
www.allitebooks.com

http://www.allitebooks.org

Mastering Clojure

Understand the philosophy of the Clojure language
and dive into its inner workings to unlock its advanced
features, methodologies, and constructs

Akhil Wali

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Mastering Clojure

Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: March 2016

Production reference: 1180316

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78588-974-5

www.packtpub.com

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

Credits

Author
Akhil Wali

Reviewer
Matt Revelle

Commissioning Editor
Neil Alexander

Acquisition Editor
Aaron Lazar

Content Development Editor
Aishwarya Pandere

Technical Editor
Tanmayee Patil

Copy Editor
Merilyn Pereira

Project Coordinator
Nidhi Joshi

Proofreader
Safis Editing

Indexer
Rekha Nair

Graphics
Jason Monteiro

Production Coordinator
Melwyn Dsa

Cover Work
Melwyn D'sa

www.allitebooks.com

http://www.allitebooks.org

About the Author

Akhil Wali is a software developer. He has been writing code as a hobbyist since
1997 and professionally since 2010. He completed his post graduation from Santa Clara
University in 2010, and he graduated from Visvesvaraya Technological University in
2008. His areas of work include business intelligence systems, ERP systems, search
engines, and document collaboration tools. He mostly works with Clojure, JavaScript,
and C#. Apart from computers, his interests include soccer, guitar solos, and finding
out more about the universe.

I would like to thank two important women in my life for supporting
me and inspiring me to write this book—my mother Renuka and my
wife Megha. I also thank Matt Revelle and the Clojure community
for their fantastic input and ideas.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewer

Matt Revelle is a doctoral candidate in computer science at George Mason
University, where he works on machine learning and social network dynamics.
He started using Clojure in 2008 and it continues to be his preferred language for
many projects and his daily work.

I would like to thank Akhil Wali and Nidhi Joshi for helping me to
understand the purpose of this book and encouraging me to provide
feedback in a timely fashion.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

eBooks, discount offers, and more
Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at customercare@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles,
sign up for a range of free newsletters and receive exclusive discounts and offers
on Packt books and eBooks.

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

www.allitebooks.com

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
http://www.allitebooks.org

[i]

Table of Contents
Preface v
Chapter 1: Working with Sequences and Patterns 1

Defining recursive functions 1
Thinking in sequences 7

Using the seq library 9
Creating sequences 12
Transforming sequences 15
Filtering sequences 20
Lazy sequences 22

Using zippers 25
Working with pattern matching 30
Summary 33

Chapter 2: Orchestrating Concurrency and Parallelism 35
Managing concurrent tasks 36

Using delays 36
Using futures and promises 38

Managing state 42
Using vars 43
Using refs 46
Using atoms 54
Using agents 56

Executing tasks in parallel 62
Controlling parallelism with thread pools 64

Summary 67
Chapter 3: Parallelization Using Reducers 69

Using reduce to transform collections 70
What's wrong with sequences? 70
Introducing reducers 73

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Using fold to parallelize collections 80
Processing data with reducers 85
Summary 88

Chapter 4: Metaprogramming with Macros 89
Understanding the reader 90
Reading and evaluating code 93
Quoting and unquoting code 96
Transforming code 99

Expanding macros 99
Creating macros 101
Encapsulating patterns in macros 106
Using reader conditionals 109
Avoiding macros 111

Summary 112
Chapter 5: Composing Transducers 113

Understanding transducers 113
Producing results from transducers 117
Comparing transducers and reducers 119

Transducers in action 120
Managing volatile references 120
Creating transducers 122

Summary 127
Chapter 6: Exploring Category Theory 129

Demystifying category theory 129
Using monoids 132
Using functors 134
Using applicative functors 136
Using monads 138
Summary 143

Chapter 7: Programming with Logic 145
Diving into logic programming 145

Solving logical relations 146
Combining logical relations 150

Thinking in logical relations 152
Solving the n-queens problem 153
Solving a Sudoku puzzle 156

Summary 160

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[iii]

Chapter 8: Leveraging Asynchronous Tasks 161
Using channels 162

Customizing channels 168
Connecting channels 170
Revisiting the dining philosophers problem 173

Using actors 178
Creating actors 179
Passing messages between actors 182
Handling errors with actors 183
Managing state with actors 184
Comparing processes and actors 186

Summary 186
Chapter 9: Reactive Programming 187

Reactive programming with fibers and dataflow variables 188
Using Reactive Extensions 191
Using functional reactive programming 197
Building reactive user interfaces 202
Introducing Om 209
Summary 212

Chapter 10: Testing Your Code 213
Writing tests 213

Defining unit tests 214
Using top-down testing 216

Testing with specs 219
Generative testing 222
Testing with types 225
Summary 230

Chapter 11: Troubleshooting and Best Practices 231
Debugging your code 231

Using tracing 232
Using Spyscope 234

Logging errors in your application 237
Thinking in Clojure 239
Summary 241

Appendix: References 243
Index 245

www.allitebooks.com

http://www.allitebooks.org

[v]

Preface
Ever since the dawn of computers decades ago, there have been a number of
programming languages created for the purpose of writing software. One of the
earliest of these languages is Lisp, whose name is an abbreviation of the term "list
processing". Lisp has evolved greatly over time, and there are now several dialects
of Lisp. Each of these dialects emphasizes its own set of ideas and features. Clojure is
one among these Lisps, and it focuses on immutability, concurrency, and parallelism.
It emphasizes being simple, practical, and intuitive, which makes it easy to learn. It
is said that you have never realized how a language can be powerful until you have
programmed in a Lisp, and Clojure is no exception to this rule. A skilled Clojure
programmer can easily and quickly create software that is both performant
and scalable.

With the recent rise of parallel data processing and multicore architectures, functional
programming languages have become more popular for creating software that is both
provable and performant. Clojure brings functional programming to the Java Virtual
Machine (JVM), and also to web browsers through ClojureScript. Like other functional
programming languages, Clojure focuses on the use of functions and immutable data
structures for writing programs. Clojure also adds a hint of Lisp through the use of
symbolic expressions and a dynamic type system.

This book will walk you through the interesting features of the Clojure language.
We will also discuss some of the more advanced and lesser known programming
constructs in Clojure. Several libraries from the Clojure ecosystem that we can put
to practical use in our own programs will also be described. You won't need to be
convinced any more about the elegance and power of the Clojure language by the
time you've finished this book.

This book wouldn't have materialized without the feedback from the technical
reviewers and the effort of the content and editing teams at Packt Publishing.

Preface

[vi]

What this book covers
Chapter 1, Working with Sequences and Patterns, describes several elementary
programming techniques, such as recursion, sequences, and pattern matching.

Chapter 2, Orchestrating Concurrency and Parallelism, explains the various constructs
available in the Clojure language for concurrent and parallel programming.

Chapter 3, Parallelization Using Reducers, introduces reducers, which are abstractions
of collection types for parallel data processing.

Chapter 4, Metaprogramming with Macros, explains how we can use macros and
quoting to implement our own programming constructs in Clojure.

Chapter 5, Composing Transducers, describes how we can define and compose data
transformations using transducers.

Chapter 6, Exploring Category Theory, explores algebraic data structures, such as
functors, monoids, and monads, from the pure functional programming world.

Chapter 7, Programming with Logic, describes how we can use logical relations
to solve problems.

Chapter 8, Leveraging Asynchronous Tasks, explains how we can write code that
is executed asynchronously.

Chapter 9, Reactive Programming, describes how we can implement solutions
to problems using asynchronous event streams.

Chapter 10, Testing Your Code, covers several testing libraries that are useful
in verifying our code. This chapter describes techniques such as test-driven
development, behavior-driven development, and generative testing.

Chapter 11, Troubleshooting and Best Practices, describes techniques to debug your code
as well as several good practices for developing Clojure applications and libraries.

What you need for this book
One of the pieces of software required for this book is the Java Development Kit
(7 or above), which you can obtain from http://www.oracle.com/technetwork/
java/javase/downloads/. JDK is necessary to run and develop applications on the
Java platform. The other major software that you'll need is Leiningen (2.5.1 or above),
which you can download and install from http://github.com/technomancy/
leiningen.

http://www.oracle.com/technetwork/java/javase/downloads/
http://www.oracle.com/technetwork/java/javase/downloads/
http://github.com/technomancy/leiningen
http://github.com/technomancy/leiningen

Preface

[vii]

Leiningen is a tool for managing Clojure projects and their dependencies.
Throughout this book, we'll use a number of Clojure libraries. Leiningen will
download these libraries, and also the Clojure language itself, for us, as required.

You'll also need a text editor or an integrated development environment (IDE).
If you already have a text editor that you prefer, you can probably use it. Navigate
to http://dev.clojure.org/display/doc/Getting+Started for a list of
environment-specific plugins to write code in Clojure. If you don't have a preference, it
is suggested that you use Eclipse with Counterclockwise (http://doc.ccw-ide.org/)
or Light Table (http://lighttable.com/).

Some examples in this book will also require a web browser, such as Chrome
(42 or above), Firefox (38 or above), or Microsoft Internet Explorer (9 or above).

Who this book is for
This book is for programmers or software architects who are familiar with Clojure
and want to learn about the language's features in detail. It is also for readers who
are eager to explore popular and practical Clojure libraries.

This book does not describe the syntax of the Clojure language. You are expected
to be familiar with the language, but you need not be a Clojure expert. You are also
expected to know how functions are used and defined in Clojure, and have some
basic knowledge about Clojure data structures such as strings, lists, vectors, maps,
and sets. You must also be able to compile ClojureScript programs to JavaScript and
run them in an HTML page.

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"Hence, for trees that are represented as sequences, we should use the seq-zip
function instead."

A block of code is set as follows:

(f/defun fibo
 ([0] 0N)
 ([1] 1N)
 ([n] (+ (fibo (- n 1))
 (fibo (- n 2)))))

http://dev.clojure.org/display/doc/Getting+Started
http://doc.ccw-ide.org/
http://lighttable.com/

Preface

[viii]

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

(f/defun fibo
 ([0] 0N)
 ([1] 1N)
 ([n] (+ (fibo (- n 1))
 (fibo (- n 2)))))

Any command-line input or output is written as follows:

$ lein repl

Another simple convention that we use is to always show the Clojure code that's
entered in the REPL (read-evaluate-print-loop) starting with the user> prompt. In
practice, this prompt will change depending on the Clojure namespace that we are
currently using. However, for simplicity, code in the REPL always starts with the
user> prompt in this book, as follows:

user> (cons 0 ())
(0)
user> (cons 0 nil)
(0)
user> (rest (cons 0 nil))
()

For convenience, the REPL output in this book is pretty-printed (using the clojure.
pprint/pprint function). Objects that are printed in the REPL output are enclosed
within the #< and > symbols. We must note that the output of the time form in your
own REPL may not completely match the output shown in the code examples of this
book. Rather, the use of time forms is meant to give you an idea of the scale of the
time taken to execute a given expression. Similarly, the output of the code examples
that use the rand-int function may not exactly match the output in your REPL.

Some examples in this book use ClojureScript, and the files for these examples will
have a .cljs extension. Also, all macros used in these examples will have to be
explicitly included using the :require-macros clause of the ns form. The HTML
and CSS files associated with the ClojureScript examples in this book will not be
shown in this book, but can always be found in the book's code bundle.

Preface

[ix]

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for this book from your account at
http://www.packtpub.com. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have the files e-mailed directly
to you.

You can download the code files by following these steps:

1. Log in or register to our website using your e-mail address and password.
2. Hover the mouse pointer on the SUPPORT tab at the top.
3. Click on Code Downloads & Errata.
4. Enter the name of the book in the Search box.
5. Select the book for which you're looking to download the code files.
6. Choose from the drop-down menu where you purchased this book from.
7. Click on Code Download.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support

Preface

[x]

Once the file is downloaded, please make sure that you unzip or extract the folder
using the latest version of:

• WinRAR / 7-Zip for Windows
• Zipeg / iZip / UnRarX for Mac
• 7-Zip / PeaZip for Linux

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

[1]

Working with Sequences
and Patterns

In this chapter, we'll revisit a few basic programming techniques, such as
recursion and sequences, with Clojure. As we will see, Clojure focuses on the
use of higher-order functions to abstract computation, like any other functional
programming language. This design can be observed in most, if not all, of the
Clojure standard library. In this chapter, we will cover the following topics:

• Exploring recursion
• Learning about sequences and laziness
• Examining zippers
• Briefly studying pattern matching

Defining recursive functions
Recursion is one of the central methodologies of computer science. It allows us to
elegantly solve problems that have cumbersome non-recursive solutions. Yet, recursive
functions are discouraged in quite a few imperative programming languages in favor
of non-recursive functions. Clojure does no such thing and completely embraces
recursion along with all its pros and cons. In this section, we will explore how to
define recursive functions.

The following examples can be found in src/m_clj/c1/recur.
clj of the book's source code.

Working with Sequences and Patterns

[2]

In general, a function can be made recursive by simply calling it again from within the
body of the function. We can define a simple function to return the first n numbers of
the Fibonacci sequence as shown in Example 1.1:

(defn fibo
 ([n]
 (fibo [0N 1N] n))
 ([xs n]
 (if (<= n (count xs))
 xs
 (let [x' (+ (last xs)
 (nth xs (- (count xs) 2)))
 xs' (conj xs x')]
 (fibo xs' n)))))

Example 1.1: A simple recursive function

The Fibonacci sequence is a series of numbers that can be defined as
follows:
The first element F0 is 0 and the second element F1 is 1.
The rest of the numbers are the sum of the previous two numbers,
that is the nth Fibonacci number Fn = Fn-1 + Fn-2.

In the previously defined fibo function, the last two elements of the list are
determined using the nth and last functions, and the sum of these two elements is
appended to the list using the conj function. This is done in a recursive manner, and
the function terminates when the length of the list, determined by the count function
becomes equal to the supplied value n. Also, the values 0N and 1N, which represent
BigInteger types, are used instead of the values 0 and 1.This is done because using
long or integer values for such a computation could result in an arithmetic overflow
error. We can try out this function in the REPL shown as follows:

user> (fibo 10)
[0N 1N 1N 2N 3N 5N 8N 13N 21N 34N]
user> (last (fibo 100))
218922995834555169026N

The fibo function returns a vector of the first n Fibonacci numbers as expected.
However, for larger values of n, this function will cause a stack overflow:

user> (last (fibo 10000))
StackOverflowError clojure.lang.Numbers.lt (Numbers.java:219)

Chapter 1

[3]

The reason for this error is that there were too many nested function calls. A call
to any function requires an additional call stack. With recursion, we reach a point
where all of the available stack space in a program is consumed and no more
function calls can be performed. A tail call can overcome this limitation by using
the existing call stack for a recursive call, which removes the need for allocating a
new call stack. This is only possible when the return value of a function is the return
value of a recursive call made by the function, in which case an additional call stack
is not required to store the state of the function that performs the recursive call. This
technique is termed as tail call elimination. In effect, a tail call optimized function
consumes a constant amount of stack space.

In fact, the fibo function does indeed make a tail call, as the last expression in
the body of the function is a recursive call. Still, it consumes stack space for each
recursive call. This is due to the fact that the underlying virtual machine, the JVM,
does not perform tail call elimination. In Clojure, tail call elimination has to be done
explicitly using a recur form to perform a recursive call. The fibo function we
defined earlier can be refined to be tail recursive by using a recur form, as shown in
Example 1.2:

(defn fibo-recur
 ([n]
 (fibo-recur [0N 1N] n))
 ([xs n]
 (if (<= n (count xs))
 xs
 (let [x' (+ (last xs)
 (nth xs (- (count xs) 2)))
 xs' (conj xs x')]
 (recur xs' n)))))

Example 1.2: A recursive function defined using recur

Downloading the example code
You can download the example code files from your account
at http://www.packtpub.com for all the Packt Publishing
books you have purchased. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/
support and register to have the files e-mailed to you.

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support

Working with Sequences and Patterns

[4]

Effectively, the fibo-recur function can perform an infinite number of nested
recursive calls. We can observe that this function does not blow up the stack for
large values of n, shown as follows:

user> (fibo-recur 10)
[0N 1N 1N 2N 3N 5N 8N 13N 21N 34N]
user> (last (fibo-recur 10000))
207936...230626N

We should note that a call to fibo-recur can take quite a while to terminate
for large values of n. We can measure the time taken for a call to fibo-recur to
complete and return a value, using the time macro, as follows:

user> (time (last (fibo-recur 10000)))
"Elapsed time: 1320.050942 msecs"
207936...230626N

The fibo-recur function can also be expressed using the loop and recur forms.
This eliminates the need for using a second function arity to pass the [0N 1N]
value around, as shown in the fibo-loop function defined in Example 1.3:

(defn fibo-loop [n]
 (loop [xs [0N 1N]
 n n]
 (if (<= n (count xs))
 xs
 (let [x' (+ (last xs)
 (nth xs (- (count xs) 2)))
 xs' (conj xs x')]
 (recur xs' n)))))

Example 1.3: A recursive function defined using loop and recur

Note that the loop macro requires a vector of bindings (pairs of names and values)
to be passed as its first argument. The second argument to the loop form must be an
expression that uses the recur form. This nested recur form calls the surrounding
expression recursively by passing in the new values for the declared bindings in the
loop form. The fibo-loop function returns a value that is equal to that returned by
the fibo-recur function, from Example 1.2, shown as follows:

user> (fibo-loop 10)
[0N 1N 1N 2N 3N 5N 8N 13N 21N 34N]
user> (last (fibo-loop 10000))
207936...230626N

Chapter 1

[5]

Another way to handle recursion is by using the trampoline function. The
trampoline function takes a function as its first argument, followed by the values
of the parameters to be passed to the supplied function. A trampoline form expects
the supplied function to return another function, and in such a case, the returned
function will be invoked. Thus, a trampoline form manages recursion by obtaining
a return value, and invoking the returned value again if it's a function. Thus, the
trampoline function avoids using any stack space. Each time the supplied function
is invoked, it returns and the result gets stored in the process heap. For example,
consider the function in Example 1.4 that calculates the first n numbers of the
Fibonacci sequence using a trampoline:

(defn fibo-trampoline [n]
 (letfn [(fibo-fn [xs n]
 (if (<= n (count xs))
 xs
 (let [x' (+ (last xs)
 (nth xs (- (count xs) 2)))
 xs' (conj xs x')]
 #(fibo-fn xs' n))))]
 (trampoline fibo-fn [0N 1N] n)))

Example 1.4: A recursive function defined using trampoline

In the fib-trampoline function, the internal fibo-fn function returns either a
sequence, denoted by xs, or a closure that takes no arguments, represented by
#(fibo-fn xs' n). This function is equivalent to the fibo-recur function we
defined earlier, even in terms of performance, shown as follows:

user> (fibo-trampoline 10)
[0N 1N 1N 2N 3N 5N 8N 13N 21N 34N]
user> (time (last (fibo-trampoline 10000)))
"Elapsed time: 1346.629108 msecs"
207936...230626N

Mutual recursion can also be handled effectively using a trampoline. In mutual
recursion, two functions call each other in a recursive manner. For example, consider
the function that utilizes two mutually recursive functions in Example 1.5:

(defn sqrt-div2-recur [n]
 (letfn [(sqrt [n]
 (if (< n 1)
 n
 (div2 (Math/sqrt n))))
 (div2 [n]
 (if (< n 1)

Working with Sequences and Patterns

[6]

 n
 (sqrt (/ n 2))))]
 (sqrt n)))

Example 1.5: A simple function that uses mutual recursion

The sqrt-div2-recur function from Example 1.5 defines two mutually recursive
functions internally, namely sqrt and div2, that repeatedly square root and halve a
given value n until the calculated value is less than 1. The sqrt-div2-recur function
declares these two functions using a letfn form and invokes the sqrt function. We
can convert this to use a trampoline form as shown in Example 1.6:

(defn sqrt-div2-trampoline [n]
 (letfn [(sqrt [n]
 (if (< n 1)
 n
 #(div2 (Math/sqrt n))))
 (div2 [n]
 (if (< n 1)
 n
 #(sqrt (/ n 2))))]
 (trampoline sqrt n)))

Example 1.6: A function that uses mutual recursion using trampoline

In the previous sqrt-div2-trampoline function shown, the functions sqrt and
div2 return closures instead of calling a function directly. The trampoline form in
the body of the function calls the sqrt function while supplying the value n. Both the
sqrt-div2-recur and sqrt-div2-trampoline functions take about the same time
to return a value for the given value of n. Hence, using a trampoline form does not
have any additional performance overhead, shown as follows:

user> (time (sqrt-div2-recur 10000000000N))
"Elapsed time: 0.327439 msecs"
0.5361105866719398
user> (time (sqrt-div2-trampoline 10000000000N))
"Elapsed time: 0.326081 msecs"
0.5361105866719398

As the preceding examples demonstrate, there are various ways to define recursive
functions in Clojure. Recursive functions can be optimized using tail call elimination,
by using recur, and mutual recursion, which is done using the trampoline function.

Chapter 1

[7]

Thinking in sequences
A sequence, shortened as a seq, is essentially an abstraction of a list. This abstraction
provides a unified model or interface to interact with a collection of items. In Clojure,
all the primitive data structures, namely strings, lists, vectors, maps, and sets can be
treated as sequences. In practice, almost everything that involves iteration can be
translated into a sequence of computations. A collection is termed as seqable if it
implements the abstraction of a sequence. We will learn everything there is to know
about sequences in this section.

Sequences can also be lazy. A lazy sequence can be thought of as a possibly infinite
series of computed values. The computation of each value is deferred until it is
actually needed. We should note that the computation of a recursive function can
easily be represented as a lazy sequence. For example, the Fibonacci sequence can
be computed by lazily adding the last two elements in the previously computed
sequence. This can be implemented as shown in Example 1.7.

The following examples can be found in src/m_clj/c1/seq.clj
of the book's source code.

(defn fibo-lazy [n]
 (->> [0N 1N]
 (iterate (fn [[a b]] [b (+ a b)]))
 (map first)
 (take n)))

Example 1.7: A lazy Fibonacci sequence

The threading macro ->> is used to pass the result of a given
expression as the last argument to the next expression, in a repetitive
manner for all expressions in its body. Similarly, the threading macro
-> is used to pass the result of a given expression as the first argument
to the subsequent expressions.

The fibo-lazy function from Example 1.7 uses the iterate, map, and take functions
to create a lazy sequence. We will study these functions in more detail later in this
section. The fibo-lazy function takes a single argument n, which indicates the
number of items to be returned by the function. In the fibo-lazy function, the
values 0N and 1N are passed as a vector to the iterate function, which produces a
lazy sequence. The function used for this iteration creates a new pair of values b and
(+ a b) from the initial values a and b.

Working with Sequences and Patterns

[8]

Next, the map function applies the first function to obtain the first element in each
resulting vector. A take form is finally applied to the sequence returned by the map
function to retrieve the first n values in the sequence. The fibo-lazy function does
not cause any error even when passed relatively large values of n, shown as follows:

user> (fibo-lazy 10)
(0N 1N 1N 2N 3N 5N 8N 13N 21N 34N)
user> (last (fibo-lazy 10000))
207936...230626N

Interestingly, the fibo-lazy function in Example 1.7 performs significantly better
than the recursive functions from Example 1.2 and Example 1.3, as shown here:

user> (time (last (fibo-lazy 10000)))
"Elapsed time: 18.593018 msecs"
207936...230626N

Also, binding the value returned by the fibo-lazy function to a variable does
not really consume any time. This is because this returned value is lazy and not
evaluated yet. Also, the type of the return value is clojure.lang.LazySeq, as
shown here:

user> (time (def fibo-xs (fibo-lazy 10000)))
"Elapsed time: 0.191981 msecs"
#'user/fibo-xs
user> (type fibo-xs)
clojure.lang.LazySeq

We can optimize the fibo-lazy function even further by using memoization,
which essentially caches the value returned by a function for a given set of inputs.
This can be done using the memoize function, as follows:

(def fibo-mem (memoize fibo-lazy))

The fibo-mem function is a memoized version of the fibo-lazy function.
Hence, subsequent calls to the fibo-mem function for the same set of inputs
will return values significantly faster, shown as follows:

user> (time (last (fibo-mem 10000)))
"Elapsed time: 19.776527 msecs"
207936...230626N
user> (time (last (fibo-mem 10000)))
"Elapsed time: 2.82709 msecs"
207936...230626N

Chapter 1

[9]

Note that the memoize function can be applied to any function, and it is not really
related to sequences. The function we pass to memoize must be free of side effects,
or else any side effects will be invoked only the first time the memoized function is
called with a given set of inputs.

Using the seq library
Sequences are a truly ubiquitous abstraction in Clojure. The primary motivation
behind using sequences is that any domain with sequence-like data in it can be easily
modelled using the standard functions that operate on sequences. This infamous
quote from the Lisp world reflects on this design:

"It is better to have 100 functions operate on one data abstraction than 10
functions on 10 data structures."

A sequence can be constructed using the cons function. We must provide an element
and another sequence as arguments to the cons function. The first function is used
to access the first element in a sequence, and similarly the rest function is used to
obtain the other elements in the sequence, shown as follows:

user> (def xs (cons 0 '(1 2 3)))
#'user/xs
user> (first xs)
0
user> (rest xs)
(1 2 3)

The first and rest functions in Clojure are equivalent to the
car and cdr functions, respectively, from traditional Lisps. The
cons function carries on its traditional name.

In Clojure, an empty list is represented by the literal (). An empty list is considered as
a truthy value, and does not equate to nil. This rule is true for any empty collection.
An empty list does indeed have a type – it's a list. On the other hand, the nil literal
signifies the absence of a value, of any type, and is not a truthy value. The second
argument that is passed to cons could be empty, in which case the resulting sequence
would contain a single element:

user> (cons 0 ())
(0)
user> (cons 0 nil)
(0)
user> (rest (cons 0 nil))
()

Working with Sequences and Patterns

[10]

An interesting quirk is that nil can be treated as an empty collection, but the
converse is not true. We can use the empty? and nil? functions to test for an empty
collection and a nil value, respectively. Note that (empty? nil) returns true,
shown as follows:

user> (empty? ())
true
user> (empty? nil)
true
user> (nil? ())
false
user> (nil? nil)
true

By the truthy value, we mean to say a value that will test positive
in a conditional expression such as an if or a when form.

The rest function will return an empty list when supplied an empty list. Thus, the
value returned by rest is always truthy. The seq function can be used to obtain a
sequence from a given collection. It will return nil for an empty list or collection.
Hence, the head, rest and seq functions can be used to iterate over a sequence. The
next function can also be used for iteration, and the expression (seq (rest coll))
is equivalent to (next coll), shown as follows:

user> (= (rest ()) nil)
false
user> (= (seq ()) nil)
true
user> (= (next ()) nil)
true

The sequence function can be used to create a list from a sequence. For example,
nil can be converted into an empty list using the expression (sequence nil). In
Clojure, the seq? function is used to check whether a value implements the sequence
interface, namely clojure.lang.ISeq. Only lists implement this interface, and other
data structures such as vectors, sets, and maps have to be converted into a sequence
by using the seq function. Hence, seq? will return true only for lists. Note that the
list?, vector?, map?, and set? functions can be used to check the concrete type of
a given collection. The behavior of the seq? function with lists and vectors can be
described as follows:

user> (seq? '(1 2 3))
true
user> (seq? [1 2 3])

Chapter 1

[11]

false
user> (seq? (seq [1 2 3]))
true

Only lists and vectors provide a guarantee of sequential ordering among elements.
In other words, lists and vectors will store their elements in the same order or
sequence as they were created. This is in contrast to maps and sets, which can
reorder their elements as needed. We can use the sequential? function to check
whether a collection provides sequential ordering:

user> (sequential? '(1 2 3))
true
user> (sequential? [1 2 3])
true
user> (sequential? {:a 1 :b 2})
false
user> (sequential? #{:a :b})
false

The associative? function can be used to determine whether a collection or
sequence associates a key with a particular value. Note that this function returns
true only for maps and vectors:

user> (associative? '(1 2 3))
false
user> (associative? [1 2 3])
true
user> (associative? {:a 1 :b 2})
true
user> (associative? #{:a :b})
false

The behavior of the associative? function is fairly obvious for a map since a map
is essentially a collection of key-value pairs. The fact that a vector is also associative
is well justified too, as a vector has an implicit key for a given element, namely
the index of the element in the vector. For example, the [:a :b] vector has two
implicit keys, 0 and 1, for the elements :a and :b respectively. This brings us to an
interesting consequence – vectors and maps can be treated as functions that take a
single argument, that is a key, and return an associated value, shown as follows:

user> ([:a :b] 1)
:b
user> ({:a 1 :b 2} :a)
1

Working with Sequences and Patterns

[12]

Although they are not associative by nature, sets are also functions. Sets return a
value contained in them, or nil, depending on the argument passed to them, shown
as follows:

user> (#{1 2 3} 1)
1
user> (#{1 2 3} 0)
nil

Now that we have familiarized ourselves with the basics of sequences, let's have a
look at the many functions that operate over sequences.

Creating sequences
There are several ways to create sequences other than using the cons function. We
have already encountered the conj function in the earlier examples of this chapter.
The conj function takes a collection as its first argument, followed by any number
of arguments to add to the collection. We must note that conj behaves differently for
lists and vectors. When supplied a list, the conj function adds the other arguments at
the head, or start, of the list. In case of a vector, the conj function will insert the other
arguments at the tail, or end, of the vector:

user> (conj [1 2 3] 4 5 6)
[1 2 3 4 5 6]
user> (conj '(1 2 3) 4 5 6)
(6 5 4 1 2 3)

The concat function can be used to join or concatenate any number of sequences in
the order in which they are supplied, shown as follows:

user> (concat [1 2 3] [])
(1 2 3)
user> (concat [] [1 2 3])
(1 2 3)
user> (concat [1 2 3] [4 5 6] [7 8 9])
(1 2 3 4 5 6 7 8 9)

A given sequence can be reversed using the reverse function, shown as follows:

user> (reverse [1 2 3 4 5 6])
(6 5 4 3 2 1)
user> (reverse (reverse [1 2 3 4 5 6]))
(1 2 3 4 5 6)

Chapter 1

[13]

The range function can be used to generate a sequence of values within a given integer
range. The most general form of the range function takes three arguments—the first
argument is the start of the range, the second argument is the end of the range, and the
third argument is the step of the range. The step of the range defaults to 1, and the start
of the range defaults to 0, as shown here:

user> (range 5)
(0 1 2 3 4)
user> (range 0 10 3)
(0 3 6 9)
user> (range 15 10 -1)
(15 14 13 12 11)

We must note that the range function expects the start of the range to be less than
the end of the range. If the start of the range is greater than the end of the range and
the step of the range is positive, the range function will return an empty list. For
example, (range 15 10) will return (). Also, the range function can be called with
no arguments, in which case it returns a lazy and infinite sequence starting at 0.

The take and drop functions can be used to take or drop elements in a sequence.
Both functions take two arguments, representing the number of elements to take
or drop from a sequence, and the sequence itself, as follows:

user> (take 5 (range 10))
(0 1 2 3 4)
user> (drop 5 (range 10))
(5 6 7 8 9)

To obtain an item at a particular position in the sequence, we should use the nth
function. This function takes a sequence as its first argument, followed by the
position of the item to be retrieved from the sequence as the second argument:

user> (nth (range 10) 0)
0
user> (nth (range 10) 9)
9

To repeat a given value, we can use the repeat function. This function takes two
arguments and repeats the second argument the number of times indicated by the
first argument:

user> (repeat 10 0)
(0 0 0 0 0 0 0 0 0 0)
user> (repeat 5 :x)
(:x :x :x :x :x)

www.allitebooks.com

http://www.allitebooks.org

Working with Sequences and Patterns

[14]

The repeat function will evaluate the expression of the second argument and repeat
it. To call a function a number of times, we can use the repeatedly function, as
follows:

user> (repeat 5 (rand-int 100))
(75 75 75 75 75)
user> (repeatedly 5 #(rand-int 100))
(88 80 17 52 32)

In this example, the repeat form first evaluates the (rand-int 100) form, before
repeating it. Hence, a single value will be repeated several times. Note that the
rand-int function simply returns a random integer between 0 and the supplied
value. On the other hand, the repeatedly function invokes the supplied function
a number of times, thus producing a new value every time the rand-int function
is called.

A sequence can be repeated an infinite number of times using the cycle function.
As you might have guessed, this function returns a lazy sequence to indicate an
infinite series of values. The take function can be used to obtain a limited number
of values from the resulting infinite sequence, shown as follows:

user> (take 5 (cycle [0]))
(0 0 0 0 0)
user> (take 5 (cycle (range 3)))
(0 1 2 0 1)

The interleave function can be used to combine any number of sequences. This
function returns a sequence of the first item in each collection, followed by the
second item, and so on. This combination of the supplied sequences is repeated
until the shortest sequence is exhausted of values. Hence, we can easily combine
a finite sequence with an infinite one to produce another finite sequence using the
interleave function:

user> (interleave [0 1 2] [3 4 5 6] [7 8])
(0 3 7 1 4 8)
user> (interleave [1 2 3] (cycle [0]))
(1 0 2 0 3 0)

Another function that performs a similar operation is the interpose function.
The interpose function inserts a given element between the adjacent elements
of a given sequence:

user> (interpose 0 [1 2 3])
(1 0 2 0 3)

Chapter 1

[15]

The iterate function can also be used to create an infinite sequence. Note that we
have already used the iterate function to create a lazy sequence in Example 1.7.
This function takes a function f and an initial value x as its arguments. The value
returned by the iterate function will have (f x) as the first element, (f (f x))
as the second element, and so on. We can use the iterate function with any other
function that takes a single argument, as follows:

user> (take 5 (iterate inc 5))
(5 6 7 8 9)
user> (take 5 (iterate #(+ 2 %) 0))
(0 2 4 6 8)

Transforming sequences
There are also several functions to convert sequences into different representations or
values. One of the most versatile of such functions is the map function. This function
maps a given function over a given sequence, that is, it applies the function to each
element in the sequence. Also, the value returned by map is implicitly lazy. The
function to be applied to each element must be the first argument to map, and the
sequence on which the function must be applied is the next argument:

user> (map inc [0 1 2 3])
(1 2 3 4)
user> (map #(* 2 %) [0 1 2 3])
(0 2 4 6)

Note that map can accept any number of collections or sequences as its arguments. In
this case, the resulting sequence is obtained by passing the first items of the sequences
as arguments to the given function, and then passing the second items of the sequences
to the given function, and so on until any of the supplied sequences are exhausted. For
example, we can sum the corresponding elements of two sequences using the map and
+ functions, as shown here:

user> (map + [0 1 2 3] [4 5 6])
(4 6 8)

The mapv function has the same semantics of map, but returns a vector instead of a
sequence, as shown here:

user> (mapv inc [0 1 2 3])
[1 2 3 4]

Working with Sequences and Patterns

[16]

Another variant of the map function is the map-indexed function. This function
expects that the supplied function will accept two arguments—one for the index of a
given element and another for the actual element in the list:

user> (map-indexed (fn [i x] [i x]) "Hello")
([0 \H] [1 \e] [2 \l] [3 \l] [4 \o])

In this example, the function supplied to map-indexed simply returns its arguments
as a vector. An interesting point that we can observe from the preceding example is
that a string can be treated as a sequence of characters.

The mapcat function is a combination of the map and concat function. This function
maps a given function over a sequence, and applies the concat function on the
resulting sequence:

user> (require '[clojure.string :as cs])
nil
user> (map #(cs/split % #"\d") ["aa1bb" "cc2dd" "ee3ff"])
(["aa" "bb"] ["cc" "dd"] ["ee" "ff"])
user> (mapcat #(cs/split % #"\d") ["aa1bb" "cc2dd" "ee3ff"])
("aa" "bb" "cc" "dd" "ee" "ff")

In this example, we use the split function from the clojure.string namespace
to split a string using a regular expression, shown as #"\d". The split function
will return a vector of strings, and hence the mapcat function returns a sequence of
strings instead of a sequence of vectors like the map function.

The reduce function is used to combine or reduce a sequence of items into a
single value. The reduce function requires a function as its first argument and a
sequence as its second argument. The function supplied to reduce must accept two
arguments. The supplied function is first applied to the first two elements in the
given sequence, and then applied to the previous result and the third element in the
sequence, and so on until the sequence is exhausted. The reduce function also has a
second arity, which accepts an initial value, and in this case, the supplied function is
applied to the initial value and the first element in the sequence as the first step. The
reduce function can be considered equivalent to loop-based iteration in imperative
programming languages. For example, we can compute the sum of all elements in a
sequence using reduce, as follows:

user> (reduce + [1 2 3 4 5])
15
user> (reduce + [])
0
user> (reduce + 1 [])
1

Chapter 1

[17]

In this example, when the reduce function is supplied an empty collection, it returns
0, since (+) evaluates to 0. When an initial value of 1 is supplied to the reduce
function, it returns 1, since (+ 1) returns 1.

A list comprehension can be created using the for macro. Note that a for form will be
translated into an expression that uses the map function. The for macro needs to be
supplied a vector of bindings to any number of collections, and an expression in the
body. This macro binds the supplied symbol to each element in its corresponding
collection and evaluates the body for each element. Note that the for macro also
supports a :let clause to assign a value to a variable, and also a :when clause to
filter out values:

user> (for [x (range 3 7)]
 (* x x))
(9 16 25 36)
user> (for [x [0 1 2 3 4 5]
 :let [y (* x 3)]
 :when (even? y)]
 y)
(0 6 12)

The for macro can also be used over a number of collections, as shown here:

user> (for [x ['a 'b 'c]
 y [1 2 3]]
 [x y])
([a 1] [a 2] [a 3] [b 1] [b 2] [b 3] [c 1] [c 2] [c 3])

The doseq macro has semantics similar to that of for, except for the fact that it
always returns a nil value. This macro simply evaluates the body expression for
all of the items in the given bindings. This is useful in forcing evaluation of an
expression with side effects for all the items in a given collection:

user> (doseq [x (range 3 7)]
 (* x x))
nil
user> (doseq [x (range 3 7)]
 (println (* x x)))
9
16
25
36
nil

Working with Sequences and Patterns

[18]

As shown in the preceding example, both the first and second doseq forms return
nil. However, the second form prints the value of the expression (* x x), which is
a side effect, for all items in the sequence (range 3 7).

The into function can be used to easily convert between types of collections. This
function requires two collections to be supplied to it as arguments, and returns the
first collection filled with all the items in the second collection. For example, we can
convert a sequence of vectors into a map, and vice versa, using the into function,
shown here:

user> (into {} [[:a 1] [:c 3] [:b 2]])
{:a 1, :c 3, :b 2}
user> (into [] {1 2 3 4})
[[1 2] [3 4]]

We should note that the into function is essentially a composition of the reduce and
conj functions. As conj is used to fill the first collection, the value returned by the
into function will depend on the type of the first collection. The into function will
behave similar to conj with respect to lists and vectors, shown here:

user> (into [1 2 3] '(4 5 6))
[1 2 3 4 5 6]
user> (into '(1 2 3) '(4 5 6))
(6 5 4 1 2 3)

A sequence can be partitioned into smaller ones using the partition, partition-
all and partition-by functions. Both the partition and partition-all functions
take two arguments—one for the number of items n in the partitioned sequences and
another for the sequence to be partitioned. However, the partition-all function
will also return the items from the sequence, which have not been partitioned as a
separate sequence, shown here:

user> (partition 2 (range 11))
((0 1) (2 3) (4 5) (6 7) (8 9))
user> (partition-all 2 (range 11))
((0 1) (2 3) (4 5) (6 7) (8 9) (10))

The partition and partition-all functions also accept a step argument,
which defaults to the supplied number of items in the partitioned sequences,
shown as follows:

user> (partition 3 2 (range 11))
((0 1 2) (2 3 4) (4 5 6) (6 7 8) (8 9 10))
user> (partition-all 3 2 (range 11))
((0 1 2) (2 3 4) (4 5 6) (6 7 8) (8 9 10) (10))

Chapter 1

[19]

The partition function also takes a second sequence as an optional argument,
which is used to pad the sequence to be partitioned in case there are items that are not
partitioned. This second sequence has to be supplied after the step argument to the
partition function. Note that the padding sequence is only used to create a single
partition with the items that have not been partitioned, and the rest of the padding
sequence is discarded. Also, the padding sequence is only used if there are any items
that have not been partitioned. This can be illustrated in the following example:

user> (partition 3 (range 11))
((0 1 2) (3 4 5) (6 7 8))
user> (partition 3 3 (range 11 12) (range 11))
((0 1 2) (3 4 5) (6 7 8) (9 10 11))
user> (partition 3 3 (range 11 15) (range 11))
((0 1 2) (3 4 5) (6 7 8) (9 10 11))
user> (partition 3 4 (range 11 12) (range 11))
((0 1 2) (4 5 6) (8 9 10))

In this example, we first provide a padding sequence in the second statement as
(range 11 12), which only comprises of a single element. In the next statement,
we supply a larger padding sequence, as (range 11 15), but only the first item 11
from the padding sequence is actually used. In the last statement, we also supply a
padding sequence but it is never used, as the (range 11) sequence is partitioned into
sequences of 3 elements each with a step of 4, which will have no remaining items.

The partition-by function requires a higher-order function to be supplied to it as
the first argument, and will partition items in the supplied sequence based on the
return value of applying the given function to each element in the sequence. The
sequence is essentially partitioned by partition-by whenever the given function
returns a new value, as shown here:

user> (partition-by #(= 0 %) [-2 -1 0 1 2])
((-2 -1) (0) (1 2))
user> (partition-by identity [-2 -1 0 1 2])
((-2) (-1) (0) (1) (2))

In this example, the second statement partitions the given sequence into sequences
that each contain a single item as we have used the identity function, which simply
returns its argument. For the [-2 -1 0 1 2] sequence, the identity function
returns a new value for each item in the sequence and hence the resulting partitioned
sequences all have a single element.

Working with Sequences and Patterns

[20]

The sort function can be used to change the ordering of elements in a sequence.
The general form of this function requires a function to compare items and a
sequence of items to sort. The supplied function defaults to the compare function,
whose behavior changes depending on the actual type of the items being compared:

user> (sort [3 1 2 0])
(0 1 2 3)
user> (sort > [3 1 2 0])
(3 2 1 0)
user> (sort ["Carol" "Alice" "Bob"])
("Alice" "Bob" "Carol")

If we intend to apply a particular function to each item in a sequence before
performing the comparison in a sort form, we should consider using the sort-by
function for a more concise expression. The sort-by function also accepts a function
to perform the actual comparison, similar to the sort function. The sort-by function
can be demonstrated as follows:

user> (sort #(compare (first %1) (first %2)) [[1 1] [2 2] [3 3]])
([1 1] [2 2] [3 3])
user> (sort-by first [[1 1] [2 2] [3 3]])
([1 1] [2 2] [3 3])
user> (sort-by first > [[1 1] [2 2] [3 3]])
([3 3] [2 2] [1 1])

In this example, the first and second statements both compare items after applying
the first function to each item in the given sequence. The last statement passes
the > function to the sort-by function, which returns the reverse of the sequence
returned by the first two statements.

Filtering sequences
Sequences can also be filtered, that is transformed by removing some elements from
the sequence. There are several standard functions to perform this task. The keep
function can be used to remove values from a sequence that produces a nil value for
a given function. The keep function requires a function and a sequence to be passed
to it. The keep function will apply the given function to each item in the sequence
and remove all values that produce nil, as shown here:

user> (keep #(if (odd? %) %) (range 10))
(1 3 5 7 9)
user> (keep seq [() [] '(1 2 3) [:a :b] nil])
((1 2 3) (:a :b))

Chapter 1

[21]

In this example, the first statement removes all even numbers from the given
sequence. In the second statement, the seq function is used to remove all empty
collections from the given sequence.

A map or a set can also be passed as the first argument to the keep function since
they can be treated as functions, as shown here:

user> (keep {:a 1, :b 2, :c 3} [:a :b :d])
(1 2)
user> (keep #{0 1 2 3} #{2 3 4 5})
(3 2)

The filter function can also be used to remove some elements from a given
sequence. The filter function expects a predicate function to be passed to it along
with the sequence to be filtered. The items for which the predicate function does not
return a truthy value are removed from the result. The filterv function is identical
to the filter function, except for the fact that it returns a vector instead of a list:

user> (filter even? (range 10))
(0 2 4 6 8)
user> (filterv even? (range 10))
[0 2 4 6 8]

Both the filter and keep functions have similar semantics. However, the primary
distinction is that the filter function returns a subset of the original elements,
whereas keep returns a sequence of non nil values that are returned by the function
supplied to it, as shown in the following example:

user> (keep #(if (odd? %) %) (range 10))
(1 3 5 7 9)
user> (filter odd? (range 10))
(1 3 5 7 9)

Note that in this example, if we passed the odd? function to the keep form,
it would return a list of true and false values, as these values are returned
by the odd? function.

Also, a for macro with a :when clause is translated into an expression that uses
the filter function, and hence a for form can also be used to remove elements
from a sequence:

user> (for [x (range 10) :when (odd? x)] x)
(1 3 5 7 9)

Working with Sequences and Patterns

[22]

A vector can be sliced using the subvec function. By sliced, we mean to say that a
smaller vector is selected from the original vector depending on the values passed
to the subvec function. The subvec function takes a vector as its first argument,
followed by the index indicating the start of the sliced vector, and finally another
optional index that indicates the end of the sliced vector, as shown here:

user> (subvec [0 1 2 3 4 5] 3)
[3 4 5]
user> (subvec [0 1 2 3 4 5] 3 5)
[3 4]

Maps can be filtered by their keys using the select-keys function. This function
requires a map as the first argument and a vector of keys as a second argument to be
passed to it. The vector of keys passed to this function indicates the key-value pairs
to be included in the resulting map, as shown here:

user> (select-keys {:a 1 :b 2} [:a])
{:a 1}
user> (select-keys {:a 1 :b 2 :c 3} [:a :c])
{:c 3, :a 1}

Another way to select key-value pairs from a map is to use the find function,
as shown here:

user> (find {:a 1 :b 2} :a)
[:a 1]

take-while and drop-while are analogous to the take and drop functions, and
require a predicate to be passed to them, instead of the number of elements to take
or drop. The take-while function takes elements as long as the predicate function
returns a truthy value, and similarly the drop-while function will drop elements for
the same condition:

user> (take-while neg? [-2 -1 0 1 2])
(-2 -1)
user> (drop-while neg? [-2 -1 0 1 2])
(0 1 2)

Lazy sequences
lazy-seq and lazy-cat are the most elementary constructs to create lazy sequences.
The value returned by these functions will always have the type clojure.lang.
LazySeq. The lazy-seq function is used to wrap a lazily computed expression in
a cons form. This means that the rest of the sequence created by the cons form is
lazily computed. For example, the lazy-seq function can be used to construct a lazy
sequence representing the Fibonacci sequence as shown in Example 1.8:

Chapter 1

[23]

(defn fibo-cons [a b]
 (cons a (lazy-seq (fibo-cons b (+ a b)))))

Example 1.8: A lazy sequence created using lazy-seq

The fibo-cons function requires two initial values, a and b, to be passed to it as the
initial values, and returns a lazy sequence comprising the first value a and a lazily
computed expression that uses the next two values in the sequence, that is, b and
(+ a b). In this case, the cons form will return a lazy sequence, which can be
handled using the take and last functions, as shown here:

user> (def fibo (fibo-cons 0N 1N))
#'user/fibo
user> (take 2 fibo)
(0N 1N)
user> (take 11 fibo)
(0N 1N 1N 2N 3N 5N 8N 13N 21N 34N 55N)
user> (last (take 10000 fibo))
207936...230626N

Note that the fibo-cons function from Example 1.8 recursively calls itself without an
explicit recur form, and yet it does not consume any stack space. This is because the
values present in a lazy sequence are not stored in a call stack, and all the values are
allocated on the process heap.

Another way to define a lazy Fibonacci sequence is by using the lazy-cat function.
This function essentially concatenates all the sequences it is supplied in a lazy fashion.
For example, consider the definition of the Fibonacci sequence in Example 1.9:

(def fibo-seq
 (lazy-cat [0N 1N] (map + fibo-seq (rest fibo-seq))))

Example 1.9: A lazy sequence created using lazy-cat

The fibo-seq variable from Example 1.9 essentially calculates the Fibonacci sequence
using a lazy composition of the map, rest, and + functions. Also, a sequence is
required as the initial value, instead of a function as we saw in the definition of
fibo-cons from Example 1.8. We can use the nth function to obtain a number from
this sequence as follows:

user> (first fibo-seq)
0N
user> (nth fibo-seq 1)
1N
user> (nth fibo-seq 10)
55N
user> (nth fibo-seq 9999)
207936...230626N

Working with Sequences and Patterns

[24]

As shown previously, fibo-cons and fibo-seq are concise and idiomatic
representations of the infinite series of numbers in the Fibonacci sequence.
Both of these definitions return identical values and do not cause an error due
to stack consumption.

An interesting fact is that most of the standard functions that return sequences,
such as map and filter, are inherently lazy. Any expression that is built using these
functions is lazy, and hence never evaluated until needed. For example, consider the
following expression that uses the map function:

user> (def xs (map println (range 3)))
#'user/xs
user> xs
0
1
2
(nil nil nil)

In this example, the println function is not called when we define the xs variable.
However, once we try to print it in the REPL, the sequence is evaluated and the
numbers are printed out by calling the println function. Note that xs evaluates to
(nil nil nil) as the println function always returns nil.

Sometimes, it is necessary to eagerly evaluate a lazy sequence. The doall and dorun
functions are used for this exact purpose. The doall function essentially forces
evaluation of a lazy sequence along with any side effects of the evaluation. The
value returned by doall is a list of all the elements in the given lazy sequence. For
example, let's wrap the map expression from the previous example in a doall form,
shown as follows:

user> (def xs (doall (map println (range 3))))
0
1
2
#'user/xs
user> xs
(nil nil nil)

Now, the numbers are printed out as soon as xs is defined, as we force evaluation
using the doall function. The dorun function has similar semantics as the doall
function, but it always returns nil. Hence, we can use the dorun function instead of
doall when we are only interested in the side effects of evaluating the lazy sequence,
and not the actual values in it. Another way to call a function with some side effects
over all values in a collection is by using the run! function, which must be passed a
function to call and a collection. The run! function always returns nil, just like the
dorun form.

Chapter 1

[25]

Using zippers
Now that we are well versed with sequences, let's briefly examine zippers. Zippers are
essentially data structures that help in traversing and manipulating trees. In Clojure,
any collection that contains nested collections is termed as a tree. A zipper can be
thought of as a structure that contains location information about a tree. Zippers are
not an extension of trees, but rather can be used to traverse and realize a tree.

The following namespaces must be included in your namespace
declaration for the upcoming examples:

(ns my-namespace

 (:require [clojure.zip :as z]

 [clojure.xml :as xml]))

The following examples can be found in src/m_clj/c1/zippers.
clj of the book's source code.

We can define a simple tree using vector literals, as shown here:

(def tree [:a [1 2 3] :b :c])

The vector tree is a tree, comprised of the nodes :a, [1 2 3], :b, and :c. We can
use the vector-zip function to create a zipper from the vector tree as follows:

(def root (z/vector-zip tree))

The variable root defined previously is a zipper and contains location information
for traversing the given tree. Note that the vector-zip function is simply a
combination of the standard seq function and the seq-zip function from the
clojure.zip namespace. Hence, for trees that are represented as sequences, we
should use the seq-zip function instead. Also, all other functions in the clojure.
zip namespace expect their first argument to be a zipper.

To traverse the zipper, we must use the clojure.zip/next function, which returns
the next node in the zipper. We can easily iterate over all the nodes in the zipper using
a composition of the iterate and clojure.zip/next functions, as shown here:

user> (def tree-nodes (iterate z/next root))
#'user/tree-nodes
user> (nth tree-nodes 0)
[[:a [1 2 3] :b :c] nil]
user> (nth tree-nodes 1)
[:a {:l [], :pnodes ... }]
user> (nth tree-nodes 2)
[[1 2 3] {:l [:a], :pnodes ... }]
user> (nth tree-nodes 3)
[1 {:l [], :pnodes ... }]

Working with Sequences and Patterns

[26]

As shown previously, the first node of the zipper represents the original tree itself.
Also, the zipper will contain some extra information, other than the value contained
in the current node, which is useful in navigating across the given tree. In fact,
the return value of the next function is also a zipper. Once we have completely
traversed the given tree, a zipper pointing to the root of the tree will be returned by
the next function. Note that some information in a zipper has been truncated from
the preceding REPL output for the sake of readability.

To navigate to the adjacent nodes in a given zipper, we can use the down, up, left,
and right functions. All of these functions return a zipper, as shown here:

user> (-> root z/down)
[:a {:l [], :pnodes ... }]
user> (-> root z/down z/right)
[[1 2 3] {:l [:a], :pnodes ... }]
user> (-> root z/down z/right z/up)
[[:a [1 2 3] :b :c] nil]
user> (-> root z/down z/right z/right)
[:b {:l [:a [1 2 3]], :pnodes ... }]
user> (-> root z/down z/right z/left)
[:a {:l [], :pnodes ... }]

The down, up, left, and right functions change the location of the root zipper in
the [:a [1 2 3] :b :c] tree, as shown in the following illustration:

The preceding diagram shows a zipper at three different locations in the given tree.
Initially, the location of the zipper is at the root of the tree, which is the entire vector.
The down function moves the location to the first child node in the tree. The left and
right functions move the location of the zipper to other nodes at the same level or
depth in the tree. The up function moves the zipper to the parent of the node pointed
to by the zipper's current location.

Chapter 1

[27]

To obtain the node representing the current location of a zipper in a tree, we must
use the node function, as follows:

user> (-> root z/down z/right z/right z/node)
:b
user> (-> root z/down z/right z/left z/node)
:a

To navigate to the extreme left or right of a tree, we can use the leftmost and
rightmost functions, respectively, as shown here:

user> (-> root z/down z/rightmost z/node)
:c
user> (-> root z/down z/rightmost z/leftmost z/node)
:a

The lefts and rights functions return the nodes that are present to the left and
right, respectively, of a given zipper, as follows:

user> (-> root z/down z/rights)
([1 2 3] :b :c)
user> (-> root z/down z/lefts)
nil

As the :a node is the leftmost element in the tree, the rights function will return
all of the other nodes in the tree when passed a zipper that has :a as the current
location. Similarly, the lefts function for the zipper at the :a node will return an
empty value, that is nil.

The root function can be used to obtain the root of a given zipper. It will return the
original tree used to construct the zipper, as shown here:

user> (-> root z/down z/right z/root)
[:a [1 2 3] :b :c]
user> (-> root z/down z/right r/left z/root)
[:a [1 2 3] :b :c]

The path function can be used to obtain the path from the root element of a tree to
the current location of a given zipper, as shown here:

user> (def e (-> root z/down z/right z/down))
#'user/e
user> (z/node e)
1
user> (z/path e)
[[:a [1 2 3] :b :c]
 [1 2 3]]

Working with Sequences and Patterns

[28]

In the preceding example, the path of the 1 node in tree is represented by a vector
containing the entire tree and the subtree [1 2 3]. This means that to get to the 1
node, we must pass through the root and the subtree [1 2 3].

Now that we have covered the basics of navigating across trees, let's see how we can
modify the original tree. The insert-child function can be used to insert a given
element into a tree as follows:

user> (-> root (z/insert-child :d) z/root)
[:d :a [1 2 3] :b :c]
user> (-> root z/down z/right (z/insert-child 0) z/root)
[:a [0 1 2 3] :b :c]

We can also remove a node from the zipper using the remove function. Also, the
replace function can be used to replace a given node in a zipper:

user> (-> root z/down z/remove z/root)
[[1 2 3] :b :c]
user> (-> root z/down (z/replace :d) z/root)
[:d [1 2 3] :b :c]

One of the most noteworthy examples of tree-like data is XML. Since zippers are
great at handling trees, they also allow us to easily traverse and modify XML
content. Note that Clojure already provides the xml-seq function to convert XML
data into a sequence. However, treating an XML document as a sequence has many
strange implications.

One of the main disadvantages of using xml-seq is that there is no easy way to
get to the root of the document from a node if we are iterating over a sequence.
Also, xml-seq only helps us iterate over the XML content; it doesn't deal with
modifying it. These limitations can be overcome using zippers, as we will see
in the upcoming example.

For example, consider the following XML document:

<countries>
 <country name="England">
 <city>Birmingham</city>
 <city>Leeds</city>
 <city capital="true">London</city>
 </country>
 <country name="Germany">
 <city capital="true">Berlin</city>
 <city>Frankfurt</city>
 <city>Munich</city>
 </country>

Chapter 1

[29]

 <country name="France">
 <city>Cannes</city>
 <city>Lyon</city>
 <city capital="true">Paris</city>
 </country>
</countries>

The document shown above contains countries and cities represented as XML nodes.
Each country has a number of cities, and a single city as its capital. Some information,
such as the name of the country and a flag indicating whether a city is a capital, is
encoded in the XML attributes of the nodes.

The following example expects the XML content shown previously to
be present in the resources/data/sample.xml file, relative to the
root of your Leiningen project.

Let's define a function to find out all the capital cities in the document, as shown in
Example 1.10:

(defn is-capital-city? [n]
 (and (= (:tag n) :city)
 (= "true" (:capital (:attrs n)))))

(defn find-capitals [file-path]
 (let [xml-root (z/xml-zip (xml/parse file-path))
 xml-seq (iterate z/next (z/next xml-root))]
 (->> xml-seq
 (take-while #(not= (z/root xml-root) (z/node %)))
 (map z/node)
 (filter is-capital-city?)
 (mapcat :content))))

Example 1.10: Querying XML with zippers

Firstly, we must note that the parse function from the clojure.xml namespace
reads an XML document and returns a map representing the document. Each node
in this map is another map with the :tag, :attrs, and :content keys associated
with the XML node's tag name, attributes, and content respectively.

In Example 1.10, we first define a simple function, is-capital-city?, to determine
whether a given XML node has the city tag, represented as :city. The is-
capital-city? function also checks whether the XML node contains the capital
attribute, represented as :capital. If the value of the capital attribute of a given
node is the "true" string, then the is-capital-city? function returns true.

Working with Sequences and Patterns

[30]

The find-capitals function performs most of the heavy lifting in this example.
This function first parses XML documents present at the supplied path file-path,
and then converts it into a zipper using the xml-zip function. We then iterate over
the zipper using the next function until we arrive back at the root node, which
is checked by the take-while function. We then map the node function over the
resulting sequence of zippers using the map function, and apply the filter function
to find the capital cities among all the nodes. Finally, we use the mapcat function to
obtain the XML content of the filtered nodes and flatten the resulting sequence of
vectors into a single list.

When supplied a file containing the XML content we described earlier, the
find-capitals function returns the names of all capital cities in the document:

user> (find-capitals "resources/data/sample.xml")
("London" "Berlin" "Paris")

As demonstrated previously, zippers are apt for dealing with trees and hierarchical
data such as XML. More generally, sequences are a great abstraction for collections
and several forms of data, and Clojure provides us with a huge toolkit for dealing
with sequences. There are several more functions that handle sequences in the
Clojure language, and you are encouraged to explore them on your own.

Working with pattern matching
In this section, we will examine pattern matching in Clojure. Typically, functions
that use conditional logic can be defined using the if, when, or cond forms. Pattern
matching allows us to define such functions by declaring patterns of the literal values
of their parameters. While this idea may appear quite rudimentary, it is a very useful
and powerful one, as we shall see in the upcoming examples. Pattern matching is also
a foundational programming construct in other functional programming languages.

In Clojure, there is no pattern matching support for functions and forms in the core
language. However, it is a common notion among Lisp programmers that we can
easily modify or extend the language using macros. Clojure takes this approach as
well, and thus pattern matching is made possible using the match and defun macros.
These macros are implemented in the core.match (https://github.com/clojure/
core.match) and defun (https://github.com/killme2008/defun) community
libraries. Both of these libraries are also supported on ClojureScript.

https://github.com/clojure/core.match
https://github.com/clojure/core.match
https://github.com/killme2008/defun

Chapter 1

[31]

The following library dependencies are required for the upcoming examples:
[org.clojure/core.match "0.2.2"
 :exclusions [org.clojure/tools.analyzer.jvm]]
[defun "0.2.0-RC"]

Also, the following namespaces must be included in your namespace
declaration:

(ns my-namespace
 (:require [clojure.core.match :as m]
 [defun :as f]))

The following examples can be found in src/m_clj/c1/match.clj of
the book's source code.

Let's consider a simple example that we can model using pattern matching. The XOR
logic function returns a true value only when its arguments are exclusive of each
other, that is, when they have differing values. In other words, the XOR function will
return false when both of its arguments have the same values. We can easily define
such a function using the match macro, as shown in Example 1.11:

(defn xor [x y]
 (m/match [x y]
 [true true] false
 [false true] true
 [true false] true
 [false false] false))

Example 1.11: Pattern matching using the match macro

The xor function from Example 1.11 simply matches its arguments, x and y, against a
given set of patterns, such as [true true] and [true false]. If both the arguments
are true or false, then the function returns false, or else it returns true. It's a concise
definition that relies on the values of the supplied arguments, rather than the use of
conditional forms such as if and when. The xor function can be defined alternatively,
and even more concisely, by the defun macro, as shown in Example 1.12:

(f/defun xor
 ([true true] false)
 ([false true] true)
 ([true false] true)
 ([false false] false))

Example 1.12: Pattern match using the defun macro

Working with Sequences and Patterns

[32]

The definition of the xor function that uses the defun macro simply declares the
actual values as its arguments. The expression to be returned is thus determined by
the values of its inputs. Note that the defun macro rewrites the definition of the xor
function to use the match macro. Hence, all patterns supported by the match macro
can also be used with the defun macro. Both the definitions of the xor function, from
Example 1.11 and Example 1.12, work as expected, as shown here:

user> (xor true true)
false
user> (xor true false)
true
user> (xor false true)
true
user> (xor false false)
false

The xor function will throw an exception if we try to pass values that have not been
declared as a pattern:

user> (xor 0 0)
IllegalArgumentException No matching clause: [0 0] user/xor ...

We can define a simple function to compute the nth number of the Fibonacci sequence
using the defun macro, as shown in Example 1.13:

(f/defun fibo
 ([0] 0N)
 ([1] 1N)
 ([n] (+ (fibo (- n 1))
 (fibo (- n 2)))))

Example 1.13: A recursive function with pattern matching

Note the use of the variable n in the function's pattern rules. This signifies that any
value other than 0 and 1 will match with the pattern definition that uses n. The fibo
function defined in Example 1.13 does indeed calculate the nth Fibonacci sequence, as
shown here:

user> (fibo 0)
0N
user> (fibo 1)
1N
user> (fibo 10)
55N

Chapter 1

[33]

However, the definition of fibo, shown in Example 1.13, cannot be optimized by tail
call elimination. This is due to the fact that the definition of fibo is tree recursive. By
this, we mean to say that the expression (+ (fibo ...) (fibo ...)) requires two
recursive calls in order to be evaluated completely. In fact, if we replace the recursive
calls to the fibo function with recur expressions, the resulting function won't
compile. It is fairly simple to convert tree recursion into linear recursion, as shown
in Example 1.14:

(f/defun fibo-recur
 ([a b 0] a)
 ([a b n] (recur b (+ a b) (dec n)))
 ([n] (recur 0N 1N n)))

Example 1.14: A tail recursive function with pattern matching

It is fairly obvious from the definition of the fibo-recur function, from Example 1.14,
that it is indeed tail recursive. This function does not consume any stack space, and
can be safely called with large values of n, as shown here:

user> (fibo-recur 0)
0N
user> (fibo-recur 1)
1N
user> (fibo-recur 10)
55N
user> (fibo-recur 9999)
207936...230626N

As the preceding examples show us, pattern matching is a powerful tool in functional
programming. Functions that are defined using pattern matching are not only correct
and expressive, but can also achieve good performance. In this respect, the core.
match and defun libraries are indispensible tools in the Clojure ecosystem.

Summary
In this chapter, we introduced a few programming constructs that can be used in the
Clojure language. We've explored recursion using the recur, loop, and trampoline
forms. We've also studied the basics of sequences and laziness, while describing the
various functions in the Clojure language that are used in creating, transforming,
and filtering sequences. Next, we had a look at zippers, and how they can be used
to idiomatically handle trees and hierarchical data such as XML. Finally, we briefly
explored pattern matching using the core.match and defun libraries.

In the next chapter, we will explore concurrency and parallelism. We will study the
various data structures and functions that allow us to leverage these concepts in
Clojure in ample detail.

www.allitebooks.com

http://www.allitebooks.org

[35]

Orchestrating Concurrency
and Parallelism

Let's now examine how concurrent and parallel programming are supported in
Clojure. The term concurrent programming refers to managing more than one task
at the same time. Parallel programming or parallelism, on the other hand, deals with
executing multiple tasks at the same time. The distinction between these two terms
is that concurrency is about how we structure and synchronize multiple tasks, and
parallelism is more about running multiple tasks in parallel over multiple cores. The
main advantages of using concurrency and parallelism can be elaborated as follows:

• Concurrent programs can perform multiple tasks simultaneously. For
example, a desktop application can have a single task for handling user
interaction and another task for handling I/O and network communication.
A single processor can be shared among several tasks. Processor utilization is
thus more effective in concurrent programs.

• Parallel programs take advantage of having multiple processor cores. This
means that such programs can be made to run faster by executing them on
a system with more processor cores. Also, tasks that are computationally
expensive can be parallelized to complete in a lesser amount of time.

In this chapter, we will:

• Explore how we can create and synchronize tasks that run concurrently
• See how to deal with a shared state between concurrent tasks
• Examine how computations can be parallelized and how we can control

the amount of parallelism used to perform these computations

Orchestrating Concurrency and Parallelism

[36]

Managing concurrent tasks
Clojure has a couple of handy constructs that allow us to define concurrent tasks.
A thread is the most elementary abstraction of a task that runs in the background. In
the formal sense, a thread is simply a sequence of instructions that can be scheduled
for execution. A task that runs in the background of a program is said to execute on
a separate thread. Threads will be scheduled for execution on a specific processor by
the underlying operating system. Most modern operating systems allow a process to
have several threads of execution. The technique of managing multiple threads in a
single process is termed as multithreading.

While Clojure does support the use of threads, concurrent tasks can be modeled in
more elegant ways using other constructs. Let's explore the different ways in which
we can define concurrent tasks.

The following examples can be found in src/m_clj/c2/concurrent.
clj of the book's source code.

Using delays
A delay can be used to define a task whose execution is delayed, or deferred, until it
is necessary. A delay is only run once, and its result is cached. We simply need to
wrap the instructions of a given task in a delay form to define a delay, as shown in
Example 2.1:

(def delayed-1
 (delay
 (Thread/sleep 3000)
 (println "3 seconds later ...")
 1))

Example 2.1: A delayed value

The static Thread/sleep method suspends execution of the current
thread of execution for a given number of milliseconds, which is
passed as the first argument to this method. We can optionally specify
the number of nanoseconds by which the current thread must be
suspended as the second argument to the Thread/sleep method.

The delay form in Example 2.1 simply sleeps for 3000 milliseconds, prints a string
and returns the value 1. However, it is not yet realized, in the sense that, it is has not
been executed yet. The realized? predicate can be used to check whether a delay
has been executed, as shown here:

Chapter 2

[37]

user> (realized? delayed-1)
false
user> (realized? delayed-1) ; after 3 seconds
false

We can check whether a value is a delay using the delay? predicate.

The body expressions in a delay form will not be executed until the value returned
by it is actually used. We can obtain the value contained in a delay by dereferencing
it using the at-the-rate symbol (@):

user> @delayed-1
3 seconds later ...
1
user> (realized? delayed-1)
true

Using the at-the-rate symbol (@) to dereference a value is the same as
using the deref function. For example, the expression @x is equivalent
to (deref x).
The deref function also has a variant form that accepts three
arguments—a value to dereference, the number of milliseconds to wait
before timing out, and a value that will be returned in case of a timeout.

As shown previously, the expression @delayed-1 returns the value 1, after a pause
of 3 seconds. Now, the call to realized? returns true. Also, the value returned by
the expression @delayed-1 will be cached, as shown here:

user> @delayed-1
1

It is thus evident that the expression @delayed-1 will be blocked for 3 seconds,
will print a string, and return a value only once.

Another way to execute a delay is by using the force function,
which takes a delay as an argument. This function executes a
given delay if needed, and returns the value of the delay's inner
expression.

Orchestrating Concurrency and Parallelism

[38]

Delays are quite handy for representing values or tasks that need not be executed
until required. However, a delay will always be executed in the same thread in
which it is dereferenced. In other words, delays are synchronous. Hence, delays
aren't really a solution for representing tasks that run in the background.

Using futures and promises
As we mentioned earlier, threads are the most elementary way of dealing with
background tasks. In Clojure, all functions implement the clojure.lang.IFn
interface, which in turn extends the java.lang.Runnable interface. This means that
any Clojure function can be invoked in a separate thread of execution. For example,
consider the function in Example 2.2:

(defn wait-3-seconds []
 (Thread/sleep 3000)
 (println)
 (println "3 seconds later ..."))

Example 2.2: A function that waits for 3 seconds

The wait-3-seconds function in Example 2.2 waits for 3000 milliseconds and
prints a new line and a string. We can execute this function on a separate thread by
constructing a java.lang.Thread object from it using the Thread. constructor. The
resulting object can then be scheduled for execution in the background by invoking
its .start method, as shown here:

user> (.start (Thread. wait-3-seconds))
nil
user>
3 seconds later ...

user>

The call to the .start method returns immediately to the REPL prompt. The
wait-3-seconds function gets executed in the background, and prints to standard
output in the REPL after 3 seconds. While using threads does indeed allow execution
of tasks in the background, they have a couple shortcomings:

• There is no obvious way to obtain a return value from a function that is
executed on a separate thread.

• Also, using the Thread. and .start functions is essentially interop with
the underlying JVM. Thus, using these functions in a program's code would
mean that the program could be run only on the JVM. We essentially lock our
program into a single platform, and the program can't be run on any of the
other platforms that Clojure supports.

Chapter 2

[39]

A future is a more idiomatic way to represent a task that is executed in a separate
thread. Futures can be concisely defined as values that will be realized in the future.
A future represents a task that performs a certain computation and returns the result
of the computation. We can create a future using the future form, as shown in
Example 2.3:

(defn val-as-future [n secs]
 (future
 (Thread/sleep (* secs 1000))
 (println)
 (println (str secs " seconds later ..."))
 n))

Example 2.3: A future that sleeps for some time and returns a value

The val-as-future function defined in Example 2.3 invokes a future that waits
for the number of seconds specified by the argument secs, prints a new line and a
string, and finally returns the supplied value n. A call to the val-as-future function
will return a future immediately, and a string will be printed after the specified
number of seconds, as shown here:

user> (def future-1 (val-as-future 1 3))
#'user/future-1
user>
3 seconds later ...

user>

The realized? and future-done? predicates can be used to check whether a future
has completed, as shown here:

user> (realized? future-1)
true
user> (future-done? future-1)
true

We can check whether a value is a future using the
future? predicate.

A future that is being executed can be stopped by using the future-cancel function,
which takes a future as its only argument and returns a Boolean value indicating
whether the supplied future was cancelled, as depicted here:

user> (def future-10 (val-as-future 10 10))
#'user/future-10
user> (future-cancel future-10)
true

Orchestrating Concurrency and Parallelism

[40]

We can check whether a future has been cancelled using the future-cancelled?
function. Also, dereferencing a future after it has been cancelled will cause an
exception, as shown here:

user> (future-cancelled? future-10)
true
user> @future-10
CancellationException java.util.concurrent.FutureTask.report
(FutureTask.java:121)

Now that we are familiar with the notion of representing tasks as futures, let's talk
about how multiple futures can be synchronized. Firstly, we can use promises to
synchronize two or more futures. A promise, created using the promise function,
is simply a value that can be set only once. A promise is set, or delivered, using the
deliver form. Subsequent calls to the deliver form on a promise that has been
delivered will not have any effect, and will return nil. When a promise is not
delivered, dereferencing it using the @ symbol or the deref form will block the
current thread of execution. Hence, a promise can be used with a future in order to
pause the execution of the future until a certain value is available. The promise and
deliver forms can be quickly demonstrated as follows:

user> (def p (promise))
#'user/p
user> (deliver p 100)
#<core$promise$reify__6363@1792b00: 100>
user> (deliver p 200)
nil
user> @p
100

As shown in the preceding output, the first call to the deliver form using the
promise p sets the value of the promise to 100, and the second call to the deliver
form has no effect.

The realized? predicate can be used to check
whether a promise instance has been delivered.

Another way to synchronize concurrent tasks is by using the locking form. The
locking form allows only a single task to hold a lock variable, or a monitor, at any
given point in time. Any value can be treated as a monitor. When a monitor is held,
or locked, by a certain task, any other concurrent tasks that try to acquire the monitor
are blocked until the monitor is available. We can thus use the locking form to
synchronize two or more concurrent futures, as shown in Example 2.4:

Chapter 2

[41]

(defn lock-for-2-seconds []
 (let [lock (Object.)
 task-1 (fn []
 (future
 (locking lock
 (Thread/sleep 2000)
 (println "Task 1 completed"))))
 task-2 (fn []
 (future
 (locking lock
 (Thread/sleep 1000)
 (println "Task 2 completed"))))]
 (task-1)
 (task-2)))

Example 2.4: Using the locking form

The lock-for-2-seconds function in Example 2.4 creates two functions, task-1 and
task-2, which both invoke futures that try to acquire a monitor, represented by the
variable lock. In this example, we use a boring java.lang.Object instance as a
monitor for synchronizing two futures. The future invoked by the task-1 function
sleeps for two seconds, whereas the future called by the task-2 function sleeps for a
single second. The future called by the task-1 function is observed to complete first
as the future invoked by the task-2 function will not be executed until the locking
form in the future obtains the monitor lock, as shown in the following output:

user> (lock-for-2-seconds)
[#<core$future_call$reify__6320@19ed4e9: :pending>
 #<core$future_call$reify__6320@ac35d5: :pending>]
user>
Task 1 completed
Task 2 completed

We can thus use the locking form to synchronize multiple futures. However, the
locking form must be used sparingly as careless use of it could result in a deadlock
among concurrent tasks. Concurrent tasks are generally synchronized to pass around
a shared state. Clojure allows us to avoid using the locking form and any possible
deadlocks through the use of reference types to represent shared state, as we will
examine in the following section.

Orchestrating Concurrency and Parallelism

[42]

Managing state
A program can be divided into several parts which can execute concurrently. It is
often necessary to share data or state among these concurrently running tasks. Thus,
we arrive at the notion of having multiple observers for some data. If the data gets
modified, we must ensure that the changes are visible to all observers. For example,
suppose there are two threads that read data from a common variable. This data gets
modified by one thread, and the change must be propagated to the other thread as
soon as possible to avoid inconsistencies.

Programming languages that support mutability handle this problem by locking
over a monitor, as we demonstrated with the locking form, and maintaining
local copies of the data. In such languages, a variable is just a container for data.
Whenever a concurrent task accesses a variable that is shared with other tasks,
it copies the data from the variable. This is done in order to prevent unwanted
overwriting of the variable by other tasks while a task is performing a computation
on it. In case the variable is actually modified, a given task will still have its own
copy of the shared data. If there are two concurrent tasks that access a given variable,
they could simultaneously modify the variable and thus both of the tasks would
have an inconsistent view of the data in the given variable. This problem is termed
as a race condition, and must be avoided when dealing with concurrent tasks. For
this reason, monitors are used to synchronize access to shared data. However, this
methodology is not really deterministic, in the sense that we cannot easily reason
about the actual data contained in a variable at a given point in time. This makes
developing concurrent programs quite cumbersome in programming languages that
use mutability.

Like other functional programming languages, Clojure tackles this problem using
immutability—all values are immutable by default and cannot be changed. To model
mutable state, there is the notion of identity, state, and time:

• An identity is anything that is associated with a changing state. At a given
point in time, an identity has a single state.

• State is the value associated with an identity at a given point in time.
• Time defines an ordering between the states of an identity.

Programs that actually use state can thus be divided into two layers. One layer is
purely functional and has nothing to do with state. The other layer constitutes parts of
the program that actually require the use of mutable state. This decomposition allows
us to isolate the parts of a program that actually require the use of mutable state.

Chapter 2

[43]

There are several ways to define mutable state in Clojure, and the data structures
used for this purpose are termed as reference types. A reference type is essentially a
mutable reference to an immutable value. Hence, the reference has to be changed
explicitly, and the actual value contained in a reference type cannot be modified in
any way. Reference types can be characterized in the following ways:

• The change of state in some reference types can either be synchronous
or asynchronous. For example, suppose we are writing data to a file. A
synchronous write operation would block the caller until all data is written
to the file. On the other hand, an asynchronous write operation would start
off a background task to write all data to the file and return to the caller
immediately.

• Mutation of a reference type can be performed in either a coordinated or an
independent manner. By coordinated, we mean that state can only be modified
within transactions that are managed by some underlying system, which
is quite similar to the way a database works. A reference type that mutates
independently, however, can be changed without the explicit use of a
transaction.

• Changes in some state can be visible to only the thread in which the change
occurs, or they could be visible to all threads in the current process.

We will now explore the various reference types that can be used to represent
mutable state in Clojure.

Using vars
Vars are used to manage state that is changed within the scope of a thread.
We essentially define vars that can have state, and then bind them to different
values. The modified value of a var is only visible to the current thread of execution.
Hence, vars are a form of the thread-local state.

The following examples can be found in src/m_clj/c2/vars.clj of
the book's source code.

Dynamic vars are defined using the def form with the :dynamic meta keyword.
If we omit the :dynamic metadata, it would be the same as defining an ordinary
variable, or a static var, using a def form. It's a convention that all dynamic var
names must start and end with the asterisk character (*), but this is not mandatory.
For example, let's define a dynamic variable shown as follows:

(def ^:dynamic *thread-local-state* [1 2 3])

Orchestrating Concurrency and Parallelism

[44]

The *thread-local-state* variable defined in Example 2.5 represents a thread-local
var that can change dynamically. We have initialized the var *thread-local-state*
with the vector [1 2 3], but it's not really required. In case an initial value is not
supplied to a def form, then the resulting variable is termed as an unbound var. While
the state of a var is confined to the current thread, its declaration is global to the
current namespace. In other words, a var defined with the def form will be visible to
all threads invoked from the current namespace, but the state of the variable is local
to the thread in which it is changed. Thus, vars using the def form are also termed as
global vars.

Normally, the def form creates a static var, which can only be redefined by using
another def form. Static vars can also be redefined within a scope or context using
the with-redefs and with-redefs-fn forms. A dynamic var, however, can be set to
a new value after it has been defined by using the binding form, shown as follows:

user> (binding [*thread-local-state* [10 20]]
 (map #(* % %) *thread-local-state*))
(100 400)
user> (map #(* % %) *thread-local-state*)
(1 4 9)

In this example, the binding form changes the value contained in the *thread-local-
state* var to the vector [10 20]. This causes the map form in the example to return a
different value when called without a binding form surrounding it. Thus, the binding
form can be used to temporarily change the state of the vars supplied to it.

The Clojure namespace system will resolve free symbols, or rather variable names,
to their values. This process of resolving a variable name to a namespace qualified
symbol is termed as interning. Also, a def form will first look for an existing global
var depending on the symbol it is passed, and will create one if it hasn't been defined
yet. The var form can be used to obtain the fully qualified name of a variable, instead
of its current value, as shown here:

user> *thread-local-state*
[1 2 3]
user> (var *thread-local-state*)
#'user/*thread-local-state*

Using the #' symbol is the same as using the var form. For example,
#'x is equivalent to (var x).

Chapter 2

[45]

The with-bindings form is another way to rebind vars. This form accepts a map
of var and value pairs as its first argument, followed by the body of the form,
shown as follows:

user> (with-bindings {#'*thread-local-state* [10 20]}
 (map #(* % %) *thread-local-state*))
(100 400)
user> (with-bindings {(var *thread-local-state*) [10 20]}
 (map #(* % %) *thread-local-state*))
(100 400)

We can check if a var is bound to any value in the current thread of execution
using the thread-bound? predicate, which requires a var to be passed as its
only argument:

user> (def ^:dynamic *unbound-var*)
#'user/*unbound-var*
user> (thread-bound? (var *unbound-var*))
false
user> (binding [*unbound-var* 1]
 (thread-bound? (var *unbound-var*)))
true

We can also define vars that are not interned, or local vars, using the with-local-
vars form. These vars will not be resolved by the namespace system, and have to be
accessed manually using the var-get and var-set functions. These functions can
thus be used to create and access mutable variables, as shown in Example 2.5.

Using the at-the-rate symbol (@) with a non-interned var is the same
as using the var-get function. For example, if x is a non-interned
var, @x is equivalent to (var-get x).

(defn factorial [n]
 (with-local-vars [i n acc 1]
 (while (> @i 0)
 (var-set acc (* @acc @i))
 (var-set i (dec @i)))
 (var-get acc)))

Example 2.5: Mutable variables using the with-local-vars form

The factorial function defined in Example 2.5 calculated the factorial of n using
two mutable local vars i and acc, which are initialized with the values n and 1
respectively. Note that the code in this function exhibits an imperative style of
programming, in which the state of the variables i and acc is manipulated using
the var-get and var-set functions.

Orchestrating Concurrency and Parallelism

[46]

We can check whether a value has been created through
a with-local-vars form using the var? predicate.

Using refs
A Software Transactional Memory (STM) system can also be used to model mutable
state. STM essentially treats mutable state as a tiny database that resides in a program's
memory. Clojure provides an STM implementation through refs, and they can only be
changed within a transaction. Refs are a reference type that represent synchronous and
coordinated state.

The following examples can be found in src/m_clj/c2/refs.clj
of the book's source code.

We can create a ref by using the ref function, which requires a single argument to
indicate the initial state of the ref. For example, we can create a ref as follows:

(def state (ref 0))

The variable state defined here represents a ref with the initial value of 0. We can
dereference state using @ or deref to obtain the value contained in it.

In order to modify a ref, we must start a transaction by using the dosync form. If two
concurrent tasks invoke transactions using the dosync form simultaneously, then
the transaction that completes first will update the ref successfully. The transaction
which completes later will be retried until it completes successfully. Thus, I/O and
other side-effects must be avoided within a dosync form, as it can be retried. Within
a transaction, we can modify the value of a ref using the ref-set function. This
function takes two arguments—a ref and the value that represents the new state of
the ref. The ref-set function can be used to modify a ref as follows:

user> @state
0
user> (dosync (ref-set state 1))
1
user> @state
1

Initially, the expression @state returns 0, which is the initial state of the ref state.
The value returned by this expression changes after the call to ref-set within the
dosync form.

Chapter 2

[47]

We can obtain the latest value contained in a ref by using the ensure function. This
function returns the latest value of a ref, and has to be called within a transaction. For
example, the expression (ensure state), when called within a transaction initiated
by a dosync form, will return the latest value of the ref state in the transaction.

A more idiomatic way to modify a given ref is by using the alter and commute
functions. Both these functions require a ref and a function to be passed to it as
arguments. The alter and commute functions will apply the supplied function to the
value contained in a given ref, and save the resulting value into the ref. We can also
specify additional arguments to pass to the supplied function. For example, we can
modify the state of the ref state using alter and commute as follows:

user> @state
1
user> (dosync (alter state + 2))
3
user> (dosync (commute state + 2))
5

The preceding transactions with the alter and commute forms will save the value
(+ @state 2) into the ref state. The main difference between alter and commute
is that a commute form must be preferred when the supplied function is commutative.
This means two successive calls of the function supplied to a commute form must
produce the same result regardless of the ordering among the two calls. Using the
commute form is considered an optimization over the alter form in which we are
not concerned with the ordering among concurrent transactions on a given ref.

The ref-set, alter, and commute functions all return the new
value contained in the supplied ref. Also, these functions will throw
an error if they are not called within a dosync form.

A mutation performed by the alter and commute forms can also be validated. This is
achieved using the :validator key option when creating a ref, as shown here:

user> (def r (ref 1 :validator pos?))
#'user/r
user> (dosync (alter r (fn [_] -1)))
IllegalStateException Invalid reference state
clojure.lang.ARef.validate (ARef.java:33)
user> (dosync (alter r (fn [_] 2)))
2

Orchestrating Concurrency and Parallelism

[48]

As shown previously, the ref r throws an exception when we try to change its
state to a negative value. This is because the pos? function is used to validate the
new state of the ref. Note that the :validator key option can be used with other
reference types as well. We can also set the validation function of a ref that was
created without a :validator key option using the set-validator! function.

The :validator key option and the set-validator! function can
be used with all reference types. The supplied validation function must
return false or throw an exception to indicate a validation error.

The dining philosophers problem depicts the use of synchronization primitives to share
resources. The problem can be defined as follows: five philosophers are seated on
a round table to eat spaghetti, and each philosopher requires two forks to eat from
his plate of spaghetti. There are five forks on the table, placed in between the five
philosophers. A philosopher will first have to pick up a fork from his left side as well
as one from his right side before he can eat. When a philosopher cannot obtain the
two forks to his left and right side, he must wait until both the forks are available.
After a philosopher is done eating his spaghetti, he will think for some time, thereby
allowing the other philosophers to use the forks that he used. The solution to this
problem requires that all philosophers share the forks among them, and none of
the philosophers starve due to being unable to get two forks. The five philosophers'
plates and forks are placed on the table as illustrated in the following diagram:

A philosopher must obtain exclusive access to the forks on his left and right side
before he starts eating. If both the forks are unavailable, the philosopher must wait
for some time for either one of the forks to be free, and retry obtaining the forks. This
way, each philosopher can access the forks in tandem with the other philosophers
and avoid starvation.

Chapter 2

[49]

Generally, this solution can be implemented by using synchronization primitives
to access the available forks. Refs allow us to implement a solution to the dining
philosophers problem without the use of any synchronization primitives. We will
now demonstrate how we can implement and simulate a solution to this problem in
Clojure. Firstly, we will have to define the states of a fork and a philosopher as refs,
as shown in Example 2.6:

(defn make-fork []
 (ref true))

(defn make-philosopher [name forks food]
 (ref {:name name
 :forks forks
 :eating? false
 :food food}))

Example 2.6: The dining philosophers problem using refs

The make-fork and make-philosopher functions create refs to represent the states
of a fork and a philosopher, respectively. A fork is simply the state of a Boolean
value, indicating whether it is available or not. And a philosopher, created by
the make-philosopher function, is a map encapsulated as a state, which has the
following keys:

• The :name key contains the name of a philosopher that is a string value.
• The :forks key points to the forks on the left and the right side of a

philosopher. Each fork will be a ref created by the make-fork function.
• The :eating? key indicates whether a philosopher is eating at the moment.

It is a Boolean value.
• The :food key represents the amount of food available to a philosopher.

For simplicity, we will treat this value as an integer.

Now, let's define some primitive operations to help in handling forks, as shown in
Example 2.7:

(defn has-forks? [p]
 (every? true? (map ensure (:forks @p))))

(defn update-forks [p]
 (doseq [f (:forks @p)]
 (commute f not))
 p)

Example 2.7: The dining philosophers problem using refs (continued)

Orchestrating Concurrency and Parallelism

[50]

The has-forks? function defined previously checks whether both the forks that are
placed to the left and right of a given philosopher ref p are available. The update-
forks function will modify the state of both the associated forks of a philosopher ref
p using a commute form, and returns the ref p. Obviously, these functions can only be
called within a transaction created by the dosync form, since they use the ensure and
commute functions. Next, we will have to define some functions to initiate transactions
and invoke the has-forks? and update-forks functions for a given philosopher, as
shown in Example 2.8:

(defn start-eating [p]
 (dosync
 (when (has-forks? p)
 (update-forks p)
 (commute p assoc :eating? true)
 (commute p update-in [:food] dec))))

(defn stop-eating [p]
 (dosync
 (when (:eating? @p)
 (commute p assoc :eating? false)
 (update-forks p))))

(defn dine [p retry-ms max-eat-ms max-think-ms]
 (while (pos? (:food @p))
 (if (start-eating p)
 (do
 (Thread/sleep (rand-int max-eat-ms))
 (stop-eating p)
 (Thread/sleep (rand-int max-think-ms)))
 (Thread/sleep retry-ms))))

Example 2.8: The dining philosophers problem using refs (continued)

The heart of the solution to the dining philosophers problem is the start-eating
function in Example 2.8. This function will check whether both the forks on either
side of a philosopher are available, using the has-forks? function. The start-
eating function will then proceed to update the states of these forks by calling the
update-forks function. The start-eating function will also change the state of the
philosopher ref p by invoking commute with the assoc and update-in functions,
which both return a new map. Since the start-eating function uses a when form, it
will return nil when any of the philosophers' forks are unavailable. These few steps
are the solution; in a nutshell, a philosopher will eat only when both his forks are
available.

Chapter 2

[51]

The stop-eating function in Example 2.8 reverses the state of a given philosopher
ref after the start-eating function has been invoked on it. This function basically
sets the :eating key of the map contained in the supplied philosopher ref p to
false using a commute form, and then calls update-forks to reset the state of the
associated forks of the philosopher ref p.

The start-eating and stop-eating function can be called repeatedly in a loop
using a while form, as long as the :food key of a philosopher ref p, or rather the
amount of available food, is a positive value. This is performed by the dine function
in Example 2.8. This function will call the start-eating function on a philosopher
ref p, and will wait for some time if the philosopher's forks are being used by any
other philosophers. The amount of time that a philosopher waits for is indicated by
the retry-ms argument that is passed to the dine function. If a philosopher's forks
are available, he eats for a random amount of time, as indicated by the expression
(rand-int max-eat-ms). Then, the stop-eating function is called to reset the state
of the philosopher ref p and the forks that it contains. Finally, the dine function waits
for a random amount of time, which is represented by the (rand-int max-think-
ms) expression, to indicate that a philosopher is thinking.

Let's now define some function and actually create some refs representing
philosophers and associated forks, as shown in Example 2.9:

(defn init-forks [nf]
 (repeatedly nf #(make-fork)))

(defn init-philosophers [np food forks init-fn]
 (let [p-range (range np)
 p-names (map #(str "Philosopher " (inc %))
 p-range)
 p-forks (map #(vector (nth forks %)
 (nth forks (-> % inc (mod np))))
 p-range)
 p-food (cycle [food])]
 (map init-fn p-names p-forks p-food)))

Example 2.9: The dining philosophers problem using refs (continued)

The init-forks function from Example 2.9 will simply invoke the make-fork function
a number of times, as indicated by its argument nf. The init-philosophers function
will create np number of philosophers and associate each of them with a vector of
two forks and a certain amount of food. This is done by mapping the function
init-fn, which is a function that matches the arity of the make-philosopher function
in Example 2.6, over a range of philosopher names p-names and forks p-forks, and an
infinite range p-food of the value food.

Orchestrating Concurrency and Parallelism

[52]

We will now define a function to print the collective state of a sequence of
philosophers. This can be done in a fairly simple manner using the doseq function,
as shown in Example 2.10:

(defn check-philosophers [philosophers forks]
 (doseq [i (range (count philosophers))]
 (println (str "Fork:\t\t\t available=" @(nth forks i)))
 (if-let [p @(nth philosophers i)]
 (println (str (:name p)
 ":\t\t eating=" (:eating? p)
 " food=" (:food p))))))

Example 2.10: The dining philosophers problem using refs (continued)

The check-philosophers function in Example 2.10 iterates through all of its supplied
philosopher refs, represented by philosophers, and associated forks, represented by
forks, and prints their state. The if-let form is used here to check if a dereferenced
ref from the collection philosophers is not nil.

Now, let's define a function to concurrently invoke the dine function over a collection
of philosopher. This function could also pass in values for the retry-ms, max-eat-ms,
and max-think-ms arguments of the dine function. This is implemented in the
dine-philosophers function in Example 2.11:

(defn dine-philosophers [philosophers]
 (doall (for [p philosophers]
 (future (dine p 10 100 100))))

Example 2.11: The dining philosophers problem using refs (continued)

Finally, let's define five instances of philosophers and five associated forks for our
simulation, using the init-forks, init-philosophers, and make-philosopher
functions, as shown in Example 2.12 as follows:

(def all-forks (init-forks 5))

(def all-philosophers
 (init-philosophers 5 1000 all-forks make-philosopher))

Example 2.12: The dining philosophers problem using refs (continued)

We can now use the check-philosopher function to print the state of the
philosopher and fork refs created in Example 2.12, as shown here:

user> (check-philosophers all-philosophers all-forks)
Fork: available=true
Philosopher 1: eating=false food=1000
Fork: available=true
Philosopher 2: eating=false food=1000

Chapter 2

[53]

Fork: available=true
Philosopher 3: eating=false food=1000
Fork: available=true
Philosopher 4: eating=false food=1000
Fork: available=true
Philosopher 5: eating=false food=1000
nil

Initially, all of the forks are available and none of the philosophers are eating.
To start the simulation, we must call the dine-philosophers function on the
philosopher refs all-philosophers and the fork refs all-forks, as shown here:

user> (def philosophers-futures (dine-philosophers all-philosophers))
#'user/philosophers-futures
user> (check-philosophers all-philosophers all-forks)
Fork: available=false
Philosopher 1: eating=true food=978
Fork: available=false
Philosopher 2: eating=false food=979
Fork: available=false
Philosopher 3: eating=true food=977
Fork: available=false
Philosopher 4: eating=false food=980
Fork: available=true
Philosopher 5: eating=false food=980
nil

After invoking the dine-philosophers function, each philosopher is observed
to consume the allocated food, as shown in the output of the previous check-
philosophers function. At any given point of time, one or two philosophers are
observed to be eating, and the other philosophers will wait until they complete
using the available forks. Subsequent calls to the check-philosophers function also
indicate the same output, and the philosophers will eventually consume all of the
allocated food:

user> (check-philosophers all-philosophers all-forks)
Fork: available=true
Philosopher 1: eating=false food=932
Fork: available=true
Philosopher 2: eating=false food=935
Fork: available=true
Philosopher 3: eating=false food=933
Fork: available=true
Philosopher 4: eating=false food=942
Fork: available=true
Philosopher 5: eating=false food=935
nil

Orchestrating Concurrency and Parallelism

[54]

We can pause the simulation by calling the future-cancel function, as shown here.
Once the simulation is paused, it can be resumed by calling the dine-philosophers
function again, as (dine-philosophers all-philosophers):

user> (map future-cancel philosophers-futures)
(true true true true true)

To summarize, the preceding example is a concise and working implementation
of a solution to the dining philosophers problem using Clojure futures and refs.

Using atoms
Atoms are used to handle state that changes atomically. Once an atom is modified,
its new value is reflected in all concurrent threads. In this way, atoms represent
synchronous and independent state. Let's quickly explore the functions that can be
used to handle atoms.

The following examples can be found in src/m_clj/c2/atoms.clj
of the book's source code.

We can define an atom using the atom function, which requires the initial state of the
atom to be passed to it as the first argument, as shown here:

(def state (atom 0))

The reset! and swap! functions can be used to modify the state of an atom. The
reset! function is used to directly set the state of an atom. This function takes two
arguments—an atom and the value that represents the new state of the atom, as
shown here:

user> @state
0
user> (reset! state 1)
1
user> @state
1

Chapter 2

[55]

The swap! function requires a function and additional arguments to pass to the
supplied function as arguments. The supplied function is applied to the value
contained in the atom along with the other additional arguments specified to the
swap! function. This function can thus be used to mutate an atom using a supplied
function, as shown here:

user> @state
1
user> (swap! state + 2)
3

The call to the preceding swap! function sets the state of the atom to the result of the
expression (+ @state 2). The swap! function may call the function + multiple times
due to concurrent calls to the swap! function on the atom state. Hence, functions
that are passed to the swap! function must be free of I/O and other side effects.

The reset! and swap! functions both return the new value contained
in the supplied atom.

We can watch for any change in an atom, and other reference types as well, using the
add-watch function. This function will call a given function whenever the state of an
atom is changed. The add-watch function takes three arguments—a reference, a key
and a watch function, that is, a function that must be called whenever the state of the
supplied reference type is changed. The function that is supplied to the add-watch
function must accept four arguments—a key, the reference that was changed, the
old value of the reference, and the new value of the reference. The value of the key
argument that is passed to the add-watch function gets passed to the watch function
as its first argument. A watch function can also be unlinked from a given reference
type using the remove-watch function. The remove-watch function accepts two
arguments—a reference and a key that was specified while adding a watch function
to the reference. Example 2.13 depicts how we can track the state of an atom using a
watch function:

(defn make-state-with-watch []
 (let [state (atom 0)
 state-is-changed? (atom false)
 watch-fn (fn [key r old-value new-value]
 (swap! state-is-changed? (fn [_] true))]
 (add-watch state nil watch-fn)
 [state
 state-is-changed?]))

Example 2.13: Using the add-watch function

Orchestrating Concurrency and Parallelism

[56]

The make-state-with-watch function defined in Example 2.13 returns a vector of two
atoms. The second atom in this vector initially contains the value false. Whenever the
state of the first atom in the vector returned by the make-state-with-watch function
is changed, the state of the second atom in this vector is changed to the value true.
This can be verified in the REPL, as shown here:

user> (def s (make-state-with-watch))
#'user/s
user> @(nth s 1)
false
user> (swap! (nth s 0) inc)
1
user> @(nth s 1)
true

Thus, watch functions can be used with the add-watch function to track the state of
atoms and other reference types.

The add-watch function can be used with all reference types.

Using agents
An agent is used to represent state that is associated with a queue of actions and a
pool of worker threads. Any action that modifies the state of an agent must be sent
to its queue, and the supplied function will be called by a thread selected from the
agent's pool of worker threads. We can send actions asynchronously to agents as
well. Thus, agents represent asynchronous and independent state.

The following examples can be found in src/m_
clj/c2/agents.clj of the book's source code.

An agent is created using the agent function. For example, we can create an agent
with an empty map as its initial value as follows:

(def state (agent {}))

We can modify the state of an agent by using the send and send-off functions.
The send and send-off functions will send a supplied action and its additional
arguments to an agent's queue in an asynchronous manner. Both these functions
return the agent they are passed immediately.

Chapter 2

[57]

The primary difference between the send and send-off functions is that the send
function assigns actions to a thread selection from a pool of worker threads, whereas
the send-off function creates a new dedicated thread to execute each action.
Blocking actions that are sent to an agent using the send function could exhaust
the agent's pool of threads. Thus, the send-off function is preferred for sending
blocking actions to an agent.

To demonstrate the send and send-off functions, let's first define a function that
returns a closure that sleeps for a certain amount of time, and then, call the assoc
function, as shown in Example 2.14:

(defn set-value-in-ms [n ms]
 (fn [a]
 (Thread/sleep ms)
 (assoc a :value n)))

Example 2.14: A function that returns a closure which sleeps and calls assoc

A closure returned by the set-value-in-ms function, in Example 2.14, can be passed
as an action to the send and send-off functions, as shown here:

user> (send state (set-value-in-ms 5 5000))
#<Agent@7fce18: {}>
user> (send-off state (set-value-in-ms 10 5000))
#<Agent@7fce18: {}>
user> @state
{}
user> @state ; after 5 seconds
{:value 5}
user> @state ; after another 5 seconds
{:value 10}

The calls to the preceding send and send-off functions will call the closures returned
by the set-value-in-ms function, from Example 2.14, asynchronously over the agent
state. The agent's state changes over a period of 10 seconds, which is required to
execute the closures returned by the set-value-in-ms function. The new key-value
pair {:value 5} is observed to be saved into the agent state after five seconds, and
the state of the agent again changes to {:value 10} after another five seconds.

Any action that is passed to the send and send-off functions can use the *agent*
var to access the agent through which the action will be executed.

Orchestrating Concurrency and Parallelism

[58]

The await function can be used to wait for all actions in an agent's queue to be
completed, as shown here:

user> (send-off state (set-value-in-ms 100 3000))
#<Agent@af9ac: {:value 10}>
user> (await state) ; will block
nil
user> @state
{:value 100}

The expression (await state) is observed to be blocked until the previous action
that was sent to the agent state using the send-off function is completed. The
await-for function is a variant of await, which waits for a certain number of
milliseconds, indicated by its first argument, for all the actions on an agent, its
second argument, to complete.

An agent also saves any error it encounters while performing the actions in its queue.
An agent will throw the error it has encountered on any subsequent calls to the send
and send-off functions. The error saved by an agent can be accessed using the
agent-error function, and can be cleared using the clear-agent-errors function,
as shown here:

user> (def a (agent 1))
#'user/a
user> (send a / 0)
#<Agent@5d29f1: 1>
user> (agent-error a)
#<ArithmeticException java.lang.ArithmeticException: Divide by zero>
user> (clear-agent-errors a)
1
user> (agent-error a)
nil
user> @a
1

An agent that has encountered an error can also be restarted using the restart-
agent function. This function takes an agent as its first argument and the new state
of the agent as its second argument. All actions that were sent to an agent while it
was failed will be executed once the restart-agent is called on the agent. We can
avoid this behavior by passing the :clear-actions true optional argument to
the restart-agent function. In this case, any actions held in an agent's queue are
discarded before it is restarted.

Chapter 2

[59]

To create a pool of threads, or a threadpool, to use with an agent, we must call the
static newFixedThreadPool method of the java.util.concurrent.Executors class
by passing the desired number of threads in the pool as an argument, as follows:

(def pool (java.util.concurrent.Executors/newFixedThreadPool 10))

The pool of threads defined previously can be used to execute the actions of an agent
by using the send-via function. This function is a variant of the send function that
accepts a pool of threads, such as the pool defined previously, as its first argument,
as shown here:

user> (send-via pool state assoc :value 1000)
#<Agent@8efada: {:value 100}>
user> @state
{:value 1000}

We can also specify the thread pools to be used by all agents to execute actions
sent to them using the send and send-off functions using the set-agent-send-
executor! and set-agent-send-off-executor! functions respectively. Both of
these functions accept a single argument representing a pool of threads.

All agents in the current process can be stopped by invoking the (shutdown-agents).
The shutdown-agents function should only be called before exiting a process, as there
is no way to restart the agents in a process after calling this function.

Now, let's try implementing the dining philosophers problem using agents.
We can reuse most of the functions from the previous implementation of the dining
philosophers problem that was based on refs. Let's define some functions to model
this problem using agents, as shown in Example 2.15:

(defn make-philosopher-agent [name forks food]
 (agent {:name name
 :forks forks
 :eating? false
 :food food}))

(defn start-eating [max-eat-ms]
 (dosync (if (has-forks? *agent*)
 (do
 (-> *agent*
 update-forks
 (send assoc :eating? true)
 (send update-in [:food] dec))
 (Thread/sleep (rand-int max-eat-ms))))))

(defn stop-eating [max-think-ms]

Orchestrating Concurrency and Parallelism

[60]

 (dosync (-> *agent*
 (send assoc :eating? false)
 update-forks))
 (Thread/sleep (rand-int max-think-ms)))

(def running? (atom true))

(defn dine [p max-eat-ms max-think-ms]
 (when (and p (pos? (:food p)))
 (if-not (:eating? p)
 (start-eating max-eat-ms)
 (stop-eating max-think-ms))
 (if-not @running?
 @*agent*
 @(send-off *agent* dine max-eat-ms max-think-ms))))

(defn dine-philosophers [philosophers]
 (swap! running? (fn [_] true))
 (doall (for [p philosophers]
 (send-off p dine 100 100))))

(defn stop-philosophers []
 (swap! running? (fn [_] false)))

Example 2.15: The dining philosophers problem using agents

In Example 2.15, the make-philosopher-agent function will create an agent
representing a philosopher. The initial state of the resulting agent is a map of
the keys :name, :forks, :eating?, and :food, as described in the previous
implementation of the dining philosophers problem. Note that the forks in this
implementation are still represented by refs.

The start-eating function in Example 2.15 will start a transaction, check whether the
forks placed to the left and right sides of a philosopher are available, changes the state
of the forks and philosopher agent accordingly, and then suspends the current thread
for some time to indicate that a philosopher is eating. The stop-eating function in
Example 2.15 will similarly update the state of a philosopher and the forks he had used,
and then suspend the current thread for some time to indicate that a philosopher is
thinking. Note that both the start-eating and stop-eating functions reuse the
has-forks? and update-forks functions from Example 2.7 of the previous
implementation of the dining philosophers problem.

Chapter 2

[61]

The start-eating and stop-eating functions are called by the dine function
in Example 2.15. We can assume that this function will be passed as an action to a
philosopher agent. This function checks the value of the :eating? key contained in
a philosopher agent to decide whether it must invoke the start-eating or stop-
eating function in the current call. Next, the dine function invokes itself again using
the send-off function and dereferencing the agent returned by the send-off function.
The dine function also checks the state of the atom running? and does not invoke
itself through the send-off function in case the expression @running returns false.

The dine-philosophers function in Example 2.15 starts the simulation by setting
the value of the running? atom to true and then invoking the dine function
asynchronously through the send-off function for all the philosopher agents passed
to it, represented by philosophers. The function stop-philosophers simply sets
the value of the running? atom to false, thereby stopping the simulation.

Finally, let's define five instances of forks and philosophers using the init-forks and
init-philosophers functions from Example 2.9, shown in Example 2.16 as follows:

(def all-forks (init-forks 5))

(def all-philosophers
 (init-philosophers 5 1000 all-forks make-philosopher-agent))

Example 2.16: The dining philosophers problem using agents (continued)

We can now start the simulation by calling the dine-philosophers function.
Also, we can print the collective state of the fork and philosopher instances in the
simulation using the check-philosophers function defined in Example 2.10,
as follows:

user> (def philosophers-agents (dine-philosophers all-philosophers))
#'user/philosophers-agents
user> (check-philosophers all-philosophers all-forks)
Fork: available=false
Philosopher 1: eating=false food=936
Fork: available=false
Philosopher 2: eating=false food=942
Fork: available=true
Philosopher 3: eating=true food=942
Fork: available=true
Philosopher 4: eating=false food=935
Fork: available=true
Philosopher 5: eating=true food=943
nil

Orchestrating Concurrency and Parallelism

[62]

user> (check-philosophers all-philosophers all-forks)
Fork: available=false
Philosopher 1: eating=true food=743
Fork: available=false
Philosopher 2: eating=false food=747
Fork: available=true
Philosopher 3: eating=false food=751
Fork: available=true
Philosopher 4: eating=false food=741
Fork: available=true
Philosopher 5: eating=false food=760
nil

As shown in the preceding output, all philosopher agents share the fork instances
among themselves. In effect, they work in tandem to ensure that each philosopher
eventually consumes all of their allocated food.

In summary, vars, refs, atoms, and agents can be used to represent mutable state that
is shared among concurrently executing tasks.

Executing tasks in parallel
The simultaneous execution of several computations is termed as parallelism. The use
of parallelism tends to increase the overall performance of a computation, since the
computation can be partitioned to execute on several cores or processors. Clojure
has a couple of functions that can be used for the parallelization of a particular
computation or task, and we will briefly examine them in this section.

The following examples can be found in src/m_clj/c2/parallel.clj
of the book's source code.

Suppose we have a function that pauses the current thread for some time and then
returns a computed value, as depicted in Example 2.17:

(defn square-slowly [x]
 (Thread/sleep 2000)
 (* x x))

Example 2.17: A function that pauses the current thread

Chapter 2

[63]

The function square-slowly in Example 2.17 requires a single argument x. This
function pauses the current thread for two seconds and returns the square of its
argument x. If the function square-slowly is invoked over a collection of three
values using the map function, it takes three times as long to complete, as shown here:

user> (time (doall (map square-slowly (repeat 3 10))))
"Elapsed time: 6000.329702 msecs"
(100 100 100)

The previously shown map form returns a lazy sequence, and hence the doall form
is required to realize the value returned by the map form. We could also use the
dorun form to perform this realization of a lazy sequence. The entire expression is
evaluated in about six seconds, which is thrice the time taken by the square-slowly
function to complete. We can parallelize the application of the square-slowly
function using the pmap function instead of map, as shown here:

user> (time (doall (pmap square-slowly (repeat 3 10))))
"Elapsed time: 2001.543439 msecs"
(100 100 100)

The entire expression now evaluates in the same amount of time required for a single
call to the square-slowly function. This is due to the square-slowly function being
called in parallel over the supplied collection by the pmap form. Thus, the pmap form
has the same semantics as that of the map form, except that it applies the supplied
function in parallel.

The pvalues and pcalls forms can also be used to parallelize computations. The
pvalues form evaluates the expressions passed to it in parallel, and returns a lazy
sequence of the resulting values. Similarly, the pcalls form invokes all functions
passed to it, which must take no arguments, in parallel and returns a lazy sequence
of the values returned by these functions:

user> (time (doall (pvalues (square-slowly 10)
 (square-slowly 10)
 (square-slowly 10))))
"Elapsed time: 2007.702703 msecs"
(100 100 100)
user> (time (doall (pcalls #(square-slowly 10)
 #(square-slowly 10)
 #(square-slowly 10))))
"Elapsed time: 2005.683279 msecs"
(100 100 100)

Orchestrating Concurrency and Parallelism

[64]

As shown in the preceding output, both expressions that use the pvalues and
pcalls forms take the same amount of time to evaluate as a single call to the
square-slowly function.

The pmap, pvalues, and pcalls forms all return lazy sequences
that have to be realized using the doall or dorun form.

Controlling parallelism with thread pools
The pmap form schedules parallel execution of the supplied function on the default
threadpool. If we wish to configure or tweak the threadpool used by pmap, the
claypoole library (https://github.com/TheClimateCorporation/claypoole) is
a good option. This library provides an implementation of the pmap form that must
be passed a configurable threadpool. We will now demonstrate how we can use this
library to parallelize a given function.

The following library dependencies are required for the upcoming examples:
[com.climate/claypoole "1.0.0"]

Also, the following namespaces must be included in your namespace
declaration:

(ns my-namespace

 (:require [com.climate.claypoole :as cp]

 [com.climate.claypoole.lazy :as cpl]))

The pmap function from the com.climate.claypoole namespace is essentially a
variant of the standard pmap function to which we supply a threadpool instance to be
used in parallelizing a given function. We can also supply the number of threads to
be used by this variant of the pmap function in order to parallelize a given function,
as shown here:

user> (time (doall (cpl/pmap 2 square-slowly [10 10 10])))
"Elapsed time: 4004.029789 msecs"
(100 100 100)

As previously shown, the pmap function from the claypoole library can be used
to parallelize the square-slowly function that we defined earlier in Example 2.17
over a collection of three values. These three elements are computed over in two
batches, in which each batch will parallely apply the square-slowly function over
two elements in two separate threads. Since the square-slowly function takes two
seconds to complete, the total time taken to compute over the collection of three
elements is around four seconds.

https://github.com/TheClimateCorporation/claypoole

Chapter 2

[65]

We can create an instance of a pool of threads using the threadpool function from
the claypoole library. This threadpool instance can then be passed to the pmap
function from the claypoole library. The com.climate.claypoole namespace also
provides the ncpus function that returns the number of physical processors available
to the current process. We can create a threadpool instance and pass it to this variant
of the pmap function as shown here:

user> (def pool (cp/threadpool (cp/ncpus)))
#'user/pool
user> (time (doall (cpl/pmap pool square-slowly [10 10 10])))
"Elapsed time: 4002.05885 msecs"
(100 100 100)

Assuming that we are running the preceding code on a computer system that has
two physical processors, the call to the threadpool function shown previously will
create a threadpool of two threads. This threadpool instance can then be passed to
the pmap function as shown in the preceding example.

We can fall back to the standard behavior of the pmap function by passing
the :builtin keyword as the first argument to the com.climate.
claypoole/pmap function. Similarly, if the keyword :serial is passed
as the first argument to the claypoole version of the pmap function, the
function behaves like the standard map function.

The threadpool function also supports a couple of useful key options. Firstly,
we can create a pool of non-daemon threads using the :daemon false optional
argument. Daemon threads are killed when the process exits, and all threadpools
created by the threadpool function are pools of daemon threads by default. We can
also name a threadpool using the :name key option of the threadpool function. The
:thread-priority key option can be used to indicate the priority of the threads in
the new threadpool.

Tasks can also be prioritized using the pmap, priority-threadpool, and
with-priority forms from the claypoole library. A priority threadpool is created
using the priority-threadpool function, and this new threadpool can be used
along with the with-priority function to assign a priority to a task that must be
parallelized using pmap, as shown here:

user> (def pool (cp/priority-threadpool (cp/ncpus))
#'user/pool
user> (def task-1 (cp/pmap (cp/with-priority pool 1000)
 square-slowly [10 10 10]))
#'user/task-1
user> (def task-2 (cp/pmap (cp/with-priority pool 0)
 square-slowly [5 5 5]))
#'user/task-2

Orchestrating Concurrency and Parallelism

[66]

Tasks with higher priority are assigned to threads first. Hence, the task represented
by task-1 will be assigned to a thread of execution before the task represented by
task-2 in the previous output.

To gracefully deallocate a given threadpool, we can call the shutdown function from
the com.climate.claypoole namespace, which accepts a threadpool instance as
its only argument. The shutdown! function from the same namespace will forcibly
shut down the threads in a threadpool. The shutdown! function can also be called
using the with-shutdown! macro. We specify the threadpools to be used for a series
of computations as a vector of bindings to the with-shutdown! macro. This macro
will implicitly call the shutdown! function on all of the threadpools that it has created
once all the computations in the body of this macro are completed. For example, we
can define a function to create a threadpool, use it for a computation, and finally, shut
down the threadpool, using the with-shutdown! function as shown in Example 2.18:

(defn square-slowly-with-pool [v]
 (cp/with-shutdown! [pool (cp/threadpool (cp/ncpus))]
 (doall (cp/pmap pool square-slowly v))))

Example 2.18: Using a priority threadpool

The square-slowly-with-pool function defined in Example 2.18 will create
a new threadpool, represented by pool, and then use it to call the pmap function.
The shutdown! function is implicitly called once the doall form completely
evaluates the lazy sequence returned by the pmap function.

The claypoole library also supports unordered parallelism, in which results of
individual threads of computation are used as soon as they are available in order to
minimize latency. The com.climate.claypoole/upmap function is an unordered
parallel version of the pmap function.

The com.climate.claypoole namespace also provides several other functions that
use threadpools, as described here:

• The com.climate.claypoole/pvalues function is a threadpool-based
implementation of the pvalues function. It will evaluate its arguments in
parallel using a supplied threadpool and return a lazy sequence.

• The com.climate.claypoole/pcalls function is a threadpool-based
version of the pcalls function, which invokes several no-argument functions
to return a lazy sequence.

• A future that uses a given threadpool can be created using the com.climate.
claypoole/future function.

• We can evaluate an expression in a parallel fashion over the items in a given
collection using the com.climate.claypoole/pfor function.

Chapter 2

[67]

• The upvalues, upcalls, and upfor functions in the com.climate.
claypoole namespace are unordered parallel versions of the pvalues,
pcalls, and pfor functions, respectively, from the same namespace.

It is quite evident that the pmap function from the com.climate.claypoole namespace
will eagerly evaluate the collection it is supplied. This may be undesirable when we
intend to call pmap over an infinite sequence. The com.climate.claypoole.lazy
namespace provides versions of pmap and other functions from the com.climate.
claypoole namespace that preserve the laziness of a supplied collection. The lazy
version of the pmap function can be demonstrated as follows:

user> (def lazy-pmap (cpl/pmap pool square-slowly (range)))
#'user/lazy-pmap
user> (time (doall (take 4 lazy-pmap)))
"Elapsed time: 4002.556548 msecs"
(0 1 4 9)

The previously defined lazy-pmap sequence is a lazy sequence created by mapping
the square-slowly function over the infinite sequence (range). As shown previously,
the call to the pmap function returns immediately, and the first four elements of the
resulting lazy sequence are realized in parallel using the doall and take functions.

To summarize, Clojure has the pmap, pvalues, and pcalls primitives to deal with
parallel computations. If we intend to control the amount of parallelism utilized
by these functions, we can use the claypoole library's implementations of these
primitives. The claypoole library also supports other useful features such as
prioritized threadpools and unordered parallelism.

Summary
We have explored various constructs that can be used to create concurrent and
parallel tasks in Clojure. You learned to handle shared mutable state through the
use of reference types, namely vars, refs, atoms and agents. As we described earlier,
the dining philosophers problem can be easily implemented using refs and agents.
You also studied how tasks can be executed in parallel. Lastly, we explored the
claypoole library, which allows us to control the amount of parallelism used for a
given computation.

In the next chapter, we will continue our exploration of parallelism in Clojure
through the use of reducers.

[69]

Parallelization Using
Reducers

Reducers are another way of looking at collections in Clojure. In this chapter, we
will study this particular abstraction of collections, and how it is quite orthogonal to
viewing collections as sequences. The motivation behind reducers is to increase the
performance of computations over collections. This performance gain is achieved
mainly through parallelization of such computations.

As we have seen in Chapter 1, Working with Sequences and Patterns, sequences and
laziness are a great way to handle collections. The Clojure standard library provides
several functions to handle and manipulate sequences. However, abstracting a
collection as a sequence has an unfortunate consequence; any computation performed
over all the elements of a sequence is inherently sequential. Also, all of the standard
sequence functions create a new collection that is similar to the collection passed to
these functions. Interestingly, performing a computation over a collection without
creating a similar collection, even as an intermediary result, is quite useful. For
example, it is often required to reduce a given collection to a single value through a
series of transformations in an iterative manner. This sort of computation does not
necessarily require the intermediary results of each transformation to be saved.

A consequence of iteratively computing values from a collection is that we cannot
parallelize it in a straightforward way. Modern MapReduce frameworks handle
this kind of computation by pipelining the elements of a collection through several
transformations in parallel, and finally, reducing the results into a single result. Of
course, the result could as well be a new collection. A drawback of this methodology
is that it produces concrete collections as intermediate results of each transformation,
which is rather wasteful. For example, if we wanted to filter out values from a
collection, the MapReduce strategy would require creating empty collections to
represent values that are left out of the reduction step to produce the final result.

Parallelization Using Reducers

[70]

This incurs unnecessary memory allocation and also creates additional work for the
reduction step, which produces the final result. Hence, there's a scope for optimizing
these sorts of computations.

This brings us to the notion of treating computations over collections as reducers
to attain better performance. Of course, this doesn't mean that reducers are a
replacement for sequences. Sequences and laziness are great for abstracting
computations that create and manipulate collections, while reducers are a specialized
high-performance abstraction of collections in which a collection needs to be piped
through several transformations, and finally, combined to produce the final result.
Reducers achieve a performance gain in the following ways:

• Reducing the amount of memory allocated to produce the desired result
• Parallelizing the process of reducing a collection into a single result, which

could be an entirely new collection

The clojure.core.reducers namespace provides several functions to process
collections using reducers. Let's now examine how reducers are implemented
and a few examples that demonstrate how reducers can be used.

Using reduce to transform collections
Sequences and functions that operate on sequences preserve the sequential ordering
between elements. Lazy sequences avoid the unnecessary realization of elements
in a collection until they are required for a computation, but the realization of these
values is still performed in a sequential manner. However, this characteristic of
sequential ordering may not be desirable for all computations performed over it.
For example, it's not possible to map a function over a vector and then lazily realize
values in the resulting collection out of order; since the map function converts the
supplied collection into a sequence. Also, functions such as map and filter are lazy,
but still sequential by nature.

What's wrong with sequences?
One of the limitations of sequences is that they are realized in chunks. Let's study
a simple example to illustrate what this means. Consider a unary function, as shown
in Example 3.1, which we intend to map over a given vector. The function must
compute a value from the one it is supplied, and also perform a side effect so that
we can observe its application over the elements in a collection.

Chapter 3

[71]

The following examples can be found in src/m_clj/c3/reducers.
clj of the book's source code.

(defn square-with-side-effect [x]
 (do
 (println (str "Side-effect: " x))
 (* x x)))

Example 3.1: A simple unary function

The square-with-side-effect function simply returns the square of a number x
using the * function. This function also prints the value of x using a println form
whenever it is called. Suppose this function is mapped over a given vector. The
resulting collection would have to be realized completely if a computation has to be
performed over it, even if all the elements from the resulting vector are not required.
This can be demonstrated as follows:

user> (def mapped (map square-with-side-effect [0 1 2 3 4 5]))
#'user/mapped
user> (reduce + (take 3 mapped))
Side-effect: 0
Side-effect: 1
Side-effect: 2
Side-effect: 3
Side-effect: 4
Side-effect: 5
5

As shown previously, the mapped variable contains the result of mapping the
square-with-side-effect function over a vector. If we try to sum the first three
values in the resulting collection using the reduce, take, and + functions, all the
values in the [0 1 2 3 4 5] vector are printed as a side effect, as shown in the
preceding output. This means that the square-with-side-effect function was
applied to all the elements in the initial vector, despite the fact that only the first
three elements were actually required by the reduce form. Of course, this can be
solved using the seq function to convert the vector to a sequence before mapping
the square-with-side-effect function over it. But then, we lose the ability to
efficiently access elements in a random order in the resulting collection.

To understand why this actually happens, we first need to understand how the
standard map function is actually implemented. A simplified definition of the map
function is shown in Example 3.2:

(defn map [f coll]
 (cons (f (first coll))
 (lazy-seq (map f (rest coll)))))

Example 3.2: A simplified definition of the map function

Parallelization Using Reducers

[72]

The definition of map in Example 3.2 is a simplified and rather incomplete one, as it
doesn't check for an empty collections and cannot be used over multiple collections.
That aside, this definition of map does indeed apply a function f to all the elements in
a collection coll. This is implemented using a composition of the cons, first, rest,
and lazy-seq forms.

This implementation can be interpreted as "applying the function f to the first
element in the collection coll, and then mapping f over the rest of the collection in
a lazy manner". An interesting consequence of this implementation is that the map
function has the following characteristics:

• The ordering among elements in the collection coll is preserved.
• This computation is performed recursively.
• The lazy-seq form is used to perform the computation in a lazy manner.
• The use of the first and rest forms indicate that coll must be a sequence,

and the cons form will also produce a result that is a sequence. Hence, the
map function accepts a sequence and builds a new one.

However, none of these properties of sequences are needed to transform a given
collection into a result that is not a sequence. Another characteristic of lazy sequences
is how they are realized. By the term realized, we mean to say a given lazy sequence
is evaluated to produce concrete values. Lazy sequences are realized in chunks. Each
chunk is comprised of 32 elements, and this is done as an optimization. Sequences
that behave this way are termed as chunked sequences. Of course, not all sequences are
chunked, and we can check whether a given sequence is chunked using the chunked-
seq? predicate. The range function returns a chunked sequence, as shown here:

user> (first (map #(do (print \!) %) (range 70)))
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
0
user> (nth (map #(do (print \!) %) (range 70)) 32)
!!
32

Both the statements in the preceding output select a single element from a sequence
returned by the map function. The function passed to the map function in both the
preceding statements prints the! character and returns the value supplied to it. In
the first statement, the first 32 elements of the resulting sequence are realized even
though only the first element is required. Similarly, the second statement is observed
to realize the first 64 elements of the resulting sequence when the element at the
32nd position is obtained using the nth function. But again, realizing a collection in
chunks isn't required to perform a computation over the elements in the collection.

Chapter 3

[73]

Chunked sequences have been an integral part of Clojure since
version 1.1.

If we are to handle such computations efficiently, we cannot build on functions that
return sequences, such as map and filter. Incidentally, the reduce function does not
necessarily produce a sequence. It also has a couple of other interesting properties:

• The reduce function actually lets the supplied collection define how it is
computed over or reduced. Thus, reduce is collection independent.

• Also, the reduce function is versatile enough to build a single value or an
entirely new collection as well. For example, using reduce with the * or +
functions will create a single valued result, while using it with the cons or
concat functions can create a new collection as a result. Thus, reduce can
build anything.

To summarize, the reduce function can be used as a premise to generalize any
computation or transformation that has to be applied on a collection.

Introducing reducers
A collection is said to be reducible when it defines its behavior with the reduce
function. The binary function used by the reduce function along with a collection is
also termed as a reducing function. A reducing function requires two arguments—one
to represent the accumulated result of the reduction, and another to represent an
input value that has to be combined into the result. Several reducing functions can
be composed into one, which effectively changes how the reduce function processes
a given collection. This composition is done using reducing function transformers, or
simply reducers.

The use of sequences and laziness can be compared to using reducers to perform
a given computation by Rich Hickey's infamous pie-maker analogy. Suppose a
pie-maker has been supplied a bag of apples, with an intent to reduce the apples
to a pie. There are a couple transformations needed to perform this task. First, the
stickers on all the apples have to be removed, as in we map a function to "take the
sticker off" over the apples in the collection. Also, all the rotten apples will have to
be removed, which is analogous to using the filter function to remove elements
from a collection. Instead of performing this work herself, the pie-maker delegates
it to her assistant. The assistant could first take the stickers off of all the apples, thus
producing a new collection, and then take out the rotten apples to produce another
new collection, which illustrates the use of lazy sequences. But then, the assistant
would be doing unnecessary work by removing the stickers from the rotten apples,
which will have to be discarded later.

Parallelization Using Reducers

[74]

On the other hand, the assistant could delay this work until the actual reduction of
the processed apples into a pie is performed. Once the work is actually needed to
be performed, the assistant will compose the two tasks of mapping and filtering the
collection of apples, thus avoiding any unnecessary work. This case depicts the use
of reducers to compose and transform the tasks needed to effectively reduce the
collection of apples into a pie. Thus, the use of intermediary collections between each
transformation is avoided, which is an optimization in terms of memory allocations
performed to produce the result.

Of course, a smart assistant would simply discard the rotten apples first, which is
essentially filtering the apples before mapping them. However, not all recipes are
that trivial, and moreover, we can achieve a more interesting optimization through
the use of reducers—parallelism. By using reducers, we create a recipe of tasks to
reduce a collection of apples into a pie that can be parallelized. Also, all processing is
delayed until the final reduction, instead of dealing with collections as intermediary
results of each task. This is the gist of how reducers achieve performance though
function composition and parallelization.

The following namespaces must be included in your namespace
declaration for the upcoming examples:

(ns my-namespace

 (:require [clojure.core.reducers :as r]))

The clojure.core.reducers namespace requires Java 6 with the
jsr166y.jar JAR or Java 7+ for fork/join support.

Let's now briefly explore how reducers are actually implemented. Functions that
operate on sequences use the clojure.lang.ISeq interface to abstract the behavior of
a collection. In the case of reducers, the common interface that we must build upon is
that of a reducing function. As we mentioned earlier, a reducing function is a two-arity
function in which the first argument is the accumulated result so far and the second
argument is the current input that has to be combined with the first argument. The
process of performing a computation over a collection and producing some result can
be generalized into three distinct cases. They can be described as follows:

• A new collection with the same number of elements as the collection it is
supplied needs to be produced. This one-to-one case is analogous to using
the map function.

• The computation shrinks the supplied collection by removing elements
from it. This can be done using the filter function.

Chapter 3

[75]

• The computation could also be expansive, in which case it produces a new
collection that contains an increased number of elements. This is like what
the mapcat function does.

These cases depict the different ways in which a collection can be transformed into the
desired result. Any computation, or reduction, over a collection can be thought of as an
arbitrary sequence of such transformations. These transformations are represented by
transformers, which are essentially functions that transform a reducing function. They
can be implemented as shown in Example 3.3:

(defn mapping [f]
 (fn [rf]
 (fn [result input]
 (rf result (f input)))))

(defn filtering [p?]
 (fn [rf]
 (fn [result input]
 (if (p? input)
 (rf result input)
 result))))

(defn mapcatting [f]
 (fn [rf]
 (fn [result input]
 (reduce rf result (f input)))))

Example 3.3: Transformers

The mapping, filtering, and mapcatting functions in Example 3.3 represent
the core logic of the map, filter, and mapcat functions respectively. All of these
functions are transformers that take a single argument and return a new function.
The returned function transforms a supplied reducing function, represented by rf,
and returns a new reducing function, created using the expression (fn [result
input] ...). Functions returned by the mapping, filtering, and mapcatting
functions are termed as reducing function transformers.

The mapping function applies the f function to the current input, represented by
the input variable. The value returned by the function f is then combined with the
accumulated result, represented by result, using the reducing function rf. This
transformer is a frighteningly pure abstraction of the standard map function that
applies a function f over a collection. The mapping function makes no assumptions
of the structure of the collection it is supplied or how the values returned by the
function f are combined to produce the final result.

Parallelization Using Reducers

[76]

Similarly, the filtering function uses a predicate p? to check whether the current
input of the reducing function rf must be combined into the final result, represented
by result. If the predicate is not true, then the reducing function will simply return
the value result without any modification. The mapcatting function uses the reduce
function to combine the value result with the result of the expression (f input). In
this transformer, we can assume that the function f will return a new collection and
the reducing function rf will somehow combine two collections.

One of the foundations of the reducers library is the CollReduce protocol defined
in the clojure.core.protocols namespace. This protocol abstracts the behavior of
a collection when it is passed as an argument to the reduce function, and is declared
as shown in Example 3.4:

(defprotocol CollReduce
 (coll-reduce [coll rf init]))

Example 3.4: The CollReduce protocol

The clojure.core.reducers namespace defines a reducer function that creates a
reducible collection by dynamically extending the CollReduce protocol, as shown in
Example 3.5:

(defn reducer
 ([coll xf]
 (reify
 CollReduce
 (coll-reduce [_ rf init]
 (coll-reduce coll (xf rf) init)))))

Example 3.5: The reducer function

The reducer function combines a collection coll and a reducing function
transformer xf, which is returned by the mapping, filtering, and mapcatting
functions, to produce a new reducible collection. When reduce is invoked on a
reducible collection, it will ultimately ask the collection to reduce itself using the
reducing function returned by the expression (xf rf). Using this mechanism,
several reducing functions can be composed into a single computation to be
performed over a given collection. Also, the reducer function needs to be defined
only once, and the actual implementation of coll-reduce is provided by the
collection supplied to the reducer function.

Now, we can redefine the reduce function to simply invoke the coll-reduce
function implemented by a given collection, as shown in Example 3.6:

(defn reduce
 ([rf coll]
 (reduce rf (rf) coll))

Chapter 3

[77]

 ([rf init coll]
 (coll-reduce coll rf init)))

Example 3.6: Redefining the reduce function

As shown in Example 3.6, the reduce function delegates the job of reducing a
collection to the collection itself using the coll-reduce function. Also, the reduce
function will use the reducing function rf to also supply the init argument
when it is not specified. An interesting consequence of this definition of reduce is
that the function rf must produce an identity value when supplied no arguments.
The standard reduce function also uses the CollReduce protocol to delegate the
job of reducing a collection to the collection itself, but will also fall back on the
default definition of reduce in case the supplied collection does not implement the
CollReduce protocol.

Since Clojure 1.4, the reduce function allows a collection to define
how it reduced using the clojure.core.CollReduce protocol.
Clojure 1.5 introduced the clojure.core.reducers namespace
that extends the use of this protocol.

All of the standard Clojure collections, namely lists, vectors, sets, and maps,
implement the CollReduce protocol. The reducer function can be used to build
a sequence of transformations to be applied to a collection when it is passed as an
argument to the reduce function. This can be demonstrated as follows:

user> (r/reduce + 0 (r/reducer [1 2 3 4] (mapping inc)))
14
user> (reduce + 0 (r/reducer [1 2 3 4] (mapping inc)))
14

In the preceding output, the mapping function is used with the inc function to
create a reducing function transformer that increments all the elements in a given
collection. This transformer is then combined with a vector using the reducer
function to produce a reducible collection. The call to reduce in both of the
preceding statements is transformed into the expression (reduce + [2 3 4 5]),
thus producing the result 14. We can now redefine the map, filter, and mapcat
functions using the reducer function, as shown in Example 3.7:

(defn map [f coll]
 (reducer coll (mapping f)))

(defn filter [p? coll]
 (reducer coll (filtering p?)))

(defn mapcat [f coll]
 (reducer coll (mapcatting f)))

Example 3.7: Redefining the map, filter and mapcat functions using the reducer form

Parallelization Using Reducers

[78]

As shown in Example 3.7, the map, filter, and mapcat functions are now simply
compositions of the reducer form with the mapping, filtering, and mapcatting
transformers respectively.

The definitions of CollReduce, reducer, reduce, map, filter,
and mapcat as shown in this section are simplified versions of their
actual definitions in the clojure.core.reducers namespace.

The definitions of the map, filter, and mapcat functions shown in Example 3.7 have
the same shape as the standard versions of these functions, as shown here:

user> (r/reduce + (r/map inc [1 2 3 4]))
14
user> (r/reduce + (r/filter even? [1 2 3 4]))
6
user> (r/reduce + (r/mapcat range [1 2 3 4]))
10

Hence, the map, filter, and mapcat functions from the clojure.core.reducers
namespace can be used in the same way as the standard versions of these functions.
The reducers library also provides a take function that can be used as a replacement
for the standard take function. We can use this function to reduce the number of calls
to the square-with-side-effect function (from Example 3.1) when it is mapped over
a given vector, as shown here:

user> (def mapped (r/map square-with-side-effect [0 1 2 3 4 5]))
#'user/mapped
user> (reduce + (r/take 3 mapped))
Side-effect: 0
Side-effect: 1
Side-effect: 2
Side-effect: 3
5

Thus, using the map and take functions from the clojure.core.reducers
namespace as shown here avoids applying the square-with-side-effect function
to all five elements in the vector [0 1 2 3 4 5] as only the first three are required.

Chapter 3

[79]

The reducers library also provides variants of the standard take-while, drop,
flatten, and remove functions, which are based on reducers. Effectively, functions
based on reducers will require a lesser number of allocations than sequence-based
functions, thus leading to an improvement in performance. For example, consider
the process and process-with-reducer functions shown in Example 3.8:

(defn process [nums]
 (reduce + (map inc (map inc (map inc nums)))))

(defn process-with-reducer [nums]
 (reduce + (r/map inc (r/map inc (r/map inc nums)))))

Example 3.8: Functions to process a collection of numbers using sequences and reducers

The process function in Example 3.8 applies the inc function over a collection of
numbers represented by nums using the map function. The process-with-reducer
function performs the same action, but uses the reducer variant of the map function.
The process-with-reducer function will take a lesser amount of time to produce
its result from a large vector when compared to the process function, as shown here:

user> (def nums (vec (range 1000000)))
#'user/nums
user> (time (process nums))
"Elapsed time: 471.217086 msecs"
500002500000
user> (time (process-with-reducer nums))
"Elapsed time: 356.767024 msecs"
500002500000

The process-with-reducer function gets a slight performance boost as it requires
a lesser number of memory allocations than the process function. We should note
that the available memory should be large enough to load the entire file, or else we
could run out of memory. The performance of this computation can be improved by
a greater scale if we can somehow parallelize it, and we shall examine how this can
be done in the following section.

Parallelization Using Reducers

[80]

Using fold to parallelize collections
A collection that implements the CollReduce protocol is still sequential by
nature. Using the reduce function with CollReduce does have a certain amount
of performance gain, but it still processes elements in a collection in a sequential
order. The most obvious way to improve the performance of a computation that is
performed over a collection is parallelization. Such computations can be parallelized
if we ignore the ordering of elements in a given collection to produce the result of the
computation. In the reducers library, this is implemented based on the fork/join model
of parallelization from the java.util.concurrent namespace. The fork/join model
essentially partitions a collection over which a computation has to be performed into
two halves and processes each partition in parallel. This halving of the collection
is done in a recursive manner. The granularity of the partitions affects the overall
performance of a computation modeled using fork/join. This means that if a fork/
join strategy is used to recursively partition a collection into smaller collections that
contain a single element each, the overhead of the mechanics of fork/join would
actually bring down the overall performance of the computation.

A fork/join based method of parallelization is actually implemented
in the clojure.core.reducers namespace using the
ForkJoinTask and ForkJoinPool classes from the java.util.
concurrent namespace in Java 7. In Java 6, it is implemented in
the ForkJoinTask and ForkJoinPool classes of the jsr166y
namespace. For more information on the Java fork/join framework,
visit https://docs.oracle.com/javase/tutorial/
essential/concurrency/forkjoin.html.

The parallelization of such computations using reducers is quite different from
how it is handled in MapReduce-based libraries. In case of reducers, the elements
are first reduced through a number of transformations into a smaller number of
elements and then finally, combined to create the result. This contrasts with how
a MapReduce strategy models such a computation, in which the elements of a
collection are mapped through several transformations and a final reduction step is
used to produce the final result. This distinguishes the MapReduce model of parallel
computation with the reduce-combine model used by the reducers library. This
methodology of parallelization using a reduce-combine strategy is implemented by
the fold function in the clojure.core.reducers namespace.

https://docs.oracle.com/javase/tutorial/essential/concurrency/forkjoin.html
https://docs.oracle.com/javase/tutorial/essential/concurrency/forkjoin.html

Chapter 3

[81]

In Clojure, the fold function refers to a parallelizable computation,
which is very different from the traditional fold left (foldl) and fold
right (foldr) functions in other functional programming languages
such as Haskell and Erlang. The reduce function in Clojure actually
has the same sequential nature and semantics as the foldl function in
other languages.

The fold function parallelizes a given computation over a collection using fork/
join based threads. It implements the reduce-combine strategy that we previously
described and executes the reduce function in parallel over equally partitioned
segments of a given collection. The results produced by these parallel executions
of the reduce function are finally combined using a combining function. Of course,
if the supplied collection is too small to actually gain any performance through
fork/join based parallelization, a fold form will simply call the reduce function
on a single thread of execution. The fold function thus represents a potentially
parallelizable computation over a collection. Due to this nature of fold, we should
avoid performing IO and other side effects based on sequential ordering when using
the fold form.

The fold function allows a collection to define how it is folded into the result, which
is similar to the semantics of the reduce function. A collection is said to be foldable if
it implements the CollFold protocol from the clojure.core.reducers namespace.
The reducers library extends the CollFold protocol for the standard vector and
map collection types. The parallelization of these implementations of CollFold is
done using fork/join based parallelism. The definition of the CollFold protocol is
shown in Example 3.9:

(defprotocol CollFold
 (coll-fold [coll n cf rf]))

Example 3.9: The CollFold protocol

The CollFold protocol defines a coll-fold function, which requires four
arguments—a collection coll, the number of elements n in each segment or partition
of the collection, a combining function cf, and a reducing function rf. A foldable
collection must implement this protocol, as well as the clojure.core.protocols.
CollReduce protocol, as a call to fold on a given collection may fall back to a
single-threaded execution of the reduce function.

Parallelization Using Reducers

[82]

To create a foldable collection from a collection and a reduction function transformer,
the reducers library defines a folder function with similar semantics as the reducer
function. This function is implemented as shown in Example 3.10:

(defn folder
 ([coll xf]
 (reify
 CollReduce
 (coll-reduce [_ rf init]
 (coll-reduce coll (xf rf) init))
 CollFold
 (coll-fold [_ n cf rf]
 (coll-fold coll n cf (xf rf))))))

Example 3.10: The folder function

The folder function creates a new foldable and reducible collection from the collection
coll and the reduction function transformer xf. This composition of the xf and rf
functions is analogous to that performed by the reducer function described in Example
3.5. Apart from the xf and rf functions, the coll-fold function also requires a
combining function cf with which the results of the potentially parallel executions of
the reduce function are combined. Similar to the reduce function, the fold function
passes on the responsibility of actually folding a given collection to the collections
implementation of the coll-fold function. An implementation of the fold function is
described in Example 3.11:

(defn fold
 ([rf coll]
 (fold rf rf coll))
 ([cf rf coll]
 (fold 512 cf rf coll))
 ([n cf rf coll]
 (coll-fold coll n cf rf)))

Example 3.11: The fold function

As shown in Example 3.11, the fold function calls the coll-fold function of the
collection coll using the reducing function rf and the combining function cf.
The fold function can also specify the number of elements n in each segment
processed by the reduce function, which defaults to 512 elements. We can also
avoid specifying the combining function cf to the fold function, in which case the
reducing function rf itself will be used as the combining function.

Chapter 3

[83]

An interesting aspect of the combining and reducing functions used by the fold
form is that they must be associative in nature. This guarantees that the result of the
fold function will be independent of the order in which the elements in a given
collection are combined to produce the given result. This allows us to parallelize the
execution of the fold function over segments of a given collection. Also, analogous
to the reducing function required by the reduce form, the fold function requires the
combining and reducing functions to produce an identity value when invoked with
no arguments. In functional programming, a function that is both associative and
provides an identity value is termed as a monoid. The clojure.core.reducers
namespace provides the monoid function, described in Example 3.12, to create such
a function that can be used as the combining function or the reducing function
supplied to a fold form:

(defn monoid
 [op ctor]
 (fn
 ([] (ctor))
 ([a b] (op a b))))

Example 3.12: The monoid function

The monoid function shown in Example 3.12 produces a function that calls a function
op when supplied with two arguments a and b. When the function returned by the
monoid function is called with no arguments, it will produce an identity value of
the operation by simply calling the ctor function with no arguments. This function
allows us to easily create a combining function to be used with the fold function
from any arbitrary functions ctor and op.

We can now redefine the map, filter, and mapcat operations as compositions of the
folder function and the mapping, filtering, and mapcatting transformers defined
in Example 3.3, as shown in Example 3.13:

(defn map [f coll]
 (folder coll (mapping f)))

(defn filter [p? coll]
 (folder coll (filtering p?)))

(defn mapcat [f coll]
 (folder coll (mapcatting f)))

Example 3.13: Redefining the map, filter and mapcat functions using the folder form

www.allitebooks.com

http://www.allitebooks.org

Parallelization Using Reducers

[84]

The definitions of folder, fold, monoid, map, filter, and mapcat
as shown in this section are simplified versions of their actual definitions in
the clojure.core.reducers namespace.

The reducers library also defines the foldcat function. This function is a
high-performance variant of the reduce and conj functions. In other words, the
evaluation of the expression (foldcat coll) will be significantly faster than that
of the expression (reduce conj [] coll), where coll is a reducible or foldable
collection. Also, the collection returned by the foldcat function will be a foldable
collection.

Let's now use the fold and map functions to improve the performance of the process
and process-with-reducer functions from Example 3.8. We can implement this as
shown in Example 3.14:

(defn process-with-folder [nums]
 (r/fold + (r/map inc (r/map inc (r/map inc nums)))))

Example 3.14: A function to process a collection of numbers using a fold form

The performance of the process-with-folder function with a large vector can be
compared to the process and process-with-reducer functions, as shown here:

user> (def nums (vec (range 1000000)))
#'user/nums
user> (time (process nums))
"Elapsed time: 474.240782 msecs"
500002500000
user> (time (process-with-reducer nums))
"Elapsed time: 364.945748 msecs"
500002500000
user> (time (process-with-folder nums))
"Elapsed time: 241.057025 msecs"
500002500000

It is observed from the preceding output that the process-with-folder function
performs significantly better than the process and process-with-reducer
functions due to its inherent use of parallelism. In summary, reducers improve the
performance of a computation that has to be performed over a collection using
fork/join-based parallelism.

Chapter 3

[85]

Processing data with reducers
We will now study a simple example that depicts the use of reducers in efficiently
processing large collections. For this example, we will use the iota library (https://
github.com/thebusby/iota) to handle large memory-mapped files. The usage of
the iota library with large files is encouraged as an efficient alternative to using
concrete collections. For example, loading the records in a 1 GB TSV file as strings
into a Clojure vector would consume over 10 GB of memory due to the inefficient
storage of Java strings. The iota library avoids this by efficiently indexing and
caching the contents of a large file, and this is done with much lower amount of
memory overhead when compared to using concrete collections.

The following library dependencies are required for the upcoming
examples:

[iota "1.1.2"]

Also, the following namespaces must be included in your namespace
declaration:

(ns my-namespace

 (:require [iota :as i]

 [clojure.string :as cs]

 [clojure.core.reducers :as r]))

The following examples can be found in src/m_clj/c3/io.clj of
the book's source code.

Suppose we have a large TSV file that contains several thousands of records.
Each record represents a person, and can be assumed to have five fields, as shown
in the following data:

brown brian :m :child :east
smith bill :f :child :south
jones jill :f :parent :west

Each record contains two strings and three keywords. The first two string fields of a
record represent the last and first name of a person, the third column is a keyword
that indicates the gender of a person, and the fourth column is a keyword that
identifies a person as a parent or a child. Finally, the fifth column is a keyword that
represents an arbitrary direction.

The following example expects the content shown previously to be
present in the file resources/data/sample.tsv, relative to the
root of your Leiningen project.

https://github.com/thebusby/iota
https://github.com/thebusby/iota

Parallelization Using Reducers

[86]

The seq and vec functions from the iota library can be used to create a sequence
and a vector representation of a memory-mapped file. These objects can then be used
to access the file in a performant way. Both of the seq and vec functions require
a file path to be passed to them as the first argument. The vec function will index
the supplied file in chunks, and we can specify the size of each chunk as the second
argument to the vec function. The seq function performs buffered reads of the
supplied file as required, similar to the way a lazy sequence is realized. The size of
the buffer used by this resulting sequence can be specified as the second argument
to the seq function. Both the seq and vec functions split the contents of a file by a
predefined byte-separator into records represented as strings. These functions also
accept an optional third argument to indicate the byte separator between records in
the supplied file. The vec function is slower than the seq function as it must index
the records in the file, which can be demonstrated as follows:

user> (time (def file-as-seq (i/seq "resources/data/sample.tsv")))
"Elapsed time: 0.905326 msecs"
#'user/file-as-seq
user> (time (def file-as-vec (i/vec "resources/data/sample.tsv")))
"Elapsed time: 4.95506 msecs"
#'user/file-as-vec

Both the statements shown here load the sample.tsv file into Clojure data structures.
As expected, the vec function takes a bit more time than the seq function to return a
value. The values returned by seq and vec can be treated just like any other collection.
Naturally, iterating over a vector returned by the vec function is much faster than
using a sequence, as shown here:

user> (time (def first-100-lines (doall (take 100 file-as-seq))))
"Elapsed time: 63.470598 msecs"
#'user/first-100-lines
user> (time (def first-100-lines (doall (take 100 file-as-vec))))
"Elapsed time: 0.984128 msecs"
#'user/first-100-lines

We will now demonstrate a couple of ways to query the data in the sample.tsv
file using reducers and the iota library. We will need to first define a function
that converts a collection of records into collections of columnar values from their
string-based representations. This can be implemented using the reducer based map
and filter functions, as shown in the into-records function in Example 3.15:

Chapter 3

[87]

(defn into-records [file]
 (->> file
 (r/filter identity)
 (r/map #(cs/split % #"[\t]"))))

Example 3.15: A function to convert a memory-mapped file into a reducible collection

Now, let's say we need to compute the total number of females from the records in the
sample.tsv file. We can implement a function to perform this computation using the
map and fold functions, as shown in the count-females function in Example 3.16:

(defn count-females [coll]
 (->> coll
 (r/map #(-> (nth % 2)
 ({":m" 0 ":f" 1})))
 (r/fold +)))

Example 3.16: A function to count the number of females in a collection of persons

We can query the total number of females in the file-as-seq and file-as-vec
collections by composing the into-records and count-females functions.
This can be done using the -> threading form, as shown here:

user> (-> file-as-seq into-records count-females)
10090
user> (-> file-as-vec into-records count-females)
10090

Similarly, the reducer-based map and filter functions can be used to fetch the first
names of all the children with the same last name or family in a given collection, as
implemented by the get-children-names-in-family function in Example 3.17:

(defn get-children-names-in-family [coll family]
 (->> coll
 (r/filter #(and (= (nth % 0) family)
 (= (nth % 3) ":child")))
 (r/map #(nth % 1))
 (into [])))

Example 3.17: A function to get the first names of all children in a collection of persons

Parallelization Using Reducers

[88]

The into-records and get-children-names-in-family functions can be
composed together to query the first names of all children with the last name
"brown" from the available data, as shown here:

user> (-> file-as-seq into-records
 (get-children-names-in-family "brown"))
["sue" "walter" ... "jill"]
user> (-> file-as-vec into-records
 (get-children-names-in-family "brown"))
["sue" "walter" ... "jill"]

The iota library provides a couple more useful functions to handle large text files:

• The numbered-vec function will create a vector representing a memory-
mapped file in which each string representing a record will be prepended
with its position in the given file.

• The subvec function of the iota library can be used to slice records from
a memory-mapped file returned by the vec and numbered-vec functions.
Its semantics are identical to the standard subvec function that operates
on vectors.

Reducers and the iota library allow us to idiomatically and efficiently handle text
files containing a large number of byte-separated records. There are also several
other libraries and frameworks in the Clojure ecosystem that use reducers to handle
large amounts of data, and the reader is encouraged to explore these libraries and
frameworks on their own.

Summary
In this chapter, we explored the clojure.core.reducers library in detail. We had a
look at how reducers are implemented and also how we can use reducers to handle
large collections of data in an efficient manner. We also briefly studied the iota library
that can be used with reducers to handle large amounts of data stored in text files.

In the following chapter, we will explore Clojure macros.

[89]

Metaprogramming
with Macros

Programmers often stumble into situations where they would like to add features or
constructs to their programming language of choice. Generally, if a feature would
have to be added to a language, the language's compiler or interpreter would need
some modification. Alternatively, Clojure (and other Lisps as well) uses macros
to solve this problem. The term metaprogramming is used to describe the ability to
generate or manipulate a program's source code by using another program. Macros
are a metaprogramming tool that allow programmers to easily add new features to
their programming language.

Lisps are not the only languages with support for macro-based metaprogramming.
For example, in C and C++, macros are handled by the compiler's preprocessor.
In these languages, before a program is compiled, all macro calls in the program's
source code are replaced by their definitions. In this sense, macros are used to
generate code through a form of text substitution during the compilation phase of
a program. On the other hand, Lisps allow programmers to transform or rewrite
code when macros are interpreted or compiled. Macros can thus be used to concisely
encapsulate recurring patterns in code. Of course, this can be done in languages
without macros, as well, without much hassle. But macros allow us to encapsulate
patterns in code in a clean and concise manner. As we will see ahead in this chapter,
there's nothing equivalent to Lisp macros in other programming languages in terms
of clarity, flexibility, and power. Lisps are truly leaps ahead of other programming
languages in terms of metaprogramming capabilities.

Metaprogramming with Macros

[90]

The rabbit hole of macros in Lisps goes deep enough that there are entire books that
talk about them. Mastering Clojure Macros by Colin Jones is one among these, and
this publication describes the various patterns in which macros can be used in great
detail. In this chapter, we will explore the foundational concepts behind macros and
their usage. We will:

• First, have a look at the basics of reading, evaluating, and transforming code
in Clojure.

• Later on, we will examine how macros can be defined and used, and also
study several examples based on macros. We will also describe how we can
handle platform-specific code using reader conditionals.

Understanding the reader
The reader is responsible for interpreting Clojure code. It performs several steps to
translate source code in textual representation into executable machine code. In this
section, we will briefly describe these steps performed by the reader to illustrate how
the reader works.

Clojure and other languages from the Lisp family are homoiconic. In a homoiconic
language, the source code of a program is represented as a plain data structure. This
means that all the code written in a Lisp language is simply a bunch of nested lists.
Thus, we can manipulate programs' code just like any other list of values. Clojure
has a few more data structures, such as vectors and maps in its syntax, but they can
be handled just as easily. In languages that are not homoiconic, any expression or
statement in a program has to be translated into an internal data structure termed
as a parse tree, or syntax tree, when the program is compiled or interpreted. In Lisps,
however, an expression is already in the form of a syntax tree, since a tree is really
just another name for a nested list. In other words, there is no distinction between
an expression and the syntax tree it produces. One might also opine that this design
tricks programmers into writing code directly as a syntax tree. This distinguishing
aspect of Lisps is succinctly captured by the following axiom: Code is Data.

Let's first take a look at the most rudimentary representation of code and data in
Lisps—an s-expression. Any expression comprises of values and symbols, where
the symbols represent variables being used. A nested list of symbols is known as a
symbolic expression, s-expression, or sexp. All source code in Clojure is represented as
s-expressions. A symbolic expression is formally defined as:

• An atom, which refers to a single symbol or literal value.
• A combination of two s-expressions x and y, represented as (x . y). Here,

the dot (.) is used to signify a cons operation.

Chapter 4

[91]

Using this recursive definition, a list of symbols (x y z) is represented by the
s-expression, (x . (y . (z . nil))) or (x . (y . z)). When an s-expression
is used to represent source code, the first element of the expression represents the
function used, and the rest of the elements are the arguments to the function. Of
course, this is just a theoretical representation and not really Clojure code. This
representation is also called prefix notation. This recursive structure of s-expressions
is flexible enough to represent both code as well as data. In fact, s-expressions are
more-or-less the only form of syntax in Clojure (and other Lisps). For example, if we
wanted to add two numbers, we would use an expression with the + function as the
first symbol, followed by the values to be added. Similarly, if we wanted to define a
function, we would have to write an expression with defn or def as the first symbol
in the expression. In Clojure and other Lisps, we also represent data such as lists,
vectors, and maps using s-expressions.

Let's look at a simple example that depicts how Clojure code is interpreted.
The expression (-> [0 1 2] first inc) that uses a threading macro (->)
will be interpreted in three distinct steps. This expression will be read, macroexpanded,
and evaluated to the value 1, as illustrated here:

Metaprogramming with Macros

[92]

The reader will first parse textual representations of s-expressions from a Clojure
program's source code. Once a program's source code is read into s-expressions,
all macro calls in the code are replaced by their definitions. This transformation of
macro calls in a program is called macroexpansion. Lastly, the resulting s-expressions
from the macroexpansion phase are evaluated by the Clojure runtime. In the
evaluation phase, bytecode is generated from the supplied expressions, loaded
into memory, and executed. In short, code in a program's source code is read,
transformed through macros, and finally evaluated. Also, macroexpansion happens
immediately after a program's source code is parsed, thus allowing the program
to internally transform itself before it is evaluated. This transformation of code is
exactly what macros are used to achieve.

In Clojure, the reader only reads code and performs macroexpansion.
The generation of bytecode is done by the analyzer and the emitter,
and this generated bytecode is evaluated by the JVM.

All Clojure code is translated to reader forms and special forms before it is evaluated.
Special forms are constructs, such as quote and let*, that are implemented directly
as bytecode for the underlying runtime, such as the JVM for Clojure or the Rhino
JavaScript runtime for ClojureScript. Interestingly, Clojure source code is composed
mostly of reader forms, and these reader forms are implemented in Clojure itself.
The reader also transforms certain characters and forms called reader macros as
soon as they are read. There are several reader macros in the Clojure language,
as described in the following table:

Reader macro Usage
\x This is a character literal.
; This is used to comment. It ignores the rest of the line.
(.method o) This is a native method call. It is rewritten to a dot (.) form

as (. o method). Also, o must be a native object.
@x or @(...) This is the dereference operator. It is used with reference

types and is rewritten to a deref form.
^{ ... } This is the metadata map to be used with a form. It is

rewritten to a with-meta form.
'x or '(...) This is a quote.
`x or `(...) This is a syntax quote.
~x or ~(...) This is used to unquote.
~@x or ~@(...) This is a splicing unquote.

Chapter 4

[93]

Reader macro Usage
#_x or #_(...) This ignores the next form. #_ should be preferred over

the comment form to comment out code, since comment
actually returns nil.

#'x This is a var quote. It is equivalent to (var x).
#=x or #=(...) This will read-evaluate an expression.
#?(...) This is a reader conditional form.
#?@(...) This is a reader conditional splicing form.

We have encountered quite a few of the preceding reader macros in the previous
chapters. We will demonstrate the usage of several reader forms that are used with
macros in this chapter.

At the time of writing this book, Clojure does not support user-defined
reader macros.

Now that we have familiarized ourselves with the Clojure reader and how code is
interpreted, let's explore the various metaprogramming constructs that help us read
and evaluate code.

Reading and evaluating code
Let's have a look at how code can be parsed and evaluated in Clojure. The most
elementary way to convert text into an expression is by using the read function.
This function accepts a java.io.PushbackReader instance as its first argument,
as shown here:

user> (read (-> "(list 1 2 3)"
 .toCharArray
 java.io.CharArrayReader.
 java.io.PushbackReader.))
(list 1 2 3)

These examples can be found in src/m_clj/c4/read_and_eval.clj
of the book's source code.

Metaprogramming with Macros

[94]

In this example, a string containing a valid expression is first converted into an
instance of java.io.PushbackReader and then passed to the read function. It seems
like a lot of unnecessary work to read a string, but it is due to the fact that the read
function deals with streams and readers, and not strings. If no arguments are passed
to the read function, it will create a reader from the standard input and prompt the
user to enter an expression to be parsed. The read function has several other options
as well, and you are encouraged to explore these options in the REPL on their own.

A simpler way to read an expression from a string is by using the read-string
function. This function accepts a string as its only argument and converts the
supplied string into an expression, as shown here:

user> (read-string "(list 1 2 3)")
(list 1 2 3)

The read and read-string forms can only convert strings into valid expressions.
If we have to evaluate an expression, we must use the eval function, as shown here:

user> (eval '(list 1 2 3))
(1 2 3)
user> (eval (list + 1 2 3))
6
user> (eval (read-string "(+ 1 2 3)"))
6

In the first statement in the preceding output, we prevent the expression (list 1
2 3) from being evaluated before it is passed to the eval function using the quote
operator ('). This technique is termed as quoting and we shall explore more of it later
in this chapter. The eval function evaluates the expression (list 1 2 3) to the list
(1 2 3). Similarly, in the second statement, the expression (list + 1 2 3) is first
evaluated as (+ 1 2 3) by the reader, and then the eval function evaluates this list
to the value 6. In the third statement, the string "(+ 1 2 3)" is first parsed by the
read-string function and then evaluated by the eval function.

The read-evaluate macro (#=) can be used to force the read and read-string
functions to evaluate an expression when it is parsed, as shown here:

user> (read (-> "#=(list 1 2 3)"
 .toCharArray
 java.io.CharArrayReader.
 java.io.PushbackReader.))
(1 2 3)
user> (read-string "#=(list 1 2 3)")
(1 2 3)

Chapter 4

[95]

In the preceding output, the #= reader macro evaluates the expression (list 1 2
3) when it is read by the read and read-string functions. If the #= macro was not
used, both statements would return the expression (list 1 2 3) in verbatim. We
can also use the #= macro without using read or read-string, in which case it
would be equivalent to calling the eval function. Also, the calls to the #= macro can
be nested any number of times, as shown here:

user> #=(list + 1 2 3)
6
user> (read-string "#=(list + 1 2 3)")
(+ 1 2 3)
user> (read-string "#=#=(list + 1 2 3)")
6

The #= macro makes it easy to evaluate expressions while they are being read.
Oh wait! This is a potential security hazard as the read and read-string functions
are evaluating arbitrary strings, even if they contain any malicious code. Thus,
evaluation of code while it is being parsed is deemed unsafe. As a solution to this
problem, the *read-eval* var can be set to false to prevent usage of the #= macro,
as shown here:

user> (binding [*read-eval* false]
 (read-string (read-string "#=(list 1 2 3)")))
RuntimeException EvalReader not allowed when *read-eval* is false.
clojure.lang.Util.runtimeException (Util.java:221)

Thus, use of the #= macro in strings passed to the read and read-string functions
will throw an error if *read-eval* is set to false. Obviously, the default value of
this var is true. For this reason, we must avoid using the #= macro, or set the *read-
eval* var to false, while processing the user input.

Another way to read and evaluate arbitrary strings is by using the load-string
function. This function has the same arity as the read-string function, and is
equivalent to calling the eval and read-string forms, as shown here:

user> (load-string "(+ 1 2 3)")
6

There are a couple of semantic differences between using the load-string form
and a composition of the eval and read-string forms. Firstly, the behavior of the
load-string function is not affected by the changing *read-eval* var, and is thus
unsafe for use with arbitrary user input.

Metaprogramming with Macros

[96]

A more important difference is that the read-string function only parses the first
expression it encounters in the string that it has passed. The load-string function
will parse and evaluate all expressions passed to it, as shown here:

user> (eval (read-string "(println 1) (println 2)"))
1
nil
user> (load-string "(println 1) (println 2)")
1
2
nil

In the preceding output, the read-string form skips the second println form in
the string that it is passed, thus printing the value 1 only. The load-string form,
however, parses and evaluates both the println forms it is passed as a string, and
prints both the values 1 and 2.

The load-reader function is analogous to the read function, in the sense that it
accepts a java.io.PushbackReader instance, from which it has to read and evaluate
forms, as an argument. Another variant of load-string is the load-file function,
to which we can pass the path of a file that contains source code. The load-file
function will parse the file in the path that it is passed and evaluate all forms present
in it.

Note that the *file* var can be used to obtain the path of the
current file being executed.

So far, we have seen how code can be parsed and evaluated by the Clojure reader.
There are several constructs that can be used to perform these tasks. However,
evaluating arbitrary strings is not really a good idea, as the code being evaluated is
insecure and may be malicious. In practice, we should always set the *read-eval*
variable to false in order to prevent the evaluation of arbitrary code by functions
such as read and read-string. Next, we will explore how quoting and unquoting can
be used to transform expressions.

Quoting and unquoting code
We will now explore quoting and unquoting, which are techniques used to generate
expressions based on a predefined template for an expression. These techniques are
foundational in creating macros, and they help structure the code of a macro to look
more like its macroexpanded form.

Chapter 4

[97]

The following examples can be found in src/m_clj/c4/ quoting.
clj of the book's source code.

The quote form simply returns an expression without evaluating it. This may seem
trivial, but preventing the evaluation of an expression is actually something that is
not possible in all programming languages. The quote form is abbreviated using the
apostrophe character ('). If we quote an expression, it is returned in verbatim,
as shown here:

user> 'x
x
user> (quote x)
x

The quote form is quite historic in Lisp. It is one of the seven primitive operators
in the original Lisp language, as described in John McCarthy's paper. Incidentally,
quote is one among the rare special forms that are implemented in Java and not
in Clojure itself. The quote form is used to handle variable names, or symbols, as
values. In a nutshell, using the quote form, we can treat a given expression as a list
of symbols and values. After all, Code is Data.

An apostrophe (') represents a quoted expression only when it
appears as the first character in the expression. For example, x'
is just a variable name.

A syntax quote, written as a backtick character (`), will quote an expression and
allows unquoting to be performed within it. This construct allows us to create
expressions just like quoting, but also has the added benefit of letting us interpolate
values and execute arbitrary code in a quoted form. This has the effect of treating
a predefined expression as a template with some parts left blank to be filled in
later. An expression within a syntax quoted form can be unquoted using the tidal
character (~). Unquoting an expression will evaluate it and insert the result into
the surrounding syntax quoted form. A splicing unquote, written as ~@, can be used
to evaluate an expression that returns a list and use the returned list of values as
arguments for a form. This is something like what the apply form does, except that
it's within the context of a syntax quote. We must note that both of these unquoting
operations (~ and ~@) can only be used within a syntax quoted form. We can try out
these operations in the REPL, as shown here:

user> (def a 1)
#'user/a
user> `(list ~a 2 3)

Metaprogramming with Macros

[98]

(clojure.core/list 1 2 3)
user> `(list ~@[1 2 3])
(clojure.core/list 1 2 3)

As shown here, unquoting the variable a in the preceding syntax quoted list form
returns the expression (list 1 2 3). Similarly, using a splicing unquote with the
vector [1 2 3] returns the same list. On the other hand, unquoting a variable in a
quoted form will expand the unquote reader macro (~) to a clojure.core/unquote
form, as shown here:

user> (def a 1)
#'user/a
user> `(list ~a 2 3)
(clojure.core/list 1 2 3)
user> '(list ~a 2 3)
(list (clojure.core/unquote a) 2 3)

A more interesting difference between using a quote and a syntax quote is that the
latter will resolve all variable names to namespace-qualified names. This applies to
function names as well. For example, let's look at the following expressions:

user> `(vector x y z)
(clojure.core/vector user/x user/y user/z)
user> `(vector ~'x ~'y ~'z)
(clojure.core/vector x y z)

As shown in the preceding output, the variables x, y, and z are resolved to user/x,
user/y, and user/z respectively by the syntax quoted form, since user is the current
namespace. Also, the vector function is translated to its namespace-qualified name,
shown as clojure.core/vector. The unquote and quote operations in succession,
shown as ~', can be used to bypass the resolution of a symbol to a namespace-
qualified name.

Quoting is supported on data structures other than lists, such as vectors, sets, and
maps, as well. The effect of a syntax quote is the same on all of the data structures;
it allows expressions to be unquoted within it, thus transforming the quoted form.
Also, quoted forms can be nested, as in a quoted forms can contain other quoted
forms. In such a case, the deepest quoted form is processed first. Consider the
following quoted vectors:

user> `[1 :b ~(+ 1 2)]
[1 :b 3]
user> `[1 :b '~(+ 1 2)]
[1 :b (quote 3)]
user> `[1 ~'b ~(+ 1 2)]
[1 b 3]

Chapter 4

[99]

There are a lot of interesting aspects that can be inferred from the preceding output.
Firstly, keywords are apparently not interned to namespace-qualified names such as
symbols. In fact, this behavior is exhibited by any value that evaluates to itself, such
as keywords, nil, true, and false, when used in a syntax quoted form. Other than
that, unquoting followed by quoting an expression in a syntax quote, shown as '~(+
1 2), will evaluate the expression and wrap it in a quote. Conversely, unquoting a
quoted symbol, shown as ~'b, will prevent it from being resolved to a namespace-
qualified name as we mentioned earlier. Let's take a look at another example that
uses nested quoting, as shown here:

user> (def ops ['first 'second])
#'user/ops
user> `{:a (~(nth ops 0) ~'xs)
 :b (~(nth ops 1) ~'xs)}
{:b (second xs),
 :a (first xs)}

In the preceding output, the variables first, second, and xs are prevented from
being interned to a namespace-qualified names using the quote (') and unquote
(~) operations in tandem. Anyone who's used older Lisps is probably cringing at
this point. In practice, usage of the ~' operation should actually be avoided. This
is because preventing the resolution of a variable to a namespace-qualified name
isn't really a good idea. In fact, unlike Clojure, some Lisps completely disallow it.
It causes a peculiar problem called symbol capture, which we will see ahead while
we explore macros.

Transforming code
As previously described in this chapter, it's trivial to read and evaluate code
in Clojure using the read and eval functions and their variants. Instead of
evaluating code right after it is parsed, we can use macros to first transform code
programmatically using quoting and unquoting, and then evaluate it. Thus, macros
help us define our own constructs that rewrite and transform expressions passed to
them. In this section, we will explore the basics of creating and using macros.

Expanding macros
Macros need to be expanded when they are called. All Clojure code is read,
macroexpanded, and evaluated by the reader as we described earlier. Let's now
take a look at how macroexpansion is performed. As you may have guessed already,
this is done using plain Clojure functions.

Metaprogramming with Macros

[100]

Interestingly, the reader of the Clojure runtime also uses these functions to process a
program's source code. As an example, we will examine how the -> threading macro
is macroexpanded. The -> macro can be used as shown here:

user> (-> [0 1 2] first inc)
1
user> (-> [0 1 2] (-> first inc))
1
user> (-> (-> [0 1 2] first) inc)
1

These examples can be found in src/m_clj/c4/macroexpand.clj
of the book's source code.

All of the three expressions using the -> macro in the preceding output will be
evaluated to the value 1. This is due to the fact that they are all macroexpanded to
produce the same final expression. How can we claim that? Well, we can prove it
using the macroexpand-1, macroexpand, and clojure.walk/macroexpand-all
functions. The macroexpand function returns the complete macroexpansion of a
form, as shown here:

user> (macroexpand '(-> [0 1 2] first inc))
 (inc (first [0 1 2]))

The expression using the -> threading macro is thus transformed to the expression
(inc (first [0 1 2])), which evaluates to the value 1. In this way, the
macroexpand function allows us to inspect the macroexpanded form of an expression.

The macroexpand-1 function returns the first expansion of a macro. In fact, the
macroexpand function simply applies the macroexpand-1 function repeatedly until
no more macroexpansion can be performed. We can inspect how the expression (->
[0 1 2] (-> first inc)) is macroexpanded using these functions:

user> (macroexpand-1 '(-> [0 1 2] (-> first inc)))
(-> [0 1 2] first inc)
user> (macroexpand '(-> [0 1 2] (-> first inc)))
(inc (first [0 1 2]))

The macroexpand function has a small limitation. It only repeatedly macroexpands an
expression until the first form in the expression is a macro. Hence, the macroexpand
function will not completely macroexpand the expression (-> (-> [0 1 2] first)
inc), as shown here:

Chapter 4

[101]

user> (macroexpand-1 '(-> (-> [0 1 2] first) inc))
(inc (-> [0 1 2] first))
user> (macroexpand '(-> (-> [0 1 2] first) inc))
(inc (-> [0 1 2] first))

As shown in the preceding example, the macroexpand function will return the
same macroexpansion as macroexpand-1. This is because the second call to the ->
macro is not the first form in the result of the first macroexpansion for the previous
expression. In such cases, we can use the macroexpand-all function from the
clojure.walk namespace to macroexpand a given expression regardless of the
positions of macro calls in it, as shown here:

user> (clojure.walk/macroexpand-all '(-> (-> [0 1 2] first) inc))
(inc (first [0 1 2]))

Thus, all three expressions using the -> macro as examples are macroexpanded to
the same expression (inc (first [0 1 2])), which is evaluated to the value 1.

The macroexpand-1, macroexpand, and clojure.walk/
macroexpand-all functions will have no effect on an
expression that does not contain any macros.

The macroexpand-1 and macroexpand functions are indispensable tools for
debugging user-defined macros. Additionally, the clojure.walk/macroexpand-
all function can be used in situations where the macroexpand function does not
completely macroexpand a given expression. The Clojure reader also uses these
functions for macroexpanding a program's source code.

Creating macros
Macros are defined using the defmacro form. A macro name, a vector of arguments
for the macro, an optional doc-string, and the body of the macro have to be passed
to this form. We can also specify multiple arities for a macro. Its similarity to the
defn form is quite obvious. Unlike a defn form, however, a macro defined using
the defmacro form will not evaluate the arguments passed to it. In other words, the
arguments passed to a macro are implicitly quoted. For example, we can create a
couple of macros to rewrite an s-expression in infix and postfix notation, as shown in
Example 4.1.

(defmacro to-infix [expr]
 (interpose (first expr) (rest expr)))

(defmacro to-postfix [expr]
 (concat (rest expr) [(first expr)]))

Example 4.1: Macros to transform a prefix expression

Metaprogramming with Macros

[102]

These examples can be found in src/m_clj/c4/defmacro.clj
of the book's source code.

Each of the macros in Example 4.1 describes an elegant way to rewrite an expression
expr by treating it as a generic sequence. The function being called in the expression
expr is extracted using the first form, and its arguments are obtained using the
rest form. To convert the expression to its infix form, we use the interpose function.
Similarly, the postfix form of the expression expr is generated using the concat
form. We can use the macroexpand function to inspect the expression generated
by the to-infix and to-postfix macros, as shown here:

user> (macroexpand '(to-infix (+ 0 1 2)))
(0 + 1 + 2)
user> (macroexpand '(to-postfix (+ 0 1 2)))
(0 1 2 +)

The expression x + y is said to be written in an infix notation. The prefix
notation of this expression is + x y, and its postfix notation is x y +.

In this way, by transforming expressions we can effectively modify the language. It's
that simple! The basis of the to-infix and to-postfix macros in Example 4.1 are that
we can treat the terms of an expression as a sequence of elements and manipulate them
by using sequence functions such as interpose and concat. Of course, the preceding
example was simple enough such that we could avoid the use of quoting altogether.
The defmacro form can also be used in combination with quoting to easily rewrite
more complex expressions. The same rule can be applied to any form of Clojure code.

Interestingly, macros are internally represented as functions, and this can be verified
by dereferencing the fully qualified name of a macro and using the fn? function, as
shown here:

user> (fn? @#'to-infix)
true
user> (fn? @#'to-postfix)
true

Chapter 4

[103]

At the time of writing this book, ClojureScript only supports macros
written in Clojure. Macros have to be referenced using the :require-
macros keyword in a ClojureScript namespace declaration, as shown here:

(ns my-cljs-namespace

 (:require-macros [my-clj-macro-namespace :as macro]))

The symbol and gensym functions can be used to create temporary variables for use
within the body of a macro. The symbol function returns a symbol from a name and
an optional namespace, as shown here:

user> (symbol 'x)
x
user> (symbol "x")
x
user> (symbol "my-namespace" "x")
my-namespace/x

We can check whether a value is a symbol using the symbol?
predicate.

The gensym function can be used to create a unique symbol name. We can specify a
prefix to be used for the returned symbol name to the gensym function. The prefix
is defaulted to a capital G character followed by two underscores (G__). The gensym
function can also be used to create a new unique keyword. We can try out the
gensym function in the REPL, as shown here:

user> (gensym)
G__8090
user> (gensym 'x)
x8081
user> (gensym "x")
x8084
user> (gensym :x)
:x8087

As shown here, the gensym function creates a new symbol every time it is called. In a
syntax quoted form, we can use an automatic symbol name created from a prefixed
name and the gensym function by using the hash character (#), shown as follows:

user> `(let [x# 10] x#)
(clojure.core/let [x__8561__auto__ 10]
 x__8561__auto__)

Metaprogramming with Macros

[104]

user> (macroexpand `(let [x# 10] x#))
(let* [x__8910__auto__ 10]
 x__8910__auto__)

The let form is, in fact, a macro defined using the let* special form.

As shown in the preceding expression, all occurrences of the auto-gensym variable
x# in the syntax quoted form are replaced with an automatically generated symbol
name. We should note that only symbols, and not strings or keywords, can be used
as a prefix for an auto-gensym symbol.

By generating unique symbols in this way, we can create hygenic macros, which avoid
the possibility of symbol capture or variable capture, which is an interesting problem
that arises with the use of dynamically scoped variables and macros. To illustrate
this problem, consider the macros defined in Example 4.2:

(defmacro to-list [x]
 `(list ~x))

(defmacro to-list-with-capture [x]
 `(list ~'x))

Example 4.2: Macros to depict symbol capture

The macros in Example 4.2 create a new list using a list form and the value x. Of
course, we wouldn't really need to use a macro here, but it is only done for the sake
of demonstrating symbol capture. The to-list-with-capture macro captures the
variable x from the surrounding scope by the use of the ~' operation. If we use a let
form to bind the variable name x with a value, we will get different results on calling
the to-list and to-list-with-capture macros, as shown here:

user> (let [x 10]
 (to-list 20))
(20)
user> (let [x 10]
 (to-list-with-capture 20))
(10)

The to-list-with-capture function seems to dynamically obtain the value of x
from the surrounding scope, and not from the parameter passed to it. As you may
have guessed, this can lead to a number of subtle and bizarre bugs. In Clojure,
the solution to this problem is simple; a syntax quoted form will resolve all free
symbols to namespace-qualified names. This can be verified by macroexpanding the
expression that uses the to-list function in the preceding example.

Chapter 4

[105]

Let's say we would like to use a temporary variable using a let form with a macro that
performs the same task as the to-list macro from Example 4.2. This may seem rather
unnecessary, but it is only being done to demonstrate how symbols are resolved by a
syntax quote. Such a macro can be implemented as shown in Example 4.3:

(defmacro to-list-with-error [x]
 `(let [y ~x]
 (list y)))

Calling the to-list-with-error macro will result in an error due to the use of the
free symbol y, as shown here:

user> (to-list-with-error 10)
CompilerException java.lang.RuntimeException:
Can't let qualified name: user/y

This error can be quite annoying, as we simply intended to use a temporary variable
in the body of the to-list-with-error macro. This error occurred because it is not
clear where the variable y is resolved from. To get around this error, we can declare
the variable y as an auto-gensym variable, as shown in Example 4.4:

(defmacro to-list-with-gensym [x]
 `(let [y# ~x]
 (list y#)))

Example 4.4: A macro that uses a let form and an auto-gensym variable

The to-list-with-gensym macro works as expected without any error,
as shown here:

user> (to-list-with-gensym 10)
(10)

We can also inspect the expression generated by the to-list-with-gensym macro
using the macroexpand and macroexpand-1 forms, and the reader is encouraged to
try this in the REPL.

To summarize, macros defined using the defmacro form can be used to rewrite and
transform code. Syntax quote and auto-gensym variables can be used to write hygenic
macros that avoid certain problems that can arise due the use of dynamic scope.

Metaprogramming with Macros

[106]

Syntax quote can actually be implemented as a user defined macro.
Libraries such as syntax-quote (https://github.com/
hiredman/syntax-quote) and backtick (https://github.
com/brandonbloom/backtick) demonstrate how syntax quote
can be implemented through macros.

Encapsulating patterns in macros
In Clojure, macros can be used to rewrite expressions in terms of functions and special
forms. However, in languages such as Java and C#, there is a lot of additional syntax
added to the language for handling special forms. For example, consider the if
construct in these languages, which is used to check whether an expression is true or
not. This construct does have some special syntax. If a recurring pattern of usage of
the if construct is found in a program written in these languages, there is no obvious
way to automate this pattern. Languages such as Java and C# have the concept of
design patterns that encapsulate these sort of patterns. But without the ability to rewrite
expressions, encapsulating patterns in these languages can get a bit incomplete and
cumbersome. The more special forms and syntax we add to a language, the harder it
gets to programmatically generate code for the language. On the other hand, macros in
Clojure and other Lisps can easily rewrite expressions to automate recurring patterns
in code. Also, there is more-or-less no special syntax for code in Lisps, as code and
data are one and the same. In a way, macros in Lispy languages allow us to concisely
encapsulate design patterns by extending the language with our own hand-made
constructs.

Let's explore a few examples that demonstrate how macros can be used to encapsulate
patterns. The -> and ->> threading macros in Clojure are used to compose several
functions together by passing in an initial value. In other words, the initial value is
threaded through the various forms that are passed as arguments to the -> and ->>
macros. These macros are defined in the clojure.core namespace as part of the
Clojure language, as shown in Example 4.5.

The following examples can be found in src/m_clj/c4/threading.
clj of the book's source code.

(defmacro -> [x & forms]
 (loop [x x
 forms forms]
 (if forms
 (let [form (first forms)
 threaded (if (seq? form)
 (with-meta
 `(~(first form) ~x ~@(next form))

https://github.com/hiredman/syntax-quote
https://github.com/hiredman/syntax-quote
https://github.com/brandonbloom/backtick
https://github.com/brandonbloom/backtick

Chapter 4

[107]

 (meta form))
 (list form x))]
 (recur threaded (next forms)))
 x)))

(defmacro ->> [x & forms]
 (loop [x x
 forms forms]
 (if forms
 (let [form (first forms)
 threaded (if (seq? form)
 (with-meta
 `(~(first form) ~@(next form) ~x)
 (meta form))
 (list form x))]
 (recur threaded (next forms)))
 x)))

Example 4.5: The -> and ->> threading macros

The -> and ->> macros in Example 4.5 use a loop form to recursively thread a value x
through the expressions represented by forms. The first symbol in a form, that is the
function being called, is determined using the first function. The arguments to be
passed in this function, other than x, are extracted using the next function. If a form
is just a function name without any additional arguments, we create a new form
using the expression (list form x). The with-meta form is used to preserve any
metadata specified with form. The -> macro passes x as the first argument, whereas
->> passes x as the last argument. This is done in a recursive manner for all the
forms passed to these macros. Interestingly, syntax quoted forms are used sparingly
by both of the -> and ->> macros. We can actually refactor out some parts of these
macros into functions. This adds a slight advantage as functions can be tested quite
easily compared to macros. The -> and ->> threading macros can be refactored as
shown in Example 4.6 and Example 4.7:

(defn thread-form [first? x form]
 (if (seq? form)
 (let [[f & xs] form
 xs (conj (if first? xs (vec xs)) x)]
 (apply list f xs))
 (list form x)))

(defn threading [first? x forms]
 (reduce #(thread-form first? %1 %2)
 x forms))

Example 4.6: Refactoring the -> and ->> threading macros

Metaprogramming with Macros

[108]

The thread-form function in Example 4.6 positions the value x in the expression
form using the conj function. The premise here is that the conj function will add an
element in the head of a list and at the end or tail of a vector. The first? argument
is used to indicate whether the value x has to be passed as the first argument to
form. The threading function simply applies the thread-form function to all the
expressions passed to it, represented by forms. The macros -> and ->> can now be
implemented using the threading function as shown in Example 4.7:

(defmacro -> [x & forms]
 (threading true x forms))

(defmacro ->> [x & forms]
 (threading false x forms))

Example 4.7: Refactoring the -> and ->> threading macros (continued)

The threading macros defined in Example 4.7 work just as well as the ones in Example
4.5, and we can verify this in the REPL. This is left as an exercise for the reader.

A common pattern of usage of the let form is to repeatedly rebind a variable to
new values by passing it through several functions. This kind of pattern can be
encapsulated using the as-> threading macro, which is defined as shown in
Example 4.8.

(defmacro as-> [expr name & forms]
 `(let [~name ~expr
 ~@(interleave (repeat name) forms)]
 ~name))

Example 4.8: Refactoring the -> and ->> threading macros

Let's skip past explaining the details of the as-> macro through words and simply
describe the code it generates using the macroexpand function, as shown here:

user> (macroexpand '(as-> 1 x (+ 1 x) (+ x 1)))
(let* [x 1
 x (+ 1 x)
 x (+ x 1)]
 x)
user> (as-> 1 x (+ 1 x) (+ x 1))
3

The as-> macro binds its first argument to a symbol represented by its second
argument and generates a let* form as a result. This allows us to define expressions
that have to be threaded over in terms of an explicit symbol. One might even say it's
a more flexible way to perform the threading of a value through several expressions,
as compared to using the -> and ->> macros.

Chapter 4

[109]

The as-> form has been introduced in Clojure 1.5 along with several
other threading macros.

Thus, macros are great tools in automating or encapsulating patterns in code.
Several commonly used forms in the Clojure language are actually defined as
macros, and we can just as easily define our own macros.

Using reader conditionals
It is often necessary to interoperate with native objects in Clojure and its dialects
such as ClojureScript. We can define platform-specific code using reader conditionals.
Let's now briefly take a look at how we can use reader conditionals.

Reader conditionals have been introduced in Clojure 1.7. Prior to
version 1.7, platform-specific Clojure/ClojureScript code had to be
managed using the cljx library (https://github.com/lynaghk/
cljx).

The reader conditional form, written as #?(...), allows us to define platform-
specific code using the :cljs, :clj, :clr, and :default keywords. The reader
conditional splicing form, written as #?@(...), has semantics similar to a reader
conditional form. It can be used to splice a list of platform-specific values or
expressions into a form. Both these conditional forms are processed when code is
read, instead of when it is macroexpanded.

Since Clojure 1.7, the read-string function has a second arity in which we can specify
a map as an argument. This map can have two keys, :read-cond and :features.
When a string containing a conditional form is passed to the read-string function,
platform-specific code can be generated by specifying the platform as a set of
keywords, represented by :cljs, :clj, or :clr, with the :features key in the map of
options. In this case, the keyword :allow must be specified for the key :read-cond in
the map passed to the read-string function, or else an exception will be thrown. We
can try out the reader conditional form with the read-string function in the REPL as
shown here:

user> (read-string {:read-cond :allow :features #{:clj}}
 "#?(:cljs \"ClojureScript\" :clj \"Clojure\")")
"Clojure"
user> (read-string {:read-cond :allow :features #{:cljs}}
 "#?(:cljs \"ClojureScript\" :clj \"Clojure\")")
"ClojureScript"

https://github.com/lynaghk/cljx
https://github.com/lynaghk/cljx

Metaprogramming with Macros

[110]

These examples can be found in src/m_clj/c4/reader_
conditionals.cljc of the book's source code.

Similarly, we can read a conditional splicing form into an expression with the
read-string function as shown here:

user> (read-string {:read-cond :allow :features #{:clr}}
 "[1 2 #?@(:cljs [3 4] :default [5 6])]")
[1 2 5 6]
user> (read-string {:read-cond :allow :features #{:clj}}
 "[1 2 #?@(:cljs [3 4] :default [5 6])]")
[1 2 5 6]
user> (read-string {:read-cond :allow :features #{:cljs}}
 "[1 2 #?@(:cljs [3 4] :default [5 6])]")
[1 2 3 4]

We can also prevent the transformation of conditional forms by specifying the
:preserve keyword with the :read-cond key in the optional map passed to the
read-string function, as shown here:

user> (read-string {:read-cond :preserve}
 "[1 2 #?@(:cljs [3 4] :clj [5 6])]")
[1 2 #?@(:cljs [3 4] :clj [5 6])]

However, wrapping conditional forms in a string is not really something we should
be doing in practice. Generally, we should write all platform-specific code as reader
conditional forms in source files with the .cljc extension. Once the top-level forms
defined in the .cljc file are processed by the Clojure reader, we can use them just
like any other reader forms. For example, consider the macro written using a reader
conditional form in Example 4.9:

(defmacro get-milliseconds-since-epoch []
 `(.getTime #?(:cljs (js/Date.)
 :clj (java.util.Date.))))

Example 4.9: A macro using a reader conditional

The get-milliseconds-since-epoch macro in Example 4.9 calls the .getTime
method on a new java.util.Date instance when called from the Clojure code. Also,
this macro calls the .getTime method on a new JavaScript Date object when used in
ClojureScript code. We can macroexpand a call to the get-milliseconds-since-
epoch macro from the Clojure REPL to generate JVM-specific code, as shown here:

user> (macroexpand '(get-milliseconds-since-epoch))
(. (java.util.Date.) getTime)

Chapter 4

[111]

Thus, reader conditionals help in encapsulating platform-specific code to be used in
code that is agnostic of the underlying platform.

Avoiding macros
Macros are an extremely flexible way of defining our own constructs in Clojure.
However, careless use of macros in a program can become complicated and lead
to a number of strange bugs that are hidden from plain sight. As described in the
book, Programming Clojure by Stuart Halloway and Aaron Bedra, the usage of macros
in Clojure has two thumb rules:

• Don't write macros: Anytime we try to use a macro, we must think twice
whether we could perform the same task using a function.

• Write macros if it's the only way to encapsulate a pattern: A macro must be
used only if it is easier or more convenient than calling a function.

What's the problem with macros? Well, macros complicate a program's code in
several ways:

• Macros cannot be composed like functions as they are not really values.
It's not possible to pass a macro as an argument to the map or apply forms,
for example.

• Macros cannot be tested as easily as functions. Though it can be done
programmatically, the only way to test macros is by using macroexpansion
functions and quoting.

• In some cases, code that calls a macro may have been written as a macro
itself, thus adding more complexity to our code.

• Hidden bugs caused by problems such as symbol capture make macros
a little tricky. Debugging macros isn't really easy either, especially in a
large codebase.

For these reasons, macros have to be used carefully and responsibly. In fact, if we
can solve a problem using macros as well functions, we should always prefer the
solution that uses functions. If the use of a macro is indeed required, we should
always strive to refactor out as much code as possible from a macro into a function.

That aside, macros make programming a lot of fun as they allow us to define our
own constructs. They allow a degree of freedom and liberty that is not really possible
in other languages. You may hear a lot of seasoned Clojure programmers tell you
that macros are evil and you should never use them, but don't let that stop you from
exploring what is possible with macros. Once you encounter and tackle some of the
problems that arise with the use of macros, you will have enough experience to be
able to decide when macros can be used appropriately.

Metaprogramming with Macros

[112]

Summary
We have explored how metaprogramming is possible with Clojure in this chapter.
We discussed how code is read, macroexpanded, and evaluated, as well as the
various primitive constructs that implement these operations. Macros can be used
to encapsulate patterns in code, as we demonstrated in the various examples in this
chapter. Toward the end of the chapter, we also talked about reader conditionals and
pointed out the various complications that arise with the use of macros.

In the following chapter, we will explore how transducers can be used to process any
data regardless of the source of the data.

[113]

Composing Transducers
Let's get back to our journey of performing computations over data in Clojure.
We've already discussed how reducers can be used to process collections in
Chapter 3, Parallelization Using Reducers. Transducers are, in fact, a generalization
of reducers that are independent of the source of data. Also, reducers are more
about parallelization, while transducers are more focused on generalizing data
transformations without restricting us to any particular source of data. Transducers
capture the essence of the standard functions that operate on sequences, such as
map and filter, for several sources of data. They allow us to define and compose
transformations of data regardless of how the data is supplied to us.

Incidentally, in the context of physics, a transducer is a device that converts a signal
from one form of energy into another form. In a way, Clojure transducers can be
thought of as ways to capture the energy in functions, such as map and filter, and
convert between different sources of data. These sources include collections, streams,
and asynchronous channels. Transducers can also be extended to other sources of
data. In this chapter, we will focus on how transducers can be used for sequences and
collections, and will reserve discussing transducers with asynchronous channels until
we talk about the core.async library in Chapter 8, Leveraging Asynchronous Tasks. Later
in this chapter, we will study how transducers are implemented in Clojure.

Understanding transducers
Transducers are essentially a stack of transformations that can be composed and
applied to any representation of data. They allow us to define transformations that
are agnostic of implementation-specific details about the source of the supplied
data. Transducers also have a significant performance benefit. This is attributed to
the avoidance of unnecessary memory allocations for arbitrary containers, such as
sequences or other collections, to store intermediate results between transformations.

Composing Transducers

[114]

Transducers have been introduced in Clojure 1.7.

Transformations can be composed without the use of transducers as well.
This can be done using the comp and partial forms. We can pass any number of
transformations to the comp function, and the transformation returned by the comp
function will be a composition of the supplied transformations in the right-to-left
order. In Clojure, a transformation is conventionally denoted as xf or xform.

The following examples can be found in src/m_clj/c5/
transduce.clj of the book's source code.

For example, the expression (comp f g) will return a function that applies the
function g to its input and then applies the function f to the result. The partial
function will bind a function to any number of arguments and return a new function.
The comp function can be used with a partial form to compose the map and filter
functions, as shown here:

user> (def xf-using-partial (comp
 (partial filter even?)
 (partial map inc)))
#'user/xf-using-partial
user> (xf-using-partial (vec (range 10)))
(2 4 6 8 10)

In the preceding output, the partial function is used to bind the inc and even?
functions to the map and filter functions respectively. The functions returned by both
the partial forms shown above will expect a collection to be passed to them. Thus,
they represent transformations that can be applied to a given collection. These two
transformations are then composed with the comp function to create a new function
xf-using-partial. This function is then applied to a vector of numbers to return a
sequence of even numbers. There are a few issues with this code:

• The filtering of even numbers using the even? function is performed after
applying the inc function. This proves that the transformations passed to the
comp function are applied in the right-to-left order, which is the reverse of the
order in which they are specified. This can be a little inconvenient at times.

• The value returned by the xf-using-partial function is a list and not
a vector. This is because the map and filter function both return lazy
sequences, which are ultimately converted into lists. Thus, the use of the
vec function has no effect on the type of collection returned by the xf-
using-partial function.

Chapter 5

[115]

• Also, the transformation (partial map inc) applied by the xf-using-
partial function will create a new sequence. This resulting sequence is then
passed to the transformation (partial filter even?). The intermediate use
of a sequence is both unnecessary and wasteful in terms of memory if we have
several transformations that must be composed.

This brings us to transducers, which address the preceding problems related to
composing transformations using the comp and partial forms. In the formal sense,
a transducer is a function that modifies a step function. This step function is analogous
to a reducing function in the context of reducers. A step function combines an input
value with the accumulated result of a given computation. A transducer accepts a step
function as an argument and produces a modified version of it. In fact, the xf and
xform notations are also used to represent a transducer; because a transducer is also a
transformation, it transforms a step function. While it may be hard to illustrate without
any code, this modification of a step function performed by a transducer actually
depicts how some input data is consumed by a given computation to produce a result.
Several transducers can also be composed together. In this way, transducers can be
thought of as a unified model to process data.

Several of the standard Clojure functions return a transducer when they are called
with a single argument. These functions either:

• Accept a function along with a collection as arguments. Examples of such
functions are map, filter, mapcat, and partition-by.

• Accept a value indicating the number of elements, usually specified as
n, along with a collection. This category includes functions such as take,
drop, and partition-all.

Visit http://clojure.org/transducers for the complete
list of standard functions that implement transducers.

The use of transducers can be aptly depicted by Rich Hickey's baggage loading
example. Suppose we intend to load several bags into an airplane. The bags will be
supplied in pallets, which can be thought of as collections of bags. There are several
steps that have to be performed to load the bags into the airplane. Firstly, the bags
must be unbundled from the supplied pallets. Next, we must check whether a bag
contains any food, and not process it any further if it does. Finally, all the bags must
be weighed and labeled in case they are heavy. Note that these steps needed
to load the bags into the airplane do not specify how the pallets are supplied to us,
or how the labeled bags from the final step are transported to the plane.

http://clojure.org/transducers

Composing Transducers

[116]

We can model the process of loading the bags into the plane as shown in the
process-bags function in Example 5.1, as follows:

(declare unbundle-pallet)
(declare non-food?)
(declare label-heavy)

(def process-bags
 (comp
 (partial map label-heavy)
 (partial filter non-food?)
 (partial mapcat unbundle-pallet)))

Example 5.1: Loading bags into an airplane

The functions unbundle-pallet, non-food?, and label-heavy in Example 5.1
represent the three steps of loading bags into an airplane. These functions are
applied to a collection of bags using the map, filter, and mapcat functions. Also,
they can be composed using the comp and partial functions in a right-to-left order.
As we described earlier, the map, filter, and mapcat functions will all produce
sequences on being called, hence creating intermediate collections of bags between
the three transformations. This intermediate use of sequences is analogous to putting
all the bags on trollies after the step is performed. The supplied input and the final
result would both be a bag of trollies. The use of trollies not only incurs additional
work between the steps of our process, but the steps are now convoluted with the
use of trollies. Thus, we would have to redefine these steps if we had to use, say,
conveyer belts instead of trollies to transport the baggage. This means that the map,
filter, and mapcat functions would have to be implemented again if we intend
to produce a different type of collection as a final result. Alternatively, we can use
transducers to implement the process-bags function without specifying the type of
collection of either the input or the result, as shown in Example 5.2:

(def process-bags
 (comp
 (mapcat unbundle-pallet)
 (filter non-food?)
 (map label-heavy)))

Example 5.2: Loading bags into an airplane using transducers

Chapter 5

[117]

The process-bags function in Example 5.2 shows how transducers can be used
to compose the unbundle-pallet, non-food?, and label-heavy functions
in a left-to-right order. Each of the expressions passed to the comp function in
Example 5.2 return a transducer. This implementation of the process-bags
function does not create any intermediary collections when it is executed.

Producing results from transducers
Transducers are only recipes for computations, and are not capable of performing
any actual work on their own. A transducer can produce results when coupled
with a source of data. There's also another vital piece of the puzzle, that is, the step
function. To combine a transducer, a step function, and a source of data, we must
use the tranduce function.

The step function passed to transduce is also used to create the initial value of
the result to be produced. This initial value of the result can also be specified as an
argument to the transduce function. For example, the transduce function can be
used with the conj form is shown as follows:

user> (def xf (map inc))
#'user/xf
user> (transduce xf conj [0 1 2])
[1 2 3]
user> (transduce xf conj () [0 1 2])
(3 2 1)

The inc function is coupled with the map function to create a transducer xf, as
shown previously. The transduce function can be used to produce either a list or
a vector from the transducer xf using the conj function. The order of elements in
the results of both the transduce forms shown previously is different due to the
fact that the conj function will add an element to the head of a list, as opposed to
adding it at the end of a vector.

We can also compose several transducers together using the comp function,
as shown here:

user> (def xf (comp
 (map inc)
 (filter even?)))
#'user/xf
user> (transduce xf conj (range 10))
[2 4 6 8 10]

Composing Transducers

[118]

The transducer xf in the preceding output encapsulates the application of the inc
and even? functions using the map and filter forms respectively. This transducer
will produce a vector of even numbers when used with the transduce and conj
forms. Note that the inc function is indeed applied to the supplied collection (range
10), or else the value 10 would not show up in the final result. This computation
using the transducer xf can be illustrated as follows:

The preceding diagram depicts how the transformations (map inc), (filter even?),
and conj are composed in the transformation xf. The map form is applied first,
followed by the filter form, and finally the conj form. In this manner, transducers
can be used to compose a series of transformations for any source of data.

Another way to produce a collection from a transducer is by using the into function.
The result of this function depends on the initial collection supplied to it as the first
argument, as shown here:

user> (into [] xf (range 10))
[2 4 6 8 10]
user> (into () xf (range 10))
(10 8 6 4 2)

The standard sequence function can also be used to produce a lazy sequence from
a transducer. Of course, the returned lazy sequence will be converted to a list in the
REPL, as shown here:

user> (sequence xf (range 10))
(2 4 6 8 10)

So far, we've composed transducers to produce collections with a finite number
of elements. An infinite series of values could also be produced by a transducer
when used with the sequence function. The eduction function can be used to
represent this sort of computation. This function will transform a collection, specified
as its last argument, to any number of transformations passed to it in right-to-left
order. An eduction form may also require a fewer number of allocations compared
to using a sequence.

Chapter 5

[119]

For example, if we were to retrieve the 100th element in a sequence using the nth
function, the first 99 elements would have to be realized and also discarded later as
they are not needed. On the other hand, an eduction form can avoid this overhead.
Consider the declaration of simple-eduction in Example 5.3:

(def simple-eduction (eduction (map inc)
 (filter even?)
 (range)))

Example 5.3: Using the eduction function

The collection simple-eduction shown in Example 5.3 will first filter out even values
using the even? predicate from the infinite range (range) and then increment the
resulting values using the inc function. We can retrieve elements from the collection
simple-eduction using the nth function. The same computation can also be modeled
using lazy sequences, but transducers perform much better, as shown here:

user> (time (nth simple-eduction 100000))
"Elapsed time: 65.904434 msecs"
200001
user> (time (nth (map inc (filter even? (range))) 100000))
"Elapsed time: 159.039363 msecs"
200001

The eduction form using a transducer performs twice as fast compared to a
sequence! From the output shown previously, it is quite clear that transducers
perform significantly better than lazy sequences for composing a number of
transformations. In summary, transducers created using functions such as map
and filter can be easily composed to produce collections using functions such as
transduce, into, and eduction. We can also use transducers with other sources of
data such as streams, asynchronous channels, and observables.

Comparing transducers and reducers
Both transducers and reducers, which were discussed in Chapter 3, Parallelization
Using Reducers, are ways to improve the performance of computations performed
over collections. While transducers are a generalization of data processing for
multiple data sources, there are a few other subtle differences between transducers
and reducers, which are described as follows:

• Transducers are implemented as part of the Clojure language in the clojure.
core namespace. However, reducers must be explicitly included in a program,
as they are implemented in the clojure.core.reducers namespace.

Composing Transducers

[120]

• Transducers only create a collection when producing the final result of a
series of transformations. There are no intermediary collections required to
store the results of a transformation that constitutes a transducer. On the
other hand, reducers produce intermediate collections to store results, and
only avoid the creation of unnecessary empty collections.

• Transducers deal with efficient composition of a series of transformations.
This is quite orthogonal to how reducers squeeze out performance from a
computation performed over a collection through the use of parallelization.
Transducers perform significantly better than both the reduce functions
from the clojure.core and clojure.core.reducers namespaces. Of
course, using the clojure.core.reducers/fold function is still a good
way to implement a computation that can be parallelized.

These contrasts between transducers and reducers describe how these two
methodologies of processing data are different. In practice, the performance of
these techniques depends on the actual computation being implemented. Generally,
if we intend to implement an algorithm to process data in a performant way, we
should use transducers. On the other hand, if we are dealing with a lot of data in
the memory with no need for I/O and laziness, we should use reducers. The reader
is encouraged to compare the performance of the transduce function with that of
the reduce and fold functions of the clojure.core.reducers library for different
computations and data sources.

Transducers in action
In this section, we will examine how transducers are implemented. We will also get a
basic idea of how our own transducible source of data can be implemented.

Managing volatile references
Some transducers can internally use state. It turns out that the existing reference types,
such as atoms and refs, aren't fast enough for the implementation of transducers.
To circumvent this problem, transducers also introduce a new volatile reference type.
A volatile reference represents a mutable variable that will not be copied into the
thread-local cache. Also, volatile references are not atomic. They are implemented
in Java using the volatile keyword with a java.lang.Object type.

The following examples can be found in src/m_clj/c5/
volatile.clj of the book's source code.

Chapter 5

[121]

We can create a new volatile reference using the volatile! function. The value
contained in the volatile state can then be retrieved using the @ reader macro or a
deref form. The vreset! function can be used to set the state of a volatile reference,
as shown here:

user> (def v (volatile! 0))
#'user/v
user> @v
0
user> (vreset! v 1)
1

In the preceding output, we encapsulate the value 0 in a volatile state, and then set
its state to 1 using the vreset! function. We can also mutate the state contained in a
volatile reference using the vswap! function. We will have to pass a volatile reference
and a function to be applied to the value contained in the reference to this function.
We can also specify any other arguments for the supplied function as additional
arguments to the vswap! function. The vswap! function can be used to change the
state of the volatile reference v that we previously defined, as shown here:

user> (vswap! v inc)
2
user> (vswap! v + 3)
5

The first call to the vswap! function in the preceding output uses the inc function
to increment the value stored in the reference v. Similarly, the subsequent call to
the vswap! function adds the value 3 to the new value in the volatile reference v,
thus producing the final value 5.

We can check whether a value is a volatile using
the volatile? predicate.

One may argue that the volatile reference type has the same semantics as that of an
atom. The vreset! and vswap! functions have the exact same shape as the reset!
and swap! functions that are used with atoms. However, there is an important
difference between a volatile reference and an atom. Unlike an atom, a volatile
reference does not guarantee atomicity of operations performed on it. Hence, it's
recommended to use volatile references in a single thread.

Composing Transducers

[122]

Creating transducers
As a transducer modifies a supplied step function, let's first define what a step
function actually does. The following aspects need to be considered:

• The step function must be able to provide an initial value to the transformation
it models. In other words, the step function must have an identity form that
takes no arguments.

• Inputs must be combined with the result accumulated so far by the
computation. This is analogous to how a reducing function combines an
input value with an accumulated result to produce a new result. The arity
of this form is also the same as that of a reducing function; it requires two
arguments to represent the current input and the accumulated result.

• The step function must also be able to complete the computation of the
modeled process to return something. This can be implemented as a function
that accepts a single argument that represents the accumulated result.

Thus, a step function is represented as a function with three arities, as described
previously. Early termination may also be needed by some transducers to abruptly
stop a computational process based on certain conditions.

Now, let's look at how some of the standard functions in the clojure.core
namespace are implemented with transducers. The map function returns a transducer
when called with a single argument.

The following examples can be found in src/m_clj/c5/
implementing_transducers.clj of the book's source code.

The following Example 5.4 describes how the map function is implemented:

(defn map
 ([f]
 (fn [step]
 (fn
 ([] (step))
 ([result] (step result))
 ([result input]
 (step result (f input))))))
 ([f coll]
 (sequence (map f) coll)))

Example 5.4: The map function

Chapter 5

[123]

The 1-arity form of the map function returns a function that accepts a step function,
represented by step, and returns another step function. The returned step function
has three different arities, just like we described earlier in this section. The essence of
the map function is described by the expression (step result (f input)), which
translates to "apply the function f on the current input input and combine it with
the accumulated result result using the function step". The returned step function
also has two other arities—one that takes no arguments and another that takes one
argument. These arities correspond to the other two cases of a step function that we
described earlier.

The second arity of the map function, which returns a collection and not a transducer,
is merely a composition of the sequence function and the transducer returned by
the expression (map f). The actual creation of a collection is done by the sequence
function. The 1-arity form of the map function only describes how the function f is
applied over a transducible context such as a collection.

Similarly, the filter function can be implemented using a transducer, as shown in
Example 5.5, as follows:

(defn filter
 ([p?]
 (fn [step]
 (fn
 ([] (step))
 ([result] (step result))
 ([result input]
 (if (p? input)
 (step result input)
 result)))))
 ([p? coll]
 (sequence (filter p?) coll)))

Example 5.5: The filter function

The premise in the implementation of the filter function is that a predicate p? is
used to conditionally combine the accumulated result and the current input, which
are represented by result and input respectively. If the expression (p? input)
does not return a truthy value, the accumulated result is returned without any
modification. Similar to the map function in Example 5.4, the 2-arity form of the
filter function is implemented using a sequence form and a transducer.

Composing Transducers

[124]

To handle early termination in transducers, we must use the reduced and reduced?
functions. Calling reduce or a step function on a value that has been wrapped in a
reduced form will simply return the contained value. The reduced? function checks
whether a value is already reduced, that is, wrapped in a reduced form. The reduced
and reduced? forms both accept a single argument, as shown here:

user> (def r (reduced 0))
#'user/r
user> (reduced? r)
true

Consider the following function rf in Example 5.6 that uses a reduced form to ensure
that the accumulated result is never more than 100 elements:

(defn rf [result input]
 (if (< result 100)
 (+ result input)
 (reduced :too-big)))

Example 5.6: Using the reduced function

The function rf merely sums up all inputs to produce a result. If the rf function is
passed to the reduce function along with a sufficiently large collection, the :too-big
value is returned as the final result, as shown here:

user> (reduce rf (range 3))
3
user> (reduce rf (range 100))
:too-big

A value wrapped in a reduced form can be extracted using the unreduced function or
the @ reader macro. Also, the ensure-reduced function can be used instead of reduced
to avoid re-applying a reduced form to a value that has already been reduced.

The standard take-while function can be implemented using a reduced form and a
transducer, as shown in the following Example 5.7:

(defn take-while [p?]
 (fn [step]
 (fn
 ([] (step))
 ([result] (step result))
 ([result input]
 (if (p? input)
 (step result input)
 (reduced result))))))

Example 5.7: The take-while function

Chapter 5

[125]

Note that only the 1-arity form of the take-while function is described in Example
5.7. The step function returned by the take-while function uses the expression (p?
input) to check if the accumulated result has to be combined with the current input.
If the p? predicate does not return a truthy value, the accumulated result is returned
by wrapping it in a reduced form. This prevents any other transformations, which
may be composed with the transformation returned by the take-while function,
from modifying the accumulated result any further. In this way, the reduced form
can be used to wrap the result of a transducer and perform early termination based
on some conditional logic.

Let's look at how a stateful transducer is implemented. The take function returns
a transducer that maintains an internal state. This state is used to keep a track of the
number of items that have been processed so far, since the take function must only
return a certain number of items from a collection or any other transducible context
by definition. Example 5.8 describes how the take function is implemented using a
volatile reference to maintain state:

(defn take [n]
 (fn [step]
 (let [nv (volatile! n)]
 (fn
 ([] (step))
 ([result] (step result))
 ([result input]
 (let [n @nv
 nn (vswap! nv dec)
 result (if (pos? n)
 (step result input)
 result)]
 (if (not (pos? nn))
 (ensure-reduced result)
 result)))))))

Example 5.8: The take function

The transducer returned by the take function will first create a volatile reference
nv from the supplied value n to track the number of items to be processed. The
returned step function then decrements the volatile reference nv and combines the
result with the input using the step function. This is done repeatedly until the value
contained in the reference nv is positive. Once all n items have been processed, the
result is wrapped in an ensure-reduced form to signal early termination. Here, the
ensure-reduced function is used to prevent wrapping the value result in another
reduced form, since the expression (step result input) could return a value that
is already reduced.

Composing Transducers

[126]

Finally, let's take a quick look at how the transduce function is implemented,
as shown in Example 5.9:

(defn transduce
 ([xform f coll] (transduce xform f (f) coll))
 ([xform f init coll]
 (let [xf (xform f)
 ret (if (instance? clojure.lang.IReduceInit coll)
 (.reduce ^clojure.lang.IReduceInit coll xf init)
 (clojure.core.protocols/coll-reduce coll xf init))]
 (xf ret))))

Example 5.9: The transduce function

The transduce function has two arities. The 4-arity form of the transduce function
calls the .reduce method of the transducible context coll if it is an instance of the
clojure.lang.IReduceInit interface. This interface defines a single method reduce
that represents how a data source is reduced using a given function and an initial
value. If the variable coll does not implement this interface, the transduce function
will fall back on the coll-reduce function to process the data source represented by
coll. In a nutshell, the transduce function will try to process a transducible context
in the fastest possible way. The clojure.lang.IReduceInit interface must be
implemented by all data sources that must support the use of transduce.

The 3-arity form of the transduce function produces the initial value for
the transduction by invoking the supplied function f without any arguments.
Thus, this arity of the transduce function can only be used with functions that
provide an identity value.

The definitions of the map, filter, take, and take-while
functions, as shown in this section, are simplified versions of their
actual definitions. However, the transduce function is shown
exactly as it is implemented in the clojure.core namespace.

This depicts how transducers and the transduce function are implemented. If
we need to implement our own transducible source of data, the implementations
described in this section can be used as a guideline.

Chapter 5

[127]

Summary
So far, we have seen how we can process data using sequences, reducers,
and transducers. In this chapter, we described how transducers can be used
for performant computations. We also briefly studied how transducers are
implemented in the Clojure language.

In the following chapter, we will explore algebraic data structures, such as
functors, applicatives, and monads, in Clojure. These concepts will deepen
our understanding of functional composition, which is the keystone of
functional programming.

[129]

Exploring Category Theory
On a journey into functional programming, a programmer will eventually stumble
upon category theory. First off, let's just say that the study of category theory is not really
needed to write better code. It's more prevalent in the internals of pure functional
programming languages, such as Haskell and Idris, in which functions are pure and
more like mathematical functions that do not have implicit side effects such as I/O
and mutation. However, category theory helps us reason about a very fundamental
and practical aspect of computation: composition. Functions in Clojure, unlike in pure
functional programming languages, are quite different from mathematical functions as
they can perform I/O and other side effects. Of course, they can be pure under certain
circumstances, and thus concepts from category theory are still useful in Clojure for
writing reusable and composable code based on pure functions.

Category theory can be thought of as a mathematical framework for modeling
composition. In this chapter, we will discuss a few concepts from category theory
using Clojure. We will also study a few algebraic types, such as functors, monoids,
and monads.

Demystifying category theory
Category theory has its own share of quirky notations and conventions. Let's start
off by exploring some of the terminology used in category theory, in a language
understandable by us mortal programmers.

Exploring Category Theory

[130]

A category is formally defined as a collection of objects and morphisms. In simple
terms, objects represent abstract types, and morphisms represent functions that
convert between these types. A category is thus analogous to a programming
language that has a few types and functions, and has two basic properties:

• There exists an identity morphism for each object in the category. In practice,
a single identity function can be used to represent the identity morphism for
all given objects, but this is not mandatory.

• Morphisms in a category can be composed together into a new morphism.
In fact, a composition of two or more morphisms is an optimization
of applying the individual morphisms one at a time. In this way, the
composition of several morphisms is said to commute with applying the
constituting morphisms.

Morphisms in a category can be composed as illustrated by the following diagram:

In the preceding diagram, the vertices A, B, and C are the objects and the arrows
are morphisms between these objects. The morphisms IA, IB, and IC are identity
morphisms that map the objects A, B, and C to themselves. The morphism f maps
A to B, and similarly the morphism g maps B to C. These two morphisms can be
composed together, as represented by the morphism g fo that maps A directly
to C, and hence the morphism g fo commutes with the morphisms f and g. For
this reason, the preceding diagram is termed as a commutative diagram. Note that
identity morphisms in a commutative diagram are generally not shown, unlike in the
preceding diagram.

The following examples can be found in src/m_clj/c6/
demystifying_cat_theory.clj of the book's source code.

Chapter 6

[131]

Now, let's translate the previous diagram to Clojure. We shall use the built-in string,
symbol and keyword types to depict how morphisms, or rather functions, between
these types can be composed together using the comp function:

As shown in the preceding diagram, the name function converts a keyword to a
string, and the symbol function converts a string to a symbol. These two functions
can be composed into a function that converts a keyword directly to a symbol,
represented by the (comp symbol name) function. Also, the identity morphisms
for each category translate to the identity function.

Internally, the string, symbol, and keyword types are represented
by the java.lang.String, clojure.lang.Symbol and
clojure.lang.Keyword classes respectively.

We can verify that the name and symbol functions can be composed together using
the comp form, as shown in the following REPL output:

user> (name :x)
"x"
user> (symbol "x")
x
user> ((comp symbol name) :x)
x

This establishes the fact that concepts from category theory have equivalent
representations in Clojure, and other programming languages as well. Although it
is perfectly valid to think about objects in a category as concrete types like we just
described, algebraic structures are a more practical substitute for objects. Algebraic
structures describe abstract properties of types, rather than what data is contained
in a type or how data is structured by a type, and are more like abstract types. Thus,
category theory is all about composing functions that operate on abstract types with
certain properties.

Exploring Category Theory

[132]

In Clojure, algebraic structures can be thought of as protocols. Concrete types
can implement protocols, and hence a type can represent more than one algebraic
structure. The cats library (https://github.com/funcool/cats) takes this approach
and provides protocol-based definitions of a few interesting algebraic structures. The
cats library also provides types that implement these protocols. Additionally, this
library extends some of the built-in types through these protocols allowing us to treat
them as algebraic structures. Although there are several alternatives, cats is the only
library compatible with ClojureScript.

The following library dependencies are required for the upcoming examples:
[funcool/cats "1.0.0"]

Also, the following namespaces must be included in your namespace
declaration:

(ns my-namespace
 (:require [cats.core :as cc]
 [cats.builtin :as cb]
 [cats.applicative.validation :as cav]
 [cats.monad.maybe :as cmm]
 [cats.monad.identity :as cmi]
 [cats.monad.exception :as cme]))

Now, let's study some of the algebraic structures from the cats library.

Using monoids
Let's start by exploring monoids. In order to define a monoid, we must first
understand what a semigroup is.

The following examples can be found in src/m_clj/c6/
monoids.clj of the book's source code.

A semigroup is an algebraic structure that supports an associative binary operation.
A binary operation, say ⊕ , is termed associative if the operation ()()a b c⊕ ⊕ produces
the same result as the operation ()()a b c⊕ ⊕ . A monoid is in fact a semigroup with an
additional property, as we will see ahead.

https://github.com/funcool/cats

Chapter 6

[133]

The mappend function from the cats.core namespace will associatively combine a
number of instances of the same type and return a new instance of the given type.
If we are dealing with strings or vectors, the mappend operation is implemented by
the standard concat function. Thus, strings and vectors can be combined using the
mappend function, as shown here:

user> (cc/mappend "12" "34" "56")
"123456"
user> (cc/mappend [1 2] [3 4] [5 6])
[1 2 3 4 5 6]

As strings and vectors support the associative mappend operation, they are semigroups.
They are also monoids, which are simply semigroups that have an identity element. It's
fairly obvious that the identity element for strings is an empty string, and for vectors
it's an empty vector.

This is a good time to introduce a versatile concrete type from the world of functional
programming—the Maybe type. The Maybe type represents an optional value, and
can either be empty or contain a value. It can be thought of as a value in a context or a
container. The just and nothing functions from the cats.monads.maybe namespace
can be used to construct an instance of the Maybe type. The just function constructs
an instance with a contained value, and the nothing function creates an empty Maybe
value. The value contained in a Maybe instance can be obtained by either passing it to
the cats.monads.maybe/from-maybe function, or dereferencing it (using the deref
form or the @ reader macro).

Incidentally, the Maybe type is also a monoid, since an empty Maybe value, created
using the nothing function, is analogous to an identity element. We can use the
mappend function to combine values of the Maybe type, just like any other monoid,
as shown here:

user> @(cc/mappend (cmm/just "123")
 (cmm/just "456"))
"123456"
user> @(cc/mappend (cmm/just "123")
 (cmm/nothing)
 (cmm/just "456"))
"123456"

The mappend function can thus be used to associatively combine any values that
are monoids.

Exploring Category Theory

[134]

Using functors
Next, let's take a look at functors. A functor is essentially a value in a container
or a computational context. The fmap function must be implemented by a functor.
This function applies a supplied function to the value contained in a functor. In
object-oriented terminology, a functor can be thought of as a generic type with a
single abstract method fmap. In a way, reference types, such as refs and atoms, can
be thought of as functors that save results, as a reference type applies a function to
its contained value in order to obtain the new value that should be stored in it.

The following examples can be found in src/m_clj/c6/
functors.clj of the book's source code.

The fmap function from the cats.core namespace takes two arguments: a function
and a functor. A functor itself defines what happens when an instance of the functor
is passed to the fmap function. The cats library extends vectors as functors. When a
vector is passed to the fmap function along with a function, the supplied function is
applied to all elements in the vector. Wait a minute! Isn't that what the map function
does? Well, yes, but the map function always returns a lazy sequence. On the other
hand, the fmap function will return a value with the same concrete type as the
functor that is passed. The behavior of the map and fmap functions can be compared
as follows:

user> (map inc [0 1 2])
(1 2 3)
user> (cc/fmap inc [0 1 2])
[1 2 3]

As shown above, the map function produces a lazy sequence, which gets realized into
a list in the REPL, when it is passed a vector along with the inc function. The fmap
function, however, produces a vector when passed the same arguments. We should
note that the fmap function is also aliased as <$>. Lazy sequences and sets can also
be treated as functors, as shown here:

user> (cc/<$> inc (lazy-seq '(1)))
(2)
user> (cc/<$> inc #{1})
#{2}

Chapter 6

[135]

The Maybe type is also a functor. The fmap function returns a maybe when it is passed
a maybe, as shown here:

user> (cc/fmap inc (cmm/just 1))
#<Just@ff5df0: 2>
user> (cc/fmap inc (cmm/nothing))
#<Nothing@d4fb58: nil>

The fmap function applies the function inc to a Maybe value only when it contains a
value. This behavior of the fmap function can be illustrated by the following diagram:

The preceding diagram depicts how the fmap function is passed the inc function and
the expression (cmm/just 1), and returns a new functor instance. The fmap function
extracts the value from this Maybe value, applies the inc function to the value, and
creates a new Maybe value with the result. On the other hand, the fmap function will
simply return an empty Maybe instance, created using the nothing function, without
touching it, as shown in the following diagram:

This behavior of the fmap function is defined by the implementation of the Maybe
type. This is because a functor itself gets to define how the fmap function behaves
with it. Of course, implementing the fmap function is not enough to qualify a type
as a functor. There are also functor laws that have to be satisfied by any plausible
implementation of a functor. The functor laws can be described as follows:

1. Passing an identity morphism and a functor F to fmap must return the
functor F without any modification. We can translate this into Clojure
using the identity function, as follows:
user> (cc/<$> identity [0 1 2])
[0 1 2]

Exploring Category Theory

[136]

2. Passing a functor F and a morphism f to fmap, followed by passing the result
and another morphism g to fmap, must be equivalent to calling fmap with
the functor F and the composition g fo . We can verify this using the comp
function, as shown here:
user> (->> [0 1 2]
 (cc/<$> inc)
 (cc/<$> (partial + 2)))
[3 4 5]
user> (cc/<$> (comp (partial + 2) inc) [0 1 2])
[3 4 5]

The first law describes identity morphisms, and the second law upholds the
composition of morphisms. These laws can be thought of as optimizations that
can be performed by the fmap function when used with valid functors.

Using applicative functors
Applicative functors are a subset of functors with a few additional requirements
imposed on them, thus making them a bit more useful. Similar to functors,
applicative functors are computational contexts that are capable of applying a
function to the value contained in them. The only difference is that the function
to be applied to an applicative functor must itself be wrapped in the context of an
applicative functor. Applicative functors also have a different interface of functions
associated with them. An applicative functor, in cats, is manipulated using two
functions: fapply and pure.

The following examples can be found in src/m_clj/c6/
applicatives.clj of the book's source code.

The fapply function from the cats.core namespace can be called with an
applicative functor, as follows:

user> @(cc/fapply (cmm/just inc)
 (cmm/just 1))
2

Here, we again use the Maybe type, this time as an applicative functor. The fapply
function unwraps the inc function and the value 1 from the Maybe values, combines
them and returns the result 2 in a new Maybe instance. This can be illustrated with
the following diagram:

Chapter 6

[137]

The cats.core/pure function is used to create a new instance of an applicative
functor. We must pass an implementation-specific context, such as cats.monads.
maybe/context, and a value to the pure function, as follows:

user> (cc/pure cmm/context 1)
#<Just@cefb4d: 1>

The cats library provides an alet form to easily compose applicative functors.
Its syntax is similar to that of the let form, as follows:

user> @(cc/alet [a (cmm/just [1 2 3])
 b (cmm/just [4 5 6])]
 (cc/mappend a b))
[1 2 3 4 5 6]

The value returned by the body of the alet form, shown previously, is wrapped
in a new applicative functor instance and returned. The surrounding alet form is
dereferenced, and thus the entire expression returns a vector.

The <*> function from the cats.core namespace is a variadic form of the fapply
function. It accepts a value representing an applicative functor followed by any
number of functions that produce applicative functors. The cats library also
provides the Validation applicative functor type for validating properties of
a given object. This type can be constructed using the ok and fail forms in the
cats.applicative.validation namespace. Let's say we want to validate a map
representing a page with some textual content. A page must have a page number
and an author. This validation can be implemented as shown in Example 6.1:

(defn validate-page-author [page]
 (if (nil? (:author page))
 (cav/fail {:author "No author"})
 (cav/ok page)))

(defn validate-page-number [page]
 (if (nil? (:number page))
 (cav/fail {:number "No page number"})
 (cav/ok page)))

Exploring Category Theory

[138]

(defn validate-page [page]
 (cc/alet [a (validate-page-author page)
 b (validate-page-number page)]
 (cc/<*> (cc/pure cav/context page)
 a b)))

Example 6.1: The cats.applicative.validation type

The validate-page-author and validate-page-number functions in Example 6.1
check whether a map contains the :author and :number keys respectively. These
functions create an instance of the Validation type using the ok function, and
similarly use the fail function to create a Validation instance that represents a
validation failure. Both the validate-page-author and validate-page-number
functions are composed together using the <*> function. The first argument passed
to <*> will have to be an instance of the Validation type created using the pure
function. The validate-page function can thus validate maps representing pages,
as shown here:

user> (validate-page {:text "Some text"})
#<Fail@1203b6a: {:author "No author", :number "No page number"}>
user> (validate-page {:text "Some text" :author "John" :number 1})
#<Ok@161b2f8: {:text "Some text", :author "John", :number 1}>

A successful validation will return a Validation instance containing the page
object, and an unsuccessful one will return an instance of the Validation type
with the appropriate validation messages as a map. The concrete types for these
two cases are Ok and Fail, as shown in the preceding output.

Applicative functors must themselves define the behavior of the fapply and pure
functions with them. Of course, there are laws that applicative functors must obey
too. In addition to the identity and composition laws of functors, applicative functors
also conform to the homomorphism and interchange laws. The reader is encouraged to
find out more about these laws before implementing their own applicative functors.

Using monads
Finally, let's take a look at an algebraic structure that helps us build and compose a
sequence of computations: a monad. There are countless tutorials and articles on the
web that explain monads and how they can be used. In this section, we will look at
monads in our own unique and Clojure-y way.

Chapter 6

[139]

In category theory, a monad is a morphism between functors. This means that a
monad transforms the context of a contained value into another context. In pure
functional programming languages, monads are data structures used to represent
computations that are defined in steps. Each step is represented by an operation on
a monad, and several of these steps can be chained together. Essentially, a monad is
a composable abstraction of a step of any computation. A distinct feature of monads
is that they allow us to model impure side effects, which may be performed in the
various steps of a given computation, using pure functions.

Monads abstract the way a function binds values to arguments and returns a value.
Formally, a monad is an algebraic structure that implements two functions: bind
and return. The bind function is used to apply a function to the value contained
in a monad, and the return function can be thought of as a construct for wrapping
values in a new monad instance. The type signatures of the bind and return
functions can be described by the following pseudo code:

bind : (Monad A a, [A -> Monad B] f) -> Monad B
return : (A a) -> Monad A

The type signature of the bind function states that it accepts a value of type Monad
A and a function that converts a value of type A to another value of type Monad B,
which is simply a monad containing a value of type B. Also, the bind function
returns a type Monad B. The return function's type signature shows that it takes
a value of type A and returns a type Monad A. Implementing these two functions
allows a monad to execute any code, defined in its bind implementation, before the
supplied function f is applied to the value contained in the monad. A monad can
also define code to be executed when the supplied function f returns a value, as
defined by the monad's implementation of the return function.

Due to the fact that a monad can do more than just call a function over its contained
value when passed to the bind function, a monad is used to indicate side effects in
pure functional programming languages. Let's say, we have a function that maps
type A to B. A function that maps type A to Monad B can be used to model the side
effects that can occur when a value of type A is converted to another value of type B.
In this way, monads can be used to represent side effects, such as IO, change of state,
exceptions, and transactions.

Some programmers may even argue that monads are unnecessary in a language with
macros. This is true in some sense, because macros can encapsulate side effects in
them. However, monads help us to be explicit about any side-effects, which is quite
useful. In fact, monads are the only way to model side effects in pure functional
programming languages. Because monads can represent side effects, they allow
us to write imperative-style code, which is all about mutation of state, in a pure
functional programming language.

Exploring Category Theory

[140]

The following examples can be found in src/m_clj/c6/
monads.clj of the book's source code.

Let's now look at how the Maybe type from the cats library can take the form of a
monad. We can pass a Maybe value along with a function to the cats.core/bind
function to call the supplied function with the contained value in the monad. This
function is aliased as >>=. The behavior of the bind function with a Maybe type is
shown here:

user> (cc/bind (cmm/just 1) inc)
2
user> (cc/bind (cmm/nothing) inc)
#<Nothing@24e44b: nil>

In this way, we can bind the inc function to a Maybe monad. The expression shown
in the preceding output can be depicted by the following diagram:

The inc function is applied to a Maybe monad only if it contains a value. When a
Maybe monad does contain a value, applying the inc function to it using the bind
function will simply return 2, and not a monad containing 2. This is because the
standard inc function does not return a monad. On the other hand, an empty Maybe
value is returned untouched. To return a monad in both the preceding cases, we can
use the return function from the cats.core namespace, as shown here:

user> (cc/bind (cmm/just 1) #(-> % inc cc/return))
#<Just@208e3: 1>
user> (cc/bind (cmm/nothing) #(-> % inc cc/return))
#<Nothing@1e7075b: nil>

Chapter 6

[141]

The lift-m form can be used to lift a function that returns a type A to return a monad
containing a type A. The concrete type of the return value of a lifted function depends
on the monad context passed to it. If we pass a Maybe monad to a lifted version of
inc, it will return a new instance of the Maybe monad, as shown here:

user> ((cc/lift-m inc) (cmm/just 1))
#<Just@1eaaab: 2>

We can also compose several calls to the bind function, as long as the function passed
to the bind function produces a monad, as shown here:

user> (cc/>>= (cc/>>= (cmm/just 1)
 #(-> % inc cmm/just))
 #(-> % dec cmm/just))
#<Just@91ea3c: 1>

Of course, we can also compose calls to the bind function to change the type of
monad. For example, we can map a Maybe monad to an Identity monad, which is
constructed using the cats.monads.identity/identity function. We can modify
the preceding expression to return an Identity monad as shown here:

user> (cc/>>= (cc/>>= (cmm/just 1)
 #(-> % inc cmm/just))
 #(-> % dec cmi/identity))
#<Identity@dd6793: 1>

As shown in the preceding output, calling the bind function multiple times can get
a bit cumbersome. The mlet form lets us compose expressions that return monads,
as shown in Example 6.2:

 (defn process-with-maybe [x]
 (cc/mlet [a (if (even? x)
 (cmm/just x)
 (cmm/nothing))
 b (do
 (println (str "Incrementing " a))
 (-> a inc cmm/just))]
 b))

Example 6.2. The mlet form

Exploring Category Theory

[142]

In short, the process-with-maybe function defined in Example 6.2 checks whether a
number is even, then prints a line and increments the number. As we use the Maybe
type, the last two steps of printing a line and incrementing a value are performed only
if the input x is even. In this way, an empty Maybe monad, created using the nothing
function, can be used to short-circuit a composition of monads. We can verify this
behavior of the process-with-maybe function in the REPL, as shown here:

user> (process-with-maybe 2)
Incrementing 2
3
user> (process-with-maybe 3)
#<Nothing@1ebd3fe: nil>

As shown here, the process-with-maybe function prints a line only when the supplied
value x is an even number. If not, an empty Maybe monad instance is returned.

The previous examples describe how we can use the Maybe monad. The cats library
also provides implementations of the Either and Exception monads, in the cats.
monads.either and cats.monads.exception namespaces respectively. Let's
explore a few constructs from the cats.monads.exception namespace.

We can create a new Exception monad instance using the success and failure
functions. The success form can be passed any value, and it returns a monad that
represents a successful step in a computation. On the other hand, the failure
function must be passed a map containing an :error key that points to an exception,
and returns a monad that represents a failure in a computation. The value or
exception contained in an Exception monad can be obtained by dereferencing it
(using the deref form or the @ reader macro). Another way to create an Exception
monad instance is by using the try-on macro. The following output describes how
these constructs can be used to create an instance of the Exception monad:

user> (cme/success 1)
#<Success@441a312 [1]>
user> (cme/failure {:error (Exception.)})
#<Failure@4812b43 [#<java.lang.Exception>]>
user> (cme/try-on 1)
#<Success@5141a5 [1]>
user> @(cme/try-on 1)
1

The try-on macro will return a failure instance of the Exception monad if the
expression passed to it throws an error, as shown here:

user> (cme/try-on (/ 1 0))
#<Failure@bc1115 [#<java.lang.ArithmeticException>]>
user> (cme/try-on (-> 1 (/ 0) inc))
#<Failure@f2d11a [#<java.lang.ArithmeticException>]>

Chapter 6

[143]

A failure instance of an Exception monad can be used to short-circuit a composition of
monads. This means that binding an Exception monad to a function will not call the
supplied function if the monad contains an error. This is similar to how exceptions are
used to halt computations. We can verify this using the bind function, as shown here:

user> (cc/bind (cme/try-on (/ 1 1)) #(-> % inc cc/return))
#<Success@116ea43 [2]>
user> (cc/bind (cme/try-on (/ 1 0)) #(-> % inc cc/return))
#<Failure@0x1c90acb [#<java.lang.ArithmeticException>]>

Instances of the Exception monad can also be created using the try-or-else and
try-or-recover macros from the cats.monads.exception namespace. The try-or-
else form must be passed an expression and a default value. If the expression passed
to this form throws an exception, the default value is wrapped in an Exception monad
instance and returned. The try-or-recover form must be passed a 1-arity function in
place of the default value. In case an error is encountered, the try-or-recover macro
will invoke the supplied function and relay the value returned by it. The try-or-else
and try-or-recover f3orms are demonstrated as follows:

user> (cme/try-or-else (/ 1 0) 0)
#<Success@bd15e6 [0]>
user> (cme/try-or-recover (/ 1 0)
 (fn [e]
 (if (instance? ArithmeticException e)
 0
 :error)))
0

In this way, monads can be used to model side effects using pure functions.
We've demonstrated how we can use the Maybe and Exception monad types.
The cats library also implements other interesting monad types. There are monad
laws as well, and any monad that we implement must conform to these laws.
You are encouraged to learn more about the monad laws on your own.

Summary
In this chapter, we talked about the notations and terminology used in category
theory. We also discussed several algebraic types from category theory. Each of
these abstractions have laws that must be satisfied by their implementations,
and these laws can be thought of as optimizations for computations that use
these algebraic types.

In the next chapter, we will look at a different paradigm of programming
altogether—logic programming.

[145]

Programming with Logic
We will now take a step back from the realm of functional programming and explore
a completely different paradigm—logic programming. Logic programming has its
own unique way of solving computational problems. Of course, logic programming
isn't the only way to solve a problem, but it's interesting to see what kind of
problems can be easily solved with it.

Although logic programming and functional programming are two completely
different paradigms, they do have a few commonalities. Firstly, both of these
paradigms are forms of declarative programming. Studies and papers have also shown
that it is possible to implement the semantics of logic programming within a functional
programming language. Hence, logic programming operates at a much higher degree
of abstraction than functional programming. Logic programming is more suited for
problems in which we have a set of rules, and we intend to find all the possible values
that conform to these rules.

In this chapter, we look at logic programming in Clojure through the core.logic
library. We will also study a few computational problems and how we can solve
them in a concise and elegant manner using logic programming.

Diving into logic programming
In Clojure, logic programming can be done using the core.logic library (https://
github.com/clojure/core.logic/). This library is a port of miniKanren, which
is a domain-specific language for logic programming. miniKanren defines a set of
simple constructs for creating logical relations and generating results from them.

miniKanren was originally implemented in the Scheme
programming language. You can find out more about
miniKanren at http://minikanren.org/.

https://github.com/clojure/core.logic/
https://github.com/clojure/core.logic/
http://minikanren.org/

Programming with Logic

[146]

A program written using logic programming can be thought of as a set of logical
relations. Logical relations are the elementary building blocks of logic programming,
just as functions are for functional programming. The terms relation and constraint are
used interchangeably to refer to a logical relation. The core.logic library is in fact
an implementation of constraint-based logic programming.

A relation can be thought of as a function that returns a goal, and a goal can either be
a success or a failure. In the core.logic library, a goal is represented by the succeed
and fail constants. Another interesting aspect of relations is that they can return
multiple results, or even no results. This is analogous to a function that produces a
sequence of values, which could be empty, as a result. Functions such as keep and
filter fit this description perfectly.

The following library dependencies are required for the upcoming
examples:

[org.clojure/core.logic "0.8.10"]

Also, the following namespaces must be included in your namespace
declaration:

(ns my-namespace

 (:require [clojure.core.logic :as l]

 [clojure.core.logic.fd :as fd]))

The following examples can be found in src/m_clj/c7/diving_
into_logic.clj of the book's source code.

Solving logical relations
As a convention, relations have their name suffixed with an "o". For example,
the conso construct from the clojure.core.logic namespace is a relation that
represents the behavior of the cons function. Logical programming constructs that
use multiple logical relations, such as conde and matche, end with an "e". We will
explore these constructs later on in this chapter. Let's now focus on how we can solve
problems with logical relations.

The run* macro, from the clojure.core.logic namespace, processes a number
of goals to generate all possible results. The semantics of the run* form allow us to
declare a number of logical variables that can be used in relations to return goals.
The run* form returns a list of possible values for the logical variables it defines. An
expression using the run* form and a set of relations is essentially a way of asking
the question "What must the universe look like for these relations to be true?" to a
computer and asking it to find the answer.

Chapter 7

[147]

An equality test can be performed using the run* macro in combination with the
clojure.core.logic/== form, as shown here:

user> (l/run* [x]
 (l/== x 1))
(1)
user> (l/run* [x]
 (l/== 1 0))
()

Both the statements using the run* form in the preceding output find all possible
values of the logical variable x. The relation (l/== x 1) returns a goal that succeeds
when the value of x is equal to 1. Obviously, the only value that x can have for this
relation to succeed is 1. The run* form evaluates this relation to return 1 in a list.
On the other hand, the relation (l/== 1 0) is logically false, and thus produces no
results when passed to the run* form. This means that there are no values of x for
which 1 is equal to 0.

A relation built using the == form from the clojure.core.logic namespace is
called unification. Unification is often used in logic programming like variable
assignment from other paradigms, as it's used to assign values to variables.
Conversely, a disequality represents a relation in which a logical variable cannot be
equal to a given value. The clojure.core.logic/!= form is used to construct a
disequality relation, as shown here:

user> (l/run* [x]
 (l/!= 1 1))
()
user> (l/run* [x]
 (l/== 1 1))
(_0)

The first statement in the preceding output produces no results since the relation
(l/!= 1 1) is logically false. An interesting quirk is that the second statement,
which has a goal that always succeeds produces a single result _0, which represents
an unbound logical variable. As we don't assign a value to x through unification, its
value is said to be unbound. The symbols _0, _1, _2, and so on (also written
as _.0, _.1, _.2, and so on) represent unbound logical variables in the context
of a run* form.

The clojure.core.logic/conso form is useful in modeling the behavior of the
standard cons function as a relation. It takes three arguments, of which two are the
same as the cons function. The first two arguments passed to a conso form represent
the head and tail of a sequence.

Programming with Logic

[148]

The third argument is a sequence that is expected to be returned on applying the
cons function on the first two arguments. The conso relation can be demonstrated
as follows:

user> (l/run* [x]
 (l/conso 1 [2 x]
 [1 2 3]))
(3)

The expression using a conso relation, in the preceding output, will solve for values
of x that produce the value [1 2 3] when a cons form is applied to the values 1
and [2 x]. Obviously, x must be 3 for this relation to be true, and hence the result 3
is produced.

Logical variables can be created without the use of a run* form using the lvar
function from the clojure.core.logic namespace. Within a run* form, we can
create local logical variables using the clojure.core.logic/fresh macro. Variables
declared using a fresh form will not be part of the final result produced by the
surrounding run* form. For example, consider the expressions using the run* forms
in the following output:

user> (l/run* [x y]
 (l/== x y)
 (l/== y 1))
([1 1])
user> (l/run* [x]
 (l/fresh [y]
 (l/== x y)
 (l/== y 1)))
(1)

The first expression shown previously produces the vector [1 1] as a result, whereas
the second expression produces 1 as the result. This is because we specify a single
logical variable x and use a fresh form to internally declare the logical variable y in
the second expression.

The run* form searches for results exhaustively from the set of relations provided
to it. If we intend to find a limited number of results and avoid performing any
additional computation to find any more results, we should use the run macro from
the clojure.core.logic namespace instead. The run form has the same semantics
of a run* form, but additionally requires the number of desired results to be passed
to it as the first argument.

Chapter 7

[149]

The clojure.core.logic.fd namespace provides us with several constructs to
deal with relations that are constrained over a finite range of values. For example,
suppose we wanted to find values within the range of 0 to 100 that are greater than
10. We can easily express this relation using the >, in, and interval forms from the
clojure.core.logic.fd namespace and extract the first five values from it using a
run form, as shown here:

user> (l/run 5 [x]
 (fd/in x (fd/interval 0 100))
 (fd/> x 10))
(11 12 13 14 15)

The preceding expression uses the in and interval forms to constrain the value
of the variable x. The expression using these two forms ensures that x is within the
range of 0 and 100. Also, the clojure.core.logic.fd/> function defines a relation
in which x must be greater than 10. The surrounding run form simply extracts the
first five possible values of x from the relations supplied to it. There are also several
other arithmetic comparison operators, namely <, <=, and >=, implemented in the
clojure.core.logic.fd namespace. Instead of specifying a range of values to
the in macro, we can also enumerate the possible values of a variable by using the
clojure.core.logic.fd/domain form.

The firsto form can be used to describe a relation in which the value in a given
variable must be the first element in a collection. We can try out both the domain
and firsto forms in the REPL as shown here:

user> (l/run 1 [v a b x]
 (l/== v [a b])
 (fd/in a b x (fd/domain 0 1 2))
 (fd/< a b)
 (l/firsto v x))
([[0 1] 0 1 0])

In the preceding expression, we solve for the first set of values of v, a, b, and x that
satisfy the following relations. The value of a must be less than that of b, which is
shown using the < form, and both a and b must constitute the elements of a vector v,
which is shown using the == form. Also, a, b, and x must be equal to either 0, 1, or 2,
as described by a composition of the in and domain forms. Lastly, the first element of
the vector v must be equal to the value x. These relations generate the vector [0 1]
and the values 0, 1, and 0 for a, b, and x respectively. Note the arity of the in form in
the previous expression that allows multiple logical variables to be passed to it along
with a constraint.

Programming with Logic

[150]

Combining logical relations
The clojure.core.logic/conde form allows us to specify multiple relations,
and is a bit similar to the standard cond form. For example, consider the following
expression that uses the conde form:

user> (l/run* [x]
 (l/conde
 ((l/== 'A x) l/succeed)
 ((l/== 'B x) l/succeed)
 ((l/== 'C x) l/fail)))
(A B)

The preceding expression, which uses a conde form, performs equality checks for the
symbols A, B, and C against the logical variable x. Only two of these checks produce
a goal that succeeds, which is described using the succeed and fail constants in the
clauses of the conde form. This logical branching by the conde form in the preceding
expression can be illustrated through the following diagram:

The conde form in our previous example creates a conditional check for three
clauses. Out of these three clauses, only two succeed, and hence the symbols A and B
are returned as results. We should note that the clauses defined in a conde form can
take any number of relations. Also, the use of the l/succeed constant is implicit, and
we only need to use the l/fail constant to represent a goal that fails.

Another way to perform equality checks is by pattern matching. This can be
done using the clojure.core.logic/matche form. The matche form is thus
a more idiomatic way to define conditional branches involving logical variables,
as shown here:

user> (l/run* [x]
 (l/conde
 ((l/== 'A x) l/succeed)

Chapter 7

[151]

 ((l/== 'B x) l/succeed)))
(A B)
user> (l/run* [x]
 (l/matche [x]
 (['A] l/succeed)
 (['B] l/succeed)))
(A B)

Both of the preceding expressions produce the same result. The only difference
between these expressions is that the first one uses a conde form and the second
one performs a pattern match using a matche form. Also, the l/succeed constant is
implicit and does not need to be specified, similar to a conde form. The _ wildcard is
also supported by the matche form, as shown here:

user> (l/run* [x]
 (l/matche [x]
 (['A])
 ([_] l/fail)))
(A)

In the preceding expression, we solve for all values of x that match the pattern 'A.
All other cases fail, which is described using the _ wildcard and the l/fail constant.
Of course, the pattern using the _ wildcard is implicit and is only shown to describe
how it can be used in a matche form.

The matche construct also supports destructuring of sequences. A sequence can be
destructured by a matche form using a dot (.) to delimit the head and tail of the
sequence, as shown here:

user> (l/run* [x]
 (l/fresh [y]
 (l/== y [1 2 3])
 (l/matche [y]
 ([[1 . x]]))))
((2 3))

In the preceding expression, the logical variable x must be (2 3) for the relation
defined using the matche form to succeed. We can define relations using a syntax
similar to the defn form using the defne macro from the clojure.core.logic
namespace. The defne form allows us to define relations in pattern matching style.
Incidentally, a lot of constructs in the core.logic library are defined using the defne
form. For example, consider the definition of the membero relation in Example 7.1:

(l/defne membero [x xs]
 ([_ [x . ys]])
 ([_ [y . ys]]
 (membero x ys)))

Example 7.1: Defining the membero relation using the defne macro

Programming with Logic

[152]

The membero relation is used to ensure that a value x is a member of the collections xs.
The implementation of this relation destructures the collection xs into its head and tail
parts. If the value x is the head of the collection xs, the relation succeeds, otherwise the
relation is called recursively with the value x and the tail of the destructured list ys.
We can try out this relation with the run* form in the REPL, as shown here:

user> (l/run* [x]
 (membero x (range 5))
 (membero x (range 3 10)))
(3 4)

The preceding expression solves for values of x that are contained in the range 0 to
5 as well as in the range 3 to 10. The results 3 and 4 are produced from these two
relations that use the membero form.

While dealing with logical variables, it's important to note that we cannot use
standard functions to perform any computation with them. In order to extract values
from a bunch of logical variables, we have to use the clojure.core.logic/project
form. For example, consider the following statement:

user> (l/run 2 [x y]
 (l/membero x (range 1 10))
 (l/membero y (range 1 10))
 (l/project [x y]
 (l/== (+ x y) 5)))
([1 4] [2 3])

The preceding statement solves for two values of x and y such that they are both
in the range 1 to 10 and their sum is equal to 5. The values [1 4] and [2 3] are
returned as results. The project form is used to extract the values of x and y,
or else the + function would throw an exception.

Thus, the core.logic library provides us with a handful of constructs that can be
used to define logical relations, combine them, and generate results from them.

Thinking in logical relations
Now that we are well versed with the various constructs from the core.logic
library, let's look at some real world problems that can be solved through logic
programming.

Chapter 7

[153]

Solving the n-queens problem
The n-queens problem is an interesting problem that can be implemented using
logical relations. The objective of the n-queens problem is to place n queens on an
n x n sized chessboard such that no two queens are a threat to each other. This
problem is a generalization of the eight queens problem published by Max Bezzel
in 1848, which involves eight queens. In fact, we can actually solve the n-queens
problem for any number of queens, as long as we are dealing with four or more
queens. Traditionally, this problem can be solved using an algorithmic technique
called backtracking, which is essentially an exhaustive search for all possible solutions
to a given problem. However, in this section, we will solve it using logical relations.

Let's first define how a queen can be used. As we all know, a queen can move as she
wishes! A queen can move horizontally, vertically, or diagonally on a chessboard. If
any other chess piece is on the same path on which a queen can be moved, then the
queen is a threat to it. The position of a chess piece on the chessboard can be specified
using a pair of integers, just like how Cartesian coordinates can be used to represent
the position of a point on a plane. Suppose the pairs (x1, y1) and (x2, y2) represent
the positions of two queens on the chessboard. As they can threaten each other
horizontally, vertically, or diagonally, there are three distinct cases we must avoid:

• The queens cannot be on the same vertical path, that is, x1 equal to x2.
• Similarly, the queens cannot be on the same horizontal path, that is, y1

equal to y2.

• The queens cannot be on the same diagonal path, in which case the ratio
vertical and horizontal distance between them is either 1 or -1. This is
actually a trick from coordinate geometry, and its proof is way out of the
scope of our discussion. This case can be concisely represented by the
following equations:

2 1 2 1

2 1 2 1

1 1y y y yor
x x x x
− −

= = −
− −

These are the only rules that determine whether two queens threaten each other.
Yet if you think about them from a procedural or object-oriented perspective,
implementing them could require a good amount of code. On the contrary, if we
think in terms of relations, we can implement these three rules fairly easily using the
core.logic library, as shown in the following Example 7.2:

Programming with Logic

[154]

The following examples can be found in src/m_clj/c7/
nqueens.clj of the book's source code. This example is based
on code from n-queens with core.logic by Martin Trojer (http://
martinsprogrammingblog.blogspot.in/2012/07/n-queens-
with-corelogic-take-2.html).

(l/defne safeo [q qs]
 ([_ ()])
 ([[x1 y1] [[x2 y2] . t]]
 (l/!= x1 x2)
 (l/!= y1 y2)
 (l/project [x1 x2 y1 y2]
 (l/!= (- x2 x1) (- y2 y1))
 (l/!= (- x1 x2) (- y2 y1)))
 (safeo [x1 y1] t)))

(l/defne nqueenso [n qs]
 ([_ ()])
 ([n [[x y] . t]]
 (nqueenso n t)
 (l/membero x (range n))
 (safeo [x y] t)))

(defn solve-nqueens [n]
 (l/run* [qs]
 (l/== qs (map vector (repeatedly l/lvar) (range n)))
 (nqueenso n qs)))

Example 7.2: The n-queens problem

In Example 7.2, we define two relations, namely safeo and nqueenso, to describe the
n-queens problem. Both of these relations must be passed a list qs as an argument,
where qs contains coordinate pairs that represent the positions of queens placed
on the chessboard. They are interestingly recursive relations, and the termination is
specified by the case in which qs is empty.

The safeo relation is an implementation of the three rules that determine whether
two queens threaten each other. Note the way this relation uses a project form to
extract the values x1, y1, x2, and y2 to handle the case in which two queens are on
the same diagonal path. The nqueenso relation processes all positions of queens from
the list qs and ensures that each queen is safe. The solve-queens function initializes
n logical variables using the clojure.core.logic/lvar form.

http://martinsprogrammingblog.blogspot.in/2012/07/n-queens-with-corelogic-take-2.html
http://martinsprogrammingblog.blogspot.in/2012/07/n-queens-with-corelogic-take-2.html
http://martinsprogrammingblog.blogspot.in/2012/07/n-queens-with-corelogic-take-2.html

Chapter 7

[155]

The value qs is initialized a list of vector pairs that each contain a logical variable
and a number within the range of 0 to n. In effect, we initialize the y coordinates of
all pairs, and solve for the x coordinates. The reasoning behind this is that as we are
solving for n queens on a board with n columns and n rows, and each row will have
a queen placed on it.

The solve-nqueens function returns a list of solutions that each contain a list of
coordinate pairs. We can print this data in a more intuitive representation by using
the partition and clojure.pprint/pprint functions, as shown in Example 7.3:

(defn print-nqueens-solution [solution n]
 (let [solution-set (set solution)
 positions (for [x (range n)
 y (range n)]
 (if (contains? solution-set [x y]) 1 0))]
 (binding [clojure.pprint/*print-right-margin* (* n n)]
 (clojure.pprint/pprint
 (partition n positions)))))

(defn print-all-nqueens-solutions [solutions n]
 (dorun (for [i (-> solutions count range)
 :let [s (nth solutions i)]]
 (do
 (println (str "\nSolution " (inc i) ":"))
 (print-nqueens-solution s n)))))

(defn solve-and-print-nqueens [n]
 (-> (solve-nqueens n)
 (print-all-nqueens-solutions n)))

Example 7.3: The n-queens problem (continued)

Now, we just need to call the solve-and-print-nqueens function by passing it the
number of queens. Let's try to use this function to solve the n-queens problem for
four queens, as shown here:

user> (solve-and-print-nqueens 4)

Solution 1:
((0 1 0 0)
 (0 0 0 1)
 (1 0 0 0)
 (0 0 1 0))

Programming with Logic

[156]

Solution 2:
((0 0 1 0)
 (1 0 0 0)
 (0 0 0 1)
 (0 1 0 0))
nil

The solve-and-print-nqueens function prints two solutions for four queens.
Each solution is printed as a bunch of nested lists, in which each inner list represents
a row on the chessboard. The value 1 indicates that a queen is placed on that position
on the chessboard. As you can see, none of the four queens threaten each other in
either of the two solutions.

In this way, the solve-nqueens function uses relations to solve the n-queens
problem. We mentioned earlier that the n-queens problem originally involved
eight queens. There are totally 92 distinct solutions for eight queens, and the
solve-nqueens function can find every single one of them. You are encouraged to
try this out by passing the value 8 to the solve-and-print-nqueens function and
verifying the solutions it prints.

Solving a Sudoku puzzle
Some of us may already be in love with the intuitive and mesmerizing Sudoku
puzzles that we find in newspapers and magazines. This is another problem that
involves logical rules. A Sudoku board is a 9 x 9 grid on which we can place digits.
The grid is divided into nine smaller grids, each of which is further divided into
3 x 3 grids that contain digits. These smaller grids are also called squares or boxes.
Some of the squares will be filled with boxes. The goal is to place digits on all
positions on the grid such that each row, each column, and each of the smaller
grids all contain distinct digits in the range 1 through 9.

Let's implement the rules of a Sudoku puzzle in this way. We will create a logical
variable for every possible position of a digit on a Sudoku board and solve for
their values using the rules of the puzzle. The initial values of the digits on a
Sudoku board can be provided as a single vector comprising of 81 numbers. In this
implementation, we introduce a couple of new constructs that are useful in concisely
describing the rules of a Sudoku puzzle. The everyg function from the clojure.
core.logic namespace can be used to apply a relation over a list of logical variables,
thus ensuring that a relation is true for all the supplied logical variables. We must
also ensure that the logical variables in a row, column, and 3 x 3 sized grid in a
Sudoku puzzle are distinct. This can done by using the clojure.core.logic.fd/
distinct function. An implementation of this design of a Sudoku solver is shown in
Example 7.4.

Chapter 7

[157]

The following examples can be found in src/m_clj/c7/sudoku.clj
of the book's source code.

(l/defne init-sudoku-board [vars puzzle]
 ([[] []])
 ([[_ . vs] [0 . ps]] (init-sudoku-board vs ps))
 ([[n . vs] [n . ps]] (init-sudoku-board vs ps)))

(defn solve-sudoku [puzzle]
 (let [board (repeatedly 81 l/lvar)
 rows (into [] (map vec (partition 9 board)))
 cols (apply map vector rows)
 val-range (range 1 10)
 in-range (fn [x]
 (fd/in x (apply fd/domain val-range)))
 get-square (fn [x y]
 (for [x (range x (+ x 3))
 y (range y (+ y 3))]
 (get-in rows [x y])))
 squares (for [x (range 0 9 3)
 y (range 0 9 3)]
 (get-square x y))]
 (l/run* [q]
 (l/== q board)
 (l/everyg in-range board)
 (init-sudoku-board board puzzle)
 (l/everyg fd/distinct rows)
 (l/everyg fd/distinct cols)
 (l/everyg fd/distinct squares))))

Example 7.4: A Sudoku solver

In Example 7.4, the init-sudoku-board relation initializes the logical variables vars
from the puzzle puzzle, and the solve-sudoku function finds all possible solutions
of the given puzzle. The solve-sudoku function creates the logical variables through
a composition of the repeatedly and clojure.core.logic/lvar forms. These
variables are then partitioned into rows, columns, and squares, represented by the
variables rows, cols, and squares respectively. The solve-sudoku function then
initializes the logical variables using the init-sudoku-board form, and uses a
composition of the everyg and distinct forms to ensure that the rows, columns,
and squares of a solution contain distinct values. All the logical variables are also
bound to the range 1 through 9 using the internally defined in-range function.

Programming with Logic

[158]

The solve-sudoku function defined in Example 7.4 takes a vector of values
representing the initial state of a Sudoku board as an argument and returns a list of
solutions in which each solution is a vector. As a plain vector isn't really an intuitive
representation of a Sudoku board, let's define a simple function to find all solutions of
a given puzzle and print the solutions, as shown in Example 7.5:

(defn solve-and-print-sudoku [puzzle]
 (let [solutions (solve-sudoku puzzle)]
 (dorun (for [i (-> solutions count range)
 :let [s (nth solutions i)]]
 (do
 (println (str "\nSolution " (inc i) ":"))
 (clojure.pprint/pprint
 (partition 9 s)))))))

Example 7.5: A Sudoku solver (continued)

The solve-and-print-sudoku function in Example 7.5 calls the solve-sudoku
function to determine all possible solutions to a given Sudoku puzzle and prints
the results using the partition and clojure.pprint/pprint functions. Now,
let's define a simple Sudoku puzzle to solve, as shown in Example 7.6.

(def puzzle-1
 [0 9 0 0 0 0 0 5 0
 6 0 0 0 5 0 0 0 2
 1 0 0 8 0 4 0 0 6
 0 7 0 0 8 0 0 3 0
 8 0 3 0 0 0 2 0 9
 0 5 0 0 3 0 0 7 0
 7 0 0 3 0 2 0 0 5
 3 0 0 0 6 0 0 0 7
 0 1 0 0 0 0 0 4 0])

Example 7.6: A Sudoku solver (continued)

Now, let's pass the vector puzzle-1 to the solve-and-print-sudoku function to
print all possible solutions to it, as shown here:

user> (solve-and-print-sudoku puzzle-1)

Solution 1:
((4 9 8 6 2 3 7 5 1)
 (6 3 7 9 5 1 4 8 2)
 (1 2 5 8 7 4 3 9 6)
 (9 7 1 2 8 6 5 3 4)
 (8 4 3 5 1 7 2 6 9)
 (2 5 6 4 3 9 1 7 8)
 (7 6 9 3 4 2 8 1 5)
 (3 8 4 1 6 5 9 2 7)
 (5 1 2 7 9 8 6 4 3))
nil

Chapter 7

[159]

The solve-sudoku function finds a single solution to the Sudoku puzzle represented
by the vector puzzle-1 as shown previously. The puzzle represented by puzzle-1
and its solution are shown on a Sudoku board in the following illustration:

It is very likely that a Sudoku puzzle has multiple solutions. For example, the
Sudoku puzzle represented by puzzle-2 in Example 7.7 has eight distinct solutions.
You're more than welcome to find the solutions to this puzzle using the solve-and-
print-sudoku function:

(def puzzle-2
 [0 8 0 0 0 9 7 4 3
 0 5 0 0 0 8 0 1 0
 0 1 0 0 0 0 0 0 0
 8 0 0 0 0 5 0 0 0
 0 0 0 8 0 4 0 0 0
 0 0 0 3 0 0 0 0 6
 0 0 0 0 0 0 0 7 0
 0 3 0 5 0 0 0 8 0
 9 7 2 4 0 0 0 5 0])

Example 7.7: A Sudoku solver (continued)

In conclusion, we can implement the rules of a Sudoku puzzle as logical relations
using the core.logic library.

Programming with Logic

[160]

Summary
In this chapter, we looked at how Clojure can be used for logic programming.
We introduced the core.logic library by exploring the various constructs
provided by this library. We also studied how we can implement solutions
to the n-queens problem and a Sudoku puzzle using the core.logic library.

In the following chapter, we will get back on our journey through functional
programming and talk about handling asynchronous tasks in Clojure.

[161]

Leveraging Asynchronous
Tasks

The term asynchronous programming refers to defining tasks that are executed
asynchronously on different threads of execution. While this is similar to
multithreading, there are a few subtle differences. Firstly, a thread or a future will
remain allocated to a single operating system thread until completion. This leads to
the fact that is there can only be a limited number of futures that can be executed
concurrently, depending on the number of processing cores available. On the other
hand, asynchronous tasks are scheduled for execution on threads from a thread
pool. This way, a program can have thousands, or even millions of asynchronous
tasks running concurrently. An asynchronous task can be suspended at any time,
or parked, and the underlying thread of execution can be reallocated to another task.
Asynchronous programming constructs also allow the definition of an asynchronous
task to look like a sequence of synchronous calls, but each call could potentially be
executed asynchronously.

In this chapter, we will explore various libraries and constructs that can be used
for asynchronous programming in Clojure. First off, we will take a look at processes
and channels in the core.async library for asynchronous programming. Later, we
will explore actors from the Pulsar library. Processes and channels are constructs
similar to go-routines in the Go programming language. On the other hand,
actors were first popularized in the Erlang programming language. All of these
techniques are different ways of structuring code that executes asynchronously.
We must understand that the theory behind these concepts isn't really novel, and
more implementations of these theories have been springing up since the rise of
distributed and multi-core architectures. With that in mind, let's start off on our
journey into asynchronous programming.

Leveraging Asynchronous Tasks

[162]

Using channels
The core.async library (https://github.com/clojure/core.async) facilitates
asynchronous programming in Clojure. Through this library, we can use
asynchronous constructs that run on both the JVM and web browsers without
dealing with how they are scheduled for execution on low-level threads. This
library is an implementation of the theory in the paper Communicating Sequential
Processes (CSPs), originally published in the late '70s by C. A. R. Hoare. The bottom
line of CSPs is that any system that processes some input and provides an output can
be comprised of smaller subsystems, and each subsystem can be defined in terms
of processes and queues. A queue simply buffers data, and a process can read from
and write to several queues. Here, we shouldn't confuse the term process with an
operating system process. In the context of CSPs, a process is simply a sequence of
instructions that interacts with some data stored in queues. Several processes may
exist in a given system and queues are a means of conveying data between them.
A process that takes data from a single queue and outputs data to another queue
can be illustrated as follows:

As shown in the preceding diagram, input data goes into a queue, a process
manipulates this data through the queue, and finally, writes the output data to
another queue. The core.async library essentially provides first-class support for
creating processes and queues. Queues are dubbed as channels in the core.async
library, and can be created using the chan function. Processes can be created using
go and thread macros. Let's dive a bit deeper into the details.

The following library dependencies are required for the upcoming
examples:

[org.clojure/core.async " 0.1.346.0-17112a-alpha"]

Also, the following namespaces must be included in your namespace
declaration:

(ns my-namespace
 (:require [clojure.core.async :as a]))

https://github.com/clojure/core.async

Chapter 8

[163]

Processes, created using the thread and go forms, are scheduled for execution on
thread pools. In fact, we can create several thousands of these processes in a program
as they do not require their own dedicated thread. On the other hand, creating a
large number of threads or futures would result in the excessive jobs being queued
for execution. This imposes a practical limit on the number of threads or futures we
can run concurrently. Hence, the core.async library, and CSPs in general, allows us
to model a system as a large number of lightweight and concurrent processes.

Channels can be thought of as data structures for managing the state between
processes. The chan function from the core.async namespace returns a channel
that can be read from and written to by several concurrent processes. Channels are
unbuffered by default, which means a write operation to a channel will not complete
until a read operation is invoked on it concurrently and vice versa. We can also
create a buffered channel by specifying a number to the chan function to indicate the
buffer size. A buffered channel will allow a certain number of values to be written
to it without blocking, and the buffered values can then be read. A channel can be
closed using the close! function from the core.async namespace.

We can also create a buffered channel by passing a buffer object to the chan function.
A buffer object can be created using the buffer, dropping-buffer, or sliding-
buffer functions, and these functions require a number, indicating the size of the
buffer, as an argument. Either of the expressions (a/chan (a/buffer n)) or (a/
chan n) can be used to create a channel that can buffer n values, and the channel
will block write operations to it once it is filled with n values. The dropping-buffer
function creates a buffer that drops newly added values once it's full. Conversely, a
buffer created using the sliding-buffer function will drop the oldest values added
to it once it is completely filled.

The core.async library provides a handful of constructs for reading from and writing
to channels, and the values passed to and returned by these constructs conform to a
few simple rules. A read operation on a channel returns a value from the channel, or
nil if the channel is closed. A write operation will return true if it succeeds, or false
if the channel is closed and the write operation couldn't be completed. We can read the
buffered data from a closed channel, but once the channel is exhausted of data, a read
operation on it will return nil. The arguments to the read and write operations for
channels conform to the following pattern:

1. The first argument to any operation is a channel.
2. A write operation must be passed a value to put onto a channel in addition

to the channel itself.

Leveraging Asynchronous Tasks

[164]

At this point, we should note that in the context of channels, the terms "write" and
"put" can be used interchangeably, and similarly, the terms "read" and "take" refer
to the same operation. The take! and put! functions take data and put data onto
a queue. Both these functions return immediately, and can be passed a callback
function as an argument in addition to the usual parameters. Similarly, the <!!
and >!! functions can be used to read from and write to a channel, respectively.
However, the <!! operation can block the calling thread if there is no data in the
supplied channel and the >!! operation will be blocked if there is no more buffer
space available in a given channel. These two operations are meant to be used within
a thread form. Finally, the parking read and write functions, namely <! and >!, can
be used within a go form to interact with a channel. Both the <! and >! operations
will park the state of the task and release the underlying thread of execution if an
operation cannot be completed immediately.

Let's move on to the details of creating processes using the core.async library.
The core.async/thread macro is used to create a single-threaded process. It is
similar to the future form in the sense that the body of a thread form is executed
on a new thread and a call to a thread form returns immediately. A thread form
returns a channel from which the output of its body can be read. This makes the
thread form a bit more convenient than the standard future form for interacting
with channels, and is thus preferred over a future form. The <!! and >!! functions
can be used within a thread form to interact with a channel.

To create an asynchronous process that can be parked and scheduled for execution,
we must use the go macro from the core.async namespace. Similar to the thread
form, it returns a channel from which the output of its body can be read. All
channel operations within the body of the go form will park, rather than blocking
the underlying thread of execution. This implies that the executing thread will
not be blocked and can be reallocated to another asynchronous process. Thus, the
execution of a number of go forms can be interleaved over a much lesser number of
actual threads. We must ensure that no thread-specific operations, such as Thread/
sleep, are made within a go form, as such operations affect the underlying thread
of execution. Within a go form, we must always use the <! and >! parking forms to
read from and write to a channel.

Visit https://clojure.github.io/core.async/ for the
complete documentation on all the functions and macros in the
core.async library.

https://clojure.github.io/core.async/

Chapter 8

[165]

The go-loop macro is an asynchronous version of the loop form, and accepts a
vector of bindings as its first argument, followed by any number of forms that must
be executed. The body of a go-loop form will be internally executed within a go
form. The go-loop construct is often used to create asynchronous event loops that
have their own localized state. As an example, let's consider the simple wait-and-
print function that sets off a process that reads from a given channel, as shown in
Example 8.1.

The following examples can be found in src/m_clj/c8/async.clj
of the book's source code.

(defn wait-and-print [c]
 (a/go-loop [n 1]
 (let [v (a/<! c)]
 (when v
 (println (str "Got a message: " v))
 (println (str "Got " n " messages so far!"))
 (recur (inc n)))))
 (println "Waiting..."))

Example 8.1: A function that asynchronously reads from a channel

The wait-and-print function shown previously will repeatedly read from the
channel c passed to it. The when form is used to check if the value read from channel,
represented by v, is not nil, since nil could be returned from the <! form if the
channel c is closed. The go-loop form in the previous example also counts the
number of values read from the channel using the variable n. On receiving a value
from the channel, some information is printed and the body is looped over using a
recur form. We can create a channel, pass it to the wait-and-print function and
observe the output of sending values to the channel, as shown here:

user> (def c (a/chan))
#'user/c
user> (wait-and-print c)
Waiting...
nil
user> (a/>!! c :foo)
true
Got a message: :foo
Got 1 messages so far!
user> (a/>!! c :bar)
true
Got a message: :bar
Got 2 messages so far!

Leveraging Asynchronous Tasks

[166]

As shown previously, a call to the wait-and-print function starts an asynchronous
event loop that reads from the channel c. On sending a value to the channel c using
a >!! form, the value gets printed along with a total count of values sent to the
channel. Also, calls to the >!! form return the value true immediately. Now, let's
see what happens when we close the channel c using the close! function, shown
as follows:

user> (a/close! c)
nil
user> (a/>!! c :foo)
false

After closing the channel c, the >!! form returns false when it is applied to the
channel, which implies that the channel c doesn't allow any more values to be put
into it. Also, nothing gets printed, which means that the asynchronous routine that
was trying to take values from the channel c has terminated.

Another way to send values into a channel is by using the onto-chan function from
the core.async namespace. This function must be passed a channel and a collection
of values to put onto the channel, as shown here:

user> (def c (a/chan 4))
#'user/c
user> (a/onto-chan c (range 4))
#<ManyToManyChannel@0x86f03a>
user> (repeatedly 4 #(-> c a/<!!))
(0 1 2 3)

The onto-chan function will close the channel it has been passed once the supplied
collection of values is entirely put onto the channel. To avoid closing the channel,
we can specify false as an additional argument to the onto-chan function.

The alts! and alts!! functions from the core.async namespace can be used
to wait for completion of one of several channel operations. The main distinction
between these functions is that the alts! function is intended for use within a go
form and will park the current thread, unlike the alts!! function that blocks the
current thread and must be used in a thread form. Both these functions must be
passed a vector of channels and return a vector of two elements. The first element in
the returned vector represents the value for a take operation or a Boolean value for
a put operation, and the second one indicates the channel on which the operation
completed. We can also specify a default value as a keyword argument with the key
:default to the alts! and alts!! functions. The default value will be returned if
none of the operations supplied to the alts! or alts!! forms have completed.

Chapter 8

[167]

The core.async library provides two versatile macros, namely alt! and alt!!, to
wait for one among several channel operations to be complete. As you may have
already guessed, an alt! form parks the current task, and an alt!! form blocks the
current thread. Both these forms can also return a default value when used with the
:default keyword argument. We can pass several clauses to the alt! and alt!!
forms for reading from and writing to several channels. The alt! form in Example 8.2
describes the clauses supported by the alt! and alt!! macros:

(defn process-channels [c0 c1 c2 c3 c4 c5]
 (a/go
 (a/alt!
 ;; read from c0, c1, c2, c3
 c0 :r
 c1 ([v] (str v))
 [c2 c3] ([v c] (str v))
 ;; write to c4, c5
 [[c4 :v1] [c5 :v2]] :w)))

Example 8.2: An asynchronous process implemented using the alt! form

The preceding process-channels function takes six channels as its arguments, and
uses an alt! form within a go form to perform asynchronous operations on these
channels. The channels c0, c1, c2, and c3 are read, and the channels c4 and c5 are
written to. The alt! form tries to read from the channel c0 and returns the keyword
:r if the operation completes first. The channel c1 is also read from, but the right
hand side of its clause contains a parameterized expression with the argument v,
where v is the value read from the channel. The channels c2 and c3 are passed as a
vector in one of the clauses of the alt! form shown previously, and this clause uses
a parameterized expression with the arguments v and c, where c is the channel on
which the read operation completed first and v is the value read from the channel.
Write operations are specified in an alt! form as a nested vector, where each inner
vector contains a channel and a value to put onto the channel. The channels c4 and
c5 are written to in the previous alt! form, and the value :w is returned if either of
the two write operations completes. In this way, we can specify clauses to the alt!
and alt!! forms to read to and write from several channels, and return a value
based on which channel operation completes first.

Another facility that is often required in asynchronous programming is the ability
to specify a timeout with a given operation. By the term timeout, we mean a specified
amount of time after which the current operation is aborted. The core.async has
an intuitive method for specifying operations with timeouts. This is done using
the core.async/timeout function, which must be supplied a time interval in
milliseconds and returns a channel that closes after the specified amount of time.
If we intend to perform an operation with a timeout, we use one of the alt* forms
with a channel returned by the timeout function.

Leveraging Asynchronous Tasks

[168]

This way, an operation with a channel returned by a timeout form will surely
complete after the specified amount of time. The timeout form is also useful in
parking or blocking the current thread of execution for a given amount of time.
For example, a blocking read operation from a channel returned by a timeout
form will block the current thread for the specified time interval, as shown here:

user> (time (a/<!! (a/timeout 1000)))
"Elapsed time: 1029.502223 msecs"
nil

We have now covered the basics of processes and channels in the core.async library.

Customizing channels
Channels can also be programmed to modify or compute values from those put into
them. A read operation, for instance, on a channel could invoke a computation using
the values buffered in the same channel, or even other channels. The reduce function
from the core.async namespace can be used to compute values from channels and
has more-or-less the same semantics as that of the standard reduce function. This
variant of the reduce function requires a reducing operation, an initial value for the
reduction operation and a channel to be passed to it, and it will return a channel from
which the result can be read. Also, this function only produces values once the channel
passed to it is closed. For example, consider the following code that computes a string
from the values in a channel using the core.async/reduce function:

user> (def c (a/chan 5))
#'user/c
user> (a/onto-chan c (range 5))
#<ManyToManyChannel@0x4adadd>
user> (def rc (a/reduce #(str %1 %2 " ") "" c))
#'user/rc
user> (a/<!! rc)
"0 1 2 3 4 "

In the preceding example, the sequence generated by the expression (range 5) is
put onto the channel c using an onto-chan form, and values from the channel are
computed over using the channel-based variant of the reduce function. A single
value is read from the resulting channel rc, thus producing a string containing all
the values from the channel c. Note that the reduce form in this example produced
a result without explicitly calling the close! function, as the onto-chan function
closes the supplied channel after it completes putting values onto it.

Chapter 8

[169]

A more powerful and intuitive way to compute values from a channel is by using
a transducer. We have already discussed transducers in some detail in Chapter 5,
Composing Transducers, and we will now have a look at how transducers can be
used with channels. Essentially, a channel can be associated with a transducer by
specifying the transducer as a second argument to the core.async/chan function.
Let's consider the simple transducer xform shown in Example 8.3.

(def xform
 (comp
 (map inc)
 (map #(* % 2))))

Example 8.3: A simple transducer to use with a channel

The transducer xform shown is a trivial composition of mapping the functions inc
and #(* % 2). It will simply increment all values in a source of data, or rather a
channel, and then double all of the results from the previous step. Let's create a
channel using this transducer and observe its behavior, as shown here:

user> (def xc (a/chan 10 xform))
#'user/xc
user> (a/onto-chan xc (range 10) false)
#<ManyToManyChannel@0x17d6a37>
user> (repeatedly 10 #(-> xc a/<!!))
(2 4 6 8 10 12 14 16 18 20)

The channel xc will apply the transducer xform to each value contained in it. The
result of repeatedly taking values from the channel xc is thus a sequence of even
numbers, which is produced by applying the functions inc and #(* % 2) to each
number in the range (range 10). Note that the onto-chan form in the previous
example does not close the channel xc as we pass false as its last argument.

A transducer associated with a channel could encounter an exception. To handle
errors, we can pass a function as an additional argument to the chan form. This
function must take exactly one argument, and will be passed any exception that is
encountered by a transducer while transforming the values in a channel. For example,
the expression (a/chan 10 xform ex-handler) creates a channel with a transducer
xform and an exception handler ex-handler.

In this way, the core.async/reduce form and transducers can be used to perform
computations on the values contained in channels.

Leveraging Asynchronous Tasks

[170]

Connecting channels
Now that we are familiar with the basics of channels and processes in the core.
async library, let's explore the different ways in which channels can be connected
together. Connecting two or more channels is useful for aggregating and distributing
data among them. A connection between two or more channels is called a joint fitting,
or simply a joint. We will use diagrams to describe some of the more complex joint
fittings in this section. Keep in mind that the arrows in these diagrams indicate the
direction of the flow of data in a given channel.

The simplest way to connect two channels is by using a pipe, which is implemented
by the core.async/pipe function. This function will take values from the first
channel provided to it, and supplies these values to the second channel passed to it.
In this way, a pipe between channels is similar to UNIX-style pipes between streams.
For example, the expression (a/pipe from to) will take values from the channel
from and put them onto the channel to. The pipe function also takes an optional
third argument, which indicates whether the destination channel will be closed when
the source channel closes, and this argument defaults to true. We can also connect
two channels using a pipeline, using the pipeline function from the core.async
namespace. The pipeline function will essentially apply a transducer to the values
in a channel before they are put into another channel. The supplied transducer will
also be invoked in parallel for each element in the supplied channel by the pipeline
function.

The merge function from the core.async namespace can be used to combine several
channels. This function must be passed a vector of channels, and returns a channel
from which the values from all of the supplied channels can be read. The returned
channel is unbuffered by default, and we specify the size of the channel's buffer by
passing a number as an additional argument to the merge function. Also, the channel
returned by a merge form will be closed once all the source channels have been closed.
The operation of the merge function with two channels can be illustrated as follows:

A channel can be split into two channels using the core.async/split function.
The split function must be passed a predicate p? and a channel c, and returns
a vector of two channels. The predicate p? is used to decide the channel on which
a value from the channel c must be put. All values from the channel c that return
a truthy value when passed to the predicate p? will be put onto the first channel in
the vector returned by the split function.

Chapter 8

[171]

Conversely, the second channel in the returned vector will contain all values that
return false or nil when p? is applied to these values. Both the channels returned
by this function will be unbuffered by default, and the buffer size of both these
channels can be specified as additional arguments to a split form. The split
function can be depicted by the following illustration:

A more dynamic way to combine several channels, compared to the merge function,
is by using the mix, admix, and unmix functions from the core.async namespace.
The mix function creates a mix, to which channels with incoming data can be
connected to using the admix function. The mix function takes a channel as an
argument, and the supplied channel will contain values from all the source channels
added by the admix function. A source channel can be removed from a mixer by
using the unmix function. The admix and unmix functions both accept a mix, which
is returned by the mix function, and a source channel as arguments. To remove
all channels from a mix, we simply pass the mix as an argument to the unmix-all
function. The gist of a mix is that it allows us to dynamically add and remove source
channels that send data to a given output channel. A mix, its output channel, and
source channels can be illustrated as follows:

In the preceding illustration, the channel c is used as the output channel of the mix
m, and the channels c0 and c1 are added as source channels to the mix m using the
admix function.

Leveraging Asynchronous Tasks

[172]

The core.async/mult function creates a multiple of a given channel. The data from a
multiple can be tapped into from another channel using the tap function. The channel
supplied to the tap function will receive copies of all data sent to the source channel
of a multiple. The untap function is used to disconnect a channel from a multiple,
and the untap-all function will disconnect all channels from a multiple. A multiple
essentially allows us to dynamically add and remove output channels that read
values from a given source channel. The mult and tap functions can be described by
the following diagram:

In the preceding illustration, the channel c is used as the source channel by the
multiple m, and the channels c0 and c1 are passed to the tap function so that they
effectively receive copies of the data sent to the channel c.

The core.async library also supports a publish-subscribe model of transferring data.
This can be done using a publication, which is created using the core.async/pub
function. This function must be supplied a source channel and a function to decide
the topic of a given value in the publication. Here, a topic can be any literal value,
such as a string or a keyword, which is returned by the function supplied to the pub
form. Channels can subscribe to a publication and a topic via the sub function, and
a channel can unsubscribe from a publication using the unsub function. The sub and
unsub functions must be passed a publication, a topic value and a channel. Also, the
unsub-all function can be used to disconnect all channels that have subscribed to a
publication. This function can optionally be passed a topic value, and will disconnect
all channels that have subscribed to the given topic. A publication with two channels
subscribed to it is depicted in following diagram:

Chapter 8

[173]

In the preceding illustration, the publication p is created using the channel c and
the function topic-fn. The channel c0 subscribes to the publication p and the
topic :a, while the channel c1 subscribes to the same publication but for the topic
:b. When a value is received on the channel c, it will either be sent to the channel
c0 if the function topic-fn returns :a for the given value, or to channel c1 if the
function topic-fn returns :b for the given value. Note that the values :a and :b in
the preceding diagram are just arbitrary literals, and we could have used any other
literal values just as easily.

In summary, the core.async library provides several constructs to create joints
between channels. These constructs help in modelling different ways in which data
flows from any number of source channels into any number of output channels.

Revisiting the dining philosophers problem
Now, let's try to implement a solution to the dining philosophers problem using
the core.async library. We have already implemented two solutions to the dining
philosophers problem in Chapter 2, Orchestrating Concurrency and Parallelism of which
one solution used refs and the other one used agents. In this section, we will use
channels to implement a solution to the dining philosophers problem.

The dining philosophers problem can be concisely described as follows. Five
philosophers are seated on a table with five forks placed between them. Each
philosopher requires two forks to eat. The philosophers must somehow share access
to the forks placed in between them to consume the food allocated to them, and none
of the philosophers must starve due to being unable to acquire two forks. In this
implementation, we will use channels to maintain the state of the forks as well as the
philosophers on the table.

Leveraging Asynchronous Tasks

[174]

The following namespaces must be included in your namespace
declaration for the upcoming examples:

(ns my-namespace

 (:require [clojure.core.async :as a]

 [m-clj.c2.refs :as c2]))

The following examples can be found in src/m_clj/c8/ dining_
philosophers_async.clj of the book's source code. Some of
these examples are based on code from A Dining Philosophers solver by
Pepijn de Vos (http://pepijndevos.nl/2013/07/11/dining-
philosophers-in-coreasync.html).

Let's first define a couple of functions to initialize all the philosophers and forks we
are dealing with, as shown in Example 8.4:

(defn make-philosopher [name forks food]
 {:name name
 :forks forks
 :food food})

(defn make-forks [nf]
 (let [forks (repeatedly nf #(a/chan 1))]
 (doseq [f forks]
 (a/>!! f :fork))
 forks))

Example 8.4: The dining philosophers problem

The make-philosopher function defined in Example 8.4 creates a map representing
the state of a philosopher. The argument name will be a string, the argument forks
will be a vector of two fork channels, and the argument food will be a number
indicating the amount of food served to a philosopher. The two forks represent the
forks on the left- and right-hand side of a philosopher. These forks will be allocated
and passed to the make-philosopher function by the init-philosophers function
that we previously defined in Chapter 2, Orchestrating Concurrency and Parallelism.
The make-forks function shown previously creates a specified number of channels,
puts the value :fork onto each of them, and finally returns the new channels.

http://pepijndevos.nl/2013/07/11/dining-philosophers-in-coreasync.html
http://pepijndevos.nl/2013/07/11/dining-philosophers-in-coreasync.html

Chapter 8

[175]

Next, let's define the routine of a philosopher as a process. A philosopher must try
to acquire the forks on his left and right side, eat his food if he acquires both forks,
and finally release any forks that he successfully acquired. Also, since the state of
all the philosophers in our simulation is captured in a channel, we will have to take
a philosopher out of a channel, perform the routine of a philosopher, and then put
the philosopher's state back onto the channel. This routine is implemented by the
philosopher-process function in Example 8.5:

(defn philosopher-process [p-chan max-eat-ms max-think-ms]
 (a/go-loop []
 (let [p (a/<! p-chan)
 food (:food p)
 fork-1 ((:forks p) 0)
 fork-2 ((:forks p) 1)
 ;; take forks
 fork-1-result (a/alt!
 (a/timeout 100) :timeout
 fork-1 :fork-1)
 fork-2-result (a/alt!
 (a/timeout 100) :timeout
 fork-2 :fork-2)]
 (if (and (= fork-1-result :fork-1)
 (= fork-2-result :fork-2))
 (do
 ;; eat
 (a/<! (a/timeout (rand-int max-eat-ms)))
 ;; put down both acquired forks
 (a/>! fork-1 :fork)
 (a/>! fork-2 :fork)
 ;; think
 (a/<! (a/timeout (rand-int max-think-ms)))
 (a/>! p-chan (assoc p :food (dec food))))
 (do
 ;; put down any acquired forks
 (if (= fork-1-result :fork-1)
 (a/>! fork-1 :fork))
 (if (= fork-2-result :fork-2)
 (a/>! fork-2 :fork))
 (a/>! p-chan p)))
 ;; recur
 (when (pos? (dec food)) (recur)))))

Example 8.5: The dining philosophers problem (continued)

Leveraging Asynchronous Tasks

[176]

The preceding philosopher-process function starts an asynchronous process
using the go-loop macro. The arguments p-chan, max-eat-ms, and max-think-
ms represent the channel containing the state of all philosophers, the maximum
amount of time a philosopher can spend eating, and the maximum amount of
time a philosopher can think, respectively. The asynchronous task started by the
philosopher-process function will try to take values from the forks fork-1 and
fork-2 of a philosopher with a timeout of 100 milliseconds. This is done using a
combination of the alt! and timeout functions. If a philosopher is able to acquire
two forks, he will eat for some time, put down or release both forks, spend some
time thinking, and repeat the same process. If he is unable to get two forks, the
philosopher will release any acquired forks and restart the same process. The state
of the philosopher is always put back onto the channel p-chan. This asynchronous
process is repeated until a philosopher has any remaining food. Next, let's define a
couple of functions to start and print the philosophers in our simulation, as shown in
Example 8.6:

(defn start-philosophers [p-chan philosophers]
 (a/onto-chan p-chan philosophers false)
 (dorun (repeatedly (count philosophers)
 #(philosopher-process p-chan 100 100))))

(defn print-philosophers [p-chan n]
 (let [philosophers (repeatedly n #(a/<!! p-chan))]
 (doseq [p philosophers]
 (println (str (:name p) ":\t food=" (:food p)))
 (a/>!! p-chan p))))

Example 8.6: The dining philosophers problem (continued)

The preceding start-philosophers function will put a sequence of philosophers,
represented by the argument philosophers, onto the channel p-chan, and then
call the philosopher-process function for each philosopher in the sequence
philosophers. The print-philosophers function uses the blocking channel read
and write functions, namely <!! and >!!, to read n philosophers from the channel
p-chan and print the amount of food remaining on each philosopher's plate.

Finally, let's create some instances of philosophers and associated forks by
using the make-philosopher and make-forks functions. We will also use the
init-philosophers function from Chapter 2, Orchestrating Concurrency and
Parallelism, to create philosopher objects, using the make-philosopher function,
and assign two forks to each philosopher. These top-level definitions of the
philosophers and forks in our simulation are shown in Example 8.7.

Chapter 8

[177]

(def all-forks (make-forks 5))
(def all-philosophers
 (c2/init-philosophers 5 1000 all-forks make-philosopher))

(def philosopher-chan (a/chan 5))

Example 8.7: The dining philosophers problem (continued)

As shown here, we define five forks and philosophers, and create a channel to
represent the state of all philosophers we have created. Note that the channel we use
for the philosophers has a buffer size of 5. The simulation can be started by calling
the start-philosophers function, and the state of the philosophers can be printed
using the print-philosophers function, as shown here:

user> (start-philosophers philosopher-chan all-philosophers)
nil
user> (print-philosophers philosopher-chan 5)
Philosopher 3: food=937
Philosopher 2: food=938
Philosopher 1: food=938
Philosopher 5: food=938
Philosopher 4: food=937
nil
user> (print-philosophers philosopher-chan 5)
Philosopher 4: food=729
Philosopher 1: food=729
Philosopher 2: food=729
Philosopher 5: food=730
Philosopher 3: food=728
nil

As the preceding output shows us, the five philosophers share access to the forks
among themselves and consume their food at the same rate. All philosophers
get a chance to eat their food, and thus no one starves. Note that the order of the
philosophers printed by the print-philosophers function may differ from time to
time, and some philosophers may also be printed twice by this function.

In this way, we can solve a given problem using channels and processes from the
core.async library. Also, we can create any number of such processes without
bothering about the available number of operating system level threads.

Leveraging Asynchronous Tasks

[178]

Using actors
Actors are another way of modeling a system as a large number of concurrently
running processes. Each process in the actor model is termed as an actor, and this
model is based on the philosophy that every piece of logic in a system can be
represented as an actor. The theory behind actors was first published by Carl
Hewitt in the early '70s. Before we explore actors, we must note that the core Clojure
language and libraries do not provide an implementation of the actor model. In fact,
it is a widely accepted notion in the Clojure community that processes and channels
are a much better methodology to model concurrently running processes compared
to actors. That aside, actors can be used to provide more resilient error handling
and recovery, and it is possible to use actors in Clojure through the Pulsar library
(https://github.com/puniverse/pulsar).

To find out more about why processes and channels are preferred
over actors in Clojure, take a look at Clojure core.async Channels by Rich
Hickey (http://clojure.com/blog/2013/06/28/clojure-
core-async-channels).

The actor model describes actors as concurrent processes that perform some
computation on receiving messages. An actor can also send messages to other actors,
create more actors, and change its own behavior depending on the messages it
receives. Actors can also have their own internal state. In fact, actors were originally
described as independent processors with their own local memory that interact with
each other through a high-speed communication network. Every actor has its own
mailbox to receive messages, and messages are the only means of conveying data
between actors. The following diagram depicts an actor as an entity that receives
some input as messages and performs computations to produce some output:

https://github.com/puniverse/pulsar
http://clojure.com/blog/2013/06/28/clojure-core-async-channels
http://clojure.com/blog/2013/06/28/clojure-core-async-channels

Chapter 8

[179]

The Pulsar library provides a comprehensive implementation of the actor model.
In this library, actors are scheduled to execute on fibers, which are similar to
asynchronous tasks created using the go form from the core.async library. Fibers
are scheduled to run on fork-join thread pools, unlike regular thread pools that are
used in the core.async library. Due to this design, the Pulsar library is available
only on the JVM, and not in the browser through ClojureScript.

Fibers communicate with each other through the Pulsar library's own implementation
of promises and channels. Interestingly, the Pulsar library also has several thin wrappers
around its implementation of channels, to provide an API that is fully compatible
with that of the core.async library. Although we won't discuss fibers, promises, and
channels from the Pulsar library any further in this section, we must understand that
channels are quite relevant to actors, since an actor's mailbox is implemented using a
channel. Now, let's explore the basics of actors in the Pulsar library.

Creating actors
The spawn macro, from the co.paralleluniverse.pulsar.actors namespace,
creates a new actor and must be passed a function that takes no arguments. We
can specify the buffer size of an actor's mailbox using the :mailbox-size keyword
argument of the spawn macro. There are several other interesting keyword arguments
that can be passed to the spawn form, and you are encouraged to find out more about
them on your own.

The following library dependencies are required for the upcoming
examples:

[co.paralleluniverse/quasar-core "0.7.3"]

[co.paralleluniverse/pulsar "0.7.3"]

Your project.clj file must also contain the following entries:
:java-agents

[[co.paralleluniverse/quasar-core "0.7.3"]]

:jvm-opts

["-Dco.paralleluniverse.pulsar.instrument.auto=all"]

Also, the following namespaces must be included in your namespace
declaration:

(ns my-namespace

 (:require [co.paralleluniverse.pulsar.core :as pc]

 [co.paralleluniverse.pulsar.actors :as pa]))

Leveraging Asynchronous Tasks

[180]

The function supplied to the spawn macro must use the receive macro, from the
co.paralleluniverse.pulsar.actors namespace, to process messages received
by the actor. Within this supplied function, we can use the expression @self to refer
to the actor executing it. The receive form also supports pattern matching, which is
implemented through the core.match library. We can also call the receive macro
with no arguments, in which case it will return a message from the actor's mailbox.
The receive form will also park the fiber on which it is executed.

To send messages to actors, we can use either the ! or !! macros from the
co.paralleluniverse.pulsar.actors namespace. Both these macros must be
passed an actor and an expression that returns a value, and both of these forms
return nil. The only difference between these two forms is that ! is asynchronous,
while !! is synchronous and may block the current thread of execution if the
actor's mailbox is full. An actor may terminate on receiving a particular message,
and we can check whether an actor is still active using the done? function from the
co.paralleluniverse.pulsar.actors namespace. Once an actor terminates, we
can obtain the final value returned by the actor using the join function from the
co.paralleluniverse.pulsar.core namespace. For example, consider the actor
created using the spawn and receive forms in Example 8.8.

The following examples can be found in src/m_clj/c8/actors.
clj of the book's source code. Some of these examples are based
on code from the official Pulsar documentation (http://docs.
paralleluniverse.co/pulsar/).

(def actor (pa/spawn
 #(pa/receive
 :finish (println "Finished")
 m (do
 (println (str "Received: " m))
 (recur)))))

Example 8.8: An actor created using the spawn macro

The actor, represented by the preceding variable actor, will receive a message, print
it and loop using a recur form. If the message :finish is received, it will print a
string and terminate. The following code demonstrates how we can send a message
to the actor:

user> (pa/! actor :foo)
nil
Received: :foo
user> (pa/done? actor)
false

Chapter 8

[181]

As shown here, sending the value :foo to the actor returns nil immediately, and
the message gets printed from another thread. As the done? function returns false
when passed the variable actor, it is evident that the actor does not terminate on
receiving the value :foo as a message. On the other hand, if we send the value
:finish to the actor, it will terminate, as shown here:

user> (pa/! actor :finish)
nil
Finished
user> (pa/done? actor)
true

After being sent the value :finish, the done? function returns true when applied
to the actor, which implies that the actor has terminated. The value returned by
an actor before termination can be obtained using the join function from the
co.paralleluniverse.pulsar.core namespace. We must note that the join
function actually returns the result of any fiber, and will block the calling thread of
execution until the fiber completes or terminates. For example, consider the actor in
Example 8.9 that divides a number by another number:

(def divide-actor
 (pa/spawn
 #(loop [c 0]
 (pa/receive
 :result c
 [a b] (recur (/ a b))))))

Example 8.9: An actor that performs division of a number by another

We can send messages to the actor divide-actor defined in Example 8.9, and obtain
the final result from it using the join function, as shown here:

user> (pa/! divide-actor 30 10)
nil
user> (pa/! divide-actor :result)
nil
user> (pc/join divide-actor)
3

The preceding code shows that we can send two numbers to the actor divide-
actor, and send it the value :result to terminate it. After termination, we can
obtain the result of the actor, that is 3, by passing the actor to the join function.

Leveraging Asynchronous Tasks

[182]

Actors can be registered with meaningful names that can be used to locate them.
This is done using the register! function from the co.paralleluniverse.pulsar.
actors namespace, which must be passed an actor instance and a name to register
for the supplied actor. We can then send messages to a registered actor by specifying
the actor's name to either the ! or !! functions. For example, suppose the variable
actor represents an actor instance created using the spawn macro. After registering
the actor with the name :my-actor by calling (pa/register! actor :my-actor),
we can send the value :foo to the actor by calling (pa/! :my-actor :foo).

Passing messages between actors
Now, let's build a simple simulation of a ping pong game with two actors. These two
actors will send the messages :ping and :pong to each other for a specified number
of times. The code for this simulation is shown in Example 8.10 as follows:

(defn ping-fn [n pong]
 (if (= n 0)
 (do
 (pa/! pong :finished)
 (println "Ping finished"))
 (do
 (pa/! pong [:ping @pa/self])
 (pa/receive
 :pong (println "Ping received pong"))
 (recur (dec n) pong))))

(defn pong-fn []
 (pa/receive
 :finished (println "Pong finished")
 [:ping ping] (do
 (println "Pong received ping")
 (pa/! ping :pong)
 (recur))))

(defn start-ping-pong [n]
 (let [pong (pa/spawn pong-fn)
 ping (pa/spawn ping-fn n pong)]
 (pc/join pong)
 (pc/join ping)
 :finished))

Example 8.10: Two actors playing a game of ping-pong

Chapter 8

[183]

The ping-fn and pong-fn functions shown in Example 8.10 implement the logic of
two actors playing a game of ping pong. The ping-fn will essentially send a vector
containing the keyword :ping and the current actor instance to the actor represented
by the argument pong. This is done n times, and finally the message :finished is
sent to the actor pong. The function pong-fn will receive the vector [:ping ping],
where ping will be the actor sending the message. An actor created with the pong-
fn will terminate once it receives the message :finished. The start-ping-pong
function simply creates two actors using the functions ping-fn and pong-fn and
waits until they are both finished using the join function. We can call the start-
ping-pong function by passing in the number of times each of the two actors must
send messages to each other, as shown here:

user> (start-ping-pong 3)
Pong received ping
Ping received pong
Pong received ping
Ping received pong
Pong received ping
Ping received pong
Ping finished
Pong finished
:finished

The two actors created by the start-ping-pong function pass messages between
themselves to simulate a game of ping pong, as demonstrated by the preceding
output. In conclusion, actors from the Pulsar library can be used to implement
concurrently executing processes.

Handling errors with actors
Actors support some interesting methods for error handling. If an actor encounters
an error while processing a received message, it will terminate. The exception that
was raised within the fiber executing the actor will be saved and thrown again when
we pass the actor to the join function. In effect, we don't need to handle exceptions
within the function passed to the spawn macro, and instead we must catch exceptions
when the join function is called.

This brings us to an interesting consequence of actors. If an actor could encounter
an error and fail, we can have another actor that monitors the first actor, and restart
it in case of failure. Thus, an actor can be notified when another actor in the system
terminates. This principle allows actors to recover from errors in an automated
fashion. In the Pulsar library, this sort of error handling is done through the watch!
and link! functions from the co.paralleluniverse.pulsar.actors namespace.

Leveraging Asynchronous Tasks

[184]

An actor can watch or monitor another actor by calling the watch! function from
within its body. For example, we must call (watch! A) within the body of an
actor to watch the actor A. If the actor being watched encounters an exception, the
same exception will be thrown from the receive form of the monitoring actor. The
monitoring actor must catch the exception, or else it will be terminated along with
the actor from which the exception originated. Also, the monitoring actor could
restart the terminated actor by calling the spawn macro. To stop watching an actor,
we must pass the watched actor to the unwatch! function from within the body of
the monitoring actor.

Two actors could also be linked by passing them to the link! function. If two actors are
linked together, an exception encountered in either of the two actors will be caught by
the other one. In this way, linking two actors is a symmetrical way of monitoring them
for errors. The link! function can also be called within the function passed to a spawn
form, in which case it must be passed the actor to be linked. To unlink two actors, we
can use the unlink! function.

Thus, the Pulsar library provides some interesting ways to watch and link actors to
perform error handling and recovery.

Managing state with actors
As we mentioned earlier, actors can have their own internal mutable state. Of course,
accessing this state from other actors is not allowed, and immutable messages are the
only way an actor can communicate with other actors. Another way that an actor can
maintain or manage its state is by changing its behavior depending on the messages
it receives, and this technique is called a selective receive.

Every actor created using the spawn function can read its internal state using the
expression @state, and can also write to this state using the set-state! function.
The set-state! function will also return the new state of the actor, as returned
by the expression @state. Note that both of these forms are implemented in the
co.paralleluniverse.pulsar.actors namespace.

Consider the add-using-state function in Example 8.11 that uses an actor to add
two numbers. Of course, we would never really need such a function in the real
world, and it is only demonstrated here to depict how an actor can change its
internal state.

(defn add-using-state [a b]
 (let [actor (pa/spawn
 #(do
 (pa/set-state! 0)
 (pa/set-state! (+ @pa/state (pa/receive)))

Chapter 8

[185]

 (pa/set-state! (+ @pa/state (pa/receive)))))]
 (pa/! actor a)
 (pa/! actor b)
 (pc/join actor)))

Example 8.11: A function to add two numbers using an actor

The add-using-state function shown in Example 8.11 creates an actor that sets its
state to 0, and adds the first two messages it receives to its state. The actor will return
the latest state of the actor, as returned by the last call to set-state! in the function
passed to the spawn macro. On calling the add-using-state function with two
numbers, it produces their sum as its output, shown as follows:

user> (add-using-state 10 20)
30

Another way in which an actor can modify its state is through a selective receive, in
which the actor modifies its behavior on receiving a particular message. This is done
by calling a receive form within the body of another receive form, as shown in
Example 8.12:

(defn add-using-selective-receive [a b]
 (let [actor (pa/spawn
 #(do
 (pa/set-state! 0)
 (pa/receive
 m (pa/receive
 n (pa/set-state! (+ n m))))))]
 (pa/! actor a)
 (pa/! actor b)
 (pc/join actor)))

Example 8.12: A function to add two numbers using an actor with selective receive

The add-using-selective-receive function shown previously will set its state to
0, receive the messages m and n through a selective receive, and add these messages.
This function produces identical results as the add-using-state function from
Example 8.11, as shown here:

user> (add-using-selective-receive 10 20)
30

In this way, actors can change their internal state and behavior based on the
messages sent to them.

Leveraging Asynchronous Tasks

[186]

Comparing processes and actors
CSPs and actors are two distinct approaches to modeling a system as a large number
of concurrent processes that execute and interact asynchronously. The logic of an
asynchronous task can reside within a process created using a go block, or within the
function passed to the spawn macro that creates an actor. However, there are some
subtle contrasts between these two approaches:

• Processes created using the go and thread forms encourage us to put all
states onto channels. Actors, on the other hand, can have their own internal
state, in addition to the state in the form of messages sent to them. Thus,
actors are more like objects with encapsulated state, while processes are more
like functions that operate on states stored in channels.

• Tasks created using the go or thread macros have no implicit error handling,
and we must handle exceptions using the try and catch forms in the body
of the go and thread macros. Of course, channels do support error handlers,
but only when combined with a transducer. Actors, however, will save any
exception they run into until we apply the join function on the actor. Also,
actors can be linked and monitored to provide a form of automated error
recovery. In this way, actors are more focused on building fault-tolerant
systems.

These distinguishing factors between CSPs and the actor model give us an idea
about which approach is more suitable for implementing asynchronous tasks in
a given problem.

Summary
In this chapter, we looked at how we can create concurrent and asynchronous tasks
using the core.async and Pulsar libraries. The core.async library provides an
implementation of CSPs, and is supported in both Clojure and ClojureScript. We
studied the various constructs in the core.async library and also demonstrated how
a solution to the dining philosophers problem can be implemented using this library.
Later on, we explored actors through the Pulsar library.

We will explore reactive programming in the following chapter. As we will see
ahead, reactive programming can be thought of as an extension of asynchronous
programming for handling data and events.

[187]

Reactive Programming
One of the many interesting applications of programming with asynchronous tasks is
reactive programming. This methodology of programming is all about asynchronously
reacting to changes in state. In reactive programming, code is structured in such a
way that it reacts to changes. Generally, this is implemented using asynchronous
data streams, in which data and events are propagated asynchronously through a
program. In fact, there are quite a few interesting variants of reactive programming.

Reactive programming is particularly useful in designing graphical user interfaces
in frontend development, where changes in the internal state of an application must
asynchronously trickle down to the user interface. A program is thus segregated
into events and logic that is executed on those events. For programmers used to
imperative and object-oriented programming techniques, the hardest part of reactive
programming is thinking in reactive abstractions and letting go of old habits like
using the mutable state. However, if you've been paying attention so far and have
started thinking with immutability and functions, you'll find reactive programming
quite natural. In the JavaScript world, reactive programming with observables can be
thought of as a contrasting alternative to using promises to manage asynchronous
events and actions.

In this chapter, we will explore a few interesting forms of reactive programming
through Clojure and ClojureScript libraries. Later on, we will also demonstrate how
we can build dynamic user interfaces using reactive programming.

Reactive Programming

[188]

Reactive programming with fibers
and dataflow variables
Dataflow programming is one of the simplest forms of reactive programming. In
dataflow programming, computations are described by composing variables without
bothering about when these variables are set to a value. Such variables are also called
dataflow variables, and they will trigger computations that refer to them once they
are set. The Pulsar library (https://github.com/puniverse/pulsar) provides a few
useful constructs for dataflow programming. These constructs can also be used with
Pulsar fibers, which we briefly talked about in Chapter 8, Leveraging Asynchronous Tasks.
In this section, we will explore the basics of fibers and dataflow variables from the
Pulsar library.

The following library dependencies are required for the upcoming
examples:

[co.paralleluniverse/quasar-core "0.7.3"]
[co.paralleluniverse/pulsar "0.7.3"]

Your project.clj file must also contain the following entries:

:java-agents
[[co.paralleluniverse/quasar-core "0.7.3"]]
:jvm-opts
["-Dco.paralleluniverse.pulsar.instrument.auto=all"]

Also, the following namespaces must be included in your namespace
declaration:

(ns my-namespace
 (:require [co.paralleluniverse.pulsar.core :as pc]
 [co.paralleluniverse.pulsar.dataflow
 :as pd]))

The elementary abstraction of an asynchronous task in the Pulsar library is a fiber.
Fibers are scheduled for execution on fork-join based thread pools, and we can create
a large number of fibers without bothering about the number of available processing
cores. Fibers can be created using the spawn-fiber and fiber macros from the
co.paralleluniverse.pulsar.core namespace. The spawn-fiber macro must
be passed a function that takes no arguments, and the fiber form must be passed a
body of expressions. The body of both these forms will be executed on a new fiber.
The join function from the co.paralleluniverse.pulsar.core namespace can be
used to retrieve the value returned by a fiber.

https://github.com/puniverse/pulsar

Chapter 9

[189]

An important rule we must keep in mind while dealing with fibers is that we
must never call methods or functions that manipulate the current thread of
execution from within a fiber. Instead, we must use fiber-specific functions from
the co.paralleluniverse.pulsar.core namespace to perform these operations.
For example, calling the java.lang.Thread/sleep method in a fiber must be
avoided. Instead, the sleep function from the co.paralleluniverse.pulsar.
core namespace can be used to suspend the current fiber for a given number of
milliseconds.

The following examples can be found in src/m_clj/c9/fibers.
clj of the book's source code. Some of these examples are based
on code from the official Pulsar documentation (http://docs.
paralleluniverse.co/pulsar/).

For example, we can add two numbers using a fiber as shown in Example 9.1. Of
course, using a fiber for such a trivial operation has no practical use, and it is only
shown here to demonstrate how we can create a fiber and obtain its return value:

(defn add-with-fiber [a b]
 (let [f (pc/spawn-fiber
 (fn []
 (pc/sleep 100)
 (+ a b)))]
 (pc/join f)))

Example 9.1: Adding two numbers with a fiber

The preceding add-with-fiber function creates a fiber f using the spawn-fiber
macro and fetches the return value of the fiber using the join function. The fiber f
will suspend itself for 100 milliseconds using the sleep function and then return the
sum of a and b.

Let's talk a bit about dataflow variables. We can create dataflow variables using the
df-val and df-var functions from the co.paralleluniverse.pulsar.dataflow
namespace. A dataflow variable created using these functions can be set by calling
it like a function and passing it a value. Also, the value of a dataflow variable can
be obtained by dereferencing it using the @ operator or the deref form. A dataflow
variable declared using the df-val function can only be set once, whereas one
created using the df-var function can be set several times.

http://docs.paralleluniverse.co/pulsar/
http://docs.paralleluniverse.co/pulsar/

Reactive Programming

[190]

The df-var function can also be passed a function that takes no arguments and
refers to other dataflow variables in the current scope. This way, the value of such
a dataflow variable will be recomputed when the values of referenced variables
are changed. For example, two numbers can be added using dataflow variables as
shown in the df-add function defined in Example 9.2:

(defn df-add [a b]
 (let [x (pd/df-val)
 y (pd/df-val)
 sum (pd/df-var #(+ @x @y))]
 (x a)
 (y b)
 @sum))

Example 9.2: Adding two numbers with dataflow variables

The value of the dataflow variable sum, declared in the preceding df-add function,
will be recalculated when the referenced dataflow variables x and y are set to a
value. The variables x and y are set by calling them like functions. Similarly, we can
add a number to each element in a range of numbers using the df-val and df-var
functions as shown in the following Example 9.3:

(defn df-add-to-range [a r]
 (let [x (pd/df-val)
 y (pd/df-var)
 sum (pd/df-var #(+ @x @y))
 f (pc/fiber
 (for [i r]
 (do
 (y i)
 (pc/sleep 10)
 @sum)))]
 (x a)
 (pc/join f)))

Example 9.3: Adding a number to a range of number with dataflow variables

The df-add-to-range function shown previously defines the dataflow variables x,
y, and sum, where sum is dependent on x and y. The function then creates a fiber f
that uses the for macro to return a sequence of values. Within the body of the for
macro, the dataflow variable y is set to a value from the range r, and the value @sum
is returned. The fiber thus returns the result of adding a to all elements in the range
r, as shown in the following output:

user> (df-add-to-range 2 (range 10))
(2 3 4 5 6 7 8 9 10 11)

Chapter 9

[191]

In conclusion, we can use the df-val and df-var functions to define dataflow
variables, whose value can be recomputed when its referenced variables are
changed. Effectively, changing the state of a dataflow variable may cause other
dataflow variables to react to the change.

We should note that the Pulsar library also implements channels, which are
analogous to channels from the core.async library. In a nutshell, channels can be
used to exchange data with fibers. The Pulsar library also provides constructs for
reactive programming with channels, through the co.paralleluniverse.pulsar.
rx namespace. These constructs are termed as reactive extensions, and are very similar
to transducers, in the sense that they perform some computation on the values in
a channel. Reactive extensions are also implemented by the RxClojure library. We
should note that one of the limitations of both the Pulsar and RxClojure libraries is
that they are available only on the JVM, and can't be used in ClojureScript programs.
Thus, using core.async channels with transducers is a more feasible option in
ClojureScript. Nevertheless, we will briefly explore reactive extensions through the
RxClojure library in the following section.

Using Reactive Extensions
Reactive Extensions (written as Rx) are a generalized implementation of reactive
programming that can be used to model event and data streams. Rx can be thought
of as an object-oriented approach to reactive programming, in the sense that an event
stream is an object with certain methods and properties. In Rx, asynchronous event
streams are termed as observables. An entity or object that subscribes to events from
an observable is called an observer. Reactive extensions are essentially a library of
functions, or methods, to manipulate observables and create objects that conform to
the observer-observable pattern. For example, an observable can be transformed using
the Rx variants of the map and filter functions, as shown in the following illustration:

Reactive Programming

[192]

As shown previously, an observable can be described as a collection of values that
vary over a period of time. It's quite evident that observables can be treated as a
sequence of values using the Rx-flavored variants of the map and filter functions.
An observable can also be subscribed to by an observer, and the observer will be
asynchronously invoked for any value produced by an observable.

We will now discuss the various constructs of the RxClojure library (https://
github.com/ReactiveX/RxClojure). There are several implementations of Rx
across multiple languages, such as C#, Java, and PHP. The Java library for reactive
extensions is RxJava, and the RxClojure library provides Clojure bindings to RxJava.
As we mentioned earlier, it's important to note that RxClojure can only be used on
the JVM. Also, the RxClojure library predates the implementation of transducers
in Clojure, and thus channels and transducers are a more portable and generic
approach to reactive programming.

The following library dependencies are required for the upcoming
examples:

[io.reactivex/rxclojure "1.0.0"]

Also, the following namespaces must be included in your namespace
declaration:

(ns my-namespace

 (:require [rx.lang.clojure.core :as rx]

 [rx.lang.clojure.blocking :as rxb]

 [rx.lang.clojure.interop :as rxj]))

The rx.lang.clojure.core namespace contains functions for creating and
manipulating observables. Observables are internally represented as collections of
values. To extract values from observables, we can use functions from the rx.lang.
clojure.blocking namespace. However, we must note that functions from the
rx.lang.clojure.blocking namespace must be avoided in a program and used
only for testing purposes. The rx.lang.clojure.interop namespace contains
functions for performing Java interop with the underlying RxJava library.

The following examples can be found in src/m_clj/c9/rx.clj of
the book's source code.

A value can be converted to an observable using the return function from the
rx.lang.clojure.core namespace. An observable can be converted to a vector of
values using the rx.lang.clojure.blocking/into function, and similarly, we can
obtain the first value of an observable using the rx.lang.clojure.blocking/first
function. These functions are demonstrated in the following output:

https://github.com/ReactiveX/RxClojure
https://github.com/ReactiveX/RxClojure

Chapter 9

[193]

user> (def o (rx/return 0))
#'user/o
user> (rxb/into [] o)
[0]
user> (rxb/first o)
0

A sequence of values can be converted to an observable using the seq->o function
from the rx.lang.clojure.core namespace. To convert the observable back to a
sequence, we pass it to the o->seq function from the rx.lang.clojure.blocking
namespace. For example, we can convert the vector [1 2 3] to an observable and
back to a sequence, as shown here:

user> (def o (rx/seq->o [1 2 3]))
#'user/o
user> (rxb/o->seq o)
(1 2 3)

Another way of creating an observable is by using the cons and empty functions from
the rx.lang.clojure.core namespace. The empty function creates an observable
with no values, and the cons function adds or combines a value and an observable into
a new, observable, similar to the standard cons function. We can create an observable
containing the value 0 using the cons and empty functions as follows:

user> (def o (rx/cons 0 (rx/empty)))
#'user/o
user> (rxb/first o)
0

As we mentioned earlier, observers can subscribe to events from observables.
Observers can be defined by implementing the rx.lang.clojure.Observer
interface. This interface defines three methods, namely onNext, onError, and
onCompleted. The onNext method is called whenever an observable produces
a new value, and the onCompleted method is called when an observable is done
producing values. The onError method will be called in case an exception is
encountered. Interestingly, all of these methods will be invoked asynchronously
from an observable. For example, we can create an observer using the reify form
to implement the Observer interface as shown in Example 9.4:

(def observer
 (reify rx.Observer
 (onNext [this v] (println (str "Got value: " v "!")))
 (onError [this e] (println e))
 (onCompleted [this] (println "Done!"))))

Example 9.4: Implementing the rx.lang.clojure.Observer interface

Reactive Programming

[194]

An observable can call the methods of all its subscribed observers using the on-next,
on-error and on-completed functions from the rx.lang.clojure.core namespace.
We can also define an observable using these functions and the observable* form
from the rx.lang.clojure.core namespace. The observable* form must be passed
a function that takes a single argument, which represents an observer. For example,
we can define a function to create an observable of two values using the observable*
form as shown in Example 9.5:

(defn make-observable []
 (rx/observable* (fn [s]
 (-> s
 (rx/on-next :a)
 (rx/on-next :b)
 rx/on-completed))))

Example 9.5: Creating an observable using the observable* form

The function passed to the observable* form, shown previously, calls the on-next
and on-completed functions to produce an observable of two values. We can convert
this observable into a vector using the into function from the rx.lang.clojure.
blocking namespace, as shown here:

user> (def o (make-observable))
#'user/o
user> (rxb/into [] o)
[:a :b]

An observer can also be created using the subscribe function from the rx.lang.
clojure.core namespace. This function must be passed a function that takes a single
value, and an observer will be created by implementing the onNext method using
the supplied function. We can also pass a second argument representing the onError
method, as well as a third argument that represents the onCompleted method, to
the subscribe function. For example, we can subscribe to an observable using the
subscribe function, and apply a function to all values in the observable using the
rx.lang.clojure.core/map function, as shown in Example 9.6:

(defn rx-inc [o]
 (rx/subscribe o (fn [v] (println (str "Got value: " v "!"))))
 (rx/map inc o))

Example 9.6: Subscribing to an observable using the subscribe function

We can create an observable and pass it to the rx-inc function defined in Example
9.6, as shown here:

user> (def o (rx/seq->o [0 1 2]))
#'user/o
user> (rx-inc o)

Chapter 9

[195]

Got value: 0!
Got value: 1!
Got value: 2!
#<rx.Observable 0xc3fae8>

The function passed to the subscribe form in Example 9.6 is executed every time the
inc function is applied to a value in the observable o. We could as well define the
rx-inc function using Java interop with RxJava, as shown in Example 9.7:

(defn rxj-inc [o]
 (.subscribe o (rxj/action [v]
 (println (str "Got value: " v "!"))))
 (.map o (rxj/fn [v] (inc v))))

Example 9.7: Subscribing to an observable using the Java interop

It's quite clear that using the RxJava library through Java interop isn't pretty, as we
would have to wrap all the functions in the action and fn forms from the rx.lang.
clojure.interop namespace. The action macro is used to represent a function that
performs a side-effect, whereas the fn macro is used to wrap functions that return
values. Observables can also be created using the Java interop. This is done using
the from static method from the rx.lang.clojure.core.Observable class. The
following output demonstrates this method as well as the rxj-inc function defined
in Example 9.7:

user> (def o (rx.Observable/from [0 1 2]))
#'user/o
user> (rxj-inc o)
Got value: 0!
Got value: 1!
Got value: 2!
#<rx.Observable 0x16459ef>

Of course, we should prefer to use functions from the rx.lang.clojure.core
namespace, and we are using Java interop here only to show that it is possible.
Similar to the map function used in Example 9.6, there are several other functions
in the rx.lang.clojure.core namespace that allow us to treat observables as
sequences. Thus, functions such as map, filter, and mapcat comprise the interface
of observables, and describe the many ways in which we can interact with them. For
example, the following output demonstrates the Rx variants of the take, cycle, and
range functions:

user> (rxb/into [] (->> (rx/range)
 (rx/take 10)))
[0 1 2 3 4 5 6 7 8 9]

Reactive Programming

[196]

user> (rxb/into [] (->> (rx/cycle (rx/return 1))
 (rx/take 5)))
[1 1 1 1 1]

The rx.lang.clojure.core namespace also provides a filter function that can be
used with an observable and a predicate, as shown here:

user> (rxb/into [] (->> (rx/seq->o [:a :b :c :d :e])
 (rx/filter #{:b :c})))
[:b :c]

The group-by and mapcat functions from the rx.lang.clojure.core namespace
have the same semantics as the standard versions of these functions. For example,
let's define a function that uses the group-by and mapcat functions, as shown in
Example 9.8:

(defn group-maps [ms]
 (->> ms
 (rx/seq->o)
 (rx/group-by :k)
 (rx/mapcat (fn [[k vs :as me]]
 (rx/map #(vector k %) vs)))
 (rxb/into [])))

Example 9.8: Using the group-by and mapcat functions

The group-maps function, defined previously, will transform a number of maps into
an observable, group the maps by their values for the key :k, and create a number of
vectors using the mapcat and map functions. Of course, we wouldn't really need such
a function in practice, and it's only shown here to demonstrate how the group-by
and mapcat functions can be used. We can pass a vector of maps to the group-maps
function to produce a sequence of vectors, as shown here:

user> (group-maps [{:k :a :v 1}
 {:k :b :v 2}
 {:k :a :v 3}
 {:k :c :v 4}])
[[:a {:k :a, :v 1}]
 [:a {:k :a, :v 3}]
 [:b {:k :b, :v 2}]
 [:c {:k :c, :v 4}]]

Chapter 9

[197]

Several observables can be combined using the merge function from the rx.lang.
clojure.core namespace. The merge function can be passed any number of
observables, as shown here:

user> (let [o1 (rx/seq->o (range 5))
 o2 (rx/seq->o (range 5 10))
 o (rx/merge o1 o2)]
 (rxb/into [] o))
[0 1 2 3 4 5 6 7 8 9]

An observable can also be split up into two observables using the split-with
function from the rx.lang.clojure.core namespace. This function must be passed
an observable and a predicate function, as shown here:

user> (->> (range 6)
 rx/seq->o
 (rx/split-with (partial >= 3))
 rxb/first
 (map (partial rxb/into [])))
([0 1 2 3] [4 5])

In summary, the RxClojure library provides us with several constructs for
creating and manipulating observables. We can also easily create observers that
asynchronously react to observables using the subscribe function from this library.
Also, the constructs from the rx.lang.clojure.core namespace have semantics
similar to that of standard functions such as map, filter, and mapcat. There are
several functions in the rx.lang.clojure.core namespace that we haven't talked
about in this section, and you're encouraged to explore them on your own.

Using functional reactive programming
A more functional flavor of reactive programming is functional reactive
programming (abbreviated as FRP). FRP was first described in the late '90s by
Conal Elliott, who was a member of the Microsoft Graphics Research Group at the
time, and Paul Hudak, a major contributor to the Haskell programming language.
FRP was originally described as a bunch of functions to interact with events and
behaviors. Both events and behaviors represent values that change over time. The
major difference between these two is that events are values that change discretely
over time, whereas behaviors are continuously changing values. There is no mention
of an observer-observable pattern in FRP. Also, programs in FRP are written as
composable transformations of events and behaviors, and are also termed as
compositional event systems (CESs).

Reactive Programming

[198]

Modern implementations of FRP provide constructs to create and transform
asynchronous event streams. Also, any form of state change is represented as an
event stream. In this perspective, a click of a button, a request made to a server,
and mutating a variable, can all be treated as event streams. The Bacon.js library
(https://github.com/baconjs/bacon.js/) is a JavaScript implementation of FRP,
and the Yolk library (https://github.com/Cicayda/yolk) provides ClojureScript
bindings to the Bacon.js library. In this section, we will briefly study the constructs
provided by the Yolk library.

The following library dependencies are required for the upcoming
examples:

[yolk "0.9.0"]

Also, the following namespaces must be included in your namespace
declaration:

(ns my-namespace

 (:require [yolk.bacon :as y]))

In addition to the preceding dependencies, the following examples
also use the set-html! and by-id functions from src/m_clj/c9/
common.cljs. These functions are defined as follows:

(defn ^:export by-id [id]

 (.getElementById js/document id))

(defn ^:export set-html! [el s]

 (set! (.-innerHTML el) s))

Ensure that the code in the following ClojureScript examples is
compiled, using the following command:

$ lein cljsbuild once

The yolk.bacon namespace provides several functions to create event streams,
such as the later and interval functions. The later function creates an event
stream that produces a single value after a given delay. The interval function can
infinitely repeat a value with a given time interval. Both these functions must be
passed a number of milliseconds as the first argument and a value to produce as the
second argument.

Event streams in the Yolk library may produce an infinite number of values. We can
limit the number of values produced by an event stream by using the yolk.bacon/
sliding-window function, which creates an event stream that drops older values
once it's full. This function must be passed an event stream and a number indicating
the capacity of the event stream returned by it.

https://github.com/baconjs/bacon.js/
https://github.com/Cicayda/yolk

Chapter 9

[199]

We can also create an event bus, onto which we can arbitrarily push values, using the
bus function from the yolk.bacon namespace. The push function puts a value onto
an event bus, and the plug function connects an event bus to another event stream.

To listen to values produced from event streams, we can use the on-value, on-
error, and on-end functions. The on-value and on-error functions will call a
supplied 1-arity function whenever a given event stream produces a value or an
error, respectively. The on-end function will call a supplied function that takes no
arguments whenever a stream ends. This function is often used with the yolk.
bacon/never function, which creates an event stream that ends immediately without
producing a value.

Event streams can also be combined in several ways. The merge-all function
combines a vector of several event streams into a single one. Another function that
can collect values from several event streams in this way is the flat-map function.
Alternatively, the combine-array function can be used to create a single event
stream that produces arrays of the values from the supplied streams. The yolk.
bacon/when function can be used to conditionally combine several channels. This
function must be passed a number of clauses, similar to the cond form. Each clause
must have two parts—a vector of event streams and an expression that will be
invoked when all the supplied event streams produce values.

The yolk.bacon namespace also provides event stream based variants of the
standard map, filter, and take functions. These functions take an event stream
as the first argument, which is a little different from the semantics of the standard
versions of these functions.

Using these functions from the Yolk library, we can implement a simplified
ClojureScript based solution to the dining philosophers problem, which we
described in the previous chapters. For a detailed explanation of the dining
philosophers problem and its solution, refer to Chapter 2, Orchestrating Concurrency
and Parallelism and Chapter 8, Leveraging Asynchronous Tasks.

The following examples can be found in src/m_clj/c9/yolk/core.
cljs of the book's source code. Also, the HTML page for the following
ClojureScript examples can be found in resources/html/yolk.html.
The following scripts will be included in this page:

<script type="text/javascript" src="../js/bacon.js">
</script>
<script type="text/javascript" src="../js/out/yolk.js">
</script>

Reactive Programming

[200]

In this implementation of the dining philosophers problem, we will represent the
state of the philosophers and the forks on the table using event buses. The event
buses can then be combined using the when function from the Yolk library. We won't
maintain much state about the philosophers for the sake of simplicity. Let's first
define functions to print the philosophers and represent the routine of a philosopher,
as shown in the following Example 9.9:

(defn render-philosophers [philosophers]
 (apply str
 (for [p (reverse philosophers)]
 (str "<div>" p "</div>"))))

(defn philosopher-fn [i n forks philosophers wait-ms]
 (let [p (nth philosophers i)
 fork-1 (nth forks i)
 fork-2 (nth forks (-> i inc (mod n)))]
 (fn []
 (js/setTimeout
 (fn []
 (y/push fork-1 :fork)
 (y/push fork-2 :fork)
 (y/push p {}))
 wait-ms)
 (str "Philosopher " (inc i) " ate!"))))

Example 9.9: Solving the dining philosophers problem with event streams

The preceding render-philosophers function will wrap each philosopher in a div
tag, which will be displayed on a web page. The philosopher-fn function returns
a function that represents the routine of a philosopher. The function returned by the
philosopher-fn function sets off a task, using the setTimeout JavaScript function,
to push values representing a particular philosopher and his associated forks into
the event buses. This function will finally return a string indicating that the given
philosopher was able to eat the food supplied to him. Using these functions, we can
create a simulation of the dining philosophers problem in a web page, as shown in
the following Example 9.10:

(let [out (by-id "ex-9-10-out")
 n 5
 [f1 f2 f3 f4 f5 :as forks] (repeatedly n #(y/bus))
 [p1 p2 p3 p4 p5 :as philosophers] (repeatedly n #(y/bus))
 eat #(philosopher-fn % n forks philosophers 1000)
 events (y/when [p1 f1 f2] (eat 0)
 [p2 f2 f3] (eat 1)
 [p3 f3 f4] (eat 2)

Chapter 9

[201]

 [p4 f4 f5] (eat 3)
 [p5 f5 f1] (eat 4))]
 (-> events
 (y/sliding-window n)
 (y/on-value
 #(set-html! out (render-philosophers %))))
 (doseq [f forks]
 (y/push f :fork))
 (doseq [p philosophers]
 (y/push p {})))

Example 9.10: Solving the dining philosophers problem with event streams (continued)

In the let form shown in Example 9.10, we created the philosophers and forks in
our simulation using the bus function from the Yolk library. The values produced
by these event buses are then combined using a when form. The when function in
the preceding code will check for events from a philosopher and the forks on his
left- and right-hand side. The combinations of philosophers and forks are, in fact,
hardcoded into the clauses of the when form. Of course, we must understand that the
clauses of the when form shown previously could have easily been generated using
a macro. Values are then placed onto the event buses representing the philosophers
and forks using the push function, to start the simulation. The last five philosophers
who could eat are rendered in the web page, as shown here:

In summary, the Yolk library provides several constructs to handle event streams.
There are several functions from this library that we haven't discussed, and you should
explore them on your own. In the following section, we will provide examples that
demonstrate the other functions from the Yolk library.

Some of the preceding examples are based on code from Yolk examples by
Wilkes Joiner (https://github.com/Cicayda/yolk-examples).

https://github.com/Cicayda/yolk-examples

Reactive Programming

[202]

Building reactive user interfaces
One of the primary applications of reactive programming is frontend development,
where we must create user interface components that react asynchronously to
changes in state. In this section, we will describe a few examples implemented using
the core.async library and the Yolk library. This is meant to give you a comparison
between channels and event streams, and also demonstrate how we can design
solutions to problems using both these concepts. Note that only the overall design
and code for these examples will be described, and you should be able to fill in the
details on your own.

The following library dependencies are required for the upcoming
examples:

[yolk "0.9.0"]

[org.clojure/core.async "0.1.346.0-17112a-alpha"]

Also, the following namespaces must be included in your namespace
declaration:

(ns my-namespace

 (:require [goog.events :as events]

 [goog.events.EventType]

 [goog.style :as style]

 [cljs.core.async :as a]

 [yolk.bacon :as y])

 (:require-macros [cljs.core.async.macros

 :refer [go go-loop alt!]]))

In addition to the preceding dependencies, the following examples
also use the set-html! and by-id functions from src/m_clj/c9/
common.cljs. Ensure that the code in the following ClojureScript
examples is compiled, using the following command:
$ lein cljsbuild once

As a first example, let's create three asynchronous tasks that each produce values at
different time intervals. We must fetch all the values produced by these tasks and
render them on a web page in the same order.

Chapter 9

[203]

The following examples can be found in src/m_clj/c9/reactive/
core.cljs of the book's source code. Also, the HTML page for the
following ClojureScript examples can be found in resources/html/
reactive.html. The following scripts will be included in this page:

<script type="text/javascript" src="../js/bacon.js">
</script>
<script type="text/javascript"
src="../js/out/reactive.js">
</script>

We could implement this using processes and channels from the core.async library.
In this case, channels will convey the values produced by three processes, and we
will use a merge operation to combine these channels, as shown in the following
Example 9.11:

(defn render-div [q]
 (apply str
 (for [p (reverse q)]
 (str "<div class='proc-" p "'>Process " p "</div>"))))

(defn start-process [v t]
 (let [c (a/chan)]
 (go (while true
 (a/<! (a/timeout t))
 (a/>! c v)))
 c))

(let [out (by-id "ex-9-11-out")
 c1 (start-process 1 250)
 c2 (start-process 2 1000)
 c3 (start-process 3 1500)
 c (a/merge [c1 c2 c3])
 firstn (fn [v n]
 (if (<= (count v) n)
 v
 (subvec v (- (count v) n))))]
 (go-loop [q []]
 (set-html! out (render-div q))
 (recur (-> (conj q (a/<! c))
 (firstn 10)))))

Example 9.11: Three asynchronous tasks using channels

Reactive Programming

[204]

The preceding start-process function will create a process that periodically
produces values using the go form, and returns a channel from which the values
can be read. The render-div function will generate HTML for the values produced
by the three tasks. Only the ten most recent values will be shown. This code will
produce the following output:

We could also implement the preceding example using FRP, in which values produced
by each of the three tasks are represented as event streams. The merge-all function
from the yolk.bacon namespace can be used to combine these event streams, and
the sliding-window function can obtain the ten most recent values produced by the
resulting stream. The render-div function from Example 9.11 can be reused to render
the values. This is implemented in Example 9.12, and produces the same output as
Example 9.11:

(let [out (by-id "ex-9-12-out")
 events [(y/interval 250 1)
 (y/interval 1000 2)
 (y/interval 1500 3)]]
 (-> events
 y/merge-all
 (y/sliding-window 10)
 (y/on-value
 #(set-html! out (render-div %)))))

Example 9.12: Three asynchronous tasks using FRP

Next, let's try to capture mouse events from a particular div tag, and display the
page offset values of the locations of these events. We can do this with channels,
but we would first need a function to convey DOM events onto a channel. We
can implement this using the goog.events/listen and cljs.core.async/put!
functions, as shown in Example 9.13:

(defn listen
 ([el type] (listen el type nil))

Chapter 9

[205]

 ([el type f] (listen el type f (a/chan)))
 ([el type f out]
 (events/listen el type
 (fn [e] (when f (f e)) (a/put! out e)))
 out))

Example 9.13: A function to convey events onto a channel

We can now use the listen function defined previously to listen to the goog.events.
EventType.MOUSEMOVE event type from a particular div tag. The values will have to
be converted to page offsets, and this can be done using the getPageOffsetLeft and
getPageOffsetTop functions from the goog.style namespace. This implementation
is described in Example 9.14:

(defn offset [el]
 [(style/getPageOffsetLeft el) (style/getPageOffsetTop el)])

(let [el (by-id "ex-9-14")
 out (by-id "ex-9-14-out")
 events-chan (listen el goog.events.EventType.MOUSEMOVE)
 [left top] (offset el)
 location (fn [e]
 {:x (+ (.-offsetX e) (int left))
 :y (+ (.-offsetY e) (int top))})]
 (go-loop []
 (if-let [e (a/<! events-chan)]
 (let [loc (location e)]
 (set-html! out (str (:x loc) ", " (:y loc)))
 (recur)))))

Example 9.14: Mouse events using channels

We can also implement a solution to this problem using the from-event-stream and
map functions from the Yolk library. Interestingly, the events produced by the stream
returned by the from-event-target function will have page offsets of the event
stored as the pageX and pageY properties. This allows us to have a much simpler
implementation, as shown in Example 9.15:

(let [el (by-id "ex-9-15")
 out (by-id "ex-9-15-out")
 events (y/from-event-target el "mousemove")]
 (-> events
 (y/map (juxt (fn [e] (.-pageX e))
 (fn [e] (.-pageY e))))
 (y/map (fn [[x y]] (str x ", " y)))
 (y/on-value
 #(set-html! out %))))

Example 9.15: Mouse events using FRP

Reactive Programming

[206]

Both of the implementations shown in Example 9.14 and Example 9.15 work as expected,
and produce the following output:

As a final example, we will simulate several search queries being performed and
display the results from the first three queries that return results. The queries can
be described as: two queries for web results, two queries for image results, and two
queries for video results. We can implement these simulated queries as shown in
Example 9.16:

(defn chan-search [kind]
 (fn [query]
 (go
 (a/<! (a/timeout (rand-int 100)))
 [kind query])))

(def chan-web1 (chan-search :web1))
(def chan-web2 (chan-search :web2))
(def chan-image1 (chan-search :image1))
(def chan-image2 (chan-search :image2))
(def chan-video1 (chan-search :video1))
(def chan-video2 (chan-search :video2))

Example 9.16: Simulating search queries with channels

The chan-search function returns a function that uses the cljs.core.async/
timeout function to simulate a search query by parking the current task for a
random number of milliseconds. Using the chan-search function, we create several
queries for the different kinds of results we are interested in. Using these functions,
we can implement a function to perform all the queries and return the first three
results, as shown in Example 9.17:

(defn chan-search-all [query & searches]
 (let [cs (for [s searches]
 (s query))]
 (-> cs vec a/merge)))

(defn chan-search-fastest [query]
 (let [t (a/timeout 80)
 c1 (chan-search-all query chan-web1 chan-web2)

Chapter 9

[207]

 c2 (chan-search-all query chan-image1 chan-image2)
 c3 (chan-search-all query chan-video1 chan-video2)
 c (a/merge [c1 c2 c3])]
 (go (loop [i 0
 ret []]
 (if (= i 3)
 ret
 (recur (inc i)
 (conj ret (alt!
 [c t] ([v] v)))))))))

Example 9.17: Simulating search queries with channels (continued)

As shown in the preceding example, the merge function can be used to combine
channels that produce the results of the search queries. Note that the queries to
all three types of results, namely web, images, and videos, are timed out after 80
milliseconds. We can bind the chan-search-fastest function to the click of a mouse
button using the listen function we defined earlier, as shown in Example 9.18:

(let [out (by-id "ex-9-18-out")
 button (by-id "search-1")
 c (listen button goog.events.EventType.CLICK)]
 (go (while true
 (let [e (a/<! c)
 result (a/<! (chan-search-fastest "channels"))
 s (str result)]
 (set-html! out s)))))

Example 9.18: Simulating search queries with channels (continued)

Clicking on the button bound to the chan-search-fastest function will show the
following output. Note that the nil value in the following output indicates a timeout
of all queries for a particular search result type.

We can just as easily implement an FRP version of the simulation of search queries that
was previously described. The queries for the various sources of data are defined as
shown in the following Example 9.19:

(defn frp-search [kind]
 (fn [query]
 (y/later (rand-int 100) [kind query])))

(def frp-web1 (frp-search :web1))

Reactive Programming

[208]

(def frp-web2 (frp-search :web2))
(def frp-image1 (frp-search :image1))
(def frp-image2 (frp-search :image2))
(def frp-video1 (frp-search :video1))
(def frp-video2 (frp-search :video2))

Example 9.19: Simulating search queries with FRP

The preceding functions all return event streams for search results. The search results
produced can be combined with timeouts using the later, merge, and combine-as-
array functions from the yolk.bacon namespace, as shown in Example 9.20:

(defn frp-search-all [query & searches]
 (let [results (map #(% query) searches)
 events (cons (y/later 80 "nil") results)]
 (-> (apply y/merge events)
 (y/take 1))))

(defn frp-search-fastest [query]
 (y/combine-as-array
 (frp-search-all query frp-web1 frp-web2)
 (frp-search-all query frp-image1 frp-image2)
 (frp-search-all query frp-video1 frp-video2)))

Example 9.20: Simulating search queries with FRP (continued)

The frp-search-fastest function can be invoked on clicking a button, as shown in
Example 9.21:

(let [out (by-id "ex-9-21-out")
 button (by-id "search-2")
 events (y/from-event-target button "click")]
 (-> events
 (y/flat-map-latest #(frp-search-fastest "events"))
 (y/on-value
 #(set-html! out %))))

Example 9.21: Simulating search queries with FRP (continued)

The preceding example produces the following output when the search button
is clicked:

Chapter 9

[209]

In conclusion, we can use both channels and event streams to implement interactive
interfaces in web pages. Although the FRP implementations of the preceding
examples are slightly shorter, we can say that both the core.async and Yolk
libraries have their own elegance.

The preceding examples are based on code from Communicating
Sequential Processes by David Nolen (http://swannodette.github.
io/2013/07/12/communicating-sequential-processes/)
and CSP vs. FRP by Draco Dormiens (http://potetm.github.
io/2014/01/07/frp.html).

Introducing Om
The Om library (https://github.com/omcljs/om) is a great tool for building
dynamic user interfaces in ClojureScript. In fact, it's an interface to React.js (http://
facebook.github.io/react/), which is a JavaScript library for creating interactive
user interface components. Om lets us define a user interface as a hierarchy of
components, and each component reactively modifies its appearance based on
changes to the component's state. In this way, Om components react to changes in
their state.

The following library dependencies are required for the upcoming
examples:

[org.omcljs/om "0.8.8"]

Also, the following namespaces must be included in your namespace
declaration:

(ns my-namespace

 (:require [om.core :as om :include-macros true]

 [om.dom :as dom :include-macros true]))

In addition to the preceding dependencies, the following examples also
use the by-id function from src/m_clj/c9/common.cljs. Ensure
that the code in the following ClojureScript examples is compiled, using
the following command:
$ lein cljsbuild once

http://swannodette.github.io/2013/07/12/communicating-sequential-processes/
http://swannodette.github.io/2013/07/12/communicating-sequential-processes/
http://potetm.github.io/2014/01/07/frp.html
http://potetm.github.io/2014/01/07/frp.html
https://github.com/omcljs/om
http://facebook.github.io/react/
http://facebook.github.io/react/

Reactive Programming

[210]

The Om components are generally defined by implementing the IRender and
IRenderState protocols from the om.core namespace. The IRender protocol
declares a single function render, and similarly the IRenderState protocol declares
the render-state function. The render and render-state functions define how
a component that implements either of these protocols is converted to DOM, which
can be rendered by a web browser. The implementations of these functions must
return a DOM object constructed using functions from the om.dom namespace. There
are also several other protocols in the om.core namespace that allow us to define a
component's behavior. Internally, Om uses React.js to perform batched updates to
the DOM for the sake of performance, and uses virtual DOM to maintain the state of
the DOM to be rendered.

The following examples can be found in src/m_clj/c9/om/core.
cljs of the book's source code. Also, the HTML page for the following
ClojureScript examples can be found in resources/html/om.html.
The following scripts will be included in this page:

<script type="text/javascript" src="../js/out/om.js">
</script>

Let's now build a simple component using Om. Suppose we want to build a web
application. One of the first steps in doing so is creating a login page for our
application. As an example, let's create a simple login form with Om. A user will
enter their username and password in this form. The only requirement is that the
submit button of this form must be enabled only if the user has entered a username
and password. Let's start off by defining some functions to create an input field of a
form, as shown in Example 9.22:

(defn update-input-value-fn [owner]
 (fn [e]
 (let [target (.-target e)
 val (.-value target)
 id (keyword (.-id target))]
 (om/set-state! owner id val))))

(defn input-field [text owner attrs]
 (let [handler (update-input-value-fn owner)
 event-attr {:onChange handler}
 js-attrs (-> attrs (merge event-attr) clj->js)]
 (dom/div
 nil
 (dom/div nil text)
 (dom/input js-attrs))))

Example 9.22: A login form using Om

Chapter 9

[211]

The update-input-value-fn function defined in Example 9.22 accepts a component
owner as an argument and returns a function that we can bind to a DOM event.
The returned function updates the state of the component with the value of the
.-value property using the set-state! function from the om.core namespace. The
input-field function returns a DOM object for an input field with some associated
properties. The input-field function also creates an event handler using the update-
input-value-fn function and binds it to the onChange event of the input field.

Note that a component can change its state or the global application state
by using the set-state!, update-state!, update!, or transact!
functions from the om.core namespace.

Next, let's define a form as a component using the om.core/IRenderState protocol
and input-field function, as shown in Example 9.23:

(defn form [data owner]
 (reify
 om/IInitState
 (init-state [_]
 {:username "" :password ""})
 om/IRenderState
 (render-state [_ state]
 (dom/form
 nil
 (input-field "Username" owner
 {:type "text"
 :id "username"
 :value (:username state)})
 (input-field "Password" owner
 {:type "password"
 :id "password"
 :value (:password state)})
 (dom/br nil)
 (dom/input
 #js {:type "submit"
 :value "Login"
 :disabled (or (-> state :username empty?)
 (-> state :password empty?))})))))

(om/root form nil {:target (by-id "ex-9-23")})

Example 9.23: A login form using Om (continued)

Reactive Programming

[212]

The preceding form function creates a component by implementing the render-
state function of the IRenderState protocol. This component also implements the
IInitState protocol to define the initial state of the component. The form function
will render a login form with two input fields, for a username and password, and
a login button. The button is enabled only when the username and password are
entered. Also, the component is mounted onto a div using the om.core/root function.
The following output in a web page describes the behavior of the component defined
by the form function:

The preceding output describes two states of the login form component defined
by the form function. The login button is observed to be disabled when either the
username or password fields are empty, and is enabled only when the user enters
values in both of these input fields. In this way, the login form reacts to changes in
the state of its input fields.

Visit https://github.com/omcljs/om/wiki/Documentation
for complete documentation on all the protocols, functions, and
macros in the Om library.

Thus, the Om library provides us with several constructs for creating interactive and
stateful components.

Summary
So far, we have discussed reactive programming through the Pulsar, RxClojure, and
Yolk libraries. We have also described several ClojureScript examples that compare
channels from the core.async library to reactive event streams from the Yolk
library. We also demonstrated how we can leverage the Om library to build dynamic
user interfaces.

In the following chapter, we will explore how we can test our Clojure programs.

https://github.com/omcljs/om/wiki/Documentation

[213]

Testing Your Code
Testing is an integral part of developing software. Alongside implementing
functionality in our software, it is imperative to simultaneously define tests to verify
several aspects of it. The Clojure standard library provides several constructs to define
tests and mock data. There are also several community libraries that allow us to verify
different aspects of the code being tested.

The main advantage of using tests is that they allow us to identify the overall impact
of a particular change in a program's code. If we have tests to check the functionality
of a program, we can refactor the program with confidence and without the fear
of losing any functionality. If there's something that we unavoidably missed while
refactoring a program, it will surely be brought to our attention when we run the
program's tests. Thus, tests are indispensable tools for keeping code maintainable.

In this chapter, we will study the different ways in which we can write tests in Clojure.
We will also discuss how we can perform type checking in Clojure. Although we
describe several libraries for writing tests in this chapter, we must note that there are
several more available in the Clojure ecosystem. That aside, the libraries described in
this chapter are the most mature and battle-hardened tools for testing our code.

Writing tests
Being a thoughtfully designed language, Clojure has a built-in unit testing library,
namely clojure.test. Apart from that, there are a couple constructs in the core
language that are helpful with regard to testing. Of course, these constructs don't
allow us to define and run any tests in the formal sense, and the constructs from the
clojure.test namespace must be preferred for that purpose.

Testing Your Code

[214]

Let's start off by briefly discussing the constructs from the core language that
can be used for unit testing. The assert function checks whether an expression
evaluates to a truthy value at runtime. This function will throw an exception if the
expression passed to it does not evaluate to a truthy value, and the message of this
exception can be optionally specified as a second argument to the assert form. We
can effectively disable all the assert forms in a given program by using the global
assert compile time var. This variable can only be changed by a top-level set!
form in a given program or namespace.

Another interesting aspect of testing that is easily tackled by the core language is
mocking and stubbing. In a nutshell, these techniques allow us to redefine the behavior
of certain functions within the context of a test case. This is useful in preventing
functions from performing unwanted side effects or using unavailable resources. In
the Clojure language, this can be done using the with-redefs function. This form
can be used within tests as well as plain functions, but its usage outside of the scope
of tests is not really encouraged. Its semantics are similar to that of the standard let
form, and you are encouraged to go through the Clojure docs for examples on the
with-redefs form.

Now, let's explore how we can actually define tests using constructs from the
clojure.test namespace.

Defining unit tests
Clojure has support for defining unit tests baked into it. The clojure.test
namespace, which requires no additional dependencies whatsoever, provides
several constructs for testing our code. Let's explore a few of them.

The following namespaces must be included in your namespace
declaration for the upcoming examples:

(ns my-namespace

 (:require [clojure.test :refer :all]))

The following examples can be found in test/m_clj/c10/test.clj
of the book's source code.

Tests can be defined using the deftest macro. This form must be passed a symbol,
indicating the name of the defined test, and any number of expressions. Generally,
is and are forms are used within the deftest macro. The is form must be passed
an expression, and will fail the test if the supplied expression does not return a
truthy value. The are form must be passed a vector of variable names, a condition to
test, and values for the defined variables. For example, the standard * function can
be tested as shown in Example 10.1:

Chapter 10

[215]

(deftest test-*
 (is (= 6 (* 2 3)))
 (is (= 4 (* 1 4)))
 (is (= 6 (* 3 2))))

(deftest test-*-with-are
 (are [x y] (= 6 (* x y))
 2 3
 1 6
 3 2))

Example 10.1: Defining tests using the clojure.test namespace

The preceding code defines two tests using the is and are forms. We can run
tests using the run-tests and run-all-tests functions from the clojure.test
namespace. The run-tests function can be passed any number of namespaces, and
will run all the tests defined in them. Also, this form can be called without passing
any arguments, in which case it will run all the tests in the current namespace.
The run-all-tests function will run all the tests in all namespaces of the current
project. It can optionally be passed a regular expression, and will only run the
tests from matching namespaces if this argument is supplied. In fact, an IDE with
integrated support for running tests will call these functions. For example, we can
run the tests we defined in Example 10.1 using the run-tests function shown here:

user> (run-tests)

Testing ...

Ran 2 tests containing 6 assertions.
0 failures, 0 errors.
{:test 2, :pass 6, :fail 0, :error 0, :type :summary}

As shown in the preceding output, the run-tests function executes both the tests,
and both of them pass. Let's now define a test that will fail, although we shouldn't
really be doing this unless we have a good reason:

(deftest test-*-fails
 (is (= 5 (* 2 3))))

Example 10.2: A test that fails

The test test-*-fails shown in Example 10.2 will fail when it is run, as shown here:

user> (run-tests)

Testing ...

Testing Your Code

[216]

FAIL in (test-*-fails) (test.clj:24)
expected: (= 5 (* 2 3))
 actual: (not (= 5 6))

Ran 3 tests containing 7 assertions.
1 failures, 0 errors.
{:test 3, :pass 6, :fail 1, :error 0, :type :summary}

In fact, defining tests that fail should be considered a part and parcel of developing a
program. To start a feature or fix a bug in a program, we must first define a test that
validates this change (by failing!). We should then proceed to implement the feature
or fix, such that all the newly defined tests pass. These two steps are then repeated,
until all the requirements of our feature or fix are met. This is the essence of test-
driven development (TDD).

We can also run the tests defined in a given namespace using the
following command:
$ lein test my-namespace

The clojure.test namespace must be used for testing programs written strictly
in Clojure. For testing ClojureScript programs in the same way, we can use the
doo library (https://github.com/bensu/doo), which provides ClojureScript
implementations of the deftest, is, and are constucts.

Using top-down testing
A more powerful way to define tests in Clojure is by using the Midje library
(https://github.com/marick/Midje). This library provides several constructs
that allow us to easily define unit tests by describing relationships between several
functions, rather than describing the implementation of the functions themselves.
This approach is also called top-down testing, and Midje champions this kind of
testing methodology. Let's dive into the details of the Midje library.

https://github.com/bensu/doo
https://github.com/marick/Midje

Chapter 10

[217]

The following library dependencies are required for the upcoming
examples:

[midje "1.8.2"]

We must also include the following dependencies in the :plugins
section of your project.clj file:

[lein-midje "3.1.3"]

Also, the following namespaces must be included in your namespace
declaration:

(ns my-namespace

 (:require [midje.sweet :refer :all]

 [midje.repl :as mr]))

The following examples can be found in test/m_clj/c10/midje.
clj of the book's source code.

Firstly, let's define a simple function that we intend to test, as shown in Example 10.3:

(defn first-element [sequence default]
 (if (empty? sequence)
 default
 (first sequence)))

Example 10.3: A simple function to test

We can define tests for the first-element function using the facts and fact
constructs from the midje.sweet namespace, as shown in Example 10.4.

(facts "about first-element"
 (fact "it returns the first element of a collection"
 (first-element [1 2 3] :default) => 1
 (first-element '(1 2 3) :default) => 1)

 (fact "it returns the default value for empty collections"
 (first-element [] :default) => :default
 (first-element '() :default) => :default
 (first-element nil :default) => :default
 (first-element
 (filter even? [1 3 5])
 :default) => :default))

Example 10.4: Tests for the first-element function

Testing Your Code

[218]

As shown in the preceding code, the fact form describes a test, and can be passed
any number of clauses. Each clause is comprised of an expression, a => symbol, and
the expected return value of the supplied expression. The facts form is simply used
to group together several fact forms. It's quite apparent that instead of checking
logical conditions, we use fact forms to check expressions and the values returned
by them.

The provided form can be used to mock function calls. The Midje library allows us
to use metaconstants in our tests, and they are often used with the provided form.
Metaconstants can be thought of as generic placeholders for values and functions.
All metaconstants should start and end with two or more dots (.) or hyphens (-);
hyphens are more suitable for metaconstants representing functions. For example,
we can test the first-element function we defined earlier using metaconstants and
the provided form as shown in Example 10.5:

(fact "first-element returns the first element of a collection"
 (first-element ..seq.. :default) => :default
 (provided
 (empty? ..seq..) => true))

Example 10.5: Using the provided form and metaconstants

In the test shown previously, the metaconstant ..seq.. is used to indicate the first
argument passed to the first-element function, and the provided form mocks the
call to the empty? function. This way, we can implement tests without completely
implementing the functions being tested. Of course, we should avoid mocking or
redefining standard functions in the provided form. For example, suppose we have
three partially implemented functions, as shown in Example 10.6.

(defn is-diesel? [car])

(defn cost-of-car [car])

(defn overall-cost-of-car [car]
 (if (is-diesel? car)
 (* (cost-of-car car) 1.4)
 (cost-of-car car)))

Example 10.6: Partially implemented functions to test

Notice that only the overall-cost-of-car function is completely implemented in
the preceding code. Nevertheless, we can still test the relation between these three
functions using the Midje library, as shown in Example 10.7.

(fact
 (overall-cost-of-car ..car..) => (* 5000 1.4)
 (provided

Chapter 10

[219]

 (cost-of-car ..car..) => 5000
 (is-diesel? ..car..) => true))

Example 10.7: Testing the is-diesel?, cost-of-car and overall-cost-of-car functions

In the test shown previously, the cost-of-car and is-diesel? functions are
mocked using the provided form and the ..car.. metaconstant, and the value
returned by the overall-cost-of-car function is checked. We can run all of the
tests we have defined so far using the autotest function from the midje.repl
namespace, as shown here:

user> (mr/autotest :files "test")

==
Loading (...)
>>> Output from clojure.test tests:

0 failures, 0 errors.
>>> Midje summary:
All checks (8) succeeded.
[Completed at ...]

We can also run the tests defined in a given namespace using the
following command. Note that the following command will watch
your project for file changes, and will run the tests in any files once
they are changed:
$ lein midje :autotest test

In this way, we can use the Midje library to write tests, even for functions that haven't
been completely implemented. Midje allows us to describe tests as relations between
functions using metaconstants. In summary, the clojure.test and Midje libraries are
great tools for defining unit tests.

Testing with specs
We will now take a look at the Speclj, pronounced speckle, library (https://github.
com/slagyr/speclj), which is used to write specs. Specs are similar to unit tests,
but are focused on the behavior of functions being tested, rather than their internal
implementation. In fact, behavior-driven development (BDD) is centered about
writing specs.

https://github.com/slagyr/speclj
https://github.com/slagyr/speclj

Testing Your Code

[220]

The main difference between TDD and BDD is that BDD focuses on the behavior or
specifications of functions, rather than their implementation. From this perspective, if
we change the internal implementation of a function that has been previously tested,
there is a smaller chance that we have to modify the tests, or rather specs, associated
with the function. BDD can also be thought of as a refined approach to TDD, in
which the interface and behavior of a function is more important than its internal
implementation. Now, let's study the various constructs of the Speclj library.

The following library dependencies are required for the upcoming
examples. We must also include the following dependencies in the
:plugins section of your project.clj file:

[speclj "3.3.1"]

Also, the following namespaces must be included in your namespace
declaration:

(ns my-namespace

 (:require [speclj.core :refer :all]))

The describe, it, and should forms, from the speclj.core namespace, are used
to define specs for a given function. The it form represents a single specification for
the function being tested, and the describe form is used to group together several
specs together. Assertions within an it form can be expressed using the should form
and its variants. For example, we can write a spec for the behavior of the standard *
function, as shown in the following Example 10.8.

The following examples can be found in spec/m_clj/c10/speclj.
clj of the book's source code.

(describe "*"
 (it "2 times 3 is 6"
 (should (= 6 (* 2 3)))))

Example 10.8: A spec for the * function

The spec shown previously checks a single condition using the should and = forms.
There are several variants of the should form, such as should=, should-not,
should-fail, and should-throw. These forms are pretty much self-explanatory,
and you are encouraged to go through the Speclj docs for more details. We can
describe some specs for the standard / function, as shown in Example 10.9.

(describe "/"
 (it "5 divided by 5 is 1"
 (should= 1 (/ 5 5)))
 (it "5 divided by 5 is not 0"

Chapter 10

[221]

 (should-not= 0 (/ 5 5)))
 (it "fail if 5 divided by 5 is not 1"
 (if (not= 1 (/ 5 5))
 (should-fail "divide not working")))
 (it "throw an error if 5 is divided by 0"
 (should-throw ArithmeticException
 (/ 5 0))))

Example 10.9: Specs for the / function using several it forms

Within a describe form, we can use the before and after forms to execute
arbitrary code before or after each it form is checked. Similarly, the before-all
and after-all forms can specify what to execute before and after all the specs are
checked in a describe form.

Input and output performed by a certain function can be described using specs. This
is done using the with-out-str and with-in-str forms. The with-out-str form
returns whatever data is sent to standard output by a given expression. Conversely,
the with-in-str form must be passed a string and an expression, and the supplied
string will be sent to the standard input once the supplied expression is called. For
example, let's say we have a simple function that reads a string and prints it. We can
write a spec for such a function using the with-out-str and with-in-str forms as
shown in Example 10.10:

(defn echo []
 (let [s (read-line)]
 (println (str "Echo: " s))))

(describe "echo"
 (it "reads a line and prints it"
 (should= "Echo: Hello!\r\n"
 (with-out-str
 (with-in-str "Hello!"
 (echo))))))

Example 10.10: A spec for a function that reads a string and prints it

We can also mock function calls within an it form using the standard with-redefs
macro we described earlier. For example, we can write a spec for the echo function
described in Example 10.10 by mocking the read-line and println functions as
shown in Example 10.11. Obviously, it's not advisable to mock standard functions,
and it's only done here to depict the usage of the with-redefs macro within a spec.

(describe "echo"
 (it "reads a line and prints it"
 (with-redefs [read-line (fn [] "Hello!")

Testing Your Code

[222]

 println (fn [x] x)]
 (should= "Echo: Hello!" (echo)))))

Example 10.11: Using the with-redefs macro within a spec

To run all the specs defined in a given project, we can call the run-specs macro,
as shown here:

user> (run-specs)
...

Finished in 0.00547 seconds
7 examples, 0 failures
#<speclj.run.standard.StandardRunner 0x10999>

We can also run the specs defined in a given namespace using the
following command. Note that the following command will watch
your project for file changes, and will run the specs in any files once
they are changed:
$ lein spec -a

To summarize, the Speclj library provides us with several constructs to define specs
for BDD. Specs for a given function should be modified only when the required
functionality or behavior of a function must be changed. With specs, there's less of
a chance that modifying the underlying implementation of a function will require
a change in its associated specs. Of course, the question of whether you should use
specs or tests in your project is a subjective one. Some projects do fine with simple
tests, and others prefer to use specs.

Generative testing
Another form of testing is generative testing, in which we define properties of
functions that must hold true for all inputs. This is quite different compared to
enumerating the expected inputs and outputs of functions, which is essentially
what unit tests and specs do. In Clojure, generative testing can be done using the
test.check library (https://github.com/clojure/test.check). This library is
inspired by Haskell's QuickCheck library, and provides similar constructs for testing
properties of functions.

https://github.com/clojure/test.check

Chapter 10

[223]

The following library dependencies are required for the upcoming
examples:

[org.clojure/test.check "0.9.0"]

Also, the following namespaces must be included in your namespace
declaration:

(ns my-namespace

 (:require [clojure.test.check :as tc]

 [clojure.test.check.generators :as gen]

 [clojure.test.check.properties :as prop]

 [clojure.test.check.clojure-test

 :refer [defspec]]))

The following examples can be found in src/m_clj/c10/check.clj
of the book's source code.

To define a property to check, we can use the for-all macro from the clojure.test.
check.properties namespace. This macro must be passed a vector of generator
bindings, which can be created using constructs from the clojure.test.check.
generators namespace, along with a property to verify. For example, consider the
properties defined in Example 10.12:

(def commutative-mult-prop
 (prop/for-all [a gen/int
 b gen/int]
 (= (* a b)
 (* b a))))

(def first-is-min-after-sort-prop
 (prop/for-all [v (gen/not-empty (gen/vector gen/int))]
 (= (apply min v)
 (first (sort v)))))

Example 10.12: Simple properties defined using the test.check library

In the preceding code, we have defined two properties, namely commutative-mult-
prop and first-is-min-after-sort-prop. The commutative-mult-prop property
asserts that a multiplication operation using the * function is commutative, and the
first-is-min-after-sort-prop function checks whether the first element of a
vector of integers sorted using the sort function is the smallest value in the vector.
Note the use of the int, vector and non-empty functions from the clojure.test.
check.generators namespace. We can verify that these properties are true using the
quick-check function from the clojure.test.check namespace, as shown here:

user> (tc/quick-check 100 commutative-mult-prop)
{:result true, :num-tests 100, :seed 1449998010193}

Testing Your Code

[224]

user> (tc/quick-check 100 first-is-min-after-sort-prop)
{:result true, :num-tests 100, :seed 1449998014634}

As shown previously, the quick-check function must be passed the number of
checks to run and a property to verify. This function returns a map describing the
checks performed on the supplied properties, in which the value of the :result
key indicates the outcome of the test. It's fairly evident that both of the properties
commutative-mult-prop and first-is-min-after-sort-prop hold true for the
specified type of inputs. Now, let's define a property that is not true, as shown in
Example 10.13:

(def commutative-minus-prop
 (prop/for-all [a gen/int
 b gen/int]
 (= (- a b)
 (- b a))))

Example 10.13: A property that won't be true defined using the test.check library

Running the preceding check will obviously fail, as shown in the following output:

user> (tc/quick-check 100 commutative-minus-prop)
{:result false, :seed 1449998165908,
 :failing-size 1, :num-tests 2, :fail [0 -1],
 :shrunk {:total-nodes-visited 1, :depth 0, :result false,
 :smallest [0 -1]}}

We can also define specs based on generative testing using the defspec macro from
the clojure.test.check.clojure-test namespace. This form must be passed the
number of checks to perform and a property, which is analogous to the quick-check
function. Specs defined using the defspec form will be checked by the standard
clojure.test runner. For example, we can define the commutative-mult-prop
property as a spec as shown in Example 10.14:

(defspec commutative-mult 100
 (prop/for-all [a gen/int
 b gen/int]
 (= (* a b)
 (* b a))))

Example 10.14: A spec defined using the defspec macro

The spec defined in the preceding code can be verified by calling the run-tests or
run-all-tests functions from the clojure.test namespace, or by running the
lein test Leiningen command. In conclusion, generative testing through the test.
check library is yet another way to test our code. It focuses on specifying properties
of functions rather than describing the expected output of functions for some input.

Chapter 10

[225]

Testing with types
Type checking is something that is often taken for granted in statically typed
languages. With type checking, type errors can be found at compile time, rather than
during runtime. In some dynamic languages such as Clojure, type signatures can be
declared wherever and whenever they are required, and this technique is termed as
optional typing. Type checking can be done using the core.typed library (https://
github.com/clojure/core.typed). Using core.typed, the type signature of a
var can be checked using type annotations. Type annotations can be declared for any
var, which includes values created using a def form, a binding form, or any other
construct that creates a var. In this section, we will explore the details of this library.

The following library dependencies are required for the upcoming
examples.

[org.clojure/core.typed "0.3.0"]

Also, the following namespaces must be included in your namespace
declaration.

(ns my-namespace

 (:require [clojure.core.typed :as t]))

The following examples can be found in src/m_clj/c10/typed.clj
of the book's source code.

Type annotations for vars are declared using the ann macro from the clojure.core.
typed namespace. This form must be passed an expression to annotate and a vector
of types. For example, a type annotation for a function that accepts two numbers as
arguments and returns a number is shown in Example 10.15.

(t/ann add [Number Number -> Number])
(defn add [a b]
 (+ a b))

Example 10.15: A type annotation for a function that accepts two numbers and returns a number

To check all the type annotations in the given namespace, we must call the
clojure.core.typed/check-ns function by passing it the namespace to be
checked, as shown here:

user> (t/check-ns 'my-namespace)
Start collecting my-namespace
Finished collecting my-namespace
Collected 2 namespaces in 200.965982 msecs
Start checking my-namespace
Checked my-namespace in 447.580402 msecs
Checked 2 namespaces in 650.979682 msecs
:ok

https://github.com/clojure/core.typed
https://github.com/clojure/core.typed

Testing Your Code

[226]

As shown previously, the check-ns function prints some information about the
namespaces being checked, and returns the keyword :ok if all type checks in
the specified namespace have passed. Now, let's change the definition of the add
function we previously defined as shown in Example 10.16:

(defn add [a b]
 (str (+ a b)))

Example 10.16: Redefining the add function

Although the preceding definition is valid, it will not be passed by the type checker,
as shown here:

user> (t/check-ns 'my-namespace)
Start collecting my-namespace
Finished collecting my-namespace
Collected 2 namespaces in 215.705251 msecs
Start checking my-namespace
Checked my-namespace in 493.669488 msecs
Checked 2 namespaces in 711.644548 msecs
Type Error (m_clj/c1/typed.clj:23:3) Type mismatch:

Expected: Number

Actual: String
in: (str (clojure.lang.Numbers/add a b))

ExceptionInfo Type Checker: Found 1 error clojure.core/ex-info
(core.clj:4403)

The check-ns function throws an error stating that a String type was found where
a Number type was expected. In this way, the check-ns function can find type errors
in functions that have been annotated with the ann macro. Functions with multiple
arities can be annotated using the IFn construct from the clojure.core.typed
namespace, as shown in Example 10.17:

(t/ann add-abc
 (t/IFn [Number Number -> Number]
 [Number Number Number -> Number]))
(defn add-abc
 ([a b]
 (+ a b))
 ([a b c]
 (+ a b c)))

Example 10.17: Annotating functions with multiple arities

Chapter 10

[227]

We can also annotate functions with variadic arguments using the * symbol in the
vector of types passed to the ann macro, as shown in Example 10.18.

(t/ann add-xs [Number * -> Number])
(defn add-xs [& xs]
 (apply + xs))

Example 10.18: Annotating functions with variadic arguments

In the REPL, we can determine the inferred type of an expression or a value using
the cf macro from the clojure.core.typed namespace. This macro can also be
passed the expected type as the second argument. Note that the cf form is only for
experimentation and should not be used in type annotations. The cf form returns
an inferred type, along with a structure called a filter set, which is represented as a
map. For example, the type and filter sets of the values nil, true, and false can be
inferred using the cf form as shown here:

user> (t/cf nil)
[nil {:then ff, :else tt}]
user> (t/cf true)
[true {:then tt, :else ff}]
user> (t/cf false)
[false {:then ff, :else tt}]

In the preceding output, the second value in each of the vectors returned by the cf
macro represents the filter set derived from the supplied expression. A filter set can
be described as a collection of the two filters:

• The :then filter, which is true if the expression is a truthy value
• The :else filter, which is true if the expression is not a truthy value

In the context of filter sets, there are two trivial filters, namely tt and ff, which can
be described as follows:

• tt, which translates to trivially true and means the value is truthy.
• ff, which translates to forever false and means the value is not truthy.

This filter is also termed as the impossible filter.

In this perspective, the filter set {:then tt, :else ff} translates into "the expression
could be a truthy value, but it is impossible for it to be a non-truthy value". Thus, false
values such as nil and false are never true as inferred by the cf form, which agrees
with the semantics of these values in Clojure. Truthy values will always have tt as
the :then filter, as shown in the following output:

user> (t/cf "Hello")
[(t/Val "Hello") {:then tt, :else ff}]
user> (t/cf 1)

Testing Your Code

[228]

[(t/Val 1) {:then tt, :else ff}]
user> (t/cf :key)
[(t/Val :key) {:then tt, :else ff}]

The cf macro can also be used to check the type signature of functions, as shown here:

user> (t/cf str)
[t/Any * -> String]
user> (t/cf +)
(t/IFn [Long * -> Long]
 [(t/U Double Long) * -> Double]
 [t/AnyInteger * -> t/AnyInteger]
 [Number * -> Number])

A form or expression can be annotated with an expected type using the ann-form
macro, as shown here:

user> (t/cf (t/ann-form #(inc %) [Number -> Number]))
[[Number -> Number] {:then tt, :else ff}]
user> (t/cf (t/ann-form #(str %) [t/Any -> String]))
[[t/Any -> String] {:then tt, :else ff}]

Aggregate types such as lists and vectors also have types defined for them in the
clojure.core.typed namespace. We can infer the types of these data structures
using the cf macro, as shown here:

user> (t/cf (list 0 1 2))
(PersistentList (t/U (t/Val 1) (t/Val 0) (t/Val 2)))
user> (t/cf [0 1 2])
[(t/HVec [(t/Val 0) (t/Val 1) (t/Val 2)]) {:then tt, :else ff}]

The types PersistentList and HVec in the preceding output are concrete types
for a list and a vector respectively. We can also pass the expected type as an extra
argument to the cf form as shown here:

user> (t/cf (list 0 1 2) (t/List t/Num))
(t/List t/Num)
user> (t/cf [0 1 2] (t/Vec t/Num))
(t/Vec t/Num)
user> (t/cf {:a 1 :b 2} (t/Map t/Keyword t/Int))
(t/Map t/Keyword t/Int)
user> (t/cf #{0 1 2} (t/Set t/Int))
(t/Set t/Int)

Chapter 10

[229]

The core.typed library also supports parameterized types, union types, and intersection
types. Union types are declared using the U construct, and intersection types
are declared using the I construct. Intersection types are meant to be used with
protocols, which implies that the intersection type (I A B) must implement both
the protocols A and B. On the other hand, union types can be defined using concrete
types. For example, the clojure.core.typed namespace defines a parameterized
Option type, which is simply a union of nil and the parameterized type. In other
words, the type (Option x) is defined as the union type (U x nil). Another good
example of a union type is the AnyInteger type, which represents a whole number,
and is defined in the clojure.core.typed namespace as shown in Example 10.19.

(defalias AnyInteger
 (U Integer Long clojure.lang.BigInt BigInteger Short Byte))

Example 10.19: The AnyInteger union type

Polymorphic types are also supported by the core.typed library, which allow us to
specify generalized types. For example, the identity and iterate functions have
polymorphic type signatures, as shown here:

user> (t/cf identity)
(t/All [x] [x -> x :filters ...])
user> (t/cf iterate)
(t/All [x] [[x -> x] x -> (t/ASeq x)])

We can annotate functions with polymorphic type signatures using the All construct
from the clojure.core.typed namespace, as shown in Example 10.20.

(t/ann make-map (t/All [x] [x -> (t/Map t/Keyword x)]))
(defn make-map [a]
 {:x a})

Example 10.20: Defining a polymorphic type signature

In conclusion, the core.typed library provides several constructs to define and
verify type signatures of vars. There are also several constructs for determining
the type signature of a given expression. Using core.typed, you can find logical
type errors in your code before it is executed at runtime. Type annotations can also
be thought of as a form of documentation, which concisely describe the types of
functions and vars. Thus, there are several benefits of using types through the
core.typed library in Clojure.

Testing Your Code

[230]

Summary
So far, we have discussed several libraries that can help us test and verify our code.
We talked about the clojure.test and Midje libraries for defining tests. We also
explored how we can define specs in the spirit of BDD using the Speclj library.
Generative testing is another approach to testing, and we demonstrated how it can
be done using the test.check library. Lastly, we talked about how we can perform
type checking in Clojure using the core.typed library. Hence, there is a wide array
of options for testing our code in Clojure.

In the next and final chapter, we will talk about how we can troubleshoot our code,
as well as some good practices for developing applications in Clojure.

[231]

Troubleshooting and Best
Practices

By now, you must be aware of all the features and most of the constructs of the
Clojure language. Before you start building your own applications and libraries in
Clojure, we will briefly discuss a few techniques to troubleshoot your code and some
practices that you should incorporate in your projects.

Debugging your code
Along your journey of building applications and libraries in Clojure, you'll surely
run into situations where it would be helpful to debug your code. The usual
response to such a situation is to use an Integrated Development Environment
(IDE) with a debugger. And while Clojure IDEs such as CIDER (https://github.
com/clojure-emacs/cider) and Counterclockwise (http://doc.ccw-ide.org) do
support debugging, there are a few simpler constructs and tools that we can use to
troubleshoot our code. Let's have a look at a few of them.

One of the easiest ways to debug your code is by printing the value of some variables
used within a function. We could use the standard println function for this purpose,
but it doesn't always produce the most readable output for complex data types. As a
convention, we should use the clojure.pprint/pprint function to print variables to
the console. This function is the standard pretty-printer of the Clojure language.

Macros can be quite bewildering to debug. As we mentioned in
Chapter 4, Metaprogramming with Macros, macros should be used
sparingly and we can debug macros using macroexpansion constructs
such as macroexpand and macroexpand-all.

https://github.com/clojure-emacs/cider
https://github.com/clojure-emacs/cider
http://doc.ccw-ide.org

Troubleshooting and Best Practices

[232]

Apart from these built-in constructs, there are a couple of useful libraries that we can
add to our debugging toolkit.

The following examples can be found in test/m_clj/c11/
debugging.clj of the book's source code.

Using tracing
Tracing can be used to determine when and how a form is called. The tools.trace
contrib library (https://github.com/clojure/tools.trace) provides some handy
constructs for tracing our code.

The following library dependencies are required for the upcoming
examples:

[org.clojure/tools.trace "0.7.9"]

Also, the following namespaces must be included in your namespace
declaration:

(ns my-namespace

 (:require [clojure.tools.trace :as tr]))

The trace function, from the clojure.tools.trace namespace, is the most
elementary way to trace an expression. It will simply print the value returned by the
expression passed to it. The trace construct can also be passed a string, with which
the trace can be tagged, as an additional argument. For example, suppose we have to
trace the function defined in Example 11.1:

(defn make-vector [x]
 [x])

Example 11.1: A simple function to trace

We can trace the expression (make-vector 0) using the trace function shown here:

user> (tr/trace (make-vector 0))
TRACE: [0]
[0]
user> (tr/trace "my-tag" (make-vector 0))
TRACE my-tag: [0]
[0]

https://github.com/clojure/tools.trace

Chapter 11

[233]

We can trace all the functions defined in a namespace by passing the namespace to the
trace-ns macro, which is defined in the clojure.tools.trace namespace. Similarly,
specific functions or vars in a namespace can be traced using the trace-vars macro.
Traces added using these forms can be removed using the untrace-ns and untrace-
vars marcos. If we want to determine which expression among several ones is failing,
we can pass the expressions to the trace-forms macro, shown here:

user> (tr/trace-forms (+ 10 20) (* 2 3) (/ 10 0))

ArithmeticException Divide by zero

 Form failed: (/ 10 0)

clojure.lang.Numbers.divide (Numbers.java:158)

As the preceding output shows, the trace-forms macro will print the form that causes
the error. A more informative way to trace a function is by replacing the defn symbol
in its definition by clojure.tools.trace/deftrace, which simply defines a function
whose arguments and return value will be traced. For example, consider the function
defined in the following Example 11.2:

(tr/deftrace add-into-vector [& xs]

 (let [sum (apply + xs)]

 [sum]))

Example 11.2: Tracing a function using the deftrace macro

On calling the add-into-vector function defined previously, the following trace
will be printed:

user> (add-into-vector 10 20)

TRACE t9083: (add-into-vector 10 20)

TRACE t9083: => [30]

[30]

In this way, tracing can be used to find the value returned by an expression during
the execution of a program. The tracing constructs from the tools.trace namespace
allow us to determine when a function is called, as well as what its return value and
arguments are.

Troubleshooting and Best Practices

[234]

Using Spyscope
As you may have already been thinking, you can easily implement your own
debugging constructs using macros. The Spyscope library (https://github.com/
dgrnbrg/spyscope) takes this approach and implements a few reader macros
for debugging code. The use of reader macros for debugging is a more favorable
approach for languages with the parentheses-flavored syntax of Lisps. This is
because, in these languages, reader macros that print debugging information can
be added more easily to an existing program compared to forms such as trace and
deftrace. Let's explore the constructs of the Spyscope library to get a clearer idea of
the advantage of debugging code with reader macros.

The Spyscope library provides the #spy/p, #spy/d, and #spy/t reader macros,
which can all be used by writing them immediately before expressions that have
to be debugged. It is a common practice to have these forms made available in the
REPL using the :injections section of the project.clj file in a Leiningen project.

The following library dependencies are required for the upcoming
examples:

[spyscope "0.1.5"]

We must also include the following forms as a vector in the
:injections section of your project.clj file:

(require 'spyscope.core)

Also, the following namespaces must be included in your namespace
declaration:

(ns my-namespace

 (:require [spyscope.repl :as sr]))

The #spy/p reader macro can be used to print a value that is used within an
expression. An interesting point about this construct is that it is implemented
using the clojure.pprint/pprint function. For example, we can print out the
intermediate values produced by a take form shown here:

user> (take 5 (repeatedly
 #(let [r (rand-int 100)]
 #spy/p r)))
95
36
61
99
73
(95 36 61 99 73)

https://github.com/dgrnbrg/spyscope
https://github.com/dgrnbrg/spyscope

Chapter 11

[235]

To produce more detailed information, such as the call stack and the form that
returns a value, we can use the #spy/d reader macro. For example, we can use this
construct to produce the following information:

user> (take 5 (repeatedly
 #(let [r (rand-int 100)]
 #spy/d (/ r 10.0))))
user$eval9408$fn__9409.invoke(form-init1..0.clj:2) (/ r 10.0) =>
4.6
user$eval9408$fn__9409.invoke(form-init1..0.clj:2) (/ r 10.0) =>
4.4
user$eval9408$fn__9409.invoke(form-init1..0.clj:2) (/ r 10.0) =>
5.0
user$eval9408$fn__9409.invoke(form-init1..0.clj:2) (/ r 10.0) =>
7.8
user$eval9408$fn__9409.invoke(form-init1..0.clj:2) (/ r 10.0) =>
3.1
(4.6 4.4 5.0 7.8 3.1)

The #spy/d reader macro also supports several options, which can be passed to it as
metadata. The :fs key of this metadata map specifies the number of stack frames to
display. Also, the :marker key can be used to declare a string tag for a form. We can
use these options to display information from the call stack of a form, shown here:

user> (take 5 (repeat #spy/d ^{:fs 3 :marker "add"}
 (+ 0 1 2)))
--
clojure.lang.Compiler.eval(Compiler.java:6745)
clojure.lang.Compiler.eval(Compiler.java:6782)
user$eval9476.invoke(form-init1..0.clj:1) add (+ 0 1 2) => 3
(3 3 3 3 3)

The preceding output shows the top three stack frames of a call to the + form. We can
also filter out stack frames from the call stack information using the :nses key with a
regular expression, shown here:

user> (take 5 (repeat #spy/d ^{:fs 3 :nses #"core|user"}
 (+ 0 1 2)))
--
clojure.core$apply.invoke(core.clj:630)
clojure.core$eval.invoke(core.clj:3081)
user$eval9509.invoke(form-init1..0.clj:1) (+ 0 1 2) => 3
(3 3 3 3 3)

Troubleshooting and Best Practices

[236]

To skip printing the form being debugged, we can specify the :form key with a
false value in the metadata map specified to the #spy/d reader macro, and this
key defaults to true. We can also print out the time at which a form is called using
the :time key. The value for this key can either be true, in which case the default
time format is used, or a string such as "hh:mm:ss", which represents the timestamp
format with which the time must be displayed.

The #spy/t reader macro is used for tracing a form, and this construct supports
the same options as the #spy/d reader macro. The trace is not printed immediately,
and can be displayed using the trace-query function from the spyscope.repl
namespace. For example, consider the function in Example 11.3 that adds a number
of values in a future:

(defn add-in-future [& xs]
 (future
 #spy/t (apply + xs)))

Example 11.3: Tracing a function that adds numbers in a future

Once the add-in-future function is called, we can display a trace of the call using
the trace-query function, shown here:

user> (sr/trace-next)
nil
user> (def f1 (add-in-future 10 20))
#'user/f1
user> (def f2 (add-in-future 20 30))
#'user/f2
user> (sr/trace-query)
useradd_in_futurefn_..7.invoke(debugging.clj:66) (apply + xs) =>
30
--
useradd_in_futurefn_..7.invoke(debugging.clj:66) (apply + xs) =>
50
nil

In the preceding output, the trace-next function is used to start a new generation
of traces. Traces in the Spyscope library are grouped into generations, and a new
generation can be started using the spyscope.repl/trace-next function. All trace
information from all generations can be cleared using the trace-clear function
from the spyscope.repl namespace. We can also pass an argument to the trace-
query function to filter out results. This argument can be either a number, which
represents the number of recent generations to show, or a regex to filter traces by
their namespaces.

Chapter 11

[237]

To summarize, there are several ways to debug your code in Clojure without the
use of a debugger. The tools.trace and Spyscope libraries have several useful and
simple constructs for debugging and tracing the execution of Clojure code.

Logging errors in your application
Another way to analyze what went wrong in an application is by using logs.
Logging can be done using the tools.logging contrib library. This library lets
us use multiple logging implementations through an agnostic interface, and the
implementations to choose from include slf4j, log4j, and logback. Let's quickly
skim over how we can add logging to any Clojure program using the tools.
logging library and logback, which is arguably the most recent and configurable
implementation to use with this library.

The following library dependencies are required for the upcoming
examples:

[org.clojure/tools.logging "0.3.1"]

[ch.qos.logback/logback-classic "1.1.3"]

Also, the following namespaces must be included in your namespace
declaration:

(ns my-namespace

 (:require [clojure.tools.logging :as log]))

The following examples can be found in test/m_clj/c11/
logging.clj of the book's source code.

All the logging macros implemented in the clojure.tools.logging namespace
fall into two categories. The first category of macros require arguments like those
which are passed to the println form. All of these arguments are concatenated and
written to the log. The other category of macros must be passed a format string and
values to interpolate into the specified format. This second category of macros are
generally suffixed with an f character, such as debugf or infof. The logging macros
in the tools.logging library can be passed an exception followed by the other usual
arguments.

The macros in the tools.logging library write log messages at differing log levels.
For example, the debug and debugf forms write log messages at the DEBUG level,
and similarly, the error and errorf macros log at the ERROR level. In addition, the
spy and spyf macros will evaluate and return the value of an expression, and may
log the result if the current log level is equal to or below the log level specified to it,
which defaults to DEBUG.

Troubleshooting and Best Practices

[238]

For example, the divide function, shown in the following Example 11.4, logs
some information, using the info, spyf, and error macros, while performing
integer division:

(defn divide [a b]
 (log/info "Dividing" a "by" b)
 (try
 (log/spyf "Result: %s" (/ a b))
 (catch Exception e
 (log/error e "There was an error!"))))

Example 11.4: A function that logs information using the tools.logging library

The following log messages will be written when the divide function is called:

user> (divide 10 1)
INFO - Dividing 10 by 1
DEBUG - Result: 10
10
user> (divide 10 0)
INFO - Dividing 10 by 0
ERROR - There was an error!
java.lang.ArithmeticException: Divide by zero
at clojure.lang.Numbers.divide(Numbers.java:158) ~[clojure-
1.7.0.jar:na]
...
at java.lang.Thread.run(Thread.java:744) [na:1.7.0_45]
nil

As shown previously, the divide function writes several log messages at different
log levels when it is called. The logging configuration for logback must be saved
in a file named logback.xml, which can reside in either the src/ or resources/
directories of a Leiningen project. We can specify the default log level and several
other options for logback in this file.

If you're interested in the logging configuration for the previous
examples, take a look at the src/logback.xml file in the book's
source code. For detailed configuration options, visit http://
logback.qos.ch/manual/configuration.html.

It is also handy to have a global exception handler that logs exceptions for
all threads in a program. This can be particularly useful for checking errors
that are encountered during the execution of go and thread macros from the
core.async library. Such a global exception handler can be defined using the
setDefaultUncaughtExceptionHandler method from the java.lang.Thread
class, as shown in Example 11.5:

http://logback.qos.ch/manual/configuration.html
http://logback.qos.ch/manual/configuration.html

Chapter 11

[239]

(Thread/setDefaultUncaughtExceptionHandler
 (reify Thread$UncaughtExceptionHandler
 (uncaughtException [_ thread ex]
 (log/error ex "Uncaught exception on" (.getName thread)))))

Example 11.5: A global exception handler that logs all errors

You can also use Timbre (https://github.com/ptaoussanis/
timbre) for logging, which can be configured without the use of XML
and is also supported on ClojureScript.

In conclusion, there are several options for logging available to us through the
tools.logging library. This library also supports several logging implementations
that each have their own set of configuration options.

Thinking in Clojure
Let's briefly discuss a handful of good practices for building real world applications
in Clojure. Of course, these practices are only guidelines, and you should eventually
try to establish your own set of rules and practices for writing code in Clojure:

• Minimize state and use pure functions: Most applications must inevitably
use some form of state. You must always strive to reduce the amount of
state you're dealing with, and implement most of the heavy lifting in pure
functions. State can be managed using reference types, channels, or even
monads in Clojure, thus giving us a lot of proven options. In this way, we can
reduce the number of conditions that can cause any unexpected behavior in a
program. Pure functions are also easier to compose and test.

• Don't forget about laziness: Laziness can be used as an alternative to solve
problems that have solutions based on recursion. Although laziness does
tend to simplify several aspects of functional programming, it also incurs
additional memory usage in certain situations, such as holding on to the head
of a lazy sequence. Take a look at http://clojure.org/reference/lazy#_
don_t_hang_onto_your_head for more information on how laziness can
increase the memory usage of your program. Most of the standard functions
in Clojure return lazy sequences as results, and you must always consider
laziness when working with them.

• Model your program as transformations of data: It is unavoidable to think
in steps as humans, and you must always try to model your code as steps of
transforming data. Try to avoid thinking in steps that mutate state, but rather
in transformations of data. This leads to a more composable design, which
makes combining a handful of transformations very easy.

https://github.com/ptaoussanis/timbre
https://github.com/ptaoussanis/timbre
http://clojure.org/reference/lazy#_don_t_hang_onto_your_head
http://clojure.org/reference/lazy#_don_t_hang_onto_your_head

Troubleshooting and Best Practices

[240]

• Use the threading macros -> and ->> to avoid nesting expressions: You must
have seen quite a few examples in this book that have used these macros, and
have probably started enjoying their presence in your own code as well. The
-> and ->> macros improve readability greatly, and must be used wherever
possible. Don't hesitate to use these macros even if it avoids a couple of levels
of nesting. There are several other threading macros, such as cond-> and as->,
that can often be useful.

• Parallelism is at your fingertips: There are several ways to write programs
that benefit through the use of parallelism in Clojure. You can choose
between futures, reducers, core.async processes, and several other
constructs to model concurrent and parallel operations. Also, most of the
state management constructs, such as atoms, agents, and channels, have been
designed with concurrency in mind. So, don't hesitate to use them when
you're dealing with concurrent tasks and state.

• Live in the REPL: It's an indispensable tool for experimenting with code and
prototyping your programs. After writing a function or a macro, the first thing
you should do is play with it in the REPL. You can use the load-file function
to quickly reload changes in your source files without ever restarting the REPL.
Keep in mind that reloading a source file with the load-file form will erase
any modifications or redefinitions in the namespace of the source file that have
been made through the REPL.

• Embed a Clojure REPL in your application: It is possible to embed the REPL
into an application, thus allowing us to connect to it and modify its behavior
at runtime as we desire. For more information on how to do this, take a
look at the constructs in the clojure.core.server.repl namespace or the
tools.nrepl library (https://github.com/clojure/tools.nrepl). But,
this is a possible security risk, and should be used with caution.

• Use the standard coding style with consistency: Maintaining a good coding
style is important in any project or programming language. All of the examples
in this book are formatted in a standard way, as defined by the Clojure style
guide (https://github.com/bbatsov/clojure-style-guide).

https://github.com/clojure/tools.nrepl
https://github.com/bbatsov/clojure-style-guide

Chapter 11

[241]

Summary
So far, we talked about several ways to troubleshoot our code. The tools.trace and
Spyscope libraries are useful in interactive debugging, while the tools.logging
library can be used to log information in running applications. We also discussed a
handful of good practices for developing applications and libraries in Clojure.

You must be quite anxious by now to write your own applications in Clojure. If
you've been paying attention so far, you must have noticed that Clojure is indeed
a simple language. Yet, through its simplicity, we are empowered to create elegant
and scalable solutions to a lot of interesting problems. On your journey with Clojure
ahead, always strive to make things simpler, if they aren't simple enough already.
We'll leave you with a few thought provoking quotes as you go onwards to realize
the possibilities of this elegant, powerful, and simple programming language.

"Composing simple components is the way we write robust software."

 – Rich Hickey

"Simplicity is prerequisite for reliability."

 – Edsger W. Dijkstra

"Simplicity is the ultimate sophistication."

 – Leonardo da Vinci

[243]

References
• Anatomy of a Reducer, Rich Hickey (2012): http://clojure.com/

blog/2012/05/15/anatomy-of-reducer.html

• Transducers are Coming, Rich Hickey (2014): http://blog.cognitect.com/
blog/2014/8/6/transducers-are-coming

• Introduction to Logic Programming with Clojure, Ambrose Bonnaire-Sergeant
(2011): http://github.com/frenchy64/Logic-Starter/wiki

• N-Queens with core.logic, Martin Trojer (2012): http://
martinsprogrammingblog.blogspot.in/2012/07/n-queens-with-
corelogic-take-2.html

• Clojure core.async Channels, Rich Hickey (2013): http://clojure.com/
blog/2013/06/28/clojure-core-async-channels

• Communicating Sequential Processes, C. A. R. Hoare (1978): http://www.
cs.ucf.edu/courses/cop4020/sum2009/CSP-hoare.pdf

• Communicating Sequential Processes, David Nolen (2013): http://
swannodette.github.io/2013/07/12/communicating-sequential-
processes/

• A Dining Philosophers solver, Pepijn de Vos (2013): http://pepijndevos.
nl/2013/07/11/dining-philosophers-in-coreasync.html

• CSP vs. FRP, Draco Dormiens (2014): http://potetm.github.
io/2014/01/07/frp.html

• Functional Reactive Animation, Conal Elliott and Paul Hudak (1997):
http://conal.net/papers/icfp97/icfp97.pdf

• Yolk examples, Wilkes Joiner (2013): https://github.com/Cicayda/yolk-
examples

• The Clojure docs: http://clojure.org/
• Cats Documentation: http://funcool.github.io/cats/latest

http://clojure.com/blog/2012/05/15/anatomy-of-reducer.html
http://clojure.com/blog/2012/05/15/anatomy-of-reducer.html
http://blog.cognitect.com/blog/2014/8/6/transducers-are-coming
http://blog.cognitect.com/blog/2014/8/6/transducers-are-coming
http://github.com/frenchy64/Logic-Starter/wiki
http://martinsprogrammingblog.blogspot.in/2012/07/n-queens-with-corelogic-take-2.html
http://martinsprogrammingblog.blogspot.in/2012/07/n-queens-with-corelogic-take-2.html
http://martinsprogrammingblog.blogspot.in/2012/07/n-queens-with-corelogic-take-2.html
http://clojure.com/blog/2013/06/28/clojure-core-async-channels
http://clojure.com/blog/2013/06/28/clojure-core-async-channels
http://www.cs.ucf.edu/courses/cop4020/sum2009/CSP-hoare.pdf
http://www.cs.ucf.edu/courses/cop4020/sum2009/CSP-hoare.pdf
http://swannodette.github.io/2013/07/12/communicating-sequential-processes/
http://swannodette.github.io/2013/07/12/communicating-sequential-processes/
http://swannodette.github.io/2013/07/12/communicating-sequential-processes/
http://pepijndevos.nl/2013/07/11/dining-philosophers-in-coreasync.html
http://pepijndevos.nl/2013/07/11/dining-philosophers-in-coreasync.html
http://potetm.github.io/2014/01/07/frp.html
http://potetm.github.io/2014/01/07/frp.html
http://conal.net/papers/icfp97/icfp97.pdf
https://github.com/Cicayda/yolk-examples
https://github.com/Cicayda/yolk-examples
http://clojure.org/
http://funcool.github.io/cats/latest

References

[244]

• The core.logic wiki: http://github.com/clojure/core.logic/wiki
• The Pulsar docs: http://docs.paralleluniverse.co/pulsar/
• The Midje wiki: http://github.com/marick/Midje/wiki
• Getting Started with Speclj: http://speclj.com/tutorial
• The core.typed wiki: http://github.com/clojure/core.typed/wiki

http://github.com/clojure/core.logic/wiki
http://docs.paralleluniverse.co/pulsar/
http://github.com/marick/Midje/wiki
http://speclj.com/tutorial
http://github.com/clojure/core.typed/wiki

[245]

Index
A
actors

about 178
comparing with processes 186
creating 179-181
errors, handling with 183, 184
messages, passing between 182, 183
state, managing with 184, 185
using 178, 179

agents
asynchronous state 56
independent state 56
used, for managing state 56-62

algebraic structures 131
alts! function 166
alts!! functions 166
application

errors, logging in 237, 238
applicative functors

using 136, 137
assert function 214
asynchronous programming 161
atoms

independent state 54
synchronous state 54
used, for managing state 54-56

B
backtick

URL 106
Bacon.js library

reference library 198

behavior-driven development (BDD) 220
best practices, Clojure 239, 240
buffered channel 163

C
category theory

demystifying 129-132
cats library

URL 132
chan function 162, 163
channels

about 179
connecting 170-173
customizing 168, 169
dining philosophers problem 173
using 162-167

chunked sequences 72
chunks 70
CIDER

reference link 231
claypoole library

URL 64
cljx library

URL 109
Clojure

best practices 239
reference link 178

code
debugging 231, 232
evaluating 93-96
quoting 96-99
reading 93-96
transforming 99
unquoting 96-99

[246]

code debugging
about 231
Spyscope, using 234-236
tracing, using 232, 233

collections
parallelizing, with fold 80-84
transforming, with reduce functions 70-73

combining function 81
Communicating Sequential Processes

(CSPs) 162
compositional event systems (CESs) 197
composition aspect 129
concurrency

advantages 35
concurrent programming 35
concurrent tasks

delays, using 36, 37
futures, using 38-41
managing 36
promises, using 38-41

core.match
URL 30

core.typed library
intersection types 229
parameterized types 229
reference link 225
union types 229

Counterclockwise
reference link 231

D
data

processing, with reducers 85-88
dataflow programming 188
dataflow variables

about 188
used, for reactive programming 188-191

defun
URL 30

delay
synchronous 38
using 36

deref function 37
design patterns 106

deterministic methodology 42
dining philosophers problem

about 48, 173-177
reference link 174

doo library
reference link 216

dropping-buffer function 163

E
errors

handling, with actors 183, 184
logging, in application 237, 238

event bus 199

F
fibers

about 179, 188
used, for reactive programming 188-191

fold function
about 81
used, for parallelizing collections 80-84

force function 37
fork/join model 80
functional reactive programming (FRP)

about 197
using 197-201

functors
using 134, 135

futures
using 38-41

G
generative testing

about 222-224
reference link 222

global vars 44

H
homoiconic language 90
homomorphism 138
hygenic macros 104

[247]

I
identity element 133
identity morphism 130
identity value 83
infix notation 102
Input 178
Integrated Development Environment

(IDE) 231
interning 44
iota library

URL 85

J
joint 170
joint fitting 170

L
lazy sequences 7, 22-4
Lisps 89
list comprehension

creating 17
local vars 45
logging configuration

reference link 238
logical relations

about 146
combining 150-152
n-queens problem, solving 153-156
solutions, to problems 152
solving 146-148
Sudoku puzzle, solving 156-159

logic programming
about 145
exploring 145, 146
logical relations, combining 150-152
logical relations, solving 146-149

M
macros

about 231
avoiding 111
creating 101-105
expanding 99-101
issues 111

patterns, encapsulating 106-108
thumb rules 111

map function
characteristics 72

MapReduce frameworks 69
metaconstants 218
metaprogramming 89
Midje library

reference link 216
miniKanren

about 145
reference link 145

mix function 171
mocking 214
monads

using 139-143
monoids

about 83, 133
using 132, 133

morphisms 130
multithreading 36
mutable state, modeling

identity 42
state 42
time 42

N
n-queens problem

reference link 154
solving 153-156

O
objects 130
observables 187, 191
Om library

about 209-212
reference link 209

optional typing 225
Output 178

P
parallelism

about 62-64
controlling, with thread pools 64-66

[248]

parallel programming 35
parse tree 90
pattern matching

working with 30-33
pipe 170
postfix notation 102
prefix notation 91
processes

about 162
comparing, with actors 186

promises
about 179
using 38-41

publication 172
Pulsar docs

reference link 244
Pulsar library

reference link 178

Q
queues

about 162
quoting 94

R
race condition 42
reactive extensions (Rx)

using 191-197
reactive programming

about 187
dataflow variables, using 188
fibers, using 188-191

reactive user interfaces
building 202-209

React.js
reference link 209

reader conditionals
about 90
using 109-111

reader conditional splicing form 109
reader macro 92, 93
recursive functions

defining 1-6

reduce functions
used, for transforming collections 70-73

reducers
about 69-79
comparing, with transducers 119, 120
performance gain, achieving 70
used, for processing data 85-88

reducing function transformers 73-75
reference types

about 43
asynchronous 43
characterizing, ways 43
mutation 43
synchronous 43

refs
coordinated states 46
synchronous state 46
used, for managing state 46-54

RxClojure library
reference library 192

S
semigroup 132
seqable collection 7
seq library

using 9-12
sequence (seq)

about 7, 9
creating 12-14
filtering 20-22
lazy sequences 7, 22-24
limitations 70
transforming 15-20
zippers, using 25

sexp 90
s-expression 90
sliding-buffer function 163
Software Transactional Memory (STM) 46
Speclj

reference link 219
Specs

reference link 219
used, for testing 220, 222

[249]

Spyscope
reference library 234
using 234-236

state, managing
about 42, 43
with actors 184, 185
with agents 56-62
with atoms 54-56
with refs 46-53
with vars 43-45

stubbing 214
Sudoku puzzle

solving 156-159
symbols 90
syntax-quote

URL 106
syntax tree 90

T
tasks

executing, in parallel 62, 63
test-driven development (TDD) 216
testing

about 213
with Specs 220-222
with types 225-229

tests
advantages 213
top-down testing, using 216
unit tests, defining 214
writing 213, 214

thread pools
used, for controlling parallelism 64-67

Thread/sleep method 36
Timbre

reference link 239
timeout 167
top-down testing

about 216
using 217-219

transducers
about 113-116
comparing, with reducers 119, 120
creating 122-126
early termination 122
results. producing 117, 118, 119
standard functions, URL 115
used, for managing volatile

references 120, 121
using 120

transformers 75
truthy value 9
type checking 225

U
unbound var 44
unit tests

defining 214-216

V
values 90
variable capture 104
vars

used, for managing state 43-45
volatile references

managing 120, 121

W
watch function 55

Y
Yolk examples

reference link 201

Z
zippers

using 25-30

	Cover

	Copyright
	Credits
	About the Author
	About the Reviewer
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Working with Sequences
and Patterns
	Defining recursive functions
	Thinking in sequences
	Using the seq library
	Creating sequences
	Transforming sequences
	Filtering sequences
	Lazy sequences

	Using zippers

	Working with pattern matching
	Summary

	Chapter 2: Orchestrating Concurrency and Parallelism
	Managing concurrent tasks
	Using delays
	Using futures and promises

	Managing state
	Using vars
	Using refs
	Using atoms
	Using agents

	Executing tasks in parallel
	Controlling parallelism with thread pools

	Summary

	Chapter 3: Parallelization Using Reducers
	Using reduce to transform collections
	What's wrong with sequences?
	Introducing reducers

	Using fold to parallelize collections
	Processing data with reducers
	Summary

	Chapter 4: Metaprogramming
with Macros
	Understanding the reader
	Reading and evaluating code
	Quoting and unquoting code
	Transforming code
	Expanding macros
	Creating macros
	Encapsulating patterns in macros
	Using reader conditionals
	Avoiding macros

	Summary

	Chapter 5: Composing Transducers
	Understanding transducers
	Producing results from transducers
	Comparing transducers and reducers

	Transducers in action
	Managing volatile references
	Creating transducers

	Summary

	Chapter 6: Exploring Category Theory
	Demystifying category theory
	Using monoids
	Using functors
	Using applicative functors
	Using monads
	Summary

	Chapter 7: Programming with Logic
	Diving into logic programming
	Solving logical relations
	Combining logical relations

	Thinking in logical relations
	Solving the n-queens problem
	Solving a Sudoku puzzle

	Summary

	Chapter 8: Leveraging Asynchronous Tasks
	Using channels
	Customizing channels
	Connecting channels
	Revisiting the dining philosophers problem

	Using actors
	Creating actors
	Passing messages between actors
	Handling errors with actors
	Managing state with actors
	Comparing processes and actors

	Summary

	Chapter 9: Reactive Programming
	Reactive programming with fibers and dataflow variables
	Using Reactive Extensions
	Using functional reactive programming
	Building reactive user interfaces
	Introducing Om
	Summary

	Chapter 10: Testing Your Code
	Writing tests
	Defining unit tests
	Using top-down testing

	Testing with specs
	Generative testing
	Testing with types
	Summary

	Chapter 11: Troubleshooting and Best Practices
	Debugging your code
	Using tracing
	Using Spyscope

	Logging errors in your application
	Thinking in Clojure
	Summary

	Appendix: References
	Index

