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Preface
Welcome to the world of IPython 4.0, which is used in high performance and parallel 
environments. Python itself has been gaining traction in these areas, and IPython 
builds on these strengths.

High-performance computing (HPC) has a number of characteristics that make 
it different from the majority of other computing fields. We will start with a brief 
overview of what makes HPC different and how IPython can be a game-changing 
technology.

We will then start on the IPython command line. Now that Jupyter has split from the 
IPython project, this is the primary means by which the developer will interface with 
the language. This is an important enough topic to devote two chapters to. In the 
first, we will concentrate on basic commands and gaining an understanding of how 
IPython carries them out. The second chapter will cover more advanced commands, 
leaving the reader with a solid grounding in what the command line has to offer.

After that, we will address some particulars of parallel programming. IPython 
parallel is a package that contains a great deal of functionality required for parallel 
computing in IPython. It supports a flexible set of parallel programming models and 
is critical if you want to harness the power of massively parallel architectures.

Programs running in parallel but on separate processors often need to exchange 
information despite having separate address spaces. They do so by sending 
messages. We will cover two messaging systems, ZeroMQ and MPI, and in relation 
to both how they are used in already existing programs and how they interact  
with IPython.

We will then take a deeper look at libraries that can enhance your productivity, 
whether included in IPython itself or provided by third-parties. There are far too 
many tools to cover in this book, and more are being written all the time, but a few 
will be particularly applicable to parallel and HPC projects.
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An important feature of IPython is its support for visualization of datasets and 
results. We will cover some of IPython's extensive capabilities, whether built-in  
to the language or through external tools.

Rounding off the book will be material on testing and documentation. These oft-
neglected topics separate truly professional code from also-rans, and we will look at 
IPython's support for these phases of development. Finally, we will discuss where 
the field is going. Part of the fun of programming is that everything changes every 
other year (if not sooner), and we will speculate on what the future might hold.

What this book covers
Chapter 1, Using IPython for HPC, discusses the distinctive features of parallel and 
HPC computing and how IPython fits in (and how it does not).

Chapter 2, Advanced Shell Topics, introduces the basics of working with the command 
line including debugging, shell commands, and embedding, and describes the 
architecture that underlies it.

Chapter 3, Stepping Up to IPython for Parallel Computing, explores the features of 
IPython that relate directly to parallel computing. Different parallel architectures will 
be introduced and IPython's support for them will be described.

Chapter 4, Messaging with ZeroMQ and MPI, covers these messaging systems and how 
they can be used with IPython and parallel architectures.

Chapter 5, Opening the Toolkit – The IPython API, introduces some of the more useful 
libraries included with IPython, including performance profiling, AsyncResult,  
and View.

Chapter 6, Works Well with Others – IPython and Third-Party Tools, describes tools 
created by third-parties, including R, Octave, and Hy. The appropriate magics 
are introduced, passing data between the languages is demonstrated, and sample 
programs are examined.

Chapter 7, Seeing Is Believing – Visualization, provides an overview of various tools 
that can be used to produce visual representations of data and results. Matplotlib, 
bokeh, R, and Python-nvd3 are covered.

Chapter 8, But It Worked in the Demo! – Testing, covers issues related to unit testing 
programs and the tools IPython provides to support this process. Frameworks 
discussed include unittest, pytest, and nose2.



Preface

[ xiii ]

Chapter 9, Documentation, discusses the different audience for documentation and 
their requirements. The use of docstrings with reStructuredText, docutils, and 
Sphinx is demonstrated in the context of good documentation standards.

Chapter 10, Visiting Jupyter, introduces the Jupyter notebook and describes its use as a 
laboratory notebook combining data and calculations.

Chapter 11, Into the Future, reflects on the current rapid rate of change and speculates 
on what the future may hold, both in terms of the recent split between IPython  
and the Jupyter project and relative to some emerging trends in scientific computing 
in general.

What you need for this book
This book was written using the IPython 4.0 and 4.0.1 (stable) releases from August 
2015 through March 2016; all examples and functions should work in these versions. 
When third-party libraries are required, the version used will be noted at that time. 
Given the rate of change of the IPython 4 implementation, the various third-party 
libraries, and the field in general, it is an unfortunate fact that getting every example 
in this book to run on every reader's machine is doubtful. Add to that the differences 
in machine architecture and configuration and the problem only worsens. Despite 
efforts to write straightforward, portable code, the reader should not be surprised if 
some work is required to make the odd example work on their system.

Who this book is for
This book is for IPython developers who want to make the most of IPython  
and perform advanced scientific computing with IPython, utilizing the ease of 
interactive computing.

It is ideal for users who wish to learn about the interactive and parallel computing 
properties of IPython 4.0, along with its integration with third-party tools and 
concepts such as testing and documenting results.

Conventions
In this book, you will find a number of text styles that distinguish between different 
kinds of information. Here are some examples of these styles and an explanation of 
their meaning.
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Code words in text, database table names, folder names, filenames, file extensions, 
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: 
"These methods must be named setUpClass and tearDownClass and must be 
implemented as class methods."

A block of code is set as follows:

    def setUp(self):
        print("Doing setUp")
        self.vals = np.zeros((10), dtype=np.int32)
        self.randGen = myrand.MyRand( )

Any command-line input or output is written as follows:

pip install pytest

New terms and important words are shown in bold. Words that you see on the 
screen, for example, in menus or dialog boxes, appear in the text like this: "At a  
finer level of detail are the bugs listed under the Issues tag and the new features 
under the Pulls tag."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about 
this book—what you liked or disliked. Reader feedback is important for us as it helps 
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention 
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing 
or contributing to a book, see our author guide at www.packtpub.com/authors.

www.packtpub.com/authors
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Customer support
Now that you are the proud owner of a Packt book, we have a number of things to 
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for this book from your account at 
http://www.packtpub.com. If you purchased this book elsewhere, you can  
visit http://www.packtpub.com/support and register to have the files e-mailed 
directly to you.

You can download the code files by following these steps:

1. Log in or register to our website using your e-mail address and password.
2. Hover the mouse pointer on the SUPPORT tab at the top.
3. Click on Code Downloads & Errata.
4. Enter the name of the book in the Search box.
5. Select the book for which you're looking to download the code files.
6. Choose from the drop-down menu where you purchased this book from.
7. Click on Code Download.

You can also download the code files by clicking on the Code Files button on the 
book's webpage at the Packt Publishing website. This page can be accessed by 
entering the book's name in the Search box. Please note that you need to be logged in 
to your Packt account.

Once the file is downloaded, please make sure that you unzip or extract the folder 
using the latest version of:

• WinRAR / 7-Zip for Windows
• Zipeg / iZip / UnRarX for Mac
• 7-Zip / PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/
PacktPublishing/Mastering-IPython-4. We also have other code bundles 
from our rich catalog of books and videos available at https://github.com/
PacktPublishing/. Check them out!

http://www.packtpub.com
http://www.packtpub.com/support
https://github.com/PacktPublishing/Mastering-IPython-4
https://github.com/PacktPublishing/Mastering-IPython-4
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
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Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/
diagrams used in this book. The color images will help you better understand the 
changes in the output. You can download this file from https://www.packtpub.
com/sites/default/files/downloads/MasteringIPython40_ColorImages.pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes 
do happen. If you find a mistake in one of our books—maybe a mistake in the text or 
the code—we would be grateful if you could report this to us. By doing so, you can 
save other readers from frustration and help us improve subsequent versions of this 
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form 
link, and entering the details of your errata. Once your errata are verified, your 
submission will be accepted and the errata will be uploaded to our website or added 
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required 
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all 
media. At Packt, we take the protection of our copyright and licenses very seriously. 
If you come across any illegal copies of our works in any form on the Internet, please 
provide us with the location address or website name immediately so that we can 
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected  
pirated material.

We appreciate your help in protecting our authors and our ability to bring you 
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at 
questions@packtpub.com, and we will do our best to address the problem.

https://www.packtpub.com/sites/default/files/downloads/MasteringIPython40_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringIPython40_ColorImages.pdf
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support
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Using IPython for HPC
In this chapter, we are going to look at why IPython should be considered a viable 
tool for building high-performance and parallel systems.

This chapter covers the following topics:

• The need for speed
• Fortran as a solution
• Choosing between IPython and Fortran
• An example case—the Fast Fourier Transform
• High-performance computing and the cloud
• Going parallel

The need for speed
Computers have never been fast enough. From their very beginnings in antiquity as 
abaci to the building-sized supercomputers of today, the cry has gone up "Why is 
this taking so long?"

This is not an idle complaint. Humanity's ability to control the world depends on its 
ability to model it and to simulate different courses of action within that model. A 
medieval trader, before embarking on a trading mission, would pull out his map (his 
model of the world) and plot a course (a simulation of his journey). To do otherwise 
was to invite disaster. It took a long period of time and a specialized skill set to use 
these tools. A good navigator was an important team member. To go where no maps 
existed was a perilous journey.
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The same is true today, except that the models have become larger and the 
simulations more intricate. Testing a new nuclear missile by actually launching it  
is ill-advised. Instead, a model of the missile is built in software and a simulation 
of its launching is run on a computer. Design flaws can be exposed in the computer 
(where they are harmless), and not in reality.

Modeling a missile is much more complex than modeling the course of a ship. 
There are more moving parts, the relevant laws of physics are more complicated, 
the tolerance for error is lower, and so on and so forth. This would not be possible 
without employing more sophisticated tools than the medieval navigator had access 
to. In the end, it is our tools' abilities that limit what we can do.

It is the nature of problems to expand to fill the limits of our capability to solve 
them. When computers were first invented, they seemed like the answer to all our 
problems. It did not take long before new problems arose.

FORTRAN to the rescue – the problems 
FORTRAN addressed
After the initial successes of the computer (breaking German codes and calculating 
logarithms), the field ran into two problems. Firstly, the machine itself was slow—or at 
least slower than desired—for the new problems at hand. Secondly, it took too long to 
write the instructions (code) that the machine would execute to solve the problem.

Making the machine itself faster was largely an engineering problem. The underlying 
substrate went from steam and valves to electromechanical relays to vacuum tubes 
to integrated circuits. Each change in the substrate improved the rate at which 
instructions could be executed. This form of progress, while interesting, is outside of 
the scope of this book.

Once computers evolved past needing their programs to be wired up, programmers 
were free to start expressing their algorithms as text, in a programming language. 
While typing is faster than running wires, it has its own issues. Fortran was one of 
the first languages to address them successfully.

Readability
Early languages were generally not very human-friendly. It took specialized training 
to be able to write (and read) programs written in these languages. Programmers 
would often add comments to their code, either within the code itself or in external 
documentation, but the problem was deeper. The languages themselves were cryptic.
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For example, the following code in x86 assembly language determines whether a 
year is a leap year or not (from http://rosettacode.org/wiki/Leap_year#X86_
Assembly):

    align 16
; Input year as signed dword in EAX
IsLeapYear:
    test eax,11b
    jz .4
    retn ; 75% : ZF=0, not a leap year
.4:
    mov ecx,100
    cdq
    idiv ecx
    test edx,edx
    jz .100
    cmp edx,edx
    retn ; 24% : ZF=1, leap year
.100:
    test eax,11b
    retn ; 1% : ZF=?, leap year if EAX%400=0

This is the first problem Fortran addressed. Fortran set out to be more readable. 
An important goal was that mathematical equations in code should look like 
mathematical expressions written by human beings. This was an important step in 
enabling coders to express algorithms in terms that they themselves understood, as 
opposed to a format the machine could directly work with. By comparison, a Fortran 
function to determine whether a year is a leap year reads easily (from http://
rosettacode.org/wiki/Leap_year#Fortran):

pure elemental function leap_year(y) result(is_leap)
  implicit none
  logical :: is_leap
  integer,intent(in) :: y

  is_leap = (mod(y,4)==0 .and. .not. mod(y,100)==0) .or.  
(mod(y,400)==0)

end function leap_year

http://rosettacode.org/wiki/Leap_year#X86_Assembly
http://rosettacode.org/wiki/Leap_year#X86_Assembly
http://rosettacode.org/wiki/Leap_year#Fortran
http://rosettacode.org/wiki/Leap_year#Fortran
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Portability
The first languages were specific to the machine they were meant to run on. A 
program written on one machine would not run on another. This led to the wheel 
being reinvented often. Consider a sorting algorithm. Many programs need to sort 
their data, so sorting algorithms would be needed on many different computers. 
Unfortunately, an implementation of quicksort on one machine, in that machine's 
language, would not run on another machine, in its language. This resulted in many, 
many reimplementations of the same algorithm.

Also, a programmer who knew how to write code on one machine had to relearn 
everything to use another. Not only was it difficult for talented individuals to go 
where they were needed, but also buying a new machine meant retraining the entire 
staff. The first thing the staff then did was rewrite all the existing (working) code so 
that it would run on the new machine. It was a tremendous waste of talent and time.

This is the second problem Fortran addressed—how can a program be expressed so 
that it runs on more than one machine (that is, how can programs be made portable)? 
The goal was that if a program was written in Fortran on one machine, then it would 
run on any other machine that supported Fortran.

To this end, Fortran compilers were developed. A compiler translates a program in 
one language (Fortran in this case) to another language (the language of the machine 
the program would run on).

Efficiency
While readability and portability were important, no one was going to use Fortran if 
the resulting program ran slowly on their computer. Early coders expended immense 
amounts of time and effort making their code run as quickly as possible. Problems 
were big and computers were slow and time was money.

This is the third problem Fortran addressed—and its solution—is the primary 
reason Fortran is still in use today: Fortran programs run fast. The details are out 
of the scope of this book but the result is clear. Algorithms expressed in Fortran 
run quickly. Fortran was designed that way. Implementations are judged on 
their efficiency, compilers generate clean code, and coders always have an eye on 
performance. Other languages have surpassed it in terms of readability, portability, 
and other measures of quality, but it is a rare language that measures up in terms  
of efficiency.
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The computing environment
It is important to understand some of the environment that Fortran programs were 
running in when it was first developed. While we are used to a computer running 
multiple programs simultaneously today (multitasking), early computers ran only one 
program at a time. The programs would sit in a queue, in order. The operating system 
would take the first program, run it from beginning to end, then do the same for the 
next program, and so on. This form of job scheduling is known as a batch system.

Batch systems are very efficient. At the very bottom of things, a processor can only 
do one thing at a time. A multitasking system just switches what the processor 
is doing from one thing to another very quickly, so it looks like multiple things 
are happening at once. This makes for a smoother user experience; however, 
multitasking systems can spend a lot of time doing this switching.

Batch systems can devote this switching time to running the program. In the end, 
the program runs faster (although the user experience is degraded). Fortran, with its 
emphasis on speed, was a natural fit for batch systems.

Choosing between IPython and Fortran
We will start by taking a look at each language in general, and follow that with a 
discussion on the cost factors that impact a software project and how each language 
can affect them. No two software development projects are the same, and so the 
factors discussed next (along with many, many others) should serve as guidelines 
for the choice of language. This chapter is not an attempt to promote IPython 
at the expense of Fortran, but it shows that IPython is a superior choice when 
implementing certain important types of systems.

Fortran
Many of the benefits and drawbacks of Fortran are linked to its longevity. For the 
kinds of things that have not changed over the decades, Fortran excels (for example, 
numerical computing, which is what the language was originally designed for). 
Newer developments (for example, text processing, objects) have been added to the 
language in its various revisions.

The benefits of Fortran are as follows:

• Compilation makes for efficient runtime performance
• Existence of many tested and optimized libraries for scientific computing
• Highly portable
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• Optimized for scientific computing (especially matrix operations)
• Stable language definition with a well-organized system for revisions

The drawbacks of Fortran are as follows:

• Text processing is an add-on
• Object-orientation is a recent addition
• Shrinking pool of new talent

IPython
IPython/Python is the new kid in town. It began in 2001 when Fernando Perez decided 
that he wanted some additional features out of Python. In particular, he wanted a 
more powerful command line and integration with a lab-notebook-style interface. The 
end result was a development environment that placed greater emphasis on ongoing 
interaction with the system than what traditional batch processing provided.

The nearly 45-year delay between the advent of Fortran and IPython's birth 
provided IPython the advantage of being able to natively incorporate ideas about 
programming that have arisen since Fortran was created (for example, object-
orientation and sophisticated data structuring operations). However, its relative 
newness puts it behind in terms of installed code base and libraries. IPython, as an 
extension of Python, shares its benefits and drawbacks to a large extent.

The benefits of IPython are as follows:

• Good at non-numeric computing
• More concise
• Many object-oriented features
• Ease of adoption
• Useful libraries
• Sophisticated data structuring capabilities
• Testing and documentation frameworks
• Built-in visualization tools
• Ease of interaction while building and running systems

The drawbacks of IPython are as follows:

• Its interpreted nature makes for slower runtime
• Fewer libraries (although the ones that exist are of high quality)

Some of these benefits deserve more extensive treatment here, while others merit 
entire chapters.
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Object-orientation
Object-oriented programming (OOP) was designed for writing simulations. While 
some simulations reduce to computational application of physical laws (for example, 
fluid dynamics), other types of simulation (for example, traffic patterns and neural 
networks) require modeling the entities involved at a more abstract level. This is 
more easily accomplished with a language that supports classes and objects (such as 
Python) than an imperative language.

The ability to match a program structure to a problem's structure makes it easier 
to write, test, and debug a system. The OOP paradigm is simply superior when 
simulating a large number of individually identifiable, complex elements.

Ease of adoption
It is easy to learn Python. It is currently the most popular introductory programming 
language in the United States among the top 39 departments (http://cacm.
acm.org/blogs/blog-cacm/176450-python-is-now-the-most-popular-
introductory-teaching-language-at-top-us-universities/fulltext):

Note that Fortran is not on the list.

This is no accident, nor is Python limited to a "teaching language." Rather, it is  
a well-designed language with an easy-to-learn syntax and a gentle learning curve. 
It is much easier to learn Python than Fortran, and it is also easier to move from 
Fortran to Python than the reverse. This has led to an increasing use of Python in 
many areas.

www.allitebooks.com

http://cacm.acm.org/blogs/blog-cacm/176450-python-is-now-the-most-popular-introductory-teaching-language-at-top-us-universities/fulltext
http://cacm.acm.org/blogs/blog-cacm/176450-python-is-now-the-most-popular-introductory-teaching-language-at-top-us-universities/fulltext
http://cacm.acm.org/blogs/blog-cacm/176450-python-is-now-the-most-popular-introductory-teaching-language-at-top-us-universities/fulltext
http://www.allitebooks.org
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Popularity – Fortran versus IPython
The trend toward teaching Python has meant that there is a much larger pool of 
potential developers who know Python. This is an important consideration when 
staffing a project.

TIOBE Software ranks the popularity of programming languages based on skilled 
engineers, courses, and third-party vendors. Their rankings for October 2015 put 
Python in the fifth place and growing. Fortran is 22nd (behind COBOL, which is 21st).

IEEE uses its own methods, and they produced the following graph:

The column on the left is the 2015 ranking, and the column on the right is the 2014 
ranking, for comparison. Fortran came in 29th, with a Spectrum ranking of 39.5.

Useful libraries
The growing number of Python coders has led to an increasing number of libraries 
written in/for Python. SciPy, NumPy, and sage are leading the way, with new 
open source libraries coming out on a regular basis. The usefulness of a language is 
heavily dependent on its libraries, and while Python cannot boast the depth in this 
field that Fortran can, the sheer number of Python developers means that it is closing 
the gap rapidly.
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The cost of building (and maintaining) 
software
If developers were all equal in talent, they worked for free, development time were 
no object, all code were bug-free, and all programs only needed to run once and 
were then thrown away, Fortran would be the clear winner given its efficiency and 
installed library base.

This is not how commercial software is developed. At a first approximation, a 
software project's cost can be broken down into the cost of several parts:

• Requirements and specification gathering
• Development
• Execution
• Testing and maintenance

Requirements and specification gathering
There is no clear differentiation between IPython and Fortran in the difficulty of 
production, good requirements, and specifications. These activities are language-
independent. While the availability of prewritten software packages may 
impact parts of the specification, both languages are equally capable of reducing 
requirements and specifications to a working system.

Development
As discussed previously, Python code tends to be more concise, leading to higher 
programmer productivity. Combine this with the growing numbers of developers 
already fluent in Python and Python is the clear winner in terms of reducing 
development time.

Execution
If it is costly to run on the target system (which is true for many supercomputers), or 
the program takes a long time to run (which is true for some large-scale simulations 
such as weather prediction), then the runtime efficiency of Fortran is unmatched. 
This consideration looms especially large when development on a program has 
largely concluded and the majority of the time spent on it is in waiting for it to 
complete its run.
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Testing and maintenance
There are many different styles of testing: unit, coverage, mocks, web, and GUI, to 
name just a few. Good tests are hard to write and not very the effort put into them is 
often unappreciated. Most programmers will avoid writing tests if they can. To that 
end, it is important to have a set of good, easy-to-use testing tools.

Python has the advantage in this area, particularly because of such quality unit 
testing frameworks such as unit test, nose, and Pythoscope. The introspection 
capabilities of the Python language make the writing and use of testing frameworks 
much easier than those available for Fortran.

You could always just skip testing (it is, after all, expensive and unpopular), or 
do it the old-fashioned way; try a few values and check whether they work. This 
leads to an important consideration governing how much testing to do: the cost of 
being wrong. This type of cost is especially important in scientific and engineering 
computing. While the legal issues surrounding software liability are in flux, moral 
and practical considerations are important. No one wants to be the developer who 
was responsible for lethally overdosing chemotherapy patients because of a bug. 
There are types of programming for which this is not important (word processors 
come to mind), but any system that involves human safety or financial risk incurs a 
high cost when something goes wrong.

Maintenance costs are similar to testing costs in that maintenance programming 
tends to be unpopular and allows new errors to creep into previously correct code. 
Python's conciseness reduces maintenance costs by reducing the number of lines 
of code that need to be maintained. The superior testing tools allow the creation of 
comprehensive regression testing suites to minimize the chances of errors being 
introduced during maintenance.

Alternatives
There are alternatives to the stark IPython/Fortran choice: cross-language 
development and prototyping.
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Cross-language development
Python began as a scripting language. As such, it was always meant to be able to 
interoperate with other languages. This can be a great advantage in several situations:

• A divided development team: If some of your developers know only Fortran 
and some know only Python, it can be worth it to partition the system 
between the groups and define a well-structured interface between them. 
Functionality can then be assigned to the appropriate team:

 ° Runtime-intensive sections to the Fortran group
 ° Process coordination, I/O, and others to the Python group

• Useful existing libraries: It always seems like there is a library that does 
exactly what is needed but it is written in another language. Python's 
heritage as a scripting language means that there are many tools that can be 
used to make this process easier. Of particular interest in this context is F2Py 
(part of NumPy), which makes interfacing with Fortran code easier.

• Specialized functionality: Even without a pre-existing library, it may be 
advantageous to write some performance-sensitive modules in Fortran. This 
can raise development, testing, and maintenance costs, but it can sometimes 
be worth it. Conversely, IPython provides specialized functionality in several 
areas (testing, introspection, and graphics) that Fortran projects could use.

Prototyping and exploratory development
It is often the case that it is not clear before writing a program how useful that 
program will turn out to be. Experience with the finished product would provide 
important feedback, but building the entire system would be prohibitively costly.

Similarly, there may be several different ways to build a system. Without clear 
guidelines to start with, the only way to decide between alternatives is to build 
several different versions and see which one is the best.

These cases share the problem of needing the system to be complete before being 
able to decide whether to build the system in the first place.

The solution is to build a prototype—a partially functional system that nevertheless 
incorporates important features of the finished product as envisioned. The primary 
virtue of a prototype is its short development time and concomitant low cost. It is 
often the case that the prototype (or prototypes) will be thrown away after a short 
period of evaluation. Errors, maintainability, and software quality in general are not 
important insofar as they are important to evaluating the prototype (say, for use in 
estimating the schedule for the entire project).
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Python excels as a prototyping language. It is flexible and easy to work with 
(reducing development time) while being powerful enough to implement 
sophisticated algorithms. Its interpreted nature is not an issue, as prototypes are 
generally not expected to be efficient (only quick and cheap).

It is possible to adopt an approach known as Evolutionary Prototyping. In this 
approach, an initial prototype is built and evaluated. Based on this evaluation, 
changes are decided upon. The changes are made to the original prototype, yielding 
an improved version. This cycle completes until the software is satisfactory. 
Among other advantages, this means that a working version of the system is 
always available for benchmarking, testing, and so on. The results of the ongoing 
evaluations may point out functionality that would be better implemented in one 
language or another, and these changes could be made as described in the section on 
cross-language development.

An example case – Fast Fourier 
Transform
In this section, we will look at a small test program for a common scientific algorithm 
as written in Fortran and Python. Issues related to efficiency and general software 
engineering will be addressed.

Fast Fourier Transform
Rosetta Code (http://rosettacode.org/wiki/Rosetta_Code) is an excellent 
site that contains solutions to many problems in different programming languages. 
Although there is no guarantee that the code samples contained on the site are 
optimal (in whatever sense the word "optimal" is being used), its goal is to present 
a solution usable by visitors who are learning a new language. As such, the code is 
generally clear and well-organized. The following examples are from the site. All 
code is covered under the GNU Free Documentation License 1.2.

Fortran
From http://rosettacode.org/wiki/Fast_Fourier_transform#Fortran:

module fft_mod
  implicit none
  integer,       parameter :: dp=selected_real_kind(15,300)
  real(kind=dp), parameter :: pi=3.141592653589793238460_dp
contains

http://rosettacode.org/wiki/Rosetta_Code
http://rosettacode.org/wiki/Fast_Fourier_transform#Fortran
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  ! In place Cooley-Tukey FFT
  recursive subroutine fft(x)
    complex(kind=dp), dimension(:), intent(inout)  :: x
    complex(kind=dp)                               :: t
    integer                                        :: N
    integer                                        :: i
    complex(kind=dp), dimension(:), allocatable    :: even, odd

    N=size(x)

    if(N .le. 1) return

    allocate(odd((N+1)/2))
    allocate(even(N/2))

    ! divide
    odd =x(1:N:2)
    even=x(2:N:2)

    ! conquer
    call fft(odd)
    call fft(even)

    ! combine
    do i=1,N/2
       t=exp(cmplx(0.0_dp,-2.0_dp*pi*real(i-1,dp)/
real(N,dp),kind=dp))*even(i)
       x(i)     = odd(i) + t
       x(i+N/2) = odd(i) - t
    end do

    deallocate(odd)
    deallocate(even)

  end subroutine fft

end module fft_mod

program test
  use fft_mod
  implicit none
  complex(kind=dp), dimension(8) :: data = (/1.0, 1.0, 1.0, 1.0,  
0.0, 0.0, 0.0, 0.0/)
  integer :: i
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  call fft(data)

  do i=1,8
     write(*,'("(", F20.15, ",", F20.15, "i )")') data(i)
  end do

end program test

Python
From http://rosettacode.org/wiki/Fast_Fourier_transform#Python:

from cmath import exp, pi

def fft(x):
    N = len(x)
    if N <= 1: return x
    even = fft(x[0::2])
    odd =  fft(x[1::2])
    T= [exp(-2j*pi*k/N)*odd[k] for k in xrange(N/2)]
    return [even[k] + T[k] for k in xrange(N/2)] + \
           [even[k] - T[k] for k in xrange(N/2)]

print( ' '.join("%5.3f" % abs(f)
for f in fft([1.0, 1.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0])) )

Performance concerns
It would be difficult to compare the performance of these programs. The time 
required to run a program can be influenced by many things outside of the inherent 
properties of the language:

• Skilled Fortran and Python programmers could find optimizations at the 
code level

• Optimizing compilers vary in quality
• Underlying libraries (for example, numpy) could be substituted in and  

affect performance
• Critical sections could be coded in a compiled language (for example, 

Cython) or even assembly language, yielding a major speedup without 
affecting most of the lines of code

• The architecture of the machine itself could have an impact

http://rosettacode.org/wiki/Fast_Fourier_transform#Python
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Software engineering concerns
The question of how fast code runs is independent of the question of how long it 
takes to write, debug, and maintain. It is notoriously difficult to estimate how much 
time / how much effort will be required to write a program before the development 
has started. This uncertainty remains throughout the development cycle, with many 
projects going well over time and budget. Even when coding is complete, it can be 
difficult to tell how efficient the entire process was. A means to measure effort would 
help answer these questions.

There are two primary ways to measure the amount of effort required to write 
software, mentioned as follows.

Complexity-based metrics
Complexity-based metrics focus on either of these two:

• Code-level complexity (number of variables, loop nesting, branching 
complexity, and cyclomatic complexity)

• Functionality (based on intuitive ideas of how difficult implementing 
different pieces of functionality might be)

Complexity-based measures have the advantage that they tend to match intuitive 
ideas of what complexity is and what types of code are complex (that is, difficult to 
write and debug). The primary drawback is that such measures often seem arbitrary. 
Especially before a project is started, it can be difficult to tell how much effort will 
be required to write a particular piece of functionality. Too many things can change 
between project specification and coding. This effect is even greater on large projects, 
where the separation between specification and implementation can be years long.

Size-based metrics
Size-based metrics focus on a property that can be expressed on a linear scale,  
for example:

• Lines of code (LOC, or thousands of LOC, also known as KLOC)
• Lines of machine code (post-compilation)
• Cycles consumed (code that uses more cycles is probably more important 

and harder to write)
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Size-based metrics have the advantage that they are easy to gather, understand, 
and objectively measure. In addition, LOC seems to be a decent correlate of project 
cost—the more the lines of code in a project, the more it costs to write it. The most 
expensive part of a software project is paying the coders, and the more lines of code 
they have to write, the longer it probably takes them to write. If the lines of code 
could be estimated upfront, they would be a tool for estimating the cost.

The primary drawback of this is that it is unclear whether they are very valid. It is 
often the case that better (clearer, faster, and easier to maintain) code will grade out 
as "smaller" under a size-based metric. In addition, such code is often easier to write, 
making the development team look even more productive. Bloated, buggy, and 
inefficient code can make a team look good under these metrics, but can be a disaster 
for the project overall.

As for the class of projects this book is concerned with, much of it involves taking 
mathematics-based models and translating them into executable systems. In this case, 
we can consider the complexity of the problem as fixed by the underlying model and 
concentrate on size-based measures: speed and lines of code. Speed was addressed 
previously, so the main concern left is LOC. As illustrated previously, Python programs 
tend to be shorter than Fortran programs. For a more detailed look, visit http://blog.
wolfram.com/2012/11/14/code-length-measured-in-14-languages/.

Admittedly, such measures are fairly arbitrary. It is possible to write programs 
in such a way as to minimize or maximize the number of lines required, often 
to the detriment of the overall quality. Absent such incentives, however, any 
programmer tends to produce the same number of lines of code a day regardless of 
the language being used. This makes the relative conciseness of Python an important 
consideration when choosing a language to develop in.

Where we stand now
In the past, most HPC and parallel programming were done on a limited number of 
expensive machines. As such, the most important criteria by which programs were 
measured was execution speed. Fortran was an excellent solution to the problems of 
writing fast, efficient programs. This environment was acceptable to the community, 
which needed to perform these types of calculations, and it gradually separated from 
mainstream commercial computing, which developed other concerns.

http://blog.wolfram.com/2012/11/14/code-length-measured-in-14-languages/
http://blog.wolfram.com/2012/11/14/code-length-measured-in-14-languages/
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The birth of cloud computing (and cheaper hardware in general) and the evolution 
of big data has caused some in the commercial mainstream to reconsider using 
large, parallel systems. This reconsideration has brought commercial concerns to 
the fore: development and maintenance costs, testing, training, and other things. In 
this environment, some (small) trade-off in speed is worth it for significant gains in 
other areas. Python/IPython has demonstrated that it can provide these gains with a 
minimal runtime performance cost.

High Performance Computing
At this point, we have to leave consumer computing aside for a while. As computing 
hardware became more affordable, the need for most people to have programs run 
as efficiently as possible diminished. Other criteria entered the picture: graphical 
interfaces, multitasking, interactivity, and so on. Usability became more important 
than raw speed.

This, however, was not true for everybody. There remained a small (but devoted) 
group of users/programmers for whom efficiency was not just the most important 
thing. It was the only thing. These groups hung out in nuclear labs and intelligence 
agencies and had money to spend on exotic hardware and highly skilled coders. 
Thus was shaped High Performance Computing (HPC).

True to the nature of HPC, its implementations have been chosen with efficiency 
in mind. HPC systems are highly parallel, are batch type, and run Fortran. It is 
important enough to the users of HPC systems that their programs run quickly, so 
much so that they have ignored any and all advances in the field which did not result 
faster programs.

The HPC learning curve
This was a satisfactory relationship for some time. The types of problems of interest 
to the HPC community (complicated physical modeling and advanced mathematics) 
had little overlap with the rest of computer science. HPC was a niche with a very 
high barrier to entry. After all, there were just not that many massively parallel 
computers to go around.

In a sense then, programming HPC systems was an island. On the island, there were 
ongoing research programs centered on important HPC-centric questions. Tools 
were built, skills were developed, and a community of practice developed to the 
point that approaching HPC from the outside could be daunting. Advances occurred 
outside of HPC also, but those inside it had their own concerns.
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As time passed, the HPC island drifted further and further from mainstream 
computing. New areas opened up: web computing, mobile computing, agile 
methods, and many others. HPC took what it needed from these areas, but nothing 
really affected it. Until something finally did…

Cloudy with a chance of parallelism (or 
Amazon's computer is bigger than yours)
Amazon had a problem. During the Christmas season, it used a lot of computer 
power. For the rest of the year, these computers would sit idle. If there were some 
way to allow people to rent time on these idle machines, Amazon could make 
money. The result was an API that allowed people to store data on those machines 
(the Amazon Simple Storage Service, or S3) and an API that allowed people to run 
programs on the same machines (the Amazon Elastic Compute Cloud, or EC2). 
Together, these made up the start of the Amazon Cloud.

While not the first system to rent out excess capacity (CompuServe started off the 
same way several decades earlier), Amazon Cloud was the first large-scale system 
that provided the general public paid access to virtually unlimited storage and 
computing power.

It is not clear whether anybody realized what this meant at first. There are a lot of 
uses of clouds—overflow capacity, mass data storage, and redundancy, among 
others—that have a wide appeal. For our purposes, the cloud meant one thing: now 
everybody has access to a supercomputer. HPC will never be the same again.

HPC and parallelism
The current relationship between HPC and highly parallel architectures is relatively 
new. It was only in the 1990s that HPC left the realm of very fast single-processor 
machines for massively parallel architectures. In one sense, this was unfortunate, as 
the old Cray machines were aesthetic marvels:
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The image is taken from a public domain: https://commons.wikimedia.org/wiki/File:Cray2.jpeg

It was largely inevitable, however, as single-processor systems were bumping up 
against physical limitations involving transistor density and cooling.

The change in architecture did not bring with it a change in the problems to be 
solved. To this end, the generic supercomputer physical architecture evolved toward:

• Commodity processors—not custom-fast but top-of-the-line and 
homogeneous

• Commodity RAM—ditto
• High-end hard drives—lots of smaller, low-latency models (now turning into 

solid state drives)
• Super-fast interconnected networks

Moving from single to multiple processors brought issues with locality. Every 
time a program running on one processor needed data from another processor (or 
disk), processing could come to a halt as the data was being retrieved. The physical 
architecture of the supercomputer is meant to minimize the latency associated with 
non-local data access.

https://commons.wikimedia.org/wiki/File:Cray2.jpeg
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Given the position of HPC centers as early adopters of parallel architectures,  
"parallel programming" came to be largely synonymous with "HPC programming." 
This is largely a historical accident, and new paradigms have opened up parallel 
computing to constituencies outside of the HPC world. As such, this book will use 
the two terms interchangeably.

We now turn to one of the new paradigms, cloud computing, and discuss its 
similarities and differences from standard HPC.

Clouds and HPC
There are some differences between a "real" supercomputer and what most clouds 
offer. In particular, a cloud's physical architecture will contain:

• Commodity processors—not necessarily fast, but they make up for it in sheer 
numbers

• Commodity RAM—ditto
• Commodity hard drives—smaller, but larger in aggregate
• Slow(er) interconnected networks

In addition, clouds are generally heterogeneous and easily scaled. While an  
initial cloud is likely to have many subsystems with the same processor, RAM, hard 
drives, and so on, over time new subsystems will be added, with newer (or at least 
different) technology. The loose coupling of cloud systems encourages this sort of 
organic growth.

Differences in architecture mean that some algorithms will run well on 
supercomputers versus others that favor clouds. A lot of software that runs on 
supercomputers will not run on clouds; period (and vice versa)! This is not always 
just a matter of recompiling for a new target platform or using different libraries.  
The underlying algorithm may not be suited for a particular paradigm.

If speed is imperative and you have the budget, there is still no substitute for a 
special-purpose HPC system. If cost, ease of access, redundancy, and massive 
parallelism are desired, a cloud fits the bill.
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That is not to say the two worlds (HPC and cloud) are completely distinct. Despite 
these architectural differences, it is worth noting that an Amazon EC2 C3 instance 
cluster is listed at 134 on the top 500 list of fastest HPC systems as of June 2015. Even 
on HPC's own terms, cloud computers offer respectable performance.

The core audience for this book then consists of members of both of these groups:

• Python programmers looking to expand into HPC/parallel-style 
programming

• HPC/parallel programmers looking to employ Python

Each group has the skills the other wants. HPC programmers understand scientific 
computing, efficiency, and parallelism. Python programmers are skilled in 
interactivity, usability, correctness, powerful development tools, ease of debugging, 
and other capabilities that mainstream computing values. New technology means 
that future systems will need to incorporate elements from both skill sets.

Going parallel
The previous sections are applicable to either serial or parallel computing. Even in 
the most parallelizable number crunching program, a great deal of serial code is 
written, so these observations are very applicable. After a certain point, however, 
parallel concerns come to dominate. We will start this section by introducing some 
terminology, before looking at a simple example.

Terminology
Wall-clock time is the amount of time that passes from the beginning of execution of 
a program to the end of its execution, as measured by looking at a clock on the wall. 
Wall-clock time is the measure people usually care about.

Cycle time is the time obtained by summing up the number of cycles taken by the 
program during its execution. For example, if a CPU is running at 1 MHz, each cycle 
takes 0.000001 seconds. So if it takes 2,500,000 cycles for a program to run, then it 
means the program took up 2.5 seconds of cycle time.
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In a batch system with a single processor, the times are always the same. In a 
multitasking system, wall-clock time is often longer than cycle-time as the program 
may spend wall-clock time waiting to run without using any cycles.

With more than one processor, comparing the two times for an algorithm became 
more complicated. While not always true, many programs could be divided into 
pieces, such that running the program on two or more processors simultaneously 
reduced the wall-clock time, even if the cycle-time went up. Since wall-clock time is 
the important measure, for these algorithms, the answer was "Yes."

One can quantify this effect as follows:

Given a particular algorithm A
Call the wall-clock time for A when using n processors W(A, n).
Similarly, the cycle time for A using n processors is C(A, n).

We can define the speedup of W(A, n) as ( ) ( )
( )
,1

,
,W

W A
S A n

W A n
=

Similarly, we can define the speedup of C(A, n) as ( ) ( )
( )
,1

,
,C

C A
S A n

C A n
=

In general, when using a batch system:

For most algorithms, W(A, n) <  C(A, n) when n > 1.

For most algorithms, ( ),WS A n n<  when n > 1. For example, 
using two processors does not make the program run twice 
as fast. In general, adding more processors to run a program 
yields diminishing returns.
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There are some algorithms for which ( ),WS A n n= . These are known as 
embarrassingly parallel algorithms. In this case, adding more processors results in 
linear speedup, which is where machines with many processors really shine.

In summary, the answer to the question, "Are more processors better?" is that it depends 
on the algorithm. Luckily for parallel computing, many algorithms show some amount 
of speedup and many important problems can be solved using these algorithms.

A parallel programming example
Consider the Collatz conjecture. Given the following function:

( ) 0 2
2

3 1 1 2

n if n mod
f n

n if n mod

 = =  
 + = 

The conjecture is: for any positive integer, repeated application of f(n) will always 
reach the number 1. It is believed that the conjecture is true, but there is currently 
no proof. We are concerned with how long it takes to reach 1, that is, how many 
applications of f(n) are required for a given n. We would like to find the average  
for all n, 1 to 100.

The term for the sequence of numbers generated for any n is hailstone sequence. For 
example, the hailstone sequence for n = 6 is 6, 3, 10, 5, 16, 8, 4, 2, 1. We are interested 
in the average length of hailstone sequences.
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A serial program
A regular (serial) Python program for computing the answer might look as follows:

def f(n):

    curr = n

    tmp = 1

    while curr != 1:

        tmp = tmp + 1

        if curr % 2 == 1:

            curr = 3 * curr + 1

        else:

            curr = curr/2

    return tmp

def main( ):

    sum = 0

    for i in range(1, 101):

        sum = sum + f(i)

    avg = sum / 100.0

Detailed steps to download the code bundle are mentioned in 
the Preface of this book. Please have a look.
The code bundle for the book is also hosted on GitHub at 
https://github.com/PacktPublishing/Mastering-
IPython-4. We also have other code bundles from our rich 
catalog of books and videos available at https://github.
com/PacktPublishing/. Check them out!

https://github.com/PacktPublishing/Mastering-IPython-4
https://github.com/PacktPublishing/Mastering-IPython-4
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
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A schematic of the processing would look like this:

Without going into too much detail, it is easy to see that the running time of the 
preceding program can be expressed as:

• Setup (definition of f, initialization of sum, and so on)
• Loop body (the sum of the amount of time to compute 100 hailstone 

sequences one at a time)
• Teardown (calculate the average)
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It is obvious that the running time of the program will be dominated by one of the 
loops. There is not much to be done about the while loop inside of f. Each iteration 
after the first depends on the result of a previous iteration. There is no way to, for 
example, do the tenth iteration without having already done the ninth, eighth, and  
so on.

The for loop inside of main has more potential for parallelization. In this case, every 
iteration is independent. That is:

• Each iteration computes its own value, (f(i))
• The computation of each f(i) does not depend on any other iteration
• The values can easily be combined (via summation)

This algorithm can be converted to a parallel equivalent with a few extra commands. 
As they stand, these functions are pseudo-code—equivalent IPython functions will 
be described in later chapters:

• getProcs(num): Returns a list of num processors
• proc.setFun(fun, arg): Assigns a function fun with an argument arg to 

the proc processor
• procs.executeAll( ): Executes fun on all processors in proc in parallel
• proc.fetchValue( ): Returns the value computed on the proc processor 

when the calculation is complete

A parallel equivalent
With these additions, a parallel equivalent might look as follows:

def f(n):
    curr = n
    tmp = 1
    while curr != 1:
        tmp = tmp + 1
        if curr % 2 == 1:
            curr = 3 * curr + 1
        else:
            curr = curr/2
    return tmp

def main( ):
    sum = 0
    procs = getProcs(100)
    i = 1
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    for proc in procs:
        proc.setFun(f, i)
        i = i + 1

    procs.executeAll( )

    for proc in procs:
        sum = sum + proc.fetchValue( )

    avg = sum / 100.0

A schematic of the processing would look as follows:

www.allitebooks.com

http://www.allitebooks.org
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Discussion
While the parallel version is slightly longer (20 lines of code compared to 15), it is 
also faster, given enough processors. The intuitive reason is that the invocations 
of f are not queued up waiting for a single processor. With a single processor, the 
invocation of f(i) has to wait in line behind all the previous invocations of f(a) 
where 1 ≤ a < i, even though there is no dependency between them. The single 
processor is an unnecessary bottleneck. In this case, as no call to f depends on any 
other call, this algorithm is embarrassingly parallel.

When a series of functions calls, (f1, f2, …, fn), is queued up for an algorithm A, it is 
easy to see that the cycle time required to complete all n function calls is:

( )
1

,1
n

i
i

C A f
=

=∑

In the embarrassingly parallel case, the cycle time becomes (potentially)  
much smaller:

( ) ( ), max iC A n f=

This results in a speedup (ignoring setup and teardown) of:

( ) ( )
1,

max

n
ii

C
i

f
S A n

f
=

 
 =
 
 

∑

In the case where all fi use the same number of cycles, this simplifies to the following:

( ),CS A n n=

Several issues important to parallel programming have been glossed over in the 
preceding discussion. These issues are important enough to have all of Chapter 3, 
Stepping Up to IPython for Parallel Computing, devoted to them.
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Summary
In this chapter, we looked at the basics of parallel computing and situated IPython in 
relation to its primary competitor, Fortran.

We started with the history of computing and saw how each advancement was 
driven by the need to solve more difficult problems and simulate more complex 
phenomena. Computers are simply the latest in the line of computational tools and 
have brought with them their own difficulties.

Fortran provided answers to problems of readability, portability, and efficiency 
within the computing environments that existed in early machines. These early 
machines prized runtime efficiency above everything else, and Fortran was geared 
toward this end.

Decades have passed since the earliest machines, and cycles have become cheaper. 
This has meant that other criteria have become important in mainstream commercial 
computing. In particular, the cost of creating and maintaining software has become 
an increasingly important consideration. This had led to increased emphasis on 
programmer productivity, testability, and maintainability. This chapter presented 
examples of how Python/IPython, while not originally designed for runtime 
efficiency, takes these new considerations into account.

The final step in the quest for efficiency—parallel programming—was introduced. 
Some of the terminology used in the field was presented, and some examples 
illustrated basic parallel concepts.

The following chapters will attempt to expand on the case for using IPython for 
projects in general, and for parallel projects in particular. While choosing a tool 
is often a personal (and not always rational) process, the author hopes that a fair 
presentation of the capabilities of IPython, in particular its strengths in parallel and 
scientific computing, will persuade developers and managers to adopt it for their 
next project.
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Advanced Shell Topics
In this chapter, we are going to look at the tools the IPython Interactive Shell 
provides. With the split of the Jupyter and IPython projects, the command line 
provided by IPython will gain in importance.

This chapter covers the following topics:

• What is IPython?
• Installing IPython
• Starting out with the terminal
• IPython beyond Python
• Magic commands
• Cython
• Configuration
• Debugging
• A brief introduction to the IPython architecture
• Alternative development environments

What is IPython?
IPython is an open source platform for interactive and parallel computing. It started 
with the realization that the standard Python interpreter was too limited for sustained 
interactive use, especially in the areas of scientific and parallel computing.
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Overcoming these limitations resulted in a three-part architecture:

• An enhanced, interactive shell
• Separation of the shell from the computational kernel
• A new architecture for parallel computing

This chapter will provide a brief overview of the architecture before introducing 
some basic shell commands. Chapter 3, Stepping Up to IPython for Parallel Computing, 
will cover the more advanced features. The parallel architecture will be covered in 
Chapter 4, Messaging with ZeroMQ and MPI. Before we proceed further, however, 
IPython needs to be installed.

Those readers who have experience in parallel and high-performance computing 
but are new to IPython will find the following sections useful in quickly getting up 
to speed. Those experienced with IPython may skim the next few sections or refer 
to Chapter 11, Into the Future, to know the history of the project, noting where things 
have changed, now that Notebook is no longer an integral part of development.

Installing IPython
The first step for installing IPython is to install Python. Instructions for the various 
platforms differ but the instructions for each of them can be found on the Python 
home page at http://www.python.org. IPython requires Python 2.7 or ≥ 3.3. This 
book will use 3.5. Both Python and IPython are open source software, so downloads 
and installations are free.

A standard Python installation includes the pip package manager. pip is a handy 
command-line tool that can be used to download and install various Python libraries. 
pip will be used throughout this book when libraries are required. Once Python is 
installed, IPython can be installed with the following command:

pip install ipython

IPython comes with a test suite called iptest. To run it, simply issue the  
following command:

iptest

A series of tests will be run. It is possible (and likely on Windows) that some libraries 
will be missing, causing the associated tests to fail. Simply use pip to install those 
libraries and rerun the test until everything passes.

http://www.python.org
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It is also possible that all tests will pass without an important library being installed. 
This is the readline library (also known as PyReadline). IPython will work without 
it but will be missing some features that are useful for the IPython terminal, such as 
command completion and history navigation. To install readline, use pip:

pip install readline

pip install gnureadline

At this point, issuing the ipython command will start up an IPython interpreter:

ipython

All-in-one distributions
Part of the power of IPython comes from the large number of packages that can be 
installed for it. This power, however, comes with a price—installing and managing all 
those packages can be a chore. There exist binary distributions that will install Python, 
IPython, and a lot of widely used external packages. Popular installers include:

• Anaconda by Continuum Analytics: https://www.continuum.io/downloads
• Canopy by Enthought: https://store.enthought.com/downloads/

Both distributions support Windows, Linux, and Mac.

Even with an all-in-one distribution, there will still be new packages to install and 
old ones to update. When pip and easy-install are not enough, both Anaconda and 
Canopy have their own built-in package management systems.

Package management with conda
Anaconda provides a powerful command-line tool called conda. conda can be used for 
package management as well as environment management. Every program runs in an 
environment that includes the version of Python, IPython, and all included packages.

Every programmer develops with the latest versions of every library, but not 
every user has the same setup. This can lead to problems when bug reports come 
in. Testing by the developer will not reproduce the error, but the user will be able 
to provide screenshots and core dumps. Eventually, the problem will be traced to 
something in the user's environment. The user will be unwilling/unable to update 
their environment, so the developer will have to configure their own machine to 
machine the target environment. This is a tedious, time-consuming, and error-prone 
process, especially for widely deployed systems. Environment management is the 
sort of thing that no one thinks of until they realize that they need it, and having a 
tool to simplify it can save time and sanity.

https://www.continuum.io/downloads
https://store.enthought.com/downloads/
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Canopy Package Manager
Sometimes, managing over 14,000 packages requires a graphical tool. Canopy 
Package Manager provides a graphical interface to the extensive set of IPython 
libraries. Enthought provides additional packages based on the subscription level:

What happened to the Notebook?
Readers familiar with previous versions of IPython might notice that nothing has 
been said about the Notebook. That is because the Notebook has split off from the 
main IPython project. It is now a project on its own, named Jupyter, which can be 
found at https://jupyter.org/. As the IPython project grew, it was determined 
that it was trying to be too many things to too many people: a terminal, a Python 
kernel, a notebook, a parallel framework, and much more. The decision was made to 
split the project into two main parts, Jupyter and IPython, with IPython calving off 
into several subprojects.

https://jupyter.org/
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As such, this book will focus on IPython and its interactive terminal. An overview 
of Jupyter will be provided in Chapter 11, Into the Future, but the primary focus will 
be on working with the terminal. This does not mean that graphical I/O will be 
neglected. The truth is far from it, in fact, as the terminal supports many quality 
graphics packages.

Starting out with the terminal
Typing ipython into your command line should present you with a window that 
resembles this:

This is the (somewhat underwhelming) IPython command line. Do not be deceived 
by its plain looks.

The primary language used with IPython is, not surprisingly, Python. As a 
convenience, the help command provides access to Python's help documents. 
The help(<object>) will display the help page for <object> (for example, 
help(string)), while help( ) will open up an interactive help prompt.

For help with IPython itself, use the ? command. It displays a lot of text outlining 
functionality available through the terminal.

In addition, either prepending or appending ? to an object or command will display 
information about it. For example, to display information about the built-in Python 
type list:

In [9]: ?list

Type: type

String form: <type 'list'>

Namespace: Python builtin

Docstring:
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list() -> new empty list

list(iterable) -> new list initialized from iterable's items

If one question mark is not enough, two will provide more information, including 
source code. For example, to see more information about a program from a later 
chapter, use this:

In [8]: import code2

In [9]: ??code2.TestHailStones

Init signature: code2.TestHailStones(self, methodName='runTest')

Source:

class TestHailStones(unittest.TestCase):

    """

    The main class for testing the hailstone sequence generator.

    """

    def test_f(self):

        """currently the only test in this suite."""

        ans = [0, 0, 1, 7, 2, 5, 8, 16, 3, 19, 6]

        for i in range(1, 11):

            print(i)

            self.assertEqual(f(i), ans[i])

File:           ~/Packt/chap09/code2.py

Type:           type

Of course, as an extension of the Python command line, IPython supports direct 
evaluation of simple expressions:

In [6]: 1 + 1

Out[6]: 2

The result is in the special _ variable:

In [7]: _ * 10

Out[7]: 20

Other Python terminal features are also supported, such as auto-indent, syntax 
highlighting, and so on and so forth. In fact, using IPython simply as a nicer Python 
command line is a viable option.



Chapter 2

[ 37 ]

An important fact to remember when using IPython is that a great deal of what is 
going on is just standard Python. Even when using IPython-specific capabilities, a lot 
of the code, libraries, and general concepts are Python. The relationship, for the most 
part, is more like jQuery::JavaScript than C++::C.

IPython beyond Python
No one would use IPython if it were not more powerful than the standard terminal. 
Much of IPython's power comes from two features:

• Shell integration
• Magic commands

Shell integration
Any command starting with ! is passed directly to the operating system to be 
executed, and the result is returned. By default, the output is then printed out to the 
terminal. If desired, the result of the system command can be assigned to a variable. 
The result is treated as a multiline string, and the variable is a list containing one 
string element per line of output. Here is an example:

In [22]: myDir = !dir

In [23]: myDir

Out[23]:

[' Volume in drive C has no label.',

 ' Volume Serial Number is 1E95-5694',

 '',

 ' Directory of C:\\Program Files\\Python 3.5',

 '',

 '10/04/2015  08:43 AM    <DIR>          .',

 '10/04/2015  08:43 AM    <DIR>          ..',]

While this functionality is not entirely absent in straight Python (the OS and 
subprocess libraries provide similar abilities), the IPython syntax is much cleaner. 
Additional functionality such as input and output caching, directory history, and 
automatic parentheses is also included.
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History
The previous examples had lines that were prefixed by elements such as In[23] and 
Out[15]. In and Out are arrays of strings in which each element is either an input 
command or the resulting output. They can be referred to using the array notation, 
or "magic" commands can accept the subscript alone.

Magic commands
IPython also accepts commands that control IPython itself. These are called "magic" 
commands and start with % or %%. A complete list of magic commands can be found 
by typing %lsmagic in the terminal.

Magics that start with a single % sign are called line magics. They accept the rest of 
the current line for arguments. Magics that start with %% are called cell magics. They 
accept not only the rest of the current line but also the following lines.

There are too many magic commands to go over in detail, but there are some related 
families to be aware of:

• OS equivalents: %cd, %env, and %pwd
• Working with code: %run, %edit, %save, %load, %load_ext, and %%capture
• Logging: %logstart, %logstop, %logon, %logoff, and %logstate
• Debugging: %debug, %pdb, %run, and %tb
• Documentation: %pdef, %pdoc, %pfile, %pprint, %psource, %pycat, and 

%%writefile

• Profiling: %prun, %time, %run, and %timeit
• Working with other languages: %%script, %%html, %%javascript, %%latex, 

%%perl, and %%ruby

With magic commands, IPython becomes a more full-featured development 
environment. A development session might include the following steps:

1. Set up the OS-level environment with the %cd, %env, and ! commands.
2. Set up the Python environment with %load and %load_ext.
3. Create a program using %edit.
4. Run the program using %run.
5. Log the input/output with %logstart, %logstop, %logon, and %logoff.
6. Debug with %pdb.
7. Create documentation with %pdoc and %pdef.
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This is not a tenable workflow for a large project, but for exploratory coding of 
smaller modules, magic commands provide a lightweight support structure.

Creating custom magic commands
IPython supports the creation of custom magic commands through function 
decorators. Luckily, you do not have to know how decorators work in order to use 
them. An example will explain this.

First, grab the required decorator from the appropriate library:

In [1]: from IPython.core.magic import(register_line_magic)

Then, prepend the decorator to a standard IPython function definition:

In [2]: @register_line_magic

   ...: def getBootDevice(line):

   ...:         sysinfo = !systeminfo

   ...:         for ln in sysinfo:

   ...:                 if ln.startswith("Boot Device"):

   ...:                        return(ln.split()[2])

   ...:

Your new magic is ready to go:

In [3]: %getBootDevice

Out[3]: '\\Device\\HarddiskVolume1'

Some observations are in order:

• Note that the function is, for the most part, standard Python. Also note the 
use of the !systeminfo shell command. You can freely mix both standard 
Python and IPython in IPython.

• The name of the function will be the name of the line magic.
• The line parameter contains the rest of the line (in case any parameters  

are passed).
• A parameter is required, although it need not be used.
• The Out associated with calling this line magic is the return value of  

the magic.
• Any print statements executed as part of the magic are displayed on the 

terminal but are not part of Out (or _).



Advanced Shell Topics

[ 40 ]

Cython
You are not limited to writing custom magic commands in Python. Several 
languages are supported, including R and Octave. We will look at one in  
particular, Cython.

Cython is a language that can be used to write C extensions for Python. The goal 
for Cython is to be a superset of Python, with support for optional static type 
declarations. The driving force behind Cython is efficiency. As a compiled language, 
there are performance gains to be had from running C code. The downside is 
that Python is much more productive in terms of programmer hours. Cython can 
translate Python code into compiled C code, achieving more efficient execution at 
runtime while retaining the programmer friendliness of Python.

The idea of turning Python into C is not new to Cython. The default, most widely 
used interpreter (CPython) for Python is written in C. In some sense then, running 
Python code means running C code, just through an interpreter. There are other 
Python interpreter implementations as well, including those in Java (Jython) and C# 
(IronPython).

CPython has a foreign function interface to C. That is, it is possible to write C 
language functions that interface with CPython in such a way that data can be 
exchanged and functions invoked from one to the other. The primary use is for 
calling C code from Python. There are two primary drawbacks:

• Writing code that works with the CPython foreign function interface is 
difficult in its own right

• Doing so requires knowledge of Python, C, and CPython

Cython aims to remedy this problem by doing all the work of turning Python into C 
and interfacing with CPython internally to Cython. The programmer writes Cython 
code and leaves the rest to the Cython compiler. Cython is very close to Python. 
The primary difference is the ability to specify C types for variables using the cdef 
keyword. Cython then handles type checking and conversion between Python values 
and C values, scoping issues, marshalling and unmarshalling of Python objects into 
C structures, and other cross-language issues.

Cython is enabled in IPython by loading an extension. In order to use the Cython 
extension, do this:

In [1]: %load_ext Cython
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At this point, the cython cell magic can be invoked:

In [2]: %%cython

   ...: def sum(int a, int b):

   ...:     cdef int s = a+b

   ...:     return s

And the Cython function can now be called just as if it were a standard Python 
function:

In [3]: sum(1, 1)

Out[3]: 2

While this may seem like a lot of work for something that could have been written 
more easily in just Python in the first place, it is the price to be paid for efficiency. If, 
instead of simply summing two numbers, a function is expensive to execute and is 
called multiple times (perhaps in a tight loop), it can be worth it to use Cython for a 
reduction in runtime.

There are other languages that have merited the same treatment, GNU Octave and R 
being among them, which will be covered in later chapters.

Configuring IPython
IPython runs with certain settings by default. These setting are built into Python and 
are not generally user-visible. In order to modify them, they must be modified in 
config files. This can be accomplished at the command line, as follows:

ipython profile create <profilename>

This will create a blank file named ipython_config.py in ~/.ipython/profile/
default, along with a few directories. IPython is configured, not by a plaintext file in 
the .conf or .ini format, but by a Python program in its own right. The first line is 
generally the following:

c = getconfig( )
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This calls a special function that is only visible in the configuration file. The rest of 
the program consists of assignment statements to various objects contained within c. 
For example, consider this line:

c.TerminalIPythonApp.display_banner = True

It will determine whether IPython will display a banner upon starting or not. While 
there are too many configuration options for us to go through them all, the latest list 
can be found at http://ipython.readthedocs.org/en/latest/config/options/
terminal.html

Upon creation, ipython_config.py will contain a large number of lines of Python 
code, setting potential configuration values. All lines will be commented out. This 
can serve as a handy reminder of what configuration options exist, although it is 
unclear whether every option will always be present.

A few options deserve to be noted:

InteractiveShellApp.extensions : List

Default: []

A list of dotted module names of IPython extensions to load on  
IPython startup.

InteractiveShellApp.exec_lines : List

Default: []

Lines of Python code to run at IPython startup.

TerminalInteractiveShell.editor : Unicode

Default: 'vi' (on Unix boxes)

Set the editor used by IPython.

Application.log_level : 0|10|20|30|40|50|'DEBUG'|'INFO'|'WARN'|'ERROR'|'C
RITICAL'

Default: 30

Set the log level by value or name.

http://ipython.readthedocs.org/en/latest/config/options/terminal.html 
http://ipython.readthedocs.org/en/latest/config/options/terminal.html 
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Debugging
Python's ipdb debugger is the default for IPython. It is similar to the standard pdb 
for Python but has extensions to make IPython easier to work with.

There are several different ways to access the debugger, both post-mortem and at 
program startup.

Post-mortem debugging
After an exception has occurred, the %debug magic will start a post-mortem 
debugging session. This will launch the debugger at the point in the program at 
which the exception was raised.

The %pdb magic will automatically launch the debugger upon the next exception, 
similar to manually calling %debug. IPython can be started with the --pdb switch for 
the same behavior.

Outside of IPython, post-mortem debugging can be invoked by including the 
following lines in your program:

import sys
from IPython.core import ultratb
sys.excepthook = ultratb.FormattedTB(mode='Verbose',  
color_scheme='Linux', call_pdb=1)

Debugging at startup
The %run magic has a switch that can be used to start up a program under the ipdb 
debugger:

In [9]: %run –d <filename>

This starts the program with a breakpoint at line 1. To run to a specified line before 
stopping, use –b:

In [9]: %run –d –b<line number> <filename>
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Debugger commands
When the debugger is started, the prompt will change to ipdb>. Whether used post-
mortem or upon program start, the ipdb commands are the same. Issuing the ? 
command will list the available commands, like this:

Covering all debugging commands is outside the scope of this book, but some are 
worth noting.

A full complement of commands is available for navigation:

• u/d for moving up/down in the call stack.
• s to step into the next statement. This will step into any functions.
• n to continue execution until the next line in the current function is reached 

or it returns. This will execute any functions along the way, without stopping 
to debug them.

• r continues execution until the current function returns.
• c continues execution until the next breakpoint (or exception).
• j <line> jumps to line number <line> and executes it. Any lines between 

the current line and <line> are skipped over. The j works both forward  
and reverse.
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And handling breakpoints:

• b for setting a breakpoint. The b <line> will set a breakpoint at line number 
<line>. Each breakpoint is assigned a unique reference number that other 
breakpoint commands use.

• tbreak. This is like break, but the breakpoint is temporary and is cleared 
after the first time it is encountered.

• cl <bpNumber> clears a breakpoint, by reference number.
• ignore <bpNumber> <count> is for ignoring a particular breakpoint for a 

certain number (<count>) of times.
• disable <bpNumber> for disabling a breakpoint. Unlike clearing, the 

breakpoint remains and can be re-enabled.
• enable <bpNumber> re-enables a breakpoint.

Examining values:

• a to view the arguments to the current function
• whatis <arg> prints the type of <arg>
• p <expression> prints the value of <expression>

Read-Eval-Print Loop (REPL) and IPython 
architecture
Most interpreted languages follow the same underlying event model—Read-Eval-
Print Loop (REPL)—and IPython are no exception. In REPL, interaction with the 
user is broken down into three steps:

1. The system reads the input from the user and parses it into an internal format.
2. The system evaluates the parsed input.
3. The result of this evaluation is printed to the user.

In a "standard" interpreter, all phases of REPL are executed within the same thread. 
An important feature of IPython is that the "eval" phase has been separated out 
into its own process. This process is called a kernel, and it communicates with the 
other components via messaging. This allows for great flexibility; terminals and 
kernels can run on different machines, one kernel can support multiple terminals, 
and development of different terminals and kernels for specialized uses is possible. 
It also makes for a clean parallel architecture, as will be demonstrated in Chapter 4, 
Messaging with ZeroMQ and MPI.
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The IPython project provides an informative diagram of the architecture at http://
ipython.readthedocs.org/en/latest/development/how_ipython_works.html:

Currently, the following user interface components are compatible with the  
IPython kernel:

• console

• qtconsole

• notebook

At the command line, issue this command:

ipython <component>

This will start the user interface component, an IPython kernel, and connect them via 
messaging. For example, suppose you issue this command:

ipython notebook

It will start up a Jupyter Notebook, as the Jupyter project includes a user interface 
component compatible with the IPython kernel.

Alternative development environments
There is a slew of alternative user interfaces for developers looking for a graphical 
interface to some (or all) of the IPython development environment. Most mainstream 
development has moved to integrated, graphical IDEs and there is no reason for the 
IPython developer to be left behind.

http://ipython.readthedocs.org/en/latest/development/how_ipython_works.html
http://ipython.readthedocs.org/en/latest/development/how_ipython_works.html
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Graphical IDEs provide several useful features:

• A graphical editor, with syntax highlighting, code completion, PyLint 
integration, and more.

• An interactive object inspector. Just place the cursor before any object and 
press Ctrl + I. The documentation for that object/class will be displayed.

• The IPython console is still present, but many useful commands have 
associated buttons and keyboard shortcuts.

• Debugger integration. A multi-window display allows code to be viewed 
in one window, an object inspector in another, and interactive expression 
evaluation in yet another.

Spyder
Spyder stands for Scientific PYthon Development EnviRonment. It is supported on 
Windows, OS X, and Linux. It can be installed on its own or as a part of a package. 
The Windows all-in-one distributions, Anaconda, WinPython, and Python(x,y) 
include Spyder by default. Anaconda on OS X also includes Spyder. On Linux, 
Spyder is included in various distributions. Check your manual for details.

Here is an example screenshot of Spyder in action:
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Canopy
Canopy is Enthought's graphical environment for IPython. The base version is free, 
while additional features (including a graphical debugger) require a license. Here is a 
screenshot of Canopy in action:

PyDev
PyDev is an open source/free plugin for the Eclipse development environment. It is 
interesting in the sense that it is, by default, a Python development system but will 
use IPython if available. As an eclipse plugin, PyDev provides access to lots of useful 
eclipse features, including possibly the most powerful debugger out there.
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The Eclipse environment provides plugins for just about any functionality a 
developer could want. If your team will be developing a multi-lingual system, or you 
are transitioning from more mainstream development, Eclipse provides a flexible, 
powerful environment.

Others
There are plenty of other Python development environments (PyCharm, NetBeans, 
PythonToolkit, Python Tools for Visual Studio, SPE, and so on). Developers are 
notoriously loyal to their development tools, and IDEs are no exception. It is possible 
that an experienced Python developer has already chosen an IDE not mentioned 
previously. This does not mean that their preferred IDE will not work with IPython.

The landscape is continuously changing, so it is difficult to say anything with 
certainty that would apply to all the various IDEs. However, given the nature 
of IPython as a replacement shell for Python (with some important additions), it 
is likely that most Python IDEs can be configured so as to use an IPython shell/
interpreter in place of standard Python. Furthermore, it is likely such a solution 
would not be as full-featured as one created expressly for IPython, but morale and 
productivity also play a role in picking an IDE.
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Summary
In this chapter, we covered many of the basics of using IPython for development. 
IPython can be installed by hand, but there are also several all-in-one distributions 
available. These distributions automatically install many popular packages and 
provide advanced package management capability.

IPython offers functionality beyond a Python command line, however. In this 
chapter, we introduced configuration and magic commands. Configuration is 
accomplished by writing an IPython program to control various aspects of the 
environment through manipulating the configuration object.

Magic commands fall into many categories: OS equivalents, working with code, 
logging, debugging, documentation, profiling, and working with other languages, 
among others. Add to this the ability to create custom magic commands (in IPython 
or another language) and the IPython terminal becomes a much more powerful 
alternative to the standard Python terminal.

Also included is the debugger—ipdb. It is very similar to the Python pdb debugger, 
so it should seem familiar to Python developers.

All this is supported by the IPython architecture. The foundation is a Read-Eval-Print 
Loop in which the Eval section has been separated out into its own process. This 
decoupling allows different user interface components and kernels to communicate 
with each other, making for a flexible system.

This flexibility enables many different IDEs to interoperate with IPython. A few 
popular IDEs were covered.

This chapter introduced some of the features of the IPython shell that make it such 
a powerful development environment. In the next chapter, we will look under the 
hood at the IPython parallel architecture.
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Stepping Up to IPython for 
Parallel Computing

In this chapter, we are going to look at the tools that IPython provides for parallel 
computing.

This chapter covers the following topics:

• Multi-tasking
• Threading
• Multi-processing
• IPython's parallel architecture
• Getting started with ipyparallel
• IPython parallel magic commands
• Types of parallelism
• SIMD and GPUs
• SPMD and MapReduce
• MIMD and MPMD
• Task farming and load balancing
• Data parallelism
• Application steering
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Serial processes
When first learning to program, many students find it difficult to think in terms of 
doing "one thing at a time". The advent of parallel machines relaxed this restriction. 
Unfortunately, doing several things at the same time is even more difficult than doing 
one thing at a time. In this section, we describe how a process is structured and some 
different scheduling mechanisms: batch systems, multitasking, and time slicing.

Program counters and address spaces
A program can be viewed as a series of instructions acting on data. When it is 
executed, the processor must keep track of which instruction(s) is to be executed 
during the current clock cycle, and what data the instruction refers to. The 
mechanism used by the processor to keep track of instructions is called a program 
counter. The idea of an address space is similar, but applicable to data. The move 
from serial to parallel architectures can be described in terms of the increasing 
complexity of these mechanisms.

Batch systems
It is a truism that a single processor can only execute one instruction at a time. For 
many tasks this is perfectly adequate. The basic REPL paradigm implicitly assumes 
this model. A schematic diagram is provided as follows:



Chapter 3

[ 53 ]

This can be extremely efficient in that the program counter can reside in a register 
while the program is stored in main memory. When the current program is finished 
and a new program is ready to run, the new program is loaded into memory and the 
program counter is set to the first instruction of the new program.

The idea of a single program counter matched with an address space is the basis of 
the idea of a process. A batch system is one in which a single process can be run at a 
time, from beginning to end, before another process can start.

A pure batch architecture can run into difficulties in three areas, as follows:

• Error recovery
• Blocking
• Responsiveness

If a program errors out (say, by entering an infinite loop), it can be difficult for a 
batch system to recover. Some sort of outside intervention, whether manual or 
automatic, is required in these cases.

If a program blocks forever (say, by waiting for input that never comes), the system 
has the same problem as if there were an error.

Responsiveness is related to blocking but manifests itself primarily in terms of user 
experience. For example, in the author's environment, starting Emacs appears to 
bring the machine to a halt for several seconds. The machine has not actually stopped 
working, although it appears that way. It is just that, with only a single processor, the 
process controlling the command line is blocked while the CPU executes code related 
to starting the editor.

All these difficulties point to a need for some mechanism that could stop the current 
process so that some other process could use the main processor.

Multitasking and preemption
Multitasking is a way in which an operating system can support concurrently 
executing processes. Concurrency, while not true parallelism, allows several 
different processes to be in progress at the same time, even though only one process 
is actually running at any given time. The underlying idea is that any given process 
can be stopped and started without having to run through to its end. The process by 
which processes are stopped and started is known as a context switch.
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A context switch can be a complicated process, but the basic outline involves  
the following:

• The processor stops executing the current process (that is, it stops 
incrementing the program counter and executing instructions)

• The state of the current process (its context - including the program counter, 
all registers, and all data) is stored somewhere

• Data from the new process is copied into memory
• A new value is written to the programming counter

A context switch is a similar process to the one that occurs when a program is done 
running on a batch system. The biggest difference is that, after a context switch, a 
process's state is stored so that it could be loaded back into memory and its execution 
restarted. When a process stops executing and its state is written to storage it is said 
to be "switched out". The new program is said to be "switched in".

An operating system that can initiate context switches is said to be a multitasking 
operating system. Virtually all modern operating systems (outside of the batch 
systems found in HPC centers) support multitasking.

The primary benefits of multitasking are as follows:

• Responsiveness: The processor can continue to do work on one process 
while another is blocking

• Resiliency: An error in a single process cannot take down the entire system

The primary drawback is that context switches are inefficient. The system is not 
doing anything the user would regard as productive while the switch is going on.

Given the ability to multitask, the next obvious question is: when should context 
switching happen? There are two primary approaches:

• Cooperative multitasking
• Preemptive multitasking

In cooperative multitasking, context switches only occur when a process 
"voluntarily" cedes time to another. This could happen for many reasons, including 
being in a blocking state, program termination, and so on. This approach was used 
in early time-sharing systems and persisted into early OSes meant for personal 
computers. It has the weakness of being very susceptible to errors resulting from 
hung processes that will not cede time.
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In preemptive multitasking, the operating system initiates context switches. In this 
case the process has no choice – it will be switched in or out based on whatever 
criteria the OS uses. The OS can use a multitude of criteria: process priority, aging, 
I/O status, real-time guarantees, and so on. An interesting and popular choice is 
time slicing.

Time slicing
In time slicing, the OS performs a context switch on a regular schedule. Each process 
is allocated an amount of time (a time slice, or quantum) during which it can run. 
When the quantum is over, the OS switches the current process out and another 
switches in. Time slicing is a form of preemptive multitasking.

This provides some interesting options for controlling the performance of the system 
as a whole. A long quantum makes for an efficient system by minimizing the number 
of context switches. A shorter quantum can make the system more responsive by 
quickly switching out hung and blocking processes.

With time slicing (and multitasking in general), the process model becomes more 
complicated:
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Threading
Experience with multitasking systems showed that a smaller unit of control was 
required than the process itself. Two inter-requirements presented themselves:

• The need for a single process to perform multiple activities
• The need for these activities to share data with each other

The process model, where each process has its own address space and program 
counter and an expensive context switch is required to change the instruction stream, 
was a poor fit for these requirements. In particular, the feature of the context switch, 
in which the process's memory was swapped out directly contradicted the need for 
data sharing.

The solution was the idea of threads. A thread is like a process in that it is a sequence 
of instructions with an associated process counter. The difference is that several 
threads can share the same address space. In general, threads are components 
of processes that share the entire process address space, but can be scheduled 
separately. Switching from one thread to another is easier, as the entire state does not 
need to be sent to storage, just the program counter and registers. The entirety of the 
process's data can (and should) remain where it is.

If one considers a process as an "area" of memory, then a thread would be a smaller 
area enclosed completely within it, with some private space, but access to the rest of 
the process's memory. The following diagram is illustrative:
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Threading in Python
There is no need to go to IPython-specific libraries for threading support. Python 
has a built-in library that will perform all the important threading operations. This 
library is called "threading".

Another useful library is "queue". The queue library implements multi-producer, 
multi-consumer, thread-safe queues. It is very useful when a set of threads all need to 
be able to write to a common data area. In our example, each call to f creates an integer 
corresponding to a hailstone run length. This value is then added to a queue. Because 
we are summing all the values, it does not matter in which order they are added.

The use of a queue (or other synchronized data structure) for communication 
between threads is a side-effect of the fact that all threads started by a single process 
share the same address space. In this case, every thread can write to the queue 
because it is the shared address space, and comes into scope through the standard 
parameter-passing mechanism. Were these threads separate processes, they would 
not be able to share a data structure in this manner.

Example
Let us take another look at the example of calculating hailstones from Chapter 1, 
Using IPython for HPC:

import queue
import threading

def f(n, q):
    curr = n
    tmp = 1
    while curr != 1:
        tmp = tmp + 1
        if curr % 2 == 1:
            curr = 3 * curr + 1
        else:
            curr = curr/2
    q.put(tmp)

def main( ):
    sum = 0
    q = queue.Queue()
    threads = []

    for i in range(100):
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        t = threading.Thread(target=f, args=(i+1, q))
        threads.append(t)

    for thread in threads:
        thread.start()

    for thread in threads:
        threads[i].join()

    while (not q.empty()):
        sum = sum + q.get()

    avg = sum / 100.0
    print("avg = ", avg)

Limitations of threading
Some test runs of the code yield a surprising result: the threaded code actually runs 
more slowly. While not the initial goal, this result should not be entirely surprising.

The algorithm that calculates the hailstone sequence is CPU-bound, that is, it spends 
most of its time using the CPU and little time blocked or waiting (for example, for 
I/O). As such, although any two calls of f with different arguments do not depend 
on each other, there is still a shared resource – the CPU. All threads share the same 
CPU, so this in effect turns our threaded program back into a serial one.

Why is it worse? There is a price to be paid for threading that the serial algorithm 
did not. There are several steps that the threaded program has to take that the serial 
algorithm does not, and each step takes time:

• Creation of the thread objects
• Assignment of the function to be executed and the arguments to each thread
• Signaling each thread to start
• Waiting for each thread to finish
• Time for the queue to enqueue and dequeue each result
• Disposal of all the thread objects

As this example shows, using multiple threads yields better results when most of 
threads can be counted on to be in some sort of blocked or waiting state at any given 
time. The more threads that are CPU-bound, the more similar to a serial program 
things become. In that case, the overhead of threading can degrade performance to 
even lower levels than the serial version.
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Global Interpreter Lock
Much has been said about Global Interpreter Lock (GIL) in Python and how it 
affects multithreaded applications. Some description of how Python handles threads 
is required before an explanation of what GIL is would make sense.

What happens in an interpreter?
An interpreter is simply a program that takes code as input and performs actions 
based on that code. As a program, an interpreter has all the usual internals of a 
program: variables, data structures, functions, included libraries, and so on.

The code being run by the interpreter can have access to some subset of its internal 
state. As such, the interpreter needs to control this access so that the programs the 
interpreter runs do not break the interpreter itself. This includes problems that can be 
caused when the interpreter is running programs in parallel.

Many of the things a program wants to do are straightforward to support in an 
interpreter (for example, declaring variables, if statements, and looping). Threading is 
more complicated to support, however, because the language designer has two options:

• Green threading (the interpreter implements threads)
• Native threads (the interpreter uses the operating system's  

thread implementation)

Green threading provides the language designer the most control over how threads 
are implemented. This control can be used to ensure that threaded programs do not 
break the interpreter by controlling the behavior of the threads. The downside is that 
green threading makes the interpreter more complex and (potentially) slower.

Native threads are provided by the operating system. This brings simplicity and 
efficiency at the cost of decreased control.

Python has elected to use native threads. This brings up the question: given that 
multiple threads can (potentially) access the interpreter simultaneously, can they 
execute in such a way as to break the interpreter (that is, is the interpreter thread-safe)?

CPython
The most popular Python interpreter is CPython. CPython is, not surprisingly, 
written in C. C requires manual memory management that can be especially tricky 
in a multithreaded environment. As a result, CPython (and some of the libraries it 
depends on) is not thread-safe. Because CPython is not thread-safe, only one Python 
thread is able to run in the interpreter simultaneously. In effect, the other threads are 
"locked out" of the interpreter. Hence the term "Global Interpreter Lock".
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GIL is not an inherent property of Python (or IPython), but rather the way a 
particular interpreter is implemented. For example, Jython and IronPython are 
Python interpreters that do not have GIL.

Multi-core machines
This would ordinarily not be an issue. On a single-processor machine only one 
thread can execute at a time in any case, so only allowing one thread in the 
interpreter is not a bottleneck. The complication comes with multi-core machines. A 
multi-core architecture site in-between the single and multi-processor architectures. 
A single-processor architecture has one processor and one address space. A multi-
processor architecture has multiple processors and multiple address spaces. A multi-
core machine has multiple processors, but a single address space.

At first glance it would appear that multi-core machines are exactly what threads 
need. Threads could run simultaneously while still accessing a common address 
space. This would combine the best of the single and multi-processor architectures. 
The problem lies in the interpreter. Even with multiple cores there can still be only 
one, and therefore only one thread can run at a time, leaving the other cores unused.

Kill GIL
Given the prevalence of multi-core architectures, this limitation is glaring and has 
caused much confusion and consternation. Developers have attempted to remove 
GIL several times over the years, but all such efforts have been rejected. There are 
many reasons for the rejections, but the most important are as follows:

• Simplicity: All fixes have made CPython more complicated and harder  
to maintain

• Speed: The constructs necessary to ensure thread safety in the absence of GIL 
are expensive in terms of processor time

• Back-compatibility: Any changes must continue to support all current 
CPython features

• Extensions: All external libraries used by CPython must be protected, or 
alternatives developed

Given this list of requirements, it is not likely that GIL in CPython will be  
removed soon.
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Using multiple processors
Given the limitations of threading for CPU-bound code, perhaps a solution can be 
found using multiple processors. The problem with CPU-bound algorithms and 
threading was that there was an implicitly-shared resource: the CPU. With multiple 
processors this limitation can be eased – each function call can have its own CPU, 
up to the physical number of CPUs. Each CPU would work independently and 
in parallel rather than being a bottleneck. We will examine the tools that IPython 
provides for working with multiple processors in the following sections.

The IPython parallel architecture
The IPython.parallel package has moved to the ipyparallel project. While not a 
major change, this has introduced a dependency on the ZeroMQ messaging library.

Overview
The ipyparallel architecture is a natural extension of the serial IPython architecture. 
The decoupling of the client from the interpreter lends itself to an architecture in 
which multiple interpreters and clients can run in parallel.

Components
The IPython architecture consists of four components:

• The IPython Engine
• The IPython Controller/Client
• The IPython Hub
• The IPython Scheduler

The IPython Engine
An IPython Engine is a Python instance that accepts Python commands and objects 
over a network connection. The ability to run engines on different processors is what 
makes distributed computing in IPython possible.

The IPython Controller
The IPython Controller provides an interface for working with a set of engines.  
It consists of a hub and a set of schedulers. The Controller provides the single point 
of contact for users who wish to interact with the engines.
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The IPython Hub
The IPython Hub keeps track of engine connections, schedulers, clients, task 
requests, and results. The Hub has two primary roles:

• Facilitate queries of the cluster's state
• Handle the information required to establish connections to client and engines

The IPython Scheduler
All actions performed by an engine go through a scheduler. The engines block while 
running code, and the schedulers hide that from the user.

The following diagram is a courtesy of "The IPython Development Team":

Getting started with ipyparallel
We will start with a simple parallel "Hello world" program using ipcluster.

ipcluster
To use IPython for parallel computing, you will need a controller and one or more 
engines. The easiest way to get them is to start them on your localhost using the 
ipcluster command:

ipcluster start –n 4
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It will start a controller and four engines.

This can be somewhat fraught with subtle errors, however, as the engines do not 
necessarily have the same environment as the command line that started them. You 
may have more luck starting the entire thing from inside an IPython session, using 
the ! escape for system commands, shown as follows:

In [5]: !ipcluster start -n 4 &

In [6]: 2015-10-26 15:52:53.738 [IPClusterStart] Using existing profile 
dir: '/nfs/02/wit0096/.ipython/profile_default'

2015-10-26 15:52:53.828 [IPClusterStart] Removing pid file: /nfs/02/
wit0096/.ipython/profile_default/pid/ipcluster.pid

2015-10-26 15:52:53.828 [IPClusterStart] Starting ipcluster with 
[daemon=False]

2015-10-26 15:52:53.830 [IPClusterStart] Creating pid file: /nfs/02/
wit0096/.ipython/profile_default/pid/ipcluster.pid

2015-10-26 15:52:53.926 [IPClusterStart] Starting Controller with 
LocalControllerLauncher

2015-10-26 15:52:54.830 [IPClusterStart] Starting 4 Engines with 
LocalEngineSetLauncher

2015-10-26 15:53:25.155 [IPClusterStart] Engines appear to have started 
successfully

We will cover a method for synchronizing environments between distributed 
engines in a later section.

Hello world
A simple interactive session that uses a cluster of four engines to compute the value 
of the "Hello world" string:

In [1]: !ipcluster start -n 4 &

In [2]: 2015-10-27 14:11:30.276 [IPClusterStart] Starting ipcluster with 
[daemon=False]

2015-10-27 14:11:30.276 [IPClusterStart] Creating pid file: /nfs/02/
wit0096/.ipython/profile_default/pid/ipcluster.pid

2015-10-27 14:11:30.277 [IPClusterStart] Starting Controller with 
LocalControllerLauncher

2015-10-27 14:11:31.280 [IPClusterStart] Starting 4 Engines with 
LocalEngineSetLauncher
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2015-10-27 14:12:01.599 [IPClusterStart] Engines appear to have started 
successfully

In [2]: def hello( ):

   ...:     return "Hello world"

   ...:

In [3]: from ipyparallel import Client

In [4]: c = Client( )

In [5]: dv = c[:]

In [6]: dv.apply_sync(hello)

Out[6]: ['Hello world', 'Hello world', 'Hello world', 'Hello world']

This contains enough features to warrant a closer look.

Line 1:

In [1]: !ipcluster start -n 4 &

In [2]: 2015-10-27 14:11:30.276 [IPClusterStart] Starting ipcluster with 
[daemon=False]

2015-10-27 14:11:30.276 [IPClusterStart] Creating pid file: /nfs/02/
wit0096/.ipython/profile_default/pid/ipcluster.pid

2015-10-27 14:11:30.277 [IPClusterStart] Starting Controller with 
LocalControllerLauncher

2015-10-27 14:11:31.280 [IPClusterStart] Starting 4 Engines with 
LocalEngineSetLauncher

2015-10-27 14:12:01.599 [IPClusterStart] Engines appear to have started 
successfully

This starts the four engines that will be running our function. We use an IPython 
shell escape here, and they are started in the background so control returns to the 
IPython shell. Starting the engines does not block the terminal, but we wait until the 
system reports success.

Line 2:

In [2]: def hello( ):

   ...:     return "Hello world"
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The return value of this function is the value returned to the terminal after the engine 
runs the function.

Line 3:

In [3]: from ipyparallel import Client

The parallel library has been moved from IPython.parallel to ipyparallel.

Line 4:

In [4]: c = Client( )

The Client object will allow us to get access to the DirectView objects that we can 
use to interact with the engines.

Line 5:

In [5]: dv = c[:]

This is the DirectView object. It is created by indexing a Client. DirectView 
contains functions that can be used to have the various engines do work. In this case, 
our DirectView refers to all of the engines. Any function called upon dv will affect 
all the engines.

Asking about dv will yield the following helpful information:

In [12]: ?dv

Type:        DirectView

String form: <DirectView [0, 1, 2, 3]>

Length:      4

File:        …

Docstring:

Direct Multiplexer View of one or more engines.

These are created via indexed access to a client:

>>> dv_1 = client[1]

>>> dv_all = client[:]

>>> dv_even = client[::2]

>>> dv_some = client[1:3]
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The DirectView class is the primary means through which the user can interact with 
the engines. A DirectView object can refer to all, or a subset, of the engines, depending 
on how it was created. The engines it refers to are called the target of the object.

Line 6:

In [6]: dv.apply_sync(hello)

Out[6]: ['Hello world', 'Hello world', 'Hello world', 'Hello world']

Here is where the actual parallel work is done. The apply_sync function sets off 
several steps behind the scenes:

1. dv submits the hello function to the controller.
2. The controller places the hello function in each engine's queue for execution.
3. The apply_sync call then blocks, waiting for all the engines to finish execution.

The output is just the return value of each engine, collected in a list.

Using map_sync
If you have a program that already uses Python's map function, there is a 
straightforward way to modify the code so that it runs in parallel – map_sync 
function of DirectView.

Consider a function to compute hailstone sequences:

def f(n):
    curr = n
    tmp = 1
    while curr != 1:
        tmp = tmp + 1
        if curr % 2 == 1:
            curr = 3 * curr + 1
        else:
            curr = curr/2
    return tmp

With the same setup as before, map_sync will make the parallel calls:

In [35]: !ipcluster start -n 4&

In [36]: c = Client()
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In [37]: dv = c[:]

In [38]: dv.map_sync(f, range(1, 5))

Out[38]: [1, 2, 8, 3]

Asynchronous calls
Both apply_sync and map_sync end with _sync. This is a hint that something 
synchronous is happening. In particular, the terminal halts at the apply_sync 
or map_sync call and will not continue until every engine has completed (that is, 
synchronous calls are blocking). It is possible to perform the same calculation(s) 
without waiting for the result – that is, asynchronously.

In [58]: async_res = dv.map(f, range(1, 11))

When map and apply are called asynchronously, the terminal does not wait for the 
call to be completed, but continues on (that is, asynchronous calls are nonblocking). 
This raises the question of how the results can be obtained.

Asynchronous methods accomplish this by returning an AsyncMapResult object. The 
simplest thing to do is to simply turn it into a list:

In [73]: list(async_res)

Out[73]: [1, 2, 8, 3, 6, 9, 17, 4, 20, 7]

AsyncMapResult also supports the enumerate method:

In [84]: for a, b in enumerate(async_res):

    print(a, b)

   ....:

0 1

1 2

2 8

3 3

4 6

5 9

6 17

7 4

8 20

9 7
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Whether gathering the results as a list or enumerating them, the command that 
actually retrieves the results (list or enumerate) will block until the calculations  
are complete.

You are guaranteed to get the same results regardless of synchronization:

In [85]: sync_res = dv.map_sync(f, range(1, 11))

In [86]: async_res = dv.map(f, range(1, 11))

In [87]: sync_res == list(async_res)

Out[87]: True

Synchronizing imports
As mentioned earlier, newly-started engines need not have the same environment as 
the instance from which they were started. The DirectView class provides a context 
manager, sync_imports, for performing simultaneous imports.

Given dv, our DirectView object from earlier, we could import numpy on all engines 
as follows:

In [13]: with dv.sync_imports():

   ....:     import numpy

   ....:

importing numpy on engine(s)

Parallel magic commands
IPython provides several magics for interactive use in parallel situations.

%px
The %px magic executes a single Python command on the engines specified by the 
targets attribute of the DirectView object.

Here we will tell all four engines to create 3x3 arrays and fill them with random 
numbers in [0, 1]:

In [25]: %px arrays = numpy.random.rand(3, 3)
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Note that nothing is returned in this case. Each engine, however, has its own copy of 
the arrays object, and we can perform operations on it:

In [27]: %px numpy.linalg.eigvals(arrays)

Out[0:7]: array([ 1.49907907,  0.28987838,  0.49496096])

Out[1:7]: array([ 1.43756182,  0.27747814,  0.45153931])

Out[2:7]: array([ 1.51325036+0.j, -0.06614375+0.30396195j, -0.06614375-
0.30396195j])

Out[3:7]: array([ 1.71117020+0.j, -0.13081468+0.42304986j, -0.13081468-
0.42304986j])

Magics can also be run remotely. In order to start the %pylab magic on multiple 
engines:

In [44]: %px %pylab inline

[stdout:0] Populating the interactive namespace from numpy and matplotlib

[stdout:1] Populating the interactive namespace from numpy and matplotlib

[stdout:2] Populating the interactive namespace from numpy and matplotlib

[stdout:3] Populating the interactive namespace from numpy and matplotlib

%%px
This cell magic allows for arguments to control execution.

For example, --targets controls which engines the command will run on. Compare 
the following sets of commands.

Command 1:

In [46]: %px print("hello")

[stdout:0] hello

[stdout:1] hello

[stdout:2] hello

[stdout:3] hello

Command 2:

In [51]: %%px --targets 0::2

print("hello")

[stdout:0] hello

[stdout:2] hello
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%px also accepts the following:

• --[no]block for specifying blocking behavior
• --group-outputs, which changes how output is presented

%pxresult
DrirectView supports a block field. When block is True, any command issued 
using the DirectView object will block. On False, it will not. When a command is 
not blocking, no output is presented. This output is not gone, however. %pxresult 
contains it. For example:

In [17]: dv.block = False

In [18]: %px print("hello")

Out[18]: <AsyncResult: finished>

In [19]: %pxresult

[stdout:0] hello

[stdout:1] hello

[stdout:2] hello

[stdout:3] hello

%pxconfig
Default targets and blocking behavior are set by the block and targets attributes of 
the active DirectView object. They can be changed directly from there, or by using 
the %pxconfig magic. For example:

In [21]: %pxconfig --block

The preceding code will set further %px magics to block.

%autopx
This switches to a mode where every command is executed on the engines until 
%autopx is executed again. For example:

In [13]: %autopx

%autopx enabled
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In [14]: max_evals=[]

In [15]: for i in range(200):

    a=numpy.random.rand(5, 5)

    eig=numpy.linalg.eigvals(a)

    max_evals.append(eig[0].real)

   ....:

In [16]: print("avg max eigenvalue is", sum(max_evals)/len(max_evals))

[stdout:0] avg max eigenvalue is 2.50716697002

[stdout:1] avg max eigenvalue is 2.50225575352

[stdout:2] avg max eigenvalue is 2.49584794775

[stdout:3] avg max eigenvalue is 2.52453590807

Note that max_evals is not shared between the engines. Each engine has its  
own copy.

Types of parallelism
In 1966 Michael Flynn proposed a taxonomy of parallel programming models:

• SISD: Single Instruction stream, Single Data stream
• SIMD: Single Instruction stream, Multiple Data stream
• MISD: Multiple Instruction stream, Single Data Stream
• MIMD: Multiple Instruction stream, Multiple Data stream

This has not proven to be a completely satisfactory system. For example, it is possible 
for the same program to run in different categories during the same session, and the 
same hardware can be configured to operate in categories. In addition, experience 
with parallel systems has pointed out the need for additional models, including:

• Single Program, Multiple Data streams (SPMD)
• Multiple Programs, Single Data streams (MPMD)
• Task farming
• Data parallelism

In this chapter, we will look at the various categories and IPython's support for each.
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The SISD model will not be covered here. The SISD model is the standard 
programming model for single processor machines and is covered in many  
other books.

SIMD
The Single Instruction stream, Multiple Data stream model specifies a single 
instruction stream that is applied in lockstep to multiple data elements. In this 
architecture, multiple processing elements apply the same instruction to multiple 
pieces of data simultaneously.

Schematically (attr: Colin M. L. Burnett, https://en.wikipedia.org/wiki/
File:SIMD.svg):

The earliest SIMD machines were vector processors in supercomputers. They 
were particularly applicable to matrix multiplication, important in many different 
scientific computations. It is often the case that a "standard" algorithm can be 
refactored into a form that will run efficiently in the SIMD paradigm. The process of 
refactoring a program in this manner is known as vectorization.

An important contemporary application of the SIMD architecture can be found in 
GPUs. Many important operations in graphics processing can be naturally vectorized.

It is possible to write GPU-specific code inside a Python program using various 
modules (for example, PyCUDA, PyOpenCL). We will use NumbaPro, as it allows 
the developer to stay primarily within Python. It is up to NumbaPro to take hints 
from the coder as to what parts to generate CUDA code for and how to handle the 
details of working with the GPU.

https://en.wikipedia.org/wiki/File:SIMD.svg
https://en.wikipedia.org/wiki/File:SIMD.svg
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Consider the following program:

import numpy
from numbapro import vectorize

@vectorize(["float32(float32, float32)"], target="gpu")
def vectorAdd(a, b):
    return a + b

def main( ):
    N = 64

    A = numpy.random.rand(N).astype(numpy.float32)
    B = numpy.random.rand(N).astype(numpy.float32)
    C = numpy.zeros(N, dtype=numpy.float32)

    C = vectorAdd(A, B)
    print(C)

if __name__ == "__main__":
    main()

There is no need to go through this line-by-line, but some pieces bear closer 
inspection.

Line 4:

The @vectorize decorator instructs the interpreter to construct a NumPy ufunc 
– a universal function that will execute in parallel on its arguments. It does so by 
performing its core function element-wise on its inputs. In this case, the core function 
is adding the two elements.

@vectorize takes two arguments. The first describes the types of things it will be 
handling. "float32(float32, float32)" means that the function will return a 
float32 value and accept as arguments two float32 values. The second argument 
specifies where the function should run. By default, it is "cpu", but we would like this 
demo to run on the GPU.

Closely related to @vectorize is @guvectorize. @guvectorize creates a NumPy 
generalized universal function, which works on arrays instead of scalars. If we had 
wanted to multiply arrays instead of simply adding vectors, the decorator may have 
looked more like the following:

@guvectorize(['void(float64[:,:], float64[:,:], float64[:,:])'], 
'(m,n),(n,p)->(m,p)')

Lines 11-13:
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It is important that the types stored in the Python variables match the types that 
NumbaPro is expecting. Python might be forgiving of type mismatches, but a 
graphics card is not.

SPMD
Although often conflated with SIMD, the Single Program Multiple Data stream 
paradigm is more flexible. SIMD requires that all processing units execute the same 
instruction at the same time on different data streams. SPMD only requires that the 
processing units be executing the same program. There is no requirement that every 
unit be executing exactly the same instruction in that program at every point in time.

The parallel commands we have seen so far – apply and map – and the magics – %px 
and related – are all designed to work with an SPMD architecture. The difference 
between running on a single machine and on several is in how the engines are set up.

ipcluster and mpiexec/mpirun
If your system has Message Passing Interface (MPI) (see: http://www.mpi-forum.
org/) installed, and the mpiexec and mpirun command are configured correctly, it is 
relatively painless to configure ipcluster to use them.

We will start by creating a new profile just for use with MPI:

-bash-4.1$ ipython profile create --parallel --profile=mpi

Next, edit your IPYTHONDIR/profile_mpi/ipcluster_config.py file.

Look for a line that sets a value for the c.IPClusterEngines.engine_launcher_
class field. Uncomment it, and ensure that it reads as follows:

c.IPClusterEngines.engine_launcher_class = 'MPIEngineSetLauncher'

Now you can launch engines using MPI with the following command:

-bash-4.1$  ipcluster start -n 4 --profile=mpi

At this point you will have broken all the code that had previously worked. Using 
ipcluster like this will launch engines that will attempt to communicate over 
SSH tunnels. For security reasons, they will not communicate over these tunnels 
without further setup. There are ways to fix this, but the easiest fix is to find the 
section of the ipcluster_config.py file that contains the lines that configure the 
LocalControllerLauncher, and add the following:

c.LocalControllerLauncher.controller_args = ["--ip='*'"]

http://www.mpi-forum.org/
http://www.mpi-forum.org/
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This will set the local controller so that it will accept connections from any IP 
address. This is not particularly secure if you are on a publicly accessible network. 
As a practical matter, the network in most supercomputers is walled off from the 
outside, so the only threat would have to come from another user on the same 
cluster. If you are on a cluster in which other users are attempting to break into your 
process, you should consider using a different cluster.

ipcluster and PBS
Supercomputers are primarily batch machines. As such, each program (job) must 
be submitted to a central scheduler that determines when and where it will run. As 
part of this submission process, a control script must be created and submitted to the 
scheduler. This control script contains information about the program that is to be 
executed. For example, the scheduler may require information pertaining to:

• Job name
• Input and output files
• The number of nodes required to run the job
• Logging level
• Special resources requested (for example, a graphics card)
• How to set up the environment for this job

A popular scheduler is Portable Batch System (PBS). The scripts that are submitted 
to PBS are called PBS scripts, and they are submitted using the qsub utility. Of 
course, different systems will use different schedulers, and each will have its own 
way of doing things, but PBS is popular and well-supported in IPython, so we will 
discuss it in this book.

Writing a good PBS script is a bit of an art, but we will only need the basics. Things 
are a little more complicated, as we will have to start the engines and the controller 
separately, rather than use the ipcluster command.

Starting the engines
Here is a PBS template that will start some number of engines:

#PBS -N ipython
#PBS -j oe
#PBS -l walltime=00:10:00
#PBS -l nodes={n//4}:ppn=4
#PBS -q {queue}
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cd $PBS_O_WORKDIR
export PATH=$HOME/usr/local/bin
export PYTHONPATH=$HOME/usr/local/lib/python3.5/site-packages
/usr/local/bin/mpiexec -n {n} ipengine --profile-dir={profile_dir}

Note the use of template variables: {n}, {n//4}, {queue}, and {profile_dir}. 
These will allow us to pass in values. The variables correspond to the following:

• {n}: The number of nodes desired.
• {n//4}: We will use four engines per node. This can be varied based on job 

characteristics.
• {queue}: The job queue to run on. Many batch systems have different queues 

based on various job characteristics – memory requirements, expected run 
time, and so on.

• {profile_dir}: The profile to use.

Starting the controller
The controller template is a little simpler:

#PBS -N ipython
#PBS -j oe
#PBS -l walltime=00:10:00
#PBS -l nodes=1:ppn=4
#PBS -q {queue}

cd $PBS_O_WORKDIR
export PATH=$HOME/usr/local/bin
export PYTHONPATH=$HOME/usr/local/lib/python3.5/site-packages
ipcontroller --profile-dir={profile_dir}

Using the scripts
Save the scripts with useful names such as pbs.engine.template and pbs.
controller.template. They can then be loaded into ipcluster_config.py by 
adding the following lines:

c.PBSEngineSetLauncher.batch_template_file = "pbs.engine.template"
c.PBSControllerLauncher.batch_template_file = "pbs.controller.
template"
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Also in ipcluster_config.py, we can set n (and any other template value)  
as follows:

c.PBSLauncher.queue = 'lowmem'
c.IPClusterEngines.n = 16

This will have the same problem of listening on ports that using mpiexec/mpirun 
had, so ipcluster_config.py will also need the following:

c.HubFactory.ip = '*'

At this point the cluster can be started with the following:

ipcluster start --profile=pbs -n 12

Other schedulers can be scripted in a similar manner, including Sun Grid Engine and 
Amazon EC2 (using StarCluster).

MapReduce
The idea underlying MapReduce is a specialization of the SPMD paradigm. In its 
simplest form, a MapReduce architecture contains:

• A mapping node
• Several computation nodes
• A reducing node

In addition to the processing nodes, three algorithms are required:

• A way to map the data to the computation nodes
• A function to apply at all the computation nodes
• A function to reduce the results at the computation nodes to a final result

www.allitebooks.com

http://www.allitebooks.org
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Graphically it looks like the following:

In practice, the algorithms used to distribute the data to the computation nodes, and 
those used to bring the data from the computation nodes to the reduce node, are very 
complex. IPython cannot compete with the likes of Apache Hadoop for large data sets.

The idea of MapReduce is worthwhile for even small programs, and IPython 
does have a quick-and-dirty way to support it. The map and map_sync calls (in 
the DirectView class) were introduced earlier. They work in tandem with the 
AsyncMapResult class to copy data to a set of engines, and gather the results of 
functions running on those engines into a single data structure.

Scatter and gather
A simple way to avoid sending all the data to each engine is to use the scatter and 
gather methods. The scatter method depends on the fact that Python namespaces are 
just dicts, which allows remote namespaces to be viewed as local dictionaries. This 
means that adding an entry to the currently active engine set implicitly sends that 
data to every engine in the set. For example:

In [51]: dv['a']=['foo','bar']

In [52]: dv['a']
Out[52]: [ ['foo', 'bar'], ['foo', 'bar'], ['foo', 'bar'], ['foo', 
'bar'] ]
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Scatter allows the developer to send a subset of data from the interactive session to 
the engines, and gather brings the data back. For example:

In [58]: dv.scatter('inputs',range(16))
Out[58]: [None,None,None,None]

In [59]: dv['inputs']
Out[59]: [ [0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11], [12, 13, 14, 
15] ]

In [60]: dv.gather('inputs')
Out[60]: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]

Of course, once the data is sent to the individual engines, an apply call (or similar 
mechanism) would need to be executed so that each engine could operate on the  
data it received.

A more sophisticated method
Scatter and gather will send more-or-less evenly split subsets of the data to every 
engine, but there is no reason to limit oneself to such a simple model. The Client 
contains references to all the engines, and you can create a DirectView object by 
indexing (as illustrated previously). Although the examples tended to grab all of the 
available engines as follows, this is not a requirement:

In [36]: c = Client()

In [37]: dv = c[:]

Code in the following format would send each engine only the subset of data that it 
needed to perform its part of the task:

c = Client()
numEngines = 4
dv = c[:]
asyncResults = []

for i in range(numWorkers):
    data = bigData.subset(i)
    dv.targets = i % numEngines
    asyncResults.append(dv.apply(func, data))

for r in asyncResults:
    results.append(r.get())
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Given a function func to process the data, and a subset function to determine what 
data to send to each engine, this will put the results of all the parallel calls into the 
results list.

While not as powerful or sophisticated as Hadoop, these mechanisms provide a 
lightweight alternative suitable for exploratory analysis on smaller data sets.

MIMD
The Multiple Instruction Multiple Data stream paradigm describes a situation  
where multiple processors can be executing different instructions on different data 
streams. It can be viewed as a slightly more general form of SIMD, where each 
processing unit does not have to be in sync with all the other processing units. In 
practice, the term usually refers to the (even more general) MPMD paradigm, which 
will be discussed later.

MPMD
The Multiple Program Multiple Data stream paradigm is the most general form of 
parallel computing. In this paradigm, the individual processing units are essentially 
independent programs that may or may not communicate with each other. This can 
be especially handy in heterogeneous environments, where different portions of the 
system may require various specialized resources.

Given a program using slight modifications of earlier examples, we would want to 
ensure that the useGPUs function was executed only on nodes with an attached GPU:

import numpy
from numbapro import vectorize

@vectorize(["float32(float32, float32)"], target="gpu")
def vectorAdd(a, b):
    return a + b

def useGPUs( ):
    N = 64

    A = numpy.random.rand(N).astype(numpy.float32)
    B = numpy.random.rand(N).astype(numpy.float32)
    C = numpy.zeros(N, dtype=numpy.float32)

    C = vectorAdd(A, B)
    print(C)
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def f(n, q):
    curr = n
    tmp = 1
    while curr != 1:
        tmp = tmp + 1
        if curr % 2 == 1:
            curr = 3 * curr + 1
        else:
            curr = curr/2
    q.put(tmp)

The function f should be limited to non-GPU nodes so as to reserve that limited 
resource for code that requires it. We can combine some of the ideas from the 
threading example to assign tasks correctly and not have to wait for each to 
complete, as follows:

def gpuWrap(dv, q):
    q.add(dv.apply(useGPUs))

def fWrap(dv, i, q):
    q.add(dv.apply(f, i))

# we assume that the engines have been correctly instantiated
def main( ):
    q = Queue.Queue() # collect results in here
    threads = []
    seqNum = 1

    c = Client()
        
    for i in range(100):
        dv = c[i]
        if i % 4 == 0:
            # we assume the GPU is attached to processing element 0
            t = threading.Thread(target=gpuWrap, args=(dv, q))
        else:
            t = threading.Thread(target=fWrap, args=(dv, seqNum, q))
            seqNum = seqNum + 1

        threads.append(t)

    for thread in threads:
        thread.start()
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    for thread in threads:
        threads[i].join()

# at this point q should be full of AsyncResult objects that can be 
used to
# get the results of the individual processes as they complete

This is a fairly complex example, yet still somewhat underpowered. On the positive 
side, it ensures that only processes that need a GPU get one, and that no process that 
does not need one, gets one. An important drawback, however, is that there is no 
concept of processor load. Every fourth task is assigned to each processor, regardless 
of whether that processor is already busy. Assigning tasks in this manner is non-
trivial – it requires some way to monitor the load on individual processing elements 
at the same time as keeping track of waiting tasks and handling task startup/
shutdown. While this could certainly be built using the tools we have seen so far, it 
would be a complicated and error-prone construction.

The general problem of task scheduling is hard and this book will not address it. As 
it is, our example does not need the full power of a general-purpose task scheduler 
– a special case will suffice. The particular form of task scheduling required for our 
current example is known as task farming. Luckily, IPython implements this form of 
task farming through load balancing.

Task farming and load balancing
As the various processors will not all be executing the same code at the same time, or 
even necessarily the same program, it is possible for an MPMD system to have some 
processing units that are idle, while others have too much work. This can lead to 
unnecessary waiting on completion. A straightforward way to handle this is to allow 
the controller to balance the load – that is, to keep a pool of work that needs to be 
done, and assign that work to processing units as they become free.

IPython provides the LoadBalancedView to support this. For example:

In [4]: rc = Client()

In [5]: balView = rc.load_balanced_view()

At this point, balview can do most of the things that a normal DirectView instance 
can do. For example, using map to calculate asynchronously:

In [19]: ar = balView.map(lambda x:x**10, range(8))

In [20]: list(ar)
Out[20]: [0, 1, 1024, 59049, 1048576, 9765625, 60466176,  
282475249]
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Load balanced view also supports the targets field, so that not all engines must be 
load-balanced. For example:

In [54]: balView.targets = [1, 3]

This will ensure that only engines 1 and 3 are targets of future apply and map 
requests, which will be load balanced. The use of the targets field makes for a  
very straightforward way of distributing different functions to different sets of  
processors – simply complete the following steps:

1. Choose a target set and function.
2. Use map or apply asynchronously, keeping the AsyncResult in a  

local variable.
3. Go to 1 until done.
4. Use the local variable to obtain all the results as they arrive.

The @parallel function decorator will aid in this process by allowing standard 
Python function to be easily converted to parallel execution.

The @parallel function decorator
LoadBalancedView provides a decorator to simplify running the same function on 
multiple processors: the @parallel decorator. It should work as follows:

In [38]: @balView.parallel()
   ....: def f(n):
   ....:     curr = n
   ....:     tmp = 1
   ....:     while curr != 1:
   ....:         tmp = tmp + 1
   ....:         if curr % 2 == 1:
   ....:             curr = 3 * curr + 1
   ....:         else:
   ....:             curr = curr / 2
   ....:     return tmp

In [40]: ar = f.map(range(16))

In [41]: list(ar)

However, at present there appears to be a bug in its implementation, as "Exception: 
Unhandled message type: apply_request" is returned instead. Such is the danger 
of working with a product that is under development.
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Data parallelism
So far we have talked primarily about the way tasks are distributed, and have left 
the data in the background. It can be instructive to look at the way data is obtained 
and made available to the tasks, also. After all, if a task is starved for data it cannot 
produce any results.

No data dependence
This is the situation where each task either needs no data, or can independently 
generate it (perhaps through sensor readings or a random number generator). This 
can often happen when running Monte Carlo simulations, where the only input to 
each simulation is a random number.

Monte Carlo simulation
It is often the case in a simulation, that exact values for parameters 
are not known. When this is the case, the Monte Carlo method 
entails running the simulation multiple times, with each run using 
a valid but randomly chosen value for each parameter. The results 
of the runs can then be combined statistically to provide an estimate 
of the desired result.

In this example, each instance of the simulation may as well generate its own random 
number, so the only data exchanges are as follows:

• At the beginning of the run, some minimal amount of configuration data will 
be sent (for example, number of steps or tolerance)

• At the end of the run, when results are collected

Consider the following Monte Carlo calculation of Pi:

def monteCarloPI(n):
    s = 0
    for i in xrange(n):
        x = random()
        y = random()
        if x*x + y*y <= 1:
            s+=1
    return 4.*s/n

def parCalcPI(view, n):
    p = len(view.targets)

    ar = view.apply(monteCarloPI, n)
    return sum(ar)/p
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Given the standard setup and a value for the number of samples to take:

rc = Client()
balView = rc.load_balanced_view()
samples = 100000

A call to:

parCalcPI(view, samples)

This should produce a reasonable approximation of Pi.

If the random number generator requires a seed, a handy trick is to use the process 
ID of the engine. For example:

import os
processID = os.getpid()

This will provide the process ID. Given a set of engines, issuing the following 
command from the controller will yield the list of PIDs:

In [8]: dv.apply_sync(os.getpid)

Out[8]: [30838, 30841, 30842, 30840]

External data dependence
A second way to use independent data sources is to have the data in different files. 
The solution is to pass the file name into each task as it starts, in a manner similar to 
the previous section. The advantage of using files is that, while a small amount of 
data is actually transferred (the file name as a string), a large amount of data is being 
implicitly transferred (the entire contents of each file). Consider the following (not 
terribly efficient) function that counts the number of words in a file:

def countWords(filename):
    int numWords = 0
    f = open(filename, "r")
    for line in f:
        words = line.split( )
        numWords += len(words)
    return numWords

The following code should count the words in several files in parallel:

c = Client()
numEngines = 4
dv = c[:]
asyncResults = []
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for i in range(numFiles):
    filename = "infile" + i + ".txt"
    dv.targets = i % numEngines]
    asyncResults.append(dv.apply(countWords, fileName))

for r in asyncResults:
    results.append(r.get())

Readers will recognize this as similar to the scatter-gather method described earlier, the 
primary difference being that the data used by the individual engines is not primarily 
what was sent in the original call, but instead data that was stored in separate files.

The primary drawback to this form of data parallelism has to do with the underlying 
architecture of the physical machine. As a rough guide, most HPC machines will 
have local storage and remote storage. Local storage consists of RAM and a small 
hard drive. Remote storage consists of banks of hard drives and lots of tape. When a 
process starts on a node, the remote storage from that node is effectively blank. This 
means that any files used by that node have to be read from remote storage into local 
storage. Local and remote storage are connected by a network that is shared by all 
nodes regardless of who owns the processes running on them.

If, as in our toy example, a large number of nodes simultaneously try to open files 
in remote storage for reading, the network connecting local and remote storage 
will be overwhelmed by the need to transfer these files from remote storage to the 
individual nodes that need access. This is not, in itself, a fatal error. It will, however, 
kill performance, and is the sort of thing that will merit an angry e-mail from the 
system administrator.

In order to avoid such problems, it is necessary to control both what task accesses 
which file, but also where the files are physically located. This problem is beyond 
the scope of this book – if the reader is interested, Hadoop Distributed File System 
(HDFS) provides an interesting approach.

The preceding approaches all share a common feature – the data flows exclusively 
between the controller and the engines. Flows that are more sophisticated will be 
addressed in a later chapter.

Application steering
Application steering is the interactive manipulation of a program with the purpose 
of affecting its behavior. It allows the user to monitor and control their application 
during execution. The tools that IPython provides to enable some basic forms of 
application steering have been laid out in this chapter. This section will limit itself to 
describing some simple applications.
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Debugging
The simplest and oldest form of application steering is using a debugger. Using a 
debugger provides the ultimate in control over an application – the entire state can 
be accessed and modified, and execution can proceed in arbitrarily small increments. 
While using a debugger is well-understood, it has the drawback of requiring an 
extremely high degree of user interaction. This may seem counterintuitive: after all, 
if some interactivity is good, should not more be better? But consider running 1500 
simultaneous tasks, and trying to debug them all at the same time. If nothing else, 
this would require a larger monitor than most developers have.

First to the post
When running algorithms that involve a lot of searching (for example, optimization 
or machine learning) it is often the case that:

• The only real difference between tasks is the part of the search space they  
are exploring

• Once a solution is found by one task, the rest could be terminated

When this is the case, the easiest thing to do is to monitor the progress of the 
individual tasks until one completes. The simplest way is to use the ready( ) 
function of AsyncResult and progress field. ready( ) returns true if all calls have 
completed, while progress contains the number of calls that have completed. Using 
these, we can write a loop that pools an AsyncResult to determine if any of the calls 
have completed, and returns true if at least one has the following:

def areAnyDoneYet(ar):
    while not (ar.ready( )):
    if ar.progress > 0:
        return true
    time.sleep(1)

At this point the user could take any action required on the DirectView used to 
create the AsyncResult, including killing all the engines.

Graceful shutdown
Of course, there is no requirement that each engine be forcefully shut down. They 
may have resources open that should be returned (for example, open files). In 
this case, it would be better to have some way to notify each engine that it should 
terminate itself.  To do this, we can take advantage of IPython's use of dictionaries 
for namespaces to set a variable to a value on all the engines.
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The following code would loop through all the engines, setting a variable named 
stop to True. It is the responsibility of each task to check the stop variable on a 
regular basis, and take the appropriate action when it is True:

c = Client()
numEngines = 4

# we assume the number of engines and the number of tasks is equal
for i in range(numEngines):
    e = c[i]
    e['stop'] = True

There is, of course, no need for the individual tasks to stop themselves. Obtaining an 
initial result may just mean that the next phase of processing is to begin, and setting 
such a variable allows each engine to start on the next phase. While this is a simple 
and effective way for processes to communicate with each other, it is inefficient. 
More sophisticated ways will be addressed in the next chapter(s).

Summary
This chapter took a brief tour through some parallel programming patterns and 
introduced the basics of IPython's parallel capabilities. IPython's parallel architecture 
was described and the functionality of its components outlined. Examples were 
provided to show how IPython's ipyparallel library is able to support many different 
types of parallel structures. Overall, IPython provides a powerful, flexible, modern 
interface to parallel machines.

In the next chapter we will take a deeper look at IPython's support for communication 
between parallel processes, both natively and through the third-party mechanisms 
provided by ZeroMQ and MPI.
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Messaging with ZeroMQ  
and MPI

This chapter covers messaging and its use in parallel programming. Unlike 
threading, a system that utilizes multiple processes does not have a single memory 
area that the entire system can access. This means that if different subprocesses are 
to communicate, they must pass data back and forth in the form of messages. In this 
chapter, we will introduce and discuss two popular message passing mechanisms: 
ZeroMQ and MPI.

The following topics will be covered:

•	 The storage hierarchy address spaces, and data locality
•	 Concepts of ZeroMQ 
•	 Messaging patterns in ZeroMQ
•	 Concepts of MPI
•	 Messaging patterns in MPI
•	 MPI and process control
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The storage hierarchy
It is easy to ignore where data is stored in serial applications. This was not always 
so. A lot of work has gone into abstracting away the details of various layers of the 
storage hierarchy from the programmer. The following graphic illustrates a typical 
storage hierarchy:

Modified from  
https://en.wikipedia.org/wiki/Memory_hierarchy#/media/

File:ComputerMemoryHierarchy.svg

The hierarchy shows differences on three axes: persistence, size, and cost. The clear 
levels are volatile; their contents decay when power is no longer applied. The shaded 
levels are persistent; they retain data even when not powered.

https://en.wikipedia.org/wiki/Memory_hierarchy#/media/File:ComputerMemoryHierarchy.svg
https://en.wikipedia.org/wiki/Memory_hierarchy#/media/File:ComputerMemoryHierarchy.svg
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As one travels down the hierarchy, storage capacity grows. There is variation  
within each level, but the basic trend is clear. This is also true over time; for example, 
the amount of RAM available has grown to the point where it is larger than hard 
drives from an earlier period, but hard drives have also grown in size to maintain  
the differential.

Although not a strictly technical factor, moving down the hierarchy also reduces the 
monetary cost per bit.

The trade-off is clear; more space means slower but cheaper storage.

Compounding this problem is the fact that the processor can only access data at the 
very top of the pyramid. The goal then is to have as much data as possible in the 
faster (but smaller) levels of the storage hierarchy so that the processor does not have 
to sit idle waiting for it to be transferred to a place where it can be acted upon.

The solution to this problem lies in virtual memory systems. It is the responsibility of 
a virtual memory system to move data from one level of the hierarchy to another so 
that the data that the process is likely to need is near the top, in fast memory, when it 
needs it. These systems are very complex, and their design is outside of the focus of 
this book, but they do introduce the idea of data locality.

Address spaces
For the purposes of this discussion, an address space refers to a set of unique 
identifiers	that	can	be	used	to	denote	a	unit	of	data	storage.

For example, the preceding hierarchy has several address spaces:

Storage type Address space type
Registers Names (for example, R1 and ACR)
Cache Numeric
RAM Numeric
Flash/USB Block structure
Hard drives Logical block addressing/Cylinder-head-sector
Tape Volume/track
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An important feature of a virtual memory system is that it translates requests for 
data from all levels from a single format to the native format (or formats) of each 
level. In doing so, it makes the system appear as if it had a single address space:

This	is	admittedly	a	vastly	simplified	version	of	what	actually	goes	on—there	are	
systems	at	every	level	to	help	this	process	work—but	it	brings	to	the	surface	an	
important point that is often ignored because virtual memory systems work so 
smoothly without developer intervention. The point is that dealing with where  
data is actually stored is non-trivial.

Data locality
The concept underlying data locality is that the physical location of data matters. 
Many of the issues that a virtual memory system handles in a serial system come 
back to haunt the parallel developer. In particular, any system for handling 
distributed data must address three important questions:

•	 Where is the data?
•	 How can I send it somewhere else?
•	 What format is it in?

We will consider two methods of handling distributed data: ZeroMQ and MPI.
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ZeroMQ
ZeroMQ grew out of what would seem to be the obvious initial answer to the question 
of communicating distributed processes: why not just use sockets? The answer was 
that	the	implementation	of	sockets,	while	good	for	a	wide	area	network,	did	not	fit	
the	needs	of	parallel	development.	After	a	certain	point,	it	becomes	too	difficult	to	
scale sockets as the level of detail can obscure higher-level concerns, such as publish-
subscribe patterns and reliable messaging. ZeroMQ layers some helpful functionality 
on	top	of	the	socket	interface,	while	keeping	an	eye	on	efficiency	and	ease	of	use.

ZeroMQ is not an all-in-one messaging solution. Instead, it can be used to build a 
variety of different messaging patterns based on what the particular problem calls 
for. ZeroMQ attempts to keep the familiar socket interface while adding just enough 
extra	functionality	to	handle	the	specific	needs	of	parallel	computing.	It	aims,	not	to	
solve your problem, but to give you the tools you need to solve your problem. The 
website describes its birth as:

"We took a normal TCP socket, injected it with a mix of radioactive isotopes stolen 
from a secret Soviet atomic research project, bombarded it with 1950-era cosmic 
rays, and put it into the hands of a drug-addled comic book author with a badly-
disguised fetish for bulging muscles clad in spandex. Yes, ZeroMQ sockets are the 
world-saving superheroes of the networking world."

A sample ZeroMQ program
Let's start with a simple "Hello World" client-and-server pair. Many thanks  
to the folks at http://zguide.zeromq.org/, from which this server and client  
were adapted.

The server
The following is a simple server that waits for a request on port 5678 and replies 
with a random number:

import time
import zmq
import random

context = zmq.Context()
socket = context.socket(zmq.REP)
socket.bind("tcp://*:5678")

while True:
    #  Wait for next request from client

http://zguide.zeromq.org/
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    message = socket.recv()
    print("Received request: %s" % message)

    #  So everything does not happen too fast to see
    time.sleep(2)

    #  Send reply back to client
    socket.send(str(random.random())

•	 Line 5: ZeroMQ applications always start by creating a context and use it to 
create sockets. There should be only a single context for any process.

•	 Line 6: This creates a socket object contained in our new context. Every 
socket has a type. The type of a socket determines how it operates, which 
determines which sort of messaging pattern it should be used in. We will 
cover various messaging patterns in a later section. This socket is of type 
zmq.REP, which means it will wait to REPly to a request.

•	 Line 7: This line does four things:
 ° First, it binds the socket to an endpoint so that it can start waiting for 

a request to come in.
 ° Second, it specifies that the transport protocol for the request should 

be TCP.
 ° Third, the * is a wildcard that accepts connections from any address.
 ° Fourth, :5678 determines the port the socket will listen on. Any 

would-be requestor is required to have compatible settings in order 
to connect to this process.

•	 Line 9: This is a server, so it customarily runs forever. In reality, however, 
there are several stopping conditions:

 ° The server itself is shut down
 ° The server process is killed externally (for example, using a  

SIGKILL signal)
 ° The server process is attacked from outside
 ° The server process itself errors out

The ZeroMQ team has a definite	stand	on	the	final	two	causes	of	error	(from	 
http://zguide.zeromq.org/):

"ZeroMQ's error handling philosophy is a mix of fail-fast and resilience. Processes, 
we believe, should be as vulnerable as possible to internal errors, and as robust as 
possible against external attacks and errors."

http://zguide.zeromq.org/
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To some extent then, ZeroMQ will attempt to recover from external errors. For 
example, it will try to handle network errors in an intelligent manner, even 
automatically retrying when that makes sense. While the framework cannot handle 
every error that could occur, it is likely that any error that does prevent successful 
completion of a call really requires the attention of the process that initiated the call. 
If it did nothing else, ZeroMQ would be worth using just for this feature.

If it cannot succeed for whatever reason, at a low level, this means that every 
ZeroMQ call will return a status code or fail an assertion. The Python wrapper for 
ZeroMQ will tend to throw exceptions for any sort of error event. The following table 
summarizes these exceptions:

Exception Condition
ZMQError Wraps a ZeroMQ error number
ZMQVersionError This is raised when a feature is not 

provided by the linked version of libzmq
Again Wrapper for ZeroMQ's EAGAIN error
ContextTerminated Wrapper for ZeroMQ's ETERM error
NotDone Timeout while waiting for a message
ZMQBindError When a socket fails to bind to a port

The complete details can be found at https://pyzmq.readthedocs.org/en/
latest/api/index.html. Every call to ZeroMQ should be wrapped in a try-
catch block, and liberal use of assertions is encouraged. However, as important as 
error handling is in production, it can tend to clutter up otherwise clean code. All 
examples will be provided without it:

•	 Line 14: Receiving a request is a blocking statement. This process will wait 
indefinitely for a connection on the port specified previously. A limit can be 
specified so that the wait times out.

•	 Line 21: After the message is received and (some minimal) processing occurs, 
a response can be sent back to the process that initiated the connection. At a 
low level, ZeroMQ sends bytes, not Python characters. If both the client and 
the server are Python (and possibly the same version), sending a string in this 
manner should work without issue.

Cross-language and cross-platform applications may want to use this:

socket.send(b"World")

Instead of using the following line of code:

socket.send("World")

https://pyzmq.readthedocs.org/en/latest/api/index.html
https://pyzmq.readthedocs.org/en/latest/api/index.html
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This is so that Python explicitly translates the characters into bytes before sending. 
A complete coverage of Unicode and the issues surrounding internationalization 
is beyond the scope of this book. A good introduction can be found in Python 2.6 
Text Processing: Beginners Guide (https://www.packtpub.com/application-
development/python-26-text-processing-beginners-guide).

The client
The following is the matching client. It sends a simple "Hello" message on port 5555 
and receives a message containing a random number:

import zmq

context = zmq.Context()

#  Socket to talk to server

socket = context.socket(zmq.REQ)

socket.connect("tcp://localhost:5678")

socket.send("Load request")

#  Get the reply

message = socket.recv()

print("Received reply %s [ %s ]" % (request, message))

•	 Line 6: For the client, we create a different type of socket: zmq.REQ (for 
REQuest). The REP and REQ sockets work in pairs to form the REQUEST/
REPLY message pattern.

•	 Line 7: The example client is running on the same machine as the example 
server, so it connects to localhost at the appropriate port using the 
appropriate protocol.

•	 Lines 9 and 12: Note that the client sends first and then listens. This is 
in contrast to the server, which listens first and then sends. This order is 
important—listening	when	it	should	be	sending,	or	the	reverse,	can	cause	 
an exception to be thrown.

https://www.packtpub.com/application-development/python-26-text-processing-beginners-guide
https://www.packtpub.com/application-development/python-26-text-processing-beginners-guide
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Messaging patterns in ZeroMQ
Two or more processes can communicate in many different ways. ZeroMQ supports 
more than what can be covered here, but some popular options are as follows:

•	 Pairwise
•	 Client-Server
•	 Publish-Subscribe
•	 Push-Pull

ZeroMQ supports these through its use of socket types. We will look at each of these 
patterns in turn.

Pairwise
Pairwise ZeroMQ sockets allow one-to-one, bidirectional communication. They 
are otherwise similar to "normal" sockets. The designation of "client" or "server" is 
arbitrary—both	use	the	PAIR	designation:

Server
This is a variant of the previously covered random number server, using a  
PAIR socket:

import zmq

import random

context = zmq.Context()

socket = context.socket(zmq.PAIR)

socket.connect("tcp://localhost:5678")

while True:

    msg = socket.recv()

    socket.send(str(random.random())
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Client
This is a variant of the preceding client, also using a PAIR socket:

import zmq

context = zmq.Context()

socket = context.socket(zmq.PAIR)

socket.bind("tcp://*:5678" % port)

while True:

    socket.send("What is the load?")

    msg = socket.recv()

    print(msg)

    time.sleep(1)

Discussion
There is a slight difference here from normal sockets in that either the server or client 
can bind, and either can connect. There should be one of each, however. The side 
that connects must specify which machine to send the request to, while the side that 
binds	specifies	where	it	will	accept	requests	from.

Client/server
The client/server connection pattern relaxes some of the restrictions of the pairwise 
pattern. In particular, the client can connect to many servers. The server (or servers) 
uses the REP designation while the client uses REQ:
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Server 1
This server uses a REP socket to wait for a request:

import zmq

import random

context = zmq.Context()

socket = context.socket(zmq.REP)

socket.bind("tcp://*:5678")

while True:

    msg = socket.recv()

    socket.send(str(random.random())

Server 2
A duplicate of the previous server, this will be started on another node:

import zmq

context = zmq.Context()

socket = context.socket(zmq.REP)

socket.bind("tcp://*:5679")

while True:

    msg = socket.recv()

    socket.send("peanut butter jelly time")

Client
This client uses a REQ socket to request the time from either of the servers in turn:
import zmq

context = zmq.Context()

socket = context.socket(zmq.REQ)

socket.connect("tcp://localhost:5678" % port)

socket.connect("tcp://localhost:5679" % port)

while True:

    socket.send("Report status")

    msg = socket.recv()

    print(msg)

    time.sleep(1)
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Discussion
One would start server 1, server 2, and client as separate processes. In this case, 
the client would send one message to server 1, the next to server 2, the next to 
server 1, and so on. It is important that the servers bind to their ports and that the 
client connects.

It is also important that the client(s) and server(s) take turns send-ing and recv-ing. 
The	client(s)	should	send	first	and	then	recv,	while	the	server(s)	should	recv	first	and	
then send. Any deviation will result in an error.

Publish/subscribe
It is not always the case that a process that is sending messages cares what other 
processes, if any, receive them. On the receiving side, it is possible that a process will 
only care about a subset of messages that a process it is listening to is sending out. 
This	is	analogous	to	a	traditional	magazine—an	issue	is	published	each	month,	of	
which some number of subscribers read some (or all). Hence the name: the Publish 
Subscribe model.

Publishers are created with the PUB designation, while subscribers are SUB:
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Publisher
This is the publisher. It uses a PUB socket to send the time and weather to an arbitrary 
number of subscribers:

import zmq

import random

context = zmq.Context()

socket = context.socket(zmq.PUB)

socket.bind("tcp://*:5678")

while True:

    topic = "load"

    socket.send(topic + " " + str(random.random()))

    topic = "weather"

    messagedata = "dark and stormy night"

    socket.send(topic + " " + messagedata)

    time.sleep(1)

Subscriber
This subscriber uses a SUB socket to listen to the preceding publishers. It is, however, 
only interested in the weather:

import zmq

context = zmq.Context()

socket = context.socket(zmq.SUB)

socket.connect("tcp://localhost:5678")

socket.setsockopt_string(zmq.SUBSCRIBE, "weather")

while True:

    wtr = socket.recv_string()

    print("the weather is: " + wtr)
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Discussion
The subscriber in this case will process only those messages that start with "weather". 
Messages starting with "time" (or any other string) are quietly dropped by ZeroMQ 
before they reach the Subscriber. Other subscribers are still eligible to receive them, 
however.

This	pattern	is	very	flexible.	There	can	be	as	many	publishers	and	subscribers	
as desired. A publisher's messages can reach as many subscribers as exist and 
subscribers can receive messages from as many publishers as desired.

Publishers and subscribers are not in any meaningful dialogue. A publisher does not 
need to wait for a response before sending a new message, nor does a client need to 
respond to a message. Attempting to do either of these results in an error.

Push/Pull
The Push/Pull pattern is similar to the MapReduce pattern. In both, a single process 
distributes messages to a set of worker processes, which perform work, and then 
each sends a message to a sink process that gathers the messages.

The sockets used to send messages are created with the PUSH designation, while the 
sockets used to receive messages are PULL:
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Ventilator
A PUSH socket is used to send messages to multiple workers:

import zmq

import random

import time

context = zmq.Context()

# socket to send messages on

sender = context.socket(zmq.PUSH)

sender.bind("tcp://localhost:5678")

while True:

    # messages come in batches of 16, for this example

    # perhaps there are 16 workers

    for i in range(16):

        seed = random.randint(1, 20000)

        sender.send_string(str(seed))

    # give 0MQ time to deliver and workers time to work

    time.sleep(10)

Worker
Each worker uses a PULL socket to receive messages from the ventilator and a PUSH 
socket to send the results to the sink:

import zmq

import random

import time

context = zmq.Context()

# from the ventilator

receiver = context.socket(zmq.PULL)

receiver.connect("tcp://localhost:5678")

# to the sink

sender = context.socket(zmq.PUSH)
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sender.connect("tcp://localhost:5679")

while True:

    s = receiver.recv()

    #do some "work"

    time.sleep(int(s)*0.001)

    #send "results" to sink

    tm = str(time.time())

    sender.send_string(tm)

Sink
The sink uses a PULL socket to receive results from all workers:

import zmq

context = zmq.Context()

# socket to receive messages on

receiver = context.socket(zmq.PULL)

receiver.bind("tcp://localhost:5679")

while True:

    s = receiver.recv_string()

    # do work – maybe log time for each completed process

Discussion
Messages will be distributed to the workers evenly. That is, work is distributed using 
a round-robin algorithm. Messages are collected from the workers evenly. This is 
called fair queuing.

Using PUSH and PULL for load balancing can yield unexpected 
results if one PULL	socket	starts	significantly	before	the	others	
and is sent all the currently pending messages. If this is an issue, 
using the ROUTER and DEALER	sockets	can	fix	the	problem.

Workers may come and go. ZeroMQ will dynamically handle connects and disconnects. 
The source and sink, however, should always be up and in the same place.
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Important ZeroMQ features
A complete discussion of the inner workings of ZeroMQ is beyond the scope of this 
book. Some details about what is going on under the hood may prove illuminating, 
however. The following paragraphs outline some important features.

I/O is handled asynchronously in the background. ZeroMQ applications need no 
locks, semaphores, or other wait states. That is not to say that no ZeroMQ call ever 
blocks—recv	certainly	does.	It	is	just	that	such	blocking	is	part	of	the	semantics	of	the	
function, not a limitation imposed by ZeroMQ's implementation.

Message sending is done through queues when required. If a message must be 
queued,	it	is	queued	as	close	to	the	receiver	as	possible.	Queues	that	fill	up	can	either	
block or throw away messages depending on the message pattern in use.

ZeroMQ will automatically connect and disconnect components as they come  
and go. This does not guarantee the correctness of the program using those 
components, but it does mean that ZeroMQ will not crash or behave erratically 
under these conditions.

Messages are delivered as they are sent. The size and format of the message are 
irrelevant.

ZeroMQ will attempt to handle network errors transparently. For example, it may 
automatically attempt to resend a message that was not received if a retry would 
make sense.

Issues using ZeroMQ
No tool is complete without a set of issues to deal with. ZeroMQ does a good job of 
cleaning up many of the low-level issues that come with messaging in a distributed 
system, but issues at other levels remain.

Startup and shutdown
The preceding examples	all	used	infinite	loops.	While	this	is	a	valid	choice	for	a	
system that is expected to run continuously, it is not a universal feature. It does, 
however, avoid some annoying behavior that can occur at startup and shutdown.
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Consider the PUSH/PULL architecture outlined previously. The ventilator, workers, 
and sink can all be spread to different processors by the scheduler. At some point, 
the ventilator will begin execution, open its socket, and start sending messages. It 
does not know how many workers will be there in total. The ventilator will simply 
start sending messages out as fast as it can to whoever is listening. If, when the 
first	message	is	ready	to	be	sent,	there	are	only	two	workers	that	have	started	(and	
connected), one of those workers will get the message. ZeroMQ will not block the 
ventilator from sending messages until every worker is ready to accept them. If there 
is some delay such that the other 14 workers do not start within the time period that 
is	required	for	the	ventilator	to	send	out	all	16	messages,	then	the	first	two	workers	
will get eight messages each and the remaining 14 workers will get none.

The sink has a similar problem. In this case, the sink does not know whether any 
workers are still processing a message. There is no necessary connection at the 
ZeroMQ level between the number of messages sent out, the number of workers that 
are connected to either the ventilator or the sink, and the number of messages that 
the sink should expect.

The solution in both cases is to set up "extra" sockets on other ports for out-of-band 
communication. In the aforementioned situation, the ventilator should set up a REP 
socket and each worker should connect to the REP socket using a REQ socket. When 
a worker started up, but before it started receiving "actual" messages, it would send 
a message to the ventilator to let the ventilator know that the worker was up and 
ready to receive messages. The server would delay sending any "actual" messages 
until it has received these out-of-band messages from all the workers.

A similar setup would work for the sink. In this case, the ventilator and the sink 
should set up a separate PAIR socket to communicate with each other. Every time 
the ventilator sent out a message to a worker, it would also send out an out-of-band 
message to the sink, letting the sink know that it should receive one more message 
from a worker. This way the sink could make sure that the number of messages it 
received was the same as the number of messages the ventilator sent. A special "no 
more messages" message could be used when the ventilator is done so that the sink 
does not sit around forever waiting to see if another message is going to be sent.

Discovery
All the previous examples assumed that all the communication processes were 
running on the same machine. Certainly, the servers could accept messages from 
other machines, but all client connections were to localhost. This was done at least 
partially	to	make	the	examples	easy	to	run—putting	everything	on	localhost	means	
not needing a parallel machine on your desk.
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It also obviates another, more serious problem: how do the clients know where to 
connect to? Depending on the pattern, a process that wants to communicate needs to 
know on what machine and what port to send or listen.

A popular solution to this problem is to create an intermediary between the client 
and the server, called a broker or proxy. The broker sits in one well-known place  
that every server and client knows about (by having it hardcoded). This reduces  
the	problem	of	finding	where	all	the	other	processes	are	to	simply	connecting	to	a	
single endpoint.

Heavyweight solutions (for example, RabbitMQ and IBM Integration Bus) come  
with the broker built in. There are three reasons ZeroMQ avoids mandating the  
use of a broker:

•	 Brokers tend to become more complicated over time
•	 Brokers become bottlenecks for messages, as they all must pass through them
•	 The broker becomes a single point of failure

A directory architecture could be used as an alternative. In this case, there would 
be a single process responsible for knowing where all the endpoints were. When 
a process needs to know where to send/receive a message, it will check with the 
directory	to	find	the	server/port/socket	type,	and	then	set	up	its	own	socket.	In	
this case, the directory does not pass any messages through itself, instead simply 
receiving and answering queries about the communications setup. While this may 
sound simpler than a broker, it is not without its issues.

Whether the solution to discovery is a broker, a directory, or some other scheme, 
ZeroMQ	provides	enough	flexibility	to	implement	a	solution.

MPI
The Message Passing Interface (MPI) is a language-independent message passing 
library standard. It has been implemented in several languages, including Fortran, 
C/C++, and Python. This book will use the Mpi4py implementation. Chapter 3, 
Stepping Up to IPython for Parallel Computing, outlined the process for starting  
IPython using MPI. It will be assumed that IPython has been started this way in  
the following examples.
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Hello World
Here is the MPI "Hello world" program. It has every process reply with a simple 
string, along with the rank of the process:

from mpi4py import MPI

comm = MPI.COMM_WORLD

rank = comm.Get_rank()

print("hello world from process ", rank)

•	 Line 2: This obtains a communicator object. A communicator is a logical 
structure that defines which processes are allowed to send and receive 
messages. COMM_WORLD is the communicator that contains all the processes in 
this session.

•	 Line 3: The Get_rank( ) method returns the rank of this process. Each 
process inside a communicator is assigned an incremental rank starting from 
zero. Ranks are useful for specifying the source and destination of messages. 
A process may belong to several communicators at a time, so it may have 
different ranks depending on which communicator is being used.

•	 Line 4: Each process started will receive its own rank, so this should print out 
a different number for each process started. Normally, the child processes 
should not perform I/O, but this is a good example.

A sample run might look like this:

In [13]: !mpiexec -n 4 python hellompi.py

hello world from process 2

hello world from process 1

hello world from process 0

hello world from process 3

Rank and role
When using ZeroMQ, different processes played different parts in the communication 
pattern; for example, in a PUB/SUB pattern, one process would be the publisher 
and others would be subscribers. Because they were different processes, started 
independently, the code for the publisher and subscribers could be different.

When an MPI program runs, every process receives the same code. This would 
seem to remove the possibility that the various processes play different roles in a 
communication pattern.
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That is not the case. Each process receives a unique rank from the COMM_WORLD 
communicator. The process can use its rank to determine what it should do. The 
basic idea is to put the code for all patterns into the process and then have the 
process use its rank to determine which subset of the code it should execute. In our 
PUB/SUB example, the process that received rank 0 might become the publisher and 
execute that code, while all other processes might execute the subscriber code.

Point-to-point communication
The simplest form of communication is point-to-point; one process will initiate 
communication by sending a message and the other will receive the message.

The following is an example:

import time

from mpi4py import MPI

comm = MPI.COMM_WORLD

rank = comm.Get_rank()

if rank == 1:

    messagedata = str(time.time())

    comm.send(messageData, dest=0)

if rank == 0:

    msg = comm.recv(source=1)

    print("The time was " + msg)

•	 Lines 6 and 10: This is where the code checks to see what it should do. The 
copy of the code that has ended up on the processor of rank 1 should send a 
message, while the code on processor 0 should receive it.

•	 Line 8: When a message is sent in MPI, the recipient(s) must be specified 
(broadcast is also supported). The recipient must have a different rank than 
the sender.

•	 Line 11: The recipient of a message can specify whom it must be from 
(accepting a message from any process is also supported).
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Broadcasting
Broadcasting would seem to be inapplicable when using MPI: after all, every process 
has the same code, so what could one know that another did not? One example of 
asymmetry comes from the use of I/O. Consider a program that receives input from 
the user, and then acts upon that input in each process. It would be madness for each 
process to ask for user input independently. The rank 0 process should gather the 
input and then send it to all the other processes, for example:

from mpi4py import MPI

comm = MPI.COMM_WORLD

rank = comm.Get_rank()

if rank == 0:

    data = input("Please enter random number seed")

else:

    data = None

# mpi4py wants to send an object, so we will leave the

# input in that format

data = comm.bcast(data, root=0)

Reduce
With all the processes performing separate operations, it can be useful to combine 
their results. For example, when computing the Reimann integral of a function, it can 
be	much	more	efficient	to	divide	the	work	across	several	processes.	The	result	is	then	
the sum of the values calculated in each process, for example:

import numpy

import sys

from mpi4py import MPI

comm = MPI.COMM_WORLD

rank = comm.Get_rank()

# integrate from in [0, 4] using 8 rectangles

a = 0

b = 4
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n = 8

#the function to integrate

def f(x):

    return x*x*x

# use the left-most point in the range as the height

defcalcArea(lft, dx):

    ht = f(lft)

    returnht * dx

# use regular intervals

dx = (b-a)/n

# local_a is the leftmost point

local_a = rank * dx

#initializing variables

# when using capital-R Recv, mpi4py requires that we pass buffer-like

# objects, so why not use numpy?

integral = numpy.zeros(1)

total = numpy.zeros(1)

# perform local computation

integral[0] = calcArea(local_a, dx)

# communication

# root node receives results with a collective "reduce"

comm.Reduce(integral, total, op=MPI.SUM, root=0)

# root process prints results

if comm.rank == 0:

    print("With n =", n, "trapezoids, our estimate of the integral from", 
a, "to", b, "is", total)
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•	 Line 23: The use of the process's rank here ensures that each process works 
on a different "chunk" of the integral. The 0th process will work on the 
leftmost chunk, the first process the next, and so on.

•	 Line 37: This is where the reducing communication and computation 
happen. It can seem a bit odd at first, as there was no corresponding 
broadcast or scatter of data before the reduce. Because of the way MPI runs, 
the initial mpiexec that kicked off all the processes did an implicit broadcast 
by copying the program to all the processing elements.

The op can be any of several built-in operations, including MAX, MIN, SUM, and PROD. 
See the documentation for the MPI.Op class for details on the currently supported 
operations.

Discussion
Note that this program works only when there are eight processes (more generally, 
when n is the same as the number of processes). This sort of problem crops up 
frequently when splitting work across processing elements. There are three patterns 
to solve it.

Change the configuration
Change the number of processing elements. This is the easiest to code but may not  
be practical.

Divide the work
Have each process determine how many "work units" it should handle. In the preceding 
example, this would mean that each process calculates the area of some number (> 1) of 
rectangles, adds those areas, and assigns the result to the integral variable.

The number of rectangles each process handles would depend on the total number 
of rectangles to be used and the total number of processes. The total number of 
rectangles is the variable n. The total number of processes is available from the comm 
object by calling the Get_size() method. The area calculations can then be placed in 
a loop, as follows:

numRectangles = n/comm.getSize()

mydx = dx/numRectangles

tmpArea = 0

for i in range(numRectangles):

    local_a = a * dx + i * mydx
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    tmpArea = tmpArea + calcArea(local_a, mydx)

    integral[0] = tmpArea

The important idea is that each process needs the following:

•	 Enough information to figure out what part of the work it needs to do
•	 The ability to divide and recombine its individual tasks as part of the group
•	 Not to do any (unnecessary) overlapping work with other processes

Parcel out the work
This is a somewhat	un-MPI-like	mechanism,	but	it	is	the	most	flexible.	In	this	case,	
the root process sets up a loop, which simply receives messages from each non-root 
process. The message serves a dual purpose: to communicate the answer from that 
process, and to let the root process know that the non-root process that sent the 
message	is	ready	for	more	input.	Although	more	flexible,	it	is	also	more	complicated,	
which brings us to the topic of process control using MPI.

Process control
MPI supports spawning processes through a communicator. The spawned processes 
are associated with the communicator that spawned them (that is, they receive their 
own rank each, unique within that communicator). This allows the use of a broadcast/
reduce message pattern to send data to/receive data from each spawned process.

The code structure for doing this is slightly different from the examples covered so 
far. In particular, the code for the "master" process is different from the code for the 
"worker" processes, and neither type of process checks its rank.

We will look at dividing the calculation of the integral of a function from 0 to the 
number of processors.

Master
The master is responsible for starting the workers using Spawn and sending out their 
data through a bcast:

from mpi4py import MPI

import sys

comm = MPI.COMM_SELF.Spawn(sys.executable, args=['workermpi.py'], 
maxprocs=4)
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# use 16 slices

comm.bcast([16, MPI.INT], root=MPI.ROOT)

# gather and sum results when done

comm.reduce(None, [area, MPI.DOUBLE], op=MPI.SUM, root=MPI.ROOT)

print(area)

comm.Disconnect()

Worker
Each worker has a bcast to receive data, and then it uses its rank to determine which 
portion of the problem to work on:

from mpi4py import MPI

def f(x):

    return x**3

comm = MPI.Comm.Get_parent()

size = comm.Get_size()

rank = comm.Get_rank()

comm.bcast([N, MPI.INT], root=0)

width = 1.0 / N

sum = 0

i = rank – 1

while i < rank:

    sum = sum + f(i) * width

    i = i + width

comm.reduce([sum, MPI.DOUBLE], None, op=MPI.SUM, root=0)

comm.Disconnect()
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ZeroMQ and IPython
ZeroMQ is more than a messaging library for parallel environments: IPython has 
moved to using ZeroMQ as its internal messaging infrastructure. In this section, 
we will provide further details on the operation of IPython in terms of the ZeroMQ 
mechanisms underlying it.

To do this, we will introduce some additional socket types, describe how they 
interact	to	enable	some	of	IPython's	parallel	components,	and	finish	up	with	some	
use cases employing those components. While this section cannot hope to cover all 
the details of the IPython parallel architecture, it is hoped that these examples will 
provide the user with a basic understanding of the underlying mechanisms.

ZeroMQ socket types
ZeroMQ supports a large number of different socket types, 14 at last count (version 
4.2.0). The preceding section provided an overview of some of the important types, 
but a discussion of the IPython architecture requires at least cursory knowledge of 
some advanced socket types:

•	 DEALER: This is similar to a REQ socket, but is asynchronous. Each message 
sent is sent among all connected peers in a round-robin fashion, and each 
message received is fair-queued from all connected peers. It is compatible 
with ROUTER, REP, and DEALER sockets.

•	 ROUTER: This is similar to a REP socket but is asynchronous. It keeps track of 
all connected peers. Every message sent by a router includes the identity of 
the message's source. This allows the socket to route messages based on their 
origination. Situations where a ROUTER has multiple REQ and REP sockets 
connected require that messages be sent to the correct endpoints.

IPython components
Chapter 3, Stepping Up to IPython for Parallel Computing, provided an overview of the 
major IPython architectural components. We will provide more details in this section, 
with an emphasis on how each component uses messaging to perform its tasks.
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Client
The Client is the interface between the user and the IPython system. It accepts an 
input from the user, passes it along to the Hub and Schedulers, and accepts the 
output from the Schedulers.

Engine(s)
An IPython Engine is a Python instance that accepts Python commands and objects 
over a network connection. The ability to run engines on different processors is what 
makes distributed computing in IPython possible.

Controller
The goal of the Controller is to manage and monitor the connections and 
communications between the clients and the engines. It consists of 1-5 processes:  
the Hub and four Schedulers.

Hub
The Hub's primary responsibility is the well-being of the engines and the messages 
that	flow	between	them.	It	allows	engines	to	register	as	available,	passes	notifications	
around, and keeps track of which engines are alive through its Heartbeat Monitor 
process.

Scheduler
The Schedulers send messages back and forth from the clients and engines.  
This includes propagating stdout/stderr from the engines to the clients.
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Connection diagram
The following diagram illustrates the connections between the components:

© Copyright 2015, The IPython development team

Messaging use cases
The various components of IPython communicate to perform a large number of 
tasks, many more than can be covered here. Examples of some simpler use cases will 
serve	to	illustrate	the	power	and	flexibility	of	the	architecture.

Registration
An important step in any distributed system is making the initial connection between 
a new process and the infrastructure. Simpler is generally better, as it reduces the 
amount	of	configuration	required.	While	a	certain	amount	of	configuration	will	
always be necessary, too much can lead to a complicated, brittle system.
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ZeroMQ	goes	for	minimum	configuration:	clients	and	engines	only	need	to	know	the	
IP address and port of the Hub's ROUTER socket in order to connect. Once this initial 
connection is established, any information needed to establish further connections 
is sent over. In addition, clients can use this connection to query the Hub for state 
information concerning the engines. This results in a simple connection architecture 
where the client and engine both use DEAL sockets and the hub uses a ROUT:

Heartbeat
The Hub is also responsible for checking which engines are still responding. It does 
this by periodically sending a message to each engine. The engine then responds 
with	the	same	message,	with	a	prefix	denoting	which	engine	responded.	If	an	engine	
does not respond, the Hub will attempt to terminate it.
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IOPub
stdout/stderr are captured and published via a PUB socket. Both the Client and the 
Hub receive a copy:
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Summary
The fact that distributed systems do not have a single address space means that 
the usual mechanisms for sharing data between modules (parameters and global 
variables)	are	not	available.	Instead,	data	movement	must	be	explicitly	specified.	
While IPython provides for the use of a "global" dictionary (which implicitly uses 
a message passing mechanism similar to what is described in this chapter), more 
sophisticated communication patterns require more full-featured tools.

In this chapter, we looked at two of these tools: ZeroMQ and MPI. ZeroMQ is a 
lightweight, socket-like mechanism that has become the basis of IPython's internal 
architecture.	It	is	easy	to	use,	is	efficient,	supports	many	different	messaging	patterns,	
and	provides	support	for	user-defined	patterns.	MPI	is	the	workhorse	of	most	
HPC	applications.	It	has	been	in	use	for	a	long	time	and	is	efficient	and	thoroughly	
debugged. The ability to dynamically create processes is an important feature.

Either mechanism is capable of supporting even the most complex communication 
configuration.	Which	one	should	be	used	on	any	given	project	will	depend	on	factors	
external to the messaging system itself, such as legacy code, software support, and  
so on.

A brief description of how IPython relies on ZeroMQ as its internal messaging 
framework was provided. This description provided important information on the 
internals of IPython as well as illustrated some interesting capabilities of ZeroMQ.

In the next chapter, we will take a look at some important libraries included in 
the IPython API. This will include more details on accessing results from parallel 
computations,	creating	and	manipulating	workers,	and	performance	profiling.
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Opening the Toolkit – The 
IPython API

This chapter covers some useful features of IPython that did not fit in elsewhere and 
some features that deserved deeper coverage.

The following topics will be covered:

• Performance profiling
• The AsyncResult class
• Results metadata
• The Client class
• The View class (including DirectView and LoadBalancedView)

IPython libraries are very flexible in terms of parameters. Most 
parameters are optional, with sensible defaults. This chapter 
will not attempt to describe every parameter for every function, 
but will instead cover the more interesting features provided 
by these libraries. I have added respective links to the official 
documentations for further reference.

Performance profiling
Before optimizing a system, it is handy to know exactly which part is slow.  
IPython adds some specialized tools for this purpose, along with the tools that 
Python provides.



Opening the Toolkit – The IPython API

[ 122 ]

Using utils.timing
IPython provides a library called IPython.utils.timing to time code execution. 
The library can be useful as relatively lightweight calls to include in code. Here is an 
example:

In [64]: import IPython

In [65]: IPython.utils.timing.clocku()

Out[65]: 218.533777

In [67]: IPython.utils.timing.clocku()

Out[67]: 218.542776

This library distinguishes between two categories of time—user CPU time and 
system CPU time—as evidenced in the following functions:

Function Description
clocku( ) Returns the user CPU time in seconds since the start of the process
clocks( ) Returns the system CPU time in seconds since the start of the 

process
clock( ) Returns the total (user + system) CPU time in seconds since the 

start of the process
clock2( ) Returns a tuple of user/system times

Another helpful function is timings_out. It takes four arguments:

• reps: The number of times to repeat the function
• func: The function to call
• *args: A list of optional, ordered arguments
• **kw: A list of optional keyword/value pair arguments

Here is an example:

In [70]: IPython.utils.timing.timings_out(100, math.factorial, 10000)

Out[70]: 

(0.44493199999999433,

 0.004449319999999943,

 284625968091705451890641 … <many more digits> … )
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The preceding command executed math.factorial(10000) one hundred times and 
returned a tuple consisting of:

• The elapsed CPU time in seconds
• The time per call in seconds
• The output

Using %%timeit
First, an example using plain old Python:

In [42]: %%timeit

   ....: sum([1.0/i**3 for i in range(1, 1000)])

   ....:

1000 loops, best of 3: 512 µs per loop

And then comes numpy:

In [51]: %%timeit

numpy.sum([1.0/numpy.arange(1, 1000)**3])

   ....:

1000 loops, best of 3: 208 µs per loop

Note that numpy is not always faster. First, we will see plain old Python:

In [52]: %%timeit -n10

s = 0

for i in range(1, 100):

    s = s + 1.0/math.factorial(i)

print(s)

   ....:

1.7182818284590455

1.7182818284590455

1.7182818284590455

1.7182818284590455

1.7182818284590455

1.7182818284590455

1.7182818284590455

1.7182818284590455

1.7182818284590455
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1.7182818284590455

1.7182818284590455

1.7182818284590455

1.7182818284590455

1.7182818284590455

1.7182818284590455

1.7182818284590455

1.7182818284590455

1.7182818284590455

1.7182818284590455

1.7182818284590455

1.7182818284590455

1.7182818284590455

1.7182818284590455

1.7182818284590455

1.7182818284590455

1.7182818284590455

1.7182818284590455

1.7182818284590455

1.7182818284590455

1.7182818284590455

10 loops, best of 3: 209 µs per loop

And now, using numpy:

In [36]: %%timeit -n10

facts = map(math.factorial, numpy.arange(1,100))

invs = map(lambda x: 1.0/x, facts)

s = numpy.sum(list(invs))

print(s)

   ....:

1.71828182846

1.71828182846

1.71828182846

1.71828182846

1.71828182846

1.71828182846
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1.71828182846

1.71828182846

1.71828182846

1.71828182846

1.71828182846

1.71828182846

1.71828182846

1.71828182846

1.71828182846

1.71828182846

1.71828182846

1.71828182846

1.71828182846

1.71828182846

1.71828182846

1.71828182846

1.71828182846

1.71828182846

1.71828182846

1.71828182846

1.71828182846

1.71828182846

1.71828182846

1.71828182846

10 loops, best of 3: 344 µs per loop

The %%timeit (and %timeit) accepts a number of options—use ?timeit for details.

Using %%prun
The %%prun magic uses Python's built-in cProfile module. It provides a great deal 
of more information about where time was spent. In particular, it can break down 
execution time by function. Here is an example:

In [58]: %%prun

s = 0

for i in range(1, 1500):

    s = s + 1/math.factorial(i)
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print(s)

   ....: 

1.7182818284590455

         1503 function calls in 0.131 seconds

   Ordered by: internal time

   ncalls  tottime  percall  cumtime  percall filename:lineno(function)

     1499    0.129    0.000    0.129    0.000 {built-in method factorial}

        1    0.002    0.002    0.131    0.131 <string>:2(<module>)

        1    0.000    0.000    0.131    0.131 {built-in method exec}

        1    0.000    0.000    0.000    0.000 {built-in method print}

        1    0.000    0.000    0.000    0.000 {method 'disable' of '_
lsprof.Profiler' objects}

It is easy to see from this output that a great deal of time was spent in the factorial 
function (as expected).

The %% (and %prun) also accepts a number of options—use ?prun for details.

The AsyncResult class
In our previous discussion on IPython in parallel computing (refer to Chapter 3, 
Stepping Up to IPython for Parallel Computing), it was demonstrated how using the map 
and apply functions can enable parallel computation with a minimal setup by the 
programmer. These methods return objects of the AsyncResult class (or a subclass). 
At that time, only a small subset of the class's functionality was required, so a more 
thorough exploration was delayed. In this section, we will provide a more complete 
description of the capabilities of an AsyncResult object.

The AsyncResult class provides a superset of the multiprocessing.pool.
AsyncResult interface. We will start by looking at the multiprocessing.pool 
version before examining the new features.
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multiprocessing.pool.Pool
This class allows you to create a pool of processes. The constructor takes several 
optional arguments, including the ones given here:

Argument Effect
processes This is the number of worker processes to use. If it is None, then 

the number returned by os.cpu_count() is used.
initializer If not None, then each worker process will call 

initializer(*initargs) when it starts.
maxtasksperchild Each worker will complete at most maxtasksperchild before 

being replaced by a new worker. This allows any unused 
resources owned by a worker to be freed (the default is None, 
which means that worker processes will live as long as the pool).

Pool provides several useful methods for starting processes and obtaining their 
results. They fall into two broad categories: blocking and nonblocking.

Blocking methods

Function Arguments Effect
apply func, args, and kwargs Call func with the args arguments 

and kwds keyword arguments.
map func and iterable This is a parallel equivalent of the 

built-in map( ) function. It blocks 
until all results are ready.

imap func and iterable This is similar to map but iterates 
over iterable, one element at 
a time, and sends them each to a 
worker process.

imap_unordered func and iterable This is similar to imap, but the 
results are in an arbitrary order.

The map and imap work in a similar manner from the outside, but the differences are 
worth discussing. The primary difference is that map turns the entire iterable into 
a list, breaks the list into chunks, then sends the chunks to the workers. On the other 
hand, imap iterates over iterable, sending one element at a time to the workers. 
This makes map faster but imap easier on memory, especially when the list produced 
by iterable is large.
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Another effect is that map will block until all results are back, while imap will return 
results as they are ready, blocking only when they are not. This brings up the 
difference between imap and imap_unordered—imap will return results in order, 
blocking if the result for element i is not complete, even if the result for element i+1 is 
ready. The imap_unordered will return results as they are ready.

Nonblocking methods

Function Arguments Effect
apply_async func, args, and 

kwargs
This is like apply( ) but returns an 
ApplyResult

map_async func and iterable This is like map( ) but returns a 
MapResult

Obtaining results
Each of the results classes have methods that can be used to pull back results. The 
timeout argument is optional:

Class Function Arguments Effect
ApplyResult get timeout Returns the result
MapResult get timeout Inherited from 

ApplyResult

IMapIterator next timeout Is iterable
IMapUnorderedIterator next timeout Is iterable

An example program using various methods
The following program illustrates the apply and map styles of function invocation, 
both synchronously and asynchronously:

from multiprocessing import Pool

def f(n):
    curr = n
    tmp = 1
    while curr != 1:
        tmp = tmp + 1
        if curr % 2 == 1:
            curr = 3 * curr + 1
        else:
            curr = curr/2
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    return tmp

if __name__ == '__main__':
    pool = Pool(processes=4)

    x = pool.apply(f, (1109,))
    print(type(x))
    print(x)

    x = pool.apply_async(f, (1109, ))
    print(type(x))
    print(x.get())

    x = pool.map(f, range(1100, 1110))
    print(type(x))
    print(x)

    x = pool.map_async(f, range(1100, 1110))
    print(type(x))
    print(x.get( ))

    x = pool.imap(f, range(1100, 1110))
    print(type(x))
    for i in x:
        print(i)

    x = pool.imap_unordered(f, range(1100, 1110))
    print(type(x))
    for i in x:
        print(i)

It yields the following output:

In [41]: %run mp.py

<class 'int'>

19

<class 'multiprocessing.pool.ApplyResult'>

19

<class 'list'>

[94, 94, 45, 45, 19, 94, 138, 138, 19, 19]

<class 'multiprocessing.pool.MapResult'>

[94, 94, 45, 45, 19, 94, 138, 138, 19, 19]

<class 'multiprocessing.pool.IMapIterator'>
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94

94

45

45

19

94

138

138

19

19

<class 'multiprocessing.pool.IMapUnorderedIterator'>

94

94

45

45

94

19

19

138

19

138

Note how the imap_unordered method returns results in a different order than 
the ordered function, regardless of blocking. Different runs have yielded different 
orders for the same call.

mp.pool.AsyncResult
The mp.pool.AsyncResult class in ipyparallel includes some additional 
functionality.

Getting results

Function Arguments Effect
get timeout This blocks and returns the result when it arrives.
get_dict timeout This returns a dictionary keyed by engine_id (rather than a 

list). The get_dict is a wrapper around the get method, so 
it will block until all results are in.
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An example program using various methods
Given a cluster with four engines:

from ipyparallel import Client
import os

c = Client( )
dv = c[:]

def f(n):
    from time import sleep
    import random
    curr = n
    tmp = 0
    while curr != 1:
        sleep(random.random( )/1000)
        tmp = tmp + 1
        if curr % 2 == 1:
            curr = 3 * curr + 1
        else:
            curr = curr/2
    return tmp

x = dv.apply(f, 1109)
print(type(x))
results = x.get_dict( )
print("results = ", results)

x = dv.apply_async(f, 63728127)
print(type(x))
print("done yet? ", x.ready( ))
results = x.get( )
print("done now? ", x.ready())
print("results = ", results)

x = dv.map(f, range(1, 10))
print(type(x))
results = x.get_dict( )
print("results in dict = ", results)

x = dv.map(f, range(1, 10))
print(type(x))
results = x.get( )
print("results in list = ", results)

x = dv.map_async(f, range(1100, 1110))
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print(type(x))
results = x.get( )
print("results = ", results)

lbv = c.load_balanced_view( )

x = lbv.map(f, range(1100, 1110))
print(type(x))
results = x.get( )
print("results = ", results)

Preceding code yields the following output:

In [48]: %run asyncresult2.py

<class 'ipyparallel.client.asyncresult.AsyncResult'>

results =  {0: 18, 1: 18, 2: 18, 3: 18}

<class 'ipyparallel.client.asyncresult.AsyncResult'>

done yet?  False

done now?  True

results =  [949, 949, 949, 949]

<class 'ipyparallel.client.asyncresult.AsyncMapResult'>

results in dict =  {0: 0, 1: 1, 2: 7, 3: 2}

<class 'ipyparallel.client.asyncresult.AsyncMapResult'>

results in list =  [0, 1, 7, 2, 5, 8, 16, 3, 19]

<class 'ipyparallel.client.asyncresult.AsyncMapResult'>

results =  [93, 93, 44, 44, 18, 93, 137, 137, 18, 18]

<class 'ipyparallel.client.asyncresult.AsyncMapResult'>

results =  [93, 93, 44, 44, 18, 93, 137, 137, 18, 18]

Note that the same call to map will produce a different number of results depending 
on whether get or get_dict is called. In particular, get will return all results, while 
get_dict will return only one result per engine.

AsyncResultSet metadata
Every AsyncResult object has metadata associated with it, contained in its metadata 
attribute. Given a sample run, a complete listing appears as follows:

In [104]: ar = dv.map(f, range(1, 11))

In [105]: ar.get()

Out[105]: [0, 1, 7, 2, 5, 8, 16, 3, 19, 6]
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In [106]: ar.metadata

Out[106]: 

[{'after': [],

  'completed': datetime.datetime(2015, 12, 28, 11, 50, 19, 413719),

  'data': {},

  'engine_id': 0,

  'engine_uuid': '845c8de9-dc79-4cd0-94cd-2819855f1111',

  'error': None,

  'execute_input': None,

  'execute_result': None,

  'follow': [],

  'msg_id': '1a8044e3-08a0-4e97-b609-bef89bc452bd',

  'outputs': [],

  'outputs_ready': True,

  'received': datetime.datetime(2015, 12, 28, 11, 50, 23, 852909),

  'started': datetime.datetime(2015, 12, 28, 11, 50, 19, 413062),

  'status': 'ok',

  'stderr': '',

  'stdout': '',

  'submitted': datetime.datetime(2015, 12, 28, 11, 50, 19, 410646)},

 {'after': [],

  'completed': datetime.datetime(2015, 12, 28, 11, 50, 19, 415310),

  'data': {},

  'engine_id': 1,

  'engine_uuid': 'f28f7d85-210e-4686-bbb8-65f8ba7f24e9',

  'error': None,

  'execute_input': None,

  'execute_result': None,

  'follow': [],

  'msg_id': 'd344228f-f2c6-4bbf-a60f-6e956ca27609',

  'outputs': [],

  'outputs_ready': True,

  'received': datetime.datetime(2015, 12, 28, 11, 50, 23, 853522),

  'started': datetime.datetime(2015, 12, 28, 11, 50, 19, 414684),

  'status': 'ok',

  'stderr': '',

  'stdout': '',

  'submitted': datetime.datetime(2015, 12, 28, 11, 50, 19, 412487)},
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 {'after': [],

  'completed': datetime.datetime(2015, 12, 28, 11, 50, 19, 416880),

  'data': {},

  'engine_id': 2,

  'engine_uuid': '26875a75-94e9-487f-919a-2dca38138ae0',

  'error': None,

  'execute_input': None,

  'execute_result': None,

  'follow': [],

  'msg_id': '755ffff2-ce9c-492c-966d-d52b19318482',

  'outputs': [],

  'outputs_ready': True,

  'received': datetime.datetime(2015, 12, 28, 11, 50, 23, 854108),

  'started': datetime.datetime(2015, 12, 28, 11, 50, 19, 416270),

  'status': 'ok',

  'stderr': '',

  'stdout': '',

  'submitted': datetime.datetime(2015, 12, 28, 11, 50, 19, 414236)},

 {'after': [],

  'completed': datetime.datetime(2015, 12, 28, 11, 50, 19, 418690),

  'data': {},

  'engine_id': 3,

  'engine_uuid': '89c5dda3-3e39-4502-99e3-0cca2b740764',

  'error': None,

  'execute_input': None,

  'execute_result': None,

  'follow': [],

  'msg_id': 'fbd6df9d-e69c-474e-a738-3096fd92c120',

  'outputs': [],

  'outputs_ready': True,

  'received': datetime.datetime(2015, 12, 28, 11, 50, 23, 854686),

  'started': datetime.datetime(2015, 12, 28, 11, 50, 19, 418075),

  'status': 'ok',

  'stderr': '',

  'stdout': '',

  'submitted': datetime.datetime(2015, 12, 28, 11, 50, 19, 416005)}]
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In this example, there were four engines, so metadata is a list of four elements, one 
per engine. Each element is a dictionary that contains metadata about the execution 
on that engine.

Metadata keys
Some of the metadata keys deserve a description:

Key Meaning
submitted When the job left the client
started When the engine started executing the job
completed When the engine completed the job
received When the client received the result
engine_id The engine's ID (an int, 0 through n)
pyout The Python output
pyerr A Python exception (if one occurred)
status A string: "ok" or "error"

Other metadata
IPython provides other useful information about AsyncResults. For example, given 
our earlier AsyncResult, are:

In [107]: ar.elapsed

Out[107]: 4.44404

In [108]: ar.progress

Out[108]: 4

In [109]: ar.serial_time

Out[109]: 0.0025080000000000002

In [110]: ar.wall_time

Out[110]: 4.44404
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The table outlines the following properties:

Property Meaning
elapsed Seconds since job submission
progress Number of jobs that have completed so far
serial_time The sum of all times used in computation
wall_time The elapsed time between the submission of the first 

job and the reception of the output of the last job

These properties allow for the calculation of some interesting metrics:

Metric Calculation
progress ar.progress/len(ar)

speedup ar.serial_time/ar.wall_time

average compute time ar.serial_time/len(ar)

The Client class
Although the primary purpose of the Client class is to provide a means to obtain 
access to one or more View objects, it also has some utility attributes and methods.

Attributes
The following attributes are noteworthy:

Attribute Meaning
results A dict of results, keyed by msg_id
outstanding A set of msg_ids that have been submitted but 

for which no results have been received

For example:

In [112]: c.results

Out[112]:

defaultdict(dict,

            {'0543fa4b-43d6-4280-9424-45c574b75e90': [19, 6],

             '0cde1111-35a9-4fe7-90af-920d4a83a9c9': [16, 3],

             '15c29a7c-b7b9-4738-9d3c-6350dc8953bc': [7],

             '187e9830-8962-438f-a2a6-c0986330c7ff': [7],
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             '1a8044e3-08a0-4e97-b609-bef89bc452bd': [0, 1, 7],

             '2267f2e1-3dd9-4514-804c-6c8cb9c97521': ipyparallel.error.
RemoteError('TypeError', "'int' object is not subscriptable"),

             'e9aac8f6-8625-467e-aa28-a04f20c13274': ipyparallel.error.
RemoteError('TypeError', "'int' object is not subscriptable"),

             'ead4287d-39e0-4f25-86c4-4cad85a3b504': [0, 1, 7],

             'eb7cdb74-721e-4858-81b8-7af69dd2abfd': [2, 5, 8],

             'fbd6df9d-e69c-474e-a738-3096fd92c120': [19, 6]})

In [114]: c.outstanding

Out[114]: set()

Methods
The following methods are noteworthy. The functionality provided concerns process 
control—checking status and killing processes:

Method Arguments Effect
abort jobs (one of):

(list of) msg_id

AsyncResult

target

This removes a job (or jobs) from 
the execution list of the target. If no 
jobs are specified, it will remove all 
outstanding jobs.

get_result indices_or_msg_ids 
(one of):

(list of) job index

(list of) msg_ids

This gets the result of a job by msg_id 
or history index. The result is an 
AsyncResult object. This is useful 
when a job is blocked, as the client will 
not have access to the information.

queue_status targets (one of):

(list of) int

(list of) str

This returns the status of the listed 
engine queues. It defaults to all 
queues.

shutdown targets (one of):

list of ints

"all"
hub: bool

This terminates engine processes. If 
hub is True, it also terminates the 
Hub.

For example:

In [116]: c.queue_status()

Out[116]:
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{0: {'completed': 9, 'queue': 0, 'tasks': 0},

 1: {'completed': 9, 'queue': 0, 'tasks': 0},

 'unassigned': 0,

 3: {'completed': 9, 'queue': 0, 'tasks': 0},

 2: {'completed': 9, 'queue': 0, 'tasks': 0}}

The View class
The ipyparallel module declares a View class to provide views of engines. The 
View class itself is not meant for use. It should probably be treated as an abstract base 
class for most purposes. However, it does have two useful subclasses: DirectView 
and LoadBalancedView. We will cover the functionality provided by View in this 
section, and the differences introduced by DirectView and LoadBalancedView in 
their own sections.

View attributes
View provides some useful attributes:

Attribute Meaning
history A list of message IDs.
outstanding The set of message IDs of jobs that are not complete.
results A dict of message_id and result pairs.
targets The IDs of engines in the current active set. Functions 

that are applied, mapped, and so on will be executed on 
these engines.

block bool, if True, apply and map will work synchronously. 
Otherwise, they will work asynchronously. This defaults 
to False.

Calling Python functions
Many of these functions have been described in other sections. They are repeated 
here for reference.
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Synchronous calls
All synchronous calls block until completion and return (a list of) the appropriate 
type:

Function Arguments Effect
apply_sync f, *args, and **kwargs This calls f(*args, **kwargs) on 

the engines.
map_sync f, *sequences, and 

**kwargs
This is a parallel version of Python's 
built-in map. It applies f to every item 
of *sequences.

Asynchronous calls
All asynchronous calls return an AsyncResult:

Function Arguments Effect
apply_async f, *args, and **kwargs This calls f(*args, **kwargs) on the 

engines.
map_async f, *sequences, and 

**kwargs
This is a parallel version of Python's 
built-in map. It applies f to every item of 
*sequences.

imap f, *sequences, and 
**kwargs

This is a parallel version of itertools.
imap. It computes f using arguments 
from each of the *sequences.

Configurable calls
These calls work as either the synchronous or asynchronous versions described 
previously, depending on whether the Client that the View is created from has 
blocking = True or blocking = False:

Function Arguments Effect
apply f, *args, and 

**kwargs
This calls f(*args, **kwargs) on the 
engines.

map f, *sequences, and 
**kwargs

This is a parallel version of Python's built-in 
map. It applies f to every item of *.

run filename This runs the code in filename on the 
current target (or targets).

execute code This runs code (a string) on the current target 
(or targets).
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Job control
Each View also contains functions for controlling the job in its queue. These are similar 
to the functions provided in Client, but apply only to the engines in the View:

Method Arguments Effect
abort jobs (one of):

(list of) str

None

targets

The (list of) str is a list of 
msg_id to be aborted. If None, all 
jobs are aborted. This occurs on all 
engines listed in targets.

get_result indices_or_msg_ids (one 
of):

(list of) job index

(list of) msg_ids

This gets the result of a job by 
msg_id or history index. The result 
is an AsyncResult object. This is 
useful when a job is blocked, as the 
client will not have access to the 
information.

queue_status targets (one of):

(list of) int

(list of) str

This returns the status of the listed 
engine queues. It defaults to all 
queues.

shutdown targets (one of):

list of ints

"all"
hub: bool

This terminates engine processes. If 
hub is True, it also terminates the 
Hub.

DirectView
A DirectView object works as a multiplexer—it has a set of engines (targets) and it 
does the same thing to all of its engines. The basic concept is that a DirectView can 
be treated as if it were a single engine, except that it will execute on multiple engines 
in parallel.

The effect of this on function execution is straightforward:

• For apply* functions, f, *args, and **kwargs are sent to every engine in the 
target set.

• For map* functions, f, one item from *sequences, and **kwargs are sent 
to each engine in the target set. Each engine gets a different item from 
*sequences. If there are more elements in *sequences than there are engines, 
some engines will execute multiple times, with a different item each time.
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Data movement
An important feature provided by a DirectView is the ability to move data from 
engine to engine or an engine to the Hub. These mechanisms operate independently 
of the ZeroMQ and MPI mechanisms discussed earlier.

Dictionary-style data access
The simplest way to handle the move data is to treat the entire namespace of all the 
engines as a simple dict contained in the DirectView object. This allows for data 
movement through assignment and subscripting. Given our standard DirectView 
object dv, an example will make things clear:

In [25]: dv["hello"] = "world"

In [26]: dv["hello"]

Out[26]: ['world', 'world', 'world', 'world']

Line 25:

This line sets up a name, hello, in each engine and binds it to the "world" value.

Line 26:

The value of hello can be accessed through the DirectView object through 
subscripting.

Note that as there are four engines, there are four copies of the value—one for each 
engine. The copying of the value was done automagically by IPython. The exact 
underlying mechanism is implementation dependent (and a particular mechanism 
should not be relied upon by an application), but it is probably ZeroMQ. At the 
application level, objects will be pickled before being sent, so take care to ensure that 
all data handled in this manner is pickle-able.

Scatter and gather
DirectView also supports scatter and gather operations. A scatter operation 
takes a name and a list of values, splits the list into n chunks (where n is the number 
of engines), and assigns the name on each engine to be the sublist corresponding to 
that engine. Again, an example will clarify this:

In [23]: dv.scatter("hello", [1, 3, 9, 27, 81])

Out[23]: <AsyncResult: finished>

In [24]: dv["hello"]

Out[24]: [[1, 3], [9], [27], [81]]
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The list will be divided into sublists of as equal a size as possible. If an engine would 
ordinarily receive a single-element list and the optional flatten parameter is set, 
then that engine will receive the single element in the list rather than the entire list. 
Yet again, here is an example:

In [27]: dv.scatter("hello", [1, 3, 9, 27, 81], flatten=True)

Out[27]: <AsyncResult: finished>

In [28]: dv["hello"]

Out[28]: [[1, 3], 9, 27, 81]

The corresponding gather function will bring all the values back into the 
DirectView:

In [34]: dv.scatter("hello", [1, 3, 9, 27, 81])

Out[34]: <AsyncResult: finished>

In [35]: ar = dv.gather("hello")

In [36]: ar

Out[36]: <AsyncMapResult: finished>

In [37]: ar.get()

Out[37]: [1, 3, 9, 27, 81]

Push and pull
The push and pull functions provide straightforward mechanisms for fine-grained 
control of data movement. The push function accepts a dictionary and a (optional) 
list of targets as arguments and updates the targets' namespaces with that dictionary. 
The pull function accepts a name and a list of targets and returns a list containing 
the value of the name on those targets. For example:

In [43]: dv.push({"hello":"world"})

Out[43]: <AsyncResult: _push>

In [44]: dv["hello"]

Out[44]: ['world', 'world', 'world', 'world']

In [45]: dv.push({"hello":"dolly"}, [2,3])

Out[45]: <AsyncResult: finished>
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In [46]: dv["hello"]

Out[46]: ['world', 'world', 'dolly', 'dolly']

In [48]: ar = dv.pull("hello", [1,2])

In [49]: ar

Out[49]: <AsyncResult: finished>

In [50]: ar.get()

Out[50]: ['world', 'dolly']

Imports
Consider the following straightforward computation of a hailstone sequence, with a 
random sleep thrown in:

import time
import random

def f(n):
    curr = n
    tmp = 0
    time.sleep(random.random())
    while curr != 1:
        tmp = tmp + 1
        if curr % 2 == 1:
            curr = 3 * curr + 1
        else:
            curr = curr/2
    return tmp

Calling f from the IPython command line works as expected:

In [15]: f(28)

Out[15]: 18

Running it in parallel also looks smooth:

In [7]: !ipcluster start -n 4 &

In [8]: 2015-12-29 11:35:37.593 [IPClusterStart] Removing pid file: 
2015-12-29 11:35:37.593 [IPClusterStart] Starting ipcluster with 
[daemon=False]
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2015-12-29 11:35:37.619 [IPClusterStart] Starting Controller with 
LocalControllerLauncher

2015-12-29 11:35:38.624 [IPClusterStart] Starting 4 Engines with 
LocalEngineSetLauncher

2015-12-29 11:36:08.952 [IPClusterStart] Engines appear to have started 
successfully

In [8]: from ipyparallel import Client

In [10]: c = Client()

In [11]: dv = c[:]

In [12]: %run hail2.py

In [13]: ar = dv.map(f, range(1, 11))

In [14]: ar

Out[14]: <AsyncMapResult: finished>

The problem first becomes apparent when attempting to access the results:

In [17]: ar[0]

[0:apply]:
---------------------------------------------------------------- 
-----------NameError

     Traceback (most recent call last)<string> in <module>()

<remotefunction.py> in <lambda>(f, *sequences)

    229             if self._mapping:

    230                 if sys.version_info[0] >= 3:

--> 231                     f = lambda f, *sequences: list(map(f, 
*sequences))

    232                 else:

    233                     f = map

<hail2.py> in f(n)

      5     curr = n

      6     tmp = 0

----> 7     time.sleep(random.random())
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      8     while curr != 1:

      9         tmp = tmp + 1

NameError: name 'time' is not defined

One could (and should) always check the metadata to determine whether an error 
has occurred:

In [21]: ar.metadata[0].status

Out[21]: 'error'

In [22]: ar.metadata[0].error

Out[22]: ipyparallel.error.RemoteError('NameError', "name 'time' is not 
defined")

However, the real question is: why did the error happen? The answer is that 
when IPython starts an engine, it does not copy the environment of the Hub to the 
engine. Running the program in the interactive session imports the libraries into the 
interactive session only. Calling the function on an engine does not import the library 
into the engine.

The solution is to simultaneously import modules locally and globally using the 
sync_imports context manager. This will force the import to happen on all active 
engines in the DirectView. The following lines will fix the problem:

In [23]: with dv.sync_imports( ):

   ....:     import time

   ....:

importing time on engine(s)

In [24]: with dv.sync_imports( ):

   ....:     import random

   ....:

importing random on engine(s)

In [25]: ar = dv.map(f, range(1, 11))

In [26]: ar

Out[26]: <AsyncMapResult: finished>

In [27]: ar.get()

Out[27]: [0, 1, 7, 2, 5, 8, 16, 3, 19, 6]
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Discussion
An alternative way to achieve the same results without using sync_imports is to 
move the import statements into the function body. Both approaches have their 
advantages and drawbacks:

sync_import Function body
Advantages There is centralized control of the 

environment.
It clarifies what modules are being 
imported.

It is easier to determine what 
libraries are actually in use.
This Eases refactoring.

Drawbacks This moves import away from 
where it is used.
It imports a module to every engine, 
even if only some use it.

This violates the PEP08 Style 
Guide.
It is less efficient on repeated 
function calls.

At the bottom, the conflict between the two approaches is between centralization and 
localization. This conflict crops up whenever a system is complex enough to require 
configuration. There is no single solution that will be right for every project. The 
best that can be done is to settle for an approach and use it consistently while also 
keeping in mind any problems that the approach brings with it.

LoadBalancedView
A LoadBalancedView uses a scheduler to execute jobs one at a time, but without 
blocking. The basic concept is that a LoadBalancedView can be treated as if it 
were a single engine, except that instead of waiting for the engine to finish before 
submitting the next job, one can simply submit another immediately. The scheduler 
is responsible for determining when and where each job will run.

The effect of this on function execution is straightforward:

• For apply* functions, the scheduler provides an engine and f, *args, and 
**kwargs are executed on that engine.

• For map* functions, *sequences is iterated over. Moreover, f, the next  
item from *sequences, and **kwargs are sent to the engine provided  
by the scheduler.
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Data movement
The data movement functionality of DirectView depends on knowing the engine on 
which each process is running. A LoadBalancedView allows the scheduler to assign 
each process to an engine, so this information is not available. As such, the data 
movement functionality of DirectView is not available in a LoadBalancedView.

Data movement in a LoadBalancedView requires external mechanisms, such as 
ZeroMQ or MPI. These mechanisms provide alternative ways of determining process 
location (for example, MPI's rank indicator) or a means of specifying a connection 
endpoint (such as ZeroMQ's use of port numbers).

Using MPI and ZeroMQ for data movement is a big enough topic to warrant a 
chapter on its own. See Chapter 4, Messaging with ZeroMQ and MPI, for more details.

Imports
The situation with imports is the same in a LoadBalancedView and a DirectView.

Summary
In this chapter, we saw a variety of useful features provided by IPython. While no 
single feature is of game-changing importance, each provides the right tool for its job.

IPython's timing utilities, whether through the utils.timing or the timeit and 
prun magics, provide a quick and easy way to measure application performance.

The AsyncResult class provides more than a variety of different methods of 
obtaining results from asynchronous jobs. Metadata about the results is also 
available, allowing the developer to access important information such as when a job 
was started and its error status.

Given this data about jobs, the Client class provides access to job-control 
functionality. In particular, queues can be accessed and jobs and engines can be 
stopped based on their status.

A Client object can be used to obtain a View object (either a DirectView or a 
LoadBalancedView). Both Views are the primary mechanisms by which jobs are 
started on engines.
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DirectView works as a multiplexer. It has a set of engines (targets) and it does the 
same thing to all of its engines. This allows the developer to treat a set of engines as 
if they were a single entity. An important capability of a DirectView is its ability 
to make things "the same" on all of its target engines. In particular, DirectView 
provides mechanisms for data movement (a global dictionary, scatter-gather, and 
push-pull) and for managing the environment (the sync_imports context manager).

A LoadBalancedView also allows multiple engines to be treated as a single 
engine. In this case, however, the conceptual model is that of a single, nonblocking 
engine rather than a set of engines. The controller can feed multiple jobs to the 
LoadBalancedView without blocking. For its part, the LoadBalancedView depends 
on a scheduler to actually execute the jobs. This does not change the environmental 
management situation with respect to a DirectView, but it does necessitate an 
external data movement tool, such as MPI or ZeroMQ.

While this chapter briefly outlined some of the more useful features of IPython's 
libraries, IPython cannot do everything itself. In the next chapter, we will take a look 
at how additional languages can be combined with Python to further expand the 
range of available tools.
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Works Well with Others – 
IPython and Third-Party Tools
No tool, even one as powerful and flexible as IPython, can be everything to 
everybody. This chapter takes a look at some specialized tools that integrate well 
with IPython and provide useful, if specialized, functionality. Of particular interest 
are tools that can be used for data analysis and machine learning.

The choice of which language to use on a project is impacted by many factors; 
familiarity, fitness to the task, supporting libraries, curiosity, managerial fiat, and 
many other considerations come into play. Each project has its own reasons, and 
general advice on which tool is "better" is very limited in applicability.

As such, this chapter will attempt to steer away from questions of the form, "Why 
would I use X instead of Y?" and instead stick to the more practical "How do 
other tools that I am interested in using work with IPython?" A few popular and 
interesting examples have been selected as important representatives of a growing 
set of tools that integrate well with IPython.

The following tools will be examined:

• The R language (used in statistics)
• Octave (for numerical processing)
• Hy (a functional language)

Each of these tools is worthy of a book (or several) in its own right. 
This chapter will concentrate on getting the tool to integrate with 
IPython and note some situations in which this integration might be 
useful. The author apologizes in advance if the coding style used is 
not up to the highest standards in the various languages.
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R
The R language (or just R) is a programming language that is widely used by 
statisticians and data analysts. It is similar to Python in that it is interpreted and 
supports a command line. It overlaps with NumPy in that it supports advanced 
mathematical objects such as arrays and matrix operations. It also provides built-in 
graphics functionality for visualization. The R language is free software under the 
FSF's GNU GPL. More information is available at https://www.r-project.org.

The rpy2 module/extension
The entry point for using R in IPython is the rpy2 module/extension. When used as 
an extension, rpy2 allows the use of the %R and %%R magics. When used as a module, 
rpy2 can be imported and used as a "normal" module in Python/IPython programs. 
The magics are appropriate when R code is meant to be used in conjunction with 
standard Python, while the modules are useful when writing Python code that will 
invoke some R functionality. We will outline the installation procedure for rpy2 and 
then discuss both approaches.

Using rpy2 requires that an instance of R be installed on your system. rpy2 works 
by starting up an instance of R that is shared by each magic invocation, so you must 
have permissions to start an instance of R. The directions for installing R vary from 
platform to platform, and some package managers (for example, Conda) can also 
install it.

Installing rpy2
The standard steps for installing any IPython module apply: use either pip or easy_
install, as applicable. Here is an example:

pip install rpy2

This will install the required source files in the appropriate directory for extensions.

Using Rmagic
Once rpy2 is installed, the following command can be issued at the IPython 
command line:

In [3]: %load_ext rpy2.ipython

At this point, the %R, %%R, %Rpush, and %Rpull magics become available for use.

https://www.r-project.org
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The %R magic
The %R magic provides the ability to specify R one-liners:

In [10]: %R mat = matrix(c(1, 2, 3, 4, 5, 6), nrow=2, byrow=TRUE)

Out[10]:

array([[ 1.,  2.,  3.],

       [ 4.,  5.,  6.]])

The %R magic returns the value of the calculation performed, so it can be saved to a 
variable. Here, we transpose a matrix:

In [36]: x = %R t(matrix(c(1, 2, 3, 4, 5, 6, 7, 8, 9), nrow=3, 
byrow=TRUE))

In [37]: x

Out[37]: 

array([[ 1.,  4.,  7.],

       [ 2.,  5.,  8.],

       [ 3.,  6.,  9.]])

If multiple R statements are required, they can be separated by semicolons. Here, we 
multiply a matrix by its transposition:

In [4]: x = %R mat = matrix(c(1, 2, 3, 4, 5, 6, 7, 8, 9), nrow=3, 
byrow=TRUE); mat %*% t(mat)

In [5]: x

Out[5]:

array([[  14.,   32.,   50.],

       [  32.,   77.,  122.],

       [  50.,  122.,  194.]])

And we find eigenvalues and eigenvectors. Note the automatic conversion of the 
results into appropriate Python classes:

In [9]: x = %R mat = matrix(c(1, 2, 3, 4, 5, 6, 7, 8, 9), nrow=3, 
byrow=TRUE); eigen(mat)

In [10]: x

Out[10]:

<ListVector - Python:0x2b015f8e1348 / R:0x18c2e88>
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[FloatVector, Matrix]

  values: <class 'rpy2.robjects.vectors.FloatVector'>

  <FloatVector - Python:0x2b015f8e1508 / R:0x332b058>

[16.116844, -1.116844, -0.000000]

  vectors: <class 'rpy2.robjects.vectors.Matrix'>

  <Matrix - Python:0x2b015a2304c8 / R:0x3329780>

[-0.231971, -0.525322, -0.818673, ..., 0.408248, -0.816497, 0.408248]

Take care while formatting your R. This code is very similar-looking:
In [45]: x = %R mat = matrix(c(1, 2, 3, 4, 5, 6, 7, 8, 
9), nrow=3, byrow=TRUE); mat %*% t(mat);

But it yields an empty value:
In [46]: x

The %%R magic
The %%R magic allows for multiline R programs. This can be handy when writing a 
more involved program. In this example, we use the built-in mtcars data frame and 
run a t-test to determine whether four-cylinder cars get statistically different mileage 
from eight-cylinder cars:

In [30]: %%R

   ....: fourCyl <- mtcars[mtcars$cyl == 4,]

   ....: eightCyl <- mtcars[mtcars$cyl == 8,]

   ....: t.test(fourCyl$mpg, eightCyl$mpg)

   ....:

        Welch Two Sample t-test

data:  fourCyl$mpg and eightCyl$mpg

t = 7.5967, df = 14.967, p-value = 1.641e-06

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

  8.318518 14.808755

sample estimates:

mean of x mean of y

 26.66364  15.10000
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This code is interesting enough to look more closely at:

• Line 1: This magic starts the multiline R interpreter. Unlike the %R magic, 
it does not return anything to IPython by default. The values of variables 
can be pushed to/from R using commands that will be covered later in this 
section.

• Lines 2-3: These lines slice the mtcars dataset/array. A subscript notation is 
used, where the subscript is a test. In English, line 2 translates to "return all 
the lines in mtcars for which the cyl column has the value 4" (similarly for 
line 3 and eight cylinders). The comma is required.

There is a subtle difference in R between = and <-, but it need 
not concern us here. For our purposes, replacing the equal to 
sign with the arrow would make no difference.

• Line 4: This performs a t-test comparing the mpg columns of the four- and 
eight-cylinder cars we separated out in the previous lines. To make a long 
story short, given the cars included in the dataset, four-cylinder cars almost 
certainly make better gas mileage than eight-cylinder cars.

Pulling and pushing
Given our previous example, it might be interesting to know which cars had four 
cylinders (perhaps they were not representative of four-cylinder cars in general and 
our test would be less informative than we thought). Despite the fact that the %%R 
magic does not return a value and the magic is over, that data has not gone away. It 
was stored in the fourCyl variable, which lives on in the shared R instance and can 
be pulled into IPython using the %Rpull magic:

In [40]: %Rpull fourCyl

In [41]: fourCyl

Out[41]:

                 mpg  cyl   disp   hp  drat     wt   qsec  vs  am  gear  
carb

Datsun 710      22.8    4  108.0   93  3.85  2.320  18.61   1   1     4     
1

Merc 240D       24.4    4  146.7   62  3.69  3.190  20.00   1   0     4     
2

Merc 230        22.8    4  140.8   95  3.92  3.150  22.90   1   0     4     
2
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Fiat 128        32.4    4   78.7   66  4.08  2.200  19.47   1   1     4     
1

Honda Civic     30.4    4   75.7   52  4.93  1.615  18.52   1   1     4     
2

Toyota Corolla  33.9    4   71.1   65  4.22  1.835  19.90   1   1     4     
1

Toyota Corona   21.5    4  120.1   97  3.70  2.465  20.01   1   0     3     
1

Fiat X1-9       27.3    4   79.0   66  4.08  1.935  18.90   1   1     4     
1

Porsche 914-2   26.0    4  120.3   91  4.43  2.140  16.70   0   1     5     
2

Lotus Europa    30.4    4   95.1  113  3.77  1.513  16.90   1   1     5     
2

Volvo 142E      21.4    4  121.0  109  4.11  2.780  18.60   1   1     4     
2

The %Rpush magic works in a similar fashion, except that it supports moving values 
from IPython to R:

In [42]: testMat = [1, 2, 3, 4, 5, 6, 7, 8, 9]

In [43]: %Rpush testMat

In [44]: x = %R mat = matrix(testMat, nrow=3, byrow=TRUE); eigen(mat)

In [45]: x

Out[45]:

<ListVector - Python:0x2b015f8df3c8 / R:0x1262078>

[FloatVector, Matrix]

  values: <class 'rpy2.robjects.vectors.FloatVector'>

  <FloatVector - Python:0x2b01636c2ac8 / R:0x2866588>

[16.116844, -1.116844, -0.000000]

  vectors: <class 'rpy2.robjects.vectors.Matrix'>

  <Matrix - Python:0x2b01636c2f88 / R:0x3801d28>

[-0.231971, -0.525322, -0.818673, ..., 0.408248, -0.816497, 0.408248]

Note that in both cases, the name of the variable is the same in IPython and R.
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Graphics
In order to make plotting work using Rmagics, it is necessary to start IPython in a 
mode that supports graphics. A simple way is to start it in a qtconsole:

ipython qtconsole

This will pop up a graphical interface. In this example, we simply call the plot 
function to bring up a simple scatter plot of each car's weight against its mileage:
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It looks as if heavier cars get worse mileage. We can always check by fitting a curve 
or two. Consider the following code:

%%R

plot(mtcars$wt, mtcars$mpg, xlab="Weight", ylab="MPG", main="Weight vs. 
Mileage")

abline(lm(mtcars$mpg~mtcars$wt))

fit <- lm(mtcars$mpg~poly(mtcars$wt, 2, raw=TRUE))

lines(sort(mtcars$wt), fitted(fit)[order(mtcars$wt)], col="red")

It will produce this graph:
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This fits a straight line and a quadratic equation to the data.

Using rpy2.robjects
rpy2 can be imported as a standard module and used from IPython's command line. 
There are various ways of doing this, and the option exists for the developer to build 
their own by building on top of rpy2.interface. The rpy2.objects module is a 
popular choice for general development.

The basics
When you import the rpy2.robjects module, a singleton object, r, is loaded. This is 
the entry point to an R process. Here is an example:

In [5]: import rpy2.robjects as robjects

In [6]: robjects.r

Out[6]: <rpy2.robjects.R at 0x2ad3d0960a90>

Elements from an R session are available as attributes of the robjects.r object:

In [7]: robjects.r.mtcars

Out[7]:

<DataFrame - Python:0x2ad3d0dfd6c8 / R:0x262cef0>

[Float..., Float..., Float..., ..., Float..., Float..., Float...]

  mpg: <class 'rpy2.robjects.vectors.FloatVector'>

  <FloatVector - Python:0x2ad3d0dfdb08 / R:0x2daf890>

[21.000000, 21.000000, 22.800000, ..., 19.700000, 15.000000, 21.400000]

  cyl: <class 'rpy2.robjects.vectors.FloatVector'>

  <FloatVector - Python:0x2ad3d0e03488 / R:0x345aba0>

[6.000000, 6.000000, 4.000000, ..., 6.000000, 8.000000, 4.000000]

  disp: <class 'rpy2.robjects.vectors.FloatVector'>

  <FloatVector - Python:0x2ad3d0e03988 / R:0x33ed340>

[160.000000, 160.000000, 108.000000, ..., 145.000000, 301.000000, 
121.000000]

  ...

  mpg: <class 'rpy2.robjects.vectors.FloatVector'>

  <FloatVector - Python:0x2ad3d0e03fc8 / R:0x38dfd40>

[1.000000, 1.000000, 1.000000, ..., 1.000000, 1.000000, 1.000000]

  cyl: <class 'rpy2.robjects.vectors.FloatVector'>



Works Well with Others – IPython and Third-Party Tools

[ 158 ]

  <FloatVector - Python:0x2ad3d0e06508 / R:0x2847ca0>

[4.000000, 4.000000, 4.000000, ..., 5.000000, 5.000000, 4.000000]

  disp: <class 'rpy2.robjects.vectors.FloatVector'>

  <FloatVector - Python:0x2ad3d0e06a08 / R:0x3bc0b60>

[4.000000, 4.000000, 1.000000, ..., 6.000000, 8.000000, 2.000000]

For the most part, everything that can be done with an Rmagic can be done with 
robjects.r:

In [18]: %%R

   ....: letters

   ....:

 [1] "a" "b" "c" "d" "e" "f" "g" "h" "i" "j" "k" "l" "m" "n" "o" "p" "q" 
"r" "s"

[20] "t" "u" "v" "w" "x" "y" "z"

In [19]: robjects.r.letters

Out[19]:

<StrVector - Python:0x2ad3d8887f48 / R:0x4735690>

['a', 'b', 'c', ..., 'x', 'y', 'z']

However, the correspondence is not exact, as this attempt to access the wt column of 
the mtcars data frame will demonstrate:

In [8]: robjects.r.mtcars$mpg

  File "<ipython-input-8-d46a62a01451>", line 1

    robjects.r.mtcars$mpg

                     ^

SyntaxError: invalid syntax

A numeric index is required:

In [17]: robjects.r.mtcars[5]

Out[17]:

<FloatVector - Python:0x2ad3d887efc8 / R:0x31b0650>

[2.620000, 2.875000, 2.320000, ..., 2.770000, 3.570000, 2.780000]
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Interoperability issues
The complete details of element extraction are beyond the scope 
of this book. This is a case where the different semantics of R 
and Python make for less-than-seamless interoperability.

Interpreting a string as R
The r object can be fed a standard string, which it will interpret and execute as R:

In [24]: robjects.r("mat = matrix(c(1, 2, 3, 4, 5, 6, 7, 8, 9), nrow=3, 
byrow=TRUE)")

Out[24]:

array([[ 1.,  2.,  3.],

       [ 4.,  5.,  6.],

       [ 7.,  8.,  9.]])

It will return the value in mostly the same way as the %R magic does:

In [26]: x = robjects.r("mat = matrix(c(1, 2, 3, 4, 5, 6, 7, 8, 9), 
nrow=3, byrow=TRUE); eigen(mat)")

In [27]: x

Out[27]:

<ListVector - Python:0x2ad3db323148 / R:0x387e270>

[FloatVector, Matrix]

  values: <class 'rpy2.robjects.vectors.FloatVector'>

  <FloatVector - Python:0x2ad3db3231c8 / R:0x3284b38>

[16.116844, -1.116844, -0.000000]

  vectors: <class 'rpy2.robjects.vectors.Matrix'>

  <Matrix - Python:0x2ad3db323608 / R:0x27cf050>

[-0.231971, -0.525322, -0.818673, ..., 0.408248, -0.816497, 0.408248]

In [28]: print(x)

$values

[1]  1.611684e+01 -1.116844e+00 -1.303678e-15

$vectors

           [,1]        [,2]       [,3]

[1,] -0.2319707 -0.78583024  0.4082483
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[2,] -0.5253221 -0.08675134 -0.8164966

[3,] -0.8186735  0.61232756  0.4082483

The rpy2.robjects.RObject class supports the r_repr( ) method, which returns a 
string representation of the object, suitable for use by R. Here is an example:

In [4]: a = robjects.Vector([1, 2, 3, 4, 5])

In [5]: b = robjects.Vector([2, 3, 5, 7, 11])

In [6]: robjects.r("plot(%s, %s)" % (a.r_repr( ), b.r_repr( )))

Out[6]: rpy2.rinterface.NULL

It produces the following plot:
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Octave
Octave is a language designed for numerical computing, available under the GNU 
General Public License. Its home page, at https://www.gnu.org/software/
octave/, says:

"GNU Octave is a high-level interpreted language, primarily intended for 
numerical computations. It provides capabilities for the numerical solution of linear 
and nonlinear problems, and for performing other numerical experiments. It also 
provides extensive graphics capabilities for data visualization and manipulation. 
Octave is normally used through its interactive command line interface, but it 
can also be used to write non-interactive programs. The Octave language is quite 
similar to Matlab so that most programs are easily portable."

Readers who have attended to the section on using R will find setting up and invoking 
R and Octave to be very similar. Similar examples are used to ease comparison.

The oct2py module/extension
The entry point for the use of Octave in IPython is the oct2py module/extension. 
When used as an extension, oct2py allows the use of the %octave and %%octave 
magics. When used as a module, it can be imported and used as a "normal" module 
in Python/IPython programs. We will outline the installation procedure for oct2py, 
and then discuss both approaches.

Installing oct2py
The standard steps for installing any IPython module apply: use either pip or easy_
install, as applicable. For example:

pip install oct2py

This will install the required source files in the appropriate directory for extensions.

Using Octave magic
Once oct2py is installed, the following command can be issued at the IPython 
command line:

In [3]: %load_ext oct2py.ipython

At this, point the %octave, %%octave, %octave_push, and %octave_pull magics 
become available for use.

https://www.gnu.org/software/octave/
https://www.gnu.org/software/octave/
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The %octave magic
The %octave magic provides the ability to specify Octave one-liners:

In [5]: %octave mat = [1 2 3; 4 5 6]

mat =

   1   2   3

   4   5   6

The %octave magic returns the value of its calculation, so it can be assigned to a 
variable. Here, we transpose a matrix:

In [6]: x = %octave [1 2 3; 4 5 6; 7 8 9]'

ans =

   1   4   7

   2   5   8

   3   6   9

In [7]: x

Out[7]:

array([[ 1.,  4.,  7.],

       [ 2.,  5.,  8.],

       [ 3.,  6.,  9.]])

If multiple Octave statements are needed, they can be separated by semicolons. Here, 
we multiply a matrix by its transposition:

In [2]: x = %octave mat = [1 2 3; 4 5 6; 7 8 9]; mat * mat'

ans =

    14    32    50

    32    77   122

    50   122   194

In [3]: x

Out[3]:

array([[  14.,   32.,   50.],

       [  32.,   77.,  122.],

       [  50.,  122.,  194.]])
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We find the eigenvalues and eigenvectors:

In [13]: %octave mat = [1 2 3; 4 5 6; 7 8 9]; [vect, vals] = eig(mat)

vect =

  -0.231971  -0.785830   0.408248

  -0.525322  -0.086751  -0.816497

  -0.818673   0.612328   0.408248

vals =

Diagonal Matrix

   1.6117e+01            0            0

            0  -1.1168e+00            0

            0            0  -1.3037e-15

Tricky issues
Note that the syntax/semantics can be tricky here. The definition of the eig function 
in the Octave language specifies the following behavior:

• lambda = eig(A) returns the eigenvalues of A in the vector lambda.
• [V, lambda] = eig(A) also returns the eigenvectors in V, but lambda is 

now a matrix whose diagonals contain the eigenvalues. This relationship 
holds true (within round-off errors): A =V*lambda*inv(V).

The [a, b] notation and multiple return values do not carry over cleanly into IPython.

So, this sort of works as expected (one might as well expect x to be a two-element 
vector):

In [14]: x = %octave mat = [1 2 3; 4 5 6; 7 8 9]; eig(mat)

ans =

   1.6117e+01

  -1.1168e+00

  -1.3037e-15

In [15]: x
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Out[15]:

array([[  1.61168440e+01],

       [ -1.11684397e+00],

       [ -1.30367773e-15]])

But these do not:

In [16]: (x, y) = %octave mat = [1 2 3; 4 5 6; 7 8 9]; eig(mat)

  File "<ipython-input-16-dabd763ad744>", line 1

    (x, y) = %octave mat = [1 2 3; 4 5 6; 7 8 9]; eig(mat)

             ^

SyntaxError: invalid syntax

In [17]: [x, y] = %octave mat = [1 2 3; 4 5 6; 7 8 9]; eig(mat)

  File "<ipython-input-17-03cdb576522c>", line 1

    [x, y] = %octave mat = [1 2 3; 4 5 6; 7 8 9]; eig(mat)

             ^

SyntaxError: invalid syntax

In [18]: (x, y) = %octave mat = [1 2 3; 4 5 6; 7 8 9]; [vect, vals] = 
eig(mat)

  File "<ipython-input-18-33006e3e67a7>", line 1

    (x, y) = %octave mat = [1 2 3; 4 5 6; 7 8 9]; [vect, vals] = eig(mat)

             ^

SyntaxError: invalid syntax

Even valid syntax yields unexpected results:

In [19]: x = %octave mat = [1 2 3; 4 5 6; 7 8 9]; [vect, vals] = eig(mat)

vect =

  -0.231971  -0.785830   0.408248

  -0.525322  -0.086751  -0.816497

  -0.818673   0.612328   0.408248

vals =

Diagonal Matrix

   1.6117e+01            0            0
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            0  -1.1168e+00            0

            0            0  -1.3037e-15

In [20]: x

Unlike R, putting a semicolon at the end of the statement does not break the return 
value, although it will prevent Octave from printing the answer:

In [21]: x = %octave mat = [1 2 3; 4 5 6; 7 8 9]; eig(mat);

In [22]: x

Out[22]: 

array([[  1.61168440e+01],

       [ -1.11684397e+00],

       [ -1.30367773e-15]])

The answer has not disappeared—it can be retrieved using the %octave_pull magic, 
discussed in the next section.

The %%octave magic
The %%octave magic allows for multiline Octave programs. This can be handy  
when writing a more involved program. In this example, we solve a system of  
linear equations:

4x + y – 2z = 0

2x – 3y +3z = 9

-6x – 2y + 1 = 0

In [28]: %%octave

   ....: a = [4 1 -2; 2 -3 3; -6 -2 1]

   ....: b = [0 9 0]'

   ....: inv(a) * b

   ....:

a =

   4   1  -2

   2  -3   3
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  -6  -2   1

b =

   0

   9

   0

ans =

   0.75000

  -2.00000

   0.50000

Note that the %%octave magic, like the %%R magic, does not return anything to 
IPython by default.

Pushing and pulling
Despite the fact that the %%octave magic does not return a value, the values that it 
calculates do not go away. They can be retrieved using the %octave_pull magic,  
like this:

In [31]: %octave_pull a

In [32]: a

Out[32]:

array([[ 4.,  1., -2.],

       [ 2., -3.,  3.],

       [-6., -2.,  1.]])

The same goes for %octave_push, except that it is from IPython to Octave:

In [27]: b = [16, -8, 0]

In [28]: %octave_push b

In [29]: %%octave
   ....: b = cast(b, 'double')
   ....: a = [7 5 -3; 3 -5 2; 5 3 -7]
   ....: b = b'
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   ....: c = inv(a) * b;
   ....:
b =

   16   -8    0

a =

   7   5  -3
   3  -5   2
   5   3  -7

b =

   16
   -8
    0

In [30]: %octave_pull c

In [31]: c
Out[31]:
array([[ 1.],
       [ 3.],
       [ 2.]])

Note the required cast in the preceding Octave code. Leaving out the cast results in 
a stack trace and an error message: binary operator '*' not implemented for 'matrix' 
by 'int64 matrix' operations. Pushing to Octave is not as seamless as pulling from it.

Graphics
In order to make plotting work using Octave magics, it is necessary to start IPython 
in a mode that supports graphics. A simple way is to start it in a qtconsole:

ipython qtconsole

In this example, we plot a simple sine wave:

%%octave

x = linspace(0, 7, 100)

y = sin(x)

plot(x, y)
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This yields the following graph:

Of course, no example of Octave plotting is complete without the built-in sombrero 
plot:

%%octave

sombrero( )
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Using the Octave module
Octave functionality can also be accessed by using normal Python-style calls. This 
can be accomplished by importing from the oct2py library:

In [2]: from oct2py import octave

At this point, all of Octave's built-in functions are available:

In [4]: octave.ones(3)

Out[4]: 

array([[ 1.,  1.,  1.],

       [ 1.,  1.,  1.],

       [ 1.,  1.,  1.]])

In [5]: octave.rand( )

Out[5]: 0.045109287947966467
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This includes their help information:

In [6]: help(octave.rand)

Help on function rand in module oct2py.core:

rand(*args, **kwargs)

    'rand' is a function from the file /usr/local/octave/3.6.4/lib/
octave/3.6.4/oct/x86_64-unknown-linux-gnu/rand.oct

     -- Loadable Function:  rand (N)

<more help info omitted for space>

Pushing and pulling
Pushing and pulling variables and values is also supported:

In [7]: octave.push('smallPrimes', octave.primes(100))

In [8]: octave.pull('smallPrimes')

Out[8]: 

array([[  2.,   3.,   5.,   7.,  11.,  13.,  17.,  19.,  23.,  29.,  31.,

         37.,  41.,  43.,  47.,  53.,  59.,  61.,  67.,  71.,  73.,  79.,

         83.,  89.,  97.]])

The details of how the IPython and Octave type systems work together are beyond the 
scope of this section, but there is an excellent list of conversions at the Oct2Py site:

https://blink1073.github.io/oct2py/source/conversions.html

More complicated data structures are provided by Oct2py's Struct library, which 
supports dictionary and attribute style access.

Running Octave code
One of the handiest features of oct2py is the ability to run Octave code stored in 
external text files (M-files). Given the following Octave script stored in /nfs/02/
wit0096/Packt/chap06/myIntegrate.m:

function retval = myIntegrate( )

https://blink1073.github.io/oct2py/source/conversions.html
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  retval = quad("myFunc", 0, pi)

  disp("hello")

endfunction

function y = myFunc(x)

  y = sin(x) * sqrt(abs(cos(x)))

endfunction

We can use these IPython commands to run it:

In [1]: from oct2py import octave

In [2]: octave.addpath("/nfs/02/wit0096/Packt/chap06/")

In [3]: octave.myIntegrate( )

Out[3]: 1.3333333333333326

This yields an easy integration of a complicated function.

Hy
Sometimes, nothing less than a functional programming language will do. This is 
especially true in machine learning and artificial intelligence, where Lisp and Scheme 
have a long tradition. Hy is a dialect of Lisp that translates expressions into Python's 
abstract syntax tree format.

An abstract syntax tree is a high-level representation of a program's structure, 
independent of the source code. The Python parser turns all Python programs into 
abstract syntax trees, after which the interpreter performs further operations on the 
tree on the path to creating executable bytecode. Because the Hy frontend accepts  
Hy code as input and produces as output an abstract syntax tree compatible with 
Python's interpreter, Hy code runs in the same interpreter as your Python code.

In practical terms, Hy programs can call any Python libraries and Python code can 
invoke Hy code.

It is available under the MIT (Expat) license from its home page at http://docs.
hylang.org/en/latest/:

"Hy is a wonderful dialect of Lisp that's embedded in Python.

Since Hy transforms its Lisp code into the Python Abstract Syntax Tree, you have 
the whole beautiful world of Python at your fingertips, in Lisp form!"

http://docs.hylang.org/en/latest/
http://docs.hylang.org/en/latest/
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Readers who have attended to the section on using R and Octave will find setting up 
and invoking Hy to be very similar.

The hymagic module/extension
The entry point for the use of Hy in IPython is the hymagic module/extension. 
When used as an extension, hymagic allows for the use of the %hylang and %%hylang 
magics. When used as a module, it can be imported and used as a "normal" module 
in Python/IPython programs. We will outline the installation procedure for hymagic 
and then discuss both approaches.

Installing hymagic
The standard steps for installing any IPython module apply: use either pip or  
easy_install, as applicable. For example:

pip install hymagic

This will install the required source files in the appropriate directory for extensions.

Using hymagic
Once oct2py is installed, the following command can be issued at the IPython 
command line:

In [3]: %load_ext hymagic

At this point, the %hylang and %%hylang magics become available for use.

The %hylang magic
The %hylang magic provides the ability to specify Hy one-liners. It is worth noting 
that the %hylang magic does not have a return value. So, assigning it to a variable, 
while not an error, does not provide the variable with a value.

The %%hylang magic
The %%hylang magic allows for multiline Hy programs.
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A quick introduction to Hy
Although Hy ultimately runs on top of Python, it is a dialect of Lisp. This makes it a 
very different language from the others that we have covered in this book. This quick 
introduction will help you with the basics of the language.

Lisp dialects are turning up all over in some interesting areas. Clojure in particular is 
gaining in popularity. For further reading, check out:

• Mastering Clojure Data Analysis by Eric Rochester (https://www.packtpub.
com/big-data-and-business-intelligence/mastering-clojure-data-
analysis)

• Clojure High Performance Programming by Shantanu Kumar (https://www.
packtpub.com/application-development/clojure-high-performance-
programming)

• Clojure for Machine Learning by Akhil Wali (https://www.packtpub.com/
big-data-and-business-intelligence/clojure-machine-learning)

Hello world!
The "Hello world!" program in Hy is pretty basic:

(print "Hello world!")

Running it in IPython is similarly straightforward:

In [9]: %hylang (print "Hello world!")

Hello world!

For the language introduction, we will omit the IPython trappings and provide just 
the Hy when practicable.

Get used to parentheses
The first thing most people notice about Lisp (and Hy by extension) is how many 
parentheses it has. To some extent, this is a result of their placement. An ordinary 
Python program would have looked like this:

print("Hello world!")

The same number of parentheses, and only die-hard Python 2 users would complain 
about that!

https://www.packtpub.com/big-data-and-business-intelligence/mastering-clojure-data-analysis
https://www.packtpub.com/big-data-and-business-intelligence/mastering-clojure-data-analysis
https://www.packtpub.com/big-data-and-business-intelligence/mastering-clojure-data-analysis
https://www.packtpub.com/application-development/clojure-high-performance-programming
https://www.packtpub.com/application-development/clojure-high-performance-programming
https://www.packtpub.com/application-development/clojure-high-performance-programming
https://www.packtpub.com/big-data-and-business-intelligence/clojure-machine-learning
https://www.packtpub.com/big-data-and-business-intelligence/clojure-machine-learning
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The odd thing about Hy's parentheses is that they come before the function name 
and after the argument, rather than after the function name and around the 
arguments. This is the standard syntax for Lisp and all its dialects. The syntactic unit 
created by this form is called an expression, and every expression has the same form:

(<function> <arguments>)

In Hy, everything is an expression, so there will be a lot of parentheses. It can look 
awkward at first, but this simple syntax makes expression evaluation simple:

• Apply the function to the arguments to return the value of the expression
• There will only ever be one function

Arithmetic operations are in the wrong place
The code to add 1 and 1 is as follows:

(+ 1 1)

This follows the standard expression semantics: function first, arguments later (in 
this case, operator first and operands later). It is not Hy's fault that people use infix 
notation—consistency is a virtue in a programming language. A side benefit of this 
notation is that arithmetic operators can take an arbitrary number of operands:

(* 1 2 3 4)

This returns 24.

This should not be confused with a prefix version of stack arithmetic, however. The 
expression:

(* + + 1 2 3 4)

Is a syntax error. It breaks the second rule mentioned in the preceding list by having 
more than one function inside a single set of parentheses.

Function composition is everywhere
One can fix the previous example by using parentheses:

(* (+ (+ 1 2) 3) 4)
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This will return 24. Evaluation proceeds from the inmost parentheses outward, so:

1. Add 1 and 2.
2. Add that result to 3.
3. Multiply that result by 4.
4. Return the value as the result of evaluating this expression.

There is a tendency in Lisp dialects to use function composition for control flow, 
rather than the more usual sequence-of-statements style found in object-oriented 
languages such as Python or Java, or imperative languages such as FORTRAN or C. 
Every language has a "natural" way of doing things. In Hy, function composition is 
more natural than stamen sequences.

Control structures in Hy
This does not mean that Hy lacks the full complement of control structures. They just 
look a little different.

Setting variable values
Hy provides the setv function to bind a value to a name. It works in a manner 
similar to Python's = operator.

In Python, we have this:

In [23]: x = 1 + 1

In [24]: x

Out[24]: 2

In Hy:

In [28]: %hylang (setv x (+ 1 2))

In [29]: x

Out[29]: 3

Note how the value of x was automatically exported from Hy to IPython.
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Defining functions
Defining a function is a form of name binding, but the process gets a separate Hy 
function: defn. The basic syntax is as follows:

(defn <function name> [<args>] <list of expr>)

A simple variant on Hello world! will be illustrative:

In [31]: %%hylang
   ....: (defn hello [name]
   ....: (print (+ "Hello " name))
   ....: )
   ....:

As our first Hy program, it bears some examination:

• Line 1: Although the program is technically a one-liner, a cell magic makes it 
easier to type it using a human-readable formatting.

• Line 2: Our first function is defn. This will bind its first argument (the 
function name) to the second argument (the list of parameters) and the third 
argument (the list of expressions that makes up the function body). Readers 
versed in functional programming may notice a similarity to lambda calculus 
here, but that is beyond the scope of this book.

• Line 3: In this case, our list of expressions contains only a single (nested) 
expression. The print function will print its arguments. There is only one 
argument, and its return value is the string resulting from the concatenation 
of "Hello " and the parameter.

• Line 4: This is the closing parenthesis for the defn expression. All 
parentheses must match. Using multiple lines to match parentheses is a good 
habit for dealing with a problem that can easily become overwhelming.

Note that this definition carries over into the IPython world, with appropriate 
syntax:

In [32]: hello("bob")

Hello bob

if statements
if statements follow the same rules about expressions as every other part of Hy:

(if <bool_expr> <true_expr> <false_expr>)
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Here, Hy will evaluate <bool_expr> first. If <bool_expr> evaluates to true, <true_
expr> will be evaluated; otherwise, <false_expr> will be. For example:

In [7]: %%hylang

   ...: (import math)

   ...: (defn safesqrt [x]

   ...:     (if (< x 0)

   ...:       (math.sqrt (- 0 x))

   ...:       (math.sqrt x)

   ...:     )

   ...: )

   ...:

In [8]: safesqrt(-4)

Out[8]: 2.0
hy1.hy

For the complete code, you can refer to the code file named hy1.hy provided along 
with this book.

Conditionals
Hy even has the multiway conditional statement that Python lacks:

(cond [<bool_expr1> <expr1>] [<bool_expr2> <expr2>] … )

For example:

In [9]: %%hylang

   ...: (defn categorize [x]

   ...:   (cond

   ...:     [(< x 0) (print "negative")]

   ...:     [(= x 0) (print "zero")]

   ...:     [(> x 0) (print "positive")]

   ...:   )

   ...: )

   ...:

In [10]: categorize(52)

positive

hy2.hy
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For the complete code, you can refer to the code file named hy2.hy provided along 
with this book.

Loops
Although it goes against the spirit of functional programming, loops are supported. 
For example:

In [12]: %hylang (for [i (range 10)] (print i))

0

1

2

3

4

5

6

7

8

9

In [13]: %hylang (for [i [1 2 3 4 5]] (print i))

1

2

3

4

5

Calling Python
All Python functions are available inside of Hy:

In [20]: def f(n):

      curr = n

      tmp = 0

      while curr != 1:

        tmp = tmp + 1
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        if curr % 2 == 1:

          curr = 3 * curr + 1

        else:

          curr = curr/2

      return tmp

   ....:

In [21]: %hylang (f 35)

Out[21]: 13

And so are built-in Python functions and libraries:

In [28]: %%hylang

   ....: (setv f (open "hy1.hy"))

   ....: (print (.read f))

   ....:

This prints the contents of that file:

%%hylang

(import math)

(defn safesqrt [x]

  (if (< x 0)

    (math.sqrt (- 0 x))

    (math.sqrt x)

  )

)

Hy interoperates with Python in too many ways to list here, including list 
comprehensions, objects, and exceptions. It suffices to say that if you are already 
comfortable with Python and interested in branching out into a functional language, 
Hy is a good choice.
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Summary
This chapter looked at some third-party tools that interoperate well with IPython: R, 
Octave, and Hy.

R is a language specialized for use in statistics and data visualization. It has several 
advantages, including a rich collection of libraries, a large user base skilled in 
statistics, easy graphics, and a syntax that allows the economic expression of statistical 
ideas. IPython can complement this with its huge collection of general-purpose 
libraries and a syntax that will be more familiar to most developers. At present, R and 
Python are struggling for supremacy in the data analysis realm—there is no reason 
they cannot work together.

Octave is another language specialized for numerical computing. Its initial draw is 
as an open source alternative to MATLAB. The two languages are highly compatible, 
providing access to a large library of already written MATLAB functions to the 
Octave user. Octave is particularly strong when working with matrices. Until 
recently, Octave did not come with a GUI, so IPython makes for a nice complement 
when visualization is required.

Hy is a dialect of Lisp that interprets/compiles to Python. Functional languages 
such as Lisp are an important part of the machine learning ecosystem, which is 
becoming increasingly important in big data analysis. Developers who are new to 
functional programming will find learning Hy easier than starting cold, given the 
interoperability between IPython and Hy.

The focus in this chapter was on multilanguage integration. In the next chapter, we 
will introduce third-party tools for data visualization.
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Seeing Is Believing– 
Visualization

Although Python is an excellent language for scientific and numerical computing, 
it is somewhat less strong in terms of data visualization. IPython allows easy 
interoperation between Python (and other supported languages) and many third-
party tools that can provide useful data analysis and graphing possibilities. This 
capability is another example of IPython's pragmatic philosophy of enabling the 
developer to use the best tool for the job.

While there are a great number of visualization libraries, this chapter will attempt to 
cover only a few of the more popular/interesting ones.

The following topics will be covered:

• Matplotlib
• Bokeh
• R
• Python-nvd3
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Matplotlib
Matplotlib is a Python-based 2D plotting library. It works well with Python, and 
even better with IPython. It includes the pyplot module, which provides MATLAB-
like functionality. Matplotlib functionality can be accessed both programmatically 
and interactively, from the IPython command line. The examples in this section will 
be run from the command line for ease of explication.

Starting matplotlib
Matplotlib should be installed along with most major IPython distributions. If yours 
does not include it, standard package installation procedures (for example, pip 
install or sudo apt-get) should suffice.

There are two ways to start up matplotlib: matplotlib-only or pylab.

The difference is that using matplotlib-only mode activates matplotlib 
interactive support but does not import anything into the namespace. pylab mode 
executes more imports and changes the namespace.

Once installed, matplotlib-only mode can be started either from the command line 
or by using the %matplotlib magic, as shown here:

(Ipython)-bash-4.1$ ipython --matplotlib

Python 3.4.3 |Anaconda 2.0.1 (64-bit)| (default, Oct 19 2015, 21:52:17) 

Type "copyright", "credits" or "license" for more information.

IPython 4.0.1 -- An enhanced Interactive Python.

?         -> Introduction and overview of IPython's features.

%quickref -> Quick reference.

help      -> Python's own help system.

object?   -> Details about 'object', use 'object??' for extra details.

Using matplotlib backend: Qt4Agg

In [1]:
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Alternatively, there is a %matplotlib magic that will provide the same functionality:

In [1]: %matplotlib

Using matplotlib backend: Qt4Agg

Similarly, IPython can be started in pylab mode at the command line, as follows:

(Ipython)-bash-4.1$ ipython --pylab

Python 3.4.3 |Anaconda 2.0.1 (64-bit)| (default, Oct 19 2015, 21:52:17)

Type "copyright", "credits" or "license" for more information.
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IPython 4.0.1 -- An enhanced Interactive Python.

?         -> Introduction and overview of IPython's features.

%quickref -> Quick reference.

help      -> Python's own help system.

object?   -> Details about 'object', use 'object??' for extra details.

Using matplotlib backend: Qt4Agg

And there is the %pylab magic; it will provide the same functionality:

In [1]: %pylab

Using matplotlib backend: Qt4Agg

Populating the interactive namespace from numpy and matplotlib

Entering pylab mode is equivalent to executing the following code:

Care should be taken when using pylab mode. Although it 
can be convenient, these imports can shadow other defined 
functions, leading to surprising results. Examples in this 
section will use pylab mode unless specifically noted. Proper 
attention to detail should allow any code to be ported to/from 
either mode as desired.
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An initial graph
As always with a new module, it is worth checking to see whether everything is 
working. From the IPython command line, issue the following commands:

In [2]: x = randn(90000)

In [3]: hist(x, 300)

Out[3]:

At this point, my command line printed two sorts of things:

• Two arrays and a list (the return values of the hist call)
• A stack trace (which went away when I deleted my matplotlib font cache in 

~/.cache/matplotlib/fontList*.cache)

More to the point, it produced the following graph:

matplotlib1.gif
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This code deserves some further description, as the first matplotlib example:

• Line 1: The numpy.random.randn function creates a one-dimensional array 
of 90,000 floating-point numbers; they follow a normal distribution with 
mean equal to 0 and variance equal to 1.

• Line 2: The hist function accepts an array as an argument and computes and 
draws the histogram of the array. It takes many optional arguments; in this 
case, we have provided the number of bins to use.

Modifying the graph
It was easy to get the first graph up and running, but it could use some work.  
The first way to change things is to change/add parameters to the constructor.  
For example, suppose we execute this:

In [11]: hist(x, 300, orientation="horizontal", color="green")

It results in the following:

matplotlib2.gif
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A little more usefully:

In [13]: hist(x, 300, cumulative=True)

The preceding line results in a cumulative histogram, like this:

matplotlib3.gif

The complete list of parameters to the hist command can be found in the 
documentation maintained at http://matplotlib.org.

http://matplotlib.org
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An even more useful feature is that the graph is redrawn every time a command that 
would change what is displayed is executed. Given our original histogram, we can 
issue a series of commands as follows:

In [42]: locs, labels = xticks()

In [43]: xticks(locs, ("-10%", "-6.7%", "-3.3%", "0", "3.3%", "6.7%", 
"10%"))

Out[43]:

([<matplotlib.axis.XTick at 0x2b15e5bdcc88>,

  <matplotlib.axis.XTick at 0x2b15e5ba9710>,

  <matplotlib.axis.XTick at 0x2b15e5f09fd0>,

  <matplotlib.axis.XTick at 0x2b15e5fa4da0>,

  <matplotlib.axis.XTick at 0x2b15e5fa87f0>,

  <matplotlib.axis.XTick at 0x2b15e5fac240>,

  <matplotlib.axis.XTick at 0x2b15e5facc50>],

 <a list of 7 Text xticklabel objects>)

In [44]: xlabel("Percentage change")

Out[44]: <matplotlib.text.Text at 0x2b15e5bd8f98>

In [45]: ylabel("Number of Stocks")

Out[45]: <matplotlib.text.Text at 0x2b15e5bdc7f0>

In [46]: title("Simulated Market Performance")

Out[46]: <matplotlib.text.Text at 0x2b15e5beebe0>

code1.py
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And we can see the resulting graph drawn as each command is issued:

Controlling interactivity
While useful for interactive graphing, some commands can take time. If a number of 
changes need to be made in a row and the results are not needed until after all the 
changes are applied, the ioff( ) and ion( ) functions turn off/turn on interactive 
plotting. The ion( ) function should be followed by a call to plot( ) in order to 
update the display. Here is an example:

In [47]: ioff()

In [48]: title("Simulation")

Out[48]: <matplotlib.text.Text at 0x2b15e5beebe0>

In [49]: xlabel("Change Day Over Day")
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Out[49]: <matplotlib.text.Text at 0x2b15e5bdc7f0>

In [53]: ion

Out[53]: <function matplotlib.pyplot.ion>

In [54]: plot()

Out[54]: []

This would result in changes to the diagram being delayed until the call to plot( ), 
at which point they all happen simultaneously.

Bokeh
Bokeh is a Python interactive visualization library that targets modern web browsers 
for presentation. Its goal is to provide elegant, concise construction of novel graphics 
in the style of D3.js and extend this capability with high-performance interactivity 
over very large or streaming datasets. Bokeh can help anyone who wants to quickly 
and easily create interactive plots, dashboards, and data applications.

For our purposes, Bokeh can be used to produce graphics that will be viewed 
from web browsers. Although it does not support the same sort of command-line 
interactivity as Matplotlib when used in this manner, the ability to produce durable 
images that are easily viewed remotely is important for purposes such as reporting. 
In addition, Bokeh's ability to generate web pages using HTML, JavaScript, and CSS 
means that the graph itself can be as interactive as those tools can make it.

A command-line-driven interactive approach is supported when using a Bokeh 
server, but this is beyond the scope of the current section.

Starting Bokeh
Bokeh can be installed as a standard IPython module using pip:

pip install bokeh

Once installed, the bokeh libraries can be accessed through a standard  
import statement:

In [1]: import bokeh

Bokeh is currently in constant flux. The version used in these examples did not 
include a %bokeh or %%bokeh magic, although one may become available.
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An initial graph
The following code calls some basic Bokeh libraries to produce some IPython results 
and a graph:

In [1]: import numpy as np

In [2]: import bokeh.plotting as bp

In [3]: bp.output_file("bokeh1.html")

In [4]: x = np.linspace(0, 2 * np.pi, 1024)

In [5]: y = np.cos(x)

In [6]: fig = bp.figure( )

In [7]: fig.line(x, y)

Out[7]: <bokeh.models.renderers.GlyphRenderer at 0x2ac3cc1cde80>

In [8]: bp.show(fig)

The IPython results were the following:

ERROR: <path> :W-1001 (NO_DATA_RENDERERS): Plot has no data renderers: 
Figure, ViewModel:Plot, ref _id: 3e2a57f0-8c52-463b-8e6b-5821ef6b04b8

In [9]: /usr/bin/xdg-open: line 402: htmlview: command not found

console.error:

  [CustomizableUI]

  Custom widget with id loop-button does not return a valid node

console.error:

  [CustomizableUI]

  Custom widget with id loop-button does not return a valid node

code2.py



Seeing Is Believing– Visualization

[ 192 ]

These errors did not seem to prevent the desired effects. First off, a new browser 
opened and displayed a web page that contained this graph:

bokeh1.gif



Chapter 7

[ 193 ]

It also produced a 748 KB-sized HTML file that produces the web page just shown.

This code deserves some further description, as it's our first Bokeh example:

• Line 2: The bokeh.plotting interface provides the Figure class. A Figure 
object acts as a container for all the required elements in a plot: lines, axes, 
glyphs, and so on.

• Line 3: The output_file function takes a filename as an argument. Bokeh 
then saves its output to this file in HTML format. Alternative output formats 
are as follows:

 ° output_notebook: Generates the output to be used in a Jupyter 
notebook

 ° output_server: Generates the output to be displayed through a 
Bokeh server

• Line 6: Here, we create a Figure object to put our graphical elements in. This 
comes with a host of default settings. Some will be discussed later, but for 
now, the basic window will suffice.

• Line 7: The line function takes two arguments—a list of x values and a list 
of y values—and creates a line by pairing them off. A line is a simple form 
of what Bokeh calls a glyph: a graphical element such as a line (straight or 
curved), a shape (for example, rectangle or annulus) or an image, among 
others. This line is now a part of the graph and will be displayed when the 
graph is. If desired, we can add more glyphs to this graph, but one is enough 
for this example.

• Line 8: The show method saves the current plot and (because this is an 
HTML-based plot) opens a web browser to display it. A related method is 
save( ), which will save a plot but not display it.

Modifying the graph
The preceding graph was about the simplest graph Bokeh could produce. It used 
many defaults that Bokeh provides for even the most basic graph. Even though the 
graph setup was primitive (a range of x values and the cos function), there is still a 
lot of functionality on the web page:

• The Close All Plots link works
• The icon in the upper left links to bokeh.pydata.org
• The icons in the upper right (Pan, Box Zoom, Resize, Wheel Zoom, Preview/

Save, Reset, and Help) all work
• There are axes with appropriate scaling and labeling

bokeh.pydata.org
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Bokeh uses the Figure class as a container for the various parts that make up a graph. 
The previous example used a default Figure. More control over the graph can be 
obtained by passing parameters to the Figure constructor. Values set using this 
method apply to the entire graph, regardless of later additions of glyphs and so on.

We will also add some parameters to our line. This is a common feature of most 
Bokeh glyphs—the constructor has few required parameters and a larger set of 
optional parameters that can be overridden.

Here is the code for the new graph:

In [2]: import numpy as np

In [3]: import bokeh.plotting as bp

In [4]: bp.output_file("bokeh2.html")

In [5]: x = np.linspace(0, 2 * np.pi, 1024)

In [6]: y = np.cos(x)

In [7]: fig = bp.figure(title="simple line example", x_axis_label="x", 
y_axis_label="y")

In [8]: fig.line(x, y, legend="cos(x)", color="red", line_width=2)

Out[8]: <bokeh.models.renderers.GlyphRenderer at 0x2ae1340cee80>

In [9]: bp.show(fig)

code3.py
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With the resulting page:

bokeh2.gif
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Bokeh also supports placing multiple glyphs on the same graph. Using multiple 
glyphs is simple: just call the requisite method on the figure object and the 
appropriate type of glyph will be added to the graph. In this case, we have both a 
line for cos(x) and a scatter graph of cos(x) * sin(x). The line of cos(x) is a standard red 
line graph with 1,024 data points, while the scatter graph of sin(x) * cos(x) is a green 
scatter graph with 20 points. They both belong to the same figure, and both appear 
on the resulting graph:

bokeh3.gif
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The developer is free to play around with the graph while developing it. A graph 
may be displayed, and if additional glyphs are required, they may be added to the 
figure object by calling the appropriate method on the figure object from the IPython 
command line. At that point, the figure is changed, although the results of this 
change may not be saved until the next save( ) or show( ) command and will not 
be visible until the next show( ) command.

Customizing graphs
The entire Bokeh toolbox is too large to describe in this section, but a few highlights 
will demonstrate its power.

Bokeh supports many types of glyph:

• Scatter markers (for scatter plots, including asterisks, crosses, diamonds, and 
many more)

• Straight lines
• Patches (polygonal shapes)
• Rectangles and ovals
• Images (including the ability to draw raw RGBA data)
• Wedges, arcs, and annulus shapes
• Other specialized curves

Bokeh also supports various types of axes:

• Categorical (enumerated, or custom numeric)
• Datetime (years, months, dates, and so on)
• Log-scaled
• Twin

Also supported are various annotations:

• Legends
• Box and span (to emphasize certain regions of a graph)
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Interactive plots
An important feature of Bokeh is the ability to allow the user to interact with finished 
plots. This is accomplished in two ways:

• Built-in Bokeh functionality
• The ability to interface with JavaScript in the browser

Our example will involve the first option.

An example interactive plot
The following code displays two graphs side by side, and allows the user to select 
a set of points in one graph and see where the corresponding points lie in the other 
graph. The code introduces some new concepts, which will be discussed:

In [2]: import numpy as np

In [3]: import bokeh.plotting as bp

In [4]: import bokeh.models as bm

In [5]: bp.output_file("bokeh4.html")

In [6]: x = np.linspace(-2 * np.pi, 2 * np.pi, 100)

In [7]: y0 = np.cos(x)

In [8]: y1 = np.sin(x)

In [9]: mySource = bm.ColumnDataSource(data=dict(x=x, y0=y0, y1=y1))

In [10]: myTools = "box_select,lasso_select,help"

In [11]: left = bp.figure(tools=myTools, width=300, height=300, 
title="Left")
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In [12]: left.circle('x', 'y0', source=mySource)

Out[12]: <bokeh.models.renderers.GlyphRenderer at 0x2b47b457de80>

In [13]: right = bp.figure(tools=myTools, width=300, height=300, 
title="Right")

In [14]: right.circle('x', 'y1', source=mySource)

Out[14]: <bokeh.models.renderers.GlyphRenderer at 0x2b47c2cb8940>

In [15]: p = bp.gridplot([[left, right]])

In [16]: bp.show(p)

code4.py

• Line 4: This allows us to use data models. It allows us to consider the three 
data vectors (x, y0, and y1) as a single data source that both windows can use.

• Line 9: This line creates a ColumnDataSource data model that will be shared 
between the windows. This sharing is what allows the actions in one window 
to be reflected in the other.

• Line 10: It is possible to create a list of tools that will be displayed in the 
graph. For this example, a subset of the usual will work.

• Lines 11-12: We create a figure to be the left graph and assign it a circle glyph 
for (x, y0) and our shared data source.

• Lines 13-14: We create a figure to be the right graph and assign it a circle 
glyph for (x, y1) and our shared data source.

• Line 15: A gridplot glyph is created, which contains the left and right glyphs.
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The following graph is displayed. Note how the user can use a lasso tool to choose 
which points to examine. The chosen points are made bold, while the unchosen 
points are dimmer. This happens in real time as the points are selected by the user:

bokeh4a.gif
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This selection persists after the user is done interacting with the graph:

bokeh4b.gif

R
The previous chapter introduced some basic features of plotting in R. This section 
will introduce the ggplot2 library. ggplot2 is based on concepts from Leland 
Wilkinson's The Grammar of Graphics, a classic in the data visualization field. The 
goal of this book was to provide an underlying theory of graphical data display. The 
framework provided aims to provide a unified viewpoint in which various tools 
(scatter plots, bar charts, pie charts, and so on) can all be viewed as special cases of a 
more general concept of graphical data presentation.
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For more information on ggplot2, see the home page for the project at http://
ggplot2.org/ and the documentation at http://docs.ggplot2.org/current/
index.html.

Installing ggplot2 and pandas
ggplot2 is an optional R package. It is possible that it is included in your R 
installation. If not, it can be installed easily enough in IPython using R magic:

In [12]: %%R

   ...: install_packages("ggplot2")

pandas is a data analysis library for Python. It contains many useful utilities, 
including the invaluable DataFrame class. It comes installed with the Anaconda 
distribution, or can be installed using pip:

pip install pandas

Using DataFrames
DataFrames are handy in that they are Python equivalents of R data frames. R uses 
data frames all over. Here is a simple example:

In [10]: %%R

   ....: x=c(1, 2, 3, 4)

   ....: y=c(2, 3, 5, 7)

   ....: df = data.frame(x, y)

In [11]: %%R

   ....: head(df)

   ....:

  x y

1 1 2

2 2 3

3 3 5

4 4 7

Note that df maintained its value even between invocations of the %%R magic.  
The built-in mtcars data is a data frame in R.

http://ggplot2.org/
http://ggplot2.org/
http://docs.ggplot2.org/current/index.html
http://docs.ggplot2.org/current/index.html
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As a quick example of the usefulness of DataFrames, we will add a column to the 
built-in mtcars data frame to denote kilometers per gallon:

In [1]: %load_ext rpy2.ipython

In [2]: from rpy2.robjects import pandas2ri

In [3]: pandas2ri.activate()

In [4]: from rpy2.robjects import r

In [5]: df_cars = pandas2ri.ri2py(r['mtcars'])

In [6]: type(df_cars)

Out[6]: pandas.core.frame.DataFrame

In [7]: df_cars.describe()

Out[7]:

code5.py

The preceding code yields the following:

             mpg        cyl        disp          hp       drat   wt  \

count  32.000000  32.000000   32.000000   32.000000  32.000000  32.000000

mean   20.090625   6.187500  230.721875  146.687500   3.596563   3.217250

std     6.026948   1.785922  123.938694   68.562868   0.534679   0.978457

min    10.400000   4.000000   71.100000   52.000000   2.760000   1.513000

25%    15.425000   4.000000  120.825000   96.500000   3.080000   2.581250

50%    19.200000   6.000000  196.300000  123.000000   3.695000   3.325000

75%    22.800000   8.000000  326.000000  180.000000   3.920000   3.610000

max    33.900000   8.000000  472.000000  335.000000   4.930000   5.424000

            qsec         vs         am       gear     carb

count  32.000000  32.000000  32.000000  32.000000  32.0000

mean   17.848750   0.437500   0.406250   3.687500   2.8125

std     1.786943   0.504016   0.498991   0.737804   1.6152

min    14.500000   0.000000   0.000000   3.000000   1.0000

25%    16.892500   0.000000   0.000000   3.000000   2.0000

50%    17.710000   0.000000   0.000000   4.000000   2.0000
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75%    18.900000   1.000000   1.000000   4.000000   4.0000

max    22.900000   1.000000   1.000000   5.000000   8.0000

In [8]: df_cars.insert(11, "kpg", 1.609344 * df_cars['mpg'])

In [9]: df_cars.describe()

Out[9]:

             mpg        cyl        disp          hp       drat      wt  \

count  32.000000  32.000000   32.000000   32.000000  32.000000  32.000000

mean   20.090625   6.187500  230.721875  146.687500   3.596563   3.217250

std     6.026948   1.785922  123.938694   68.562868   0.534679   0.978457

min    10.400000   4.000000   71.100000   52.000000   2.760000   1.513000

25%    15.425000   4.000000  120.825000   96.500000   3.080000   2.581250

50%    19.200000   6.000000  196.300000  123.000000   3.695000   3.325000

75%    22.800000   8.000000  326.000000  180.000000   3.920000   3.610000

max    33.900000   8.000000  472.000000  335.000000   4.930000   5.424000

            qsec         vs         am       gear     carb        kpg

count  32.000000  32.000000  32.000000  32.000000  32.0000  32.000000

mean   17.848750   0.437500   0.406250   3.687500   2.8125  32.332727

std     1.786943   0.504016   0.498991   0.737804   1.6152   9.699433

min    14.500000   0.000000   0.000000   3.000000   1.0000  16.737178

25%    16.892500   0.000000   0.000000   3.000000   2.0000  24.824131

50%    17.710000   0.000000   0.000000   4.000000   2.0000  30.899405

75%    18.900000   1.000000   1.000000   4.000000   4.0000  36.693043

max    22.900000   1.000000   1.000000   5.000000   8.0000  54.556762

Of course, the resulting DataFrame can be turned back into an R data frame and 
pushed back into R:

In [12]: r_df_cars = pandas2ri.py2ri(df_cars)

In [13]: %Rpush r_df_cars

In [14]: %%R

   ....: head(r_df_cars)

   ....:
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                   mpg cyl disp  hp drat    wt  qsec vs am gear carb      
kpg

Mazda RX4         21.0   6  160 110 3.90 2.620 16.46  0  1    4    4 
33.79622

Mazda RX4 Wag     21.0   6  160 110 3.90 2.875 17.02  0  1    4    4 
33.79622

Datsun 710        22.8   4  108  93 3.85 2.320 18.61  1  1    4    1 
36.69304

Hornet 4 Drive    21.4   6  258 110 3.08 3.215 19.44  1  0    3    1 
34.43996

Hornet Sportabout 18.7   8  360 175 3.15 3.440 17.02  0  0    3    2 
30.09473

Valiant           18.1   6  225 105 2.76 3.460 20.22  1  0    3    1 
29.12913

An initial graph
Now we are ready to take a stab at a first graph using ggplot2.

First we will look at the code. This being the first graph using ggplot2, descriptions 
of important lines will follow:

In [1]: %load_ext rpy2.ipython

In [2]: from rpy2.robjects import pandas2ri

In [3]: pandas2ri.activate()

In [4]: from rpy2.robjects import r

In [5]: import pandas

In [6]: from rpy2.robjects.lib import ggplot2

In [7]: df_cars = pandas2ri.ri2py(r['mtcars'])

In [8]: wt = df_cars['wt']

In [9]: mpg = df_cars['mpg']
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In [10]: type(mpg)

Out[10]: pandas.core.series.Series

In [11]: df_wtVsMpg = pandas.DataFrame()

In [12]: df_wtVsMpg['wt'] = wt

In [13]: df_wtVsMpg['mpg'] = mpg

In [14]: p = ggplot2.ggplot(df_wtVsMpg)

In [15]: type(p)

Out[15]: rpy2.robjects.lib.ggplot2.GGPlot

In [16]: p.plot()

code6.py

• Lines 2-3: These lines import and activate the new method of moving data 
to/from IPython/R. This is the preferred method since v0.16.0, at which 
point the pandas.rpy interface was deprecated and marked for removal in 
some future version.

• Line 7: This line actually imports R's mtcars data frame into a panda 
DataFrame.

• Lines 8-10: These lines illustrate the DataFrame's ability to be addressed as  
a Python dict and the type of the result.

• Lines 11-13: Here, we start out with an empty DataFrame and add columns 
dynamically.
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The resulting graph appears as follows:

r1.gif

Admittedly, this was a lot of work to end up with such a disappointing result.

Modifying the graph
Luckily, this is not all that ggplot2 can do. A small addition to the code:

In [17]: p = ggplot2.ggplot(df_wtVsMpg) \

   ....: + ggplot2.aes_string(x = 'wt', y = 'mpg')

In [18]: p.plot( )
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Results in a somewhat more satisfactory graph:

r2.gif

The difference lies in the addition of a layer consisting of an "aesthetic string":

+ ggplot2.aes_string(x = 'wt', y = 'mpg')

ggplot2 makes a distinction between the data (in this case, df_wtVsMpg) and how 
it is to be displayed. In our earlier graph, the data was present, but there was no 
information on what form the graph should take (for example, bar, line, or pie chart), 
how the data points should be represented (for example, x's or circles), or any of the 
other visual features of the graph. As such, ggplot2 just displayed a blank graph. 
With the addition of some aesthetic information—the x axis corresponds to the wt 
column and the y axis corresponds to the mpg column—ggplot2 is able to add some 
visual flair to the graph. In particular, it can label the axes, number the coordinates, 
and provide a nice little grid effect.
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This graph is also a little underwhelming in that the data is not displayed. That can 
be remedied by adding another aesthetic element, a geometric object in this case:

In [19]: p = p + ggplot2.geom_point( )

In [20]: p.plot( )

Note the use of the + to add layers to a plot. The resulting graph is a scatter plot:

r3.gif

Adding a fit is easy enough—just add another geometry aesthetic:

ggplot2.geom_smooth(method = "loess")
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And here is the resulting graph:

r4.gif

Unfortunately, there does not appear to be any way to easily remove a layer:

In [35]: p = p - ggplot2.geom_smooth(method = "loess")

------------------------------------------------------------------------
---

TypeError                                 Traceback (most recent call 
last)

<ipython-input-35-43aa876615bd> in <module>()

----> 1 p = p - ggplot2.geom_smooth(method = "loess")

TypeError: unsupported operand type(s) for -: 'GGPlot' and 'GeomSmooth'
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So, adding another geometry just adds another layer:

r5.gif

A different view
In the following example, we add a column to our previous data and show how the 
use of different aesthetic choices can produce an entirely different graph.

First, here's the code:

In [38]: df_wtVsMpg['cyl'] = df_cars['cyl']

In [39]: p2 = ggplot2.ggplot(df_wtVsMpg)
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In [40]: p2 = p2 + ggplot2.aes_string(x="mpg", fill="factor(cyl)")

In [41]: p2 = p2 + ggplot2.geom_histogram( )

In [42]: p2.plot( )

code7.py

It produces the following graph:

r6.gif

A great deal of learning to make good graphs with ggplot2 is learning the ins and 
outs of the sort of visual elements that can be added in layers.
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Python-nvd3
Python-nvd3 is a wrapper around the NVD3 library. NVD3 is itself a layer on top of 
the D3.js library. This is from the NVD3 homepage (http://nvd3.org/):

"This project is an attempt to build re-usable charts and chart components for d3.js 
without taking away the power that d3.js gives you."

Starting Python-nvd3
Python-nvd3 can be installed with the usual pip install command:

pip install python-nvd3

After this, one can check to make sure that it is available:

In [3]: import nvd3

loaded nvd3 IPython extension

run nvd3.ipynb.initialize_javascript() to set up the notebook

help(nvd3.ipynb.initialize_javascript) for options

In [4]: nvd3.__version__

Out[4]: '0.14.2'

An initial graph
The following code calls some basic Python-nvd3 libraries to produce an HTML file 
containing a graph:

In [1]: from nvd3 import scatterChart

loaded nvd3 IPython extension

run nvd3.ipynb.initialize_javascript() to set up the notebook

help(nvd3.ipynb.initialize_javascript) for options

In [2]: xs = [1, 2, 3, 4, 5]

In [3]: ys = [2, 3, 5, 7, 11]

In [4]: kwargs = {'shape': 'circle', 'size': '1'}

In [5]: chart = scatterChart(name='The first few primes', height=400, 
width=400)

http://nvd3.org/
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In [6]: chart.add_serie(name="Primes", x=xs, y=ys, **kwargs)

In [7]: output_file = open('nvd3-1.html', 'w')

In [8]: chart.buildhtml()

In [9]: output_file.write(chart.htmlcontent)

Out[9]: 1614

In [10]: output_file.close()

code8.py

When viewed in a browser, the output graph looks like this:

nvd3-1.gif
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The resulting HTML page was 4 KB.

This code deserves some further description, being our first Python-nvd3 example.

• Line 1: Python-nvd3 supports a variety of different plot types, including  
the following:

 ° cumulativeLineChart

 ° discreteBarChart

 ° lineChart

 ° lineWithFocusChart

 ° linePlusBarChart

 ° multiBarChart

 ° multiBarHorizontalChart

 ° pieChart

 ° scatterChart

 ° stackedAreaChart

• Line 4: We need to set the graphical format of the data points. This is a JSON 
object, and we follow the Python convention of using kwargs as the variable 
name for keyword arguments.

• Line 6: We add our data to the chart. The data needs a name (which will 
show up in the legend), x and y values, and the arguments we set on line 4 to 
describe the points. A chart will support an arbitrary number of data series.

• Line 7: We would like to save the output to a file, so here we open one.
• Line 8: This tells Python-nvd3 to generate the HTML for our plot. By default, 

the generated text goes into the chart's htmlcontent field. Depending on 
your output method, this text can be handled in various ways.

• Line 9: The generated HTML is written to a file.

Under construction
Python-nvd3 is definitely still under construction. Even the 
examples provided by the project do not match up with 
either the provided graphs or the output generated by the 
latest version of IPython. It is not clear whether this is sloppy 
documentation, buggy software, or just the usual cross-platform 
problems. In any case, caution is warranted as the software 
develops.
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Putting some tools together
Because Python-nvd3 is so well integrated with Python, it is easy to use data from 
other tools to generate plots. In the following code, we use pandas to grab some data 
out of R's mtcars dataframe and pass it along to Python-nvd3 for graphing:

In [2]: from nvd3 import scatterChart

loaded nvd3 IPython extension

run nvd3.ipynb.initialize_javascript() to set up the notebook

help(nvd3.ipynb.initialize_javascript) for options

In [3]: %load_ext rpy2.ipython

In [4]: from rpy2.robjects import pandas2ri

In [5]: pandas2ri.activate()

In [6]: from rpy2.robjects import r

In [7]: import pandas

In [8]: df_cars = pandas2ri.ri2py(r['mtcars'])

In [9]: wt = df_cars['wt']

In [10]: mpg = df_cars['mpg']

In [11]: kwargs = {'shape': 'circle', 'size': '1'}

In [12]: chart = scatterChart(name='Weight vs MPG', height=400, 
width=800, y_axis_scale_min='0', show_legend='False')

In [13]: chart.add_serie(name="Cars", x=wt, y=mpg, **kwargs)

In [14]: output_file = open('nvd3-2.html', 'w')

In [15]: chart.buildhtml()

In [16]: output_file.write(chart.htmlcontent)

Out[16]: 3136

In [17]: output_file.close()

code9.py
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This code produces the following graph:

nvd3-2.gif

A different type of plot
One of the benefits of having a simple interface is that it is relatively easy to try 
out different views of the data. In this example, we look at the relative numbers of 
different engine sizes:

In [1]: from nvd3 import pieChart

loaded nvd3 IPython extension

run nvd3.ipynb.initialize_javascript() to set up the notebook

help(nvd3.ipynb.initialize_javascript) for options

In [2]: %load_ext rpy2.ipython

In [3]: xs = %R sort(unique(mtcars$cyl))

In [4]: ys = %R table(mtcars$cyl)

In [5]: chart = pieChart(name="Cylinders", color_category='category10', 
height=500, width=400)
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In [6]: chart.add_serie(x=xs.tolist(), y=ys.tolist())

In [7]: output_file = open('nvd3-3.html', 'w')

In [8]: chart.buildhtml()

In [9]: output_file.write(chart.htmlcontent)

Out[9]: 1630

In [10]: output_file.close()

code10.py

The preceding code produces the following plot:

nvd3-3.gif
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While this may look like a rather basic graph:

• The individual pie slices resize and change color when hovered over
• The colored dots at the top are buttons that can be used to turn on/off 

the display of the corresponding slice (and the pie itself is recalculated 
accordingly)

Overall, plotting in Python-nvd3 requires a minimal number of lines of code, most of 
which are in Python. This makes learning to use the package easier (and this should 
improve once the documentation catches up with the development). Perhaps more 
importantly, fewer lines of code mean quicker and easier development. During 
initial data exploration, the ability to create a large volume of different visualizations 
is more important than the quality of any graph in particular. Python-nvd3 provides 
a handy tool for such a situation.

Summary
Whether the project calls for interactive visuals created at the command line for 
immediate consumption, or a more off-line approach where results are expressed as 
an image that can be viewed at leisure, there is a tool that fits the need.

The degree to which various tools are integrated with IPython varies: R uses Rmagics 
to enable a mode in which the developer is virtually running an R interpreter, while 
Plotly prefers using Python as much as possible. Development in this area is rapid, 
and it seems likely that there will be an even greater degree of interoperability 
between different tools in the future, whether supported by the tools themselves or 
by new frameworks designed for that purpose.

To a large extent, the choice of which tool to use should come down to the one that 
the developer finds the easiest to use. Many good options are free, and the use of 
IPython to generate data makes it relatively easy to switch from one tool to another 
without loss of data.

Although seeing is believing, one should not believe everything they see. In the 
next chapter, we will talk about IPython's support for testing. Every project of any 
size should have an associated test suite, and the next chapter will discuss the tools 
available to make writing and running tests easier.
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But It Worked in the  
Demo! – Testing

With the split from Jupyter went the need for specialized IPython testing tools. 
This does not reduce the need to test IPython programs, however. There are several 
testing frameworks for Python itself that fit neatly into this role. No one writes code 
expecting it to produce incorrect output, or bomb. Regardless, years of experience 
in the industry have demonstrated that good design is not enough. Programs need 
to be thoroughly tested before their results can be relied on. This is especially true 
for scientific and numeric systems, where errors can be subtle but their effects far-
reaching. No one wants to repeat the Mars Climate Orbiter fiasco.

We will look at some of the more popular frameworks and discuss some issues that 
are particular to testing in a highly parallel/HPC environment.

The following topics will be covered:

• Unit testing
• unittest
• pytest
• nose2
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Unit testing
While there are many types of testing (for example, acceptance testing, integration 
testing, and stress testing), this chapter will concentrate on unit testing. There are 
three reasons for this concentration:

1. Unit tests are more likely to be language-specific. While other test frameworks 
can treat code as a black box (for example, a GUI tester), unit tests are usually 
written using the same language as the system they are testing.

2. The day-to-day development of a system should include the writing of unit 
tests. For the audience of this book, unit tests should be the most familiar type.

3. It is the nature of most scientific and engineering code that a large amount 
of computation can occur before a comparatively simple, yet previously 
unknown, answer is produced. Unit testing is the type of testing that is most 
directly focused on the question, "Is that the right answer?"

For ease of reference, we will refer to the part of the program 
being tested as "code", and the part of the program doing the 
testing as "tests" or "test cases".

A quick introduction
A unit test is code that exercises the functionality of other code. The standard unit of 
code under test is an individual function, and so unit tests look and act like function 
calls. The primary differences between unit tests and "normal" function calls are 
that the programmer knows the desired result and the function is being tested in 
isolation, not as a part of the system as it is designed to be run. This leads to two 
important features of unit test frameworks: assertions and environmental issues.

Assertions
A function can be viewed as a machine—you feed an input and the machine 
produces an output.  The point of testing is to make sure you get the right output. 
This assumes that you know the right answer, at least for some inputs. An assertion 
is simply a statement that compares the actual answer with the known (correct) 
answer. If they match, the assertion passes. If not, it fails. A test passes only if all the 
assertions that it contains pass.

Environmental issues
When a function runs, it interacts with its environment in three phases: before it 
starts, while it is running, and after it finishes. We will outline each phase in turn.



Chapter 8

[ 223 ]

Before it starts – setup
It is often the case that a particular function requires other parts of the system to be 
available before it can even begin. The other parts of the system (functions, objects, 
and so on) might require their own initialization and so on. The process of putting 
the system in a state from which the function to be tested can be called is called the 
setup phase (or just setup). The goal of setup is to put everything the function needs 
in a well-known, repeatable state before the function starts.

While it is running – mocks
The function may need to call other elements while it is running. If these elements 
can be relied on and are deterministic, nothing needs to be done. Most likely, 
these elements are also being tested and should not be relied on. In such a case, 
equivalent elements should be created that, while not functionally equivalent, 
at least implement the same interface and return acceptable results in a reliable, 
repeatable manner. These elements are often called mocks, as in mock objects or 
mock functions.

After it finishes – teardown
A function may make permanent changes to the environment that are undesirable in 
a testing situation. For example, a function may read in one database table, transform 
the data, and write the results to another table. While it is important to test this 
entire process, it is probably not acceptable for the data to remain in the table after 
the testing has been completed. The process of undoing any undesired, permanent 
changes is called teardown.

Writing to be tested
The flip side of knowing what value a function should return is that the function 
actually should return some value. There are entire classes of functions that do not 
return values, or for which the returned value is not that useful for testing. Consider 
a function called display that accepts a character as input and renders the character 
on a monitor.

If display does not return a value, it is impossible to write an assert statement 
to test it. It can be called, but without looking at the monitor, there is no way of 
knowing whether the character was displayed. At best, one could conclude that 
calling display does not crash.
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If display does return a value, things are not much better. First off, it is not clear 
what meaningful value it could return. Maybe true for "it worked" and false for "it 
did not work"? That value can be tested at least. However, it will not resolve the 
underlying problem—perhaps, display returned true but the character was not 
actually displayed.

The takeaway from this short digression is that testing works better when the code 
to be tested is written in such a way as to make writing meaningful tests easier. The 
techniques for doing so can fill an entire book (and they have). Luckily, scientific and 
engineering code, with its emphasis on mathematical modeling, tends to naturally 
break down into testable functions.

unittest
unittest is the built-in (since version 2.1) testing framework for Python. It is modelled 
after the excellent JUnit framework for Java, and the xUnit testing frameworks in 
general. This makes for a clean, object-oriented style.

Important concepts
unittest supports the standard unit testing parts in a straightforward manner. The 
following concepts map onto functional elements:

• Test case: This is an individual test or group of tests. All tests in a test case 
belong to the same class and share a fixture.

• Test fixture: The functions required to do setUp and tearDown for all the test 
cases in a class.

• Test suite: This is a collection of test cases. Test cases in a test suite are meant 
to be run together.

• Test runner: This is a component that runs test suites and reports the results 
to the user.

Let's take a closer look at some code from earlier as an example:

def f(n):
    curr = n
    tmp = 1
    while curr != 1:
        tmp = tmp + 1
        if curr % 2 == 1:
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            curr = 3 * curr + 1
        else:
            curr = curr/2
    return tmp

hail1.py

This code accepts an integer as input, computes the corresponding hailstone 
sequence, and returns the length of that sequence. We would like to test this code to 
make sure that it gives the correct values. In this case, the values are known for up to 
very large values of n. Our source is sequence A006577 in The On-Line Encyclopedia of 
Integer Sequences (https://oeis.org/A006577). We will be satisfied with checking 
the values for 0 < n < 11:

import unittest
from hail1 import f

class TestHailStones(unittest.TestCase):

    def test_f(self):
        ans = [-1, 0, 1, 7, 2, 5, 8, 16, 3, 19, 6]
        for i in range(1, 11):
            print(i)
            self.assertEqual(f(i), ans[i])

if __name__ == '__main__':
    unittest.main()

test1.py

This code has some interesting features:

• Line 1: The unittest module must be imported, but it is standard.
• Line 4: All test cases inherit from the unittest.TestCase class.
• Line 6: Each test gets its own method. The method takes no parameters and 

produces no return value. It should start with test.
• Line 7: Lists start at 0, but the hailstone sequences start at 1, so a dummy 

value sits in slot 0.
• Line 10: This is an instance of an assert statement. In this case, the assert 

will pass if f(i) == ans[i], and will fail otherwise.

https://oeis.org/A006577
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The TestCase class provides a great number of assert statements. The following  
are popular:

Assertion Test
assertEqual(x, y) x == y

assertNotEqual(x, y) x != y

assertTrue(x) bool(x) is True

assertFalse(x) bool(x) is False

assertIs(x, y) x is y

assertIsNot(x, y) x is not y

assertIsNone(x) x is None

assertIsNotNone(x) x is not None

assertIsIn(x, y) x is in y

assertIsNotIn(x, y) x is not in y

assertIsInstance(x, y) isinstance(x, y)

assertIsNotInstance(x, y) not isinstance(x, y)

assertIsNot(x, y) x is not y

More can be found at https://docs.python.org/3.5/library/unittest.html.

Running the test in verbose mode from the IPython command line results in the 
following output:

In [2]: %run test1.py -v

test_f (__main__.TestHailStones) ... 1

FAIL

======================================================================

FAIL: test_f (__main__.TestHailStones)

----------------------------------------------------------------------

Traceback (most recent call last):

  File "/nfs/02/wit0096/Packt/chap08/test1.py", line 10, in test_f

    self.assertEqual(f(i), ans[i])

AssertionError: 1 != 0

----------------------------------------------------------------------

Ran 1 test in 0.001s

FAILED (failures=1)

https://docs.python.org/3.5/library/unittest.html
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An exception has occurred, use %tb to see the full traceback.

SystemExit: True

The assert statement has failed. There must be a bug here. A quick look at the 
output shows that the print statement has printed out 1 (there are better ways of 
finding out which loop iteration failed, but this is simple and will work for now), so 
it must have failed for f(1).

If more information is needed, the %tb magic will provide it:

In [3]: %tb

------------------------------------------------------------------------
---

SystemExit                                Traceback (most recent call 
last)

/nfs/02/kmanalo/envs/my_rpy2_zone/lib/python3.4/site-packages/IPython/
utils/py3compat.py in execfile(fname, glob, loc, compiler)

    181         with open(fname, 'rb') as f:

    182             compiler = compiler or compile

--> 183             exec(compiler(f.read(), fname, 'exec'), glob, loc)

    184 

    185     # Refactor print statements in doctests.

/nfs/02/wit0096/Packt/chap08/test1.py in <module>()

     11 

     12 if __name__ == '__main__':

---> 13     unittest.main()

/nfs/02/kmanalo/envs/my_rpy2_zone/lib/python3.4/unittest/main.py in __
init__(self, module, defaultTest, argv, testRunner, testLoader, exit, 
verbosity, failfast, catchbreak, buffer, warnings)

     91         self.progName = os.path.basename(argv[0])

     92         self.parseArgs(argv)

---> 93         self.runTests()

     94 

     95     def usageExit(self, msg=None):

/nfs/02/kmanalo/envs/my_rpy2_zone/lib/python3.4/unittest/main.py in 
runTests(self)
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    244         self.result = testRunner.run(self.test)

    245         if self.exit:

--> 246             sys.exit(not self.result.wasSuccessful())

    247 

    248 main = TestProgram

SystemExit: True

In this case, it's not that interesting, but the information is there if needed.

A small fix should remedy this problem:

def f(n):
    curr = n
    tmp = 0
    while curr != 1:
        tmp = tmp + 1
        if curr % 2 == 1:
            curr = 3 * curr + 1
        else:
            curr = curr/2
    return tmp

hail2.py

Along with a corresponding change to the test (normally, one would just change the 
original source, but this is clearer for instructional purposes):

import unittest
from hail2 import f

class TestHailStones(unittest.TestCase):

    def test_f(self):
        ans = [0, 0, 1, 7, 2, 5, 8, 16, 3, 19, 6]
        for i in range(1, 11):
            print(i)
            self.assertEqual(f(i), ans[i])

if __name__ == '__main__':
    unittest.main()

test2.py
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Now, running the test shows that everything works as expected:

In [4]: %run test2.py -v

test_f (__main__.TestHailStones) ... 1

2

3

4

5

6

7

8

9

10

ok

----------------------------------------------------------------------

Ran 1 test in 0.001s

OK

A test using setUp and tearDown
The previous test was straightforward—just include the right file and call the 
function to be tested. The function in question has no state, so there was nothing to 
set up or tear down. In this section, we will build a slightly more sophisticated test in 
which the tests and function require some initialization before they can be invoked, 
and need to be cleaned up afterward.

The example we will look at concerns random numbers. The class being tested is a 
simple iterative random number generator using the following formula:

This is admittedly not the greatest random number generator. It is not completely 
terrible, however, depending on the choice of x, p1, p2, and N.  It does have the 
advantage of being simple and easy to test. The code is as follows:

class MyRand(object):

    def set(self, p1, p2, x0, modulus):
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        self.__p1 = p1
        self.__p2 = p2
        self.__x = x0
        self.__modulus = modulus

    def next(self):
        self.__x = (self.__p1 * self.__x + self.__p2) %  
self.__modulus
        return self.__x

    def reset(self):
        self.__p1 = 2
        self.__p2 = 2
        self.__x = 2
        self.__modulus = 2

myrand.py

Our next test class is more elaborate than the previous one. We will apply a simple 
test: is the least significant digit of the "random" number evenly distributed over [0, 
9]? Any generator failing this test would certainly fail more difficult tests, such as 
those in the Diehard Battery (found at http://stat.fsu.edu/pub/diehard/).  
The code is as follows:

import unittest
import numpy as np
import myrand
import scipy.stats
import sys
import random

class TestRandoms(unittest.TestCase):

    def setUp(self):
        print("Doing setUp")
        self.numVals = 10000
        self.vals = np.zeros((10), dtype=np.int32)
        self.randGen = myrand.MyRand( )

    def test_bad(self):
        print("Doing test_bad")
        x0 = 15
        p1 = 50
        p2 = 100
        modulus = 2217

http://stat.fsu.edu/pub/diehard/
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        self.randGen.set(p1, p2, x0, modulus)
        for i in range(self.numVals):
            tmp = self.randGen.next( )
            tmp = tmp % 10
            self.vals[tmp] = self.vals[tmp] + 1

        chi2, p = scipy.stats.chisquare(self.vals)
        self.assertLess(p, 0.05)

    def test_better(self):
        print("Doing test_better")
        x0 = 79
        p1 = 263
        p2 = 71
        modulus = sys.maxsize
        self.randGen.set(p1, p2, x0, modulus)
        for i in range(self.numVals):
            tmp = self.randGen.next( )
            tmp = tmp % 10
            self.vals[tmp] = self.vals[tmp] + 1

        chi2, p = scipy.stats.chisquare(self.vals)
        self.assertGreater(p, 0.05)

    def test_builtin(self):
        print("Doing test_builtin")
        for i in range(self.numVals):
            tmp = random.randint(0, 9)
            self.vals[tmp] = self.vals[tmp] + 1

        chi2, p = scipy.stats.chisquare(self.vals)
        self.assertGreater(p, 0.05)

    def tearDown(self):
        print("Doing tearDown")
        self.randGen.reset( )

if __name__ == '__main__':
    unittest.main()

testrand.py



But It Worked in the Demo! – Testing

[ 232 ]

The output is simple:

In [1]: %run testrand.py

Doing setUp

Doing test_bad

Doing tearDown

.Doing setUp

Doing test_better

Doing tearDown

.Doing setUp

Doing test_builtin

Doing tearDown

.

----------------------------------------------------------------------

Ran 3 tests in 0.172s

OK

The code itself contains some interesting features:

• Line 10: This overrides the setup method from unittest.TestCase. The 
setup function is run once before every test.

• Line 11: The print statements are included, so the output will show when 
setUp, the tests, and tearDown are executed. A production test suite would 
not include them.

• Lines 12-14: These lines contain the initialization functionality. The types of 
things found here are typical of a test run: constants, data structures to hold 
results, and object creation. While constants should generally be created 
only once per run (rather than before every test), that would complicate the 
example at this point.

• Line 16: Our first test uses some poor parameter choices for the random 
number generator. As such, when we apply a chi-squared test, the pvalue is 
too low to be acceptable.

• Line 29: Because we expect a poor result, we test for it.

Note that if the line were changed to this:

self.assertGreater(p, 0.05)
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The output would change to the following:

In [2]: %run testrand.py

Doing setUp

Doing test_bad

Doing tearDown

Doing setUp

Doing test_better

Doing tearDown

.Doing setUp

Doing test_builtin

Doing tearDown

.

======================================================================

FAIL: test_bad (__main__.TestRandoms)

----------------------------------------------------------------------

Traceback (most recent call last):

  File "/nfs/02/wit0096/Packt/chap08/testrand.py", line 29, in test_bad

    self.assertGreater(p, 0.05)

AssertionError: 3.5277031043732684e-204 not greater than 0.05

----------------------------------------------------------------------

Ran 3 tests in 0.171s

FAILED (failures=1)

An exception has occurred, use %tb to see the full traceback.

SystemExit: True

There are some things worth pointing out about the program overall:

• The code contains several tests. There is no need to label the tests as such, as 
unittest assumes that every function starting with test is a test and will run 
it as such.
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• The tests are run in alphabetical order regardless of their order in the 
source file. The official page at https://docs.python.org/3.5/library/
unittest.html states:

"The order in which the various tests will be run is determined by 
sorting the test method names with respect to the built-in ordering 
for strings."

One-time setUp and tearDown
unittest includes the ability for testers to specify unique functions that execute 
only once each at the beginning and the end of the lifetime of a testing class, as 
opposed to before and after every test. These methods must be named setUpClass 
and tearDownClass and must be implemented as class methods. For example, to 
initialize the numVals variable just once:

import unittest
import numpy as np
import myrand
import scipy.stats
import sys
import random

class TestRandoms(unittest.TestCase):

    @classmethod
    def setUpClass(cls):
        print("Doing setUpClass")
        cls.numVals = 10000

    def setUp(self):
        print("Doing setUp")
        self.vals = np.zeros((10), dtype=np.int32)
        self.randGen = myrand.MyRand( )

    def test_bad(self):
        print("Doing test_bad")
        x0 = 15
        p1 = 50
        p2 = 100
        modulus = 2217
        self.randGen.set(p1, p2, x0, modulus)
        for i in range(TestRandoms.numVals):
            tmp = self.randGen.next( )
            tmp = tmp % 10

https://docs.python.org/3.5/library/unittest.html
https://docs.python.org/3.5/library/unittest.html
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            self.vals[tmp] = self.vals[tmp] + 1

        chi2, p = scipy.stats.chisquare(self.vals)
        self.assertLess(p, 0.05)

    def test_better(self):
        print("Doing test_better")
        x0 = 79
        p1 = 263
        p2 = 71
        modulus = sys.maxsize
        self.randGen.set(p1, p2, x0, modulus)
        for i in range(TestRandoms.numVals):
            tmp = self.randGen.next( )
            tmp = tmp % 10
            self.vals[tmp] = self.vals[tmp] + 1

        chi2, p = scipy.stats.chisquare(self.vals)
        self.assertGreater(p, 0.05)

    def test_builtin(self):
        print("Doing test_builtin")
        for i in range(TestRandoms.numVals):
            tmp = random.randint(0, 9)
            self.vals[tmp] = self.vals[tmp] + 1

        chi2, p = scipy.stats.chisquare(self.vals)
        self.assertGreater(p, 0.05)

    def tearDown(self):
        print("Doing tearDown")
        self.randGen.reset( )

if __name__ == '__main__':
    unittest.main()

This generates the following output:

In [1]: %run testrand2.py

Doing setUpClass

Doing setUp

Doing test_bad
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Doing tearDown

.Doing setUp

Doing test_better

Doing tearDown

.Doing setUp

Doing test_builtin

Doing tearDown

.

----------------------------------------------------------------------

Ran 3 tests in 0.227s

OK

Decorators
It was somewhat awkward to use assertLess for one test and assertGreater 
for other tests. This is the sort of small inconsistency that can easily be overlooked, 
leading to bigger problems later on. Even worse, it might be caught and "corrected" 
only for that correction to cause the test to fail and lead to a lot of confused standing 
around as to why it was written that way in the first place.

This sort of thing happens all the time, especially when tests are not written  
before code.

Test-driven development
Test-driven development (TDD) is a software development process in 
which tests are written before code. This process allows them to be used 
as an automated means by which code can be checked against (at least 
some of) the requirements. The tests can also be used to ensure that future 
changes to the code do not break any already existing functionality.

In theory, all tests should be run and passed before the code is accepted. This is 
not always practical. To this end, unittest provides decorators to allow the tester to 
explicitly mark failing and skipped tests.

For example, our previous test can be decorated as follows:

@unittest.expectedFailure
def test_bad(self):
        print("Doing test_bad")
        x0 = 15
        p1 = 50
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        p2 = 100
        modulus = 2217
        self.randGen.set(p1, p2, x0, modulus)
        for i in range(TestRandoms.numVals):
            tmp = self.randGen.next( )
            tmp = tmp % 10
            self.vals[tmp] = self.vals[tmp] + 1

        chi2, p = scipy.stats.chisquare(self.vals)
        self.assertGreater(p, 0.05)

This will result in all the tests passing, remove the inconsistency, and alert anyone 
examining the tests that we expect that test case to fail the same randomness test we 
expect the other test cases to pass.

The unittest framework provides several decorators of this sort:

Decorator Description
skip(reason) Skip this test because reason
skipIf(cond, reason) Skip this test if cond is true
skipUnless(cond, reason) Skip this test if cond is false
expectedFailure If the test fails, it passes (and vice versa)

pytest
pytest is a unit testing framework that attempts to be more "Pythonic." An important 
goal of it was to minimize the amount of additional code that had to be written in 
unittest in order to make tests run. pytest has often been described as "no-boilerplate" 
testing due to its minimal setup requirements. The home page for the project can be 
found at https://pytest.org/latest/index.html.

Installation
pytest can be installed using pip:

pip install pytest

One can test the installation as follows:

(my_rpy2_zone)-bash-4.1$ py.test --version

This is pytest version 2.8.7, imported from …

https://pytest.org/latest/index.html
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It is easy to invoke from the command line:

(my_rpy2_zone)-bash-4.1$ py.test

================================================= test session starts ===
===============================================

platform linux -- Python 3.4.4, pytest-2.8.7, py-1.4.31, pluggy-0.3.1

rootdir: …/chap08, inifile: 

collected 0 items 

============================================= no tests ran in 0.03 
seconds =============================================

pytest will attempt to auto-locate tests according to rules that will be covered in a 
later section. In this case, none were found.

Back compatibility
It seems a shame to throw out all the work that was done on the tests from the 
previous sections. pytest will look for tests in files of the form test_*.py (and *_
test.py). The laziest thing possible would be to just copy test1.py into test_1.py 
and see what happens:

(my_rpy2_zone)-bash-4.1$ cp test1.py test_1.py

(my_rpy2_zone)-bash-4.1$ py.test

================================================= test session starts ===
===============================================

platform linux -- Python 3.4.4, pytest-2.8.7, py-1.4.31, pluggy-0.3.1

rootdir: …/chap08, inifile:

collected 1 items

test_1.py F

======================================================= FAILURES ========
===============================================

________________________________________________ TestHailStones.test_f __
_______________________________________________

self = <test_1.TestHailStones testMethod=test_f>

    def test_f(self):
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        ans = [0, 0, 1, 7, 2, 5, 8, 16, 3, 19, 6]

        for i in range(1, 11):

            print(i)

>           self.assertEqual(f(i), ans[i])

E           AssertionError: 1 != 0

test_1.py:10: AssertionError

------------------------------------------------- Captured stdout call 
-------------------------------------------------

1

=============================================== 1 failed in 0.14 seconds 
===============================================

That was pretty neat. It automatically detected and was able to run a test suite that 
was written for unittest. But there is no guarantee that this will always work. The 
website at http://pytest.org/latest/unittest.html states:

"pytest has support for running Python unittest.py style tests. It's meant for 
leveraging existing unittest-style projects to use pytest features. Concretely, pytest 
will automatically collect unittest.TestCase subclasses and their test methods in 
test files. It will invoke typical setup/teardown methods and generally try to make 
test suites written to run on unittest, to also run using pytest. We assume here 
that you are familiar with writing unittest.TestCase style tests and rather focus on 
integration aspects."

There are also tools such as unittest2pytest to help convert older tests over. There is 
no requirement that your project do so—unittest is a perfectly fine framework, likely 
to be supported for the indefinite future—but at least changing frameworks will not 
cause a massive loss of effort.

Test discovery
Because pytest does not require tests to be in classes that inherit from unittest.
TestCase, it requires a more sophisticated approach to determining what 
is a test and what is not. It is hard to go wrong by putting all tests in files 
named test_<something>.py and naming the test functions themselves as 
test_<function to be tested>. The official rules (from http://pytest.org/
latest/goodpractices.html#test-discovery) are a bit more complex:

• If no arguments are specified, then collection starts from testpaths (if 
configured) or the current directory. Alternatively, command-line arguments 
can be used in any combination of directories, filenames, or node IDs.

http://pytest.org/latest/unittest.html
http://pytest.org/latest/goodpractices.html#test-discovery
http://pytest.org/latest/goodpractices.html#test-discovery
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• recurse into directories, unless they match norecursedirs.
• test_*.py or *_test.py files, imported by their test package name.
• Test prefixed test classes (without an __init__ method).
• test_ prefixed test functions or methods are test items.

Organizing test files
pytest allows test functions to be included in the same file as the functions to be 
tested. This has some advantages in that it makes it more likely that tests will be 
updated when functionality is, and makes the tests easy to find.

However, this is not a good idea for any but the smallest project, for several reasons:

• A good test suite can be several times the size of the code to be tested. 
Putting both in the same place obscures the code.

• It is often the case that different groups develop tests and code. Using 
different files makes for easier version control.

• Tests should not depend on how code is written, nor should code depend 
on how tests are structured. The easiest way to ensure this is to keep them 
completely separate.

When tests are no longer in the same file as code, it is important to keep them 
somewhere easy to find and associate with the code they test. A parallel directory 
structure is an easy way to achieve this:

pkg/
    __init__.py
    prog1.py
    …
tests/
    test_prog1.py
    …

Note the lack of an __init.py__ file in the tests directory. This provides an easier 
time for one of the test discovery rules listed previously. There is no requirement in 
pytest that things be mirrored this exactly; it is just a useful heuristic.
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Assertions
pytest uses the assert statement found in Python. This obviates the need to remember 
all the different assert* methods from unittest. Consider the difference in 
readability between this:

self.assertEqual(f(i), ans[i])

And this line of code:

assert f(i) == ans[i]

In general, pytest tests are smaller in terms of lines of code. The test2.py test file 
can be rewritten under pytest as follows:

from hail2 import f

class TestHailStones():

    def test_f(self):
        ans = [0, 0, 1, 7, 2, 5, 8, 16, 3, 19, 6]
        for i in range(1, 11):
            print(i)
            assert f(i) == ans[i]

test_2.py

Here is the result:

In [2]: !py.test test_2.py

================================================= test session starts ===
===============================================

platform linux -- Python 3.4.4, pytest-2.8.7, py-1.4.31, pluggy-0.3.1

rootdir: /nfs/02/wit0096/Packt/chap08, inifile:

collected 1 items

test_2.py .

=============================================== 1 passed in 0.02 seconds 
===============================================

Even the results can be abbreviated with the –q command-line argument:

In [3]: !py.test -q test_2.py

.

1 passed in 0.01 seconds
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A test using setUp and tearDown
unittest depends on overloading the setUp and tearDown functions from its parent 
class. As pytest drops the parent class, it needs a different mechanism. In fact, it has 
two: a classic xUnit-style and one using fixtures.

Classic xUnit-style
The following methods are provided to do setup and teardown:

Method Effect
setup_method(self, method) Called before every test method in a class
teardown_method(self, method) Called after every test method in a class
setup_function(function) Called before every test method in a 

module
teardown_function(function) Called after every test method in a module

This makes rewriting our first random number test a breeze:

import numpy as np
import myrand
import scipy.stats
import sys
import random

class TestRandoms( ):

    def setup_method(self, mthd):
        print("Doing setUp")
        self.numVals = 10000
        self.vals = np.zeros((10), dtype=np.int32)
        self.randGen = myrand.MyRand( )

    def test_bad(self):
        print("Doing test_bad")
        x0 = 15
        p1 = 50
        p2 = 100
        modulus = 2217
        self.randGen.set(p1, p2, x0, modulus)
        for i in range(self.numVals):
            tmp = self.randGen.next( )
            tmp = tmp % 10
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            self.vals[tmp] = self.vals[tmp] + 1

        chi2, p = scipy.stats.chisquare(self.vals)
        assert p > 0.05

    def test_better(self):
        print("Doing test_better")
        x0 = 79
        p1 = 263
        p2 = 71
        modulus = sys.maxsize
        self.randGen.set(p1, p2, x0, modulus)
        for i in range(self.numVals):
            tmp = self.randGen.next( )
            tmp = tmp % 10
            self.vals[tmp] = self.vals[tmp] + 1

        chi2, p = scipy.stats.chisquare(self.vals)
        assert p > 0.05

    def test_builtin(self):
        print("Doing test_builtin")
        for i in range(self.numVals):
            tmp = random.randint(0, 9)
            self.vals[tmp] = self.vals[tmp] + 1

        chi2, p = scipy.stats.chisquare(self.vals)
        assert p > 0.05

    def teardown_method(self, mthd):
        print("Doing tearDown")
        self.randGen.reset( )

testrand_1.py

Here is the expected result:

In [7]: !py.test testrand_1.py

================================================= test session starts ===
===============================================

platform linux -- Python 3.4.4, pytest-2.8.7, py-1.4.31, pluggy-0.3.1

rootdir: /nfs/02/wit0096/Packt/chap08, inifile:
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collected 3 items 

testrand_1.py F..

======================================================= FAILURES ========
===============================================

_________________________________________________ TestRandoms.test_bad __
_______________________________________________

self = <testrand_1.TestRandoms object at 0x2b6610db1b38>

    def test_bad(self):

        print("Doing test_bad")

        x0 = 15

        p1 = 50

        p2 = 100

        modulus = 2217

        self.randGen.set(p1, p2, x0, modulus)

        for i in range(self.numVals):

            tmp = self.randGen.next( )

            tmp = tmp % 10

            self.vals[tmp] = self.vals[tmp] + 1

        chi2, p = scipy.stats.chisquare(self.vals)

>       assert p > 0.05

E       assert 3.5277031043732684e-204 > 0.05

testrand_1.py:28: AssertionError

------------------------------------------------ Captured stdout setup 
-------------------------------------------------

Doing setUp

------------------------------------------------- Captured stdout call 
-------------------------------------------------

Doing test_bad

========================================== 1 failed, 2 passed in 1.16 
seconds ==========================================
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Being verbose
More information can be obtained by running pytest in verbose mode:

In [8]: !python -m pytest -v testrand_1.py

================================================= test session starts ===
===============================================

platform linux -- Python 3.4.4, pytest-2.8.7, py-1.4.31, pluggy-0.3.1 -- 
/nfs/02/wit0096/envs/my_rpy2_zone/bin/python

cachedir: .cache

rootdir: /nfs/02/wit0096/Packt/chap08, inifile:

collected 3 items

testrand_1.py::TestRandoms::test_bad FAILED

testrand_1.py::TestRandoms::test_better PASSED

testrand_1.py::TestRandoms::test_builtin PASSED

======================================================= FAILURES ========
===============================================

_________________________________________________ TestRandoms.test_bad __
_______________________________________________

self = <testrand_1.TestRandoms object at 0x2ab6155f8e80>

    def test_bad(self):

        print("Doing test_bad")

        x0 = 15

        p1 = 50

        p2 = 100

        modulus = 2217

        self.randGen.set(p1, p2, x0, modulus)

        for i in range(self.numVals):

            tmp = self.randGen.next( )

            tmp = tmp % 10

            self.vals[tmp] = self.vals[tmp] + 1

        chi2, p = scipy.stats.chisquare(self.vals)

>       assert p > 0.05
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E       assert 3.5277031043732684e-204 > 0.05

testrand_1.py:28: AssertionError

------------------------------------------------ Captured stdout setup 
-------------------------------------------------

Doing setUp

------------------------------------------------- Captured stdout call 
-------------------------------------------------

Doing test_bad

========================================== 1 failed, 2 passed in 0.82 
seconds ==========================================

Using fixtures
A function can be decorated as a pytest fixture. This fixture decoration can take a 
"scope" argument that specifies when the fixture should be called:

Scope Effect
session The function is executed once, at the beginning of the session
module The function is executed once, at the beginning of the module
class The function is executed once, at the beginning of the class
function The function is executed before every test case

Our second random number testing class can then be rewritten as follows:

import numpy as np
import myrand
import scipy.stats
import sys
import random
import pytest

class TestRandoms( ):

    @classmethod
    @pytest.fixture(scope="class")
    def setUpClass(cls):
        print("Doing setUpClass")
        cls.numVals = 10000

    @pytest.fixture(scope="function")
    def setUp(self, request):
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        print("Doing setUp")
        self.vals = np.zeros((10), dtype=np.int32)
        self.randGen = myrand.MyRand( )
        self.numVals = 10000
        def tearDown(self):
            print("Doing tearDown")
            self.randGen.reset( )
        request.addfinalizer(tearDown)

    def test_bad(self, setUp, setUpClass):
        print("Doing test_bad")
        x0 = 15
        p1 = 50
        p2 = 100
        modulus = 2217
        self.randGen.set(p1, p2, x0, modulus)
        for i in range(self.numVals):
            tmp = self.randGen.next( )
            tmp = tmp % 10
            self.vals[tmp] = self.vals[tmp] + 1

        chi2, p = scipy.stats.chisquare(self.vals)
        assert p < 0.05

    def test_better(self, setUp, setUpClass):
        print("Doing test_better")
        x0 = 79
        p1 = 263
        p2 = 71
        modulus = sys.maxsize
        self.randGen.set(p1, p2, x0, modulus)
        for i in range(self.numVals):
            tmp = self.randGen.next( )
            tmp = tmp % 10
            self.vals[tmp] = self.vals[tmp] + 1

        chi2, p = scipy.stats.chisquare(self.vals)
        assert p > 0.05

    def test_builtin(self, setUp, setUpClass):
        print("Doing test_builtin")
        for i in range(self.numVals):
            tmp = random.randint(0, 9)
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            self.vals[tmp] = self.vals[tmp] + 1

        chi2, p = scipy.stats.chisquare(self.vals)
        assert p > 0.05

testrand2.py

With appropriate editing (the addfinalizer line must be removed—in my 
environment, it produced a Python INTERNALERROR), it runs and produces the 
following output:

In [27]: !py.test -s testrand_2.py

================================================= test session starts ===
===============================================

platform linux -- Python 3.4.4, pytest-2.8.7, py-1.4.31, pluggy-0.3.1

rootdir: /nfs/02/wit0096/Packt/chap08, inifile:

collected 3 items

testrand_2.py Doing setUpClass

Doing setUp

Doing test_bad

.Doing setUp

Doing test_better

.Doing setUp

Doing test_builtin

This code contains some interesting features:

• Line 6: The use of the pytest decorators requires importing the pytest module.
• Line 11: This is a fixture decorator. The scope is class, so it will be called 

only once for this class, before any of the tests are run. This is reflected in  
the output.

• Line 16: This fixture decorator has the function scope, and marks this 
function as one that should be run before every test function.

• Line 22: This is the definition of the tearDown function.
• Line 25: Here, the tearDown function is added to the request object as its 

finalizer. This will cause it to be called after the test has run.

Fixtures are even more flexible than this example can show. In particular, the various 
fixtures can be listed as parameters to only those functions that actually need them to 
run. It would be possible to define multiple fixtures, and each test case would use a 
different subset based on its requirements.
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In addition, a fixture can have a return value that the test case can use. In the 
previous example, rather than setting fields in self, the setup could have created a 
new object with the appropriate values set as fields within it. This can help avoid 
namespace pollution.

There are too many decorators to cover in their entirety.

Skipping and failing
Decorators are also useful when a test should be skipped or is expected to fail.

The decorator for a test that should be unconditionally skipped is as follows:

@pytest.mark.skip(reason="…")

If the test should be conditionally skipped, the decorator is as follows:

@pytest.mark.skipif(<condition>, reason="…")

If the function is expected to fail, the decorator is as follows:

@pytest.mark.xfail

Monkeypatching
There are times when one wants to change the return value of a piece of code 
outside of the project's control. For example, an already existing test suite might 
always write its logs to a subdirectory of the current directory, but new guidelines 
require it to be written to the appropriate subdirectory of "/test". The current tests 
use os.getcwd() to obtain the current directory, from which the full path to the 
log file is created. One could always rewrite all the tests, but that would be a time-
consuming and error-prone process, and would break in a few months when the 
logging policy changes again. The best fix would be to fool the already existing tests 
into thinking that the current directory was "/test", and leave them unchanged. 
There are only two problems:

• You do not have access to os.getcwd, nor can you change the old tests to use 
a different module

• Even if you could, other tests need an accurate return value from os.getcwd
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The solution is to monkeypatch os.getcwd. A monkeypatch can set or delete the 
following:

• An attribute
• A dictionary item
• An environment variable
• Items in sys.path

The monkeypatch is used in a manner similar to a decorator object, except that  
the monkeypatch object is not explicitly declared; only its functions are called.  
Once a function that uses monkeypatch has ended, the settings obtained before  
it are invoked. Consider the following test (pseudo)code:

def test_func1( ):
    logdir = os.getcwd( ) + "/func1/loadtests"
    logfile = open(logdir + "/results1.log", "w")
    <do test things>
    logfile.close( )

This can be monkeypatched as follows:

@pytest.fixture(scope="function")
def change_cwd(monkeypatch):
    monkeypatch.setattr("os.getcwd", lambda: "/")

def test_func1(change_cwd):
    logdir = os.getcwd( ) + "/func1/loadtests"
    logfile = open(logdir + "/results1.log", "w")
    <do test things>
    logfile.close( )

The change_cwd function will tell monkeypatch to change the os.getcwd function 
into the lambda expression that is monkeypatch's second argument. Feeding 
change_cwd into test_func1 ensures that the monkeypatch call is executed.  
Other test functions that do not require this modification to os.getcwd will  
simply not use change_cwd and will see normal functionality.
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A monkeypatch is similar to the concept of a mock object. A mock object is a user-
defined object that exposes the same interface as a different object but has a much 
simpler implementation. For example, when testing a function that reads data from a 
production database, it is usually undesirable to use actual production data. Instead, 
a stable set of test data should be used for every run to ensure that comparisons 
between runs are possible. In this case, a mock database object would be constructed. 
It would support (a subset of) the database operations, yet return the test data rather 
than connecting to the database servers and retrieving live data. A monkeypatch 
performs a similar function in that it replaces a fully functional value/function/
object with a simplified implementation for testing.

nose2
The nose test framework started as a clone of pytest when pytest was at version 0.8. 
Its tagline is "nose extends unittest to make testing easier" (found at http://nose.
readthedocs.org/en/latest/). All good things must come to an end, however; 
nose is currently in maintenance mode and it has been for several years.

As unittest only works on versions of Python 2.7 and greater, unittest2 was created 
as a backport for earlier versions. In addition to unittest's functionality, it also 
includes an improved API and better assertions. In effect, unittest2 is not only a 
backport but also a revision of unittest.

The changes to unittest were important enough that the successor to nose—
imaginatively named nose2—was based on the unittest2 plugins branch. From the 
home page:

nose2 is the next generation of nicer testing for Python, based on the plugins 
branch of unittest2. nose2 aims to improve on nose by:

Providing a better plugin API

Being easier for users to configure

Simplifying internal interfaces and processes

Supporting Python 2 and 3 from the same codebase, without translation

http://nose.readthedocs.org/en/latest/
http://nose.readthedocs.org/en/latest/
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Installation
nose2 can be installed using pip:

pip install nose2

One can test the installation by invoking the help functionality as follows:

(my_rpy2_zone)-bash-4.1$ python -m nose2 -h

usage: nose2 [-s START_DIR] [-t TOP_LEVEL_DIRECTORY] [--config [CONFIG]]

             [--no-user-config] [--no-plugins] [--plugin PLUGINS]

             [--exclude-plugin EXCLUDE_PLUGINS] [--verbose] [--quiet]

             [--log-level LOG_LEVEL] [-D] [--log-capture] [-F] [-B]

             [--coverage PATH] [--coverage-report TYPE]

             [--coverage-config FILE] [-C] [-h]

             [testNames [testNames ...]]

<more help>

It is easy to invoke from the command line using either Python –m, as shown 
previously, or the included nose2 script:

(my_rpy2_zone)-bash-4.1$ ./.local/bin/nose2

----------------------------------------------------------------------

Ran 0 tests in 0.000s

OK

nose2 will attempt to auto-detect tests using rules that will be discussed in a  
later section.

Back compatibility
It seems a shame to throw out all the work that was done on the tests from the 
previous sections. nose2 will try to run the tests written in unittest and pytest.  
The tests written in unittest run as expected. The pytest tests fail in spectacular  
and inscrutable ways:

(my_rpy2_zone)-bash-4.1$ ~/.local/bin/nose2 -v testrand_2

Doing setUpClass

testrand_2.TestRandoms.test_bad ... ERROR

Doing setUpClass
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testrand_2.TestRandoms.test_better ... ERROR

Doing setUpClass

testrand_2.TestRandoms.test_builtin ... ERROR

======================================================================

ERROR: testrand_2.TestRandoms.test_bad

----------------------------------------------------------------------

Traceback (most recent call last):

  File "/nfs/02/kmanalo/envs/my_rpy2_zone/lib/python3.4/unittest/case.
py", line 58, in testPartExecutor

    yield

  File "/nfs/02/kmanalo/envs/my_rpy2_zone/lib/python3.4/unittest/case.
py", line 576, in run

    self.setUp()

  File "/nfs/02/wit0096/.local/lib/python3.4/site-packages/nose2/plugins/
loader/testclasses.py", line 210, in setUp

    self.obj.setUp()

TypeError: setUp() missing 2 required positional arguments: 'request' and 
'setUpClass'

======================================================================

ERROR: testrand_2.TestRandoms.test_better

----------------------------------------------------------------------

Traceback (most recent call last):

  File "/nfs/02/kmanalo/envs/my_rpy2_zone/lib/python3.4/unittest/case.
py", line 58, in testPartExecutor

    yield

  File "/nfs/02/kmanalo/envs/my_rpy2_zone/lib/python3.4/unittest/case.
py", line 576, in run

    self.setUp()

  File "/nfs/02/wit0096/.local/lib/python3.4/site-packages/nose2/plugins/
loader/testclasses.py", line 210, in setUp

    self.obj.setUp()

TypeError: setUp() missing 2 required positional arguments: 'request' and 
'setUpClass'

======================================================================

ERROR: testrand_2.TestRandoms.test_builtin
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----------------------------------------------------------------------

Traceback (most recent call last):

  File "/nfs/02/kmanalo/envs/my_rpy2_zone/lib/python3.4/unittest/case.
py", line 58, in testPartExecutor

    yield

  File "/nfs/02/kmanalo/envs/my_rpy2_zone/lib/python3.4/unittest/case.
py", line 576, in run

    self.setUp()

  File "/nfs/02/wit0096/.local/lib/python3.4/site-packages/nose2/plugins/
loader/testclasses.py", line 210, in setUp

    self.obj.setUp()

TypeError: setUp() missing 2 required positional arguments: 'request' and 
'setUpClass'

----------------------------------------------------------------------

Ran 3 tests in 0.001s

FAILED (errors=3)

nose2 seems to have a problem with pytest decorators. As pytest makes heavy use 
of decorators for all but the simplest tests, this would make porting tests from pytest 
to nose2 problematic. This is not necessarily a flaw in nose2—compatibility with 
pytest is not a stated goal—but it may have some impact on your choice of testing 
framework.

Test discovery
nose2 will look in the current directory and all qualifying subdirectories for modules 
that may contain tests. A directory qualifies if:

• It contains an __init.py__
• The directory name contains test (after being lowercased)
• The directory is named either lib or src

In each qualifying directory, nose2 will look for tests in every file that starts with 
test. The test files do not require the invocation of unittest.main( ), which our 
previous unittest-based tests did.
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Running individual tests
Individual tests can be run by specifying the name of the module on the command 
line:

(my_rpy2_zone)-bash-4.1$ ~/.local/bin/nose2 -v test1

test_f (test1.TestHailStones) ... 1

FAIL

======================================================================

FAIL: test_f (test1.TestHailStones)

----------------------------------------------------------------------

Traceback (most recent call last):

  File "/nfs/02/wit0096/Packt/chap08/test1.py", line 10, in test_f

    self.assertEqual(f(i), ans[i])

AssertionError: 1 != 0

----------------------------------------------------------------------

Ran 1 test in 0.000s

FAILED (failures=1)

Do not specify the entire file name, or else an unhelpful error will be generated:

(my_rpy2_zone)-bash-4.1$ ~/.local/bin/nose2 -v test1.py

test1.py (nose2.loader.LoadTestsFailure) ... ERROR

======================================================================

ERROR: test1.py (nose2.loader.LoadTestsFailure)

----------------------------------------------------------------------

Traceback (most recent call last):

  File "/nfs/02/kmanalo/envs/my_rpy2_zone/lib/python3.4/unittest/case.
py", line 58, in testPartExecutor

    yield

  File "/nfs/02/kmanalo/envs/my_rpy2_zone/lib/python3.4/unittest/case.
py", line 580, in run

    testMethod()

  File "/nfs/02/wit0096/.local/lib/python3.4/site-packages/nose2/loader.
py", line 120, in testFailure
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    raise exception

  File "/nfs/02/wit0096/.local/lib/python3.4/site-packages/nose2/plugins/
loader/parameters.py", line 118, in loadTestsFr

omName

    result = util.test_from_name(name, module)

  File "/nfs/02/wit0096/.local/lib/python3.4/site-packages/nose2/util.
py", line 106, in test_from_name

    parent, obj = object_from_name(name, module)

  File "/nfs/02/wit0096/.local/lib/python3.4/site-packages/nose2/util.
py", line 128, in object_from_name

    parent, obj = obj, getattr(obj, part)

AttributeError: 'module' object has no attribute 'py'

----------------------------------------------------------------------

Ran 1 test in 0.000s

FAILED (errors=1)

nose2 interprets the .py portion as specifying a module name. This can be useful 
when specifying a particular module but can lead to surprising results otherwise.

Assertions, setup, and teardown
As in pytest, nose2 uses the assert statement found in Python. It does not use the 
same fixture style as pytest, but it does support both a modified form of the classic 
xUnit-style setup and teardown along with its own set of fixtures.

The testing features of nose2 are currently a little buggy when using 
testing classes. The examples that follow will use individual testing 
functions contained in modules, but they should otherwise work 
similarly to the previous examples.

Modified xUnit-style
Rather than simple setup and teardown functions distinguished by name, nose2 
allows setup and teardown attributes on functions. We can rewrite our first random 
number generation test as follows:

import numpy as np
import myrand
import scipy.stats
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import sys
import random

numVals = 0
vals = 0
randGen = 0

def setup():
    print("Doing setUp")
    global numVals
    global vals
    global randGen
    numVals = 10000
    vals = np.zeros((10), dtype=np.int32)
    randGen = myrand.MyRand( )

def test_bad():
    print("Doing test_bad")
    x0 = 15
    p1 = 50
    p2 = 100
    modulus = 2217
    randGen.set(p1, p2, x0, modulus)
    for i in range(numVals):
        tmp = randGen.next( )
        tmp = tmp % 10
        vals[tmp] = vals[tmp] + 1

    chi2, p = scipy.stats.chisquare(vals)
    assert p > 0.05

def test_better():
    print("Doing test_better")
    x0 = 79
    p1 = 263
    p2 = 71
    modulus = sys.maxsize
    randGen.set(p1, p2, x0, modulus)
    for i in range(numVals):
        tmp = randGen.next( )
        tmp = tmp % 10
        vals[tmp] = vals[tmp] + 1

    chi2, p = scipy.stats.chisquare(vals)
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    assert p > 0.05

def test_builtin():
    print("Doing test_builtin")
    for i in range(numVals):
        tmp = random.randint(0, 9)
        vals[tmp] = vals[tmp] + 1

    chi2, p = scipy.stats.chisquare(vals)
    assert p > 0.05

def teardown():
    print("Doing tearDown")
    randGen.reset( )

test_bad.setup = setup
test_bad.teardown = teardown
test_better.setup = setup
test_better.teardown = teardown
test_builtin.setup = setup
test_builtin.teardown = teardown

testrand_nose2_2.py

Admittedly, using global variables is not a recommended practice, but without 
classes, drastic measures are called for. The important feature to notice is at the end. 
Here, the setup and teardown methods are assigned as attributes to the actual tests. 
There is some flexibility here: the setup attribute may be named setup, setUp, or 
setUpFunc, and the teardown attribute may be named teardown, tearDown, or 
tearDownFunc.

This may feel like an odd way to do things compared to simply declaring functions 
with the prescribed names, but it provides a lot of the flexibility that decorators do: 
if a particular test does not need setup or teardown, or different tests need different 
setups/teardowns, they can be assigned here.

The results are as expected:

(my_rpy2_zone)-bash-4.1$ ~/.local/bin/nose2 -v testrand_nose2_1

testrand_nose2_1.FunctionTestCase (test_bad) ... Doing setUp

Doing test_bad

Doing tearDown

FAIL
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testrand_nose2_1.FunctionTestCase (test_better) ... Doing setUp

Doing test_better

Doing tearDown

ok

testrand_nose2_1.FunctionTestCase (test_builtin) ... Doing setUp

Doing test_builtin

Doing tearDown

ok

======================================================================

FAIL: testrand_nose2_1.FunctionTestCase (test_bad)

----------------------------------------------------------------------

Traceback (most recent call last):

  File "/nfs/02/wit0096/Packt/chap08/testrand_nose2_1.py", line 33, in 
test_bad

    assert p > 0.05

AssertionError

----------------------------------------------------------------------

Ran 3 tests in 0.184s

FAILED (failures=1)

Using decorators
nose2 provides two decorators in the nose2.tools.decorators module that are 
helpful in setup and teardown:

Decorator Effect
with_setup(setup) Runs the setup function before each test
with_teardown(teardown) Runs the teardown function after each test

This allows us to rewrite the previous tests as follows:

import numpy as np
import myrand
import scipy.stats
import sys
import random
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import nose2.tools.decorators

numVals = 0
vals = 0
randGen = 0

def setup():
    print("Doing setUp")
    global numVals
    global vals
    global randGen
    numVals = 10000
    vals = np.zeros((10), dtype=np.int32)
    randGen = myrand.MyRand( )

def teardown():
    print("Doing tearDown")
    randGen.reset( )

@nose2.tools.decorators.with_setup(setup)
@nose2.tools.decorators.with_teardown(teardown)
def test_bad():
    print("Doing test_bad")
    x0 = 15
    p1 = 50
    p2 = 100
    modulus = 2217
    randGen.set(p1, p2, x0, modulus)
    for i in range(numVals):
        tmp = randGen.next( )
        tmp = tmp % 10
        vals[tmp] = vals[tmp] + 1

    chi2, p = scipy.stats.chisquare(vals)
    assert p > 0.05

@nose2.tools.decorators.with_setup(setup)
@nose2.tools.decorators.with_teardown(teardown)
def test_better():
    print("Doing test_better")
    x0 = 79
    p1 = 263
    p2 = 71
    modulus = sys.maxsize
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    randGen.set(p1, p2, x0, modulus)
    for i in range(numVals):
        tmp = randGen.next( )
        tmp = tmp % 10
        vals[tmp] = vals[tmp] + 1

    chi2, p = scipy.stats.chisquare(vals)
    assert p > 0.05

@nose2.tools.decorators.with_setup(setup)
@nose2.tools.decorators.with_teardown(teardown)
def test_builtin():
    print("Doing test_builtin")
    for i in range(numVals):
        tmp = random.randint(0, 9)
        vals[tmp] = vals[tmp] + 1

    chi2, p = scipy.stats.chisquare(vals)
    assert p > 0.05

The expected results are as follows:

(my_rpy2_zone)-bash-4.1$ ~/.local/bin/nose2 -v testrand_nose2decs_1

testrand_nose2decs_1.FunctionTestCase (test_bad) ... Doing setUp

Doing test_bad

Doing tearDown

FAIL

testrand_nose2decs_1.FunctionTestCase (test_better) ... Doing setUp

Doing test_better

Doing tearDown

ok

testrand_nose2decs_1.FunctionTestCase (test_builtin) ... Doing setUp

Doing test_builtin

Doing tearDown

ok

======================================================================

FAIL: testrand_nose2decs_1.FunctionTestCase (test_bad)

----------------------------------------------------------------------
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Traceback (most recent call last):

  File "/nfs/02/wit0096/Packt/chap08/testrand_nose2decs_1.py", line 40, 
in test_bad

    assert p > 0.05

AssertionError

----------------------------------------------------------------------

Ran 3 tests in 0.277s

FAILED (failures=1)

Plugins
An important feature of the move from nose to nose2 was the implementation of 
an improved plugin API. Plugins provide additional functionality and allow third 
parties to extend nose2. A complete list of all plugins would be outside of the scope 
of this book, and would be incomplete by the time it went to press in any case. An 
example should suffice to demonstrate the power of plugins.

Generating XML with the junitxml plugin
Although nose2 generates test results to stdout by default, large test suites can be 
too much for one person to watch the results scroll by on a screen. In this case, it can 
be helpful for each test to generate output in a standardized format. The xUnit family 
has popularized XML as this format, so many test reporting tools expect it as input.

In order to output XML, the junitxml plugin can be invoked as follows:

(my_rpy2_zone)-bash-4.1$ ~/.local/bin/nose2 -v --plugin nose2.plugins.
junitxml --junit-xml testrand_nose2decs_1

The output consists of two streams:

• The usual output, sent to stdout
• An XML file (nose2-junit.xml), created in the directory the test was run in
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In this case, the resulting XML file contained the following:

<testsuite errors="0" failures="1" name="nose2-junit" skipped="0"  
tests="3" time="0.258">
  <testcase classname="" name="test_bad" time="0.093808">
    <failure message="test failure">Traceback (most recent call  
last):
  File "/nfs/02/wit0096/Packt/chap08/testrand_nose2decs_1.py",  
line 40, in test_bad
    assert p &gt; 0.05
AssertionError
</failure>
    <system-err />
  </testcase>
  <testcase classname="" name="test_better" time="0.096404">
    <system-err />
  </testcase>
  <testcase classname="" name="test_builtin" time="0.066199">
    <system-err />
  </testcase>
</testsuite>

nose2-junit.xml

The junitxml plugin can be loaded and configured using nose2's standard 
configuration file mechanisms, as can any other plugin. The configuration files (or file) 
used follow a standard .ini format. nose2 as a whole is very configurable, and each 
plugin has its own set of options. There is no standard set of options for all plugins—
interested developers are referred to each plugin's documentation for details.

A plugin API is provided so that the developer can write project-specific plugins if 
desired. This opens up the nose2 architecture relative to nose, as there is no central 
approval bottleneck for plugins.
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Summary
The single most important property a running program can have is being correct. 
Too often, testing is left until the end of development, where it is either skipped 
entirely or rushed through because the project is late. This is especially true for 
scientific and engineering code, where lives might be at stake. Even exploratory code 
needs to be tested so that sound decisions can be based on it. No code should be 
accepted into the project repository without its associated unit tests. As such, testing 
should be made as easy as possible for developers.

While IPython supports many wonderful visualization tools that can provide visual 
feedback on results, there is no replacement for thorough unit testing. This chapter 
outlined the basics of unit testing—setup, test, and teardown—and showed how 
three different frameworks implemented these concepts. The decision of which 
framework to use is up to the project team.

In the next chapter, we will look at support for another often neglected component 
of professional-grade software: documentation. We will discuss the various audience 
documentation is written for, the types of information important to each, formatting 
options, and the tools available to make producing documentation relatively painless.
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Documentation
"Real programmers don't comment their code. If it was hard to write, it should be 
hard to understand.

Real Programmers don't do documentation. Documentation is for those who can't 
figure out the listing."

                                                                                                         – Legendary

The days of the hero coder toiling away in the darkness for 36 hours straight to 
produce the perfect code are drawing to a close. Although that still happens (and is 
fun to do), at the end of the day, most code is written for other people to use, fix, and 
extend. In order to do this, people other than the original author need to be able to 
understand what the code does and how.

These groups fall into three classes, each with its appropriate genre of documentation:

Group Genre
Users User manuals and sales pamphlets
External developers Interface definitions, APIs, and docstrings
Maintenance coders Inline comments and docstrings

Documentation required by users is outside the scope of this book. This chapter will 
focus on the documentation needs of external developers and maintenance coders, 
and how developers can produce that documentation with minimal pain.
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The following topics will be covered in this chapter:

• Inline comments
• Docstrings
• reStructuredText
• Docutils
• Sphinx

Inline comments
We will use the term "inline comment" to refer to all comments that are meant for 
maintenance coders and will never be visible to anyone not reading the source code.

Inline comments start with a # sign and continue up to the end of the line. They 
may not occur within a string literal. No characters within an inline comment are 
interpreted.

Python does not support block comments. Rumors to the effect that triple  
double-quotes (" " ") can be used to comment out multiple lines are to be disbelieved. 
While that will often work, what actually happens is that Python looks at the 
included lines as one multiline string. As a string, the included lines are not 
interpreted. A string literal is created instead. As this new literal is not assigned to a 
variable, it is immediately garbage-collected.

In addition to this strange behavior, triple double-quotes are used for docstrings. 
Using them for both purposes can be confusing, which is what we set out to avoid in 
the first place.

Using inline comments
The "official" guide for Python style is PEP 0008 (found at https://www.
python.org/dev/peps/pep-0008/). To the extent that code can be said to be 
self-documenting, this guide provides a standard set of suggestions for stylistic 
consistency that can help further that goal. The section on comments in particular 
contains some useful recommendations:

• Comments should match code. If the code changes, make sure that the 
comments reflect it.

• Comment in complete sentences.

https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0008/


Chapter 9

[ 267 ]

• Block comments should be at the same indentation level as the code they 
apply to. Each line should start with a # sign and a single space.

• Comments should rarely be used on the same line as code.

Function annotations
Function annotations and type hints can be considered a type of inline comment. 
Function annotations originated in PEP 3107, which provided a syntax for adding 
arbitrary metadata annotations to Python functions. From the definition (https://
www.python.org/dev/peps/pep-3107/):

"Because Python's 2.x series lacks a standard way of annotating a function's 
parameters and return values, a variety of tools and libraries have appeared to fill 
this gap. (…) This PEP aims to provide a single, standard way of specifying this 
information, reducing the confusion caused by the wide variation in mechanism 
and syntax that has existed until this point."

Syntax
Function annotations apply to two sorts of things: parameters and return values.

Parameters
For parameters, an annotation is indicated by a colon, in a manner similar to that of 
marking a default value by an equal to sign, like this for example:

def foo(x: "int >= 0"):

Both an annotation and a default value can be indicated by placing them 
sequentially, as follows:

def foo(x: "int >= 0" = 0):

Informally, parameters can be described like this:

identifier [: expression] [= expression]

Here, both the annotation and the default value are optional.

Return values
The return value of the function can be annotated by following the parameter list 
with -> and an expression. Here is an example:

def foo(x: "int >= 0" = 0) -> "seemingly random integer" :
    return 42

https://www.python.org/dev/peps/pep-3107/
https://www.python.org/dev/peps/pep-3107/
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Semantics
Function annotations are completely optional. They allow static association of 
arbitrary Python expressions with parts of a function. The annotations are held in the 
function's __annotations__ attribute, like this:

In [5]: def foo(x: "int >= 0" = 0) -> "seemingly random integer" :
    return 42
   ...:

In [6]: foo.__annotations__
Out[6]: {'return': 'seemingly random integer', 'x': 'int >= 0'}

There is no standard semantics for the annotations. They serve two purposes: 
documentation for the coder and as inputs to third-party tools. Of course, each tool 
has its own standards and provides different semantics.

Type hints
Of course, the first and the most popular use of function annotations was to denote 
parameter and return types. This is practically the only use case listed in PEP 3107. It 
took 8 years, but eventually a PEP came along to provide some standard definitions. 
This is PEP 0484. From the definition (https://www.python.org/dev/peps/pep-
0484/):

"PEP 3107 introduced syntax for function annotations, but the semantics were 
deliberately left undefined. There has now been enough 3rd party usage for static 
type analysis that the community would benefit from a standard vocabulary and 
baseline tools within the standard library.

This PEP introduces a provisional module to provide these standard definitions 
and tools, along with some conventions for situations where annotations are not 
available."

The PEP does not require annotations, nor does it specify (or forbid) any particular 
framework for processing them. In particular, no type checking happens at either compile 
time or runtime, unless a third-party tool does it. Also, in particular, annotations do 
not change the fact that Python is a dynamically typed language.

https://www.python.org/dev/peps/pep-0484/
https://www.python.org/dev/peps/pep-0484/
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Syntax
Type hints use the same syntax and apply to the same things as function annotations. 
The major extension is that they allow the annotation to be a class. The full rule set is 
complicated, but the following hints should cover the most common cases:

• Built-in classes
• User-defined classes
• Types in the types module
• Abstract base classes
• Special constructs, including None, Any, Union, Tuple, and Callable

A great deal of the PEP is devoted to special cases and complex types, including 
generics, covariance and contravariance, forward references, and stub files.

Semantics
Like PEP 3107, there is no standard semantics associated with type hints. The goal 
instead was to provide a standard that third-party tools could work with. To the 
extent that type hints have a semantics, it is the one provided by the tool they are 
used with, not by the Python language itself. From the definition:

"This PEP aims to provide a standard syntax for type annotations, opening 
up Python code to easier static analysis and refactoring, potential runtime 
type checking, and (perhaps, in some contexts) code generation utilizing type 
information."

An influential tool in the formation of the standard was mypy (http://mypy-lang.
org/). The purpose of mypy is to provide a static type checker for Python. While the 
merits of static type checking in documentation and debugging can be debated, it is 
nice to have the option.

Docstrings
A Python docstring is a string literal. It can occur as the first statement in a module 
or as the first statement following the definition of a function, method, or class. 
The docstring becomes the __doc__ special attribute of that thing. Its purpose is to 
provide a more free-form way to document part of a program.

http://mypy-lang.org/
http://mypy-lang.org/
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Example
The following code provides docstrings for an abbreviated version of an earlier  
test suite:

"""
This is an abbreviated version of my random number generator test  
suite.

It uses the pytest framework.  It does not do much in this form.
"""

import numpy as np
import scipy.stats
import random

class TestRandoms( ):
    """
    This is the main class.

    Normally it would hold all the tests, plus and setup and  
tearDown fixtures.
    """
    def test_builtin(self):
        """
        Test the built-in random number generator on 10000  
numbers.
        """
        num_tests = 10000
        vals = [0 for i in range(10)]
        for i in range(num_tests):
            tmp = random.randint(0, 9)
            vals[tmp] = vals[tmp] + 1

        chi2, p = scipy.stats.chisquare(self.vals)
        assert p > 0.05

def foo( ):
    """ I just needed a function outside of a class as an  
example"""
    pass

code1.py
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The docstring can be accessed by using Python's built-in help function. The results 
are displayed in the standard help fashion (that is, as if viewing a text file with less) 
and are as follows:

In [4]: import code1

In [5]: help(code1)

Help on module code1:

NAME

    code1 - This is an abbreviated version of my random number generator 
test suite.

DESCRIPTION

    It uses the pytest framework.  It does not do much in this form.

CLASSES

    builtins.object

        TestRandoms

    class TestRandoms(builtins.object)

     |  This is the main class.

     |

     |  Normally it would hold all the tests, plus and setup and teardown 
fixtures.

     |

     |  Methods defined here:

     |

     |  test_builtin(self)

     |      Test the built-in random number generator on 10000 numbers.

     |

     |  -----------------------------------------------------------------
-----

     |  Data descriptors defined here:

     |

     |  __dict__

     |      dictionary for instance variables (if defined)

     |
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     |  __weakref__

     |      list of weak references to the object (if defined)

FUNCTIONS

    foo()

        I just needed a function outside of a class as an example

FILE

    /nfs/02/wit0096/Packt/chap09/code1.py

Docstrings for individual parts can be accessed by naming them.

Here, we access help for the class:

In [6]: help(code1.TestRandoms)

Help on class TestRandoms in module code1:

class TestRandoms(builtins.object)

 |  This is the main class.

 |

 |  Normally it would hold all the tests, plus and setup and teardown 
fixtures.

 |

 |  Methods defined here:

 |

 |  test_builtin(self)

 |      Test the built-in random number generator on 10000 numbers.

 |

 |  --------------------------------------------------------------------
--

 |  Data descriptors defined here:

 |

 |  __dict__

 |      dictionary for instance variables (if defined)

 |

 |  __weakref__

 |      list of weak references to the object (if defined)
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Next, we access help for a method within the class:

In [6]: help(code1.TestRandoms.test_builtin)

Help on function test_builtin in module code1:

test_builtin(self)

    Test the built-in random number generator on 10000 numbers.

And we can get help for the independent function as follows:

In [7]: help(code1.foo)

Help on function foo in module code1:

foo()

    I just needed a function outside of a class as an example

Inheriting docstrings
If a class inherits from a parent class, the parent class' docstring will become a part of 
the child class'. Here is another example from an earlier test suite:

"""
This is my hailstone unit test suite.

It uses the unittest framework.  Admittedly, it does not do much.
"""

import unittest
from hail1 import f

class TestHailStones(unittest.TestCase):
    """
    The main class for testing the hailstone sequence generator.
    """

    def test_f(self):
        """currently the only test in this suite."""
        ans = [0, 0, 1, 7, 2, 5, 8, 16, 3, 19, 6]
        for i in range(1, 11):
            print(i)
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            self.assertEqual(f(i), ans[i])

def foo( ):
    """
    An independent function.

    I needed another function to illustrate the docstring for a  
function that was not a member of a class.
    """
    pass

code2.py

It produces the following (abbreviated) output:

In [10]: import code2

In [11]: help(code2)

Help on module code2:

NAME

    code2 - This is my hailstone unit test suite.

DESCRIPTION

    It uses the unittest framework.  Admittedly, it does not do much.

CLASSES

    unittest.case.TestCase(builtins.object)

        TestHailStones

    class TestHailStones(unittest.case.TestCase)

     |  The main class for testing the hailstone sequence generator.

     |

     |  Method resolution order:

     |      TestHailStones

     |      unittest.case.TestCase

     |      builtins.object
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     |

     |  Methods defined here:

     |

     |  test_f(self)

     |      currently the only test in this suite.

     |

     |  -----------------------------------------------------------------
-----

     |  Methods inherited from unittest.case.TestCase:

     |

     |  __call__(self, *args, **kwds)

     |

     |  __eq__(self, other)

     |

     |  __hash__(self)

     |

     |  __init__(self, methodName='runTest')

     |      Create an instance of the class that will use the named test

     |      method when executed. Raises a ValueError if the instance 
does

     |      not have a method with the specified name.

     |

     |  __repr__(self)

     |

     |  __str__(self)

     |

     |  addCleanup(self, function, *args, **kwargs)

     |      Add a function, with arguments, to be called when the test is

     |      completed. Functions added are called on a LIFO basis and are

     |      called after tearDown on test failure or success.

     |

     |      Cleanup items are called even if setUp fails (unlike 
tearDown).
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     |

     |  addTypeEqualityFunc(self, typeobj, function)

     |

Add a type specific assertEqual style function to compare a type.

     |

     |      This method is for use by TestCase subclasses that need to 
register

     |      their own type equality functions to provide nicer error 
messages.

     |

     |      Args:

     |          typeobj: The data type to call this function on when both 
values

     |                  are of the same type in assertEqual().

     |          function: The callable taking two arguments and an 
optional

     |                  msg= argument that raises self.failureException 
with a

     |                  useful error message when the two arguments are 
not equal.

     |

     |  assertAlmostEqual(self, first, second, places=None, msg=None, 
delta=None)

Note how the documentation for the unittest.TestCase class is included without 
additional effort.

Recommended elements
PEP 0257 documents the conventions associated with docstrings. From the standard 
(https://www.python.org/dev/peps/pep-0257/):

"The aim of this PEP is to standardize the high-level structure of docstrings: what 
they should contain, and how to say it (without touching on any markup syntax 
within docstrings). The PEP contains conventions, not laws or syntax."

While there is no requirement that developers should follow these guidelines, third-
party tools (such as Docutils and Sphinx) may rely upon them to extract features 
from docstrings.

https://www.python.org/dev/peps/pep-0257/
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The PEP divides docstrings into two families: one-liners and multiline. Although 
both follow the rules for docstrings in general, each has its own recommended 
syntax and semantics.

One-line docstrings
These are for obvious cases or when a great deal of code can be concisely described. 
One-liners are similar to inline comments in that they are terse and targeted at fellow 
developers.

Syntax
These should fit in one line (72 characters). The beginning triple double-quotes and 
the ending quotes should be on the same line. If used to document a class, a single 
blank line may follow. Otherwise, there should be no blank lines either before or 
after the docstring.

Semantics
A phrase should end in a period. The phrase should be imperative ("Do X") rather 
than a description ("Does X"). It should not simply restate the signature of a 
function—a tool can determine the signature statically or through introspection. 
Also, the docstring should provide information that cannot be algorithmically 
derived. If type hints are not used, it can contain the return type of the function as 
this is not discoverable through introspection.

Multiline docstrings
Multiline docstrings are meant to provide a more elaborate description than a  
one-liner. Whereas a one-liner often carries information about a type and density 
similar to inline comments, a multiline docstring is meant to explain bigger, more 
complex chunks of code to people outside of the development team.

Syntax
A multiline docstring should start out with a line containing either the three  
double-quotes followed by a one-line summary, or the three double-quotes by 
themselves and followed on the next line by the summary line. In either case, the 
summary line has a function similar to that of a one-line docstring. A blank line 
should follow the summary, then a series of explanatory comments. The closing 
triple double-quotes should follow on their own line. The opening and closing quotes 
should be aligned to the body of the entity that is being described. The leftmost lines 
in the docstring should be indented at the same level as the triple quotes. Other lines 
may be indented further.
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As with any standard that allows variations, there are several groups that promote 
different versions:

• Google weighs in its Python Style Guide at https://google.github.io/
styleguide/pyguide.html#Comments

• numpy has its own recommendations at https://github.com/numpy/
numpy/blob/master/doc/HOWTO_DOCUMENT.rst.txt#docstring-standard

• Epydoc prefers dosctrings at http://epydoc.sourceforge.net/manual-
docstring.html

Finally, your team should pick a multiline docstring syntax that works for it and the 
tool (or tools) it uses to generate documentation.

Semantics
A multiline docstring should provide enough information for an interested party to 
use the thing it is documenting. It is not enough to just describe its name and purpose. 
The potential user should, by reading the docstring, understand the following:

• The API
• The inputs
• Functionality
• The output (or outputs)
• The error conditions
• The relationship with other parts of the system
• Example uses

The API
This is important for classes and modules. This docstring for a module should 
describe all classes, exceptions, and functions that are exported by that module. The 
docstring for a class should describe its public interface and instance variables. The 
descriptions should be brief (a single line is good enough)—more details will be 
provided by the docstrings for the individual parts.

Inputs
These are especially important for scripts (command-line arguments and options) 
and functions (parameters). Users should be able to specify complete, valid inputs, 
which means describing:

• The names of the inputs
• Their types

https://google.github.io/styleguide/pyguide.html#Comments
https://google.github.io/styleguide/pyguide.html#Comments
https://github.com/numpy/numpy/blob/master/doc/HOWTO_DOCUMENT.rst.txt#docstring-standard
https://github.com/numpy/numpy/blob/master/doc/HOWTO_DOCUMENT.rst.txt#docstring-standard
http://epydoc.sourceforge.net/manual-docstring.html
http://epydoc.sourceforge.net/manual-docstring.html
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• Their ranges
• Optional versus required

Functionality
These are important for scripts and functions. Users should understand what 
relationship the inputs have with the outputs without being told (more than 
necessary) about the mechanism used to achieve the results. This means using 
plain English to describe what the function does. If there is a simple mathematical 
expression that the function implements, this is a good place to include it. This is 
probably the hardest part of the comment to write.

Outputs
These are important for scripts and functions. The number and types of outputs 
should be listed. Any side effects should also be described.

Error conditions
Possible conditions that could result in an error should be listed. Errors fall under 
two categories: silent errors and noisy errors.

Noisy errors are those that result in thrown exceptions or error codes being set. All 
thrown exceptions should be documented. Any variables or data structures used to 
signal errors (for example, errno) should also be documented.

Silent errors are those in which the code appears to function normally, but in fact 
is producing invalid results. For example, many numeric algorithms produce 
meaningful results over only a subset of otherwise legal inputs.

In either case, users should be presented with enough information to:

• Avoid error conditions (when possible)
• Detect error conditions (whether by catching an exception or by checking for 

an error code)
• Recover from an error (for example, retrying, or using an alternate method)

Relationship with other parts of the system
This is important primarily for classes, modules, and public interfaces. Object-
oriented systems consist of a myriad of interacting parts. Some of these parts are 
internal to the system and some are external. The docstring should describe how the 
current part relates to other parts.
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An important relationship is that of dependency. One part can depend on another 
part logically (through inheritance or composition), functionally (for example, by 
being imported), or temporally (perhaps, one part performs the setup required for 
another part to function correctly). All dependencies should be documented.

Another important relationship is being a part of the same pattern. Design patterns are 
becoming increasingly important and dictating the existence of various mechanisms. If 
a class is part of the implementation of a pattern, this should be documented.

Example uses
As useful as an English description is, there is no substitute for a few examples. 
There are entire operating systems where the only useful documentation is in the 
form of examples.

Example
We will take an example from Rosetta Code, the Python implementation of 
the Chinese Remainder Theorem (http://rosettacode.org/wiki/Chinese_
remainder_theorem#Python). Our implementation will be modified in two ways. 
First, it will use a class rather than the functions shown so that a full range of 
commenting conventions can be demonstrated. Second, it will be brought up to 
Python 3 from 2.7:

"""Company boilerplate goes here.

Suppose n1, ..., nk are positive integers that are pairwise coprime. Then, for any 
given sequence of integers a1, ..., ak, there exists an integer x solving the following 
system of simultaneous congruences.

x ≡ a1 mod n1

x ≡ a2 mod n2

…

x ≡ ak mod nk

A full explanation of the theorem can be found at https://en.wikipedia.org/
wiki/Chinese_remainder_theorem.

Attributes:

    None

Dependencies:

http://rosettacode.org/wiki/Chinese_remainder_theorem#Python
http://rosettacode.org/wiki/Chinese_remainder_theorem#Python
https://en.wikipedia.org/wiki/Chinese_remainder_theorem
https://en.wikipedia.org/wiki/Chinese_remainder_theorem
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    functools

"""

import functools

class CRT:

    """The Chinese Remainder Theorem method for solving a system of 
linear congruences.

This class has no __init__ method. As such, there are no arguments required to 
construct an instance. Without class or instance variables, all objects of this class  
are stateless.

    Args:

        None

    Attributes:

        None

    Example:

        An example is provided in the main guard corresponding to the 
system:

        x ≡ 2 mod 3

        x ≡ 3 mod 5

        x ≡ 2 mod 7

    """

    def chinese_remainder(self, n, a):

        """Use the existence construction form of the CRT to compute the 
solution.

        First, calculate the product of all the modulos (b1, n2, …, nk) 
as prod

        For each i, calculate prod/n_i as p

        Sum up each ai * the multiplicative inverse of ni mod p

        Args:

            n: a list of modulos (n1, n2, …, nk)
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            a: a list of congruences (a1, a2, …, ak)

        Returns:

            The smallest integer solution to the system of congruence 
equations defined

            by a and n.

        Error conditions:

            When len(n) == len(a), a solution always exists.

            When len(a) > len(n), any additional a's are ignored.

            When len(n) > len(a), behavior is deterministic but 
erroneous.

        """

        sum = 0

        prod = functools.reduce(lambda a, b: a*b, n)

        for n_i, a_i in zip(n, a):

            p = prod / n_i

            sum += a_i * self.__mul_inv(p, n_i) * p

        return int(sum % prod)

    def __mul_inv(self, a, b):

        """Calculate the multiplicative inverse of b mod a."""

        b0 = b

        x0, x1 = 0, 1

        if b == 1:

            return 1

        while a > 1:

            q = a / b

            a, b = b, a%b

            x0, x1 = x1 - q * x0, x0

        if x1 < 0:

            x1 += b0

        return x1

if __name__ == '__main__':

    n = [3, 5, 7]
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    a = [2, 3, 2]

    crt = CRT( )

    print(crt.chinese_remainder(n, a))

The result is as follows:

In [22]: help(CRT)

Help on class CRT in module __main__:

class CRT(builtins.object)

 |  The Chinese Remainder Theorem method for solving a system of linear 
congruences.

 |

 |  Notes:

 |      This class has no __init__ method.  As such, there are no 
arguments required

 |      to construct an instance.

 |

 |      Without class or instance variables, all objects of this class 
are stateless.

 |

 |  Args:

 |      None

 |

 |  Attributes:

 |      None

 |

 |  Example:

 |      An example is provided in the main guard corresponding to the 
system:

 |      x ≡ 2 mod 3

 |      x ≡ 3 mod 5

 |      x ≡ 2 mod 7

 |

 |  Methods defined here:

 |
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 |  chinese_remainder(self, n, a)

 |      Use the existence construction form of the CRT to compute the 
solution.

 |

 |      First, calculate the product of all the modulos (b1, n2, …, nk) 
as prod

 |      For each i, calculate prod/n_i as p

 |      Sum up each ai * the multiplicative inverse of ni mod p

 |

 |      Args:

 |          n: a list of modulos (n1, n2, …, nk)

 |          a: a list of congruences (a1, a2, …, ak)

 |

 |      Returns:

 |          The smallest integer solution to the system of congruence 
equations defined

 |          by a and n.

 |

 |      Error conditions:

 |          When len(n) == len(a), a solution always exists.

 |          When len(a) > len(n), any additional a's are ignored.

 |          When len(n) > len(a), behavior is deterministic but 
erroneous.

 |

 |  --------------------------------------------------------------------
--

 |  Data descriptors defined here:

 |

 |  __dict__

 |      dictionary for instance variables (if defined)

 |

 |  __weakref__

 |      list of weak references to the object (if defined)

Note that the docstring for the private method, __mul_inv, is not included.
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reStructuredText
One could say a lot of things about the preceding example (in particular, that 
there are more lines of comments than code), but it would be difficult to say that 
the end result is aesthetically pleasing. In particular, compared to the output of a 
program using Javadoc, this documentation looks rather plain. In order to remedy 
this shortcoming, it was decided that a more sophisticated way of specifying and 
generating documentation was needed.

History and goals
Jim Fulton of Zope invented StructuredText as a simple markup language. It is 
similar to WikiWikiWebMarkup but simpler. Problems with both the specification 
and the implementation led to David Goodger creating a revised version, called 
reStructuredText. His goals for the language were that it should be:

• Readable
• Unobtrusive
• Unambiguous
• Unsurprising
• Intuitive
• Easy
• Scalable
• Powerful
• Language-neutral
• Extensible
• Output-format-neutral

This led to the publication of PEP 0287 (https://www.python.org/dev/peps/pep-
0287/).

Customers
Any documentation system has three groups of customers: developers, automated 
document generation software, and readers. Each of them has different requirements 
and limitations.

https://www.python.org/dev/peps/pep-0287/
https://www.python.org/dev/peps/pep-0287/
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Developers have to write the documentation. As a class, developers hate typing, 
and hate typing anything that is not code even more. Any attempt to force them to 
write great swathes of comments will result in a failed standard. So much so that if 
documentation can be generated from code, it should be. Any additional comments 
should be easy to create with a standard keyboard and minimal additional markup.

The document generation software turns the characters produced by the developers 
into documents to be consumed by outside readers. This generally consists of a 
transformation from the markup language used by the developers into a more 
human-readable format. For example, the Javadoc written by developers can 
automatically be transformed into HTML that readers can view in a browser. This 
transformation can include the addition of both aesthetic (for example, colors and 
formatting) and functional (for example, hyperlinks) properties. It is important 
for the document generation software that the markup used by the developers be 
powerful and structured enough to support this transformation.

Readers consume the end result of this transformation. Readers may or may not be 
developers, but they expect the documentation to be structurally well organized. 
The documentation should be easy to read, and it should be easy to find what one 
is looking for. Note that readers often do not have access to the original source and 
might not be able to read the original markup if it were to be available.

There is an important tension in this division between developers and readers. 
Simply put, readers want as much documentation as possible, and in a structured 
form. Developers will write as little documentation as they can get away with and 
will use as little structure as possible.

The solution
The solution that reStructuredText adopted was to use a two-fold process: a simple 
markup language coupled with powerful documentation generation software. The 
markup is reStructuredText and the software is Docutils. The basic process is simple:

1. The developer writes docstrings in plain text using the reStructuredText 
conventions.

2. Docutils is applied to the resulting code + comments document to generate 
documentation in an external format (for example, HTML or LaTeX).

3. The reader consumes the resulting document in the appropriate viewer.

We will later take a look at Sphinx, a documentation generation program that builds 
upon and extends reStructuredText and Docutils.
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Overview
The basic syntax of reStructuredText is that of regular text, with special conventions 
associated with certain usages. This is in contrast with, say, HTML, in which 
metadata is associated with text through the use of angle brackets. For example, in 
HTML a bulleted list might look like this:

<ul>
  <li>Python</li>
  <li>Java</li>
  <li>Ruby</li>
</ul>

In reStructuredText, it would look like the following:

* Python
* Java
* Ruby

An important difference is that while HTML (and its relatives, such as XML) allows 
nested tags, reStructuredText does not allow nested markup. While this is ordinarily 
not an issue, it does come up from time to time.

What follows is a listing of some of the more important usages.

Paragraphs
A paragraph is a chunk of text separated by one or more blank lines. The left edge of 
paragraphs should line up. If a paragraph is indented relative to other paragraphs, it 
is treated as a quote.

The reStructuredText looks as follows:

It turns out Abraham Lincoln never said

    Never trust anything you read on the Internet.

It was Benjamin Franklin
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This produces HTML output which is displayed as follows:

Text styles
Text in italics should be surrounded by asterisks (*):

Use italics for *emphasis*.

Text in bold uses two asterisks (**):

Using a **goto** statement is a bold move in structured programming.

Unfortunately, there is no easy way to make text both italicized and bold.

For the most part, reStructuredText is pretty smart in knowing when something is 
markup and when it should be left alone. For example, consider these strings:

x = 5*6
x = 5*6*7

The asterisk is not interpreted as making the 6 italicized.

Surrounding text with double back quotes (``) forces it to be a fixed-space literal—
all special characters between the quotes are left uninterpreted. Individual characters 
that would otherwise be interpreted as markup can be escaped using a backslash (\).

Literal blocks
If there is a need to have an entire paragraph included as a literal block (that is, 
exactly as it is, without any interpretation of markup characters or indentation 
within the paragraph), then a paragraph containing only two colons indicates that 
the following indented or quoted text should be taken literally. This can be useful 
when citing code or explaining markup conventions.
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From the documentation (http://docutils.sourceforge.net/docs/user/rst/
quickref.html#literal-blocks):

::

  Whitespace, newlines, blank lines, and
  all kinds of markup (like *this* or
  \this) are preserved by literal blocks.

Lists
There are three types of lists: enumerated, bulleted, and definition. Enumerated  
lists are those in which the elements are counted in some manner. Bulleted lists  
use the same character to denote every item. Definition lists are used to lay out  
term-definition pairs.

Enumerated lists
An enumerated list uses a counter and a delimiter. The counter is generally  
a number, letter, or Roman numeral. The delimiter is one of a period, a right  
bracket, or two brackets. reStructuredText is flexible in terms of which is chosen.  
In any case, the counter and the delimiter come before the text of the list item.

Here is an example of some enumerated lists:

1. Start out *emphatically*
2. And get **bolder** as the list goes on

A. Here we use a letter to count

a. Even lower-case letters work
    i. One can use different counters on indented lists

I) And mix up delimiters
   with a multi-line comment

   and a blank line in the middle.

(D) One can even start numbering non-sequentially.

rst2.txt

http://docutils.sourceforge.net/docs/user/rst/quickref.html#literal-blocks
http://docutils.sourceforge.net/docs/user/rst/quickref.html#literal-blocks
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It results in the following web page:

Bulleted lists
Bulleted lists work just like enumerated lists, except that:

• The only allowed counters are -, +, and *
• There is no delimiter

Bulleted lists support the usual rules for indentation.

Definition lists
A definition list is just a series of term-definition pairs. The term is on the first line 
and the definition is in the following paragraph, which is indented. Here is an 
example:

do
    a deer, a female deer
re
    a drop of golden sun
mi
    a name i call myself
fa
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    a long long way to run
so
    a needle pulling thread

rst3.txt

It results in the following:

Hyperlinks
The hyperlink markup creates a link to a URL in the browser. The syntax is as 
follows:

<citation>
.. _<hyperlink-name>: <link-block>

An example will make things clear:

Buy my book at Packt_.

.. _Packt: https://www.packtpub.com/

rst4.txt
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It results in the following web page:

Sections
The preceding markup should suffice for most developers, for most documentation. 
Should more in-depth documentation be required, reStructuredText provides the 
ability to break documents into sections using section headers. This is accomplished 
by creating a single line of text consisting entirely of a single repeated character 
(the underline). The previous line becomes the section header (the overline). The 
underline and the overline must be of the same length. All sections that use the 
same underline are at the same level. Any section beneath a section with a different 
underline is at a lower level than that section.

Here is an example:

Chapter 1 Main Title

--------------------

Section 1.1 An Important Subject
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================================

Subsection 1.1.1 A Special Case

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Section 1.2 Another Important Subject

=====================================

Chapter 2 Conclusions

---------------------

This is what it yields:
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Docutils
Docutils is a suite of utilities for transforming text files that contain reStructuredText 
into other formats, including HTML, XML, and LaTeX. It is meant to bridge the 
gap between what users want to read (aesthetically pleasant formats) and what 
programmers can easily type (plain text). Docutils falls into two broad categories: 
libraries (to do behind-the scenes parsing and manipulation) and frontend tools 
(which use libraries to produce a particular output format).

Installation
Docutils can be installed using pip:

pip install docutils

This will install a number of scripts, including the important transformation scripts. 
The author's installation is included:

• rst2html.py

• rst2latex.py

• rst2man.py

• rst2odt_prepstyles.py

• rst2odt.py

• rst2pseudoxml.py

• rst2s5.py

• rst2xetex.py

• rst2xml.py

• rstpep2html.py

Usage
These scripts can be used from the command line. They expect an input from stdin 
and produce the output in stdout:

./rst2html.py <infile> > <outfile>
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Documenting source files
Unfortunately, unlike Javadoc, Docutils cannot take a .py file full of Python code 
and automatically extract the docstrings from it in order to generate documentation. 
There is a tool called Epydoc that will do this, but the project has been inactive since 
2009. A team could write a script to attempt to extract just the docstrings, but there is 
a better solution. It will be outlined in the next section.

Sphinx
Sphinx is a documentation generation tool. It began as a way to produce Python 
documentation, but it is branching out to other languages, notably C/C++. It can 
produce output in several formats, including HTML, LaTeX, ePub, man pages, and 
plain text, among others. It accepts reStructuredText and builds upon the Docutils 
suite, adding a few pieces of markup along the way.

Installation and startup
Sphinx can be installed using pip:

pip install sphinx

Installation will add several scripts to the path. The first one we will examine is 
named sphinx-quickstart. It will set up a prompt the user for information and 
then a source directory, a configuration file, and some skeleton files:

bash-4.1$ sphinx-quickstart

Welcome to the Sphinx 1.3.6 quickstart utility.

Please enter values for the following settings (just press Enter to

accept a default value, if one is given in brackets).

Enter the root path for documentation.

> Root path for the documentation [.]: docs

You have two options for placing the build directory for Sphinx output.

Either, you use a directory "_build" within the root path, or you 
separate

"source" and "build" directories within the root path.
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> Separate source and build directories (y/n) [n]: y

Inside the root directory, two more directories will be created; "_
templates"

for custom HTML templates and "_static" for custom stylesheets and other 
static

files. You can enter another prefix (such as ".") to replace the 
underscore.

> Name prefix for templates and static dir [_]:

The project name will occur in several places in the built documentation.

> Project name: Chap09

> Author name(s): Thomas Bitterman

Sphinx has the notion of a "version" and a "release" for the

software. Each version can have multiple releases. For example, for

Python the version is something like 2.5 or 3.0, while the release is

something like 2.5.1 or 3.0a1.  If you don't need this dual structure,

just set both to the same value.

> Project version: 0.1

> Project release [0.1]:

If the documents are to be written in a language other than English,

you can select a language here by its language code. Sphinx will then

translate text that it generates into that language.

For a list of supported codes, see

http://sphinx-doc.org/config.html#confval-language.

> Project language [en]:

The file name suffix for source files. Commonly, this is either ".txt"

or ".rst".  Only files with this suffix are considered documents.

> Source file suffix [.rst]:

One document is special in that it is considered the top node of the

"contents tree", that is, it is the root of the hierarchical structure
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of the documents. Normally, this is "index", but if your "index"

document is a custom template, you can also set this to another filename.

> Name of your master document (without suffix) [index]:

Sphinx can also add configuration for epub output:

> Do you want to use the epub builder (y/n) [n]:

Please indicate if you want to use one of the following Sphinx 
extensions:

> autodoc: automatically insert docstrings from modules (y/n) [n]: y

> doctest: automatically test code snippets in doctest blocks (y/n) [n]:

> intersphinx: link between Sphinx documentation of different projects 
(y/n) [n]:

> todo: write "todo" entries that can be shown or hidden on build (y/n) 
[n]:

> coverage: checks for documentation coverage (y/n) [n]: 

> pngmath: include math, rendered as PNG images (y/n) [n]: 

> mathjax: include math, rendered in the browser by MathJax (y/n) [n]: 

> ifconfig: conditional inclusion of content based on config values (y/n) 
[n]:

> viewcode: include links to the source code of documented Python objects 
(y/n) [n]:

A Makefile and a Windows command file can be generated for you so that 
you

only have to run e.g. `make html' instead of invoking sphinx-build

directly.

> Create Makefile? (y/n) [y]:

> Create Windows command file? (y/n) [y]: n

Creating file docs/source/conf.py.

Creating file docs/source/index.rst.

Creating file docs/Makefile.

Finished: An initial directory structure has been created.

You should now populate your master file docs/source/index.rst and create 
other documentation
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source files. Use the Makefile to build the docs, like so:

   make builder

where "builder" is one of the supported builders, e.g. html, latex or 
linkcheck.

Possibly, the two most important answers are concerned with autodoc and Makefile. 
The autodoc is the Sphinx extension that knows how to extract docstrings from 
Python files. This is a must for easy documentation of code. Makefile generation is 
optional. When true, Sphinx will create a Makefile to generate the output. The result 
is that the documentation generation will look like this:

make <builder>

Rather than this:

sphinx-build –b <builder> <source-dir> <build-dir>

Here, <builder> is one of the output formats that Sphinx supports. Popular 
builders are HTML, ePub, LaTeX, man, XML, and JSON. A complete list 
can be found at http://www.sphinx-doc.org/en/stable/builders.
html?highlight=builders#module-sphinx.builders.

When sphinx-quickstart is complete, the following directory/file hierarchy comes 
into existence:

(my_rpy2_zone)-bash-4.1$ ls -R docs

docs:

build  Makefile  source

docs/build:

docs/source:

conf.py  index.rst  _static  _templates

docs/source/_static:

docs/source/_templates:

http://www.sphinx-doc.org/en/stable/builders.html?highlight=builders#module-sphinx.builders
http://www.sphinx-doc.org/en/stable/builders.html?highlight=builders#module-sphinx.builders
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Specifying the source files
At this point, one could run make html, but no source files would be included.

The first step is to add the path to the source file to this project's configuration. In 
the "source" directory under the project root sphinx-quickstart created a conf.
py file. It is a full-fledged Python file with the ability to execute arbitrary code that is 
run once at build time. It contains all possible configuration values. Default values 
are present but commented out. In order to add our source files to the locations that 
Sphinx will grab files from, the following line will suffice:

sys.path.insert(0,"/path/to/dir")

There is a spot for this after the first comment block after the imports.

The next step is to specify the names and locations of the Python files to generate 
the source for. In the "source" directory under the project root sphinx-quickstart 
created an index.rst file. It should look like this:

.. Chap09 documentation master file, created by

   sphinx-quickstart on Wed Mar  9 10:51:38 2016.

   You can adapt this file completely to your liking, but it should at 
least

   contain the root `toctree` directive.

Welcome to Chap09's documentation!

==================================

Contents:

.. toctree::

   :maxdepth: 2

Indices and tables

==================

* :ref:`genindex`

* :ref:`modindex`

* :ref:`search`
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Each of the lines has a special meaning to Sphinx, but for now, we just want to 
add a module to the list of things to be documented. A minor addition using the 
automodule directive will do it:

.. toctree::
   :maxdepth: 2

.. automodule:: crt1

Now change the directory to the project root and start the build:

bash-4.1$ make html

sphinx-build -b html -d build/doctrees   source build/html

Running Sphinx v1.3.6

making output directory...

loading pickled environment... not yet created

building [mo]: targets for 0 po files that are out of date

building [html]: targets for 1 source files that are out of date

updating environment: 1 added, 0 changed, 0 removed

reading sources... [100%] index

looking for now-outdated files... none found

pickling environment... done

checking consistency... done

preparing documents... done

writing output... [100%] index

generating indices... genindex py-modindex

writing additional pages... search

copying static files... done

copying extra files... done

dumping search index in English (code: en) ... done

dumping object inventory... done

build succeeded.

Build finished. The HTML pages are in build/html.
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The resulting HTML page shows a nicely formatted version of the docstring for  
the module:

This is missing documentation for the class, so that can be added to index.rst using 
the autoclass directive as such:

.. toctree::
   :maxdepth: 2

.. automodule:: crt1

.. autoclass:: CRT
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This results in the following page:

This is missing documentation for the chinese_remainder method, so that can be 
added to index.rst using the automethod directive:

.. toctree::
   :maxdepth: 2

.. automodule:: crt1
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.. autoclass:: CRT

.. automethod:: CRT.chinese_remainder

The result is as follows:
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While flexible, this can be tedious and error-prone. One solution is to use the 
:members: attribute, like this:

.. toctree::
   :maxdepth: 2

.. automodule:: crt1
    :members:

Another is to use the sphinx-apidoc tool. The purpose of sphinx-apidoc is to 
extract the docstrings from the source files and produce .rst files from them. 
Consider this example:

bash-4.1$ sphinx-apidoc -o docs .

It will create a set of .rst files:

Creating file docs/code1.rst.

Creating file docs/code2.rst.

Creating file docs/crt1.rst.

Creating file docs/hail1.rst.

Creating file docs/modules.rst.

The files themselves are not much to look at, but they can be fed into Sphinx or other 
documentation tools that are expecting reStructuredText for further processing. This 
is especially handy when using tools that cannot extract docstrings on their own.

Summary
While inline comments and type notations are useful for developers who will be 
working on the code base, external parties need more extensive documentation, and 
need it in a more attractive format than reading the source (this is especially true 
when they do not have access to the source). This need for documentation must be 
balanced against the understandable reluctance of developers to spend a great deal 
of time and energy producing anything but code.

Python's solution is to employ a lightweight markup language, reStructuredText, 
and a toolchain (Docutils, Sphinx) to transform reStructuredText into a more 
aesthetically attractive format (for example, HTML or LaTeX).
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Aesthetics are not everything, however. Documentation must contain useful 
information in order to be worth using. Various guidelines (PEP 0008, PEP 3107, PEP 
0484, PEP 0257, Google, NumPyDoc, and others) have come into being to provide 
advice. A production project should settle for a set of guidelines before coding starts 
and stick to it. Documentation is one of those areas where even foolish consistency is 
better than none.

In the next chapter, we will take a quick tour of the Jupyter notebook. Jupyter 
provides a flexible framework to make available not just documentation but the  
code itself.
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Visiting Jupyter
A major strength of IPython is its interactive nature. It expresses this interactive 
nature in three modalities: as a terminal, through a graphical console, and as a  
web-based notebook. Most of this book has centered on the terminal, with a few 
graphical examples using a Qt-based console. In this chapter, we will look at using 
IPython as part of a web-based notebook.

The following topics will be covered:

• Introduction
• Installation and startup
• The Dashboard
• Creating a notebook
• Working with cells
• Graphics
• Format conversion

Command lines have had a long and useful tradition in software development. It 
is only recently, as GUIs have become ubiquitous, that alternative development 
environments have become viable choices.

One important family of alternatives is the Integrated Development Environment 
(IDE) – built for coders, by coders. The functionality in IDEs centers on programming 
tasks: writing, compiling, running, and debugging code. Important members of this 
family include Microsoft Visual Studio, Eclipse, and Xcode.
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The scientific community came up with a different metaphor – the notebook.  
The important tasks for scientists are different from those for programmers:

• Conducting experiments
• Gathering and recording data
• Analyzing data
• Collaboration with colleagues
• Creating demos
• Sharing results

Before computers, it was the job of the laboratory notebook to handle these 
tasks. A lab notebook has the benefit of being both structured and flexible. The 
structure comes from the notebook itself, where the pages are broken down into 
individual elements (lines or spreadsheet-like cells). The flexibility comes from the 
experimenter, who can fill in each cell with whatever is required – data, explanation, 
a graph, and so on. In a notebook, as opposed to an IDE, code is just one piece of the 
puzzle, no more or less important than the others are.

The need for an IPython-based notebook was evident from the early days of the 
project. On December 21, 2011, IPython 0.12 was released. It contained the first 
version of the IPython notebook, created by Fernando Perez, physicist and Benevolent 
Dictator For Life of the Jupyter project. As he explains in his history of the project 
(http://blog.fperez.org/2012/01/ipython-notebook-historical.html), the 
initial design of IPython itself was guided by his experiences with Mathematica and 
Sage (both scientifically-inclined, notebook-style applications).

As time went on, more features were added to IPython. Each feature required 
additional code to implement, and the repository became larger over time. 
Eventually, the IPython project grew to the point where it became clear that it was 
really several different projects sharing (parts of) a codebase. Broadly speaking, the 
major components were:

• The command line interface
• The REPL protocol
• The language kernel
• The notebook

Chapter 6, Works Well with Others – IPython and Third-Party Tools provides some 
examples of how splitting the command line interface from the kernel by using the 
REPL protocol as an intermediary allows the same interface to be used with different 
languages.

http://blog.fperez.org/2012/01/ipython-notebook-historical.html
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Chapter 3, Stepping Up to IPython for Parallel Computing, provides some details on how 
splitting out the kernel and REPL protocol enabled a parallel architecture to emerge.

This chapter will provide some examples of the power of the notebook, and how it 
relates to the other components. The move from the IPython notebook to the Jupyter 
project was probably the biggest of the reorganizations, and has been called The Big 
Split. For an in-depth look at the reasons for The Big Split, and details regarding its 
effect on various package structures, see https://blog.jupyter.org/2015/04/15/
the-big-split/.

Installation and startup
Jupyter can be installed using pip:

pip install jupyter

It can be started like this:

(my_rpy2_zone)-bash-4.1$ ipython notebook

[I 10:38:27.193 NotebookApp] Serving notebooks from local directory: /
nfs/02/wit0096

[I 10:38:27.193 NotebookApp] 0 active kernels 

[I 10:38:27.193 NotebookApp] The Jupyter Notebook is running at: http://
localhost:8888/

[I 10:38:27.193 NotebookApp] Use Control-C to stop this server and shut 
down all kernels (twice to skip confirmation).

/usr/bin/xdg-open: line 402: htmlview: command not found

console.error:

  [CustomizableUI]

  Custom widget with id loop-button does not return a valid node

console.error:

  [CustomizableUI]

  Custom widget with id loop-button does not return a valid node

1457711201438   addons.update-checker   WARN    Update manifest for 
{972ce4c6-7e08-4474-a285-3208198ce6fd} did not contain an updates 
property

Note that this has started an HTML server (called the Jupyter Notebook App)  
on port 8888. It may also (depending on your platform) start a browser pointed  
at http://localhost:8888. If not, manually start a browser and point it there. 
Jupyter can only access files in the directory it was started in (and its subdirectories), 
so take care to start it where it can access your notebook files.

https://blog.jupyter.org/2015/04/15/the-big-split/
https://blog.jupyter.org/2015/04/15/the-big-split/
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When a notebook is started, an instance of the kernel associated with it is also 
started. A list of these can be seen under the Running tab, for instance:

Closing the browser neither stops the Jupyter Notebook App nor stops the kernels. A 
kernel can be stopped using either of the following two methods:

• Using the menu item File | Close and Halt from the notebook page
• Using the Shutdown button in the Running tab

The Jupyter Notebook App itself can only be stopped by issuing the Ctrl + C 
command in the terminal in which the app was started, and then either answering y 
to a prompt, or typing Ctrl + C again.
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The Dashboard
When you are ready to start working with a notebook, choosing the Files tab should 
display the following:
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This is the Jupyter Notebook Dashboard. It looks like a file explorer because that is 
one of the things the Dashboard does – it allows access to notebook files. Opening a 
"Hello world!" notebook in the Dashboard results in the following:

A notebook file is a JSON text file with a .ipynb extension. The notebook file for the 
preceding example, HelloWorld.ipynb, is as follows:

{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {
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    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Hello world!\n"
     ]
    }
   ],
   "source": [
    "print(\"Hello world!\")"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.4.4"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 0
}
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Creating a notebook
Of course, no one writes a notebook in JSON – it is just used as a text format for 
persistence and interchange. The Dashboard can be used to create notebooks. In the 
upper-right section of the interface is a dropdown box that provides options to create 
new notebooks:
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Note that a notebook need not use Python; in this case Hy and Julia are also options. 
Once chosen (we will use Python 3 for this example), a new tab is created in which 
the following web page is displayed:

Note the green outline around the cell. This indicates that the editor is in edit mode. 
This mode is used to enter text into cells. There is also command mode, which is used 
to issue commands to the notebook as a whole.

At this point, we can enter our code into the cell, resulting in the notebook 
previously discussed, without having to edit any JSON.
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Interacting with Python scripts
A simple way to take Python code that already exists and bring it into a notebook is 
to use the %load magic in a cell:

%load <filename>.p

Running this cell will load the contents of <filename>.py into the current cell:

Running the cell again does not run the script – the point of using %load was simply 
to include the script on the page, not execute it.
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Using the %run magic runs the script and inserts its output into the notebook as the 
output of that cell:

Using a notebook with tests
A notebook full of calls to test functions can be a convenient 
and attractive way to maintain a test suite and records of its 
results over time.

Of course, if the only thing a notebook did was to allow one to display the output 
of programs on a web page, it would be of limited usefulness. The real power of 
Jupyter comes into focus when working with individual cells.
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Working with cells
Individual cells function very much like the IPython command line, with the slight 
change that hitting Enter does not cause the cell to be executed, but instead creates a 
new line to be typed on. In order to execute a cell, there are many options:

• Alt + Enter runs the current cell and inserts a new one below
• Ctrl + Enter runs the current cell and does not create a new cell
• The Cell menu item contains a list of ways to run cells, including Run All

The result of cell execution is very similar to what would be expected from the 
command line, for example:
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Note that the bottom cell contains Markdown text (http://daringfireball.
net/projects/markdown/) rather than Python code. Markdown is a plain text 
formatting syntax meant to be easily convertible to HTML. Why docstrings are in 
reStructuredText and notebook cells are in Markdown is a mystery. Luckily, they are 
fairly similar.

Fixing the error in cell 3 allows the code in the next cell to run, which highlights a 
neat feature: the notebook displays results as they become available. For the previous 
code, that means the numbers 0 through 9 will appear in order on the web page, one 
per second.

Cell tricks
Cells work a little differently than a command line, so some care should be exercised 
to avoid seemingly strange behavior. In the following sections, we outline some of 
the differences and ways in which they can be leveraged to harness the power of the 
notebook paradigm.

Cell scoping
Although cells appear to be self-contained, they actually belong to the same session. 
Such features as variable scope and loaded libraries carry over from cell to cell.

Cell execution
A cell must be executed for its contents to have any effect. It is easy to declare a 
variable in cell A, reference it in cell B, then execute cell B without executing cell A. 
This will result in a NameError, as the variable in cell A is not defined until cell A  
is executed.

Restart & Run All
The vagaries of cell execution can be confusing – development can involve 
uncoordinated changes to several cells at a time. Rather than guessing which cells to 
re-run and in what order, there is a menu item at Kernel | Restart & Run All that will 
clear the results of any previous executions, clear all output, and run all cells, starting 
at the top and working down to the last one. This execution will stop if any cell throws 
an error.

Following this pattern leads to a natural ordering of cells not too dissimilar to the 
way code is structured in a standard script – dependencies at the top, followed  
by code that uses the dependencies. Once the initial strangeness of the cell idea  
is overcome, developers should find working with a notebook familiar.

http://daringfireball.net/projects/markdown/
http://daringfireball.net/projects/markdown/
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Magics
Cells support both line and cell magics. Line magics can occur anywhere that is 
syntactically valid. Cell magics must be the first element in a cell.

Cell structure
Not all cells are created the same. We saw in the previous example how some cells 
held code, while other cells held Markdown. Each cell has a type, and the type of a 
cell determines what happens when it is executed.

Code cells
A code cell holds code. By default, the language used is Python, but support for 
a great number of languages (such as R and Julia) is already in place, and more 
are being added. Code cells work more like IDEs that use simple command lines, 
and include multiline capability, syntax highlighting, tab completion, cell and line 
magics, and support for graphical output.

Each code cell is associated with a kernel. When a code cell is executed, that code is 
sent to the kernel for execution, with the result being displayed in the notebook as 
the output for that cell.

Markdown cells
Markdown cells hold plain text that conforms to the Markdown standard. 
Markdown cells also support LaTeX notation: $...$ for inline notation and $$...$$ 
for equations meant to stand on their own. The Markdown portion is translated 
into HTML, while the LaTeX portions are handled by MathJax (a JavaScript display 
engine that supports a large subset of LaTeX).
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Raw cells
A raw cell is uninterpreted – anything typed into a raw cell is not processed by 
any engine, and arrives in the output unchanged. This allows the developer to, for 
example, provide code examples in the output without worrying that they will be 
interpreted by the notebook.

Heading cells
Heading cells are special cases of the Markdown section notation. A header cell is 
plain text, and should begin with 1-6 octothorpes (#), followed by a space and then 
the title of the section. Each additional octothorpe specifies a deeper section level.

Jupyter is moving away from heading cells – in fact, the version used 
for this chapter popped up a warning about using them that stated: 
Jupyter no longer uses special heading cells. Instead, write your 
headings in Markdown cells using # characters. The previous uses of 
heading cells for internal links and table of contents generation appear 
to be in flux at this time.

Being graphic
It would be a waste of time and energy to just use a web browser as a command line. 
The primary purpose of Jupyter is its usage as a lab notebook, which requires the 
ability to display visual information. To this end, an important feature of Jupyter is 
its seamless integration with the graphical capabilities of a browser.

This section will provide examples of using the plotting software from Chapter 7, 
Seeing Is Believing – Visualization in Jupyter. For the most part, displaying plots in 
Jupyter is easier done than said, with only minor modifications required to specify 
output to the notebook rather than IPython.
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Using matplotlib
The key to using matplotlib in a notebook is the %matplotlib inline magic. It 
should be the first line in the cell. For example:

 

The first cell (which prints Graphics are fun) is Markdown; the second cell creates 
the plot shown.
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Using Bokeh
The key to making Bokeh work with the notebook is to use the output_notebook( 
) method instead of output_file( ). For example, the following screenshot shows 
how to transform an earlier plot:
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Using R
The important thing when using R is that all the work should be done in R (or at 
least the part that actually displays the plot). If not, the plot will open in a separate 
window, rather than in the notebook. The %%R cell magic is the right tool for the job. 
In particular, the plot should be printed out, rather than using the plot( ) function. 
For example:
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Using Python-nvd3
Using nvd3 within Jupyter will explain the meaning of that obscure warning 
message from earlier:

In [3]: import nvd3

loaded nvd3 IPython extension

run nvd3.ipynb.initialize_javascript() to set up the notebook

help(nvd3.ipynb.initialize_javascript) for options

It is, if anything, even easier than writing the output to a file. The chart object can be 
invoked to display itself in the notebook. For example:
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Format conversion
The Jupyter project includes a tool for format conversion called nbconvert. It is easy 
to invoke from the command line:

jupyter nbconvert <file>.ipynb

It leaves the original <file>.ipynb alone and produces as output <file>.html.  
For example, we can transform a previous example as follows:

(Ipython)-bash-4.1$ jupyter nbconvert notebook2.ipynb 

[NbConvertApp] Converting notebook notebook2.ipynb to html

[NbConvertApp] Writing 214390 bytes to notebook2.html

(Ipython)-bash-4.1$ ls

HelloWorld.ipynb  img7.png  notebook2.html  notebook2.ipynb  
testnotebook.ipynb

This results in a 214K HTML file that displays as:
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Note that the HTML preserves the full text of the code used to produce the plot, just 
in a read-only format. This can be important when using Jupyter as a method of 
disseminating research results, as readers can see the actual code used to produce  
the graph.

Other formats
HTML is the default format for nbconvert. The complete syntax is:

jupyter nbcomvert –to <format> <notebook file>

Where <format> is described in this table:

Format Details
html Enables additional arguments:

• --template full (close to interactive view)
• --template basic (simplified HTML)

latex Enables additional arguments:
• --template article (derived from Sphinx's howto template)
• --template report (includes table of content and chapters)
• --template basic

pdf Generates PDF via LaTeX, so supports same templates
slides Generates a Reveal.js HTML slideshow
markdown Generates Markdown text
rst Generates reStructuredText
script Converts the notebook to an executable script, depending on what kernel 

was used
notebook Used to invoke preprocessors without changing the notebook's format

nbconvert also supports the creation of custom exporters, which allow the developer 
to define conversions to any format desired.
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nbviewer
The Jupyter project also provides nbviewer, a web service that allows requesters 
to view notebook files as static HTML files. In effect, nbviewer runs nbconvert on 
demand, sending the results out across an HTTP(s) connection. nbconvert can be run 
as a service on a project's own site, or a public instance can be used, as long as the 
notebook file itself has a publicly-accessible URL. There are even plugins for most 
major browsers that will run nbviewer on a URL that points to a notebook. Not every 
member of the potential audience will have IPython/Jupyter/every other kernel 
installed, but at least the results will be accessible.

Summary
The Jupyter Notebook is a flexible tool that excels in presenting scientific results, 
especially those comprised of a mixture of text, code, graphics, and computer-
generated plots. It consists of two parts: the notebook format and the Dashboard.

The notebook format is a JSON text string. JSON is a lightweight, flexible text 
protocol that makes it easy to share notebooks between collaborators.

The Dashboard contains all the tools required to build a notebook. At this level, a 
notebook is a series of cells, each of which contain either Markdown text, code, or raw 
text. Markdown is a simple text format that provides enough power to build useful 
HTML pages. Code cells can be written in any language that has a kernel which 
Jupyter supports (66+ at the last count), although the most popular language continues 
to be IPython. Raw text is for text that should not be converted before display.

Between these cell types, the developer has the ability to produce high-quality 
documents for external consumption through the Notebook. Jupyter also supports 
the conversion of notebooks into other formats, including HTML, PDF, and LaTeX, 
among others. nbviewer allows for notebooks to be dynamically converted to HTML 
so that they can be viewed by users without Jupyter or other required software.

In the next chapter, we will take a look at where IPython is likely to go in the future. 
Its past has been eventful (as evidenced by the major shakeup surrounding the split 
with Jupyter) and its future promises to contain even more change. We will look at 
several important trends in scientific and high performance computing and how they 
may affect IPython and related projects.
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Into the Future
IPython has come a long way since 2001, when Fernando Perez decided he wanted a 
better interactive environment than vanilla Python provided. In the best open source 
tradition, he wanted some functionality so he wrote some code to do it. This process 
has continued to the present day and the future of IPython looks to be filled with 
even more activity. In this chapter, we will attempt to situate IPython within the 
broader development ecosystem and try to guess where the future will take it. We 
start out at the project level and take a look at Jupyter and IPython, then take a look 
at the near future and the effect increasing parallelism will have on the field, and 
finally broaden our scope to consider the future of scientific software development  
in general.

The following topics will be covered:

• Some history
• The Jupyter project
• IPython
• The rise of parallelism
• Growing professionalism
• Summary

Some history
Some systems spring fully-conceived from a theoretical backing – Lisp is pretty 
much just a working out of John McCarthy's 1960 paper, Recursive Functions of 
Symbolic Expressions and Their Computation by Machine, Part I.
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IPython is not such a system. In 2001, Fernando Perez was a graduate student at the 
University of Colorado in Boulder. He was not a computer science major, he was 
a physics graduate student who needed to program and wanted a better tool. As 
a physicist, his idea of "better" was different from what a computer scientist might 
have envisioned. In particular, the formative influences on the young IPython was 
tools designed primarily for data analysis and presentation: Mathematica (http://
www.wolfram.com/mathematica/) and Sage (http://www.sagemath.org/).

Perez has stated that IPython is "meant to be a highly configurable tool for building 
problem-specific interactive environments," which provides a key to its history and 
future directions.

Initial efforts came at the problem from two directions. On one hand, there were 
a couple of Python extensions that already existed – IPP (by Janko Hauser) and 
LazyPython (by Nathan Gray). On the other hand, Perez had his own ideas about 
what should be implemented. In the end, IPython was born through a merger of 
code from IPP, LazyPython, and Perez's own efforts.

At this point development slowed down. A few stabs at making a notebook were 
made. Some consideration was given to merging with Sage, but in the end the 
projects went their own ways. In 2009, the first full-time developer was funded. His 
first task was a refactoring of the entire codebase, which was at that point still a mash 
of IPP, LazyPython, and Perez's original code. No new functionality was added, but 
development could move forward more easily on the newly clean code.

2010 was an important year. The first big development was the move to an 
architecture based on ZeroMQ. The adoption of ZeroMQ allowed for two important 
architectural advances: separation between the frontend and the interpreter, and 
support for parallelism.

Separating the frontend and backend was huge on several fronts. Perhaps most 
importantly, it meant that implementing a notebook was simple(r): the Notebook 
became just another interface to the Python kernel on the back end. On the flip side, the 
command-line interface was free to connect to a kernel that supported any language, 
not just Python. IPython was moving from "a better Python shell" to "a multi-interface, 
multi-language platform." Work proceeded quickly at this point: the remainder of 
2010 saw the development of a command-line interface, a Qt console, integration into 
Python Tools for Visual Studio, and a prototype web notebook. 2011 saw the prototype 
turned into a fully-working version, and IPython 0.12 was released.

http://www.wolfram.com/mathematica/
http://www.wolfram.com/mathematica/
http://www.sagemath.org/
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At this point, most of the basic functional parts of IPython were in place. The 
first IPython book, Cyrille Rossant's Learning IPython for Interactive Computing 
and Data Visualization (https://www.packtpub.com/big-data-and-business-
intelligence/learning-ipython-interactive-computing-and-data-
visualization) was released in April of 2013. IPython 1.0 followed shortly in 
August of 2013 and added nbconvert among a host of fixes. IPython 2.0 came out in 
April 2014 and added interactive HTML widgets. IPython 3.0 followed in February 
of 2015 and formalized support for non-Python kernels.

It was at this point that the codebase got too big to handle. The decision was made 
to break it up into two major sections. In one section went all the language-agnostic 
components (the Notebook, the Qt console, nbconvert, all the non-Python kernels, 
and so on). These moved into a new project called Jupyter. The Python-specific 
components (the shell, the Python kernel, and the parallel architecture) remained in 
the IPython project.

Here is a quote from the IPython homepage (http://ipython.org/):

"IPython is a growing project, with increasingly language-agnostic components. 
IPython 3.x was the last monolithic release of IPython, containing the notebook 
server, qtconsole, etc. As of IPython 4.0, the language-agnostic parts of the project: 
the notebook format, message protocol, qtconsole, notebook web application, etc. 
have moved to new projects under the name Jupyter. IPython itself is focused on 
interactive Python, part of which is providing a Python kernel for Jupyter."

The Jupyter project
This reorganization of code is reflected in the hierarchy of projects that produce it: 
IPython is now an official subproject of the Jupyter project. IPython is Kernel Zero, 
in some sense the reference kernel, but in the end just one kernel among many. There 
are still some sections of code that are shared between the projects and need to be 
separated, but this is a relatively simple technical issue.

Even after the codebases became completely separate, Jupyter will constrain the 
future of IPython due to requirements for continued compatibility. Although 
IPython can be used as an independent tool (as this book attempts to demonstrate), 
its role in the Jupyter project greatly increases its user base.

At first glance, this would seem impossible. The Jupyter project is large and contains 
more subprojects than could be comfortably listed here (see http://jupyter.
readthedocs.org/en/latest/subprojects.html for a complete list), making any 
attempt at staying compatible a nightmare. Luckily, many subprojects are completely 
independent of IPython. Not all, however, and some are worth discussing in detail 
because of their impact on IPython's future.

https://www.packtpub.com/big-data-and-business-intelligence/learning-ipython-interactive-computing-and-data-visualization
https://www.packtpub.com/big-data-and-business-intelligence/learning-ipython-interactive-computing-and-data-visualization
https://www.packtpub.com/big-data-and-business-intelligence/learning-ipython-interactive-computing-and-data-visualization
http://ipython.org/
http://jupyter.readthedocs.org/en/latest/subprojects.html
http://jupyter.readthedocs.org/en/latest/subprojects.html
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The Notebook
The Jupyter Notebook is the primary cause for the Big Split. Looking back over the 
release notes for the versions of IPython before 4.0, it is clear that a great number 
of the improvements were being made to the notebook component rather than the 
Python-specific features, or even the underlying architecture.

The Notebook itself is so big it has subprojects of its own:

• The document format (and its API, nbformat)
• nbconvert
• nbviewer

The Notebook's primary function is information display – the computation is left 
to the kernels – so it seems unlikely that compatibility issues will arise at this level. 
The notebook provides more functionality than just display, however, and more 
functionality is being added all the time, so the opportunity for compatibility issues 
to arise will persist.

The console
The console is a command-line interface that can communicate with any kernel 
that follows the Jupyter interactive computing protocol. It is not clear why a new 
terminal interface was needed, instead of just using IPython's terminal now that it 
is language-independent. They certainly look the same from a user's perspective. 
They may actually be the same, just with some IPython-specific code swapped out 
for Jupyter-compatible code. The documentation explains how to start and use the 
console, but not how it is related to IPython, if at all. A quick search on the web is no 
help, with some sites even claiming that the console is the new IPython.

Jupyter Client
The Jupyter Client package is a Python API used to start, manage, and communicate 
with kernels. IPython also follows this standard for its kernels. It specifies the 
messaging protocol that all kernels must adhere to in order to communicate with the 
notebook. The IPython kernel will certainly continue to adhere to this specification as 
the reference kernel for Jupyter.
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The future of Jupyter
Although Fernando Perez is Benevolent Dictator For Life, and there is a Steering 
Committee of 10 members, Jupyter is an open source project using a revised BSD 
license. As such, there is no authoritative list of things to do. Instead, there are 
varying levels of "officialness."

Official roadmap
At the first level are the mainline subprojects at the Jupyter GitHub site: https://
github.com/jupyter. A high-level roadmap is held at https://github.com/
jupyter/roadmap. The following table presents some highlights:

Feature Description Details
JupyterLab Initially a new page in the 

existing notebook web app that 
allows multiple plugins in the 
same browser tab

Potentially a replacement for the 
current notebook interface. A major 
project.

ipywidgets Interactive widgets that tie 
together code in the kernel and 
JavaScript/CSS/HTML in the 
browser

Improved styling. General 
refactoring. Compartmentalization 
of JavaScript.

JupyterHub Manages and proxies multiple 
instances of the single-user 
Jupyter notebook server

Configuration enhancements. 
Sharing and collaboration.

IPython Comparatively mature, so few 
major changes planned.

At a finer level of detail are the bugs listed under the Issues tag and the new features 
under the Pulls tag.

Next in line appear to be the Jupyter Enhancement Proposals (JEPs) (https://
github.com/jupyter/enhancement-proposals). According to the documentation 
(http://jupyter.readthedocs.org/en/latest/contrib_guide_bugs_enh.html) 
these are similar to bug requests in that the submitter hopes someone else does the 
work. At present, there are only four Enhancement Proposals on the site. There are 
four pull requests. None of them appear to be prominent parts of the Roadmap.

https://github.com/jupyter
https://github.com/jupyter
https://github.com/jupyter/roadmap
https://github.com/jupyter/roadmap
https://github.com/jupyter/enhancement-proposals
https://github.com/jupyter/enhancement-proposals
http://jupyter.readthedocs.org/en/latest/contrib_guide_bugs_enh.html
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Official subprojects
Official subprojects are considered part of the Jupyter project and are hosted on the 
Jupyter GitHub organization. This includes support and maintenance along with 
the rest of the Jupyter project. New subprojects come into existence in one of two 
manners: direct creation or incorporation.

Direct creation
Any Steering Committee member can create a new Subproject in Jupyter's GitHub 
repository. The only requirement is consensus among the other Steering Committee 
members.

Incorporation
Projects that have existed and been developed outside the official Jupyter 
organization, but wish to join, can be incorporated. At the very least, a software 
project should be well-established, functional, and stable before considering 
incorporation.

According to the official site (https://github.com/jupyter/governance/blob/
master/newsubprojects.md) the following criteria are used to determine suitability 
for incorporation:

• Have an active developer community that offers a sustainable model for 
future development

• Have an active user community
• Use solid software engineering with documentation and tests hosted 

with appropriate technologies (Read the Docs and Travis are examples of 
technologies that can be used)

• Demonstrate continued growth and development
• Integrate well with other official Subprojects
• Be developed according to the Jupyter governance and contribution model 

that is documented here
• Have a well-defined scope
• Be packaged using appropriate technologies such as pip, conda, npm, bower, 

docker, and so on

If the criteria are met, the potential Subproject's team should submit a pull request 
against the jupyter/enhancement-proposals repository. The Steering Council will 
evaluate the request.

https://github.com/jupyter/governance/blob/master/newsubprojects.md
https://github.com/jupyter/governance/blob/master/newsubprojects.md
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It is not clear exactly what the relationship is between a Proposal For Incorporation 
(PFI) and a Jupyter Enhancement Proposal. It is clear how they are conceptually 
different:

• A JEP is a suggestion for enhancement (for example, Issue #6 proposes 
adding more debugging/profiling/analysis tools to the Notebook). The 
suggestion itself is just that – a suggestion, not a solution.

• A PFI concerns an already-existing project that provides new functionality.

Yet both PFIs and JEPs are handled in the same repository. GitHub reports minimal 
activity in this repository.

Incubation
Incubation is the process a Subproject follows when it is not ready to be accepted as 
part of the Jupyter project yet. Incubation is for projects that are not mature enough 
for consideration as Subprojects yet. The criteria are:

• Significant unanswered technical questions or uncertainties that require 
exploration

• Entirely new directions, scopes, or ideas that haven't been vetted with the 
community

• Significant, already existent code bases where it is not clear how the 
Subproject will integrate with the rest of Jupyter

The goal of the incubation process is to allow interesting ideas to be explored quickly 
and exposed to a wide audience of potentially interested developers. As such, the 
process is lightweight compared to official incorporation.

The instructions state that new incubation proposals should involve a pull 
request to the jupyter-incubator/proposals repository. There are 
none at present. It appears that once a proposal is accepted its proposal 
is deleted and a new repository is created for it. Sometimes the original 
proposal remains in the Code tab of the proposals repository.



Into the Future

[ 336 ]

A description of some of the subprojects currently under incubation is as follows:

Name Description
Dashboards Server Renders Jupyter Notebooks as interactive dashboards 

outside the Jupyter Notebook server
Declarative Widgets Extensions to widgets
Sparkmagic A set of tools for working with Spark clusters
Dynamic Dashboards Enables the layout and presentation of grid-based 

dashboards from notebooks
Kernel Gateway Bundlers A collection of bundlers that convert, package, and deploy 

notebooks as standalone HTTP microservices
SciPy Trait Types Trait types for NumPy, SciPy, and friends, used to 

(optionally) enforce strict typing

On March 9, 2016, it was announced that the incubating Jupyter Kernel Gateway 
project was accepted as an official Jupyter project.

External incubation
As an open source project, anyone is free to start up his or her own repository and 
commit code in whatever manner they see fit. The Jupyter organization calls this 
external incubation. The only consideration for these projects is that to move from 
external incubation to official incubation they will have to adopt the licensing, 
organizational, and other criteria required to be part of the Jupyter project.

IPython
"IPython is comparatively mature, and there are consequently fewer major changes 
planned."

                                                                                         – The Jupyter project

Despite its maturity, there is still a lot of work to be done on IPython. The official 
GitHub repository (https://github.com/ipython) lists 933 open issues for the core 
of IPython, not including popular modules such as ipyparallel, ipykernel, and 
nbconvert.

The repository also contains a wiki with a roadmap (https://github.com/
ipython/ipython/wiki/Roadmap:-IPython). Unfortunately, the roadmap has not 
been updated since 2014.

https://github.com/ipython
https://github.com/ipython/ipython/wiki/Roadmap:-IPython
https://github.com/ipython/ipython/wiki/Roadmap:-IPython
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IPython used a system of IPython Enhancement Proposals (IPEPs) similar to Python 
Enhancement Proposals (PEPs) in order to organize ongoing projects. A list can 
be found at https://github.com/ipython/ipython/wiki/IPEPs:-IPython-
Enhancement-Proposals. While an interesting historical document, no IPEP has 
been modified since 2014. The sole exception is a note in IPEP 29 (project governance) 
stating that the document is now being maintained as part of project Jupyter.

A number of IPEPs are still marked as "Active", including proposals that would 
allow for custom messages and the implementation of concurrent futures (PEP 
3148) in ipyparallel. Given the generally abandoned look of the site, however, it is 
difficult to tell what the status of the IPEPs might be.

Current activity
The Big Split seems to have scrambled a lot of the more formal development 
coordination mechanisms such as the IPEP/JEP repositories and associated 
pull requests. The codebase itself continues to be healthy, but the associated 
documentation has not kept up (for example, the wiki has not been updated since 
prior to the release of 3.0, over a year ago).

The breakdown in formal management methods has not stopped progress on 
IPython. Much of the current development is being coordinated in a more informal 
manner. The IPython-dev mailing list in particular is useful (https://mail.scipy.
org/mailman/listinfo/ipython-dev).

Useful news and insight on some important scientific Python 
packages can be found by subscribing to the mailing lists 
provided at https://mail.scipy.org/mailman/listinfo.

The rise of parallelism
It is commonplace to remark that a cell phone has more computing power than the 
Apollo rocket that sent the astronauts to the Moon. It is somewhat less common to 
hear that the cell phone also costs a lot less. How did this happen? It required the 
interplay of economics and technology to bring the development community to its 
current position.

In the beginning, computers were big, slow, and expensive. Programmers were rare 
and highly skilled. It was worth spending a programmer's time to save a computer's 
time. This is the era of mainframes, assembly language, and Fortran.

https://github.com/ipython/ipython/wiki/IPEPs:-IPython-Enhancement-Proposals
https://github.com/ipython/ipython/wiki/IPEPs:-IPython-Enhancement-Proposals
https://mail.scipy.org/mailman/listinfo/ipython-dev
https://mail.scipy.org/mailman/listinfo/ipython-dev
https://mail.scipy.org/mailman/listinfo
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As time went on, computers got faster and cheaper. Programmers became  
somewhat less rare, but still commanded a premium. At some point, it became more 
cost-effective to spend the computer's time to save some programmer time. This is 
the era of PCs and high-level languages.

For a time, things were good. Computers were always getting faster, and memory 
was always getting bigger. There was no need to write efficient code because the next 
generation of computers could always handle bad code faster than this generation 
could handle good code. As a bonus, the underlying hardware was changing so 
fast that users threw out or replaced many programs after a short lifespan. Why 
put effort into writing good code when the hardware would run it fast and the user 
would throw it away in any case? Good code is expensive to write and the return 
was not there.

Then the good times came to a halt.

The megahertz wars end
Eventually processors stopped getting faster, or at least stopped getting faster as fast 
as they had previously. Physical limitations were preventing the development of 
denser circuits and higher clock speeds. A graph shows the stalling out of increased 
CPU speeds:

The preceding image is by Newhorizons msk - For CPU scaling study, CC0, 
https://en.wikipedia.org/w/index.php?curid=38626780.

https://en.wikipedia.org/w/index.php?curid=38626780
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The answer was to add more computing cores to the chip, rather than trying to make 
a single core go faster. Each core would run at the same speed, but each additional 
core meant that more than one instruction could be carried out in any given clock 
cycle. Theoretically, this meant that a 4-core machine could run programs four times 
as quickly as a single core machine, as it could execute four instructions per cycle 
rather than one.

The problem
While true in theory, the promised speedups were not observed in practice. This  
has left the development community in a bind. Three trends have coincided to  
stifle progress.

First, there is an ever-increasing number of cycles available for computation. 
This would not normally be a problem but the cycles are structured in parallel, 
so that existing programs cannot take advantage of them without significant 
rework by programmers. This has driven demand for an ever-increasing number 
of programmers to write programs that can take advantage of the new multi-core 
architectures.

Second, the number of programmers is not growing to meet the demand. Limited 
success toward increasing the size of the programmer pool has been achieved 
through efforts to make programming more accessible, but any progress is running 
up against the third trend.

Third, parallel programming is harder than serial programming. Many current 
programmers find it difficult, and it is more difficult to teach to new programmers.

A parallel with the past
To some extent, the current problem has parallels in the crisis that occasioned the 
development of Fortran all those years ago. Fortran came into existence because two 
factors collided:

• The increasing complexity of writing larger systems in machine or assembly 
language. Computers were being looked to in order to solve an increasing 
number of problems, and the programs required were growing beyond what 
those languages could support.

• Computers were getting faster. If the code could be written, the cycles were 
available to run it. There was just no economically feasible way to do it, given 
the difficulty of low-level programming.
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Initial solutions were piecemeal and pragmatic. At the lowest level, CPU instruction 
sets became more complex to allow for more sophisticated operations. Assembly 
languages (and the associated assemblers) grew in complexity to match.

In the end, the breakthrough did not come from creating increasingly baroque 
assembly-language hacks. A new conceptual framework was needed. The genius 
of Fortran (and COBOL) was to discover that framework: the compiler. With a 
compiler, the additional cycles provided by technological advances can be used to 
help tame the increased complexity of growing systems.

Not everyone was immediately convinced by this idea. Using a compiler means 
giving up control over exactly what code is being executed. For developers used to 
determining exactly where every byte was stored and when every instruction would 
be executed, this was a major break from a paradigm that had worked well for 
decades. Even worse, the code generated by compilers tended to use more memory 
and run more slowly than code written by hand. Why, when systems were getting 
bigger, would one want them to be even more bloated and slower?

In the end, compilers (and the high-level languages they enable) won out over 
hand-coded assembly for all but the most demanding applications. The code that 
compilers generated became better and better, to the point that only highly skilled 
specialists can compete. More importantly, high-level languages opened the field 
to more concise, sophisticated ways to express algorithms. It turned out that using 
some cycles to help build the program was more important than using those cycles 
to make the program run faster.

The present
This brief history lesson is included because the author believes it illustrates the state 
of the parallel/HPC field at present. In particular, the parallel "revolution" is at the 
stage prior to the invention of the compiler. Consider the similarities.

Problems are getting bigger and harder
HPC problems are getting larger. Consider the "NSF Advisory Committee for 
Cyberinfrastructure Task Force on Grand Challenges Final Report (2011)" (https://
www.nsf.gov/cise/aci/taskforces/TaskForceReport_GrandChallenges.pdf). 
This report defined Grand Challenges (GC) as "fundamental problems of science 
and engineering, with broad applications, whose solution would be enabled by high-
performance computing resources." Although the time frame for solutions to GCs is 
measured in decades rather than years, they are selected because of their relevance to 
applications. The breakthroughs involved in a solution to any GC would be expected 
to have important immediate economic impacts.

https://www.nsf.gov/cise/aci/taskforces/TaskForceReport_GrandChallenges.pdf
https://www.nsf.gov/cise/aci/taskforces/TaskForceReport_GrandChallenges.pdf
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Here are some examples of a few GCs listed in the report:

• Global climate change prediction
• Virtual product design
• High-temperature superconductors
• Simulation of complex multiscale, multiphysics, multi-model systems
• Large-scale simulation-based optimization
• Exascale computing
• New numerical algorithms

Computers are becoming more parallel
At lower levels of computing (PCs, most enterprises), parallel computing is being 
driven by chip manufacturers. Each new version of the x86 architecture seems 
to include more cores, and GPUs are stretching the definition of "core" itself. For 
the most part, this has not had a great impact on most uses of the PC: e-mail, web 
surfing, word processing, and the like. The primary class of application that can 
use all this power is games. Games have traditionally led the other sectors of PC 
applications in terms of utilizing the platform, so this is not unexpected.

The cutting edge of parallelism is in HPC. There is a race on in the HPC community 
to be the first to exascale computing. Exascale computing refers to a computing 
system capable of sustained calculation of at least one exaFLOPs (1,018 floating point 
operations per second). The only practical way to achieve this is to build a massively 
parallel machine. There is enough money behind the effort:

• The U.S. National Strategic Computing Initiative is an executive order 
funding research into exascale computing

• The European Union is funding the CRESTA, DEEP, and Mont Blanc projects
• The RIKEN Institute in Japan is planning an exascale system for 2020
• The U.S.'s Intelligence Advanced Research Projects Activity organization 

is working on cryogenic technology to enable exaflop machines based on 
superconducting technologies

• India's Centre for Development of Advanced Computing is hoping to build 
an exascale machine by 2017
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Clouds are rolling in
Another approach to parallelism is the cloud. While less tightly coupled than the 
traditional HPC architecture, a cloud can provide many more processing units at any 
given time. This architecture is a good fit for algorithms that can be structured so that 
communication between processors is minimal. Many clouds also have the benefit 
that they are publically accessible and relatively cheap to use (especially compared to 
the cost of running a supercomputer center). Some notable public clouds include:

• Amazon Web Services (https://aws.amazon.com/)
• Google Cloud Platform (https://cloud.google.com/)
• Microsoft Azure (https://azure.microsoft.com)

While IPython already provides a solid basis for parallel computing in a traditional 
architecture (see Chapters 3, Stepping Up to IPython for Parallel Computing and  
Chapter 4, Messaging With ZeroMQ and MPI for details), there are efforts underway to 
support the new cloud platforms. While there is no official distribution for a cloud 
architecture at present, the following pages should provide enough information for 
the curious to get an instance of IPython/Jupyter up-and-running on a cloud:

• Amazon Web Services (EC2): https://gist.github.com/
iamatypeofwalrus/5183133

• Google Cloud Platform (using a Dataproc cluster): https://cloud.google.
com/dataproc/tutorials/jupyter-notebook

• Azure: https://azure.microsoft.com/en-us/documentation/articles/
virtual-machines-linux-jupyter-notebook/

There is no Big Idea
One quintillion operations a second is a lot of computing power. There are some 
algorithms (the embarrassingly parallel ones such as brute-force cryptography 
and genetic algorithms) that can use that sort of power without special treatment. 
Most other algorithms need to be adapted to use these many parallel computing 
units. Currently, there is no well understood, widely accepted way, analogous to a 
compiler for serial programs, to write such parallel programs. Several approaches are 
actively being pursued.

Pragmatic evolution of techniques
It is not that no one can program in parallel at all. There is a wide variety of tools 
available: monitors, semaphores, threads, shared memory models, data flow 
dependency analysis, MPI, and so on. These tools and concepts do represent 
progress in writing software that can take advantage of parallel architectures.

https://aws.amazon.com/
https://cloud.google.com/
https://azure.microsoft.com
https://gist.github.com/iamatypeofwalrus/5183133
https://gist.github.com/iamatypeofwalrus/5183133
https://cloud.google.com/dataproc/tutorials/jupyter-notebook
https://cloud.google.com/dataproc/tutorials/jupyter-notebook
https://azure.microsoft.com/en-us/documentation/articles/virtual-machines-linux-jupyter-notebook/
https://azure.microsoft.com/en-us/documentation/articles/virtual-machines-linux-jupyter-notebook/
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The difficulty comes from their patchwork nature. Knowing which tool applies 
when and how to use it is more of an art than a science. The situation is analogous 
to the end of the assembly language era: some developers can do amazing things 
with these tools, but not many, and it is becoming apparent that continued ad hoc 
progress will not be enough.

Better tools
Another approach is to empower the programmer by giving them better tools. 
This approach has synergies with the pragmatic evolution approach, in that new 
techniques often require new tools to make them easy to work with, and new tools 
can spur the development of new techniques. There are multiple sections in the 
Grand Challenges paper devoted to tools. The paper calls out several in particular, 
including compilers, debuggers, and development environments.

IPython has one foot squarely planted in this approach. To use IPython (with 
Python) is to sacrifice some level of performance for other benefits: a high level 
of abstraction, multi-language support, a friendly IDE, and all the other features 
detailed in this book. It is in some way a bet – the cycles spent running IPython 
will outweigh the ones lost to a less efficient final product. Given that the power of 
the tools available is the difference between creating a working product at all, and 
producing one that doesn't work, this looks to be a safe bet.

To the extent that IPython is a tool for interactive parallel computing, its future 
looks secure, if unclear. The future is secure to the extent that, as new techniques 
are developed, IPython (and the Jupyter organization as a whole) is well situated to 
integrate them into itself. It is unclear in that no one knows what techniques will be 
developed in the future.

Because of the ongoing growth in parallel computing, learning IPython is not a 
matter of memorizing some syntax and working through a few koans. IPython will 
grow and evolve over the next few decades in a way that will require developers to 
regularly update their knowledge of the field, in addition to adopting new versions 
of the tool.

The Next Big Idea
It may be that, between evolving new techniques and improving tools, the 
community will arrive at a satisfactory framework for developing parallel systems. If 
history is any guide, however, an entirely new paradigm (similar to the change from 
hand-coding assembly language to compiling a high-level language) will be needed.
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As an example, consider Notre Dame de Paris. In outline, it sounds a great deal like a 
software project:

Source image: https://commons.wikimedia.org/wiki/File:Notre_Dame_dalla_Senna.jpg

Notre Dame was built over the course of ~182 years (1163 AD - ~1345 AD) under at 
least four different architects. It was in continuous use from its earliest days, despite 
ongoing construction. Although there was a plan at the outset, important features 
(including some of the famous flying buttresses) were added over time as construction 
difficulties uncovered a need for them. It is a remarkable feat of engineering.
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What makes it even more remarkable is that, in a very real sense, nobody involved 
really understood what they were doing. The underlying physical laws that justified 
the architectural decisions were not understood until Newton, almost 350 years later. 
Until Newton, all architectural knowledge was a result of trial and error – decisions 
about wall thickness, height, the ability to bear loads, arch height/width, and all 
other structural parameters were made based on the accumulated results of past 
experiment and the architect's own judgement.

This does not make their decisions wrong – obviously, they could build quite large, 
stable, and aesthetically pleasing buildings. What it does mean is that they had strict 
limits to what they could accomplish. As buildings got larger, there were fewer 
previous examples to rely on, and the costs of failure grew.

Software development for massively parallel machines shares this problem. We 
have a lot of experience building smaller parallel systems, and some for larger 
degrees of parallelism, but the problems (and the costs of failure) are growing. What 
the field needs is something similar to the Principia – a unified theory of parallel 
programming. We need the Next Big Idea.

Until the Next Big Idea comes along, the scientific software development community 
can advance by adopting some practices from the field of software engineering.

Growing professionalism
"A scientist builds in order to learn; an engineer learns in order to build."

                                                                                                    – Fred Brooks

What scientists do and what engineers do is different. Scientists are concerned with 
extending knowledge, engineers with applying it. When a scientist builds something, 
its purpose is fulfilled when the desired knowledge is gained – at that point, the 
useful life of the object is over. When an engineer builds something, a long useful 
lifetime is the purpose of applying the knowledge.

Much scientific software is written by scientists for scientific purposes. It is no 
surprise that it is often considered expendable once the knowledge it was written to 
produce has been extracted. While this approach produces immediate results, other 
researchers in the field who would also wish to use the software often find it difficult 
to use, maintain, and extend.
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As problems and budgets get larger, funding agencies are starting to require that 
software be developed so that its lifetime is longer than a single project. This enables 
the cost of writing the software to be recouped over multiple projects. Writing 
software with such a lifetime takes more of an engineering mindset, and belongs 
to the field of software engineering. We take a brief look at the National Science 
Foundation's approach in the next section.

The NSF
The National Science Foundation has published a vision for the future of software 
development under the title Cyberinfrastructure Framework for 21st Century Science 
and Engineering (CIF21) (see http://www.nsf.gov/funding/pgm_summ.jsp?pims_
id=504730). From the document:

The overarching goals of CIF21 are:

Develop a deep symbiotic relationship between science and engineering  
users and developers of cyberinfrastructure to simultaneously advance  
new research practices and open transformative across opportunities  
all science and engineering fields.

Provide an integrated and scalable cyberinfrastructure that leverages  
existing and new components across all areas of CIF21 and establishes  
a national data infrastructure and services capability.

Ensure long-term sustainability for cyberinfrastructure, via community 
development, learning and workforce development in CDS&E and 
transformation of practice.

(Emphasis and wording in the original).

The vision as a whole is very broad, and includes several key strategies:

• Forming communities to identify common needs and set standards between 
scientific domains

• Training and retaining a qualified workforce in scientific computing
• Conducting foundational research in cyberinfrastructure itself
• Building a sustainable infrastructure (both physical and organizational) to 

support progress and collaboration

http://www.nsf.gov/funding/pgm_summ.jsp?pims_id=504730
http://www.nsf.gov/funding/pgm_summ.jsp?pims_id=504730
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The key for our purposes is "leverages existing and new components," and "long-term 
sustainability for cyberinfrastructure." Under CIF21, the NSF will expect quality in all 
phases of the development process, from analysis and design through implementation 
and including testing and documentation. This is from the Vision Statement (http://
www.nsf.gov/cise/aci/cif21/CIF21Vision2012current.pdf):

"Investments will also target domain-specific programming to establish paradigms 
for verification, validation, uncertainty quantification, and provenance to ensure 
trustworthy and reproducible scientific findings."

The only way to ensure this sort of quality is to create and maintain extensive 
test suites and documentation (both internal and external). As this book has 
demonstrated, IPython (and Python with it) contains tools to ease the writing of test 
suites and documentation. As a tool for programmers, IPython provides both the 
flexibility of interactive development and the ability to test and document the results.

Software Infrastructure for Sustained Innovation
The CIF21 initiative is large enough that it requires several programs to implement 
its various goals. The program that focuses on software development is the Software 
Infrastructure for Sustained Innovation - SSE & SSI (aka SI2, see http://www.nsf.gov/
funding/pgm_summ.jsp?pims_id=503489&org=NSF). This is from the site:

"NSF has established the Software Infrastructure for Sustained Innovation (SI2) 
program, with the overarching goal of transforming innovations in research 
and education into sustained software resources that are an integral part of 
the cyberinfrastructure… NSF expects that its SI2 investment will result in 
trustworthy, robust, reliable, usable and sustainable software infrastructure that is 
critical to achieving the CIF21 vision and will transform science and engineering 
while contributing to the education of next-generation researchers and creators of 
future cyberinfrastructure."

In his keynote talk at the 2016 SI2 PI Workshop, Rajiv Ramnath, Program Director of 
SI2, made the following points:

Software (including services) essential for the bulk of science:

About half the papers in recent issues of Science were software-intensive

Research becoming dependent upon advances in software

http://www.nsf.gov/cise/aci/cif21/CIF21Vision2012current.pdf
http://www.nsf.gov/cise/aci/cif21/CIF21Vision2012current.pdf
http://www.nsf.gov/funding/pgm_summ.jsp?pims_id=503489&org=NSF
http://www.nsf.gov/funding/pgm_summ.jsp?pims_id=503489&org=NSF
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Wide range of software types: system, applications, modeling, gateways, 
analysis, algorithms, middleware, libraries

Significant software-intensive projects across NSF: e.g. NEON, OOI, NEES, 
NCN, iPlant, etc.

And:

Software is not a one-time effort, it must be sustained:

Development, production, and maintenance are people intensive

Software life-times are long vs hardware

Software has under-appreciated value

See http://cococubed.asu.edu/si2_pi_workshop_2016/
ewExternalFiles/2016-PI-Meeting-PD-Presentation-2016-02-15-20-49-
Compressed.pdf for the entire presentation.

Both of these points support the primary strategy of the SI2 project, to Enable A 
Sustainable Software-Enabled Ecosystem for Advancing Science.

Put another way, the community should start treating software the same way it 
treats any other experimental apparatus because so much science is riding on it. For 
software to be useful in the way that, say, a Bunsen burner is useful, it should meet 
several criteria:

Criteria Description IPython's role
Trustworthiness The program should be correct Supports testing at all levels. 

Easy visualization of results.
Transparency Others should be able to inspect 

and verify the program
Internal documentation support.

Reproducibility Others should be able to run the 
same program on the same data 
and obtain the same result

IPython is supported on many 
platforms. Support for external 
documentation. Jupyter is built 
for reproducibility by providing 
both data and code.

Maintainability A program should be easy to 
update as the environment around 
it changes

Support for unit and regression 
testing.

Extendibility It should be easy to add additional 
functionality over time

Support for unit and regression 
testing, modules, object 
orientation.

http://cococubed.asu.edu/si2_pi_workshop_2016/ewExternalFiles/2016-PI-Meeting-PD-Presentation-2016-02-15-20-49-Compressed.pdf
http://cococubed.asu.edu/si2_pi_workshop_2016/ewExternalFiles/2016-PI-Meeting-PD-Presentation-2016-02-15-20-49-Compressed.pdf
http://cococubed.asu.edu/si2_pi_workshop_2016/ewExternalFiles/2016-PI-Meeting-PD-Presentation-2016-02-15-20-49-Compressed.pdf
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Criteria Description IPython's role
Longevity The useful life of the program 

should be long
IPython/Jupyter has a large 
and active user and developer 
community.

Summary
IPython belongs to the Jupyter project. From their inception, both IPython and 
Jupyter have been very opportunistic and pragmatic about their features – if a 
feature seemed like a good idea to the Steering Committee, it became part of the 
project. This has both good and bad aspects. On the good side, any useful advance 
in programming is likely to be incorporated into the project. On the down side, it 
makes predicting where the project is going difficult. About the only sure bet is that 
the project will continue to be active, given its large and growing popularity.

The technological and economic infrastructure supporting coding means that  
further advances in performance and scaling will result from increased reliance  
on parallel computing, whether the tightly coupled traditional architecture, or the 
more loosely coupled cloud style. In either case, IPython is well situated to follow  
the field as it advances.

In a wider view, scientific computing is reaching the end of disposable code: the 
phase where a small group of gifted developers could hack together enough code to 
get a result and then toss it and write a completely new system to compute the next 
result. The results are too important, the systems are too big, and the dollar amounts 
too high, to support this model at the highest level any longer.

This is to some extent a reflection of the crisis looming in software. We are coming 
to the limits of the systems that can be built using our current techniques. Even 
the most professional, best-funded software organizations (such as Microsoft and 
Google) routinely struggle to put out large products without too many serious bugs 
(and open source is not the answer).

Until someone discovers the Next Big Thing in software development, scientific 
software has room to grow in terms of system size and quality. It can only do this by 
adopting software engineering techniques from professional software development 
houses. In order to adopt these techniques, the right tools are needed. It has been the 
goal of this book to show that IPython is indeed a valuable tool that can aid scientific 
software developers in the production of better, more professional code.
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