com.example.MyGcmListenerService"
 android:exported="false" >
 <intent-filter>
 <action android:name="com.google.android.c2dm.intent.RECEIVE" />
 </intent-filter>
 </service>
 <service
 android:name="com.example.MyInstanceIDListenerService"
 android:exported="false">
 <intent-filter>
 <action android:name="com.google.android.gms.iid.InstanceID"/>
 </intent-filter>
 </service>
</application>

</manifest>

GCMListener will contain the onMessageReceived method, which will be called
when we receive any message.

Chapter 9

[189]

This is all we need from the client side; for the server side, we won't go into details
in this book because it totally depends on the technology and the language chosen.
There are different code snippets and scripts to send the notifications for Python,
Grails, Java, and so on, which are easy to find on the Web.

We don't really need a server to send a notification because we can communicate
directly with GCM. All we need to do is send a POST request to https://gcm-http.
googleapis.com/gcm/send. This can easily be done using any online POST-sending
service, such as http://hurl.it or Postman, a Google Chrome extension used to
send network requests. This is how our request needs to look:

Content-Type:application/json
Authorization:key="SERVER_API_LEY"
{
 "to" : "RECEIVER_TOKEN"
 "data" : {
 "text":"Testing GCM"
 },
}

Continuing with MasteringAndroidApp, we will implement push notifications
with Parse.

https://gcm-http.googleapis.com/gcm/send
https://gcm-http.googleapis.com/gcm/send
http://hurl.it

Push Notifications and Analytics

[190]

Push notifications with Parse
For our example, we will stick to Parse. The main reason is that we don't need
to worry about the server side, and we don't have to create an app in the Google
developer console with this solution. Another good reason is that it has a nice built-
in control panel to send this notification, and we can target different users if we have
been tracking users with different parameters in advance.

With Parse, we don't need to create a GCM listener. Instead, it uses a service that is
already included in the Parse library, and we just need to register a subscriber for
this service. All we need to do is add the permissions and receivers to our app, and
we are ready to go:

<uses-permission android:name="android.permission.INTERNET" />
<uses-permission android:name="android.permission.ACCESS_NETWORK_
STATE" />
<uses-permission android:name="android.permission.WAKE_LOCK" />
<uses-permission android:name="android.permission.VIBRATE" />
<uses-permission android:name="android.permission.RECEIVE_BOOT_
COMPLETED" />
<uses-permission android:name="android.permission.GET_ACCOUNTS" />
<uses-permission android:name="com.google.android.c2dm.permission.
RECEIVE" />
<permission android:protectionLevel="signature"
android:name="com.packtub.masteringandroidapp.permission.C2D_MESSAGE"
/>
<uses-permission android:name="com.packtpub.masteringandroidapp.
permission.C2D_MESSAGE" />

Chapter 9

[191]

Ensure that the last two permissions match your package name. The receivers need
to go inside the application tag:

<service android:name="com.parse.PushService" />
<receiver android:name="com.parse.ParseBroadcastReceiver">
 <intent-filter>
 <action android:name="android.intent.action.BOOT_COMPLETED" />
 <action android:name="android.intent.action.USER_PRESENT" />
 </intent-filter>
</receiver>

<receiver android:name="com.parse.ParsePushBroadcastReceiver"
 android:exported="false">
 <intent-filter>
 <action android:name="com.parse.push.intent.RECEIVE" />
 <action android:name="com.parse.push.intent.DELETE" />
 <action android:name="com.parse.push.intent.OPEN" />
 </intent-filter>
</receiver>

<receiver android:name="com.parse.GcmBroadcastReceiver"
 android:permission="com.google.android.c2dm.permission.SEND">
 <intent-filter>
 <action android:name="com.google.android.c2dm.intent.RECEIVE" />
 <action android:name="com.google.android.c2dm.intent.REGISTRATION"
/>
 <category android:name="com.packtpub.masteringandroidapp" />
 </intent-filter>
</receiver>

</application>

To listen for notifications, we can register a subscriber in the OnCreate method of
our Application class:

ParsePush.subscribeInBackground("", new SaveCallback() {
 @Override
 public void done(com.parse.ParseException e) {
 if (e == null) {
 Log.d("com.parse.push", "successfully subscribed to the
broadcast channel.");
 } else {
 Log.e("com.parse.push", "failed to subscribe for push", e);
 }
 }
});

Push Notifications and Analytics

[192]

Now, it's ready. Simply go to the Parse web, select the Push tab, and click on + Send
a push. You can specify the audience, if you want to send it immediately or with a
delay, and other parameters. It will keep a track of the push sent and indicate the
people it was sent to.

If you see 1 in the Pushes Sent column and then take a look at the notification in
your device, all is correct. The notification in your device should look as follows:

Using NotificationCompat
At the moment, we can see the default notification, which is created by the Parse
receiver. However, we can set our own receiver and create nicer notifications with
NotificationCompat. This component was introduced in the support v4 library,
displaying notifications with the latest features in Android L and M as well as in
previous versions until API 4.

In a few words, what we need to do is create a notification with the help of
NotificationCompat.Builder and pass this notification to the system with
NotificationManager.notify():

public class MyNotificationReceiver extends BroadcastReceiver {

 @Override
 public void onReceive(Context context, Intent intent) {
 Notification notification = new NotificationCompat.
Builder(context)
 .setContentTitle("Title")
 .setContentText("Text")
 .setSmallIcon(R.drawable.ic_launcher)
 .build();

Chapter 9

[193]

 NotificationManagerCompat.from(context).notify(1231,notification);
 }

}

This will show our notification. The title, text, and icon are mandatory; if we don't
add these three properties, the notification won't be shown. To start using our
custom receiver, we need to specify in the manifest the register that we want to use,
instead of the Parse push receiver:

receiver android:name="com.packtpub.masteringandroidapp.
MyNotificationReceiver" android:exported="false">
 <intent-filter>
 <action android:name="com.parse.push.intent.RECEIVE" />
 <action android:name="com.parse.push.intent.DELETE" />
 <action android:name="com.parse.push.intent.OPEN" />
 </intent-filter>
</receiver>

We discussed how to show custom notifications with NotificationCompat.
Notifications have their own design guidelines, and they are an important part of
material design. It is recommended to have a look at these guidelines and keep them
in mind while using this component in your app.

You can find the guidelines at http://developer.android.com/
design/patterns/notifications.html.

The importance of analytics
It's very important to know what the user does with your app. Analytics help us
understand which screens are most visited, which products the users buy in our app,
and why certain users drop out during the registration process along with obtaining
information pertaining to gender, location, age, and so on.

We can even track crashes that users have in our app along with information about
the device model, android version, crash logs, and so on.

This data helps us improve user experience, for instance, if we see that the user is
not behaving with the app as we anticipated. It helps define our product; if we have
different features in our app, we can determine which is the most used. It helps us
know the audience, which can be beneficial for marketing purposes. With crash
reports, it's easier to keep the app free of bugs and crashes.

We will use Parse as an example to start tracking some events.

http://developer.android.com/design/patterns/notifications.html
http://developer.android.com/design/patterns/notifications.html

Push Notifications and Analytics

[194]

Analytics with Parse
Without adding any extra code and only with the Parse.init() method that we are
already calling, we have some statistics in the Parse console under the Analytics tab.

In the Audience section, we can see the active installations and the active users
displayed daily, weekly, and monthly. This is useful to understand how many
users we have and how many of them are active. If we want to know how many
uninstalled the app, we can look at the Retention section.

We will track some events and crashes to display information in these two sections,
but first, we will take a look at Explorer. If you click on the Explorer button on the
left, you should see the following option:

This will show a table where we can see different options to filter the data from our
app. As soon as we start tracking events and actions, there will be more columns
here, and we will be able to create complex queries.

Chapter 9

[195]

By default, if we click on run query, we will see the following image of a table:

It shows all the information available under the default columns; no extra columns
are needed for now. We can see all the different request types along with the OS, OS
version, and version of our app.

We can work with the filter to produce different outputs. Some interesting outputs
could be, for instance, sorting and grouping by app version so as to have an idea of
how many people are using each version.

If we were using the same Parse database for different platforms, such as Android
and iOS, we could filter by platform.

Push Notifications and Analytics

[196]

Here's an example of filtering by OS version, where we can see all the Android
versions that our users are currently using:

To gather more data about when and how often the app is opened, we can add the
following line in the oncreate method of our splash screen or first activity.

ParseAnalytics.trackAppOpenedInBackground(getIntent());

This is an example of an event that we can track, but when we generally speak about
event tracking, we refer to custom events. For example, if we want to track which
job offer is the most visited, we will track an event in JobOfferDetailActivity
with the title of the article visited. We can also track this event in the onlick
listener when a row is clicked on to open the offer. There is no fixed rule for this; the
implementations may vary. However, we need to know that the objective is to track
the event when the offer is seen.

Chapter 9

[197]

The code to choose the option where we track the event in the OnCreate method of
OfferDetailActivity will look similar to the following code:

public class OfferDetailActivity extends AppCompatActivity {

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_offer_detail);

 String job_title = getIntent().getStringExtra("job_title");

 Map<String, String> eventParams = new HashMap<>();
 eventParams.put("job_title", job_title);
 ParseAnalytics.trackEventInBackground("job_visited", eventParams);

The trackEventInBackground method launches a background thread to create
the network upload request for us. The parameters are sent as a Map string with a
maximum of eight.

If we visit different offers at different times and go to the analytics explorer section, we
can easily create a query to see the number of times that each job offer was opened.

By grouping the data by dimension, which comprises the different parameters that
we send with the event tracking, and using an aggregate of a count, we can get a
count of every job offer visited.

Next, we will take a look at how to take advantage of this event tracking to use Parse
as an error report tool.

Push Notifications and Analytics

[198]

The error report
Reporting crashes when our app is distributed is essential to maintain an app free
of bugs and crashes. There are hundreds of Android devices on the market and
different situations in which even the best QA person or tester would slip-up while
releasing the app, and we end up with an app that crashes.

We need to assume that our app is going to crash. We must code as best as we can,
but if a crash happens, we need to have the tools in place to report and fix it.

Parse allows us to track errors using the following code:

Map<String, String> dimensions = new HashMap<String, String>();
dimensions.put('code', Integer.toString(error.getCode()));
ParseAnalytics.trackEvent('error', dimensions);

However, this solution will only allow us to track errors in a controlled piece of code.
For instance, let's say that we have a network request and it returns an error. This
scenario can be handled easily; we just track the event with the error response from
the server.

There is a problem when we have NullPointerException in our app, which is
when we have a crash because something unexpected happened that we can't
detect in the code. For instance, if the link of the image of a job is null and I try
to read the link without checking whether the attribute is null or not, I will get
NullPointerException, and the app will crash.

How can we track this if we do not control the part of the code where it happens?
Fortunately, we have tools on the market that do this for us. HockeyApp is a tool
that helps distribute beta versions and collect live crash reports. This is a tool that
shows the error reports of our apps in a web panel. It's really easy to integrate; all we
need is to add the following to the library:

compile 'net.hockeyapp.android:HockeySDK:3.5.0-b.4'

Then, we need to call the following method to report errors:

CrashManager.register(this, APP_ID);

Chapter 9

[199]

The APP_ID would be found when you upload the APK to hockey or when you
create a new app manually on the hockey website.

Once we know App_ID and register for crashes, if we have a crash, we will see a list
with the number of occurrences, as in the following screenshot:

We'll finish with analytics by saying that Parse is just one of the alternatives; it's very
common to use Google analytics as well, which is included in the Google Play service
library. Google analytics allow us to create more complex reports, for instance funnel
tracking to see how many users we drop during a long registration process, and we
can see the data in different charts and histograms.

Push Notifications and Analytics

[200]

If you belong to a large organization, take a look at Adobe Omniture. It's an
enterprise tool that helps you track different events as variables and then creates
formulas to display these variables. It also allows you to combine your mobile
analytics with data from other departments such as sales, marketing, and customer
service. From my personal experience, the companies that I have seen using
Omniture have a person working full time on the analytics study. In this case, all the
developer needs to know is how to implement the SDK and track events; it's not a
developer's task to create complex reports.

Summary
In this chapter, you learned how to add notifications to our app. We implemented
push notifications with Parse and discussed how to create our custom notifications
service using Google Cloud Messaging, with all the code needed on the client side
and tools to test the server side. In the second half of the chapter, we introduced
analytics, explaining why they are important, and tracked events with Parse. An
important aspect in the analytics world is the error report. We tracked the errors in
our apps using Parse and HockeyApp as well. To finish, we took an overview of
other analytics solutions, such as Google Analytics and Adobe Omniture.

In the next chapter, we will work with location services and learn how to add
MapView to our example, displaying a Google map with location markers.

[201]

Location Services
In this chapter, we will learn how to add a map view to our application using
Google's Map Fragment. We will add markers onto the map, which will be used
to point out locations of interest.

In order to do this, we will also discuss how to create a project in Google Developer
Console and set up our application to use the Google Play Services SDK, which is
required in order to use Google services in any Android application.

Every job offer has a location field in Parse; based on this, we will display markers
on the map.

• Configuring the project
 ° Getting the Google Maps API key
 ° Configuring AndroidManifest.xml

• Adding the map
 ° Creating the fragment for ViewPager
 ° Implementing Map Fragment

• Adding a marker
 ° Retrieving data from Parse
 ° Displaying a marker for each location

• Adding a title

Location Services

[202]

Configuring the project
In order for us to use the Google Play Service APIs, we need to set up our project
with the Google Play Services SDK. If you have not already installed this, go to
Android SDK Manager and get the Google Play Service SDK.

Now that our app uses Google Play services, to test the app, you must ensure that
you run the app on either of the following:

1. An Android device with Android 2.3 or higher that has Google Play Store
(Recommended).

2. An emulator that has Google Play Services set up. If you use Genymotion,
Google Play services will not be installed by default:

We need to make Google Play services APIs available to our app.

Open the app's build.gradle file and add the play-services library under
dependencies. The line to add the build.gradle file should be similar to this:

compile 'com.google.android.gms:play-services:7.8.0'

Ensure that you change this to the latest version of play-services and update it
when a new version is released.

Save the file and click on Sync Project with Gradle Files.

Chapter 10

[203]

Getting the API key
For us to use the Google Maps API, we need to register our project with Google
Developer Console and receive an API key, which we will then add to our app.

Firstly, we will need to get the SHA-1 fingerprint of our unique application. We can
receive this from either the debug certificate or the release certificate.

• The debug certificate is created automatically when a debug build is done.
This certificate must only be used for apps that are currently being tested. Do
not publish an application using the debug certificate.

• The release certificate is made when a release build is done. The certificate
can also be created using the keytool program. This certificate must be used
when the app is ready to be released to Play Store.

Displaying the debug certificate fingerprint
• Find your debug keystore file with the name debug.keystore. This file is

usually in the same directory as the Android Virtual Device files:
 ° OS X and Linux: ~/.android/
 ° Windows Vista and Windows 7: C:\Users\your_user_name\.

android\

• To show the SHA-1 fingerprint, open a terminal or command prompt
window and enter the following:

 ° OS X and Linux: We use the keytool -list -v -keystore
~/.android/debug.keystore -alias androiddebugkey
-storepass android -keypass android command.

 ° Windows Vista and Windows 7: We use the keytool -list -v
-keystore "%USERPROFILE%\.android\debug.keystore" -alias
androiddebugkey -storepass android -keypass android
command.

After you enter the command, and press the Enter key, you will see an output similar
to this:

Alias name: androiddebugkey
Creation date: Dec 16, 2014
Entry type: PrivateKeyEntry
Certificate chain length: 1
Certificate[1]:

Location Services

[204]

Owner: CN=Android Debug, O=Android, C=US
Issuer: CN=Android Debug, O=Android, C=US
Serial number: 32f30c87
Valid from: Tue Dec 16 11:35:40 CAT 2014 until: Thu Dec 08 11:35:40
CAT 2044
Certificate fingerprints:
 MD5: 7E:06:3D:45:D7:1D:48:FE:96:88:18:20:0F:09:B8:2A
 SHA1: BD:24:B2:7C:DA:67:E5:80:78:1D:75:8C:C6:66:B3:D0:63:3E:
EE:84
 SHA256: E4:8C:BD:4A:24:CD:55:5C:0E:7A:1E:B7:FC:A3:9E:60:28:FB
:F7:20:C6:C0:E9:1A:C8:13:29:A6:F2:10:42:DB
 Signature algorithm name: SHA256withRSA
 Version: 3

Creating a Google Developer Console project
Go to https://console.developers.google.com/project and create an account
if you haven't already done so. First, create a new project with your desired name.
Once the project has been created, perform the following steps:

1. In the left sidebar, click on APIs & auth and then select the APIs option:

2. Select the Google Maps Android API and enable it.

https://console.developers.google.com/project

Chapter 10

[205]

3. Open Credentials, and click on [Create new key].
4. Select Android key and enter your SHA-1 fingerprint followed by your

project's package name separated by a semicolon, as follows:
BD:24:B2:7C:DA:67:E5:80:78:1D:75:8C:C6:66:B3:D0:63:3E:EE:84;com.
packtpub.masteringandroidapp

5. Once you complete this, you will be able to view the credentials as in the
following screenshot:

Configuring AndroidManifest.xml
Now that we have the API key for our Android application, we need to add it to our
AndroidManifest.xml file.

Open your AndroidManifest.xml file and add the following code in the
<application> element as a child:

<meta-data
 android:name="com.google.android.geo.API_KEY"
 android:value="API_KEY"/>

Replace API_KEY in the value attribute with the API key given on Google Developer
Console.

We also need to add a few other settings to our AndroidManifest. Set the Google
Play services version as follows:

<meta-data
 android:name="com.google.android.gms.version"
 android:value="@integer/google_play_services_version" />

Set required permissions as follows:

• INTERNET: This permission is used to download map data from the Google
Maps server.

• ACCESS_NETWORK_STATE: This will allow the API to check the status of the
connection to determine whether or not it will be able to download the data.

Location Services

[206]

• WRITE_EXTERNAL_STORAGE: This will allow the API to cache the map data.
• ACCESS_COARSE_LOCATION: This lets the API retrieve the device's location

using Wi-Fi or mobile data.
• ACCESS_FINE_LOCATION: This will give a more precise location than the

ACCESS_COARSE_LOCATION, and it will also use GPS as well as Wi-Fi or
mobile data. Take a look at the following code:

<uses-permission android:name="android.permission.INTERNET"/>
<uses-permission android:name="android.permission.ACCESS_NETWORK_
STATE"/>
<uses-permission android:name="android.permission.WRITE_EXTERNAL_
STORAGE"/>
<uses-permission android:name="android.permission.ACCESS_COARSE_
LOCATION"/>
<uses-permission android:name="android.permission.ACCESS_FINE_
LOCATION"/>

You also need to set up your OpenGL ES. The Maps API uses OpenGL ES to render
the map, so it needs to be installed in order for the map to be displayed. To notify
other services of the requirement and prevent devices that don't support OpenGL
from showing your app on Google Play Store, add the following as a child of
<manifest> in your AndroidManifest.xml file:

<uses-feature
 android:glEsVersion="0x00020000"
 android:required="true"/>

Your current AndroidManifest.xml file should be similar to the following code:

<?xml version="1.0" encoding="UTF-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.packtpub.masteringandroidapp">
 <uses-feature android:glEsVersion="0x00020000"
android:required="true" />
 <uses-permission android:name="android.permission.INTERNET" />
 <uses-permission android:name="android.permission.ACCESS_NETWORK_
STATE" />
 <uses-permission android:name="android.permission.WRITE_EXTERNAL_
STORAGE" />
 <uses-permission android:name="android.permission.ACCESS_COARSE_
LOCATION" />
 <uses-permission android:name="android.permission.ACCESS_FINE_
LOCATION" />
 <application android:name=".MAApplication"
android:allowBackup="true" android:icon="@drawable/ic_launcher"
android:label="@string/app_name" android:theme="@style/AppTheme">

Chapter 10

[207]

 <activity android:name=".SplashActivity" android:label="@string/
app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 <activity android:name=".MainActivity" android:label="@string/
title_activity_main" />
 <activity android:name=".OfferDetailActivity" android:label="@
string/title_activity_offer_detail" />
 <provider android:name=".MAAProvider" android:authorities="com.
packtpub.masteringandroidapp.MAAProvider" />
 <meta-data android:name="com.google.android.geo.API_KEY"
android:value="AIzaSyC9o7cLdk_MIX_aQhaOLvoqYywK61bN0PQ" />
 <meta-data android:name="com.google.android.gms.version"
android:value="@integer/google_play_services_version" />
 </application>
</manifest>

Adding the map
Now that our application is configured for us to use map services, we can begin
discussing how to add a visual map to our application. For the map, we will create
another Fragment, which will be loaded on the second page of ViewPager.

There are two methods to display Google Map; either a MapFragment or a MapView
object can represent it.

Adding the fragment
Create a new Java class within our fragments directory with the name
MyMapFragment. The class should extend the Fragment type. Then, override the
OnCreateView method and let it return the inflated view of fragment_my_map:

package com.packtpub.masteringandroidapp.fragments;

import …

/**
* Created by Unathi on 7/29/2015.
*/
public class MyMapFragment extends Fragment {

Location Services

[208]

 @Nullable
 @Override
 public View onCreateView(LayoutInflater inflater, ViewGroup
container, Bundle savedInstanceState) {
 View view = inflater.inflate(R.layout.fragment_my_map, container,
false);

 return view;
 }
}

Next, create the layout file for the fragment, and name it fragment_my_map. Set the
root element of the layout to FrameLayout. We will temporarily add TextView to our
layout just to verify that it works. The code for the fragment_my_map.xml file should
be similar to this:

<?xml version="1.0" encoding="UTF-8"?>
<FrameLayout xmlns:android="http://schemas.android.com/apk/res/
android" android:layout_width="match_parent" android:layout_
height="match_parent">
 <TextView android:layout_width="wrap_content" android:layout_
height="wrap_content" android:text="This is a TextView"
android:layout_gravity="center" android:textSize="25dp" />
</FrameLayout>

The last step to add our fragment to the app will be editing the MyPagerAdapter.
java file to display it as the second page. To do this, change the second case in the
getItem method to return an instance of MyMapFragment as well as the page title in
the second case of the getPageTitle method to return MAP:

@Override
public Fragment getItem(int i) {
 switch (i) {
 case 0 :
 return new ListFragment();
 case 1 :
 return new MyMapFragment();
 case 2 :
 return new SettingsFragment();
 default:
 return null;
 }
}

Chapter 10

[209]

@Override
public CharSequence getPageTitle(int position) {
 switch (position) {
 case 0 :
 return "LIST";
 case 1 :
 return "MAP";
 case 2 :
 return "SETTINGS";
 default:
 return null;
 }
}

Now, when you run the app, the second page of the ViewPager should be replaced
with our new fragment.

Location Services

[210]

Implementing MapFragment
We will now use MapFragment to display a map on our app. We can do this by
adding a <fragment> layout with android:name of com.google.android.gms.
maps.MapFragment. Doing this will automatically add MapFragment to activity:

The following is the code for fragment_my_map.xml:

<?xml version="1.0" encoding="UTF-8"?>
<FrameLayout xmlns:android="http://schemas.android.com/apk/res/
android" android:layout_width="match_parent" android:layout_
height="match_parent">
 <fragment android:name="com.google.android.gms.maps.MapFragment"
android:id="@+id/map" android:layout_width="match_parent"
android:layout_height="match_parent" />
</FrameLayout>

Next, to be able to handle MapFragment that we added to our layout, we need
to use FragmentManager, which we get from getChildFragmentManager to
findFragmentById. This will be done in the OnCreateView method:

FragmentManager fm = getChildFragmentManager();
mapFragment = (SupportMapFragment) fm.findFragmentById(R.id.map);
if (mapFragment == null) {
 mapFragment = SupportMapFragment.newInstance();
 fm.beginTransaction().add(R.id.map, mapFragment).commit();
}

We will allocate our fragment to SupportMapFragment instead of just MapFragment
so that the application can support Android API levels lower than 12. Use the
following code:

The following is the code for MyMapFragment.java:

public class MyMapFragment extends Fragment{

 private SupportMapFragment mapFragment;

 @Nullable
 @Override
 public View onCreateView(LayoutInflater inflater, ViewGroup
container, Bundle savedInstanceState) {
 View view = inflater.inflate(R.layout.fragment_my_map, container,
false);

Chapter 10

[211]

 FragmentManager fm = getChildFragmentManager();
 mapFragment = (SupportMapFragment) fm.findFragmentById(R.id.map);
 if (mapFragment == null) {
 mapFragment = SupportMapFragment.newInstance();
 fm.beginTransaction().add(R.id.map, mapFragment).commit();
 }

 return view;
 }

}

Now, when we run the app, the map will be displayed on the screen.

Location Services

[212]

Adding a marker
The Google map is now visible, but it does not show any useful data for the user yet.
To achieve this, we will add map markers to indicate points of interest for the user.
These will be the locations of different job offers, which we will download from our
Parse database.

We will also learn how to change the icon used to mark a point on the map to a
custom image as well as have a title on the marker. This will make our app look
more interesting and informative.

Retrieving data from Parse
Before we can display all our markers, we need to download all the necessary data
from Parse.

In MyMapFragment.java, we will use ParseQuery to retrieve a list of the locations
and use this to get the relevant information for each job offer before it is displayed.
Perform the following steps:

• Create a private member variable named googleMap of the GoogleMap type
and override the onResume() method.

• In onResume(), check whether or not googleMap is empty; if it is, this means
that we have not yet added markers to the current instance of the map. If
googleMap is empty, allocate the map from MapFragment, which we have
already created. This is done using getMap():
if (googleMap == null) {

 googleMap = MapFragment.getMap();

}

• Create a ParseQuery, which will retrieve all the data for the JobOffer
table of our Parse database. Use the findInBackground() function with
FindCallback so that we may begin processing the data only once it has all
been downloaded. Use the following code:

ParseQuery<JobOffer> query = ParseQuery.getQuery("JobOffer");
query.findInBackground(new FindCallback<JobOffer>() {
 @Override
 public void done(List<JobOffer> list, ParseException e) {

 }
});

Chapter 10

[213]

Displaying a marker for each location
Now, we will loop through the list of job offers received from Parse and use
addMarker() to add a marker to googleMap. Perform the following steps:

1. When the findInBackground is done, create a ParseGeoPoint variable and
a loop that will iterate each item on the list. We will use the ParseGeoPoint
variable to store the coordinates from our Parse database:
ParseGeoPoint geoPoint = new ParseGeoPoint();

for(int i =0;i<list.size();i++){

}

2. Within the loop, get the GeoPoint data from the list and save it to our
ParseGeoPoint variable:
 geoPoint = list.get(i).getParseGeoPoint("coordinates");

3. Finally, add a marker to googleMap on each iteration with addMarker():

googleMap.addMarker(new MarkerOptions()
.position(new LatLng(geoPoint.getLatitude(), geoPoint.
getLongitude())));

Your MyMapFragment.java file should be similar to the following:

public class MyMapFragment extends Fragment{

 private SupportMapFragment mapFragment;
 private GoogleMap googleMap;

 @Nullable
 @Override
 public View onCreateView(LayoutInflater inflater, ViewGroup
container, Bundle savedInstanceState) {
 View view = inflater.inflate(R.layout.fragment_my_map, container,
false);

 FragmentManager fm = getChildFragmentManager();
 mapFragment = (SupportMapFragment) fm.findFragmentById(R.id.map);
 if (mapFragment == null) {
 mapFragment = SupportMapFragment.newInstance();
 fm.beginTransaction().add(R.id.map, mapFragment).commit();
 }

 return view;
 }

 @Override
 public void onResume() {

Location Services

[214]

 super.onResume();

 if (googleMap == null) {
 googleMap = mapFragment.getMap();

 ParseQuery<JobOffer> query = ParseQuery.getQuery("JobOffer");
 query.findInBackground(new FindCallback<JobOffer>() {
 @Override
 public void done(List<JobOffer> list, ParseException e) {

 ParseGeoPoint geoPoint;

 for(int i =0;i<list.size();i++){
 geoPoint = list.get(i).getParseGeoPoint("coordinates");

 googleMap.addMarker(new MarkerOptions()
 .position(new LatLng(geoPoint.getLatitude(), geoPoint.
getLongitude())));
 }

 }
 });

 }
 }
}

These markers should now be visible on the app:

Chapter 10

[215]

Adding a title to a marker
What is useful about having a marker on the map isn't just showing a point, but also
giving the user an easy and accessible way to get information about this location. We
will do this by displaying a title on the marker when it is clicked on.

This can be achieved by simply adding .title(string) to our addMarker()
method:

googleMap.addMarker(new MarkerOptions()
.position(new LatLng(geoPoint.getLatitude(), geoPoint.getLongitude()))
.title(list.get(i).getTitle()));

We now have a fully functioning display of a map that will show a title above the
marker when a user clicks on it, as shown in the following image:

Location Services

[216]

Summary
In this chapter, you learned how to add a map to our app. This required us to
create a project on Google Developer Console and configure our app to access
the API necessary. Once our app was completely configured, we moved on to
adding the map to the view of our choice. We discussed handling a fragment
within a fragment (MapFragment with our MyMapFragment). Although the single
MapFragment could have been added individually by code, placing it within another
fragment with a layout gives us the possibility of adding other UI widgets, such as
FloatingActionButton, to the page if we need to. Finally, we made the map useful by
displaying markers and information for locations, which we downloaded from Parse.

In the next chapter, you will learn how to debug and test our application.

[217]

Debugging and Testing
on Android

In this chapter, you will learn how to debug in Android, an essential practice to save
time in finding and fixing problems while developing our application.

We will learn how to create automated tests that can test the click of a button or the
outcome of a single method. This is a set of tests that you can run in Android Studio
to ensure that every time you develop a new feature, you don't break any of the
existent ones.

You will also learn how to use Robolectric for unit tests and Espresso for integration
tests.

At the end of the chapter, we will discuss how to test the UI with millions of random
clicks using Monkey, how to record sequences of clicks through the app, and how to
configure tests based on these recordings with MonkeyTalk.

• Logs and the debug mode
• Testing

 ° Unit tests with Robolectric
 ° Integration tests with Espresso

• UI Testing
 ° Random clicks with MonkeyRunner
 ° Recording clicks with MonkeyTalk

• Continuous Integration

Debugging and Testing on Android

[218]

Logs and the debug mode
We couldn't finish the book without mentioning logs and how to debug to solve
problems while developing. Developing in Android can be more than just copying
and pasting from Stack Overflow if you know how to solve your own problems.

The debug mode and logs are mechanisms used to help the developer identify where
the problems are. With time, every developer improves and uses these techniques
less frequently, but at the beginning, it's quite common to have an app full of logs.
We don't want users to be able to see the log when the app is released, and we don't
want to remove logs manually and then add them again when we release a new
version. We will take a look at how to avoid this.

Working with logs
The log class is used to print out messages and errors, which we can read in real time
using LogCat. This is an example of how to log a message:

Log.i("MyActivity", "Example of an info log");

The Log class has five methods, and they are used to have a different level of priority
on the logs. This allows us to filter by priority in LogCat. There are situations when
we display different logs, for instance, to see the number of job offers we download
in every request. If we have a crash in our app, logs of the type error are our priority
at this moment, and we want to hide other logs with less priority to find the error as
soon as possible.

The five priorities are (from low to high) verbose, debug, information, warning, and
error. (Log.v , Log.d, Log.i, Log.w, and Log.e)

We can filter by process with the bar at the top of the logging window. We can filter
by priority and by keyword, and we can create custom filters by tag, process ID, and
so on.

Chapter 11

[219]

If the logs don't appear or they are old and not refreshing, try to open the dropdown
to the right, select No filters, and then select Show only selected application again.
This forces the console to refresh.

To finish with logs, we will create a wrapper and use a third-party library with the
idea to be able to disable all the logs in the project by just changing the value of a
Boolean. To do this, we simply create a class with the same methods of the Log class
that depend on this Boolean value:

public class MyLogger {

 static final boolean LOG = false;

 public static void i(String tag, String string) {
 if (LOG) android.util.Log.i(tag, string);
 }

 public static void e(String tag, String string) {
 if (LOG) android.util.Log.e(tag, string);
 }
 …

We need to use this wrapper every time we want to write a log—MyLogger.d()
instead of Log.d(). This way, if we change the value of the Boolean LOG in the
MyLogger class, it will stop all the logs in our project at the same time.

It is recommended to use the value from the BuildConfing.DEBUG variable:

static final boolean LOG = BuildConfing.DEBUG;

This will be true if our app is in the debug mode, and it will be false when we release
the app. So, we don't need to remember to turn the logs off in release mode, and
there is no risk of a log appearing to the final user.

Debugging and Testing on Android

[220]

Using Timber, the log wrapper
Timber is a log wrapper created by Jake Wharton that takes the log to an advanced
level, allowing us to have different log behaviors using the log tree concept. Take a
look at the following code:

compile 'com.jakewharton.timber:timber:3.1.0'

One of the advantages of using timber is that we don't need to write a tag in our logs
more than once in the same activity:

Timber.tag("LifeCycles");
Timber.d("Activity Created");

Our trees can have different behaviors; for instance, I might want to disable logs in
the release mode, but I still want to handle errors; so, I will plant an error tree that
will report the error to Parse:

if (BuildConfig.DEBUG) {
 Timber.plant(new Timber.DebugTree());
} else {
 Timber.plant(new CrashReportingTree());
}

/** A tree which logs important information for crash reporting. */
private static class CrashReportingTree extends Timber.Tree {
 @Override protected void log(int priority, String tag, String
message, Throwable t) {
 if (priority == Log.VERBOSE || priority == Log.DEBUG) {
 return;
 }
 //Track error to parse.com
 }
}

Debugging our app
Logs can be used to find problems while developing, but if we master the debug
mode, we will find this practice much quicker.

While we are in the debug mode, we can set breakpoints in the code. With these
breakpoints, we specify a line of code where we want the execution to stop to show
us the values of the variables at that moment. To set a breakpoint, simply double-
click on the left-hand side bar:

Chapter 11

[221]

We set a debug point in the response of the method that gets the job offer. We can
launch the debug mode from the top bar:

If we run the app in Debug mode, Android studio will pause the execution when it
reaches this point:

Android Studio will automatically prompt the Debugger window, where we will
be able to see the variables at the point of execution. We can see in the preceding
screenshot the job offer list and navigate to see what every offer has inside.

The important features here are the green Play button to the left, which continues the
execution of our app until the next breakpoint, and the red square, which exits the
debug mode and continues with the execution of the app.

Debugging and Testing on Android

[222]

We also have different controls available to move to the next line, into a method, or
outside the method. For instance, consider that we have a breakpoint in the first line
of the following command:

MasteringAndroidDAO.getInstance().clearDB(getActivity());
MasteringAndroidDAO.getInstance().storeOffers(getActivity(),
jobOffersList);

In this case, Step Over, which is the blue arrow pointing downward, will move our
execution to the next line. If we click on Step Into, the blue arrow pointing to the
bottom-right corner, we will get into the getInstace() method. With a combination
of these controls, we can control the flow in realtime.

With the debug mode explained, we can now move on to automated tests.

Testing on Android
A new functionality is not complete without being tested first. We, as developers,
have fallen many times into the trap of submitting code changes without writing
a passing test first, only to find that the expected behavior was broken on future
iterations.

We learned the hard way that writing tests boosts our productivity, increases code
quality, and helps us release more often. For this reason, Android provided several
tools to help us test our apps from the early stages.

In the following two sections, we will talk about my favorite setup, Robolectric for
unit testing and Espresso for integration testing.

Unit tests with Robolectric
Until Robolectric, writing unit tests meant that we had to run them on a real device
or an emulator. This process could take several minutes as Android build tools have
to package the testing code, push it to the connected device, and then run it.

Robolectric alleviates this problem by enabling us to run our unit tests in the JVM of
our workstation without the need for an Android device or emulator.

To include Robolectric using Gradle, we can add the following dependency to our
build.gradle file:

testCompile "org.robolectric:robolectric:3.0"

We use testCompile to specify that we want this dependency to be included in our
test project. For the test project, the default source directory is src/test.

Chapter 11

[223]

Robolectric configuration
At the time of writing, Robolectric version 3.0 supports the following Android SDKs:

• Jelly Bean, SDK version 16
• Jelly Bean MR1, SDK version 17
• Jelly Bean MR2, SDK version 18
• KitKat, SDK version 19
• Lollipop, SDK version 21

By default, the tests will run against targetSdkVersion defined in the
AndroidManifest file. If you want to run the tests against a different SDK version or
if your current targetSdkVersion is not supported by Robolectric, you can override
it manually using a properties file located at src/test/resources/robolectric.
properties with the following content:

robolectric.properties
sdk=<SDK_VERSION>

Our first unit test
We'll begin by setting up a very simple and common scenario: a welcoming activity
with a Login button that navigates the user to a login activity. The layout for the
welcome activity is as follows:

<?xml version="1.0" encoding="UTF-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/
android" android:layout_width="match_parent" android:layout_
height="match_parent">
 <Button android:id="@+id/login" android:text="Login" android:layout_
width="wrap_content" android:layout_height="wrap_content" />
</LinearLayout>

On the WelcomeActivity class, we'll simply set the login button to start the login
activity:

public class WelcomeActivity extends Activity {

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.welcome_activity);

 View button = findViewById(R.id.login);

Debugging and Testing on Android

[224]

 button.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View view) {
 startActivity(new Intent(WelcomeActivity.this, LoginActivity.
class));
 }
 });
 }
}

In order to test this, we can ensure that we start LoginActivity by sending the
correct Intent. Because Robolectric is a unit-testing framework, LoginActivity will
not actually be started, but we'll be able to check whether the framework captured
the correct intent.

First, we will create the test file, WelcomeActivityTest.java, in the correct package
within the src/test/java/ path. Robolectric depends on JUnit 4, so we will start
by specifying Robolectric's Gradle test runner and some extra configuration that
the framework will use to find the AndroidManifest resources and assets. Run the
following command:

@RunWith(RobolectricGradleTestRunner.class)
@Config(constants = BuildConfig.class)

Now, we can write our first test. We'll begin by creating and bringing the welcome
activity to the foreground:

WelcomeActivity activity = Robolectric.setupActivity(WelcomeActivity.
class);

Now that we have an instance of WelcomeActivity, it's easy to click on the login
button:

activity.findViewById(R.id.login).performClick();

Finally, we have to verify that the framework captured the intent that would have
started LoginActivity:

Intent expectedIntent = new Intent(activity, LoginActivity.class);
assertThat(shadowOf(activity).getNextStartedActivity(),
is(equalTo(expectedIntent)));

Chapter 11

[225]

The shadowOf static method returns a ShadowActivity object that stores most
of the interactions with the current activity under test. We need to use the @Test
annotation, which tells JUnit that the method can be run as a test case. Putting
everything together, we have the following test class (WelcomeActivityTest.java):

@RunWith(RobolectricGradleTestRunner.class)
@Config(constants = BuildConfig.class)
public class WelcomeActivityTest {

 @Test
 public void loginPress_startsLoginActivity() {
 WelcomeActivity activity = Robolectric.
setupActivity(WelcomeActivity.class);

 activity.findViewById(R.id.login).performClick();

 Intent expectedIntent = new Intent(activity, LoginActivity.class);
 assertThat(shadowOf(activity).getNextStartedActivity(),
is(equalTo(expectedIntent)));
 }
}

Running unit tests
Before being able to run the unit tests, we need to select the correct Test Artifact in
Android Studio. To do so, we will open the Build Variants toolbar and select the
Unit Tests artifact, as displayed in the following screenshot:

Debugging and Testing on Android

[226]

Now, from the Project window, we can run the tests by right-clicking on the test
classes and selecting the Run option. Ensure that there are no spaces in the project
path; otherwise, Robolectric will throw an exception prior to execution of the unit
tests.

We can also run unit tests from the command line. To do so, call the test task
command with the --continue option:

./gradlew test --continue

This option is ideal if we have a continuous integration system configured, such as
Jenkins, Travis, or wercker.

This is the end of the Robolectric section. Next, we'll discuss integration testing with
Espresso.

Integration tests with Espresso
Due to the very nature of Android and the vast amount of devices out there, we can
never be certain of how the app might behave when we release it.

We naturally tend to manually test our app on as many different devices as possible,
which is a tedious process that we have to repeat on every release that we do. In this
section, we'll briefly discuss Espresso and how we can write tests that will run on a
real device.

Chapter 11

[227]

Espresso configuration
Before writing our first integration test, we need to install and configure our test
environment. Perform the following steps:

1. From Android SDK Manager, we need to select and install Android Support
Repository from the Extras folder, as shown in the following screenshot:

2. Create the folder for our integration tests code; this should be located at app/
src/androidTest.

3. We'll also need to specify a few dependencies in the project's build.gradle.
Use the following code:

dependencies {
 androidTestCompile 'com.android.support.test:runner:0.3'
 androidTestCompile 'com.android.support.test:rules:0.3'
 androidTestCompile 'com.android.support.test.espresso:espresso-
core:2.2'
 androidTestCompile 'com.android.support.test.espresso:espresso-
intents:2.2'
}

Recently, Android added support for JUnit 4 style test cases. To use this, we'll add
AndroidJUnitRunner as the default test instrumentation runner in the build.
gradle file:

android {
 defaultConfig {
 testInstrumentationRunner "android.support.test.runner.
AndroidJUnitRunner"
 }
}

Debugging and Testing on Android

[228]

Writing an integration test
For this example, we'll continue from where we left off with Robolectric; we'll
write a test for LoginActivity. For this activity, we'll set a simple layout with two
EditTexts and a sign-in button. Run the following code (activity_login.xml):

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/
android"
 android:orientation="vertical"
 android:layout_width="match_parent"
 android:layout_height="match_parent">

 <EditText
 android:id="@+id/input_username"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:inputType="textEmailAddress" />

 <EditText
 android:id="@+id/input_password"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:inputType="textPassword" />

 <Button
 android:id="@+id/button_signin"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@string/signin"/>
</LinearLayout>

In LoginActivity, when the user clicks on the sign-in button, we'll send the
credentials to the splash activity using the following code (LoginActivity.java):

public class LoginActivity extends Activity {

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_login);

 final EditText inputUsername = (EditText) findViewById(R.id.input_
username);

Chapter 11

[229]

 final EditText inputPassword = (EditText) findViewById(R.id.input_
password);

 Button buttonLogin = (Button) findViewById(R.id.button_signin);

 buttonLogin.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View v) {
 startActivity(new Intent(getApplicationContext(),
SplashActivity.class)
 .putExtra("username", inputUsername.getText().toString())
 .putExtra("password", inputPassword.getText().toString()));
 finish();
 }
 });
 }
}

For this test, we'll type the user credentials in the two input fields and verify that we
bundle them correctly in the intent.

First, we will create the LoginActivityTest.java test file in the correct package
within the src/test/androidTest/ path. We'll use JUnit 4, so we will start by
specifying the AndroidJUnit4 test runner. Use the following command:

@RunWith(AndroidJUnit4.class)

Another distinction to Robolectric is that in Espresso, we need to specify a rule that
will prepare the activity under test. For this, use the following command:

@Rule
public IntentsTestRule<LoginActivity> mActivityRule =
 new IntentsTestRule<>(LoginActivity.class);

Now, we can start writing the test. First, we'll need to type the login details in the
two input fields:

String expectedUsername = "mastering@android.com";
String expectedPassword = "electric_sheep";

onView(withId(R.id.input_username)).perform(typeText(expectedUserna
me));
onView(withId(R.id.input_password)).perform(typeText(expectedPasswo
rd));

Debugging and Testing on Android

[230]

Then, we will send the intent by clicking on the sign-in button:

onView(withId(R.id.button_signin)).perform(click());

Finally, we have to verify that the captured intent contains the login credentials:

intended(hasExtras(allOf(
 hasEntry(equalTo("username"), equalTo(expectedUsername)),
 hasEntry(equalTo("password"), equalTo(expectedPassword)))));

Putting everything together, we will have the following test class
(LoginActivityTest.java):

@RunWith(AndroidJUnit4.class)
public class LoginActivityTest {

 @Rule
 public IntentsTestRule<LoginActivity> mActivityRule =
 new IntentsTestRule<>(LoginActivity.class);

 @Test
 public void loginButtonPressed_sendsLoginCredentials() {
 String expectedUsername = "mastering@android.com";
 String expectedPassword = "electric_sheep";

 onView(withId(R.id.input_username)).perform(typeText(expectedUser
name));
 onView(withId(R.id.input_password)).perform(typeText(expectedPass
word));

 onView(withId(R.id.button_signin)).perform(click());

 intended(hasExtras(allOf(
 hasEntry(equalTo("username"), equalTo(expectedUsername)),
 hasEntry(equalTo("password"), equalTo(expectedPassword)))));
 }
}

Chapter 11

[231]

Running integration tests
Similar to what we did with Robolectric, to run integration tests, we need to switch
to the correct Test Artifact in Android Studio. To do so, we will open the Build
Variants toolbar and select the Android Instrumentation Tests artifact:

Now, from the Project window, we can run the tests by right-clicking on the test
classes and selecting the Run option.

We can also run integration tests from the command line. To do so, we will call the
connectedCheck (or cC) task:

./gradlew cC

Debugging and Testing on Android

[232]

Using a command line is the preferred way if we have a continuous integration
system with a connected device or emulator. Once we write enough integration tests,
we can easily deploy and run them on hundreds of real devices using services such
as Testdroid.

Testing from a UI perspective
The testing that we will do now is similar to the kind of tests that a person using the
app could do. In fact, in companies that have QA (Quality Assurance), people use
these tools as a complement to manual testing.

UI tests can be automated as well, but they differ from unit and integration tests;
these are actions performed on the screen, from clicking on a button to completing a
registration process with recorded events.

We will start with stress testing using The Monkey.

Launching The Monkey
The Monkey is a program that can be launched from the command line with ADB.
It generates random events in our device or emulator, and using a seed, we can
reproduce the same random events. To clarify, let's consider an example with
numbers. Imagine that I execute Monkey and it produces random numbers from 1 to
10; if I launched it again, I would get different numbers. When I execute The Monkey
with a seed (this seed is a number), I get a set of different numbers from 1 to 10, and
if I launch it again with the same seed, I will get the same numbers. This is useful
because if we use a seed to generate random events and have a crash, we can fix this
crash and run the same seed again to ensure that we fixed the problem.

Chapter 11

[233]

These random events can vary from clicks and scroll gestures to system level events
(such as volume up, volume down, screenshot, and so on) We can limit the number
of the events and the type as well as the packages in which we run it.

The basic syntax in the terminal is the following command:

$ adb shell monkey [options] <event-count>

If you have never used ADB, you can find in it the platform-tools folder inside the
Android SDK directory wherever it is installed in your system:

../sdk/platform-tools/adb

When we open a terminal and navigate to this directory, we can write the following
line of code:

adb shell monkey -p com.packtpub.masteringandroidapp -v 500

When you try to use adb and the output is command not found, you can restart adb
with adb kill-server, adb start-server, and use ./adb (dot slash adb) if you use
Linux or Mac.

We can increase the number of events to 5000 or produce infinite events, but it is
always recommended to set a limit of numbers; otherwise, you will have to restart
the device to stop The Monkey. When you execute the command, you will be able to
see the random events produced, and it will indicate the seed used in case you want
to repeat the same chain of events:

Depending on the app, we might need to adjust the time between events with the
throttle milliseconds property in order to simulate a real user.

Debugging and Testing on Android

[234]

With the next testing tool, we will do a different kind of UI testing with the purpose
of following a flow. An example of this would be if we have a registration process
composed of three screens with different forms and want to record a test where a
user fills up the form and continues through the three screens logically. In this case,
The Monkey will not really help; with a very big number of events, it will eventually
complete all the input fields with random characters and click on the buttons to
move to the next screen, but this is not exactly what we want.

Recording UI tests with MonkeyTalk
The purpose of recording a sequence of tests such as the registration process is to
have this test saved in order to be able to run it again when we make changes to
our code. We might have to modify the network requests of the registration process
without changing the UI, so these tests are perfect. We can just run them after
finishing the modifications, and we don't have to manually complete the registration
or fill the forms ourselves. We are not being lazy here; if we have hundreds of tests,
this will be a lot of effort for one person. Also, with automated tests, we can ensure
that the sequence of events is always the same.

MonkeyTalk is a free and open source tool, which comes in two versions; we'll be
using the community version for our example.

A list comparing the community and professional versions can be
seen on their website at https://www.cloudmonkeymobile.com/
monkeytalk.

MonkeyTalk can be used on real devices and emulators. It works by recording a list
of events while we are in Record mode:

https://www.cloudmonkeymobile.com/monkeytalk
https://www.cloudmonkeymobile.com/monkeytalk

Chapter 11

[235]

Once we enter this record mode by clicking on Record in the tool, every event will
be recorded in an order, with the action performed and the argument used. In the
preceding screenshot, we can see how tapping on TextView and writing some input
on it are recoded as two events.

We could create this in a script file, and MonkeyTalk will reproduce it; so, we have
the option to create our own sequence of events without recording. For the preceding
events, we will write a script such as the following:

Input username tap
Input username enterText us

If we click on the Play now button, we will see all these steps executed on any device.
We could record the scripts on an Android phone and play them on an iOS device.

Apart from recording and playing scripts, we can have verification commands. For
instance, if we had a button that cleared all the input fields, we can add a verification
command during the script using currentValue:

Input username tap
Input username enterText us
Input clearform click
Input currentvalue ""

This will report the result of the verification during execution, so we will be able to
check whether all our verifications are passed correctly. For example, clicking on
the button to clear the forms would need a click listener that clears every input text.
If, for some reason, we make modifications and the IDs of the elements change, a
MonkeyTalk test will report the problem with a command failed verification.

Wouldn't it be nice to have a tool that runs these UI tests for us, along with unit and
integration tests, every time we make changes in our app? This solution exists, and
it's called Continuous Integration.

Continuous integration
It is not our intention to explain how to build a continuous integration system
because it's out of the scope of this book and it is not usually the job of an Android
developer to set up the environment. However, you should be aware of what it is
and how it works as it's directly related with Android.

A good suite of automated tests is always better combined with CI or a continuous
integration solution. This solution will allow us to build and test our application
every time there is a code change.

Debugging and Testing on Android

[236]

This is the way most companies with big projects work. If they have a team of
developers, the code is usually shared in a repository, and they build a CI system
connected to the repository. Every time a developer makes and commits a change
to the repository, the collection of tests is executed, and if the result is successful,
a new Android executable file (APK) is built.

This is done to minimize the risk of problems. In a big application, which takes
years to be developed with different people working on it, it would be impossible
for a new developer to start making changes without breaking or changing any of
the existing features. This is because either not all the people in the project know
what all the code is for, or the code is just so complex that modifying a component
alters others.

If you are interested in implementing this solution, we can point you to
Jenkins, originally called Hudson at https://wiki.jenkins-ci.
org/display/JENKINS/Meet+Jenkins.

Apart from testing and building our app, Jenkins will generate a test cover report,
which will allow us to know the percentage of our code that is covered by unit and
integration tests.

https://wiki.jenkins-ci.org/display/JENKINS/Meet+Jenkins
https://wiki.jenkins-ci.org/display/JENKINS/Meet+Jenkins

Chapter 11

[237]

Summary
In this chapter, we started learning how to use logs in our app in an advanced way,
and we took a quick overview of the debugging process. We explained what tests
are and how to create unit and integration tests with Robolectric and Espresso,
respectively.

We also created UI tests, starting with stress tests with the The Monkey, then
generating random events, and later started testing with MonkeyTalk, recording
event flows that can be played again verifying the output. To finish, we spoke about
continuous integration to discover how companies put together the tests and the
building system for an Android app.

In the next chapter, which is the last chapter of this book, we will take a look at
how to monetize our app, how to build the app using different build flavors, and
obfuscating the code, leaving it ready to be uploaded to App Store.

[239]

Monetization, the Build
Process, and Release

This is the final chapter of the book; what we have left to do is monetize our app,
generate different versions of it, and release and upload it to Play Store.

We will complete the build process by creating different build types and
generating paid versions of the app without advertisements and a free version with
advertisements. All of this will be in the same project but will be exported as two
different apps.

Once the build process is finished, we will start implementing the advertisements
and explain key points about advertisement monetization; this will make it possible
to generate revenue using our application.

At the end, we will release the app and create an APK file of our APK signed with
a release certificate, obfuscating the code so that it can be decompiled. We will
upload it to Play Store and explain the key points to keep in mind during an app's
publication.

• Build variants
• Monetization

 ° Key points of advertisement monetization
 ° Adding advertisements

• Releasing
 ° Obfuscating and signing
 ° Exporting with Gradle

• Uploading to Play Store

Monetization, the Build Process, and Release

[240]

Using build variants
To explain how monetization with advertisements works on Android, we will add
advertisements to our application, but before this, we will set up a build process that
allows us to export two versions: the paid version and the free version. This strategy
is commonly used in Play Store (having a free version with advertisements and a
paid version without advertisements) so that all users can use the app for free, but
the users that don't like advertisement and want to contribute with your app can
always buy the paid version.

There is a second way of implementing this strategy, which is creating just one
version and having the option of buying an add-on to remove the advertisements
inside the app with In-App billing products. The downside of this way is that your
app won't be listed in Play Store as a free app; it will be listed under "Offers in-App
purchases", so there might be users who aren't comfortable with this or children
that are not allowed by their parents to have paid apps or apps including payments.
The second problem is that In-App billing is not easy to implement; the process
is very complex with many steps involving setting up the service, creating the
products in Play Store, consuming these products from the app, and setting up a test
environment, where we can test the purchases without incurring charges. To show
the build variants, we can navigate to View | Tool Windows | Build Variants or
click on Build Variants in the left-hand side bar of Android Studio:

Build variants are a combination of build types and product flavors.

Chapter 12

[241]

If we have the build types, A and B, and product flavors, 1 and 2, the outcome will be
the following build variants:

A 1
A 2
B 1
B 2

To understand this better, we can see what build types and build flavors are and
how to create them.

Creating build types
A build type allows us to configure the packaging of an app for debugging or release
purposes.

Let's start by taking a look at our build.gradle file:

buildTypes {
 release {
 minifyEnabled false
 proguardFiles getDefaultProguardFile('proguard-android.txt'),
'proguard-rules.pro'
 }
}

In build.gradle, we can see that the build type release has two properties, which
we will explain at the end of the chapter.

By default, we have two build types: debug and release. Even if we don't see the
debug build type, all the variants will be generated in release and debug mode.

We can create more build types with different parameters; some of the parameters
we can use are to:

• Sign the configuration
• Debug the signing flag
• Change the version name or package name suffix

This means that we can have different types signed with different certificates with
the debug mode enabled or false and with a different package name.

The build type is not intended to create a different version of our app, such as demo
or full, free or paid, and so on. For this, we have product flavors. Every build type is
applied to every build flavor, creating a build variant as we saw before.

Monetization, the Build Process, and Release

[242]

Product flavors
We will create two product flavors and declare them in build.gradle using the
following code:

productFlavors {
 paid {
 applicationId "com.packtpub.masteringandroidapp"
 }
 free {
 applicationId "com.packtpub.masteringandroidapp.free"
 }
}

We have a paid flavor, which is the app without advertisements, and a flavor called
free, which is the free version with advertisements. For each product flavor, we can
create a folder at the ../src/ level of our project. We don't need a folder for our paid
version as it will be main by default.

This way, we can have different classes and resources for each build, even a different
AndroidManifest.xml file. Our app will share the common code between the paid
and the free versions in the main folder, with a specific code for ads in the free folder.

Chapter 12

[243]

To switch between the different versions, we can simply change the dropdown in the
build variant window, as in the following screenshot:

Once a build variant is selected, we can either run the app or export it, and it will run
or export the selected flavor accordingly. These can be configured to have a different
package name and a different version name.

Now, we will take a look at how to add a specific code to the free version that won't
be included in the main paid version.

Monetization in Android
We will describe the three common ways to earn money through an application.

Firstly, we can sell the application for a price in Play Store. There are some cases
where charging for your app makes more sense than providing a free app with
adverts or in-app products. If you create an app with big value for a small amount
of users, you should definitely think about this option. For instance, if we were
to release an app to professionally design houses for architects, we would know
that our app will not be downloaded by millions of users; it's for a specific and
targeted audience looking for quality software. We won't make enough profit with
advertisements and our users will be keen to pay a good amount for software that
makes their job easier. There is always a risk in asking for the money up front; even if
the user has the option to obtain a refund for the app, he/she might not be attracted
enough to try it. That is why we should consider the second model.

Monetization, the Build Process, and Release

[244]

The second option is known as a freemium model. We release a free app but include
in-app purchases in it. Applied to the same example of an app to design houses,
we could offer three designs for free so that when the user is comfortable with our
product, we can ask him/her to purchase a one-time license or a subscription to
continue using the app. It's very common in games, where you can purchase items
for your character. It is in games where we can see how this model can also be
combined with the third model to get the maximum revenue possible.

The third model of monetization is the advertisement model; we place adverts in our
apps, and when the user clicks on them, we get revenue. We can use different types
of advertisements—from full screen advertisements to small banners at the bottom.
We'll focus on this model. Implementing it is easier than you can imagine. But before
implementing it, we need to explain what terms such as CPC (Cost Per Click),
CTR (Click Through Rate), fill rate, and so on mean, which will help us choose a
good advertisement platform and provider. This is also necessary to understand the
metrics and be able to read the charts to know how the advertisements in your app
are performing. Having advertisements in different places can change the revenue;
however, we need to maximize the revenue without annoying the user. If we offer
the user the option to remove advertisements for a small amount of money with an
in-app product or with a paid version without advertisements, we can increase the
number of advertisements. It's best for the user if they know that they have a choice.
If they choose to live with the advertisements, it's their decision, and it won't annoy
them as much as if we placed a lot of advertisements without the option to remove
them.

Key points in advertisement monetization
We will explain the basics to understand how advertisement monetization works.
There are a few concepts in the business with abbreviations that can be confusing at
first.

Once we register with an advertisement platform, we will see a reports page with
stats about our app. Here is an example of the dashboard from the advertisement
network, AdToApp:

Chapter 12

[245]

Here, we can see requests, fill rate, impressions, clicks, CTR, eCPM, and revenue.
Let´s consider each of them.

Requests mean the number of times our app asked the advertisement network for an
advert. For instance, if we decide to add a full screen advertisement at the start of our
app, every time we start the app, there will be a request to the server to get back an
advertisement.

We don't have the advertisement inside our app; what we have is a placeholder,
a frame, and an AdView, which will be filled with content provided by the
advertisement network. Sometimes, the advertising network doesn't have an ad for
us at the moment of the request, which is why the next concept is important.

Fill rate is a percentage derived by the amount of delivered ads divided by the
amount of requested ads. For instance, if we start our app ten times and only get
back adverts five times, we will have a fill rate of 50 percent. What we want in a good
ad network is a fill rate of 100 percent. We want to show as many ads as possible and
with a good CPC.

Monetization, the Build Process, and Release

[246]

CPC, or cost per click, is how much we earn each time a user clicks on an
advertisement in our app; the higher it is, the most revenue we get. The advertiser
determines the CPC for an advertisement. Some advertisers may be willing to pay
more per click than others.

Many clicks with low CPC is not necessarily better than a few clicks with high CPC.
That's why the quality of the advertisements that we have is important.

Impressions are how many times an advertisement is shown to the user. In the
previous example, with ten advertisement requests and five failed, we would have
five impressions. Impressions don't generate revenue if the user doesn't click on
them.

Clicks are the number of times a user clicks on an advertisement. This is what
generates the revenue based on the CPC. So, five clicks with a 0.5$ CPC will generate
5x0.5, which is 2.5$.

CTR, or click through rate, is the percentage given by the amount of clicks that your
app receives divided by the amount of impressions. If we have 100 advertisements
and one click, our CTR will be 1 percent. This amount is generally under 5 percent;
users don't click on every advertisement they see, and you could have problems with
an advertisement platform, such as Admob, cancelling your account and payments
if they believe you are cheating by forcing the user to click on the advertisement.
Let's say that we show a dialog at the start of our app and ask the user to click on an
advertisement to continue using our app. This will basically give us 100 percent CTR;
for every impression, there will be a click, and this is not allowed. We can't, under
any circumstances, promote a click.

Advertisement providers want their advertisement to be seen by someone
interested in it; they don't want to pay for the click of a person not interested in their
advertisement, who will close it after a second. It could be that you have a high CTR
because you have a good spot in your app and the advertisements are of interest to
every user. If this happens, you will have to explain to your advertisement network,
or some, such as Admob, will shut down your account. But we shouldn't be too
unfair to them; they do this because they have found a lot of people trying to break
the rules, and such a massive company can't focus on individuals, so they need to
have objective filters.

Other advertisement network companies are more flexible with this; they usually
assign an agent to you, who you can contact frequently on Skype or e-mail, and in
case of any problem, they usually let you know.

Chapter 12

[247]

eCPM stands for "effective cost per thousand impressions". It is calculated by
dividing the total earnings by the total number of impressions in thousands. This
is basically a quick way of knowing how good you are doing just by looking at a
number—very useful to compare advertisement networks. It's a number usually
between $0 and 3$.

We need to consider that this does not include the fill rate. It is the cost per thousand
impressions and not per thousands requests. A three dollar eCPM with a 50 percent
fill rate is the same as one and a half dollar eCPM with 100 percent fill rate.

What makes an advertisement network good is a high fill rate with a high eCPM. We
need both to be high; adverts with expensive clicks and not enough fill rates won't
produce any revenue because they simply won't be shown.

The guys from AdToApp created a good graphic explaining this:

This graphic represents what we have been talking about; a premium advertisement
network with a very high eCPM and a low fill rate is represented as a tall but empty
building with the lights off.

We are finished with the theory, and we can start integrating an advertisement
solution; in this case, we will choose AdToApp.

Monetization, the Build Process, and Release

[248]

Adding advertisements with AdToApp
There is no way to know which advertisement provider is better for you; the best
you can do is to try different ones and have a look at the stats.

From experience, we like to use AddToApp because apart from the good delivery
results, it's really easy to integrate, and it can be included in your app even if you
have another network. Therefore, it's really easy to measure its performance.

It's ideal to use in this book with MasteringAndroidApp as it allows us to use different
types of advertisements, full screen advertisements, banners, videos, and so on.

There are mediators for more than 20 different advertisement networks, so including
their SDK, we will have access to plenty of advertisements with a high fill rate
guaranteed. Regarding their eCPM, they analyze which network is giving better
results for you; so, if they can deliver advertisements from multiple networks, they
will deliver the ones with better results.

We can start creating an account at https://adtoapp.com/?r=OZ-kU-
W9Q2qeMmdJsaj3Ow.

https://adtoapp.com/?r=OZ-kU-W9Q2qeMmdJsaj3Ow
https://adtoapp.com/?r=OZ-kU-W9Q2qeMmdJsaj3Ow

Chapter 12

[249]

Once the account is created, we will create an app using the package name of our app.

We will click on the SDK button to download their SDK and get configuration values
for the integration.

The integration is straightforward; the SDK will contain an AdToAppSDK.jar file,
which we need to copy into libs. We need to add Google Play Services in build.
gradle and the support library v7, but we already have this.

We need to add the basic permissions to the manifest, which we already have as
well, using the following code:

<uses-permission android:name="android.permission.INTERNET" />
<uses-permission android:name="android.permission.ACCESS_NETWORK_
STATE" />
<uses-permission android:name="android.permission.WRITE_EXTERNAL_
STORAGE" />
<uses-permission android:name="android.permission.READ_PHONE_STATE" />

Monetization, the Build Process, and Release

[250]

Then, we need to add extra mandatory assets in the manifest, which can be copied
from the same website; it contains the keys of our account. You can find them under
the first section, as shown in the following screenshot:

Lastly, we can take a look at how to implement Interstitials & Banners or rewarded
ads. Rewarded advertisements are the type of advertisements that pop up in a
game and say, Watch this video and get (gold, gems, and so on). The viewing of these
advertisements is totally up to the users if they want the reward:

If we choose interstitials and banners, we need to initialize them depending on
whether we want only video advertisements, only images (banners), or both images
and videos in an interstitial.

In the website, depending on the type of advert you want, the necessary code will be
shown.

The SDK is really flexible; we can go further and set callbacks to know when the
banners were loaded and clicked on. This allows us to track the number of clicks in
our advertisements and verify that they are the same as in the AdToApp console,
making the process transparent.

Chapter 12

[251]

If we need extra help, we can activate logs in the SDK, which will inform us in case
of any problem.

Now, remember the good practices we mentioned at the start of the section about
maximizing the number of advertisements without disturbing the user too much and
implementing them in your app to start getting revenue!

Releasing our app to Play Store
Finally, our app is ready! This is the best moment while developing a new app; it is
time to upload it to Play Store, get feedback from users, and hopefully get thousands
of downloads.

We need to export the app to an APK file; in order to be uploaded to Play Store,
it has to be signed with a release certificate. This point is very important; once an
application is signed with a certificate, if we upload it to Play Store and want to
upload a new version in the future, it has to be signed with the same certificate.

This certificate will be created by us during the release process. It needs an alias and
a password, so ensure that you remember these details and save the certificate file
in a safe place. Otherwise, say your app gets good ratings and a good number of
downloads, and you want to update the version, but you don't have your certificate
or have forgotten the password. In this case, you won't be able to update, you will
have to upload a new app with a different package name, and it will start with zero
downloads and zero ratings.

Monetization, the Build Process, and Release

[252]

Code obfuscation
Another important thing to take into consideration while releasing the app is
code obfuscation. If we export the app without obfuscating the code, anyone can
download the APK and decompile it, allowing them to see your code, which can be a
security problem if you have Parse IDs, server access details, a GCM project number,
and so on in it.

We can obfuscate the code using Proguard. Proguard is a tool included in the Android
build system. It obfuscates, shrinks, and optimizes the code, removing unused code
and renaming classes, fields, and methods to prevent reverse engineering.

Beware of this renaming of classes and methods; it can affect your crash and error
reports as the stack trace will be obfuscated. However, this is not a problem as we can
retrace them with a mapping file that we will save while releasing the app, which will
allow us to convert the crash and report to readable and not obfuscated code.

To activate Proguard, we need to set the minifyEnabled property to true in
buildTypes. You can execute the following code for this:

buildTypes {
 release {
 minifyEnabled true
 proguardFiles getDefaultProguardFile('proguard-android.txt'),
'proguard-rules.pro'
 }
}

In our project, we have a proguard-rules.pro file, where we can add the rules
to be considered while obfuscating. For instance, some third-party libraries cannot
work properly if we obfuscate them, and there is no risk in leaving these libraries
without obfuscation as they are not something that we created; we just added them
to our project.

Chapter 12

[253]

To prevent a third-party library from being obfuscated, we can add the rule -keep
along with the rule and -dontwarn to ignore warnings. For instance, we
added calligraphy to use custom fonts; this is how we can ignore it during the
obfuscation:

DONT OBFUSCATE EXTERNAL LIBRARIES

CALLIGRAPHY
-dontwarn uk.co.chrisjenx.calligraphy.**
-keep class uk.co.chrisjenx.calligraphy.** {*;}
TIMBER
-dontwarn timber.log.**
-keep class timber.log.** {*;}

Using keep and the name of the package, we will keep all the classes inside this
package.

We will add Proguard in the debug mode to create a crash intentionally and see how
the stack trace looks obfuscated:

Caused by: java.lang.NullPointerException: Attempt to invoke virtual
method 'void android.view.View.setVisibility(int)' on a null object
reference
 at com.packtpub.masteringandroidapp.SplashActivity.
onCreate(Unknown Source)

We can copy this stracktrace in a text file and go to app/build/outputs/
mapping/product_flavor_name/ release_or_debug/mapping.txt to get our
mapping.txt file.

Consider that we execute the retrace command in <sdk_root>/tools/proguard
with the following code:

retrace.sh [-verbose] mapping.txt [<stacktrace_file>]

In this case, we will have the crash in the correct line, as follows:

Caused by: java.lang.NullPointerException: Attempt to invoke virtual
method 'void android.view.View.setVisibility(int)' on a null object
reference
at com.packtpub.masteringandroidapp.SplashActivity.
onCreate(SplashActivity.java:21)
at android.app.Activity.performCreate(Activity.java:6289)

Monetization, the Build Process, and Release

[254]

Remember to save a copy of mapping.txt with every release of your app; this file
is overwritten every time we release it, so it's very important to save the file at the
moment of every release. Alternatively, if you have a repository and you tag the
commits for every release, you can go back and generate the same release again,
which will have the same mapping file in theory.

Now that we have our app protected against reverse engineering, we can continue
with the release process.

Exporting the app
When we export an application, what we do is create an APK file in the release mode
and sign it with a certificate. This certificate is proof that an app in Play Store is ours,
and with it, we can upload the same app as we explained before. We will export the
app and create a certificate this time.

To export our application, we have two ways: one way is to use Gradle and the
terminal inside Android Studio and the second way is to use the wizard in Android
Studio. We will see both, but let's create the certificate using the second way first.

Navigate to Build | Generate Signed Apk; you will see a dialog similar to the
following:

If we have exported this app before and created a certificate for it then, we just need
to select a path and insert the alias and password, and this will export a new version
of the app signed with the existing certificate.

Chapter 12

[255]

For us, this is the first time that we are exporting MasteringAndroidApp, so we will
click on Create new…. On the next screen, we need to select the path where will save
the certificate, which is a .keystore file.

We also need a password for the keystore and a password for the alias inside the
certificate. For a date with validity, 100 years will be okay; if your app lives more
than you, it won't be your problem! Finally, some personal information in at least
one field is required here:

Finally, it will ask us which flavor we want to export, and it will create the .apk,
pointing to us the path of the file.

This way is straightforward, but there is an automated way to export the app using
the command line and Gradle; it's very useful if we want to build the app with
Jenkins, for instance.

Monetization, the Build Process, and Release

[256]

To do this, we need to add a signing configuration in build.gradle so that when the
app is generated automatically, it will know which keystore and which alias and
passwords to use. The following code will help in doing this:

signingConfigs {
 release {
 storeFile file("certificate.keystore")
 storePassword "android"
 keyAlias "android"
 keyPassword "android"
 }
}

There is no need to say that this can lead to a security problem; the password is
written in build.gradle and the certificate file is included in our project. If we do
this, we need to keep the project safe. If this is a concern, you can read the password
and the alias at runtime with the following code:

storePassword new String(System.console().readPassword("\n\$ Enter
keystore password: "))
keyAlias System.console().readLine("\n\$ Enter key alias: ")
keyPassword new String(System.console().readPassword("\n\$ Enter key
password: "))

When we run the command to generate the signed APK, it will ask us for the
password alias and alias password. We can use the following line of code for this:

>./gradlew assembleRelease

With our app exported, we can proceed to the last step: uploading to Play Store.

Chapter 12

[257]

Uploading our app to Play Store
To publish an app, we need a Google developer account. If you don't have one, you
can obtain one from https://play.google.com/apps/publish/.

Creating a publisher account
The first step to creating a publisher account is to enter the basic information and
read and accept the developer distribution agreement. The second step is the
payment of a development license fee of 25 dollars for the creation of the account.
This is all we have to pay to publish an app, and it's paid just a single time—one
single payment for a lifetime's license. We can't complain, considering in iOS, the fee
is 99 dollars yearly.

The final and third step needs the developer's name, which will appear under the
name of our application. Take a look at the following example in Google Inc:

We also need the e-mail, a mobile number, and our website, which is optional.
According to Google, it is needed in case someone has to contact us in relation to the
content published.

https://play.google.com/apps/publish/

Monetization, the Build Process, and Release

[258]

The Google Play Developer console
When we open the publisher account, if we have no apps published, we will see four
of the main features of the developer console, as shown in the following image:

The first option is to publish an Android app, and it is the option we will follow in
the book. However, before this, we will describe quickly the other options to keep in
mind.

The second option is about the Google Play game services. If you develop a game
where you want the players to save and submit their score and have a scores
ranking, you will need a server to store these scores and retrieve them, maybe even
have a username and a login for the player. The game services do this for us.

It provides an API that is shared across games, linked with the Google account of
the user, where we can manage leaderboards and achievements. It even provides the
API and infrastructure to implement multiplayer games, both real-time multiplayer
and turn-based ones.

Chapter 12

[259]

The third option, the one at the bottom to the left, is about sharing the developer
console. We might want to allow other developers to update an app. This will help,
for instance, in the case of a company, where there will be people in charge of setting
the name, description, images of the app, and marketing in general and other people
in charge of the app upload and the developers. We can configure the access to the
console and to a specific application.

Monetization, the Build Process, and Release

[260]

The fourth and final option is the merchant account; we need this if want to sell paid
apps or in-app products. This is an example of the merchant account from a paid
app; we can see payments completed and cancelled. If a user purchases our app, he/
she has two hours to claim a refund in case he/she didn't like it.

We saw an empty developer console with the four main options because we didn't
have an app published yet; if we had apps published, this is what we would see. The
Publish button is at the top in this case:

On the initial screen, we can see the different apps, whether they are free or paid, the
active installs, and the total installs. Active installs mean the people that have the app
at the moment and that did not uninstall it after downloading. Total installs mean
the count of all the times the app was installed.

We can also see the ratings and number of crashes. We can take a look at more
details, such as comments from the users and error crash reports, if we click on the
app and go into the detail view.

Chapter 12

[261]

Publishing an app
Continuing with the upload process, when we click on + Add new application, we
are asked for a name and a default language. After this, we can choose how to start
the process by uploading an APK or preparing the store listing.

These are two different processes: one is uploading the APK file, and the other is
setting the title of the app, a description, an image, if it is paid or free, and so on—all
the different options to be shown in Play Store.

Let's start with the uploading of the APK file and the different testing groups.

Uploading the APK file
Remember that when we upload an APK, the package name of our application has
to be unique in the Play Store; we can only upload an APK with an existing package
name if we want to update an app previously published by us and if the certificate
that we used to sign the initial download is the same certificate we used to sign the
new APK.

Monetization, the Build Process, and Release

[262]

The first things we notice when we click on upload the APK are the three different
tabs with the names: Production, Beta, and Alpha.

We can release our app in two test groups and in production. Production means
that it is published in Play Store; it is public and visible to everyone. For a while, this
was the only option available in the developer console until they added the staged
rollout.

The staged rollout allows us to release the app to a limited group of users. To select
the users, we have different options; we can invite these users by e-mail, share a
link, or create a Google group or G+ community, inviting the users to the group
and sharing the link of the app with them. Only these users will then see the app
in the Play Store. This is useful to get feedback from some users before our app is
released to the world and, of course, to prevent bugs and bad reviews of the app in
production. We can also select the percentage of users our app is to be published to
in production; for instance, if we have a million users, we can release to 10 percent
first and double-check that everything is ok before doing a massive release.

We can have different versions of our app in different stages; for instance, we can have
version 1.0.0 published, 1.0.1 in beta testing, and 1.0.2 in alpha testing. We can roll out
the APK from alpha to beta and from beta to production, but we can't roll back.

The concept that we will now explain is very important. Once we publish a version
of our app, we can't go back to a previous published version. It could happen that
we have a working version of our app in the Play Store, we develop a new version,
it works fine in our device, and we think it is ready to be uploaded. It's Friday
afternoon, and we don't bother testing because we think, "Oh, I'm sure it's fine. I
just did a small change of two lines, that won't affect anything". We upload version
1.0.4. After a couple of hours, we start receiving crash reports from Play Store. It's
the moment of panic; the only thing we can do now is undo the publishing of the
current app to prevent more damage and start working on a fix as soon as possible.
However, if the fix is not easy, the most sensible thing would be to generate the last
known working version again (1.0.3), increase the version number and code to 1.0.5,
and upload it to Play Store.

Chapter 12

[263]

However, this could get worse; if we had a database and the structure changed from
1.0.3 to 1.0.4 and our code is not ready to accept a downgrade of the database from
1.0.4 to 1.0.3 renamed as 1.0.5, we will know that we will be working all weekend,
only to be fired on Monday morning. To sum up our point, it is much better to
prevent rather than heal; so, use the staged rollout, do all the testing necessary before
releasing, and avoid releasing on Friday afternoon just in case.

Preparing the store listing
Preparing the store listing for a developer can be the most boring part, but it needs to
be done in order to publish an app; there are some mandatory assets and fields that
we can't skip.

First, we need a title for our app, a short description of up to 80 characters and a long
description of up to 4000. The title will be the first thing that we see while searching
for our app; the short description can be seen, for instance, in tablets while browsing
apps. This is the elevator pitch of our app, and we need to describe it here in the main
function:

The long description will be shown when we go to the detail view of this app. In
terms of appearing in more searches and earning visibility, it is good to identify and
add keywords related to our app in the description. The use of unrelated keywords
to attract downloads is banned from Google, and if you do this, you will receive
a warning in the developer console, and your app will need some changes before
being approved and published again.

At this point, we have the option to internationalize our app's listing, repeating these
three fields mentioned in as many languages as we want, and they will be displayed
in different languages automatically, depending on the user's language.

Monetization, the Build Process, and Release

[264]

The next step is to develop the graphics, and we need to take screenshots here.
Screenshots can easily be taken in your device with a key combination; for instance,
in a Samsung Galaxy 3, this is done by pressing the volume down and menu keys at
the same time. They can also be taken from Android Studio by selecting the camera
icon in the Android view.

Apart from screenshots, we need a 512 x 512 hi-res icon; this must be the same as
or very similar to the icon that we are using for our app in the uploaded version,
otherwise it will throw a warning. For this reason, it's good to create the icon in 512
x 512 always and then scale it down to use in our app. The other way around will
result in a scaled up image with bad quality. This is an example of where the icon is
displayed:

Chapter 12

[265]

The last image we need is the feature graphic. This is a 1024 x 500 graphic that shows
the features of our app. This is the graphic that will be shown in our app featured on
Google Play. It will be shown in the Play Store app; if we have a promo video, the
feature graphic will still be shown while the video is not playing.

We need to continue with categorization; depending on whether our app is a game
or an application, we need to choose different categories. If you are not sure about
which category to choose, take a look in Play Store for apps similar to yours.

After this, we need to select the content rating; starting in May 2015, every app
needs to have the new rating system. According to Google, this new content rating
provides an easy way to communicate familiar and locally relevant content ratings
to your users and helps improve app engagement by targeting the right audience
for your content as seen in https://support.google.com/googleplay/android-
developer/answer/188189.

https://support.google.com/googleplay/android-developer/answer/188189
https://support.google.com/googleplay/android-developer/answer/188189

Monetization, the Build Process, and Release

[266]

Our contact details are automatically completed, so the last thing we need to do is
accept the privacy policy, and then we can click on Pricing & Distribution.

This is where we make our app free or paid; this step can't be reverted. If the app is
a paid one, we can set a price, and Google will convert it to different currencies in
different countries; although, we can set different prices for each country. We can opt
into different developer groups; for instance, if we develop an app for kids, we can
include it in designed for families. This will increase our chances to be highlighted
in kids' sections and distributed for third-party networks related with kids' apps.

In this section, we can select the countries were we want our app to be distributed as
well. This can be used as well as a staged releasing strategy the first the time the app
is published.

Completing all of the above, we will be able to publish our app by clicking on
Publish in the upper right corner.

Chapter 12

[267]

If the button is disabled, you can click on Why can't I publish?, and it will list
the requirements on the left-hand side. Once the app is published, it can take a
couple of hours to appear in the Play Store. The easiest way to find out whether
the app is published yet is to navigate to our app using the package name in the
URL. In our case, the URL would be, https://play.google.com/store/apps/
details?id=com.packtpub.masteringandroidapp.

This is it! We have completed the book from the beginners' to a more advanced
level with enough knowledge to upload an app well-designed and built that is
backward-compatible and monetized.

We wish you success with your apps and we hope you make the next Angry Birds
or the next WhatsApp!

Thanks a lot for purchasing and finishing this book. For suggestions,
improvements, or any feedback, don't hesitate to contact me at
Antonio@suitapps.com or follow me on Twitter at @AntPachon.

Summary
In this final chapter of the book, we started learning how to create different builds
of our applications, combining build types with product flavors to obtain build
variants.

After that, we learned how to monetize our app, adding different types of adverts
and explaining the key points of advertisement monetization.

We also exported the app, obfuscated and signed with a release certificate, from
Android Studio and from the command line using Gradle.

To finish, we uploaded and published our app in Play Store.

https://play.google.com/store/apps/details?id=com.packtpub.masteringandroidapp
https://play.google.com/store/apps/details?id=com.packtpub.masteringandroidapp
Antonio@suitapps.com

[269]

Index
A
action bar 116
activity references 142
Adapter pattern 72, 73
AdToApp

used, for adding advertisements 248-251
advertisement monetization 244-247
analytics

about 193
error report 198-200
with Parse 194-197

Android
monetization 243, 244
testing on 222

Android 6 Marshmallow
about 4
direct share 8
fingerprint authentication 7
power-saving, optimizations 6
runtime permissions 5
text, selecting 7

AndroidManifest.xml
configuring 205, 206

Android Studio
URL 10

AnimatedVectorDrawable
animating with 136

API key
getting 203

app
APK file, uploading 261-263
code obfuscation 252-254
content rating, URL 265

debugging 220-222
exporting 254-256
Google developer account, URL 257
publisher account, creating 257
publishing 261
releasing, to Play Store 251
store listing, preparing 263-267
uploading, to Play Store 257

app bar 116
app-navigation pattern

basic structure 14-16
dashboard pattern 16, 17
selecting 13, 14
sliding panel 17, 18
tabs pattern 19, 20

app standby 6
AsyncTasks 63

B
Back navigation 122, 123
build types

debug type 241
release type 241

build variants
build types, creating 241
product flavors 242, 243
using 240, 241

C
CardView

about 106-108
Design-time layout attributes 109-111

[270]

cloud database
Androids Application class 39, 40
creating 36-41

concurrency
about 60, 61
AsyncTasks 62-64
handlers and threads 61, 62
loaders 65
services 64

content
consuming, from Parse 42, 44-46
displaying 47-49
storing, in Parse 42-44

content provider
about 163
adding 169, 170
creating 164-168

context references 142
continuous integration 235, 236
CoordinatorLayout

used, for adding motion 117-122
CPC (Cost Per Click) 244
CTR (Click Through Rate) 244
cursor 156-162
CursorAdapter 174-177
CursorLoader

implementing 171-173
custom fonts

in Android 111-113

D
dashboard pattern 16, 17
data

persisting, mechanisms 146
database

contract 147, 148
creating 146, 147
open helper 148-150

Database Access Object (DAO)
about 152-155
cursor 156-162
query, performing 155
raw query, using 156

database sync, with UI
about 171
CursorLoader, implementing 171-173
pull, to refresh with

SwipeRefreshLayout 179, 180
RecyclerView and CursorAdapter 174-178

debug certificate
about 203
fingerprint, displaying 203

deserialization 56
design support library 114
doze mode 6

E
Espresso

configuring 227
integration tests with 226

F
fragments

about 21
Fragment Manager 24, 25
importance 22-24
stack 25, 26

freemium model 244

G
garbage collector (GC) 139
GCM (Google Cloud Messaging)

about 186
used, for receiving zapush

notifications 186-189
used, for sending push

notifications 186-189
Google

app standby 6
doze mode 6

Google Developer Console project
creating 204, 205

Google Gson (Gson) 53-56
Google Volley

about 49-51
benefits 50
lightning-fast network 52

[271]

H
handlers 61, 62

I
images

downloading 126
downloading, traditional way 126-130
downloading, with Volley 131-133
mastering 134
vector drawables 134, 135

integration test
Espresso, configuring 227
running 231
with Espresso 226
writing 228-230

J
J2EE (Java 2 Enterprise Edition) 153
JSON 53, 54

L
leaks

detecting 139-141
locating 139-141
preventing 142

leaks, preventing
activity references 142
context references 142
WeakReference, using 142, 143

lists
about 76
custom Adapter, creating 81-87
ListViews using, built-in views used 77-80
ViewHolder pattern, applying 89-92
views, recycling 88

loaders 65
logs

about 218
working with 218, 219

M
map

adding 207
fragment, adding 207-209
fragment, implementing 210

marker
adding 212
data, retrieving from Parse 212
displaying, for each location 213, 214
title, adding to mark 215

MasteringAndroidApp
creating 9, 10

material design
about 2-4
URL 16

memory management
about 139
leaks, detecting 139-141
leaks, locating 139-141
leaks, preventing 142

monetization
about 243
advertisement model 244
freemium model 244

MonkeyTalk
used, for recording UI tests 234, 235

motion
adding, CoordinatorLayout used 117-122

N
nine patch 137, 138
NotificationCompat

URL 193
using 192, 193

O
observer pattern 70-72
OkHttp 49, 52

[272]

P
Parse

about 36
analytics with 194-197
content, consuming from 42-46
content, displaying 47-49
content, storing 42, 43
push notifications 190-192

Parse SDK (System Development Kit)
adding, to project 37-39

patterns
about 66, 67
Adapter pattern 72, 73
observer pattern 70, 71
singleton pattern 67, 68
singleton pattern, in application

class 68-70
Picasso 133, 134
Play Store

app, exporting 254-256
app, publishing 261
app, releasing to 251
app, uploading to Play Store 257
Google Play Developer console 258-260
publisher account, creating 257

POST-sending service
URL 189

Proguard 252-254
project

configuring 202
push notifications

about 184, 185
NotificationCompat, using 192, 193
receiving, GCM used 186-189
sending, GCM used 186-189
with Parse 190-192

Q
QA (Quality Assurance) 232
query

parameters 155

R
raw query

using 156
RecyclerView

about 93, 174, 178
grid, using 93, 94
implementing 95-99
items, clicking 100-103
list, using 93, 94
stack, using 93, 94

release certificate 203
Robolectric

about 222
configuring 223
unit test 223, 224
unit tests, running 225, 226

Roboto font
URL 112

S
services

about 64
IntentService 65

singleton pattern
about 67, 68
in Application class 68-70

sliding panel 17, 18
Stack Overflow

URL 31
stress testing

The Monkey used 232-234
SwipeRefreshLayout 179-181

T
TabLayout 114, 115
tabs

about 19, 20
URL 20

Timber
using 220

toolbar 116
tools

preparing 10-12
ToolTipPopup 142
transitions 31-33

[273]

U
UI tests

about 232
recording, MonkeyTalk used 234

Up navigation 122, 123

V
vector drawables 134, 135
ViewHolder pattern

applying 89-92
ViewPager

about 27
adapter 27-29
tabs, customizing 30
tabs, sliding 29, 30

views
recycling 88

Volley
used, for downloading images 131-133

W
WeakReference

using 142, 143

Thank you for buying
Mastering Android Application

Development

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order
to continue its focus on specialization. This book is part of the Packt Open Source brand,
home to books published on software built around open source licenses, and offering
information to anybody from advanced developers to budding web designers. The Open
Source brand also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty
to each open source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Asynchronous Android
ISBN: 978-1-78328-687-4 Paperback: 146 pages

Harness the power of multi-core mobile processors to
build responsive Android applications

1. Learn how to use Android's high-level
concurrency constructs to keep your
applications smooth and responsive.

2. Leverage the full power of multi-core mobile
CPUs to get more work done in less time.

3. From quick calculations to scheduled
downloads, each chapter explains the available
mechanisms of asynchronous programming in
detail.

Instant Android Systems
Development How-to
ISBN: 978-1-84951-976-2 Paperback: 100 pages

Get your hands dirty with Android Systems
Development through carefully thought-out source
code examples

1. Learn something new in an Instant! A short,
fast, focused guide delivering immediate
results.

2. A gentle introduction to Android Platform
Internals and how to make changes to the
system.

3. Gain the skills necessary for building high
quality systems code for the Android Platform.

Please check www.PacktPub.com for information on our titles

Augmented Reality for Android
Application Development
ISBN: 978-1-78216-855-3 Paperback: 130 pages

Learn how to develop advanced Augmented Reality
applications for Android

1. Understand the main concepts and
architectural components of an AR application.

2. Step-by-step learning through hands-on
programming combined with a background of
important mathematical concepts.

3. Efficiently and robustly implement some of the
main functional AR aspects.

Building Android Games with
OpenGL ES [Video]
ISBN: 978-1-78328-613-3 Duration: 01:42 hours

A comprehensive course exploring the creation of
beautiful games with OpenGL ES

1. Create captivating games through creating
simple and effective codes in Java.

2. Develop a version of the classic game Breakout
and see how to monetize it.

3. Step-by-step instructions and theoretical
concepts describe each activity before you
implement them.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Getting Started
	Introducing Material Design
	Introducing Android 6 Marshmallow
	Runtime permissions
	Power-saving optimizations
	Text selection
	Fingerprint authentication
	Direct share

	Creating MasteringAndroidApp
	Getting the tools ready
	Summary

	Chapter 2: Designing Our App
	Selecting an app-navigation pattern
	Basic structure
	The dashboard pattern
	The sliding panel
	Tabs

	Fragments
	Understanding the importance of fragments
	The Fragment Manager
	Fragments stack

	ViewPager
	Adapter
	Sliding tabs
	Customizing tabs

	Transitions
	Summary

	Chapter 3: Creating and Accessing Content from the Cloud
	Creating your own cloud database
	Parse
	Adding the Parse SDK to our project
	Android's Application class
	Creating the database

	Storing and consuming content from Parse
	Storing content
	Consuming content
	Displaying content

	Google Volley and OkHttp
	Google Volley
	OkHttp
	A lightning-fast network

	JSON and Gson
	Summary

	Chapter 4: Concurrency and Software Design Patterns
	Concurrency in Android
	Handlers and threads
	Introducing AsyncTasks
	Understanding services
	A type of service – IntentService

	Introducing loaders

	The importance of patterns
	The singleton pattern
	Singleton in the Application class

	The Observer pattern
	Introducing the Adapter pattern

	Summary

	Chapter 5: Lists and Grids
	Starting with lists
	Using ListViews with built-in views
	Creating a custom Adapter
	Recycling views
	Applying the ViewHolder pattern

	Introducing RecyclerView
	Using list, grid, or stack
	Implementing RecyclerView
	Clicking on RecyclerView items

	Summary

	Chapter 6: CardView and Material Design
	CardView and UI design tips
	Introducing CardView
	Design-time layout attributes
	Working with custom fonts in Android

	The design support library
	Introducing TabLayout
	Toolbar, action bar, and app bar
	Adding motion with CoordinatorLayout
	Back navigation and up navigation

	Summary

	Chapter 7: Image Handling and Memory Management
	Downloading images
	The traditional way of downloading images
	Downloading images with Volley
	Introducing Picasso

	Mastering images
	Vector drawables
	Animating with AnimatedVectorDrawable
	Working with the nine patch

	Memory management
	Detecting and locating leaks
	Preventing leaks
	Activity and context references
	Using WeakReference

	Summary

	Chapter 8: Databases and Loaders
	Creating the database
	The database contract
	The database open helper
	Database Access Object
	Performing a query
	Using a raw query
	Introducing cursors

	Content providers
	Sync database with UI
	Implementing CursorLoader
	RecyclerView and CursorAdapter
	Introducing pull to refresh with SwipeRefreshLayout

	Summary

	Chapter 9: Push Notifications
and Analytics
	Push notifications
	Sending and receiving notifications using GCM
	Push notifications with Parse
	Using NotificationCompat

	The importance of analytics
	Analytics with Parse
	The error report

	Summary

	Chapter 10: Location Services
	Configuring the project
	Getting the API key
	Displaying the debug certificate fingerprint
	Creating a Google Developer Console project

	Configuring AndroidManifest.xml

	Adding the map
	Adding the fragment
	Implementing MapFragment

	Adding a marker
	Retrieving data from Parse
	Displaying a marker for each location
	Adding a title to a marker

	Summary

	Chapter 11: Debugging and Testing
on Android
	Logs and the debug mode
	Working with logs
	Using Timber, the log wrapper

	Debugging our app

	Testing on Android
	Unit tests with Robolectric
	Robolectric configuration
	Our first unit test
	Running unit tests

	Integration tests with Espresso
	Espresso configuration
	Writing an integration test
	Running integration tests

	Testing from a UI perspective
	Launching The Monkey
	Recording UI tests with MonkeyTalk

	Continuous integration
	Summary

	Chapter 12: Monetization, the Build Process, and the Release
	Using build variants
	Creating build types
	Product flavors

	Monetization in Android
	Key points in advertisement monetization
	Adding advertisements with AdToApp

	Releasing our app to Play Store
	Code obfuscation
	Exporting the app
	Uploading our app to Play Store
	Creating a publisher account
	The Google Play Developer console
	Publishing an app
	Uploading the APK file
	Preparing the store listing

	Summary

	Index

