Mastering Mobile
Forensics

Develop the capacity to dig deeper into mobile device
data acquisition

PACKT

ww.allitebooks.co

http://www.allitebooks.org

Mastering Mobile Forensics

Develop the capacity to dig deeper into mobile device
data acquisition

Soufiane Tahiri

open source

community experience disfilled
PUBLISHING
BIRMINGHAM - MUMBAI

[FM-1]

[vww allitebooks.cond

http://www.allitebooks.org

Mastering Mobile Forensics

Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: May 2016
Production reference: 1250516

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham B3 2PB, UK.

ISBN 978-1-78528-781-7

www . packtpub. com

[FM-2]

[vww allitebooks.cond

www.packtpub.com
http://www.allitebooks.org

Credits

Author
Soufiane Tahiri

Reviewer
Michael Yasumoto

Commissioning Editor
Julian Ursell

Acquisition Editor
Rahul Nair

Content Development Editor
Trusha Shriyan

Technical Editor
Taabish Khan

Copy Editors
Sonia Mathur

Sneha Singh

[FM-3]

Project Coordinator
Shweta H Birwatkar

Proofreader
Safis Editing

Indexer
Hemangini Bari

Graphics
Kirk D'Penha

Disha Haria

Jason Monteiro

Production Coordinator
Aparna Bhagat

Cover Work
Aparna Bhagat

[vww allitebooks.cond

http://www.allitebooks.org

About the Author

Soufiane Tahiri is an independent computer security researcher and science
enthusiast from Morocco, who specializes in .NET reverse code engineering and
software security. He has an interest in low-level techniques and in recent years
he has developed an interest in computer and smartphone forensics. He has been
involved in IT security for more than 10 years and has dozen of publications and a
lot of research in different computer security fields under his name.

I owe my deepest gratitude to a lot of people, including my family
and my friends.

This book is for my dad, Abdelkebir; I know how proud you are of
me but I want you to know how proud I am of you; you've always
been an engine for me, I love you. My mom, Halima; thank you
for your unconditional love and support, I love you, and this book
is for you. My sisters Soundous, Kaoutar, and Souad for always
supporting and telling me that they are proud of me, I love you.

I would also like to thank all my friends, especially Mounir, who
does not miss a chance to encourage me and to tell me that I can
achieve this and who bought me candies so I'd have sufficient
energy while I was writing this book, thank you brother, you are the
best. Also a big thank you to Youssef for his daily encouragement
and for giving me all the support I needed, you are my big bro. I
also want to thank Simohamed Ghannam, Ayoub Faouzi, Kamal,
Abdelouahed, and all the others whom I have not have listed here.

I want to tell all of you that I feel proud of this achievement because
of your help, support, and love. Thank you all.

[FM-4]

[vww allitebooks.cond

http://www.allitebooks.org

About the Reviewer

Michael Yasumoto is the CEO at Deadbolt Forensics, a digital forensics consulting
company located in Portland, Oregon. He is a digital forensics examiner for attorneys
and private companies and has testified as an expert witness in court. He is also

an instructor for AccessData, teaching mobile forensics to law enforcement, both
domestically and abroad.

Michael holds a bachelor's degree in chemistry from the University of Washington
and a master's degree in computer science from the George Washington University.
Some of his forensic credentials include Certified Computer Examiner (CCE),
X-Ways Professional in Evidence Recovery Techniques (X-PERT), EnCase Certified
Examiner (EnCE), AccessData Certified Examiner (ACE), Cellebrite Certified Mobile
Examiner (CCME), and AccessData Mobile Examiner (AME).

[FM-5]

[vww allitebooks.cond

http://www.allitebooks.org

www.PacktPub.com

eBooks, discount offers, and more

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www. PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at customercare@packtpub.com for more details.

At www . PacktPub. com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

[a] PACKT

https://www2.packtpub.com/books/subscription/packtlib

@

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?

* Fully searchable across every book published by Packt
* Copy and paste, print, and bookmark content

* On demand and accessible via a web browser

[FM-6]

[vww allitebooks.cond

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
http://www.allitebooks.org

Table of Contents

Preface \
Chapter 1: Mobile Forensics and the Investigation Process Model 1
Why mobile forensics? 2
Smartphone forensics models 4
Computer Forensic Investigation Process 5
Digital Forensic Research Workshop 6
Abstract Digital Forensics Model 7
Integrated Digital Investigation Process 7
End-to-end digital investigation process 11
Systemic Digital Forensic Investigation 12
Smartphone forensics challenges 14
Operating systems' variety and changeability 15
Important hardware variations 15
Different filesystems 16
Built-in security 16
Encrypted data wiping 16
Data volatility 17
The cloud 17
Summary 17
Chapter 2: Do It Yourself — Low-Level Techniques 19
Getting acquainted with file carving 20
Carving the JPEG format 20
Carving the ZIP format 24
Extracting metadata — GPS analysis 27
String dump and analysis 39

[i]

[vww allitebooks.cond

http://www.allitebooks.org

Table of Contents

Encryption versus encoding versus hashing 44
Encryption 45
Symmetric key encryption 45
Public key encryption 48
Encoding 51
ASCIl and UNICODE/UTF-8 52
URL encoding 54
Hashing 55
Decompiling and disassembling 57
Summary 62
Chapter 3: iDevices from a Forensic Point of View 63
The iOS architecture 64
The iOS filesystem 66
iOS platform and hardware security 67
Identifying stored data 70
iOS acquisition and forensic approaches 76
iOS boot process and operating modes 76
Unique device identifier 77
Lockdown certificate 78
iOS acquisition 80
Normal/direct acquisition 83
Logical acquisition 84
Physical acquisition 90
iOS artifacts recovery — evidence gathering and data recovery 98
Artifact recovery using iPhone Analyzer 105
Artifact recovery using MOBILedit! Forensic 110
It's going biometric! 116
Third-party applications 117
Summary 123
Chapter 4: Android Forensics 125
Android OS - all you need to know 126
Android security model 129
Full disk encryption 131
KeyChain and KeyStore 133
Application security 133
Application sandboxing and permissions 133
Security Enhanced Linux — SELinux 136
Application signing 136

Lii]

[vww allitebooks.cond

http://www.allitebooks.org

Table of Contents

Bypassing security 137
Bootloader/recovery mode 139
Rooting an Android device 143
Cracking a lock pattern 146
Cracking a PIN/password 149

Android logical data acquisition 156
Logical data acquisition using ADB 156
Logical data acquisition using AFLogical OSE 165

Android physical data acquisition 168
Analyzing the acquired image using Autopsy 173

JTAG and chip-off forensic examinations 177

Third-party applications and a real case study 181

Summary 192

Chapter 5: Windows Phone 8 Forensics 193

Windows Phone 7 versus Windows Phone 8 193

Windows Phone 8 internals 194
Partitions and the filesystem 199

MainOS volume 200
User Data volume 202
Removable User Data 205
Application data storage 206

Windows phone 8 security models 207
Windows Phone 8 Secure Boot 207
Windows Phone 8 application security 209
Windows Phone data protection 211

Device access and security policies 212
BitLocker and hardware encryption 213

Windows Phone logical acquisition 215
Windows Phone logical acquisition using MOBILedit! Forensic 8.2 216
Windows Phone logical acquisition using Oxygen Forensic Suite 2014 220
Sideloading contacts and appointments acquisition agent 225
WP Logical implementation 233
Windows Phone cloud acquisition 235

Cloud acquisition using Elcomsoft Phone Breaker 236
Cloud acquisition using Passware Password Recovery Kit Forensic 238

JTAG and physical acquisition 241

Artifact location and user PIN study 247

Summary 255

[iii]

[vww allitebooks.cond

http://www.allitebooks.org

Table of Contents

Chapter 6: Mobile Forensics — Best Practices 257
Presenting a mobile forensics process 258
Mobile device identification 277

Physical characteristics 277
Device info 278
Service provider 280
Summary 281
Appendix: Preparing a Mobile Forensic Workstation 283

Index 293

[iv]

Preface

It's not a secret that mobile devices have evolved dramatically from being those
fateful boxes to extremely advanced brains; their names have also changed from
phones to smartphones.

Mobile devices are getting as powerful as personal computers and they can do
almost any task that we might need on a daily basis, such as taking and sharing
photos and videos, sending and receiving e-mails, checking your bank balance and
making bank transactions, social networking, managing tasks and reminders, and so
on. Any mobile phone is a huge repository of sensitive data related to its owner and
given the pace at which mobile development is progressing, there is no doubt that
the need for forensic examination of these devices is on the rise too.

Mobile forensics is a set of scientific methodologies with the goal of extracting

digital evidence in a legal context. Extracting digital evidence means recovering,
gathering, and analyzing data stored within the internal memory of a mobile phone.
Mobile forensics is a continuously evolving science, which involves permanently
evolving techniques and presents a real challenge to the forensic community and law
enforcement due to the fast and unstoppable changes in technology.

There are a huge number of mobile device models that are in use today and new
models are manufactured every five months, and most of them use closed operating
systems, thus making the forensic process much more difficult. This book gives the
forensic community an in-depth look at mobile forensic techniques by detailing
methods of gathering evidence from mobile devices running on Android, iOS, and
Windows Phone.

[v]

Preface

What this book covers

Chapter 1, Mobile Forensics and the Investigation Process Model, talks about the
importance of smartphone forensics in our continually growing digital world.
We will then describe smartphone forensic models and how they have evolved
with time. We will also point out challenges that today's investigators face in the
smartphone forensics evidence acquisition process.

Chapter 2, Do It Yourself - Low-Level Techniques, covers the techniques used to carve
files and to manually extract GPS data, and explains how things are in there at a low
level. This chapter will also cover some techniques that extract strings from different
objects (for example, smartphone images) and it will also describe the basics of
reverse engineering smartphone applications.

Chapter 3, iDevices from a Forensic Point of View, provides an overview of the forensic
approach of an iOS device. We will introduce iOS architecture components and
filesystems. This chapter will indicate the methodologies, techniques, and tools used
to acquire evidence from iOS devices. It will also point out the difference between
different modes (DFU and recovery), introduce the jailbreaking concept, and discuss
the biometric aspect of iOS devices.

Chapter 4, Android Forensics, brings to light some important points about Android OS
internals, filesystem, data structures, and security models. It will also discuss how it
is possible to logically and physically acquire an Android device. We will also take

a look at the JTAG and chip-off techniques; this chapter will also explain how to
bypass lock screens, security, and encryption. In this chapter, we will discuss a real
case of forensic analysis of a third-party application.

Chapter 5, Windows Phone 8 Forensics, introduces Windows Phone 8. In the first part of
this chapter we will see the main difference between WP7 and WP8 and then, in the
upcoming section, we will go through Windows 8 internals and describe WP8 security
models and their implementation. This chapter also describes the WP filesystem, and
then we will go through the steps to logically acquire a Windows Phone 8 device; we
will also describe WP PINs and hardware encryption. Finally, we will cover evidence
location in the Windows Phone registry and analyze Windows Phone PINs.

Chapter 6, Mobile Forensics — Best Practices, will go beyond the technical aspects

of smartphone device forensics and introduce you to some of the best practices

of recovering digital evidence from a mobile device under forensically sound
conditions. This chapter will describe the methodology of the forensic process used
for mobile devices and will present guidelines for specific activities in the handling
of digital evidence.

Appendix, Preparing a Mobile Forensic Workstation, will show you how to prepare a
mobile forensics workstation based on Santoku Linux.

[vi]

Preface

What you need for this book

This book is designed to help the reader use different operating systems (Windows
and Linux) and also covers various forensic approaches and techniques on iOS,
Android, and Windows Phone through freeware, open source, and commercial
software. The content is organized to let any reader perform a forensic investigation
on most popular smartphone operating systems. Most topics are introduced from
basic or intermediate level to in-depth. Across the chapters, the reader is always
linked to the software used and, if needed, to the webpages that have more details
about a given topic. This book is not in any way meant to be a form of advertising for
the commercial tools used.

Who this book is for

This book is for mobile forensics professionals who have experience of handling
forensics tools and methods. This book is designed for skilled digital forensic
examiners, mobile forensic investigators, and law enforcement officers.

Conventions

In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLSs, user input, and Twitter handles are shown as follows:
"The res directory is the directory used to store application resources."

A block of code is set as follows:

for i = 1 to Nr-1 stepsize 1 do
SubBytes (state) ;
ShiftRows (state) ;
MixColumns (state) ;
AddRoundKey (state, round key[i]) ;
end for

Any command-line input or output is written as follows:

adb shell pm path com.facebook.lite

[vii]

Preface

New terms and important words are shown in bold. Words that you see on the
screen, for example, in menus or dialog boxes, appear in the text like this: "After
opening the software, click on Open File."

% Warnings or important notes appear in a box like this.
i

Al

Q Tips and tricks appear like this.

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about
this book —what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedbackepacktpub. com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the color images of this book

We also provide you with a PDF file that has color images of the screenshots/
diagrams used in this book. The color images will help you better understand

the changes in the output. You can download this file from https://www.
packtpub.com/sites/default/files/downloads/MasteringMobileForensics
ColorImages.pdf.

[viii]

www.packtpub.com/authors
https://www.packtpub.com/sites/default/files/downloads/MasteringMobileForensics_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringMobileForensics_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringMobileForensics_ColorImages.pdf

Preface

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books —maybe a mistake in the text or
the code —we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy

Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyrighte@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions

If you have a problem with any aspect of this book, you can contact us at
questionse@packtpub.com, and we will do our best to address the problem.

[ix]

http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Mobile Forensics and the
Investigation Process Model

Smartphone forensics is a relatively new and quickly emerging field of interest
within the digital forensic and law enforcement community. Today's mobile devices
are getting smarter, cheaper, and easily available to the common man for daily use.

Mobile forensics are a set of scientific methodologies with the goal of extracting digital
evidence (in general) in a legal context. Extracting digital evidence means recovering,
gathering, and analyzing the data stored within the internal memory of a mobile phone.
Mobile forensics is a continuously evolving science, which involves permanently
evolving techniques; it presents a real challenge to the forensic community and law
enforcement due to the fast and unstoppable changes in technology.

To investigate the growing number of digital crimes and complaints, researchers have
put in a lot of effort to develop the most affordable investigative model; in this chapter,
we will place emphasis on the importance of paying real attention to the growing
market of smartphones and the effort put in this area from a digital forensic point of
view in order to bring about the most comprehensive investigation process.

This chapter will be oriented towards the importance of smartphone forensics in
our continuously growing digital world; then, we will describe some smartphone
forensic models and how they evolved through history. We will also be pointing out
the challenges that today's investigators face in the smartphone forensics evidence
acquisition process.

This chapter will cover the following topics:

* Why mobile forensics?
* Smartphone forensics models

* Smartphone forensics challenges

[11]

Mobile Forensics and the Investigation Process Model

Why mobile forensics?

The promptly evolving mobile phone industry has reached an unimaginable peak
and smartphones will definitely replace computers, since a lot of those tiny devices
are becoming as powerful as personal computers.

On a daily use basis, each smartphone is a huge repository of sensitive data related
to its owner. Nowadays, smartphones are used to perform almost any task that we
need to do, starting from the "traditional" tasks involving sending and receiving of
calls, short text messages, and e-mails to more complex ones, such as geolocation,
balance checking, making bank transactions, and managing tasks and reminders.
Given the pace at which development is progressing, the need for forensic
examination is as well. Data contained within modern devices is continuously
becoming richer and more relevant, which is partly due to the exploding growth and
the use of mobile applications and social networks. In addition to this, all mobile
phones are now capable of storing all kinds of personal information and usually
even unintentionally.

According to ABI research (https://www.abiresearch.com/market-research/
product/1004938-smartphone-technologies- and—markets/), which is a
technology market intelligence company, at the time of writing this book there are
more than 1.4 billion smartphones that are in use; more than 798 million of them are
running on Android, more than 294 million are running Apple's iOS, and more than
45 million are running Windows Phone, which represents a growth rate of 44% for
2013 according to the same source.

In its report, Cisco states (http://www.cisco.com/c/en/us/solutions/
collateral/service-provider/visual-networking-index-vni/white paper
c11-520862.html) that an average smartphone user will make five video calls and
download 15 applications each month.

If we refer to data given by Nielsen Informate Mobile Insights, (http://www.
nielsen.com/us/en/insights/news/2014/smartphones-so-many-apps--so-

much-time.html) in the US, Android and iPhone users spent 30 hours and 15
minutes using apps on their smartphones in Q4 2013, and this amount of time is not
decreasing, as shown in the following chart:

[2]

https://www.abiresearch.com/market-research/product/1004938-smartphone-technologies-and-markets/
https://www.abiresearch.com/market-research/product/1004938-smartphone-technologies-and-markets/
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white_paper_c11-520862.html
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white_paper_c11-520862.html
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white_paper_c11-520862.html
http://www.nielsen.com/us/en/insights/news/2014/smartphones-so-many-apps--so-much-time.html
http://www.nielsen.com/us/en/insights/news/2014/smartphones-so-many-apps--so-much-time.html
http://www.nielsen.com/us/en/insights/news/2014/smartphones-so-many-apps--so-much-time.html

Chapter 1

| 10 | 23.3
En
Qa4 2011

NUMBER OF APPS @ TIME PERPERSON (HH:MM)

30:15

26.5 26.8

Q4 2012 Q4 2013

In the Q4 2013, users used 28.8 applications and spent 30 hours, 15 minutes on them.

All this advancement has a lot of benefits for sure, but without any doubt it

represents new challenges to law enforcement as cybercrime and digital complaints
continue to grow. This issue was raised by the Federal Bureau of Investigation
(FBI) and the Internet Crime Complain Center (http://www.ic3.gov/media/
annualreport/2014_IC3Report.pdf). In 2014, the total number of complaints
received is 269,244 and all statistics are huge, as shown here:

Median Dollar Loss
for Complaints
Reporting Loss

$530

Total Complaints
Received in 2014

269,422

Complaints
Reporting a Loss
123,684

Average Dollar Loss
for Complaints
Reporting Loss

$6,472

Average Dollar Loss
Overall

$2,971

Number of Visitors to www.ic3.gov
55,619,935

Total digital complaints and digital complaints loss as given by the FBI Internet Crime Complaint Center

[31]

http://www.ic3.gov/media/annualreport/2014_IC3Report.pdf
http://www.ic3.gov/media/annualreport/2014_IC3Report.pdf

Mobile Forensics and the Investigation Process Model

So, why is mobile forensics important? Simply because acquiring a smartphone
means acquiring a person's everyday life in terms of data. Some proactive acquisition
approaches are gaining place in a criminal context not only after a crime, but also
when people violate regulations and laws, such as preventing terrorist attempts,
crimes against states, and pedophilia.

Today's smartphones contain all kinds of evidence stored as heterogeneous data
generated from the hardware and the software constituting the device. Categorizing
this data is quite important; in order to produce some kind of evidence classification,
only a well-driven mobile forensic approach can help us make the correct correlation
between data, data type, and evidence type. (refer to Chapter 6, Mobile Forensics — Best
Practices, for more details)

The importance of mobile forensics is established and cannot be denied in this age of
information where every single byte matters.

Smartphone forensics models

Given the pace at which mobile technology is growing and the variety of
complexities that are produced by today's mobile data, forensics examiners face
serious adaptation problems, so developing and adopting standards makes sense.

The reliability of evidence depends directly on the adopted investigative processes;
choosing to bypass or bypassing a step accidentally may (and will certainly) lead to
incomplete evidence and increases the risk of rejection in the court of law.

Today, there is no standard or unified model adapted to acquire evidence from
smartphones. The dramatic development of smart devices suggests that any forensic
examiner will have to apply as many independent models as necessary in order to
collect and preserve data. There are a lot of proposed forensic models and reviewing
each one of them will be a colossal task. In the following paragraphs, I'll be presenting
some of them without pretending that the selected models are the best. The following
models are sorted chronologically, starting from the earliest model established.

[4]

Chapter 1

Computer Forensic Investigation Process

Historically, back in 1984, the FBI and many other law enforcement agencies began
modeling the examination of digital evidences based on the earlier versions of
computers, and the first digital forensic process model was Computer Forensic
Investigation Process (CFIP). CFIP was first presented in 1995 by M. M. Pollitt (M.
M. Pollitt. (1995). Computer Forensics: An Approach to Evidence in Cyberspace), and this
model focuses exclusively on the result, in other words the model focuses principally
on data acquisition and how reliable and legally acceptable this data is.

The Computer Forensic Investigation Process model is conducted in 4 stages:

Admission as
Evidence

Acquisition |dentification Evaluation

CFIP model

Acquisition is a technical problem, which is not free from the legal aspect, and

data acquired must answer three main questions: what can be sized, from whom,
and from where can it be sized. This means that digital evidence must be acquired
in an acceptable manner with the necessary approvals from concerned authorities.
This stage is followed by the Identification phase; as in this model, this phase is
subdivided in to a three step process: defining the physical form of data, defining
the data's logical position, and then placing this data (evidence) in its correct context.
Digital evidence follows the path shown here:

: Logical
Physical Context Co%tex‘t Legal Context
eqg. Media Data Information Evidence

Digital evidence Identification process

The Evaluation stage consists of placing the gathered data in its proper context

and this is as legal as a technical task. At this point of the forensic process, we can
determine if the acquired information is relevant and can be described as legitimate
evidence in the case being investigated or not. Finally, the Admitting process
includes admitting the extracted data as legal evidence and presenting it in the court
of law.

[51]

Mobile Forensics and the Investigation Process Model

Digital Forensic Research Workshop

In 2001, the first Digital Forensic Research Workshop (DFRWS) (http://www.
dfrws.org/2001/dfrws-rm-£final.pdf) was held to produce and define a scientific
methodology to drive digital forensics to produce a reliable framework (it's dubbed
as Investigative Process for Digital Forensic Science) to drive the majority of digital
investigation cases, and the result was a six stage linear process. Each step or stage is
defined as a category or class and each class has candidate methods belonging to that

category.

Identification —J’
Preservation —\ll
Collection T’

Examination —J’
Analysis j/

Presentation — Decision

Investigative Process for Digital Forensic Science (DFRWS)

As seen in the preceding diagram, the DFRWS model starts with the Identification
stage, which is subdivided to tasks such as event detection, signature resolving,
profile detection, anomalous detection, complaints, system monitoring, and audit
analysis. This stage is followed by Preservation, which is a candidate for four

tasks; they are setting up case management, managing technologies, ensuring a
chain of custody, and time synchronization. Collection comes next, as the third
phase in which data is collected according to approved methods, using approved
software/hardware and under legal authority; this phase is also based on lossless
compression, sampling, data reduction, and data recovery techniques. After
collection, comes Examination, which is directly followed by the Analysis phase,
where very important tasks are performed and evidences are traced, validated,

and filtered. Data mining and timeline analyses are done as well. At this stage, the
hidden and encrypted data is discovered and extracted. The stage that comes after
this is Presentation, in which documentation, clarification, expert testimony, mission
impact statement, and recommended countermeasures are presented. However, this
model is open to criticism regarding the use of the collection and preservation stages
and if one is an actual subcategory of the other.

[6]

http://www.dfrws.org/2001/dfrws-rm-final.pdf
http://www.dfrws.org/2001/dfrws-rm-final.pdf

Chapter 1

Abstract Digital Forensics Model

Being a more generic framework, DFRWS inspired researchers in the US Air Force

in 2002 to present the Abstract Model of the Digital Forensic Process (M. Reith, C.
Carr & G. Gunsh. 2002. An Examination of Digital Forensics Models) or Abstract Digital
Forensics Model (ADFM), which is meant to be an enhanced DFRWS model with
adding three more stages added to the existing process: Preparation, Approach
Strategy, and Returning Evidence, leading to the following nine phases:

| Identification |_J
| Preparation I———\b
| Approach Strategy |_\L
| Presemvation I"_‘ib
[colecion |-
| Examination I'___\L
1 Analysis |—‘|’
| Presentaton |—y

| Returning Evidence |

Abstract Digital Forensics Model

The actual added value of this model is the introduction of the pre/post-
investigation approaches, before any exercise and after identifying the type of

the incident: preparing tools, techniques and searching warrants, and securing
management support, followed by the approach strategy, which is meant to
dynamically establish an approach to collect the maximum amount of evidence
without impacting the victim. However, this phase is criticized for being a duplicate
of the second stage, since preparing to respond to an incident will likely end

with preparing for an "approach strategy". Lastly, returning evidence shows the
importance of safely storing evidence removed from the scene in order to return it
back to the owner.

The Abstract Digital Forensics Model ignored the importance of chain of custody,
but authors of this model assumed that a chain of custody is obviously maintained
through an investigation process and is implied in any forensic model.

Integrated Digital Investigation Process

In 2003, Brian Carrier and Eugene H. Spafford (Carrier, B., & Spafford, E. H. 2003.
Getting Physical with the Digital Investigation Process. The International Journal of
Digital Evidence) introduced an Integrated Digital Investigation Process (IDIP),
which is an integration of digital forensics to physical investigation; it's a framework
based on the available processes of physical crime scene investigation.

[71

Mobile Forensics and the Investigation Process Model

The main idea of this model is to consider a digital crime scene as a "virtual crime
scene" and to apply adapted crime scene investigation techniques. This model is
macroscopically composed of five stages, consisting microscopically of 17 stages.

The following diagram shows the five macroscopic stages of an IDIP model:

b Physical Crime Scene .
- % Deployment Phases Investigation Phases Review Phase

Digital Crime Scene
Investigation Phases

The five macroscopic stage of IDIP model

Physical and digital crime scenes are processed together and digital forensics are fed
into a physical investigation.

The Readiness Phase ensures that human competences and technical infrastructures
are able to fully carry the whole investigation process; this stage is subdivided into
two phases:

Operation Readiness: This involves the preparation of adequate training and
equipment for the personnel who will investigate the crime scene.

Infrastructure Readiness: This phase aims to ensure data stability

and integrity, for as long as the investigation process takes. This phase
may include, for example, hashing files, securely storing evidence, and
maintaining a change management database.

The first stage is followed by Deployment phase, the goal of this stage is to provide
a mechanism to detect and confirm an incident, and this stage is also subdivided in
to two phases:

Detection and notification: Concretely, this phase triggers the start of the
investigation process where the incident is detected and the appropriate
people are notified.

Confirmation and authorization: Once a crime or incident is confirmed, in
this phase, authorization must be received to fully investigate the digital
crime scene.

[8]

Chapter 1

The Physical Crime Scene Investigation Phase which come after the first phase,
is when the investigation itself begins with the goal of collecting and analyzing
the physical evidences to reconstruct actions that first took place. This stage

is subdivided into six phases that are typical to real cases' post-physical crime

investigation process and are described in the following diagram:

Preservation Phase

Survey For physical

Evidence

Document Evidence and
Scene

Search for Physical
Evidence

Physical Crime Scene

Reconstruction

Presentation of the
Complete Theory

Physical Crime Scene Investigation

This stage is followed by a similar stage of a digital context focusing on digital
evidence within a "virtual" digital environment. The Digital Crime Scene
Investigation Phases follows the previously presented path by considering any
smartphone (or other digital device) as a separate crime scene.

Preservation of digital
Scene

Survey For Digital Evidence

Document Evidence and
Scene

Search for Digital Evidence

Digital Crime Scene

Reconstruction

Presentation of Digital
Scene Theory

Digital Crime Scene Investigation

[o]

Mobile Forensics and the Investigation Process Model

It is subdivided into the following phases:

Preservation of Digital Scene: In this phase, the investigator must pay
attention to maintaining data integrity, meaning that at this level, the digital
scene must be secured in order to avoid any external interference that could
alter the evidence.

Survey For Digital Evidence: Depending on the case being investigated, this
phase aims to collect the obvious evidence related to that case, and it should
occur in a controlled environment (a forensic lab, for instance) using a replica
of the original crime scene.

Document Evidence and Scene: The documentation phase involves
documenting every acquired evidence during the conducted analysis,
and using cryptographic hashing techniques such as MD5 or SHA-1 is
recommended to keep a trace of evidence integrity. This phase does not
substitute the final forensic report.

Search for Digital Evidence: The collection phase involves a deeper digging
and more in-depth analysis of what was found in the previous phase and
focuses on a more specific and low-level analysis of the digital device
activities. Deleted file recovering, file carving, reverse engineering, and
encrypted file analysis are some examples of techniques that can be applied
at this stage.

Digital Crime Scene Reconstruction: All digital evidence acquired is put
together in order to define at what point we can trust or reject the collected
evidence and to determine if further analysis is required and if a search for
digital evidence should be resumed in the case of any missing parts of the
whole puzzle.

Presentation of Digital Scene Theory: This phase documents and presents
the findings of the physical investigation team in the case the investigation
was not performed by the same team.

The final stage of the whole model is the Review Phase, and it is a kind of self-
criticism in which the whole process is reviewed to determine how well the
investigation process went right or wrong and to detect the improvement points.

This model presents many similarities with the previously presented models and can
easily be considered as an enhanced model of both; nevertheless, the IDIP model is
way too abstract and the interaction between physical and digital investigations may
not be applicable in many cases.

[10]

Chapter 1

End-to-end digital investigation process

By the same year, that is, 2003, Peter Stephenson (Stephenson, P. 2003. A
Comprehensive Approach to Digital Incident Investigation) reviewed the DFRWS
framework and translated it into a "more" practical investigative process dubbed

as the End-To-End Digital Investigation (EEDI) process by extending the existing
process into nine stages. It's called end-to-end because in his model, Stephenson
considers that "every digital crime has a source point, a destination point, and a path
between those two points".

The model itself is schematized as follows:

Collecting
evidence j'
Analysis of
individual events
Preliminary
correlation
Event
normalization
Event
deconfliction
Second level
correlation
Timeline
analysis
Chain of evidence
construction i

| Corroboration I

The basic End-to-End Digital Investigation process

EEDI can be considered as a layer applied to the DFRWS model. Depending on the
cases, the whole EEDI process is applied to each class of the DRFWS model (refer

to the diagram in the Digital Forensic Research Workshop section). This model defines
the critical steps to be performed in order to correctly preserve, collect, and analyze
digital evidence. In the Collecting Evidence phase, primary and secondary evidence
is collected and taken in their respective contexts. The context here is related to

an event's time sensitivity, which brings us to the second step of this process,
Analysis of Individual events, where each individual event is isolated and analyzed
separately to determine how it can be tied with other events and to consider the
potential value it can add, or they can add, to the overall investigation. This is
followed by the Preliminary Correlation step, in which individual events are linked
with each other to determinate a primary chain of evidence in order to determine
what happened, when, and which devices were involved.

[11]

Mobile Forensics and the Investigation Process Model

Event normalization is a step that mainly aims to remove redundancy in evidentiary
data assuming that the same events can be reported separately from different sources
using multiple vocabularies. As an extension to the normalization, irrespective of
how and from where they were reported, the same evidentiary events are combined
into one evidentiary event in the Event deconfliction step; at this stage, all the events
and evidentiary events are refined and a Second level correlation can be performed.
The previously outlined steps result in a timeline, which is defined in the Timeline
analysis step. The timeline analysis is an iterative task, which lasts as long as the
investigation lasts. The Chain of evidence construction can begin based on the
result of the timeline of events; theoretically, a coherent chain is developed when
each evident will lead to the other and this is what is meant to be done in this step.
The last phase of this model is Corroboration, where digital investigators support,
strengthen, and confirm each evidence, within the chain of evidences previously
developed, with other independent or traditional events and evidence collected in
the case of a digital forensic investigation being conducted with the support of a
group of investigators outside the digital forensic unit.

Systemic Digital Forensic Investigation

In 2004, four models were developed: the Enhanced Integrated Digital Investigation
Process, invented by Baryamureeba and Tushabe containing 21 phases; Séamus

O Ciardhudin presented an Extended Model of Cybercrime Investigation with

13 activities to follow; followed by a six phase Hierarchical, Objective-based
Framework that was invented by Beebe and Clark. The same year, Carrier and
Spafford announced the Event-based Digital Forensic Investigation Framework
and detailed the 16 phases to follow.

Approximately each year, at least one new forensic model is developed and
according to the pace at which the digital world rises, researchers keep trying to give
birth to "the perfect" forensic model.

Considering the space allocated to this chapter, I will jump directly to 2011; A.
Agarwal, M. Gupta, S. Gupta, and S. C. Gupta came up with the Systemic Digital
Forensic Investigation (SRDIFM) model (A. Agarwal, M. Gupta, S. Gupta, and S.
C. Gupta. Systematic digital forensic investigation model). This model is similar to most
of the previously presented models; it has common phases and some specific phases
adapted to the model requirement. SRDIFM is composed of 11 phases: preparation,
securing the scene, survey and recognition, documentation of the scene, shielding,
volatile and non-volatile evidence collection, preservation, examination, analysis,
presentation, result, and review.

[12]

Chapter 1

The following diagram schematizes the model:

ra

Securing the
Scene

Survey &
S i)

Recognition

Preparation

Result

Presentation

— Analysis

Capturing the Timeling According to the Country Digital ForensiclLaw

Documentation of
Scene

L

Communication
Shielding

L

Evidence
Collection

l

Presernvation

e

L

Examination

Phases of Systematic Digital Forensic Investigation Model (SRDFIM)

The first step of this model is Preparation, which is before the process of
investigation and involves obtaining prior legal authorization. An initial
understanding of the case will be investigated in order to prepare the adequate

human and technical resources before going any further in the process of

investigation. It's followed by Securing the Scene this phase aims principally to
keep data integrity intact and to minimize possible data corruption. The Survey
and Recognition phase comprises of tasks to elaborate an initial plan to collect

and analyze evidence where, potential sources of evidences must be identified,
including sources other than the main smart device itself; for example the presence
of a personal computer in the scene means that there is a chance to find smartphone
related data synchronized with it.

[13]

vww allitebooks.conl

http://www.allitebooks.org

Mobile Forensics and the Investigation Process Model

The next phase is known as Documentation of Scene, in which crime scene mapping
is done and every electronic device within the scene is documented; this includes

the device itself, its power adaptor, external memory cards, cradle, and everything
else related to the device. Before starting evidence collection, Communication
Shielding is important in order to be sure that there is no risk of damaging the
current evidence; RF isolation, Faraday shielding, or cellular jammers are usually
used to isolate devices from interacting with the environment. Now Evidence
Collection comes into the picture; differentiating volatile and non-volatile collection
is important and requires proper guidelines. At this phase, for example, investigators
must maintain the device if it's turned on and running out of battery, otherwise
imaging the device memory must be done quickly and properly using appropriate
tools.

Next is the Preservation phase, wherein the evidence is securely stored and the
device is properly packaged and transported. The collected evidence is analyzed
and filtered; the integrity of data must also be guaranteed and the use of the hashing
function to confirm this is conducted in the Examination step. The Analysis phase
comes just after and is kind of an examination extension. In this phase, a more
technical review is conducted based on the results of the previous phase; at this
stage, the more advanced research is done, such as hidden data analysis, data
recovery, and file decryption. The results of this phase must be documented to help
in the achievement of the final reports that will summarize the whole process in the
Presentation phase. Finally, the Result phase, just like in the IDIP model, is meant to
be an open door to review the result of the whole process in order to find any points
for improvements.

The SRDIFM model is interesting as it's more practical and presents some flexibility,
which is not necessarily found within the other models; however, by adding more
phases, the model increases the timeline of the process and its complexities.

Smartphone forensics challenges

Unlike a traditional computer forensics investigation, mobile forensics skills become
much solicited in today's investigations because of many facts that make gathering
digital evidence from a smartphone a painful task. This can be due to the changes
occurring in mobile-based operating systems, the diversity of standards, technology
of data storage, and procedures of data protection. In contrast to a computer
investigation, a mobile investigation can hardly be standardized. Per each single
device model, and according to services it makes available to its owner, a very big
range of evidence categories is distinguished in mobile forensics.

[14]

Chapter 1

Storage and the wide range of daily growing functionalities make today's smartphones
a rapidly changing and challenging environment for forensic investigators.

The most challenging aspects of smartphone forensics are discussed in the following
sections.

Operating systems' variety and changeability

In contrast to computers, major smartphone operating systems can vary significantly
from one smartphone to another; each Android, iOS, WP, or Blackberry version can
be found in any smartphone and tablet on the market. Operating system updates are
very frequent among vendors and major updates are usually released every quarter.
The main issue regarding this is keeping up with these environment changes; this
issue is accentuated by the fact that major OS and forensic tools developers consider
their respective developments trade secret and do not release information regarding
the low-level working of their codes.

In addition to this, the growth of "less common" operating systems, such as Windows
Phone requires lot of forensic experience.

Important hardware variations

By definition, a smartphone is a portable device and is meant to have a wide set of
functionalities. The hardware architecture of smartphones is significantly different
from computers and it also varies from one mobile manufacturer to another.

A smartphone device is typically composed of a microprocessor, main board,
ROM and RAM memories, touch screen and/or keyboard, radio module and/or
antenna, display unit, microphone and speakers, digital camera, and GPS device.
The operating system is stored in general in a ROM and can be flashed or updated
according to the hardware or operating system.

The same manufacturer usually produces highly customized operating systems

to fit hardware specifications. Depending on phone providers, manufacturers

may customize the same device to suit the demand. The replacement cycle for
smartphones and customers' smartphone upgrades are the shortest relative to other
devices, thus forensic examiners must have hundreds of adapters and power cords
based on the type of hardware.

[15]

Mobile Forensics and the Investigation Process Model

Different filesystems

Different operating systems and different hardware means different ways of storing
data and running different filesystems. The same application running under Android,
for example, is way different from its similar application running under iOS.

A variety of file formats and data structures are adopted depending on the
manufacturer; this fact significantly complicates the decoding, parsing, and carving of
information.

This difference in filesystems means that forensic tools are not able to process some
files and must be updated very frequently in order to assume OS updates, otherwise
forensic examiners might have to process data and device images manually.

Built-in security

A smartphone's built-in security features are present at many levels to protect user
data and privacy. User locks in today's smartphones can vary from simple four-

digit PINs to more complex and long passcodes, as it may consist of pattern-locks;
the newest smartphone models can even have fingerprint locks and use biometrics

to identify the user. It's true that some commercially available tools offer password
extraction or lock screen bypassing, but this is not available for every device.

Some smartphones (with or without the help of third-party applications) can offer
password protection to individual files, file types, or directories; in this case, sensitive
data such as SMS, e-mails, and photos can be individually protected. Newer OS
versions offer full-disk encryption, which can be a real pain to decrypt in a scenario
of data acquisition. Smartphone operating systems also offer application sandboxing,
meaning that every individual application cannot directly access the space allocated
to another application or to system resources, thus each application is installed in its
own sandbox directory; this way, data within the sandbox is guaranteed some level
of protection.

Encrypted data wiping

Data wiping is not data deletion; wiped data cannot be recovered or be recovered
easily. Encrypted data can be wiped with a variety of methods depending on the
smartphone configuration; data can be wiped via desktop managers or after entering
a wrong password for a predefined number of times. Encrypted data can be wiped
remotely in most modern smartphones: Blackberry devices can be remotely wiped
via BlackBerry Enterprise Server, iPhone devices via iCloud, Android devices can be
wiped via Google Sync, and Windows Phone devices via the Find My Phone service.
At this point, the isolation phase of mobile forensics is important.

[16]

Chapter 1

Data volatility

A lot of important evidentiary data resides within a smartphone in a volatile way,
which adds an important consideration while seizing a device. Smartphones add this
constraint to forensic examiners; seized devices must be kept turned on and isolated
to prevent data loss or overwriting present data.

The cloud

For the sake of memory, storage space saving, or for back-up purposes, today's
devices store lot of important data on the cloud; e-mails, photos, videos, files, notes,
and so on are not necessarily preserved within the internal memory of the device,
especially relatively old data.

Most vendors offer some GBs free of charge in order to achieve this and data, in
most cases, is automatically synchronized with some account in the cloud. Android
data is sent to Google, iPhone data is sent to iCloud, and Windows Phone data is
synchronized with OneDrive. In addition to this, some third-party services are

also offered to a certain point free of charge, such as Dropbox. In some cases,
gathering evidence is not necessarily a technical task but also, and above all, a legal
one, as demands must be addressed by cloud storage services for us to receive the
desired data.

Today's climbing necessity of advanced smartphone forensic skills is indisputable,
and smartphone investigation has become more challenging, tools are rapidly
outdated, and the scope they cover in each case is smaller. Analysis, coding, and
understanding and handling low level techniques are now "must have" skills for
today's smartphone investigators and are, nowadays, more important than ever.

Summary

There are a huge number of mobile device models in use today, and almost every
five months new models are manufactured, and most of them use closed operating
systems, making forensic process difficult. Our goal is to bridge the gap by giving to
the forensic community an in-depth look at mobile forensics techniques by detailing
methods on how to gather evidence from mobile devices with different operating
systems and how to use the appropriate model.

[17]

Mobile Forensics and the Investigation Process Model

Seeing the daily increase in the use of smartphone, the unwilling-to-stop
development of today's smartphone capabilities, and given the pace at which this
development occurs, the forensics professionals, law enforcement, and researchers
were and still are in need of producing a standardized framework to follow to
assure a well driven investigation. Researches in this scope are not yet done, thus
improvement is continually done to keep responding to permanent challenges
offered by smartphone manufacturers and mobile operating systems vendors. In this
chapter, we showed the importance of smartphone forensic field and discussed some
models and frameworks applied in order to correctly lead forensic investigation
cases. This chapter also discussed major smartphone forensic challenges, in an effort
to help bypass some of the previously presented challenges when commercially
available forensic tools cannot deal with some files or file types.

In the next chapter, we will see some low-level techniques that can be applied to
gather forensically important evidences independently of the available forensics
tools, operating systems, or device subjects of the eventual investigation.

[18]

Do It Yourself — Low-Level
Techniques

In the continuously evolving environment of the mobile world, digital forensic
examiners can neither always nor exclusively rely on commercially available tools.
The ability to handle low-level techniques is a must. In this chapter, we will go deep
into some commonly used techniques to carve files, manually extract GPS data, and
explain how things are at a lower level. This chapter will also cover some techniques
for extracting strings from different objects (for example, smartphone images), and
will describe the basics of applying reverse engineering on smartphone applications.

We will look at the following topics in this chapter:

Getting acquainted with file carving
Extracting metadata - GPS analysis

String dump and analysis

Encryption versus encoding versus hashing

Decompiling and disassembling

So let's get started with file carving!

[19]

Do It Yourself - Low-Level Techniques

Getting acquainted with file carving

Digital Forensic Research Workshop (DFRWS) defined data carving as the process of
extracting a collection of data from a larger dataset. Applied to a digital investigation
case, file carving is the process of extracting "data" from unallocated filesystem space
using the file type inner structure, and not filesystem structure, which means that the
extraction process is principally based on file types' headers and trailers.

Basically, all data gathered from a smartphone is always in the form of a file. In the
digital world, each file is a block of stored binary digits, and each file type is defined
depending on how these digits are stored — the use of extensions in file names is
meant to easily and precisely determine the file's generic type. This is not a reliable
approach since eyes, and even computers, can be fooled just by renaming the files.
This leads us to a more advanced approach based on an analysis of the inner file
structure in order to determine the actual file type. Each file type contains a kind of
unique signature — constants within their inner file structures that constitute what
we call magic numbers. Thus, we will take advantage of magic numbers to extract
valuable files from smartphone ROMs or unallocated space.

In the scope of smartphone forensics, some file types are more valuable than others,
and we will focus on some of the obvious ones like photos, videos, and audios.

One of the most famous file type for images is JPEG; the acronym stands for

Joint Photographic Experts Group. Technically, JPEG is not a file type but a file
compression algorithm, the resulting stream of which is stored and exchanged using
a number of file format standards. The most important and widely used file formats
are JFIF, which stands for JPEG File Interchange Format (it is now being replaced by
SPIFF) and which is commonly used to exchange JPEG compressed streams over the
web, and the Exif (Exchangeable image file format), the format commonly used by
digital cameras and smartphones today.

JPG and JPEG represent the same type of file format for storing
%\ digital images. There is no actual difference between a . jpeg file
’ and a . jpg file.

Carving the JPEG format

Just like a file and any other digital object, every JPEG file has a header and a trailer,
which are binary values equal to 0xFF\ 0xD8 and 0xFF\0xD9 respectively. A JPEG file
contains several bits of binaries data translated as 0xFFxx, which are called markers.

[20]

Chapter 2

The marker 0xFF\0xD8 means Start of Image (SOI), and 0xFF\ 0xD9 means End

of Image (EOI); these are the only markers that are not followed by data. All

other markers are followed by 1 byte representing the marker number, 2 bytes
representing the data size, and n bytes representing the data itself. Technically, each
marker has the following binary format:

OxFF + 1 byte + 2 bytes + n bytes

Sometimes, a start of stream marker is placed after data description markers in order
to start an image stream.

The following is a basic/ generic JPEG file format:

| e

Marker Number Data size DATA
FF?7? 777 PPR.LP?

Marker Number Data size DATA
FF?7? 777 PPR.LP?

Start of Stram
(S0S) Marker
FFDA

Data size DATA
777 PPR.LI?

Figure 1: Basic JPEG file format structure

In our forensic context, the marker that interests us, in addition to the SOI and EOI
markers, is the application marker (APP?) used to embed information, such as the
device used to take the photo, the device configuration, thumbnails, and GPS data,
if present. There are many APP markers; JFIF uses the APP0 binary equivalent

to 0xFF\0xE0, and to avoid conflicts, Exif uses the APP1 marker, equivalent to
0xFF\0xEl. The APP1 marker is present in the binary form within a JPEG file,

as follows:
APP1 Marker
FFE1

Figure 2: Exif marker location

[21]

Do It Yourself - Low-Level Techniques

So, as seen in the preceding diagram, Exif data comes directly before the start of
image marker, which shows that the current file is actually a JPEG one. Please note
that xxxx represents the Exif data size followed by 0x45\0x78\0x69\0x66, which
is the ASCII form of Exif, then 2 bytes of x00, and then the actual Exif data. Exif
data is a real repository of forensically important data. It contains the original file
thumbnail, characteristics of the device used to take the picture, GPS locations, and
so on.

Based on what we've learned till now, let's try to extract a valid image from an
Android ROM (which can be downloaded from https://sourceforge.net/
projects/namelessrom/files/n-2.1/n7100/nameless-5.1.1-20151107-n7100-
NIGHTLY.zip/download) file. At this stage, all we need is a hexadecimal editor —you
can use whichever one you like, I'll be using WinHex.

In the following steps, we will open a compressed system partition (system.new.
dat) with our hexadecimal editor, and try to carve a valid JPEG file:

1. In the opened file, we will look for the sequence SOI APP1 marker (Figure 2),
which is FFD8FFEL, as you can see in the following screenshot:

§ 8 6 7 B8 8 5 C b E T
)0 00 00 40 00 00 00 00 OO g 00 00
O 30 Ul O 08 a0 o0 40 d b 4d
@0 0O O OO Q4 B3 1B 1B B3 1B 1B
iR BY 1R 1B iR ED 75 o4 49 00
= - ! P - L
‘ Find Hex Values x| e g
3 — €0 54 €1
A 00 00 00
i Tha fodowirs e valuss wil e saarched A .00 00
ol |lFrosreEl vl 0
basssero | of |/eroai :
d5FBEI0 & e 2y waldcand: | 3F
02598641 [1
Dizw
:::—aass:é R
12598660 | O Cord.: ofsstmod 512 | = looBe oo o0 00
n2s 0 Saarch in block: oy 12 44 75 &3 &3
25 7 Sasrch in &l open windows .FF El 03 8F &8
2 7 Lint maewch s, upi 2 [EF B2 65 2F &3
2 £ oo 3c 3F 78 70
|
i € 3D 22 EF BE BF
2 " o Cancel | 4P Hep | 170 43 65 62 63
4 2y %5 £4 22 AF

Figure 3: Location of SOI and APP1 markers inside a system partition

[22]

https://sourceforge.net/projects/namelessrom/files/n-2.1/n7100/nameless-5.1.1-20151107-n7100-NIGHTLY.zip/download
https://sourceforge.net/projects/namelessrom/files/n-2.1/n7100/nameless-5.1.1-20151107-n7100-NIGHTLY.zip/download
https://sourceforge.net/projects/namelessrom/files/n-2.1/n7100/nameless-5.1.1-20151107-n7100-NIGHTLY.zip/download

Chapter 2

2. The image starts from the offset 0x259B65C. Starting from this offset, let's
search downwards for the trailer of the image 0xFFD9:

Cffset a1 2 3 4 5 & 7 g a
02521660 | DR SE 2R 57 3C 1E E4 07 DO D4
025n1670 27 34 DD 00 EBE 36 Be 1& 36 Cl
025R1680 (01 F5 E3 19 9A CO DB 82 86 F9
02521620 D& 24 RO 42 50 21 7F Bl -0
025n16R0 08 00 00 80 34 22 44 44 68 RS

[RS N]

Figure 4: Location of EOI marker

3. The image ends in the offset 0x25A1697; a simple offset subtraction
(0x25A1697 - 0x259B65C = 0x603B) gives us the file size (in decimal,
24,635 bytes).

4. Now let's define and extract the block containing your file. From the WinHex
menu, navigate to Edit | Define Block | Edit, and then copy the block into a
new file. Give your carved file a name with extension. jpg, and note that it's
actually 24 KB in size:

=] carved jpg - Visionneuse de photos Wind... [=[a] x]

Fichier * Imprimer * Envoyer Graver ¥ Quvrir ¥ (7]

4 x 360
Taille: 24,0 Ko

Figure 5: Carved image

[23]

Do It Yourself - Low-Level Techniques

Carving the ZIP format

The previous example was a demonstration when the conditions are perfect, in
which the file was easily identified and was contiguously allocated.

In the forensics investigation context, there are some common file type targets of

file carving, such as: pictures (JPG, PNG, BMP, and so on), videos(MP4, AVI, MOV,
3GP, and so on), audio files (MP3, WAV, WMA, and so on), office documents (DOC,
DOCX, XLS, XLSX, PPT, PPTX, PDF, and so on), application databases and web
content (HTML, SQLite, and so on), compressed archives (ZIP, 7z, RAR, and so on),
execs, logs, and more. To successfully and completely carve a valid file, uniquely
identifiable start and final data blocks are required, and the file must be contiguously
and sequentially allocated. But this is not the case in several practical cases,
especially when we are willing to manually recover wiped files, which is beyond the
scope of this section.

If you paid enough attention to Figure 3, you might have noticed an interesting entry
named PK:

0259B5D0 | 2 . x ||pE 80 07 30 SIDATSEc~”--bi
Find Hex Values
0259BSE0 3 30 €0 54 C1 1 £ E G
0259B5F0 A 69 off 00 00 00 8 § v
02598600 O The following hex values will be searched: 03 off 0A 00 00 IENDSB],EK
Figure 6: PK location from Figure 3
Location of the PK entry
02598600 |00 49 45 4E 44 AE 42 60 82|50 45 03 040k 00 00 IENDEE",PR
02598610 |08 00 00 80 34 22 44 D3 4E 43 3& 3D &0 00 00 3D €4"DCNC:=" =
02598620 |60 00 00 34 00 01 00 72 €5 73 2F 64 72 61 77 61 ° 4 zres/drawa

Figure 6a: PK location from Figure 3

The sequence 0x50/0x4B/0x03/0x04 is, in fact, the header of a ZIP file, which
is quite interesting. Each ZIP file (also known as PKZIP file) is structured in the
following manner:

Local File File Data Archive Decryption Archive Extra Data Central
Header Data 1 Descriptor 1 Header Record Directory

Figure 7: General structure of a ZIP file

PK refers to the initials of the co-creator of the ZIP file format,
s Phil Katz.

[24]

Chapter 2

Each ZIP file can contain as many local file descriptors as the actual content of the
compressed archive. The local file header has its own structure, as shown here:

.0x0.0x1,0x2 0x3 ,0x4 0x5 0x6 0x7 0x8 0x9 0xa Oxb Oxc Oxd Oxe Oxf,
0x0000 ESign;ture \.I’er;ion Flaigs Oon'lpriession Modétime Modeidate Crcé—32
0x0010 Crc%—32 C?.ompresisedsiz;e Urilcompreissedsiéze File naéme len Extraﬁield len
0x0020 File%ame(\.‘iariableisizej
0x0030 Extr%fieldt\éariable;izej

Figure 8: ZIP local file header structure

What is important to note is that the signature of a ZIP file (its header) is always
0x50\0x4b\0x03\0x04, followed by two bytes describing the PKZIP version needed
to extract the archive, then two bytes containing general purpose bit flags describing
if the file is encrypted, compression option used, data descriptors' language
encoding, and more. After these flags come two bytes defining the compression
method. If it is 0, for example, it means that no compression is used, if it equals

4, it means that it is reduced with a compression factor of 3, and if 14 then the
Lempel-Ziv-Markov chain algorithm (LZMA) is used to compress the data. After
the compression method bytes, there are four bytes that hold modification time

and modification date respectively. Both are stored in standard MS-DOS format.
Further information is available at https://pkware.cachefly.net/webdocs/
casestudies/APPNOTE . TXT.

The case we are facing here is as follows:

Q2589B5F0 Ag 02 38 00 00 1D A7 01 76 9F FR €% 50 00 00 00 | 7 8 § winai
02558600 | 00 49 45 4E 44 AF 42 60 82 50 4B 03 04 0A 00 m TIENDEE ", BRE l

ozs98610 |[EJERNERENEC 52 E80EEio: 2 43 32 ERIEIERIED || EEe=
4

02598620 34 00 D1 DO 72 65 73 2F 64 72 61 77 61
WEELG Wl 6o eCc 65 2D 78 62 64 70 63 2D 76 34 2F 61 73 70Mble—xhdpi-v4/asp

RTINS 62 74 SF T2 61 74 68 6F SF 31 36 T8 39 SF 73
02558650 | EEp-ea i e S -l o Y 00 FF D8 FF E1

elected. Jpoli =i

02598660 00 18 45 78 69 €6 00 00 495 49 2R 00 08 00 00 00 Exif II=

Q2538670 Q0 00 00 00 00 00 00 Q0 FF EC 00 11 44 75 &3 6B ¥i Duck
02598680 79 00 01 00 04 00 00 00 45 00 00 FF E1 03 8F 68 |y I %a h
Q02588630 74 74 70 3A 2F 2F 6E T3 2E 61 64 6F 62 &5 2E 63 ttp://ns.adobe.c

Figure 9: ZIP file structure

[25]

https://pkware.cachefly.net/webdocs/casestudies/APPNOTE.TXT
https://pkware.cachefly.net/webdocs/casestudies/APPNOTE.TXT

Do It Yourself - Low-Level Techniques

Magic number (ZIP header) 0x50\0x4B\0x03\0x04
Version 0x0A\0x00

Flags 0x00\0x08
Compression method 0x00\0x00

File modification time 0x80\0x34

File modification date 0x22\0x44

CRC-32 checksum 0xD3\0x4E\0x43\0x3A
Compressed size 0x3D\0x60\0x00\0x00
Uncompressed size 0x3D\0x60\0x00\0x00
File name length 0x34\0x00

Extra field length 0x01\0x00

File name From 0x72\...\0x67

We can see that the compressed file size and uncompressed file size are equal, and this
is clear since Compression Method is set to 0, which means the file is not compressed.

According to the official ZIP file format specification, each ZIP file end is marked with
0x50\0x4B\0x05\0x06, also called End of Central Directory Record, followed by 18
bytes (describing the number of the disk, total number of central directory records, size
of central directory, and so on) + n bytes that hold comment (if any). So we will export
bytes from the offset of our ZIP header to the offset of the End of Central Directory
Record (data from 0x259B609 to 0x283BCC5), and see what is inside:

Nem

- Carving [=14] P carvedzIP
: anim a
(2 ~ 1| L » Caning Mom color Hem
- t_ratio_dx3_selected |
| acsete drawable li=| aspect_ratio_4x3_selected jpg
| META-INF drawable-anydpi-v21 le=| aspect_ratio_dx3_unselected jpg
drawable-v19 |e=| aspect_ratio_16x0_selected.jpg
| res
gé Q{Andmidl\danifa x) drawable-v21 _’ le=| aspect_ratio_16x9_unselected.jpg
Z| [classes.dex drawable-xhdpi-v4 =) hg_Dp.t\nns_iﬂdi(atur.g.png
carvedZIP.zip [resources.arsc drawable-xhdpi-v4 |R&| btn_cling.9.png
drawable-xochdpi-vd |R| btn_cling_pressed.9.png
1 élément %EE layout < (EEeEEE
layout-land hd
< m >

Figure 10: Carved and uncompressed ZIP file

The previously carved JPEG file was inside a ZIP file! We carved a valid JPEG file
from a compressed ZIP archive, which itself resides within an Android ROM,; at this
stage, we can see clearly the original file name of the JPEG file.

[26]

Chapter 2

One important point to note is that deleted files in smartphones are just "marked"
as such, and are not permanently deleted until they are overwritten. This is because
smartphones use a kind of nonvolatile/solid state memory to store data like: SMS,
all kind of records, pictures, and videos. The problem here is that every device
manufacturer has developed its own way of storing data. Thus, in order to recover/
carve data, understanding the target's device model/OS is a must. For example, for
extracting SMS messages from a physical dump, it's important to know how SMS
messages are usually compressed —what is the PDU format, and what encoding is
used. There is no unified or standardized "how to" way applicable for carving data
from a smartphone. Once a snapshot of the content of a smartphone is taken, many
of the commercially available forensic tools work just like official backup utilities,
and cannot always dig into the deleted items. This is why manual investigation is
sometimes the only way to recover valuable evidence.

Please keep in mind that till now we have been using a basic data carving technique,
since the beginning of the searched image is not overwritten, and the file is neither
fragmented nor compressed. Relying on advanced and deep knowledge of a file's
structure is, in some cases, a must in order to extract more readable data. This is
because sometimes, even if we can extract/carve files based on their respective
headers and trailers, they are not readable since this technique does not consider the
file's data, meaning that the deleted, moved, or missing sectors (sequential or not
sequential), or even missing fragments, are not at all considered within this method.

Extracting metadata — GPS analysis

What is metadata? Well, this is quite an embarrassing question! In an ambiguous
way, metadata is data that describes data or information about information.

In general, metadata is extra hidden information generated and embedded
automatically in a digital file. The definition of metadata differs depending on the
context in which it's used and the community that refers to it. It can be considered as
machine-understandable information, or can be referred to as records that describe
digital records. In fact, metadata can be subdivided into three important types:
descriptive (including elements like author, title, abstract, and keywords), structural
(describing how an object is constituted, and how elements are arranged), and
administrative (including elements like date and time of creation, data type, and
other technical details).

[27]

Do It Yourself - Low-Level Techniques

For example, camera settings (like camera marker, camera model, exposure time,
ISO speed, focal length, shutter speed, and so on) are stored in a lot of metadata.
Multimedia objects like photographs and videos, Microsoft Office, and PDF
documents use metadata to store name of author, computer name, total editing
time, and creation and modification date-time. Media like MP3 and MP4 files can
hold metadata that describes the artist and album name, cover picture, encoding
information, and so on. Metadata is very important in a forensic context. We will
see how metadata within JPEG files can hold GPS information, and how this data
(which describes data) is binary stored.

Further to what was said in the previous part of this chapter, every JPEG file that
holds Exif data starts with the SOI marker (0xFF\0xD8) followed by the APP1 marker
(oxFF\0xE1), then the APP1 data composed of two bytes and describing the Exif data
size. This is followed by the Exif header (0x45\0x78\0x69\0x66\0x00\0x00), then
eight bytes describing the TIFF format (0x4D\ 0x4D\0x00\0x2A\0x00\0x00\0x00\
0x08); the important thing to note about the TIFF format is that the first two bytes

of the TIFF header define byte alignment of the TIFF data depending on the CPU of
the device producing the file. If the TIFF header starts with 0x49\0x49 (ASCII =1I),

it means that data is aligned following the Intel type data alignment (little endian).

If it starts with 0x4D\ 0x4D (ASCII = MM), it means that the Motorola type byte
alignment has been adopted (big endian).

The TIFF header structure can be either of the two following ways:

|0x4D\0x4D=rwh4 |OxOO\Ox2A |OxOO\OxOO\OxOO\Ox08
or
|Ox49\0x49=II |0X2A\Ox00 |0X08\Ox00\0x00\0x00 |

This detail is very important in order to correctly extract the values of Exif data.
Next to the byte alignment field is always 0x00\ 0x2A bytes, followed by the last four
bytes of the TIFF header, indicating an offset to the first Image File Directory (IFDO0),
which has the value 0x00\0x00\0x00\0x08

The important parts (in our context) of the structure of the APP1 marker (Exif data)
is described in the following table (for more information about TIFF format and TIFF
6.0 Specification, visit http: //partners.adobe.com/asn/developer/PDFS/TN/
TIFF6.pdf):

[28]

http://partners.adobe.com/asn/developer/PDFS/TN/TIFF6.pdf
http://partners.adobe.com/asn/developer/PDFS/TN/TIFF6.pdf

Chapter 2

APP1 FFE1
Marker
APP1 APP1 data size |2 bytes
Data
Exif header 0x45\0x78\0x69\
0x66\0x00\0x00
TIFF header | 0x4D\0x4D\0x00\
0x2A\0x00\0x00\
0x00\0x08
Image file 2 bytes Number of fields in directory
g;g éoryO 12 bytes Directory Image width
containing 12 bytes Image height
main image)
... n x 12 bytes
12 bytes Exif offset
12 bytes GPS offset
8 bytes Next image file directory offset (IFD1)
n bytes Data area of IFD0
EXIF image 2 bytes Number of fields in directory
file directory 'y, bytes Directory EXIF version
... n x 12 bytes
0x00\0x00\0x00 No next IFD
\0x00
n bytes Data area of Exif IFD
GPS image file | 2 bytes Number of fields in directory
directory 12 bytes Directory GPS
version
n x 12 bytes
0x00\0x00\0x00 No next Image File Directory
\0x00
n bytes Data area of GPS Image File Directory
More IFDs N bytes N entries (number of fields, ISO
(Makernote speed, data area, index version,
and Compression, X/ YResolution)
Iteroperability,
IFD1 for
thumbnail
image)

[29]

Do It Yourself - Low-Level Techniques

APP1 FFE1
Marker
Thumbnail 0xFF\0xD8 Start of image
image 0xFFDB + 1 bytes Define quantization table
0xFF\0xCO0 +n Baseline
bytes
0xFF\0xC4 +n Define Huffman table
bytes
n bytes Thumbnail data
0xFF\0xD9 End of image

Table 1: Basic structure of EXIF APP1 marker

In a JPEG/ Exif file, every image file directory can be subdivided into # fields, and
each field is of 12 bytes. The offset to the Global Positioning System field is given
in IFDO.

The 12 bytes are always in the form of 2 bytes representing the tag ID (which are
not unique across image file directories), then 2 bytes for type ID or data format (1:
Byte, 2: ASCII, 3: Short, 4: Long, 5: Rational, 6: Signed Byte, 7: Undefined byte array,
8: Signed Short, 9: Signed Long, 10: Signed Rational, 11: Float, and 12: Double),
followed by 4 bytes defining the byte count for byte arrays (size), followed again by
the last 4 bytes, which give value or offset to the actual data.

What concerns us in this structure is understanding how to extract and analyze GPS
data from an existing JPEG photo.

Consider the following portion of a hexadecimal dump of a photo containing
GPS data:

Offset 0o 1 2 3 4 5 6 7 8 9 A B C D E F

00000000 FF D8 FF E1 8A 44 45 78 69 66 00 00 4D 4D 00 2A VOyaSDEXif MM *
00000010 00 00 0O 08 00 OB 01 OF 00 02 00 00 0O 06 00 0O
00000020 08 9E 01 10 00 02 00 00O 0O OA 00 00 08 A4 01 12
00000030 00 03 00 00 00 O1 OO 01 0O 00 01 1A 0O 05 00 0O

o

N¢

00000040 00 01 00 00 08 AE 01 1B 00 05 00 00 0O 01 00 0O ®

00000050 08 B6 01 28 00 03 00 00O 00 01 00 02 00 00 O1 31 q (1
00000060 00 02 00 00 00 OE OO OO 08 BE 02 13 00 03 00 00 %
00000070 00 01 00 01 00 0O 87 69 00 04 00 00 0O 01 00 OO $i
00000080 08 CC 88 25 00 04 00 00 00 01 00 00 62 3C EA 1C 1% b<é
00000090 00 07 00 00 08 OC 00 00O 00 92 00 00 6A 5A 1C EA ' jz é

[30]

Chapter 2

It contains the following:

0xFF\0xD8: 2 bytes SOI for JPEG header.
0xFF\0xE1\0x8A\0x44: 2 bytes APP1 header + 2 bytes data size.
0x45\0x78\0x69\0x66\0x00\x00: 6 bytes APP1 Exif data type.

0x4D\ 0x4D\0x00\0x2A\0x00\0x00\0x00\0x08: 8 bytes TIFF header with
big-endian byte order, 0x002Aa identifier, and 0x00008 IFDO offset.
0x00\0x0B: 2 bytes IFD0 0x0b entries (11 entries).
0x01\0x0F\0x00\0x02\0x00\0x00\0x00\0x06\0x00\0x00\0x08\0x9E: 12
bytes IFDO-Field 0.

IFDO-Field 0 is the Oth field of Image File directory 0 and is composed
as follows:

° TagID: 0x010F -> TagName: Maker (image input equipment
manufacturer)

° Format: 0x0002 -> format is ASCII
° Size: 0x00000006 -> 6 bytes

° Offset: 0x0000089E is an offset of the actual value

0x01\0x10\0x00\0x02\0x00\0x00\0x00\0x0A\0x00\0x00\0x08\0xA4:
12 bytes IFDO-Field 1, Tag ID: 0x0110, TagName: Model (image input
equipment model) which is of a length of ten (0x0000000a) characters
(0x0002) located at offset 0x00000824.

0x01\0x12\0x00\0x03\0x00\0x00\0x00\0x01\0x00\0x01\0x00\0x00:12
bytes IFDO0-Field 2 holding Orientation.

0x01\0x1A\0x00\0x05\0x00\0x00\0x00\0x01\0x00\0x00\0x08\0xAE: 12
bytes IFDO0-Field 3 holding XResolution.

0x01\0x1B\0x00\0x05\0x00\0x00\0x00\0x01\0x00\0x00\0x08\0xB6: 12
bytes IFDO0-Field 4 holding YResolution.

0x01\0x28\0x00\0x03\0x00\0x00\0x00\0x01\0x00\0x02\0x00\0x00:12
bytes IFDO0-Field 5 holding ResolutionUnit.

0x01\0x31\0x00\0x02\0x00\0x00\0x00\0x0E\0x00\0x00\0x08\0xBE: 12
bytes IFDO0-Field 6, TaglD: 0x0131, TagName: Software (software used to
take photo) which is 14 bytes (0x0000000E) ASCII (0x0002) located at offset
0x000008BE.

0x02\0x13\0x00\0x03\0x00\0x00\0x00\0x01\0x00\0x01\0x00\0x00:12
bytes IFDO0-Field 7 holding YCbCrPositioning.

[31]

Do It Yourself - Low-Level Techniques

® 0x87\0x69\0x00\0x04\0x00\0x00\0x00\0x01\0x00\0x00\0x08\0xCC:

bytes IFDO0-Field 8 holding ExifOffset.

* 0x88\0x25\0x00\0x04\0x00\0x00\0x00\0x01\0x00\0x00\62\0x3C:12

12

bytes IFDO0-Field 9, TaglD: 0x8825, TagName: GPSInfo, Data Format: Long

(0x0004, 4 bytes size and data located at offset 0x0000623C).

. The last four bytes of any field (Image File Directory entry)
& indicate an offset to the location of the actual value data.
=" However, if and only if the actual value can fit into four bytes,
then this value is stored in the leftmost of the last four bytes.

Some interesting correlation can be addressed at this point between TagIDs,
TagNames, and offsets:

TagID | TagName | Offset | Size in bytes
0x010F | Make 0x089E | 0x06
0x0110 | Model 0x08A4 | 0xO0A
0x0131 |Software | Ox08BE | 0xOE
0x8825 | GPSInfo 0x623C | 0x04

TaglDs are constants, and are defined in Exif standard. Based on what we've got
until now, we can gather the input equipment, input equipment model, input
software, and GPS location of the photo we are analyzing. Using a hexadecimal
editor, let's go to the offset 0x089E:

Offset o 1 2 3 4 5 6 7 8 9 A B C D E F

00000890 00 00 00 00 00 OO OO OO 0O 00 00 OO0 OO 00 4E 6F No
000008A0 6B 69 61 00 4C 75 6D 69 61 20 39 32 30 00 00 00 kia Lumia 920
000008BO 00 48 00 00 00 01 OO OO 0O 48 00 00 00 01 57 69 H H
000008CO 6E 64 6F 77 73 20 50 68 6F 6E 65 00 00 17 82 9A ndows Phone
000008DO0O 00 05 00 00 00 O1 0O 00 11 F2 82 9D 00 05 00 00 9,

Wi
, 8

[32]

Chapter 2

The first offset holds the make value Nokia, the second offset holds the model value
Lumia 920, and the third offset holds software value windows Phone. The first
important information we know at this stage is that the photo being analyzed was
taken using a Nokia Lumia 920 device running Windows Phone.

Now we need to gather GPS data, so let's go directly to offset 0x623¢ (which I
remember is GPS info IFD):

Offset 0 1 2 3 4 5 6 7 8 9 A B C D E F

00006230 56 F2 8B 5F 00 00 00 64 00 00 0O 64 00 OA 00 0O Vo< d d
00006240 00 01 00 00 OO 04 02 02 00 00 00 01 00 02 00 0O

00006250 00 02 4E 00 00 0O 00 02 0O 05 00 0O 00 03 00 0O N

00006260 6A 42 00 03 00 02 00 00 00 02 57 00 00 0O 00 04 jB W
00006270 00 05 00 00 OO 03 00 OO0 6A 2A 00 05 00 01 00 0O j*
00006280 00 01 00 00 OO OO 00 06 0O 05 00 0O 00 01 00O 0O

00006290 6A 22 00 OA 00 02 00 00O 00 02 33 00 00 00 00 OB " 3
000062A0 00 05 00 00 0O 01 00 OO 6A 1A EA 1C 00 07 00 00 j é

The first two bytes at the offset 0x623¢ are 0x00\ 0xA—this means that our GPS IFD
contains 10 fields (12 bytes of Image File Directory entries 10 times).

GPS - Field 0 | 0x0000 0x0001 0x00000004 0x02020000
TagID of Format or Byte count for | Value:2200
GPSVersionID | TypelD of Byte | Value (size): 4
GPS -Field1 | 0x0001 0x0002 0x00000002 0x4E000000
TaglD of Format or Byte count for | Value 0x4E
GPSLatitudeRef | TypelD of Value (size): 2 decodes in ASCII
String (ASCII) to N indicating
north latitude
GPS -Field2 | 0x0002 0x0005 0x00000003 0x00006A42
TaglD of Format or Byte count for | Offset of latitude
GPSLatitude TypelD of Value (size):3 | data 0x6A42
Rational
[33]

vww allitebooks.conl

http://www.allitebooks.org

Do It Yourself - Low-Level Techniques

Before continuing, it's important to know that Rational is an 8 bytes long type, and in
this case, the byte count needed to store latitude data is 3, which means that we need
3 x 8 bytes to store it—this is beyond 4 bytes, which is why 0x00006a42 indicates

an offset, and not a value. The same thing is applicable for Longitude, Altitude, and
GPSDOP (dilution of precision).

GPS - Field 3 | 0x0003 0x0002 0x00000002 0x57000000
TaglID of Format or Byte count for | Value 0x57
GPSLongitudeRef | TypelD of Value (size): 2 | decodes in ASCII

String (ASCII) to Windicating
west longitude

GPS - Field4 | 0x0004 0x0005 0x00000003 0x00006A2A
TaglID of Format or Byte count for | Offset of
GPSLongitude TypelD of Value (size): 3 | longitude data

Rational O0x6A2A

GPS - Field5 | 0x0005 0x0001 0x00000001 | 0x00000000
TaglD of Format or Byte count for | Value: 0 indicates
GPSAltitudeRef TypelD of Byte | Value (size): 1 | that it's above sea

level

GPS - Field 6 | 0x0006 0x0005 0x00000001 0x00006A22
TaglD of Format or Byte count for | Offset of altitude
GPSAltitude TypelD of Value (size): 1 | data 0x6A22

Rational

GPS - Field 7 | 0x000A 0x0002 0x00000002 0x33000000
TaglID of Format or Byte count for | Value 0x33
GPSMeasureMode | TypelD of Value (size): 2 | decodes in

String (ASCII) ASCII to 3 for
3-dimensional
measurement

GPS - Field 8 | 0x000B 0x0005 0x00000001 | OxO00006A1A
TaglD of GPSDOP | Format or Byte count for | Offset of
(data degree of TypelD of Value (size): 1 | GPSDOP data
precision) Rational OX6ALA

From the preceding table, we can recapitulate the following information about
our photo:

TagID | TagName Tag description Offset or Size in
value bytes
0x0001 | GPSLatitudeRef Indicates whether the latitudeis | N 2
north or south
0x0002 | GPSLatitude Indicates the latitude 0x6A42 24

[34]

Chapter 2

TagID | TagName Tag description Offset or Size in
value bytes
0x0003 | GPSLongitudeRef | Indicates whether the longitude | W 2
is east or west
0x0004 | GPSLongitude Indicates the longitude 0x6A2A 24
0x0005 | GPSAltitudeRef Indicates the altitude used as the | Abovesea |1
reference altitude level
0x0006 | GPSAltitude Indicates the altitude based on 0x6A22 8

the reference in GPSAltitudeRef

0x000A | GPSMeasureMode | Indicates the GPS measurement |3 2

mode (2 or 3 dimensional)

The hexadecimal values at offset 0x6a22 are as follows:

Offset o 1 2 3 4 5 6 7 8 9 A B C D E F

00006A10 00 00 00 13 55 38 00 00 Us
00006A20 03 E8 00 00 D4 E4 00 00 03 E8 00 00 00 07 00 00 & 0a [
00006A30 00 01 00 00 00 27 00 00O 0O 01 00 00 62 43 00 00 ! bC
00006A40 03 E8 00 00 00 21 00 00O 0O 01 00 0O 0O 20 00 0O & |
00006A50 00 01 00 00 04 C7 00 00O 03 E8 00 06 01 03 00 03 ¢ [

We will decode GPSLatitude (0x6242), GPSLongitude (0x6a22), and GPSAltitude
(ox6a22) respectively; the specification of GPS TIFF tags (http://www.exiv2.org/
tags.html) defines those tags, as follows:

GPSLatitude: This is expressed as three Rational values giving the degrees,
minutes, and seconds. If the latitude is expressed as degrees, minutes,

and seconds, a typical format would be dd/1,mm/1,ss/1. When degrees and
minutes are used, and, for example, fractions of minutes are given up to two
decimal places, the format would be dd/1,mmmm/100,0/1.

GPSLongitude: This is expressed as three Rational values giving the degrees,
minutes, and seconds. If the longitude is expressed as degrees, minutes,

and seconds, a typical format would be ddd/1,mm/1,ss/1. When degrees and
minutes are used, and, for example, fractions of minutes are given up to two
decimal places, the format would be ddd/1,mmmm/100,0/1.

GPSALltitude: This is expressed as one Rational value. The reference unit is
meters.

GPSAIltitudeRef: If the reference is sea level, and the altitude is above sea
level, 0 is given. If the altitude is below sea level, a value of 1 is given and
the altitude is indicated as an absolute value in the GPSAltitude tag. The
reference unit is meters. Note that this tag is of type Byte, unlike other
reference tags.

[35]

http://www.exiv2.org/tags.html
http://www.exiv2.org/tags.html

Do It Yourself - Low-Level Techniques

Rationals are 8 bytes long, and each Rational is subdivided into two Longs
representing the numerator of a fraction and the denominator. The "formula"
is quite simple and is given as follows:

* 1st Rational (8 bytes): 4 bytes (numerator) / 4 bytes (denominator)

* 2nd Rational (8 bytes): 4 bytes (numerator) / 4 bytes (denominator)

* 3rd Rational (8 bytes): 4 bytes (numerator) / 4 bytes (denominator)
So, the GPSLatitude value: 00 00 00 21 00 00 00 01 00 00 00 20 00 00 00 01
00 00 04 C7 00 00 03 E8 decodes as follows:

* 0x00\0x00\0x00\0x21 / 0x00\0x00\0x00\0x01 =>233/1=33

* 0x00\0x00\0x00\0x20 / 0x00\0x00\0x00\0x01 =>32/1 =132

* 0x00\0x00\0x04\0xC7 / 0x00\0x00\0x03\0xE8 =>1,223/1,000 = 1.223

Here, as we can see, Latitude is described in degrees and minutes: 33; 32; 1.223 N.

In the same way, we can extract longitude from the GPSLongitude value 00 00 00
07 00 00 00 01 00 00 00 27 00 00 00 01 00 00 62 43 00 00 03 E8from
offset 0x6A2A:

* 0x00\0x00\0x00\0x07 / 0x00\0x00\0x00\0x01 =>7/1=7
* 0x00\0x00\0x00\0x27 / 0x00\0x00\0x00\0x01 =>39/1 =39
* 0x00\0x00\0x62\0x43 / 0x00\0x00\0x03\0xE8 => 25,155/1,000 = 25.155

Longitude is stored in degrees and minutes as well, and is equal to: 7; 39; 25.15 V.

The Altitude value is 8 bytes in size, and is stored at the offset 0x6a22: 00 00 D4 E4
00 00 03 E8.So we get:

* 0x00\0x00\0xD4\0xE4 / 0x00\0x00\0x03\0xE8 =>54,500/1,000 = 54.5
This means that the altitude is 54.5 meters above sea level.

At this stage, we've gathered the GPS position successfully, which can help us locate
where the photo that we analyzed had been taken:

e GPS altitude : 54.5 m above sea level

e GPS latitude :33 deg 32'1.223" N

* GPSlongitude :7 deg 39' 25.15" W

* GPS position :33 deg 32'1.22" N, 7 deg 39' 25.15" W

[36]

Chapter 2

Now we can easily locate it in a map (via http://www.gps-coordinates.net/):

Address Bo: oro: N F
Map Satellite Bouznil
Anuris
Get GPS Coordinates wm
73500
o
pati
i * m A
DD (decimal degrees)
_rruunzl T
Latitude [:; Ei”m
A P3307
sindibagzCasablanca i st
Longitude 76 111111 sla ISl i Ben Al [P300E =
s oo Ghlobs (sa S [y pas;
Tamariat o [) s
Get Address G ol : e
S L ALAR i 3 £ms
Bouskoura Mediouna_ papig e dunss
" gl |
DMS (degrees, minutes, secondes)* A3 B m SuSus o pai i
Latitude @N®Ss (33 |° 32 [|1223 | %) 3
Bir Jdid P3603
T = B3827] - [Paase >
dpasillol 3609 {Nouasseur P3602 i
Longitude E®@W |7 */38 |'2515 |" olsd
;‘_“__ks' [Abbara £ +
Laghdira 8;Lusll A paGaz &
Get Address /i) % ElGara =
Go gke Janisf Map data £2015Google Terms of Use Report & map ermor

Figure 11: Location in map of the extracted GPS position

As a bonus for our exercise, we can now extract the thumbnail of the analyzed photo.
In many forensic cases, thumbnails are used to authenticate original digital images.
In a forensic context, the integrity of digital evidence is a daily struggle, so we will
not go very deep into thumbnail analysis in this part, because its way beyond the
scope of this chapter, and even this book. Instead, we will go through the very first
step, which is extracting a valid thumbnail from an original photo.

On the basis of the JPEG/TIFF structure, we know that the thumbnail is always
located at Image File directory 1 (IFD1), which is linked to IFDO as follows:

Offset 0o 1 2 3 4 5 6 7 8 9 A B C D E F

00000000 FF D8 FF E1 8A 44 45 78 69 66 00 00 4D 4D 00 2A voyaSDExif MM *
........................ [CUT CUT CUT CUT CUT CUT].. i
00000090 00 07 00 00 08 0OC 00 00 00 92 00 00 6A 5A 1C EA ' jz é

At the end of IFDO, the value 0x6A5A points us to the offset of the next IFD, which
is IFD1:

Offset 0o 1 2 3 4 5 6 7 8 9 A B C D E F

00006A50 00 06 01 03 00 03

00006A60 00 00 00 01 00 06 00 00 01 1A OO0 05 00 00 00 01

00006A70 00 00 6A A8 01 1B 00 05 00 00 OO0 01 00 00 6A BO 3" je
00006A80 01 28 00 03 00 00 OO 01 00 02 OO0 00 02 01 00 04 (

00006A90 00 00 00 01 00 00 6A B8 02 02 00 04 00 00 00 01 j,
00006AA0 00 00 1F 84 00 00 OO 00 0O 00 OO 48 00 00 00 01 " H

[37]

http://www.gps-coordinates.net/

Do It Yourself - Low-Level Techniques

00006ABO 00 00 00 48 00 00 00 01 FF D8 FF DB 00 84 00 08 H voy0
00006ACO 06 06 07 06 05 08 07 07 07 09 09 08 OA OC 14 0D

00006ADO 0C 0B OB 0C 19 12 13 OF 14 1D 1A 1F 1E 1D 1A 1C

00006AEO 1C 20 24 2E 27 20 22 2C 23 1C 1C 28 37 29 2C 30 s.' ", # (7),0

This IFD1 has 0x0006 entries. In order to avoid going through each entry, the
IFD1-Field 4 here is ThumbnailOffset defined by its TagID 0x0201 located at 0x6A8C:

TagID: 0x0201 -> This entry holds the offset to the start byte (SOI) of the
JPEG compressed thumbnail data

Format: 0x0004 -> Format Long
Size: 0x00000001 -> 4 bytes
Offset: 0x00006AB8 -> 0x6AB8

This is followed directly by IFD-Field 5, ThumbnailLength:

TagID: 0x0202 -> This entry holds the number of bytes of the JPEG
compressed thumbnail data

Format: 0x0004 -> Format Long

Size: 0x00000001 -> 4 bytes

Value: 0x00001F84 -> 8,068 bytes

Based on this, our thumbnail is 8,068 bytes starting from offset 0x6ABS8; so, in our
hexadecimal editor we can define a block of 8,068 bytes starting from the offset

0x6AB8, which indeed contains the JPEG file header 0xFFD8 at its beginning, and the
JPEG trailer 0xFFD9 at its end:

= WP_20150412_020,pg
Offset 0 1 2 3 4 § 7 8 8 B B C D E F
DO00D6R60 | 00 00 00 01 00 00 01 1A 00 05 00 00 00 O1
DO00D6ATO | 00 00 6A A8 01 00 00 00 01 00 00 6& BO 3" 3°
DODDEAB0 | 01 28 00 03 00 00 00 02 DO 00 02 01 00 04 |
000D6A90 | 00 00 00 01 00 00 B4 02 02 00 04 00 00 00 01 3,
0000D6ARO | 00 00 1F 84 00 00 00 00 48 00 00 00 01 . H
0000D6ABO 00 00 00 48 00 00 00 F DB 00 84 00 08 H Jevl ..
000D0D6ACO 06 06 07 06 05 08 07 07 07 08 09 08 DA OC 14 OD
DO0D6ADO | OC OB OB OC 19 12 13 OF 14 1D 1A 1F 1E 1D 1A iC
DDOD6AEO | 1C 20 24 2E 27 20 22 2C 23 1C 1C 28 37 28 2C 30 $.' "8 (T),0
DODD6AFO 31 34 34 34 1F 27 39 3D 38 32 3C 2E 33 34 32 01 1444 '9=82<.342
b 660000 Wil Miei il aiie:indi Solin:inl e, e i
00D0BAl0 39 AS 72 BB F9 4A 13 CA DO F5 CD 73 1A A4 DE 6D 9€r,ad £ &is =Em
00008420 E3 00 4E 14 6D C5 74 17 24 22 B3 1E C3 35 CA CB & N mAt §"° ASEE
00008A30 DB DD SB AE 4E 69 C4 89 E8 TH FE D3 FF DE 00 84 O%»ENifise §Uy0 ,
Page 114 of 8 189 Offset: 6AB3 =3 | Block:

Figure 12: Thumbnail block defined

[38]

Chapter 2

The dumped file is a 320 x 192 JPEG file representing the original thumbnail of the
previously analyzed photo:

be 435306

Figure 13: Thumbnail dumped from the original photo

String dump and analysis

Most digital investigations rely on textual evidence. This is obviously due to the fact
that most stored digital data is linguistic, for example, logged conversation. A lot of
important text-based evidence can be gathered while dumping strings from images
(smartphone memory dumps); this can include e-mails, instant messaging, address
books, browsing history, and more. Most of the currently available digital forensic
tools rely on match and indexing algorithms to search for textual evidence at the
physical level, so they search every byte to locate specific text strings.

Finding accurate hits is a critical need in every digital forensic case. In contrast to
searching individual key terms or single words, things are much more complicated
when an investigator wants to perform an advanced search such as for credit card
numbers or phone number. Even if most digital forensic tools offer the capability

to use regular expression for searching, the main difficulty resides in generating an
accurate regular expression. A lot of effort has been put in this direction to help the
law enforcing and digital forensic community generate efficient and accurate regular
expressions. You can have a look at http://www.dfcsc.uri.edu/docs/Perez_
Thesis.pdf and http://www.cftt.nist.gov/ss-req-sc-draft-vl 0.pdf for
more information.

There are many tools and ways to extract and find strings within different supports,
especially disk images. The strings command in Linux lists all printable characters
from a given file; by default, it returns ASCII printable strings having at least four
characters. The strings command is very effective in a preliminary analysis. This
command is configurable —if you use it under Linux, always try to consider the
option —-all to examine the entire file, —-radix to print the offset at which the string
was found (- -radix=x to print the offset in the hexadecimal format), and the option
—-encoding to select the character encoding of the looked-for string. The variants for
the same functions in OS X are -3, t, and x respectively.

[39]

http://www.dfcsc.uri.edu/docs/Perez_Thesis.pdf
http://www.dfcsc.uri.edu/docs/Perez_Thesis.pdf
http://www.cftt.nist.gov/ss-req-sc-draft-v1_0.pdf

Do It Yourself - Low-Level Techniques

An example of using this command against an arbitrary bin file reveals that this
binary is a photo tampered with using Photoshop CC 2015 for Windows, which
contains hidden information within it at offset 0x4002:

strings --all

@rd is hidden in a piccr

Figure 14: strings command against binary file

Adding the parameter --encoding=b, for example, will tell the command to find
16 bits of big-endian characters, and this can reveal deleted "strings" such as deleted
e-mails. The strings command can be very useful for extracting names, phone
numbers, e-mails, and a huge pack of information within a disk image; do not
hesitate to try it with all the encoding options:

* --encoding=s for single 7-bit byte characters

* --encoding=S for single 8-bit byte characters

* --encoding=b for 16-bit big-endian characters

* --encoding=B for 32-bit big-endian characters

* - _encoding=1 for 16-bit little-endian characters
* --encoding=L for 32-bit little-endian characters

Running the strings command on a Windows Phone image reveals links to visited
Facebook photos (the photo has been blurred intentionally):

[40]

Chapter 2

B Bl 906752_462417650497399_13...Scaled (76%) -
File Edit Tabs Help —— Ml 906752 4624176504... % | +

€ a

Figure 15: Facebook photos' links found
The output can be saved to a text file for analysis by adding > /path/to/file.txt.

The Linux terminal environment offers another very versatile and powerful command:
Global Regular Expression Print (Grep). Grep dubbed to regular expressions to
search for text patterns can be an extremely powerful tool if handled correctly.

For a demonstration, I'll be using the output of the previously executed strings
command.

The basic usage of grep is searching for a word within a file, which means that grep
will print out all the lines containing the desired word.

[41]

Do It Yourself - Low-Level Techniques

A basic grep command looks like this: grep 'word' file. We will use it to find
lines that contain the word facebook:

grep 'facebook' Lumia005.txt

1d8b4176 ttps://www.facebook.com/diverteeWP

3afd0bcc ttps://www.facebook.com/pages/Webcam-
Remote/348280255226071?skip nax wizard=true

3afd0c70 ttp://www.facebook.com/pcremotewindows?sk=wall&filter=2

3f00fda2 ttp://m.facebook.com/policy.php>

The preceding search pattern is case sensitive. If we want it to find all instances
ignoring the case, we can specify the -i argument: grep -i "word" file. We can
also do an invert match; so, we can search for every line that does not contain a
given word by specifying the -v argument: grep -v "word" file. Things get more
interesting with the use of regular expressions and extended regular expressions.

Grep is extremely flexible, an exhaustive number of patterns can be used with it,
as follows:

* Find anchor matches: Specify where in the line a match must occur:

grep "“word" file

* Match any character: Any single character can occur at the given location:
grep ".o.d" file
grep "..rd" file

* Brackets expression: By placing just a few or a whole range of characters, we
can find every line that contains what is between [1:

grep [A-Za-z] file

* Escaping meta-characters: Searching an opening bracket or a dot, for
example, may be confusing. For grep to search characters with special
meaning, we use backslash \ before the character.

* Repeat pattern: The use of wild card * means the previous pattern is to be
repeated zero or more times:

grep " ([A-Z]*)" file

The preceding command will find each line with opening and closing
parentheses with only uppercase letters in between.

* Plus character: The plus character + finds all patterns that match at least one
time.

[42]

Chapter 2

Let's go directly to some interesting uses of grep and regular expressions. Assume
that we want to find all address mails within our smartphone image or within a
directory. The regular expression to use is: "\b [a-zA-Z0-9.-]+@[a-zA-Z0-9.-]+\.
[a-zA-Z0-9.-]1+\b". Since this is an extended regular expression, the argument -E
must be used with grep; the command will then be as follows:

grep -E -o "\b[a-zA-Z0-9.-1+@[a-2A-Z0-9.-1+\.[a-2A-Z0-9.-1+\b" -R /
Directory

The -o argument is used to show only that part of the matching line that matches the
given pattern:

Figure 16: E-mails found using grep

We can try to elaborate very accurate regular expressions with grep such as for
finding phone numbers of different formats:

o xxx-xxx-xxxx: The command will be grep -o ' [0-91\{3\}\-10-91\{3\}\-
[0-91\{4\}' file

* (xxx)xxx-xxxx: The command will be grep -o ' ([0-91\{3\}) [0-91\{3\}\-
[0-91\{4\}' file

* xxx xxx xxxx: The command will be grep -o ' [0-91\{3\}\s[0-91\{3\]}\
s[0-91\{a\}' file

* xxxxxxxxxx: The command will be grep -o '[0-9]1\{10\}' file

[43]

Do It Yourself - Low-Level Techniques

The SANS Institute released a nice list of regular expression patterns (https://
www . sans.org/reading-room/whitepapers/forensics/regular-expression-

search-primer-forensic-analysts-33929) to be customized depending on your
specific need:

File extensions |grep -E '\. (txt|exe|xls|doc|docx|jpg|bmp)\b'

URLs grep - E '\bhttps?://.+\. (com|net|org|uk|mil|gov|edu)"
(The ? following the s indicates that it is optional)

SSN grep -E '"\b[0-9]1{3}([-)[0-91{2}(|-)[0-9]{4}\b’

MAC addresses | grep -E '\b([0-9a-f]{2}:){5}[0-9a-f]1{2}\b"

IP addresses grep -E '\b[0-9]1{1,3}(\.[0-91{1,3}){3}\b"

Credit Card grep -E '\b[0-9]1{4}((|-|)[0-91{4}){3}\b’

American grep -E ''\b[0-9]1{4}(|-])[0-91{6}(|-])[0-9]{5}\b"

Express

There is also another command in the Linux environment for extracting printable
characters from a file: srch_strings. Quite similar to the st rings command, this
command will, by default, print all the ASCII characters of at least four characters
in length. The command, as taught in the SANS Forensic courses, is as follows:
srch _strings -a -t=d Input > Output.txt, where -a tells the command to
scan the entire file, -t to display the offset of the line with the occurrence shown
in o (octal), x (hexadecimal), or d (decimal).

Encryption versus encoding versus
hashing

Encryption, encoding, and hashing are quite confusing notions. Without digging
very deep into the mathematical dimension, we will see the difference between all of
these notions, keeping in mind that all of them transform data from one given format
to another. The most important aspect to note is that the encryption and encoding
functions are reversible but hashing is not.

[44]

https://www.sans.org/reading-room/whitepapers/forensics/regular-expression-search-primer-forensic-analysts-33929
https://www.sans.org/reading-room/whitepapers/forensics/regular-expression-search-primer-forensic-analysts-33929
https://www.sans.org/reading-room/whitepapers/forensics/regular-expression-search-primer-forensic-analysts-33929

Chapter 2

Encryption

Encryption is a method or a set of methods for scrambling data. The process of
encrypting aims to transform plaintext information by means of a given algorithm,
referred to as cipher, to produce obscure/scrambled data, referred to as ciphertext.
The process of encryption requires the use of a key to both encrypt plaintext and to
decrypt ciphertext. The main differences between encryption and hashing are the fact
that in contrast to hashing algorithms, encryption algorithms do not produce fixed
length outputs, and encrypted data can be reversed back into the original format
using the right key. This last difference brings us to one important thing to know
about encryption: it has two primary types, symmetric key encryption and public
key encryption.

In the case of symmetric key encryption (which is widely associated with encryption
in general, when people think of encryption), the same key is used to produce both
encrypted and decrypted data. In the case of public key encryption, instead of using
one single key, it uses two different keys to encrypt/decrypt data; one public key,
which, as its name invokes, is publicly shared, and is used to encrypt the desired
data (message, string, or others), and one private key is used to decrypt this data—
obviously, the private key is exclusively accessible to the intended recipients.

Symmetric key encryption

The most famous symmetric algorithm is Advanced Encryption Standard (AES),

also known as Rijndael, and is a specification of the encryption data established by

the National Institute of Standards and Technology (NIST) in 2001 (http://csrc.
nist.gov/publications/fips/fips197/fips-197.pdf). This algorithm can process
data blocks (array of bytes) of 128 bits using keys with lengths of 128 and 192, and is
recommended for most use cases with a key of 256 bits. Depending on the key length
used, this encryption algorithm may be referred to as AES-128, AES-192 or AES-256.

AES is based on a series of linked mathematical operations known as the
substitution-permutation network or SP-network (SPN). The principle behind this
network is to take a block of the plaintext and the key as input, and apply a fixed
number (depending on the length of the used key) of cycles—or transformation
rounds — (of substitution and permutation) in order to produce the ciphertext. The
number of cycles is defined as follows:

* 128-bits key: 10 cycles of repetition
* 192-bits key: 12 cycles of repetition
* 256-bits key: 14 cycles of repetition

[45]

http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

Do It Yourself - Low-Level Techniques

Each round consists of four similar steps, which are as follows:

* Key expansions: Routine that generates a series of values derived from the
cipher key

¢ Initial Round

° AddRoundKey: Each byte of the intermediate cipher result (referred
to as state) is combined with a block of values derived from the
cipher key using the key expansion routine; the addition is done
using bitwise XOR operation

e Rounds
° SubBytes: Based on the non-linear Rijndael S-box (https://

en.wikipedia.org/wiki/Rijndael_S-box), each byte is replaced
with another

° ShiftRows: Cyclically shifts the last three rows of the intermediate
cipher result

° MixColumns: Combines the four bytes in each column in the cipher
in order to produce a new column

° AddRoundKey

* Final round: At this step, no MixColumns is performed:

° SubBytes
° ShiftRows
° AddRoundKey

Based on this high-level description of the AES encryption algorithm, a pseudo code
of AES cipher may look like the following;:

Cipher (byte in[16], byte out[l16], key array round key[Nr+1])
begin

byte state[16]; state = in;

AddRoundKey (state, round key|[0]);

for i = 1 to Nr-1 stepsize 1 do
SubBytes (state) ;
ShiftRows (state) ;
MixColumns (state) ;
AddRoundKey (state, round key[i]) ;
end for

SubBytes (state) ;

[46]

https://en.wikipedia.org/wiki/Rijndael_S-box
https://en.wikipedia.org/wiki/Rijndael_S-box

Chapter 2

ShiftRows (state) ;
AddRoundKey (state, round key[Nr]);
end

As an example of what AES produces, using the plaintext
soufianetahiri@gmail.com and random 256-bits key
5575D3F563CB24BFDF55CFE252F857E4235CD23E645FAES5B235CD23E645FAESB, the
encrypted output looks like: 18 35 E2 EB F3 93 D7 34 DE 47 CF 52 2F 4F 4A
28 E4 F8 2D 01 C9 7B 73 8A 28 C9 87 C1 3B 05 FF 8D.

CryptoTool (https://www.cryptool.org/en/) is an awesome tool to play around
with cryptography. I used it to decrypt the produced message as seen in the
following screenshot:

Encrypt or Decrypt:
Decrypt I~

Chaining mode:

| Electronic Code Book (ECB) |~ |

Keysize:
[256 8its | =
Key (hex values):
55750D3F563CB24BFDFS5CFE2S2FB5TEA235CD23E645FAESB235CD23E645FAESE
Message to decrypt (hex values):
T835E2EBF393DT 34 DE4TCF52 2F 4F4A 2B E4FE2D01 COTEB T3 8A 28C987 C1 3B OSFF 8D

Message to decrypt (hex values):
1835E2EBF393 D734 DEATCFS2 2F4F4A 2B EAFB2D 01 COTB 73 BA 28 COBTC13B05FFED

AES Output:

soufianetahiri@gmail.com

Figure 17: Decrypting AES using CryptoTool

[47]

https://www.cryptool.org/en/

Do It Yourself - Low-Level Techniques

AES-256 is somehow the gold standard, and has become ubiquitous since its
adoption by the U.S. government in 2001 as the standard of encrypting data. The
AES-256 encryption was also approved by the NSA, and believed to be unbreakable
because of the length of the key (256 bits) and the number of cycles (14); even for a
128-bits key, recovering this length key requires 8x10"37 steps. According to Leuven
University, "on a trillion machines, that each could test a billion keys per second, it
would take more than two billion years to recover an AES-128 key".

That said, at Black Hat 2015, Yu Yu, a research professor with Shanghai Jiao Tong
University, used a side-channel analysis instead of brute-force attack to crack the
encryption codes on 3G and 4G SIM cards, which use AES-128 encryption, and has
successfully isolated 256 sections of the key (https://www.blackhat.com/docs/
us-15/materials/us-15-Yu-Cloning-3G-4G-SIM-Cards-With-A-PC-And-An-
Oscilloscope-Lessons-Learned-In-Physical-Security-wp.pdf).

Public key encryption

Some of the most famous software based on the public key encryption algorithm is
Pretty Good Privacy (PGP), which is a computer program providing cryptographic
privacy and authentication for data communication. PGP follows the OpenPGP
standard described in RFC 4880 (https://tools.ietf.org/html/rfc4880). PGP
combines hashing, data compression, and symmetric and public key encryption to
ensure confidentiality and integrity, and is often used for signing and exchanging
texts, e-mails, files, and even whole disk partitions.

The schema that follows describes the general process of encrypting/decrypting
in PGP:

[48]

https://www.blackhat.com/docs/us-15/materials/us-15-Yu-Cloning-3G-4G-SIM-Cards-With-A-PC-And-An-Oscilloscope-Lessons-Learned-In-Physical-Security-wp.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-Yu-Cloning-3G-4G-SIM-Cards-With-A-PC-And-An-Oscilloscope-Lessons-Learned-In-Physical-Security-wp.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-Yu-Cloning-3G-4G-SIM-Cards-With-A-PC-And-An-Oscilloscope-Lessons-Learned-In-Physical-Security-wp.pdf
https://tools.ietf.org/html/rfc4880

Chapter 2

Data

Encrypt

Generate
Random
Key

mO| TlakvAQkCu2u

Random Ke)

/

B q4fzNeBCRSY

Encrypted Key

Encrypted Message

Decrypt

Encrypted Message

4tz MeBCRSY

Encrypted Key

mO| TlakwAQkCu2u

Decrypt data
using key

Figure 18: The encryption and decryption scheme of PGP (source: Wikipedia)

PGP uses an asymmetric scheme that uses a pair of keys for encryption, a public key
that encrypts data, and a private key that decrypts it; the main goal of this approach
is that anyone with your public key can then encrypt and send you information that
only you can decrypt (using your private key), and it's computationally impossible to
deduce the private key from the public key.

Each PGP message is constructed from a number of records called packets. Each

packet is composed of a chunk of data, each chunk of data is associated with a tag
specifying its meaning. Every packet consists of a packet header of variable length
followed by the packet body.

[49]

Do It Yourself - Low-Level Techniques

If we refer to the RFC for the OpenPGP message format, in section 5.1 (https://
tools.ietf.org/html/rfc4880#section-5.1), each encrypted message contains
at least one public key encrypted session key packet. The body of this packet
consists of a one-octet number giving the version number of the packet type, and an
eight-octet number that gives the Key ID of the (sub) public key to which the session
key is encrypted.

Tools like PGPdump (http://www.pgpdump.net/about . html) can extract this
information from a given encrypted message/file, as seen in the following screenshot:

‘artifact.txt.gpg

Figure 19: PGPdump

The Key ID can be used to deduce the intended recipient's identity, or, at least,
can help us narrow down the identity of the intended recipient. Researchers at
the University of Birmingham demonstrated how we can disclose an OpenPGP
recipient's identity by exploiting the Key ID (https://www.cs.bham.ac.uk/
research/projects/infotools/leakwatch/examples/pgp.php).

Elcomsoft (https://www.elcomsoft.com/efdd.html) also provides Elcomsoft
Forensic Disk Decryptor, a tool that can perform a complete forensic analysis of
encrypted disks and volumes protected with PGP.

. A session key is a one-time-only secret key generated randomly from
% the movements of your mouse and the keystrokes that you type. Once
- the data is encrypted, the session key is then encrypted to the recipient's
public key; this results in an encrypted session key.

[50]

https://tools.ietf.org/html/rfc4880#section-5.1
https://tools.ietf.org/html/rfc4880#section-5.1
http://www.pgpdump.net/about.html
https://www.cs.bham.ac.uk/research/projects/infotools/leakwatch/examples/pgp.php
https://www.cs.bham.ac.uk/research/projects/infotools/leakwatch/examples/pgp.php
https://www.elcomsoft.com/efdd.html

Chapter 2

Encoding

Ensuring the interchangeability of data between different types of systems relies, in
part, on encoding. The main purpose of encoding data is to transform this data into
another format so that it can be properly and safely consumed by different types

of systems. This transformation is based on publicly available schemes so that it
can be reversed with no pain. No keys are used in encoding/decoding processes,
since the purpose is not to hide information; all we need to decode a given encoded
information is to know the algorithm used. Sending files in e-mails, for example, is
an encoding act.

Encoding is, to some level, a "character" related concept. This means that depending
on the abstract layer and context, character encoding is used to describe a repertoire

of units of information that roughly correspond to a grapheme of an encoding system
(a system of rules to convert information from a given form of representation into
another). This process is used in all kind of algorithms, protocols, data storage, and
transmission of textual data. This abstraction is referred to as a character set or codeset.

There are four major terms that we must understand in order to go a bit deeper:

* Character: Sometimes abbreviated as char, this is a single visual object used
to represent a symbol (text, number, and so on), and is equal to one byte
(8 bits).

* Character set: A collection of characters.

¢ Coded character set: A collection of characters where each character is
assigned a unique number.

* Code point: Also referred to as code position, this is any value that can be
used in a coded character set, and is a 32-bit data type.

* Code unit: The minimal bit combination that can represent a unit of encoded
text for processing or interchange. Code unit size is equivalent to the bit
measurement for a given encoding scheme.

There are many widely and daily used character sets / encoding schemes, like ASCII,
UNICODE/UTE-8, and URL encoding.

[51]

Do It Yourself - Low-Level Techniques

ASCIl and UNICODE/UTF-8

The standard ASCII character set consists of 128 decimal numbers ranging from 0
through 127 mapped to letters, numbers, and the most common special characters;
the code unit size in ASCII consists of 7 bits, but these days computers use an

8-bit byte to store each character in the memory, which extends the ASCII code

units without modifying the original character-mapping, while adding additional
characters. The original 7-bit ASCII was the most widely used encoding scheme until
2008 when UTF-8 became more common. A 7-bit ASCII table can be seen at http://
www .neurophys.wisc.edu/comp/docs/ascii/ascii-printable.html.

Several mechanisms have been specified to come up with UTF-X (where X can be

8, 16, or 32 bits), and all depend on the available storage, compatibility, and system
interoperability. UTF stands for Unicode Transformation Format. It's historically an
effort of ISO/IEC 1046 (https://www.ietf.org/rfc/rfc3629.txt), and is defined
by the UNICODE standard; it represents full ASCII compatibility, and obviously,
can also contain any UNICODE character. UTF-8 means that it uses from one to four
octets to represent a character.

RFC 2044 describes this as follows:

"The only octet of a "sequence" of a character has the higher-order bit set to 0,
the remaining 7 bits being used to encode the character number. In a sequence of
n octets, n>1, the initial octet has the n higher-order bits set to 1, followed by a
bit set to 0. The remaining bit(s) of that octet contain bits from the number of the
character to be encoded. The following octet(s) all have the higher-order bit set

to 1 and the following bit set to 0, leaving 6 bits in each to contain bits from the
character to be encoded."

https://tools.ietf.org/html/rfc2044

The directly beneficial consequence is that no character will have null value when
encoded. UTF-8 behaves just like ASCII when representing any character equal to or
less than 0x7F (127); this means that a plain ASCII string is a valid UTF-8 string.

To summarize the format of these octet types, please refer to the following table:

Character number range in hexadecimal | UTF-8 octet sequence in binary

0000 0000-0000 QO7F OXXXXXXX

0000 0080-0000 O7FF 110xxxxx 10XXXXXX

0000 0800-0000 FFFF 1110xxxx 10xxxxXX 10XXXXXX

0001 0000-0010 FFFF 11110xxx 10xxxxXX 10xxxxxX 10XXXXXX

Tableau 1: UTF-8 octet types format

[52]

http://www.neurophys.wisc.edu/comp/docs/ascii/ascii-printable.html
http://www.neurophys.wisc.edu/comp/docs/ascii/ascii-printable.html
https://www.ietf.org/rfc/rfc3629.txt
https://tools.ietf.org/html/rfc2044

Chapter 2

To actually encode a character to UTF-8, three main steps are followed, as expressed
in RFC3629:

1. Determine the number of octets required from the character number and the
first column of the preceding table. It is important to note that the rows of the
table are mutually exclusive, that is, there is only one valid way to encode a
given character.

Prepare the high-order bits of the octets as per the second column of the table.

Fill in the bits marked x from the bits of the character number, expressed in
binary. Start by putting the lowest-order bit of the character number in the
lowest-order position of the last octet of the sequence, then put the next higher
order bit of the character number in the next higher-order position of that octet,
and so on. When the x bits of the last octet are filled in, move on to the next-to-
last octet, then to the preceding one, and so on until all x bits are filled in.

I have been asked many time a simple question based on a lot of misunderstanding;:
"What is the difference between UNICODE and UTF-8?". I think at this stage, you
can answer it by yourself: No comparison can be done for the simple reason that
UTF-8 is an encoding and UNICODE is a character set. A character set is an abstract
mapping between characters and numbers; for example, in ASCII and UNICODE,
the character S corresponds to the number 53. On the other hand, encoding is the
act of translating those numbers into binary format so they can be digitally stored.
UTF-8, for instance, will encode the word Forensic like this: 01000110 01101111
01110010 01100101 01101110 01110011 01101001 01100011. Now let's see the
inverse process —suppose that we want to read this binary back from disk. Let's

say Notepad knows that a binary sequence represents Unicode string encoded with
UTF-8, so Notepad will use the UTF-8 algorithm to convert each binary block to its
hexadecimal value in order to produce the UNICODE code point from the Unicode
character set, and correlate each number to its corresponding character:

Binary Unicode code point | Character UTE-8 (hex)
01000110 U+0046 F 0x46
01101111 U+006F 1) Ox6F
01110010 U+0072 T 0x72
01100101 U+0065 e 0x65
01101110 U+006E n Ox6E
01110011 U+0073 S 0x73
01101001 U+0069 i 0x69
01100011 U+0063 C 0x63

Tableau 2: Bin to Unicode / UTF-8

[53]

Do It Yourself - Low-Level Techniques

For the full UTF-8 encoding table and Unicode characters, you can refer to http://
www.utf8-chartable.de/.

URL encoding

Under certain circumstances, the Unified Resource Identifier (URI) encodes
information using the URL-encoding mechanism, also referred to as percent-
encoding. This encoding mechanism is often used in the preparation of data of the
application/x-www-form-urlencoded media type. It aims, principally, to replace any
"unsafe ASCII" character with a % followed by two hexadecimal digits ("unsafe"
here means when the character is outside the allowed set of characters). A percent
encoding data octet is always encoded as the percent character followed by two
hexadecimal digits representing the actual octet's numeric value. For example,

the widely seen percent-encoding octet is $20; 0x20 in ASCII corresponds to the
space character which is not allowed in URLs (or URIs to be more correct, since
URI includes both Uniform Resource Locator (URL) and Uniform Resource Name
(URN)).

There is a limitation to the characters allowed in a URI, and those characters can

be split into two main categories: reserved and unreserved characters. Reserved
characters are so called because they may be defined as delimiters of URI's
dereferencing algorithm. So, if data for a URI component conflicts with a reserved
character, this data must be URL-encoded (or percent-encoded) before the URI is
formed. For example, forward slash (/) is a reserved character. As of January 2005,
reserved characters are defined in RFC 3986 section 2.2 (https://tools.ietf.org/
html/rfc3986) as follow:

RN

L l2ls e Jef= |« [« |" |# [/ [])

Tableau 3: URI reserved characters

’

Every other character that is found within a URI, but does not have a reserved
purpose, is considered an unreserved character; this includes uppercase and
lowercase letters, decimal digits, hyphens, periods, underscores, and tildes.

If a reserved character is meant to be used as data in a given context, and the URI
scheme says that a reserved character is necessary to be used as it is and not as a
URI's delimiter, then this character must be URL-encoded.

URL-encoding a reserved character is done by converting this character to its
corresponding byte sequence in ASCII or UTF-8, and then representing that value
as a character triplet consisting of the percent character followed by a pair of
hexadecimal digits. The percent character is used as an escape character.

[54]

http://www.utf8-chartable.de/
http://www.utf8-chartable.de/
https://tools.ietf.org/html/rfc3986
https://tools.ietf.org/html/rfc3986

Chapter 2

The reserved character &, for example, has the special task of passing variables with
data between pages using URLs. If we need to use this character itself as data, then it
must be percent-encoded as %26. The following table shows reserved characters after
URL-encoding:

! ? $ @ & = + * !

%21 | %3F | %24 | %40 | %26 | %3D | %2B | %2A | %27

/ () ; / : []

%23 | %2F | %28 | %29 | %3B | %2C | %3A | %5B | %5D
Tableau 4: URI reserved characters URL-encoded

Following this, an encoded URL like this one https%3A%2F%2Fwww.google.
com%2Fwebhp%3Fsourceid%3Dchrome-instant%26ion%3D1%26espv%3D2%26es
th%3D1%261e%3DUTF-8%23g%3Dsoufian+tahiri%26es th%3D1 can be decoded as
https://www.google.com/webhp?sourceid=chrome-instant&ion=1&espv=2&es_
th=1&ie=UTF-8#g=soufian tahiri&es_ th=1.

Hashing

The use of cryptography in the forensic processes is a normal and common task.
Using hashing algorithms like MD5 and SHA help to maintain and verify evidence
integrity, and by the same process, assist investigators with admissibility of evidence
in court. Hashing can also be used as a tool to help quickly identify certain files when
analyzing a filesystem.

Basically, hashing is an irreversible algorithm capable of producing (usually) a small
fixed size output whatever the input used. Message-Digest Algorithm (MD5) and
Secure Hashing Algorithm (SHA) are typical cryptographic hashing algorithms.

MDS5 processes any input message into a fixed-length output of 128 bits, considered
as a fingerprint of the input.

The input message (or data) is treated by blocks of 512 bits. If the data size is not
divisible by 512, then the data is padded (extended) by adding 1 bit to the end of the
message followed by as many zeros as necessary to bring the extended data to 448
modulo, 512. Without digging into mathematical details, we can simply say that the
MDS5 algorithm is composed of the following five main steps:

1. Append padding bits.
2. Append length.
3. [Initialize MD buffer.

[55]

Do It Yourself - Low-Level Techniques

4. Process message in 16-word blocks.
5. Output.

The MD?5 algorithm is described in RFC 1321 (https://www.ietf.org/rfc/
rfcl321.txt).

SHA is, in fact, a family of cryptographic functions including SHA-0, SHA-1, SHA-

2, and SHA-3. They were published by the National Institute of Standard and
Technology. The most famous family is SHA-1, and was developed by the NSA. But
since 2010, this function is no longer approved due to a weakness discloser (Henri
Gilbert, Helena Handschuh. Security Analysis of SHA-256 and Sisters. Selected Areas
in Cryptography 2003. pg 175-193). SHA-1 produces a 160 bit output (called message
digest), and is still the algorithm that is widely used in forensic examinations (even if
using SHA-2 is more secure). The SHA-1 algorithm has been available to the Internet
community since 2001, and is well described in RFC 3174 (https://tools.ietf.
org/html/rfc3174).

Whatever the hash algorithm we are talking about, it contains three interesting
properties: generating a hash value is a relatively easy and not time-consuming
task; theoretically, it's not possible to alter data without changing its hash value,
and different data cannot produce the same hash value.

Based on these facts, hash functions are used to authenticate evidence, to verify
data integrity, and can also be used to identify a file by looking up the hash in the
hash databases.

Hash databases are often built by agencies of law enforcement to help in quickly
identifying known files. There are many downloadable hash databases. The National
Institute of Standard and Technology offers the National Software Reference
Library (NSRL) that contains, among other things, NSRL Reference Data Set
(RDS), a public dataset holding very large cryptographic hash values (MD5 and
SHA-1) of known files. RDS is updated and published every three months. RDS is

an interesting repository of hashes. The content of the RDS archive is hashes. txt,
NSRLFile.txt, NSRLMfg. txt, NSRLOS. txt, and NSRLProd. txt (downloadable from
http://www.nsrl.nist.gov/Downloads. htm#isos).

More repositories of interesting hashes can also be listed at Hashkeeper (even if it's
not maintained anymore), SANS Hash Database, AccessData, EnCase, Shadowserver
Bin Check Service, Project VIC, and more.

There are many ways to look for hashes (grep, hfind, and more); the main difference
among them is time consumption.

[56]

https://www.ietf.org/rfc/rfc1321.txt
https://www.ietf.org/rfc/rfc1321.txt
https://tools.ietf.org/html/rfc3174
https://tools.ietf.org/html/rfc3174
http://www.nsrl.nist.gov/Downloads.htm#isos

Chapter 2

The problem with MD5 and SHA-1 is that both are vulnerable to hash collision,
which means that two arbitrary inputs can produce the same hash value, such as
hash(messagel) = hash(message2). Back in March 2005, Xiaoyun W. and Hongbo Yu of
Shandong University in China described an algorithm that can cause MD5 collision,
and published an article about their exploit titled How to break MD5 and other hash
functions (http://merlot.usc.edu/csac-£06/papers/Wang05a.pdf). But in my
view, they are still at some point forensically sound, because statistically, the chance
to produce the same hash from different inputs is one in 2L (where L is the fixed
size output result length), which is infinitesimally small for either MD5 or SHA-1.

To conclude this part, the important thing to keep in mind is that encoding,
encrypting, and hashing are terms that do not say the same thing at all:

* Encoding: Is meant for data usability, is reversible using the same algorithm,
and requires no key

* Encrypting: Is meant for confidentiality, is reversible, and depending on
algorithms, relies on key(s) to encrypt and decrypt.

* Hashing: Theoretically, this is meant for data integrity, cannot be reversible,
and depends on no keys.

Decompiling and disassembling

Decompiling and disassembling are both kinds of a reverse engineering process that
do the opposite of what a compiler and an assembler do.

A decompiler translates a compiled binary's low-level code designed to be computer
readable into human-readable high-level code. The accuracy of decompilers
depends on many factors like the amount of metadata present in the code being
decompiled and the complexity of the code (not in terms of algorithms, but in terms
of sophistication of the high-level code used). The bytecode format used by Java
Virtual Machine (JVM) and the intermediate language used by .NET framework
Common Language Runtime (CLR) include, in most cases, a very extensive amount
of information and high level features. This makes the process of creating a high-
level code from a compiled input quite feasible, and in most cases, very reliable.
Most of the decompilation processes pass through seven steps before producing

a readable high level code: loading -> disassembling -> programming idiom ->
program analysis -> data flow analysis -> type analysis -> structuring.

The output of a disassembler is, at some level, processor dependent. It maps
processor instructions into mnemonics, which is in contrast to the decompiler's
output, which is far more complicated to understand and to edit.

[571]

http://merlot.usc.edu/csac-f06/papers/Wang05a.pdf

Do It Yourself - Low-Level Techniques

What is the point of this in a forensic context? Let's suppose this simple scenario: A
user encrypts photo albums or SMS using a third-party application (for example,

on Android, the Droid Crypt or EDS app). Then it would be more than interesting

to look inside the application algorithms to have a clear idea of how things were
done. Reverse engineering smartphone applications can be very interesting from the
perspective of forensics —looking inside an application can reveal passwords, keys,
SQL queries, and algorithms. Reverse engineering is always used in cases of malware
infection forensic processes too. So reverse engineering a smartphone application

can help you understand a given app's functioning, its data storage, and security
mechanisms.

Reversing Android, iPhone, and Windows Phone applications require different
skills, but to keep it simple, let's go ahead and see how things are done on the
Android side.

Every Android application is coded using Java. Applications built to run under
Android come with an APK extension, which is the extension of the application
install file. Downloaded APKs are usually stored on the phone in the /data/app
directory. An APK can be extracted from a phone image using FTK Imager, for
example, and if you have root access on the phone, you can copy it from the given
directory to /sdcard, or you can install a file manager like ES File Manager, and
use the built-in app management function to copy the desired APK to the /sdcard
directory. To deal with built-in applications and system applications like Gmail,
Calendar, and so on, since they are in /system/app, the easiest and simple way to
extract them is by starting with identifying the package name using the adb shell
pm list packages command, which works on rooted and non-rooted devices:

adb shell pm list packages
package:com.android.emulator.smoketests

package:com.android.packageinstaller

package:com.svox.pico

package:com. facebook.lite

package:com.android.netspeed

After identifying the package name, we can identify the full path using the command
adb shell pm path PACKAGENAME. If we suppose that we want to extract the APK
file of the Facebook Lite application, the preceding command will be as follows:

adb shell pm path com.facebook.lite

package:/data/app/com. facebook.lite-1/base.apk

[58]

Chapter 2

The full path is /data/app/com. facebook.lite-1/base.apk, SO NOW we can
extract this file using adb pull APKLOCATION DIRECTORYOUTPUT:

adb pull /data/app/com.facebook.lite-1/base.apk /home/soufiane/Desktop/
apk pulled/

1473 KB/s (475823 bytes in 0.315s)

The interesting thing to know about APKs is that they are just ZIP files, so once in

your process, you can modify the . apk extension to . zip, and extract the archive
as follows:

Name v Description

([jsr-305 folder

|[E] META-INF folder

(I res folder

@ AndroidManifest.xml XML document
[_] base.apk Android package
|i| classes.dex unknown

|:| resources.arsc unknown

Figure 20: Extracted APK application

Classes.dex is the actual application binary, the res directory is the directory

used to store application resources (for example, images), the META- INF directory
holds the digital signature of the application, and like every Android application,
AndroidManifest.xml includes important information about the application like
permissions, and indents like "...". The file AndroidManifest.xml is not readable as
is; in order to transform it into a human-readable file, we can use the aapt command,
which is a debug tool included with adb. The command is of the format aapt 1 -a
APK.apk > textfile.txt, as follows:

aapt 1 -a /home/soufiane/Desktop/apk pulled/base.apk > /home/soufiane/
Desktop/apk_pulled/AndroidManifest.txt

soufiane@soufiane-VirtualBox:~$

At this point, the manifest file is readable, and you can eventually look for
permissions, for example. Why are permissions important? Imagine you have a
simple calculator application that has the permission to geolocalise the smartphone
or to access camera.

As for our Facebook Lite example, the application can read the user's SMS (suspect?):

A: android:name (0x01010003)="android.permission.READ SMS" (Raw:
"android.permission.READ SMS")

[59]

Do It Yourself - Low-Level Techniques

Now we can move to the main application binary, and a bunch of tools can be
used to reverse a .dex file. The first tool we need is dex2jar (https://github.
com/pxb1988/dex2jar). This tool will convert classes.dex to a Java JAR file; the
command used is of the format d2j-dex2jar APK.apk > Output.jar, as follows:

d2j-dex2jar /home/soufiane/Desktop/apk pulled/base.apk >/home/soufiane/
Desktop/apk pulled/base-dex2jar.jar

Then we will use any Java decompiler to restore the Java source code of our class.
In this example, I'll use JD-GUI (http://jd.benow.ca/) via the command jd-gui
Output.jar:

w Java Decompiler - a.class
File Edit Navigate Search Help
= I R
base-dex2jarjar [
> Haa a.class | a.class &
v
Bb package b.a.a.a.a.a;
¥ i aaaaa
¥ Ja +/import java.util.Enumeration;
Y ®a
° abstract class a
implements SSLSessionContext
@ getSes {
@ getSes public fipal Enumeration getIds()
@ getSec { _ _
® cetSes) throw new RuntimeException("Stub");
@ setSes
= Ub public SSLSession getSession(byte[] paramArray0fByte)
P Jc {
> [0d throw new RuntimeException("Stub"});
B J]e ¥

Figure 21: Java decomplier JD-GUI

The a.a, b, and a.a.a.a names reveal that this is an obfuscated JAR file, and this
may be deobfuscated. But the technique is out of scope of this book, since the goal
is to demonstrate the decompilation process. However, once you gain access to
the source code, application analysis can be much easier and more useful.

The same "logic" can be applied to reverse most smartphone applications regardless
of the operating system, but obviously, by using different tools and techniques.

If we take the example of a Windows Phone application, let's say WP8 Registry
Tools, it has the XAP extension, and is coded using a .NET language (C# / VB.net).
Just like Android applications, they are just ZIP files too. Once you have the .xap file
in your computer, you can rename it by changing the extension to . zip, and extract
the content:

[60]

https://github.com/pxb1988/dex2jar
https://github.com/pxb1988/dex2jar
http://jd.benow.ca/

Chapter 2

pre... » WPBRegistryToolsv1.1 v EJ| | Rechercher dans : WP2RegistryTools..)

Assets
%] DwrEngine.dll
%] Mokia.SilentInstaller. Runtime.dll
%] MrsRuntirne.dll
%] Registry.dll
%] RegistryRT.dll
= WMAppManifest.xml
|| WP2RegistryToolsv1.1xap

| AppManifest.xaml

|_| DwrEnginewinmd

|| Mokia.SilentInstaller. Runtime.winmd
|| MrsRuntime.winmd

|| Registry.winmd

|| RegistryRT.winmd

% WPERegistry.dll

Figure 22: Extracted XAP application

As for Android, Windows Phone applic
files describing application permissions
Windows Phone are called "capabilities'

<Capabilities>

ations also have their WMAppManifest . xml
among other information. Permissions in
', as seen in our following example:

<Capability Name="ID CAP_NETWORKING" />
<Capability Name="ID CAP IDENTITY DEVICE" />
<Capability Name="ID CAP PHONEDIALER" />
<Capability Name="ID CAP_LOCATION" />
<Capability Name="ID CAP_ SENSORS" />

<Capability Name="ID CAP WEBBROWSERCOMPONENT" />

</Capabilities>

The main application binary in our case

is WP8Registry.dll, and we can use any

.NET decompiler to see inside, I'll be using ILSpy (http://ilspy.net/), sinceit's a

powerful and free NET decompiler:

=+8 WPaRegistry (1.0.0.0)

"~ References

[+ =+

) Resources
i -
{} WPaRegistry
® % App
= LocalizedStrings
=% MainPage
[+ " Base Types
A Derrved Types

¥ btnGet: Butto

g _contentloaded : bool

¥ btnSet: Button

n

Figure 23: ILSpy .NET Decompiler

[61]

http://ilspy.net/

Do It Yourself - Low-Level Techniques

Here we've got an unobfuscated application, so we can navigate through it and see
even original variables names, name spaces, and functions names:

private void btnGet Click(object sender, RoutedEventArgs e)

{

if (string.IsNullOrEmpty (this.txtRegKey.get Text()) || string.
IsNullOrEmpty (this.txtRegVal.get Text()))

MessageBox.Show ("Please enter in values");
return;

this.txtResult.set Text (text.ToString());

}

.NET applications can be also obfuscated, and there are several tools to deobfuscate
them; in my view, the most reliable one is DE4DOT (http://de4dot .com/).

On the other hand, we have the iOS applications — the bad news is that Apple
changes the IDE at almost every release, making reversing iOS applications a real
challenge. But the good news is that we belong to a world full of enthusiasts and
researchers who have made a lot of progress in this direction. If you are interested

in learning more about reversing iOS applications, you can refer to the book by
Snakeninny named iOS App Reverse Engineering, available freely at https://github.
com/iosre/i0OSAppReverseEngineering.

Summary

Forensics is an extremely technical discipline, so this chapter was meant to help
clarify the principles of file carving, to demystify GPS data, and to clearly explain
how photos are made binary. We went through some deep technical aspects of
computing in general, we saw some file formats and how metadata is stored within
them, we went through characters and string data types, and explained how to
extract strings from smartphone dumps. This chapter (hopefully) also clarified the
difference between some common string related concepts like encryption, encoding,
and hashing.

Seeing the importance of understanding how smartphone applications behave in
a forensic context, we picked over some techniques of reverse code engineering
smartphone applications.

Now that we are familiar enough with some low-level techniques, we can go ahead
and discuss iOS forensics in the next chapter.

[62]

http://de4dot.com/
https://github.com/iosre/iOSAppReverseEngineering
https://github.com/iosre/iOSAppReverseEngineering

IDevices from a Forensic
Point of View

The purpose of this chapter is to provide an overview of the forensic approach of an
iOS device. We will introduce iOS architecture components and the filesystem. This
chapter will indicate methodology, techniques, and tools used to acquire evidences
from iOS devices, it will also point out the difference between different modes (DFU,
recovery, and more), introduce the jailbreaking concept, and discuss the biometric
aspect of iOS devices.

In this chapter, we will cover the following topics:

The iOS architecture

The iOS filesystem

iOS platform and hardware security
Identifying stored data

iOS acquisition and forensic approaches
iOS artifact recovery

It's going biometric!

Third-party application forensics

[63]

iDevices from a Forensic Point of View

The iOS architecture

Originally called the iPhone OS, iOS is developed and distributed exclusively
within Apple hardware (iPhones, iPads and iPod Touch). Similar to most operating
systems, iOS is a layered OS. Applications deployed on any iOS device do not react
directly with the underlying hardware, instead the operating system acts as a layer
of system interfaces between those applications and the hardware; iOS is divided
into four abstract layers as follows (from highest level at the top to the lowest-level
at the bottom):

Cocoa Touch
layer

Media layer

Core Services
layer

Core OS layer

Table 1 - i0OS layers

Let's look at the layers:

Cocoa Touch layer: This contains the basic framework that provides
multitasking, touch-based inputs, push notifications, and most of the high
level system services. This layer contains some high-level features such

as app extensions, which allow sharing media content to social entities,
performing simple tasks with content, photo editing, and providing shared
storage location (for applications that use document picking). It also contains
TextKit, that offers a set of well-defined classes (NSAttributedString,
NSLayoutManager, NSTextStorage and may other features; for more
information you can refer to Text Programming Guide for iOS at https://
developer.apple.com/library/ios/documentation/StringsTextFonts/
Conceptual /TextAndWebiPhoneOS/Introduction/Introduction.html#//

apple_ref/doc/uid/TP40009542) to enable application editing, creating,
storing and displaying text, and integrating it with all UIKit text-based
controls. Also, it contains multitasking, which is mainly designed to manage
application resource consumption to maximize battery life; in addition to

a bunch of other features, such as auto layout, Ul state preservation, Apple
Push Notification Service, and local notifications.

[64]

https://developer.apple.com/library/ios/documentation/StringsTextFonts/Conceptual/TextAndWebiPhoneOS/Introduction/Introduction.html#//apple_ref/doc/uid/TP40009542
https://developer.apple.com/library/ios/documentation/StringsTextFonts/Conceptual/TextAndWebiPhoneOS/Introduction/Introduction.html#//apple_ref/doc/uid/TP40009542
https://developer.apple.com/library/ios/documentation/StringsTextFonts/Conceptual/TextAndWebiPhoneOS/Introduction/Introduction.html#//apple_ref/doc/uid/TP40009542
https://developer.apple.com/library/ios/documentation/StringsTextFonts/Conceptual/TextAndWebiPhoneOS/Introduction/Introduction.html#//apple_ref/doc/uid/TP40009542

Chapter 3

* Media layer: This implements all the necessary technologies to enhance the
multimedia experience, including graphic technologies to handle advanced
2D and 3D rendering using hardware acceleration, such as OpenGL ES and
GLKit; audio technologies, such as AV foundation and OpenAL; and video
technologies, such as AVKit and AV Foundation to ensure video playback
and recording capabilities.

* Core Service layer: This consists of services, such as Core Foundation and
Foundation frameworks and holds the fundamental system services along
with individual technologies offering features, such as geolocation, social
media, networking, and iCloud. As for its high-level features, the Core
Service layer offers features that support peer-to-peer connectivity, iCloud
storage, data protection, file sharing support (making data available in
iTunes), Grand Central Dispatch (BSD-level technology used to manage task
execution), SQLite, and XML support.

* Core OS layer: Almost all the other previously cited technologies are
built upon low-level features within this level; the Core OS layer contains
frameworks dealing with security, digital signal and image-processing
calculation (Accelerate. framework), Core Bluetooth framework
(CoreBluetooth. framework), External Accessory framework
(ExternalAccessory. framework) that provides support for accessories
connected to the iDevice via its connector or via Bluetooth, Touch ID
authentication support (LocalAuthentication. framework), and the Generic
Security Service framework (GSs . framework) that gives a "basic" set of
security services to iOS applications (the standardization of these services are
well described in RFC 2743 at https://www.ietf.org/rfc/rfc2743.txt
and RFC 4401 at https://tools.ietf.org/html/rfc4401). The Core OS
layer also provides the system level that includes low-level UNIX interfaces,
drivers and a match-based kernel environment that manages memory,
threads, filesystem network, and inter-process communication.

It's important to note that above the kernel level, iOS uses Mac OS X's BSD Unix
environment. To make it simple, iOS can be subdivided into three main layers:

the XNU kernel, which is a hybrid kernel developed by Apple attempting to make
the best use of a monolithic kernel and microkernel, Portable Operating System
Interface (POSIX) layer, which is a set of standards for maintaining compatibility
between operating systems, provided by a part of BSD's kernel that also provides
among other things, system calls and filesystems, and lastly, the NeXTSTEP layer
that implements the graphics stack of iOS.

[65]

https://www.ietf.org/rfc/rfc2743.txt
https://tools.ietf.org/html/rfc4401

iDevices from a Forensic Point of View

The iOS filesystem

Just like all Apple operating systems, iOS is a derivative of the Mac OS X. Thus, iOS
uses Hierarchical File System Plus (HFS+) as its primary filesystem. HFS+ replaces
the first developed filesystem, HFS, and is considered an enhanced version of HFS.
They are architecturally very similar. The main improvements seen in HFS+ are:

* Decrease in disk space usage on large volumes (efficient use of disk space)

* International-friendly file names (by the use of UNICODE instead of
MacRoman)

* Allows future systems to use and extend files/folders' metadata

HFS+ divides the total space on a volume (a file that contains data and structure to
access this data) into allocation blocks and uses 32-bit fields to identify them, this
means that this allows up to 232 blocks on a given volume which simply means that
a volume can hold more files.

All HFS+ volumes follow a well-defined structure and each volume contains a
volume header, a catalog file, extents overflow file, attributes file, allocation file,
and startup file. The general structure of an HFS+ volume is illustrated here:

Reserved (1024 bytes)
Volume Header

Allocation File

Extends Overflow File

File Data Catalog File

or
Free Space

Attributes File

Startup File

Alternate Volume Header
Reserved (512 bytes)

Structure of an HFS+ volume

[66]

Chapter 3

Let's look at each part of the structure:

* Volume Header: The Volume Header is a reserved field of 512 bytes and
contains information regarding the volume itself (size of block, total of
blocks, and number of free blocks, creation, and modification date) and is
described by the HFSPlusVolumeHeader type.

* Allocation File: This is a bitmap file used to store allocation information
within a volume and determinates if a block is allocated or not. The
allocation file can be up to 512 MB.

* Extents Overflow File: This maintains an appropriate order list of contiguous
allocation blocks that belong to a file, if this file's fork contains more than
eight extents; the extent records are described by the HFSPlusExtentKey
type. The hierarchy of files and folders on a volume is kept as a B-Tree file in
the Catalog File.

* Catalog File: This is used to locate a specific file or folder.

e Attributes File: It holds the fork data attribute, inline data attribute, and
extension attribute (allowing a set of data associated with a filesystem to
have more than eight extents).

* Startup File: This is a special file that keeps the information needed at system
boot time and is used if the system does not support HFS+.

HFS+ under iOS has an activated journaling feature that keeps a transaction log

of read/ write activities on disk; this is meant to ensure stability of the operating
system in case a system recovery is needed after a crash, but the filesystem keeping
journal logs may contain the same data in catalog and attribute files; they may

be forensically very valuable since they can be exploited to recover deleted files.

An interesting read about filesystem journal analysis can be found at https://
digital-forensics.sans.org/summit-archives/DFIR Summit/File-System-
Journaling-Forensics-Theory-Procedures-and-Analysis-Impacts-David-
Cowen-with-Matthew-Seyer.pdf

i0S platform and hardware security

This chapter cannot hold all the hardware and software security aspects of
iDevices, thus we will see a general overview of how security is implemented
on those devices.

[67]

https://digital-forensics.sans.org/summit-archives/DFIR_Summit/File-System-Journaling-Forensics-Theory-Procedures-and-Analysis-Impacts-David-Cowen-with-Matthew-Seyer.pdf
https://digital-forensics.sans.org/summit-archives/DFIR_Summit/File-System-Journaling-Forensics-Theory-Procedures-and-Analysis-Impacts-David-Cowen-with-Matthew-Seyer.pdf
https://digital-forensics.sans.org/summit-archives/DFIR_Summit/File-System-Journaling-Forensics-Theory-Procedures-and-Analysis-Impacts-David-Cowen-with-Matthew-Seyer.pdf
https://digital-forensics.sans.org/summit-archives/DFIR_Summit/File-System-Journaling-Forensics-Theory-Procedures-and-Analysis-Impacts-David-Cowen-with-Matthew-Seyer.pdf

iDevices from a Forensic Point of View

All of Apple's iDevices have a combined built-in hardware/software advanced
security and according to Apple's official iOS Security Guide can be categorized
as follows:

* System security: Integrated software and hardware platform

* Encryption and data protection: Mechanisms implemented to protect data
from unauthorized use

* Application security: Application sandboxing
* Network security: Secure data transmission
* Apple Pay: Implementation of secure payments

* Internet services: Apple's network of messaging, synchronizing and
backing up.

* Device controls: Remotely wiping a device if lost or stolen

* Privacy control: Controlled access to geolocation and user data

The overview of the iOS security architecture is as follows:

Data Protection
Class

Software App Sandbox

User Partition
(Encrypted)

0S Partition

File System

Kernel

Secure Secure
Enclave Element

Hardware
and

Firmware Crypto Engine

Device Key
Group Key
Apple Root Certificate

[68]

Chapter 3

The hardware implementation in Apple's devices offer a dedicated AES-256 engine
built into the Direct Memory Access (DMA) allowing the device to deal with data
without involving the CPU, which maximizes file encryption/decryption efficiency.
Each Apple device has its very unique ID (UID) and group ID (GID) which is AES-
256 bits fused keys during manufacturing and is even JTAG resistant, those keys are
used to encrypt and decrypt user's data, meaning that even if advanced techniques,
such as chip-off are used encrypted data still is unreadable.

Data stored in the flash memory of any given iDevice is protected via Data Protection
Technology (as Apple calls it); there are four main levels of data protection:

* Complete Data Protection: This is provided by the
NSFileProtectionComplete class key and is protected with a key derived
from the user passcode and the device UID; once the device is locked, the
decrypted class key is removed from memory until next device unlock.

* Data Protection Unless Open: This is provided by the
NSFileProtectionCompleteUnlessOpen class and is protected using
asymmetric elliptic curve crypto.

* Data Protected Until First User Authentication: It is provided by the
NSFileProtectionCompleteUntilFirstUserAuthentication class and
is similar to a desktop full disk encryption, this class behaves like Complete
Data Protection except the fact that the decrypted class key is not removed
from memory.

* No Protection: This is provided by the NSFileProtectionNone class and is
protected by the UID.

Each file created on data partition is assigned a new 256-bit key; this key is used by
the AES engine to encrypt this file before writing it to the flash memory. Devices that
use A8 processors encrypt files using XTS-AES (as described in Recommendation for
Block Cipher Modes of Operation: the XTS-AES Mode for Confidentiality on Storage Devices
presented by NIST in January 2010). Depending on the file (how and when it must
be available), the generated per-file key is wrapped with a class key and stored in the
same file's metadata under the cprotect attribute using AES key wrap algorithm,

as described in RFC 3394 (https://tools.ietf.org/html/rfc3394). Files are
decrypted somehow on demand, once a file is solicited, the filesystem key (the key
that encrypts each file's metadata, including its class key) passes the revealed per-file
key and the indication to the concerned class key to AES engine which decrypts the
opened file.

[69]

https://tools.ietf.org/html/rfc3394

iDevices from a Forensic Point of View

The process is described in the following schema:

File System Key

Hardware Key

File Metadata

File Key

Class Key File Contents

Passcode Key

In addition to this, iOS offers Keychain Data Protection, which is implemented

as a SQLite database present in the filesystem and provides a secure way to store
sensitive information used by applications (such as login tokens and passwords).
Keychain items are managed by the security daemon in order to determine which
process can access which keychain and to facilitate this, a keychain-access group is
set to facilitate sharing keychains between applications from the same developer.

Identifying stored data

All iDevices use a type of non-volatile memory chip using NOT AND gates

called NAND memory, this memory in iDevices is divided into two partitions:
system and data. As suggested by their respective names, the system partition

holds the firmware including the operating system and built-in applications and

in general it's a read-only partition. Depending on models, this partition can range
anywhere from 1 to 2.5 GB. In general this partition does not hold any forensically
interesting evidence; however, it's important to note that the /private/etc/passwd
path holds the preconfigured user's "mobile" and "root" passwords, as shown in
following screenshot:

[70]

Chapter 3

+-| .Trashes -
: [lasl
4] feeventsd)
- Applications] asl.conf
: fatab
+-- | Developer J
+-| | Library |group
: hosts
4| System .)
o] bin hosts,equiv
H | master. passwd
+- | cores !
: netwarks
#- | dev I notify.conf
-] etc no .dcc'n
=8 private ! passw
i Ex -_II:'PP
protocols
asl !
[“Iracoon
PPP) .
services
racoon !
ttys
i war
+- | shin
+". tmp
+- | usr
+- | var

0B
933B
7o B
1KiB
214B
0B
1KiB
53B
282E
9938
0B
SKiB
0B
662 KiB
1KiB

Folder
File
File
File
File
File
File
File
File
File
Folder
File
Folder
File
File

System partition of i0S 9.0

If you open the file with a text editor you should get the following;:

daemon:*:1:1:System Services:/var/root:/usr/bin/false
10 _ftp:*:98:-2:FIPF Daemon:/var/empty:/usr/bin/false

sRT=R =]

_neagent:*:34:34:NEAgent:/var/empty:/usr/bin/false
14 _securityd:K:6&:64:secarityd:fvarfempty:fusrfbinffalse

I
PG R

1 #%

2 % User Database

CHNNE]

2 % This file i= the authoritative user database.

5 &%

& nobody:*:-2:-2:Unprivileged User:/var/empty:/usr/bin/false

root:/SmERIMYTIQIi3M:0:0:System Administrator:/var/root:/bin/sh
mobile: /smxTMYTQIi2M:501:501:Mobile User:/var/mobile:/bin/sh

_networkd:*:24:24:Network Services:/var/networkd: /fusr/bin/false
_wireless:*:25:25:Wireless Services:/var/wireless:/usr/bin/false

Default password of users root and mobile

% The plaintext password is alpine and is the same in all iDevices. This
R

password cannot be modified unless the device is jailbroken.

[71]

iDevices from a Forensic Point of View

Data partition holds user's installed applications, iTunes media, settings, and all the
user data, which leads to the fact that this partition constitutes the majority of NAND
memory space, which can be up to 128 GB.

The majority of forensically interesting data is stored in /private/var, which is the
mount point for device's user/data partition /dev/disk0s1s2 (or /dev/disk0s2 in
older versions). Most applications run under the non-root user named "mobile" and
all the data is present in /private/var/mobile.

The main children of /private/var/mobile are as follows:

* Containers (replaces Applications in versions prior to iOS 8)
* Applications (replaces Containers in versions prior to iOS 8)
¢ Documents
® Library
®* Media
The containers folder contains all applications downloaded from Apple Store and
has the following children:
®* Bundle
® Application
¢® Data
®* Shared

As seen here, the Bundle folder holds an Application subfolder that holds the actual
applications folders; this folder contains as many folders as there are downloaded and
installed applications, each folder is named by the Universally Unique ID (UUID)
of the application within it, the UUID uses a canonical format using hexadecimal
text with inserted hyphens characters in this form: CCC7366E-AD57-476F-B7A4-
30C060514BA1, each of these folders has the following general structure:

¢ Documents

® Library

®* tmp

* Name.app

®* iTunesArtwork

® iTunesMetadata.plist

[72]

Chapter 3

The Name . app is the application bundle, Name is replaced by the actual application
name, this file is digitally signed and verified at runtime and is not backed-up
during sync. Documents is a folder containing the application's data and can be
synchronized and backed-up, the data within this folder can also be accessed
through iTunes File Sharing if this option is enabled in iTunesMetadata.plist.
Library is also a folder containing application files; its content is backed-up except
for its subfolder Caches. As its name suggests, tmp is a directory that contains
volatile temporary files generated after the application launches. i TunesArtwork
refers to the application icon used in iTunes and in general is 512 x 512 px. The
iTunesMetadata.plist is basically an XML file containing the application's iTunes
metadata and can be opened in Windows using plist Editor Pro (http://www.
icopybot.com/plist-editor.htm); for example, this file may contain forensically
interesting evidences, such as the Apple account name and the date of purchase. The
following is a snippet of the LinkedIn application's iTunesMetadata.plist file

<dict>
<keysartistId</key>
<integer>288429043</integer>
<key>artistName</key>
<string>LinkedIn Corporation</strings>
<keys>asset-info</key>
<key>bundleShortVersionString</key>
<string>66</string>
<key>bundleVersion</key>
<string>5.1.6</string>
<key>com.apple.iTunesStore.downloadInfo</key>
<dict>
<keys>accountInfo</key>
<dict>
<key>AccountAvailableServiceTypes</key>
<string>143469-2,2</string>
<key>AccountURLBagType</key>
<string>production</string>
<key>ApplelID</key>
<string>editedeedited.com</string>
<key>CreditDisplayString</key>
<string></string>
<key>DSPersonID</key>
<integer>1067389897</integer>
</dict>

[73]

http://www.icopybot.com/plist-editor.htm
http://www.icopybot.com/plist-editor.htm

iDevices from a Forensic Point of View

<key>purchaseDate</key>
<string>2015-09-12T09:50:25%Z</string>
</dict>

Timestamp is an important point to consider while manually analyzing
artifacts, since the majority of (if not all) timestamps found on iDevices
are either in UNIX timestamp format, also known as POSX time and
Epoch time, or in MAC absolute format.

UNIX format represents the amount of seconds elapsed since the UNIX
epoch, which is 00:00:00 UTC on 1 January 1970, so at UNIX epoch, UNIX
time is equal to 0 and increases by 86400 seconds each day following the
epoch. For example, 2016-01-04T00:00:00Z, meaning 16804 days after
the epoch, will have a UNIX timestamp that will look like 16804 * 86400
* =1,451,865,600. There many free tools to do the conversion (http://
% www . unixtimestamp.com) or you can use your terminal in Linux, for
example, by typing the following command date -u -d @1451865600
(orin OS X by typing OS X: $ date -ur 1451865600):

The -u is used to indicate universal time and not local

The Mac Absolute Time format is almost the same except that the epoch
time is considered as 00:00:00 UTN on 1 January 2001, making an exact
difference of 978,307,200 seconds, so to convert a timestamp to this format,
this difference must be added.

Depending on the iOS version (iOS 7, iOS 8+ or iOS 9+), the paths of different
artifacts generated by the system or by the user's interaction with it are a bit
different, but the general structure remains almost the same. In general, the main file
formats that you will be analyzing in order to gather evidence are SQLite databases
and property list (plist).

Using the t ree command against a mounted image either in a Windows,
Mac, or Linux environment will bring up an easy-to-read list of how
directories and files are sorted. The following list is a part of the result

of the tree command in a Windows environment system partition of a
~ mounted i0S 9.0 image:

Q +---Applications

| +---AACredentialRecoveryDialog.app

| | \---_CodeSignature
| +---AccountAuthenticationDialog.app
| | \---_CodeSignature

[74]

http://www.unixtimestamp.com
http://www.unixtimestamp.com

Chapter 3

A\l

+---AdSheet.app
| +---ar.lproj

+---Managed Preferences

| \---mobile

+---mobile

| +---Applications

+---Library

| +---AddressBook
+---Caches
+---Cookies
+---Inboxes
+---Keyboard
+---Logs
| \---CrashReporter
| \---DiagnosticLogs
+---Preferences

|

|

|

|

|

|

|

|

| +---Safari
| +---WebClips
|

\

\---WebKit
---Media

+---DCIM

+---PhotoData

\---Photos
+---MobileDevice
| \---ProvisioningProfiles
+---msgs

+---networkd
+---preferences
+---root

| \---Library

| \---Preferences
+---run

+---spool

| \---mdt
+---tmp
+---vm

\---wireless
\---Library

[75]

iDevices from a Forensic Point of View

Generally, to gather the most valuable information about applications, such as
Facebook, WhatsApp, Skype, and Dropbox, you should refer to either private/
var/mobile/Application/ for versions prior to iOS 8 or /private/var/mobile/
Containers/Bundle/Application/ in more recent versions.

iI0S acquisition and forensic approaches

Before talking about acquisition, it's important to have at least an idea about some
important iOS-related concepts: iOS boot process, operating modes, unique device
identifier, and lockdown certificate.

10S boot process and operating modes

Apple introduced what they call the Secure Boot Chain in which each step of the
start-up process is cryptographically validated to ensure integrity and guarantee the
chain of trust. The Apple root CA public key is shipped within the boot ROM code
and is used to verify the Low-Level Bootloader (LLB). Once verified and loaded,
LLB verifies and loads in turn the iBoot bootloader, which in turn verifies and loads
the iOS kernel. This process is well described in the Apple's official iOS Security
guide (https://www.apple.com/business/docs/i0S_Security Guide.pdf).
From these boot stages, three operating modes can be listed: LLB can be directly
launched from Device Firmware Upgrade (DFU) mode; iBoot runs what is called the
recovery mode, it has an interactive interface and can be used over USB, and then
normal mode, which is the normal boot process showing the iOS interface. From a
forensic point of view, both DFU and recovery modes are important and can be used
to perform physical acquisition as we will see later in this chapter.

To put iOS 9 in recovery mode, follow these steps:

1. Turn off your iOS device by pressing and holding the Sleep/Wake button.

2. Take the USB cable (or lightning connector) and connect one end to your
computer without connecting the other end to the device.

3. Hold down the Home button on your device, and while doing so, connect the
device to the USB cable.

The iTunes player will open automatically.

[76]

https://www.apple.com/business/docs/iOS_Security_Guide.pdf

Chapter 3

To put iOS 9 in DFU mode, follow these steps:

Ll

Plug your device into your computer.
Turn off the device.

Hold the power button for 3 seconds.

Begin holding the Home button without releasing the power button

for 10 seconds.

Release the power button and continue holding the Home button until you

get a pop-up from iTunes.

Unique device identifier

Each iDevice is shipped with its own unique device identifier (UDID), which is 20
bytes and 40 characters long in hexadecimal values, which is calculated as follows:

UDID = SHA1(serial + ECID + wifiMac + bluetoothMac)

The serial is relative to the serial number as seen in the Settings App. ECID is an ID
unique to every electronic or chip unit and can be obtained in Windows as follows:

1.
2.

Put your device in recovery mode or DFU mode.

Open Device Manager and right-click on Apple Mobile Device (Recovery or

DFU mode) for properties.
Click on the Details tab.

Click on the drop-down box and select Device Instance Path.

You should find it in the textbox.

The easiest way to find the UDID is by connecting the device to the computer
and running iTunes, then clicking on the iPhone icon, under Settings, clicking on
Summary, and then clicking on the Serial Number to see the UDID:

[]

@

| [e
ﬁ T

I=| Capacity: 12.75 GB
[Summary 2 3 Gapacity: 12.75 GB

/A Apps

-

44 Music

H Movies

”

's iPad

o
[y
T

iPad mini

(@ sign In ~

Serial Number: FB?LSR'\JI

——————iDID: 54A544B40CF4
c

Iy check for

[771]

iDevices from a Forensic Point of View

A simple method is to look for iTunes backups because files will be named using the
UDID. Depending on the operating system iTunes backups are stored in:

* Mac: ~/Library/Application Support/MobileSync/Backup/{UDID}

* Windows Vista/7/8/10: \Users\ (username) \AppData\Roaming\Apple
Computer\MobileSync\Backup\{UDID}

e Windows XP: \Documents and Settings\ (username)\Application
Data\Apple Computer\MobileSync\Backup\{UDID}

Lockdown certificate

Basically, a lockdown certificate is a pairing certificate created once an iDevice

is connected to a computer with iTunes running. From a forensic perspective,
obtaining this certificate can help obtain a partial access to a locked device. The
important part is that you can copy this certificate to another computer and the
process of paring won't be altered. Depending on the operating system of the
computer used to sync the iDevice, lockdown certificates are .plist files named
UDID.plist (where UDID replaces the unique identifier ID of the paired device)
and stored in the following folders:

e Mac OS X: /var/db/lockdown

* Windows 7/8/10: C:\Programbata\Apple\Lockdown

* Windows Vista: C: \Users\username\AppData\roaming\AppleComputer\
Lockdown

e Windows XP: C:\Documents and Settings\username\Application
Data\Apple Computer\Lockdown

This is shown in the following screenshot:

(] = | Lockdown - =] -
m Accueil Partage Affichage (2]

1\‘ <« Disquelocal (C:] » ProgramData » Apple » Lockdown v D| | Rechercher dans: Lockdown 2 |
Accés rapide - MNom “ Modifié le Type Taille
Jeo Creative Clou = 27 dfd350d3daf0ed503b634bedc27c8c582 cdadalf plist 08/01/2016 1410 Property List File 10 Ko
L. Google Drive 2 SystemConfiguration.plist 07/01/20 6 Property List File 1Ko
[Desktop

=| Documents

Téléchargem:
4 g

2 élément(s) -

[78]

Chapter 3

If you get a lockdown certificate, a lot of valuable information can be gathered via
the Apple File Conduit (AFC) protocol (more information about this protocol is
available at https://www.theiphonewiki.com/wiki/AFC), such as:

Device information:

o

[e]

o

o

[e]

IMEI (for devices with telephone capability)
Bluetooth address

Language

Date and time

Timezone

Battery charge level

Total NAND memory size

Empty space size

Backup configuration

Installed application list

Application distribution on Springboard

File contained inside applications that are using iTunes File Sharing

iBooks folder

Downloads folder

iTunes_Control folder:

[e]

o

iTunes subfolder

Music subfolder

Videos loaded into the device from a PC/Mac

If you are dealing with a turned on device, you should always have the reflex of
isolating it and searching for a lockdown certificate on a paired computer before
turning the device off.

[79]

https://www.theiphonewiki.com/wiki/AFC

iDevices from a Forensic Point of View

I0S acquisition

When dealing with seizure, it's important to activate the Airplane mode and if the
device is unlocked, to set the auto-lock option to Never and to check whether the
passcode was set or not (Settings | Passcode). Try to keep the phone charged if you
are dealing with a passcode and you cannot acquire its content immediately; if no
passcode was set, turn off the device.

There are four different acquisition methods when talking about iDevices:

* Normal or direct: This is the most perfect case when you can deal directly
with a powered on device.

* Logical acquisition: This is when the acquisition is done using iTunes
backup or a forensic tool that uses the AFC protocol and is in general not
complete where e-mails, geolocation database, apps cache folder, and
executables are missed.

* Advanced logical acquisition: This is a technique introduced by Jonathan
Zdziarski (http://www.zdziarski.com/blog/) butis no longer possible
with the introduction of iOS 8

* Physical acquisition: This generates a forensic bit-by-bit image of both
system and data partitions. There are two categories of physical acquisition
under iDevices:

o

The actual physical acquisition is feasible for iPhone, up to iPhone 4

° Logical physical acquisition of the filesystem image requires a

jailbroken device

Before choosing (or not, because the method to choose depends on some parameters)
a method, the examiner should answer three important questions:

* What is the device model?

* What is the iOS version installed?

* Is the device passcode protected?

Is it a simple passcode?

° Isitacomplex passcode?

[80]

http://www.zdziarski.com/blog/

Chapter 3

Identifying the device's model is quite simple because it's always located on the back

of the device:

An exhaustive list of all iDevices models can be found at https://en.wikipedia.
org/wiki/List_of_i0S_devices. Now to identify the operating system, you

can use a tool called ideviceinfo (http://www.libimobiledevice.org), which

is present in many Linux distributions dedicated to forensics, such as Santoku
(https://santoku-1linux.com)and can be used if the device is passcode locked.

The command is as follows:

soufiane@santoku:~$ ideviceinfo -s
BasebandCertId: 3255536192
BasebandKeyHashInformation:
AKeyStatus: 2
SKeyHash: 7MQEUyvzG4gjjZc7KsNNAVTS8g4=
SKeyStatus: 0
BasebandSerialNumber: BkauwQ==
BasebandVersion: 10.00.00
BoardId: 2
BuildVersion: 13C75
ChipID: 35152

[81]

https://en.wikipedia.org/wiki/List_of_iOS_devices
https://en.wikipedia.org/wiki/List_of_iOS_devices
http://www.libimobiledevice.org
https://santoku-linux.com

iDevices from a Forensic Point of View

DeviceClass: iPhone
DeviceColor: #3b3b3c
DeviceName: iPhone de Soufiane
DieID: 1593784934049508256
HardwareModel: N42AP
PartitionType:

ProductName: iPhone OS
ProductType: iPhone5,2
ProductVersion: 9.2
ProductionSOC: true
ProtocolVersion: 2
TelephonyCapability: true
UniqueChipID: 538818362632
UniqueDeviceID: dfd550d3daf0ed503b634bcdc27c8c582cda4adf
WiFiAddress: 00:88:65:ae:d4:b6

If the device is passcode locked, several forensic tools can try to defeat the four-digit
passcodes. IP-Box, which appears to work for up to iOS 8.1.2, is a black box device
that basically sends predefined passcodes to a targeted iOS. Each attempt takes about
6 seconds, so it may take up to 17 hours to test the range from 0000 to 9999. The IP-Box
kit consists of the actual box, iPhone cable, USB cable, an optical sensor, and the IP-Box
software used to configure passcode patterns and to update the IP-Box firmware. The
following is an image showing a successful attack where the passcode was 8664:

[82]

Chapter 3

Detective Cindy Murphy documented this very well in iP-BOX: Breaking Simple
Pass Codes on iOS Devices, available at http://www.teeltech.com/wp-content/
uploads/2014/11/IP-Box-documentation-rev2-1-16-2015.pdf.

Normal/direct acquisition

If a device is not passcode protected or if the passcode or the lockdown certificates
are known, a direct acquisition can be done using any iDevice browser. For example,
iExplorer v 3.8.8.0 is iPhone 6s- and OS 9.2-ready and available for both Mac and
Windows (https://www.macroplant.com/iexplorer/release-notes). The
majority of tools like this act as a backup browser:

Register Help
"; > e O Fistes b Camom el .H
D Ph d h d Mame Date Mo: ™
I one de mohame: % |MG_DODE,JPG DROFIE
» 7 Media Library a E
IMG_0007.JPG
~ ' Backup i 12/24/2015
+ ¥ Backup Explorer g IMG_0015.JPG 1242473015
Contact:
@ Contacs IMG_0018.MOV 12/24/3015
@ Messages
e — g "Moo 1272402015
Call History = IMG_0018.MOV 12/24/2015
Safari
© safa tﬁ& IMG_0021.PG 12/25/2015
[5] Calendar 17
IMG_0022.PG
! Notes ame Ve 12/25/2015
~ [=2] Photos % IMG_0023.JPG 1272572014
Camera Roll .
@ % IMG_0024.JPG 12/25/2015
Q Photo Stream 13
_—
H] Recorded Videos IMG_0026.PG 12/25/2015
B Instagram E IMG_0027.JPG 12/25/3015
nstasize M IMG_0031.PG 12/26/2015
Snapchat
IMG_D034.JPG
Wallpaper > - 12/27/2015
A Apps ﬁ IMG_0035.JPG 1272772013
4 Medi
e IMG_0036.JPG 12/27/2015
* AR Books »
Y Bookmarks < iy ’
O Browse iTunes Backups Export Entire Library... Export Sela@dtenishs201 GB tEaplort C
[83]

vww allitebooks.conl

http://www.teeltech.com/wp-content/uploads/2014/11/IP-Box-documentation-rev2-1-16-2015.pdf
http://www.teeltech.com/wp-content/uploads/2014/11/IP-Box-documentation-rev2-1-16-2015.pdf
https://www.macroplant.com/iexplorer/release-notes
http://www.allitebooks.org

iDevices from a Forensic Point of View

Loglcal aCQUISItlon

Creating a backup and working on it can be forensically interesting, since it avoids
accidental writing operations caused by some non-forensic tools, as in the case of
doing a direct acquisition. Making backups is possible if the device is not passcode
protected, the passcode is known, or the examiner has a lockdown certificate (just
like the conditions in direct acquisition).

The easiest way to back up an iDevice is via iTunes, there are two options to note:
performing a fully unprotected backup of the computer, or performing a full
password protected backup, and in both cases, the backup is done by clicking on
Back Up Now:

Automatically Back Up Manually Back Up and Restore
icloud Manua k up your iPhone to this computer or restore a
Back up the most important data on your iPhone to Ly don omputer.
Back Up Now
(® This computer
A full backup of your iPhone will be stored on this Latest Backup:
computer. Your iPhone has never been backed up to this computer.

Encrypt iPhone backup

account passwords, Health, and HomeKit daia fo be

iTunes backups are stored in the following paths:
e Windows XP: Documents and Settings)\ (username) \Application Data\
AppleComputer\MobileSync\Backup)\

* Windows Vista/7/8/10: Users\username\AppData\Roaming\Apple
Computer\MobileSync\Backup\

* MacOS: ~/Library/BApplication Support/MobileSync/Backup/

[84]

Chapter 3

There are also many forensic tools that can make logical acquisition, we cannot cover
them all in this chapter but the following example uses MOBILedit! Forensic 8.2. It's
a commercial tool that offers a seven day trial period (http://www.mobiledit.com/
downloads.htm). MOBILedit! offers three backup options: MOBILedit backup that
will save contacts, organizer, and files; device backup is an iTunes backup with the
ability to choose where to store the backup and standard iTunes backup, which will
hold all the information, such as contacts, settings, and messages:

1. First step to do is to open MOBILedit! and connect your iDevice. Once
detected, you can see it connected as follows:

Connected

Apple =
iPhone 5 Eo Connect

iPhone de mohamed

@ Report Wizard

SIM Clone % iTunes Backups
% Hex Dump E}' Ph

[85]

http://www.mobiledit.com/downloads.htm
http://www.mobiledit.com/downloads.htm

iDevices from a Forensic Point of View

2. Click on Report Wizard, the tool here offers the possibility to use an existing
detected backup (generally previously done using iTunes) or a simple
extraction using the current connection:

Choose type of exdraction
You can choose the method of extraction for the

The data from a connected device can be extracted in several ways.
Complete extraction is time consuming but provides much more data and will even
include data stored in the cloud.

(® Complete extraction utlizing the device backup (recommended)

() Simple extraction using the current connection

Creating the device backup will require a considerable amount of time

< Back Mext = | ‘ Cancel

[86]

Chapter 3

3. By choosing the second option and clicking Next, a new window invites
you to fill in the current device information, such as the device label, name,
owner, and so on and to choose device capabilities to extract:

Data acquire settings

Flease set the following options for data acquiring.
Data will be stored in the "Cases” folder.

Device Label: | iPhone de mohamed |
Device Name: | Apple iPhone 5 | Device Evidence Mumber: | iPhone_5_Casel |
Owner Name: | Mohammed | Owner Phone Mumber: | 0668559975 |
Phone Notes: | This is an extraction test. Soufiane Tahiri

Device Capabilities -
[#] Phanebook

[+] Applications -
[#] Application Data -
[+] Files

[#] Media

[Orgarizer hd

Communication Log Of Backup Operation

[Create: | || Browse. .. |

< Back | | Next = | | Cancel |

[87]

iDevices from a Forensic Point of View

4. The next step invites the examiner to choose a part of the filesystem
to acquire:

Fle system acquiring
Choose the part of filesystem to acquire.

() spedified file types: |
[Audio [video [pictures

() selected files & folders

O Phones
m-J [Phone de mohamed

[< | [w> | [cod |

5. In the next step, the tool starts extracting and parsing the previously selected
parts of the filesystem. In this acquisition step, the tool may take a while to
bring up the ready to use result:

[88]

Chapter 3

Data acquiring

Acquiring of selected data may take a while.

Item Status ~
Data acquisition started on 08/01/2016 20:44:55

Calendar L 'opération a réussi, _
Motes L'opération a réussi, =
Phonebaoak L'opération a réussi,

Filesystem: Info L'opération a réussi,

Filesystem: Instasize L'opération a réussi.

Filesystem: com.apple. Accountauthe, .. Lopération a réussi,

Filesystem: com.apple. AdSheetPhone L'opération a réussi,

Filesystem: com.apple. AppStore L'opération a réussi.

Filesystem: com.apple. AskPermissionUI L'opération a réussi,

Filesystem: com.apple.Bridge L'opération a réussi.

Filesystem: com.apple. CloudKit.5har... L'opération & réussi,

Filesystem: com.apple. CompassCalibr... L'opération a réussi,

Filesystem: com.apple. CoreAuthll L'opération a réussi,

Filesystem: com.apple. DemoApp L'opération a réussi.

Filesystem: com.apple. Diagnostics L'opération a réussi.

Filesystem: com.apple.Diagnostics.Mi... L'opération a réussi. w

Reading file "com.apple.mobilemail.icon.png” from “Phone de mohamed®...
Stop
| | | Cancel

6. Once the acquisition is complete, a new window invites you to fill in the case
details, by double-clicking on < New Case >:

Cases
Organize obtained device data.

Select the group you wish to store backup in:

Cases
Cases
< Mew Case =

[89]

iDevices from a Forensic Point of View

7. Fill in the case details, investigator details, and notes about the case then click
on Next to create a new case for obtained data:

New case
Create a new case for obtained data.

Case Details Motes

Label: | iPhone Sforensic test | Some notes here ~
Mumber; | 1 |
Investigator Details
MName: | Soufiane Tahiri |
E-mail: | soufianetahiri@amail.com |

Phone Number: | 00212668559975 | >

| < Back | | Mext = | | Cancel

Physical acquisition

Every time physical acquisition is possible, the examiner does not hesitate to

make it since it allows the extraction of almost everything from the device by
providing an actual copy of the device's memory and access to all the files stored

in there. There are many commercial tools that support physical acquisition of an
iDevice, such as UFED Physical Analyzer, XRY, and Elcomsoft iOS Forensic Toolkit;
the latter supports iOS up to 9.2 and also permits physical acquisition for 32-bit and
64-bit iDevices.

[90]

Chapter 3

Always keep in mind that the passcode protection stat is important, since if

the device is passcode protected and the passcode is complex, the analyst should
brute-force or dictionary-attack the passcode; this option is offered by most
commercial forensic tools, such as Elcomsoft iOS Forensic Toolkit that can brute-
force a simple 4-digit passcode in 10-40 minutes. Complex passcodes require more
time, since the recovery is being performed on the device and cannot be done on a
faster equipment.

Physical acquisition also requires a jailbroken device most of time (if not all).

Jailbreaking iOS 9

Jailbreaking an iDevice is the process of gaining full access to all partitions; it's
basically the process of mounting the system partition as read-write, modifying the
AFC service to access the filesystem, and patching the kernel to bypass the code
signing and Apple's restrictions. You can visit https://www.theiphonewiki.com/
wiki/Jailbreak to learn more about it.

Even if it's principally a write activity and thus cannot be considered as forensically
accepted, it offers the only way to perform physical acquisition with modern iDevices.
A Chinese group called PanGuTeam has released the first jailbreak that supports iOS

9 versions 9.0.1 and 9.0.2 and also iPhone 6s and iPhone 6s+ (available for Windows
and Mac free of charge at http://en.pangu. io). The process of jailbreaking an
iPhone, iPad, and iPad touch on iOS 9 using Pangu Jailbreak is quite simple.

After downloading the latest version of the jailbreak, simply follow these steps:

1. Using the USB cable, connect your iDevice to a PC or a Mac.

2. Be sure that iTunes is closed.

3. Disable the passcode and the Find My iPhone app and put the device in
Airplane mode.

4. Launch Pangu Jailbreak.

[91]

https://www.theiphonewiki.com/wiki/Jailbreak
https://www.theiphonewiki.com/wiki/Jailbreak
http://en.pangu.io

iDevices from a Forensic Point of View

5. Once your device is detected click on Start:

Pangu Jailbreak For iOS 9(v1.0.0)

iPhone[iPhone7,1 i0S89.0.1(Jailbreak ready)]

6. In the next window, click on the Already backup button:

Pangu Jailbreak For iOS 9(v1.0.0)

f\} Jailbreak Notice

Please carefully read the following notice

Jallbreak may lead to data loss. Please make a full backup with iTunes
before using Pangu jallbreak tool. Use the tool at your own risk

Please enable the airplane mode for improving the speed and success
rate of the tool

We suggest you backup your device and restore i, if your devices have
many apps installed or use much data

(Cancel >< Already backup)

[92]

Chapter 3

After this step, around 55% the device may reboot and around 65% will ask
you to re-enable the Airplane mode.

7. At75% you will be prompted to unlock the device and to run the Pangu app
on the device:

Pangu Jailbreak For i0S 9(v1.0.0) - X

5%

Please unlock the device and run the Pangu app(297)

8. Next, on the device you will be prompted to click on the Accept button, then
Allow, since for some reason this jailbreak needs access to the Photo app:

Pangu Jailbreak For iOS 9(v1.0.0) - X

75%

Please follow the displayed instructions and ALLOW it to access photos

(-)
\ /

[93]

iDevices from a Forensic Point of View

9. Once completed, the device will reboot and Pangu will tell you that your
device is Already jailbroken:

10. You can turn off the Airplane mode and run Cydia to prepare the filesystem.

Physical acquisition with Elcomsoft iOS Forensic Toolkit

As described on the vendor website (https://www.elcomsoft.com/eift.html),
Elcomsoft iOS Forensic Toolkit performs the complete forensic acquisition of user
data stored in the iPhone/iPad/iPod devices. Elcomsoft iOS Forensic Toolkit allows
eligible customers to acquire bit-to-bit images of a device's filesystems, extract device
secrets (passcodes, passwords, and encryption keys), and decrypt the filesystem
image. Access to most of the information is provided instantly.

[94]

https://www.elcomsoft.com/eift.html

Chapter 3

By executing Elcomsoft iOS Forensic Toolkit, you can see that the wizard is
quite simple:

Pt ve

Elcomsoft Co.

an action:

Ac u ire |I|'1l_,':: ical ir'a.ll__u‘ of the device Files ystem

LE Acgquire wusg files From the device as a tarbhall
REBOOT Rebhoot

EXIT

Elcomsoft iOS Forensic Toolkit main menu

Now, turn off your jailbroken device and connect it to your computer, then let
Elcomsoft assist you in entering the DFU mode by typing 1:

Pleazse make sure that the device is plugged in and switched offF.

ry,. connect the device and switch it off by holding
srner? button and dragging the red slider when it appears.

Would you like to continue? <Ysni: y

To put device into DFU 1 will need to:
1. -

Puzh d hold p Lcor and Home enter? buttons fFor
18 cond

2. Rel button but continue to hold Home button for
anot :

Thiz script will help you with the timings.

then you are ready

and be prepared to pr
xp and Home but

Once this step is successfully completed, you will be prompted to let Toolkit

Ramdisk load onto the device:

Release Home button.

Your i058 Device should be in DFU mode now.

1d b= hlank. device ot 1 look like it is off.

ple ar 4Ty logo ice is not in DFU mode.
casze rehoot the dev and try ag L

Hould vou like to load Toolkit Ramdizk now? <Y nl: wy

[95]

iDevices from a Forensic Point of View

By typing y and then pressing Enter you will get the following screen:

2011-2815% Elcoms

L ing down
the devi T
iPhoned . 1

ng libpo
j down ilun -
g For devi i d ¢ to connect. ..
device
ng if 3 » is compatible with this Checking the device type

iPhoned . 1Preparing to upload limeraln exploit

N

inters
ng chunk 5

At this stage, the device will boot in the recovery mode and you can see the
Elcomsoft logo on the phone. The device is ready to be acquired and the first thing
to do is get the encryption keys:

Welcoame to Ele saf ‘orensice Toolkit
Thiz iz driver 3 2.8Uin

(c) 2011-28015 Elcomzoft Co. Ltd.

Device keys File {keys.plist»: keyz.plist

Urite l‘!.l.:"'g,'ptr:ﬂ jr'l.il.|l.' to Files £ wchain.txt?»: keychain.txt

keys.plist contains valuable information such as Apple ID/password and Wi-Fi
network passwords, third-party and VPN credentials, and so on.

We can acquire all the user files by typing 8 on the main menu (choosing the Aquire
user's files from the device as a tarball option):

[96]

Chapter 3

Welcome to Elcomsoft i0OS Forensic Toolkit
This is driver script version 2.8-Win

(c) 2811-2015 Elcomsoft Co. Ltd.

Please note that to obtain files from the device you need to load ramdisk
on the i0S device first. If you haven’t done this yet, please return
to previous step and use corresponding menu item.

Continue? <¥Y/nd: y
Store files to archive <user.tar): userfiles.tap

Mounting user partition...

Detecting 108 version...

Detected i0$

rawwrite dd for windows version B.6betal.

Written by John Newbigin <{jnPit.swin.edu.au’

This program is covered by terms of the GPL Uersion 2.

3,875,584

This task may take a while and you will end up with a . tar file that has all the
user data.

We can proceed with the actual physical acquisition by typing ¢ (choosing the
Acquire physical image of the device filesystem option), which will produce the
system partition in plaintext and an encrypted data partition:

Welcome to Elcomsoft i0S Forensic Toolkit
This is driver script wversion 2.8-Win

(c) 2011-2015 Elcomsoft Co. Ltd.

Please note that to obtain device disk image you need to load ramdisk
on the i0S device first. If you haven’t done this yet. please return
to previous step and use corresponding menu item.

Please select partition to image:
1 System (rdisk@slsl) — this one is NOT ENCRYPTED
2 User (rdisk@s1s2) — this one is ENCRYPTED

@ Back

>: 2
3

ave image to file <{user.dmg>: userfiles.dmg

rawwrite dd for windows version @.6betad.
dritten by John Newbigin {jnPit.swin.edu.au>
[his program is covered by terms of the GPL Uersion 2.

28,.958M

A+926506 records in

A+926586 records out N
28958+1 records in

28958+1 records out

38365065216 bytes (38 GB) copied, 5019.23

[maging done.

Press 'Enter’ to continue

[97]

iDevices from a Forensic Point of View

Here, we have the encrypted physical copy of the user data partition, which is almost
30 GB. Obviously, we cannot deal with it as it is but we can decrypt it using the
previously extracted keys.plist file that holds all the encryption keys:

Welcome to Elcomsoft 10 Toolkit
This is driver script version 2.8/Win

11-2815 Elcomsoft Co. Ltd.

Encrypted image file <user.dmg>: userfiles.dmg
.plist>: keys.plist

Write decrypted image to file <userfiles-decrypted.dmg>:
¥P = YP E -

Then, we can get the ready-to-mount decrypted images saved as usefiles-
decrypted.dmg:

rything should be decryptable.

10S artifacts recovery — evidence gathering
and data recovery

Techniques of evidence gathering depends on the acquisition method used. The first
interesting thing to know is how to deal with an iTunes backup, this usually allows
the examiner to gain full access to data within this backup. iTunes backups contain
almost every sensitive information an examiner can look for, such as:

* Contacts and call history

* Safari bookmarks, cookies, history, and offline data

[98]

Chapter 3

Calendar events
iMessages, SMS and MMS
Voicemail token and voice memos

E-mail account passwords

App Store app data

Location service preferences, map bookmarks, and recent searches

iTunes backup folder contains uniquely named files with 40 hexadecimal character
long names and without extensions:

« Backup » dfd550d3dafled503b634bcdc27cBc582cdadadf

w E)| | Rechercher dans : dfd350d3dafi

T

oud F

WE

rment:

[ools

ud Files

Hentiel

Mom

|j 30cc5c0alfed763a721cc302ddc5ed cedeb..
[] 30decBa1efb1a1f0TcFAfcf 1203007 efb2d Th...
[] 20e3f0efd9660bCEf05d0db328025cTe0d4c, ,
[] 30ea071926370825bdad68244364029¢ 138..,
|j I0eel58272823de2 57fd 18afB03bTbeaf 5. .
|j 30fedbf2a52c93b07075d6fb8cB85c15a568f. .
[] 031e7af4a4620d23Fd49c1d5791754c6af3...
[] 31bb7bagg14766d4bad0dEdfbE113c8bE14,.,
[] 31bc2525563764936c396637b 18806 2ec3. .
|j 31d0213710559efd6181d4f3ech5a409d4el. .
|j 31ebbcaldf9c7d628091b945c45f956284f1...
[] 32c8d0cTece3693390£90fde3F7F4509d223...
[] 32¢3147958d2515390af648a7d0cEdEed 1 ac. .
[] 33242b6417d713753842119f40d024faabe5...
|j 33ebb564d44d29009ef 1beb7718385fb2e08...
|j 034eac?aall463d6bE15f 78165 d3b85dc2...
[] 34b81f72£8679864212329d2d decdSeacld. .
[] 3426b19d73bb2771c99d2ed4979%4cebEc .
[] 35ad1741€313cbf56438eafdbc 2005362062, .
|j 35af7910c7262b%9c97baf61a11d44534d 5fb...
|j 35bdB4ccebB2dBi4a3eefd3b8452fb4%5h...

Madifié le

P
U=

/0172016 01:26
/0172016 01:22

/0172016 01:26

2016 01:26
2016 01:26

/2016 01:26

/0172016 01:28
0172016 01:22
/0172016 01:28

/0172016 01:22

/2016 01:26
/2016 01:28

72016 01:22

/0172016 01:27
/0172016 01:26
/0172016 01:26

/0172016 01:28

201601:26

/2016 01:26

/0172016 01:22

/0172016 01:22

Type

Fichier
Fichier
Fichier
Fichier
Fichier
Fichier
Fichier
Fichier
Fichier
Fichier
Fichier
Fichier
Fichier
Fichier
Fichier
Fichier
Fichier
Fichier
Fichier
Fichier
Fichier

Taille

2264 Ko

[99]

iDevices from a Forensic Point of View

Each filename is made by a SHA-1 hash of the original name, together with its path
and domain separated by a dash. iOS contains several domains: KeychainDomain,
RootDomain, WirelessDomain, SystemPreferencesDomain, CameraRollDomain,
and so on. But there are two primary domains: AppDomain is used for applications
downloaded from the App Store, and HomeDomain is the iOS domain that contains
built-in applications data. For example, Facebook Messenger's property list backup
file is 0ba8559bd5e366782ble5d846c3bb94a71£435d8 and is calculated as follows:

SHA1(' AppDomain-com.facebook.Messenger-Library/Preferences/com.facebook.Messenger.
plist') = 0ba8559bd5e366782b1e5d846c3bb94a71f435d8

Some interesting hashes to know are as follows:
* WhatsApp: 1b6b187alb60b9ae8b720c79e2c67£472bab09¢c0

* SMS and iMessage:
3d0d7e5fb2ce288813306e4d4636395e047a3d28

. * Call history:
% 2b2b0084albc3abac8c27afdfl4afb42c6laloca
s

¢ Contacts and address book:
31bb7ba8914766d4ba40d6dfb6113c8b614bed4?2

e Calendar: 2041457d5fe04d39d0ab481178355df6781e6858
. Notes: ca3bc056d4da0bbf88b5fb3be254f3b7147e639¢
¢ Locations: 4096c9ec676f2847dc283405900e284a7c815836

In addition to these files, each iTunes backup contains four or more interesting
files made by iTunes and holds valuable information about the device and the
backup itself: Info.plist, Manifest.mbdb, Manifest.plist, and Status.plist.
They are detailed as follows:

[100]

Chapter 3

Key Type Value
~[=-Root dict
Applications dict
- Build Version string 13C75
Device Mame string iPhone de mohamed
Display Mame string iPhone de mohamed
string JCE4210EADAEDBEAF23ED:
string 013412008655534
-{=t-Installed Applications array
string comtoyopagroup.picabo
string com.cmplay.tiles2
string com.facebook Facebook
string com.miniclip.8ballpocimL
string com.gocgle.chrome.ios
string com.facebook Messenger
string InstaSize
string tr.com.tiramisu.driftd
string net.whatsapp.Whats&pp
string coem.burbn.instagram
string com firsttouch.dts
Last Backup Date date 2016-01-09T01:15:39Z
Product Name string iPhone 5
Product Type string iPhone5,2
Product Version string 9.2
Serial Mumber string CITIWNMNZDTWD
Target Identifier string dfd550d3daf0ed503b634b:
Target Type string Device
Unique Identifier string DFD5350D3DAF0EDS03B634
HiTunes Files dict
~iTunes Settings dict
~-iTunes Version string 12.3.235
Info.plist

Info.plist is a property list file containing information about the device (device
name, device type, IMEI, and so on) and also contains the iTunes version that is used
to back up the device, date of backup, and so on.

o1 2 3 4 5 & 7 4 3 &2 B C D E F 10 11 12 13 14 15 16 17 18 19 14 1E 1C 1D 1E 1F

6D 62 64 £2 05 00 00 18 41 70 70 44 6F 6D 61 69 6E 2D 63 &F €D 2E 61 70 70 6C 65 ZE 4D 61 70 73 [bdb AppDomain-com. apple. Hapg
00 00 FF FF FF FF FF FF 41 ED 00 00 00 00 00 00 01 F8 O0 00 01 F5 00 00 01 F5 56 79 91 35 56 79 FYVEYAL @ & &y &V
91 35 56 79 31 35 00 00 00 00 00 OO 00 OO0 00 00 00 18 41 70 70 44 6F 6D 61 63 6E 2D &3 6F 6D 2E "5Vy'S AppDonain—con |
61 70 70 6C &5 2E 4D 61 70 73 00 07 4C 69 62 72 &1 72 79 FF FF FF FF FF FF 41 ED 00 00 00 00 00 apple Maps Libraryiyyyyyai

00 01 FA 00 00 01 FS 00 00 01 FS 56 7B 2D &6 56 7B 2D A6 56 79 91 35 00 00 00 00 00 00 00 00 00 o8 Gv{-IVv{-|¥y’'§

00 00 18 41 70 70 44 6F 6D 61 A9 BE 2D 63 BF 6D 2E 61 70 70 6C 65 2E 4D 61 70 73 00 13 4C B9 A2 AppDomain—-com apple Maps TLiH
: 2oap ro c : P c Er o eT ¥ o re 4t Zn an on oo oo onoon ot o - et
Manifest.mbdb

[101]

iDevices from a Forensic Point of View

Manifest .mbdb is a binary database that holds information about all the backup
content, such as file sizes and structures. Each entry of Manifest .mbdb is of a
variable size and contains the following information about a given file:

Domain: This is the domain the file belongs to
Path: This is the file path
Target: This is the absolute path for symbolic links
Encryption key: For unencrypted files its 0xFF/0xFF
Mode: This identifies the file mode:

° 0xA000: Symbolic link

0x4000: Directory

° 0x8000: Regular file

Inode number: This is the lookup entry in the inode table
User ID: 501 is the default ID set by iOS
Group ID: This is 501 as well

Last modification time: This is the file's last modification date in UNIX
format

Last accessed time: This is the the last time the file was accessed in UNIX
format

Creation time: This is the file creation time in UNIX format
Size: This is the size of the file in bytes:

o

0 for symbolic links and directories

Protection class: Data protection class from 0x1 to 0xB
File hash

[102]

Chapter 3

MBDB as a file type has its own magic number that defines its header:
0x6D6264620500 (mbdb).

Key Type
~I=lRoot dict
- Applications dict
date

boolean

dict

‘BuildVersion string

DeviceMame string

‘ProductType string

ProductVersion string

-SerialNumber string

- UnigueDevicelD string

- H-com.applefAccessibility dict
com.apple.MobileDeviceCr dict

‘com.apple.TerminalFlashr dict
- com.apple.mobile.data_syndict

‘com.applemobileiTunes.a dict
com.apple.mobilewireless_dict

Value

2016-01-09T01:15:332
falze

13C75

iPhone de mohamed
iPhone5,2

9.2

C3TIWNNZDTWD
dfd330d3dafled303b634b:

~SystemDemainsVersion string 24.0

- Wersion string 9.1

- WasPasscodebet boolean true
Manifest.plist

Manifest.plist is a property list file that holds information about the content of
the backup, the application's bundle details, information about the device, iTunes
version used to make the backup, and also contains flags to determine whether the

backup

Key

is encrypted or not (IsEncrypted):
Type

Root dict
BackupState string
Date date
IsFullBackup boolean
SnapshotState string
uuiD string
Version string

Value

mew

2016-01-09T01:15:382

false
finished

BEF1118C-A251-4AA0-AC

24

Status.plist

[103]

iDevices from a Forensic Point of View

Status.plist is a property list file that contains information about the backup
process. It contains flags to determine whether the backup was a full backup or not,
if it was successful or not, date and version, and so on.

These four files remain in plaintext, irrespective if the backup made is
password-encrypted or not, meaning that the information is always available
once you get an iTunes backup and there is no need to crack the password in
case of an encrypted backup.

There are many tools that read and parse the Manifest . mbdb file and convert iTunes
backup to a readable format. For Windows, you can use the iPhone Backup Browser
(https://code.google.com/p/iphonebackupbrowser/) and iPhone Backup
Extractor (http://supercrazyawesome. com/) in Mac, or iBackupBot, which is
commercial but available for both Mac and Windows. The following is a screenshot
from iPhone Backup Browser, which automatically detects backups found on the
current computer and offers the possibility to open a backup from a custom directory.
By clicking on a file, it sends you directly to where its located in the backup directory,
and in the case of unencrypted backup, you can simply add the appropriate extension
to open the file in a traditional viewer (in case of a JPG file, for example):

“T= 5|

o' iPhone Backup Browser

iPhone de mohamed (09/01/2016 01:15:39) B @@ [e

Display Name Name Files Size App Size -~
com.miniclip 8ballpoclmult com miniclip.8ballpoolmutt il 683232

com.google chrome jos. TodayBExension com google.chrome jos. TodayExension N/A]

com.google chrome jos com.google.chrome.os 9 205518 =
com firsttouch.dts com firsttouch dts 13 993244

com facebook Messenger ShareBxten... com facebook. Messenger. ShareExte. . N/A]

«com facebook. Messenger com facebook. Messenger 54 435585

com facebook Facebook com facebook. Facebook 51 303821

com cmplay tiles2 com cmplay tiles2 104 1995 881

com burbn instagram watchkitextension com burbn instagram watchkitextension N/A 0

com burbn instagram com burbn instagram 8 1661640

com.apple WebViewService com apple Web\ViewSenvice N/A 0 -
Name: Size Date Domain Key ~
Documents/’_sessionlessStore/preferences_v1/10000265472. 23857 08/01/2016 11:03:16 AppDomain-com facebook Messenger 2821f/d20397de 8421 b 26f 007809 06640
Documerts/_sessionlessStore/preferences_v 1/com facebook.... 42 241272015 00:20:11 AppDomain-com facebook Messenger fe237c6a27556c673c Toflabidec 30 H97c
Documents/_sessionlessStore/preferences_v 1/manifest_v1.sq.. 16384 08/01/2016 19:46:04 AppDomain-com facebook Messenger 465dd523753 leaffeaeBead Tb98609 1ecc4b
Documents/_sessionlessStore/preferences_v1/VideoStorage.... 42 24/12/2015 00:18:27 AppDomain-com facebook Messenger 7b339105f210d 1a38ccabacOb58a3b37c 15
Documents/analyticscore/beacon realtime 16 08/01/2016 11:03:10 AppDomain-com facebook Messenger 519117a882ad6 7 9%adc 73922 237d7333e 5

Documerts/analyticscore/beacon regular
Documerts/analyticscors/event realtime

<

18
18

08/01/2016 11:03:10
08/01/2016 11:03:10

AppDomain-com facebook. Messenger
AppDomain-com facebook. Messenger

5db32daf0596a53d 3df 453270352 181870be
3%b5d30ec3c384dc3d438a 7538 13bad60’

Documents/analyticscore/event regular 16 08/01/2016 11:03.10 AppDomain-com facebook Messenger 7aBf1d2eddcf6eldcbeb3bbf2390%ac 461 7ec
Documents/analyticscore/fba_regular_0_3282db 14-550433b-.. 1573 01/01/2016 13:27:37 AppDomain-com facebook. Messenger 35c6d421e224achfBecd8 1183270 3282820
Documents/analyticscore./fba_regular_0_5948504b-8d%a-6a2... 1420 25/12/2015 20:01:38 AppDomain-com facebook. Messenger bb52853494eda7dcb 397 1bbe 1cf3359c17dc
Documents/anafyticscore fba_regular_0_766ac184-2246-3a3. 2634 27/12/2015 D0:45:55 AppDomain-com facebook Messenger ab28f9dd0fc3a9317182cb 293967756 77
Documents/anafyticscore fba_regular_0_a07d7003-0722-507 2636 05/01/2016 21:15:24 AppDomain-com facebook Messenger 01186054142d3c9d 34edfaaa6442 5005 d4z
Documents/anafyticscore/fba_regular_0_dad 1ff4e-1078-386e- 2788 25/12/201513:37:51 AppDomain-com facebook Messenger (0e23fa71d4716dah652055d9d30b036F 188
Documerts/application_status_snapshot 842 08/01/2016 11:04:00 AppDomain-com facebock Messenger 673445d04932030bF 1 9ebe 78823 200 7532 7
Documents/proxy_video_data_usage stats 951 27/12/201513:59:28 AppDomain-com facebock Messenger 4dfdbad3:0883322h102caa30b89d80H 324
Documents/proxy_video_watching_time_tracker 261 08/01/2016 11:03:55 AppDomain-com facebook Messenger TdcA1fB5863196037a3255234255604b 3dd

Library/com facebook-sdk-AppEvents Time Spent json 85 08/01/2016 11:0354 AppDomain-com facebook Messenger 24e11812d04d5cb622 lec24 70ee 7720806
Library/com facebook-sdk-Persisted AnomymousID json 52 25/12/2015200132 AppDomain-com facebook Messenger 6c14836226c193a45ech6256ad6 1bd 78 1c3
Library/Cookies/Cookies binarycookies 758 01/01/2016 0221:17 AppDomain-com facebook Messenger 86 72075e7 1be50d2458a433528a560Mabe
Library/Cookies/Cookies binarycookies_tmp_1023_0.dat 758 25/12/201513:3753 AppDomain-com facebook Messenger 2b03b6¢5d77246bf0b 18730554 17717328 =
Library/Cookies/Cookies binarycookies_tmp_2685_0.dat 758 29/12/201521:4938 AppDomain-com facebook Messenger 859ab59828 126bco AG7dR1806bTecd 188l
Library/Cookies/Cookies binarycookies_tmp_3353_0.dat 758 01/01/2016 132738 AppDomain-com facebook Messenger b 3ad76d22fd6d8c7d FeSabi4884a0893d¢
305861 08/01/2016 11:0357 AppDomaincom facebook Messenger (ba855%bd5e 3667820 Te5d846c 30b94a7
Library/Preferences, U TextInputContextldentifiers plst 8977 06/01/201600:05:55 AppDomain-com facebook Messenger dc297505dfdc80139312d4ac 3a8bbTedc 7df
Library/WebKil/WebsieData/LocalStorage Hitps_m facebook.. 12288 24/12/201500:17:58 AppDomain-com facebook Messenger d67 365887472761 4a39d3 16 0b 2cf 8 5bc
Library/WebKit/Website Data/LocalStorage/Storage Tracker.db 12288 08/01/2016 11:03:12 AppDomain-com facebook. Messenger df1f62312945382532842101077c 2ad 27cf 05

b

[104]

https://code.google.com/p/iphonebackupbrowser/
http://supercrazyawesome.com/

Chapter 3

To extract data from an uncrypted iTunes backup, there are several free (iPhone
Backup Analyzer, iPhone Analyzer, and more) and commercial tools (such as
MOBILedit! Forensic, Oxygen Forensic Suite, Elcomsoft Phone Viewer, and so on).
These tools allow you to gather all the data within a given backup.

Artifact recovery using iPhone Analyzer

iPhone Analyzer (http://sourceforge.net/projects/iphoneanalyzer/)isa
Java-based tool that parses and brings all data in an easy-to-use user interface. This
tool offers a native file browsing for plist and SQLite files, automatic bookmarks,
address book, location map, voicemail, Facebook friends, map history, all sent and
received messages, all incoming and outgoing calls, and all media files.

After running iphoneanalyzer.fat.gui-2.1.0.jar, the tool detects all the present
iTunes backups on the current computer, you can either select one and click on the
Analyze IPhone Backup button or click on Browse and manually select a

backup folder.

| £:| iPhone Analyzer - (=] -

File Edit Search Help

IPhone Analyzer

To beqin, select an i0S device backup to open

CilUsers\Soufiane\Application Data\dpple ComputeriMobileSynciBackup | Browse |

. L W
_J iPhone5,2: iPhene de mohamed v9.2 - Sat.Jan 09 01:28:
@'W,ﬁ'ﬁone de mohamed v9.2 - Sat Jan 09 01:15:;

Ty > | Analyze |Phone Backup >>>
1 il L /.-:9:*:_‘_:-‘ : — |

For additional features and plligins please contact
" sales@crypticbit.com

[105]

http://sourceforge.net/projects/iphoneanalyzer/

iDevices from a Forensic Point of View

Once the analyze button is clicked, the tool starts collecting media within the backup:

Eile Edit Search Help

Bookmarks | File System

Main A

Last Backup Date 8 janv. 2016 D BackupKeyBag: 564552530000000400000003545950450000000400
t""“:ss IE“‘”" GUID 3CE4210EAOAEDBS4F23E056BF17DC508 (& Lockdown: Dict
Vzic;‘r?;”' gt Unique Identifier DFD550D3DAFOEDS0386345CDC27CECI82CDA4AIF & com.apple MobileDeviceCrasnCopy. Dict
SR Phone Number ﬁmm apple TerminalFlashr: Dict
IMaps history Product Version 9.2 Seriaamoer CITINNZOTAD
ﬁ com.apple.mobile.wireless_lockdown: Dict
Product Type iPhiones 2 ¥ &8 com.apple.mobile.data_sync: Dict
Messages 2 Target Type Device (&2 Bookmarks: Dict
Serial Number C37JWNN2DTWD [Accountivames: Array
g;nt iTunes Version 1232235 (5 sources: Armay
Received Target Identifier 34bcde2 4387 7 (8 Contacts: Dict
¥ (& Accountames: Array
icloud
Calls a Display Name: iPhone de mohamed v ﬁ Sources: Array
Last Backup Date: 09i01/16 01:15 iCloud
Al v (& iTunes Files: Dict I (& calendars: Dict
I IC-Info.sidv: 0100010200666 12550349226f2b22fdacc51f1fd54€ (&5 Accountames: Array
Outgoing iTunesPrefs: 66727064010018000101000181413¢7fd37 df4af4. (55 Sources: Array
iTunesPrefs plist 3c31766d6c2076657273696f523d223122302) v ﬁ MNotes: Dict
Shortcuts A VoiceMemos plist: 3c3f786d6c2076657273696G03d22312e30. v E Accounthames: Array
7 (2 Applications: Dict iCloud
All media v ﬁ netwhatsapp.WhatsApp: Dict v E Sources: Array
ApplicationSINF: 042073696¢660000000c66726d6167616! iCloud
F 1. 0-76afb 3 raductType: iPhones 2
iTunesMetadata: 62706c69737430304M021010203040506 Buildversion 13C75
¥ (&5 com firsttouch.dts: Dict niqueDevicelD: 0ed503b634bcdc2’
ApplicationSINF: 042072696e660000000066726d6167616d! PreductVersion: 9.2
F 1. 0-76afd Db’ com.apple. mobile.iTunes.accessories: Dict
iTunesMetadata: 62706c6973743030dM023010203040506 DeviceName: iPhone de mohamed
¥ (& com.miniclip gballpoolmult: Dict ¥ (& com.apple Accessibility: Dict
‘| ApplicationSINF: 0420736962660000000c66726d61676160f s oomTouchEnabledByiTunes: false
F 1. 0-76af o ¥ ClosedCaplioningEnabledByiTunes: false
< >

The tool brings up all kinds of information about the device and the backup and you
can start browsing through the main menu to visualize the address book, as shown
in the following screenshot:

[106]

Chapter 3

Device Info | . st1020017628 plist % | . csgitedd x
Frst | Last 4| Organisation | Photo 1l
L
- -
Facebopk Frignds
Map=s higtory e Sy
Messages & P— Eaws
All
‘Sent
Receivad e -
| &
— & [- I
All
Incoming
Qutgoing p— e
Shortcuts -3
i .
All media
Concapls
bl Lt
——. -
i
Sql | Deleted Fragments | Text | Hex

S

You can browse the address book SQLite database by clicking on the Sql tab and
trying to recover deleted fragments too.

[107]

iDevices from a Forensic Point of View

SMS and call history databases can also be viewed in the same way the address
book was, and the deleted fragments can be recovered, as you can see in the
following screenshot:

+21269 Sat Dec 26 22:18:03 WET 2015 RECEIVED M3
+21267 Sat Dec 26 17:35:06 WET 2015 SENT SMS
+21269 Thu Dec 24 22:49:06 WET 2015 SENT M3
+21269 Mon Dec 28 23:44:29 WET 2015 SENT SMS
+21269 Thu Dec 24 22:57:42 WET 2015 RECEIVED M3
+21269 Mon Dec 28 23:45:36 WET 2015 RECEIVED SMS
+21263 Mon Dec 28 11:51:31 WET 2015 SENT M3
+21269 Sat Jan 02 16:29:09 WET 2018 RECEIVED M3
+21268 Fri Dec 25 16:33:53 WET 2015 SENT SMS
+21269 Mon Dec 28 22:41:51 WET 2015 SENT M3
+21269 Mon Dec 28 23:38:19 WET 2015 SENT SMS
+21268 Fri Dec 25 18:39:57 WET 2015 SENT M3

There are two interesting options that this tool offers: the first is user activities (what,
when, where, and who) for address book entries, messages and geolocation based
on the media metadata, a feature that can be accessed by clicking on Concepts in the

Shortcuts menu:

What
|
Addressbook entry [Ain Harrouds” |
413l A @ENe
Message (V] A e e
y /
media orimage metadata E] o
Casablanca=" —=—"N J
+EXCE A8ENZA A
sladdiBhll /
= R320 /i i {
- P o 3 Tit Mallil 36
— - N 4 % N CUZN ke Lo
= hima QOAL: .
— - Errahma 2§ { o >
s00 -1 - 3 1
@ 200 ~ — ‘- .
E Q- S \ Ng
2 soo = —
200 = = Casablanca
=l - BT ! 2
2 2E-d&C. Al i ”
VL0 (&) Bouskoura 826RE0a Médiouna CoAiSle

What | When | Where | Who | v E 1 selected events
Addressbook entry Wed Dec 23 20:17:3 A 'E*\ddressbuukemw
Addressbook entry Tue Dec 22 19:47:24 F v ﬁrimgs
;u:essage'gntre 9“'3 ¥ (& created addressbook entry
Message:Quiiana d... . §
Addressbook entry Tue Dec 22 19:47.24.. L Wed Dec 23 2343:07 WET 2015
Addressbookenlry Wed Dec 23 20:17:4... ¥ [modiied addressbosk entry
Message:Hhhh yak || Wed Dec 22 20:17:40 WET 2015
Addressbook entry Tue Dec 22 19: 3 v E Identities

i Wed Dec 23 20:17:4. : - — v
Message:Hhhh yak
Addressbook entry Tue Dec 22 19:47:23.. e (FIRST_NAHE)
Addressbookentry Tue Dec 22 19:47.23.. L) (SURNAE)
Addressbook entry Tue Dec 22 19:47:23.. | _§l=Mobile=15_(PHONE_NUMBER)
Addressbook entry Wed Dec 23 20:17:4. || backup File {v4). LibraryiAddressBookiAddressBook.sqlitedb (C:Wsers)
Addressbook entry Wed Dec 23 20:17:4...
Addressbook entry Wed Dec 23 20:17:3
Addressbook entry Wed Dec 23 200174
Message:s maximu
Addressbook entry Tue Dec 22 19:47:23.. L
Addressbook entry Wed Dec 23 20:17:3... v - K T

[108]

Chapter 3

Here, we can see that the user created and modified an address book entry.

The second is the ability to search the entire backup for keywords using search
options such as Case sensitive, Case insensitive, Regular expression, and Fuzzy
match (via the top menu or Ctrl + F):

Regular expression
f4... Fuzzy match ahja F

fd.. rrerorerrrray S Al

And the result is as follows:

up F). ChatStorage. sqlite (C\WWsers\Soufiane\Application Data\Apple Co)
¥ [E LibraryMotes/notes.sglite
El backup File (v4): LibraryMotes/notes sglite (CUsers\Soufiane\dpplication DatalAp)
E| backup File (v4): LibraryiMotes/notes sglite (C\Users\Soufiane\dpplication DatalAp|
v [E Media/PhotoData/Photos. sqlite
E| backup File (v4). Media/PhotoData/Photos sqlite (C\Users\Soufiane\dpplication D4
E| backup File (v4): Media/PhotoData/Photos sqlite (C\Wsers\Soufiane\dpplication D3
E| backup File {(v4): Media/PhotoData/Photos. sglite (CWsers\Soufiane\Application D3
El backup File (v4): Media/PhotoData/Photos. sglite (CWsers\Soufiane\Application D3
El backup File (v4): Media/PhotoData/Photos. sglite (CWsers\Soufiane\Application D3
El backup File (v4): Media/PhotoData/Photos. sglite (CWsers\Soufiane\Application D3
El backup File (v4). Media/PhotoData/Photos. sqglite (CWsers\Soufiane\Application D3
F| backup File (v4): Media/PhotoData/Photos sglite (CWsers\Soufiane\Application D3

[109]

iDevices from a Forensic Point of View

Artifact recovery using MOBILedit! Forensic

MOBILedit! Forensic can parse and present evidence from iTunes backups in a more
fancy way:

1. To load an iTunes backup, from the Navigation menu, click on iTunes
Backups:

g MOBILedit! Forensic

Navigation

Connected

[(—=—. No phoi _
@ Start cu}?‘uﬁectl::l Eo Connect

EO Connected

% iTunes Backups

S ne = il ke
E Cases (2) ; I :
C b Hex Dumn p

Eﬁ Hex NDumn
v

Navig::

@) start

[© conn..
(B iTun..
(B Cose-.
B v
g Phot..
@ Fore.

[110]

Chapter 3

3. This will reveal all the existing iTunes backups on the current computer.
Click on the desired backup:

- MOBILei Foremsic . - | 8

WEWIE (&5 Apple iPhone 5

@ Start

[:0 Conn...

& iTune... : y :' ; J m] \\t:t

+ [Apple i

&
ﬁ Hex ..

09/01/2016 01:28:46

& @

09/01/2016 01:15:39

4. MOBILedit! Forensic will offer you the possibility to explore the phonebook,
call logs, messages, application data, media, calendar, and notes (and the
possibility to make a report):

Phonebook Call Logs

Manufacturer:
Model:

Device name: i me| \
b son15as E <

Messages Application Data

Wallpaper resoluti b 3
Display colors: 6 E —
-

Media

Tunes Backup 0.

IMEI: 013412008655534
Eo Not available

[111]

iDevices from a Forensic Point of View

5. In the following screenshot, you can see missed, outgoing, and
incoming calls:

R Call Logs (375) - iPhone de mohamed < A &
Q2

Outgoing (179) Incoming

|Number | Time v | = Search

08/01/2016 12:30:06

08/01/2016 12:17:59 | E)I[)Olt
08/01/2016 12:10:07

08/01/2016 12:03:04 Print
07/01/2016 23:11:50

07/01/2016 22:38:43

07/01/2016 21:11:35 Heiend
07/01/2016 20:58:05

07/01/2016 19:40:59

07/01/2016 19:36:12

07/01/2016 18:51:08

07/01/2016 18:46:40

07/01/2016 17:21:48

06/01/2016 22:00:13

06/01/2016 21:46:20

O
O
O
O
[m]
[m]
O
O
O
[m]
[m]
O
O
[m]
[m]
[m]
O

06/01/2016 21:30:02

6. By clicking on Application Data, you get a tree of internal filesystem
of all domains that has been backed up and you can copy each desired
file for further analysis with external tools by clicking on the Copy to
option in the right panel:

[112]

Chapter 3

@ C - iPhone de mohamed

& AppDomainGroup-group.snapchat.picaboo ~ File Name Size Created

P, o er e e o
- AppDomain-net.whatsapp WhatsApp
& Documents
& Library
& Backup
& Camera Open
® Cookies
& Fieldstats
o Logs _
C W Media 1 Copy To

- 21268 66@s.whatsapp.net
21260 04@s.whatsapp.net
- 21267 16-1440327135@q.us

. 2126 50@s.whatsapp.net Hex Dump

76-1437231224@q.us

40@s.whatsapp.net

Reread

W 2126250 85@swhatsapp.net
212656 3@s.whatsapp.net

W 212660+ $5@s.whatsapp.net
W 212660 0@swhatsapp.net
- 2126634 4 12@s.whatsapp.net

W 212664 0 6@s.whatsapp.net
- 21266 8@sawhatsapp.net

21266500 4@swhatsapp.net

W 212669 53@swhatsapp.net
- 2126700 314423036120 g.us

W 21269040 2@s.whatsapp.net
W 21269 2@sawhatsapp.net
- 212696 8@s.whatsapp.net
@ Preferences

iTunes backups can be encrypted using a password, the backup is password
protected from iTunes. If you are dealing with an encrypted backup, there are
forensic tools that can try to crack this encryption by brute-forcing the password,
such as Passware Kit 11.5, iPhone Backup Unlocker, or Phone Forensics Express.

The following section demonstrates how to crack the iTunes password using Phone
Forensic Express (http://www.mobiledit.com/forensic-express). As described
on the product website, with Forensic Express, you can extract all the data from a
phone with only a few clicks. This data includes deleted data, call history, contacts,
text messages, multimedia messages, files, events, notes, reminders, and application
data from apps, such as from Skype, Dropbox, Evernote, Facebook, WhatsApp,
Viber, and so on. Phone Forensic Express allows you to extract data from previous
user-created backups. Especially, if you can't use a phone for evidence, a suspect's
computer data can provide key insights into their phone behavior and this is the
option that we will be using.

[113]

http://www.mobiledit.com/forensic-express

iDevices from a Forensic Point of View

After opening the software, click on Open File and then click on iTunes backup
folder. After selecting an encrypted backup, a window appears and asks you to enter
the password used if known, if not you can choose either the Dictionary attack or
the PIN attack option:

Passward toolbox

The Apple backup is encrypted, plea

Show char

Dictionary attack

PIN attack

If the Dictionary attack option is chosen, you can choose single or multiple
dictionaries as suggested by the tool or you can provide your own custom dictionary
(text file), and you can choose a PIN length in case the PIN attack option is desired:

[114]

Chapter 3

For this example, I'll be running a 4-digit PIN attack against my iTunes backup as
shown in the following screenshot:

PIN attack

In less than a minute my pin 0558 was successfully cracked and the tool provided the
password in order to use it if you want to analyze the backup with another tool:

[115]

iDevices from a Forensic Point of View

It's going biometric!

Apple introduced Touch ID fingerprint recognition with the iPhone 55, it's believed
to represent a significant improvement of iPhone users' data protection. In its basic
description, Touch ID takes a 550 dpi resolution picture of your fingerprint by the
help of a capacitive sensor, then iOS stores a mathematical representation of this
image in the Secure Enclave, so technically, no image of your fingerprint is stored
either in the device or in Apple's servers (including iCloud).

To match a fingerprint there are two main features of the fingerprint pattern: patterns
(Figure 1) and minutia points (Figure 2), as you can see from the following images
(images from https://en.wikipedia.org/wiki/Fingerprint_recognition):

Figure 1

Y

Figure 2: Minutia points from left to right: ridge ending, bifurcation, and short ridge (dot)

[116]

https://en.wikipedia.org/wiki/Fingerprint_recognition

Chapter 3

Basically, a fingerprint can be created from the difference in electrical conductivity
between the epidermal and the dermal (not conductive) layers; this difference is
"exploited" by the capacitive sensor to produce a digital image of the fingerprint
pattern. Starbug, a member of the notorious Chaos Computer Club (CCC),
successfully bypassed Touch ID on iPhone 5S by faking a fingerprint using "the
fingerprint of the phone user photographed on a glass surface." The used photo was
2400 dpi, the photo was inverted and printed out at 1200 dpi, later latex milk was
poured onto the pattern and breathed on and the result was a success. The whole
process is well documented at https://www.ccc.de/en/updates/2013/ccc-
breaks-apple-touchid.

Apple improved Touch ID by the arrival of iPhone 6 but it was successfully bypassed
using almost the same techniques if you can manage to lift a suitable fingerprint

as demonstrated by researcher Marc Rogers at https://blog.lookout .com/
blog/2014/09/23/iphone-6-touchid-hack/.

Third-party applications

All the third party applications are somehow organized the same way within

iOS and they all belong to AppDomain and are stored in the Data partition. All
commercially available forensic tools focus on interrogating application data. Most
of the valuable information is stored in property list and SQLite formats. Media, such
as videos, photos, and audio, is stored in general within a subdirectory in the same
application folder.

Here, we will go through a forensic analysis of WhatsApp, the well-known cross
platform mobile messenger that has replaced many cases traditional SMS services
and offers the ability to exchange unlimited text messages, sending and receiving
photos, videos, sharing geolocation, audio messages, making VolP calls, and more.
The following was an acquisition from an iPhone 5 running iOS 9.2.

All WhatsApp data can be found in mobile/Application/net.whatsapp.
Whatsapp/ and the most valuable files and directories are as follows:

® ChatStorage.sqglite

® StatusMessages.plist

* Library/Logs/whatsapp-{dateTime}.log

[117]

https://www.ccc.de/en/updates/2013/ccc-breaks-apple-touchid
https://www.ccc.de/en/updates/2013/ccc-breaks-apple-touchid
https://blog.lookout.com/blog/2014/09/23/iphone-6-touchid-hack/
https://blog.lookout.com/blog/2014/09/23/iphone-6-touchid-hack/

iDevices from a Forensic Point of View

The Documents/StatusMessages.plist is a property list file that keeps a trace of

the user's defined status:

XML View |i List View !

array
string
string
string
string
string
string
string
string
string
string
string
string
string
string
string

Disponible

Occupéle)

A l'école

Au cinéma

Au travail

Batterie faible

Me peux pas parler, WhatsfApp uniquement
En réunion

A |a salle de sport
Endormi(e)

Appels urgents uniquement

The Library/Logs/ directory contains activity logs, each file contains the activity

log of the defined period in the file's name:

Mom

[whatsapp-2016-01-05-22-11-29.279.134.log
[whatsapp-2016-01-05-22-14-08.588.135.log
[a whatsapp-2016-01-05-22-59-50.589.136.log
[whatsapp-2016-01-05-23-31-02.198.137.log
(& whatsapp-2016-01-06-00-01-15.963.138.log
[a whatsapp-2016-01-06-00-50-16.166.139.log
[whatsapp-2016-01-06-13-21-24.385.140.log
(& whatsapp-2016-01-06-14-13-21.000.141.log
[a whatsapp-2016-01-06-14-31-24.079.142.log

Maodifié le Type

09/01/2016 01:13 Fichier LOG
09/01/2016 01:13 Fichier LOG
09/01/2016 01:13 Fichier LOG
09/01/201601:13 Fichier LOG
09/01/2016 01:13 Fichier LOG
09/01/2016 01:13 Fichier LOG
09/01/2016 01:13 Fichier LOG
09/01/2016 01:13 Fichier LOG
09/01/2016 01:13 Fichier LOG

[118]

Chapter 3

Logs contain interesting and very accurate information about the device and
communications done, such as the carrier name, phone number, local time zone,
time of received or sent buffers, IP addresses, notifications, and delivery time:

LL_A Device: iPhone 5

LL_A System: iPhone OS 9.2 (13C75)

LL A WhatsApp version: 2.12.13

LL A Carrier name: Méditel

LL_A Mobile country code: 604

LL_A Mobile network code: 000

LL A Language: fr-YT

LL A Locale: YT

LL A Phone number: 212 619****7¢

LL A JID: 212619****76@s.whatsapp.net

LL A Time zone: Local Time Zone (Africa/Casablanca (UTC) offset 0)
[+0.0]

LL_A Uptime: 14.671 days

2016-01-07 12:24:43.234 [F] [xmpp] LL N stream/read/642b/buffer/642b/
processed/642b/elem-count/9 B

2016-01-07 12:24:43.248 [F] [xmpp] LL N < recv < [notification/status
1d=3511138875 f=21269****28@s.whatsapp.net o0=0 {0b}]

2016-01-07 12:24:43.248 [F] [xmpp] LL N < recv < [message/text
id=16F5331FB45A111D691 {0c} f=21266****06@s.whatsapp.net o=0 [enc
v='1' type='msg' {66b}]

2016-01-07 12:24:43.248 [F] [xmpp] LL N < recv < [notification/
contacts 1d=1603672634 f=21261****515@s.whatsapp.net o=0 {0b}]
2016-01-07 12:24:43.248 [F] [xmpp] LL N connection/incoming-message/
first-offline-message/0.07s B

2016-01-07 12:24:43.248 [F] [xmpp] LL N < recv < [notification/
contacts 1d=1875703281 £=212612****15@s.whatsapp.net o0=0 {0b}]
2016-01-07 12:24:43.253 [F] [xmpp] LL N > send > [ack/receipt/
delivery t=212619****76-1437231224@g.us p=21263****466@s.whatsapp.net
1d=D8F19DCB474D23A47E0]

2016-01-07 12:24:43.249 [F] [xmpp] LL N < recv < [message/

text 1d=C7A7952DB2EAD6ACEF6 {9c} f=21261***%76-1437231224@g.us
p=21263****466@s.whatsapp.net o0=0]

WhatsApp in iOS stores most of its valuable data in one single database,
ChatStorage.sqglite, this database can be found under net . whatsapp . WhatsApp/
Documents/ChatStorage.sglite and holds almost everything you may need to
know from WhatsApp. This database can be browsed using DB Browser for SQLite
(https://github.com/sglitebrowser/sqglitebrowser), a visual and open source
tool available for Windows and Mac to manipulate databases including SQLite.

[119]

https://github.com/sqlitebrowser/sqlitebrowser

iDevices from a Forensic Point of View

This database is quite confusing, since its structure is a bit complicated, but to
simplify things, here are the most important tables:

* ZWACHATSESSION: Contains contacts

* zZWASTATUS: Contains contacts

* ZWAMESSAGE: Contains data about the messages

* zwaMEDIAITEM: Contains data about attachments

There are in total 12 tables in this database, as you can see in the following
screenshot:

Mame
d Tables (12}
| ZWABLACKLISTITEM
TWACHATPROPERTIES
| ZWACHATPUSHCOMNFIG

DNACHATSESSION
ZWAGROUPINFO
IWAGROUPMEMEBER
ZWAMEDIAITEM
DNAMESSAGE
DNAMESSAGEINFO
I METADATA
Z_MODELCACHE
Z_PRIMARYEEY

All messages can be found in the ZWAMESSAGE table under the ZTEXT column, if it's
a sent message, the column zZFROMJID is kept NULL and the column zZTOJID contains
the receiver ID, which is in the form of #phoneNumber@something. some and vice
versa. All dates are stored in MAC Absolute format. The following is a screenshot
showing this:

[120]

Chapter 3

Table: |_|ZWAMESSAGE - @
ZSENTDATE ZFROMJD {EDIASECTION ZPUSHMNAME — ZSTANZAID ZTEXT ZT0JID
[Filter [Filter |Fiter [Filter [Filter |Fiter [Filter

1 2126196 B Naim YWer 371BD431B1AI Taa o sti?

2 2126196 B Main Wer 371BD43151A1 Galie 1wl

3 2126196 B Naim YWer 371BD43IE1AI Gaar - ia

4 2126196 B Main Wer 371BD43151AI Yaa ~ah

5 473306839 DOD3AEIESAAl Lays 2126563004031

B 21265604 31 Yoines FF34A34B0CAI Iwa &+ w2k sl

7 473906882 DOD3AEIESA Jyto - woihhl 212619900761

8 21265604 31 Yoines FF34A34B0CAI AhIE

9 2126196 B Naim YWer 371BD431E1AI Tas « o antil

10 473306850 DOD3AB3IES44l Aych o shal 212619300761

11 473306838 DOD3ABIESAl Quile 3 2126199000761

All attachments sent and received are stored in ZWAMEDIAITEM tables, the
ZMEDIALOCALPATH column indicates the relative path to the exchanged media, each
media file generates a thumbnail, and the location of the thumbnail is stored in the

ZXMPPTH column:

Table: ||| ZWAMEDIATTEM -| B [l netwhatsapp.WhatsApp » Library > Media v C)| Rech|
=
Lila] B ZMEDIALOGALPATH Nom Modifié le
? Madie/2126199W076-1 437231224@ g us/2A/21301 028433084001 5b 292969244536, anc 21260886 0. whatsapp.net
. 21260 M@s.whatsapp.net
B Media/2126190076-1437231224@ g us/4//410b79ae 344567 de1 71 7a0092bcead7b.ane
212610 16-1440327135@g.us
Media/2126199M076-1437231224@0g. 212ellacdal 2cdd3145093ab4etcalda.
9 ediay! g us5/2/521 2elacdal 2o ah4el a.aac | 21261 S0@swhatsapp.net
10 Medin/2126199076-1 437231224@qg us/5/7/572009db269db 58291561 253015 3d aac B 761437231224 @g.us
il Madia/2126730 * 215-1442308612@0q us/4/d/4d7 diclbe74b2382bd31 ecanzibab| 19 mpd 2126204 0@ s.whatsapp.net
12 Media/212673 215-1442308612@0.us/0/4/04a72161835bdccB0ebb1f1937cacc] B jpg 21262 35@s.whatsapp.net
13 Media/2126730 * 215-1442308612@g us/D/e/leBi5eta#228d7b 3eabheB4bb 348788 jpg 21265 W03 @s.whatsapp.net
i Media/2126790 215-1442308612@ g us/6/3/635dc2cladebba4r5d | dabelbS1 76bdl.mpd 212660 55@s.whatsapp.net
15 Media/2126790 2151 442308612 @g us/E/4/8427311 52391 0ID0BA21 886077689253 jog 21260 @s.rhatsapp.nct
X 21266 & 32@s.whatsapp.net
16 Mediaj212625% 385@s whatsapp neyB/l/BlasbE05ke 3588152 db e 864BEC3AE oy
212664 JB@s.whatsapp.net
” Media/212679 | 215-1 442308612 96111 c03bbdd7e 896 c856370dd280b |
el @g.us/HH9Idf 1o e s 212664 08@s.whatsapp.net
18 Media/212664 44 006@s whatsepp. ne/5/0/6009ac1 d74632d26 44am677 6768855 bdajpy 21266715 whatsapp.net
19 Medis/2126730 2151 4423086124 us/1/b/1 b5 304iBe5020d 798007 46850222 05 jog 21266+ +53@s.whatsapp.net
20 Media/2126730 215-1442308612@0.us/e/3e39003370302686abd 6665 jpg 21267 15-1442308612@g.us
21 Madin/2126730 * 215-1442308612(@0g usfe/7/e75e3diddh724c2617281bct ddbic7ejpy 21269 4% 1 2@s.whatsapp.net
22 Media/212679% | 2151 442308612@q.us/2/2/220612254f9204b1 8326111 39088415 aac 21268 J2@s.whatsapp.net
< 21268~ 12@s.whatsapp.net

[121]

iDevices from a Forensic Point of View

DB Browser for SQL offers the option of querying the database via the Execute SQL
tab. You can do whatever you want using SQL, for example, having an arranged chat
history, as follows:

SELECT datetime (ZMESSAGEDATE + 978307200, 'unixepoch'),h ZPUSHNAME, ZTEXT, ZT
OJID, ZFROMJID FROM ZWAMESSAGE ORDER BY 1;

The result will be as shown here:

SELECT chafolame W1~ ALLDATE = o LA RO LT E SIS0 SR PGS St SIALL DRDLRFY

DATT = FTEITAND wmmagpaac THEB AN FTERT

TR

One important aspect of SQLite databases is that deleted records, in some cases, are
recovered, which means that some of the deleted messages could be recovered. There
are many free (Undark, SQLite-Parser, and more) and commercial (Oxygen Forensics
SQLite Viewer) tools available to help recover deleted records. An interesting read
about how this is technically possible is available at http: //sandersonforensics.
com/forum/content .php?222-Recovering-deleted-records-from-an-SQLite-
database.

Basically, recovering deleted records exploits the SQLite file format, because the

leaf table balance tree can contain areas of unallocated space (free blocks).
Unallocated space is tracked by the leaf table balance trees and can contain deleted
records. (You can learn more about SQLite file format at https://www.sqglite.org/
fileformat.html.)

[122]

http://sandersonforensics.com/forum/content.php?222-Recovering-deleted-records-from-an-SQLite-database
http://sandersonforensics.com/forum/content.php?222-Recovering-deleted-records-from-an-SQLite-database
http://sandersonforensics.com/forum/content.php?222-Recovering-deleted-records-from-an-SQLite-database
https://www.sqlite.org/fileformat.html
https://www.sqlite.org/fileformat.html

Chapter 3

Here is an example of recovering some deleted records from ChatStorage.sqlite
using SQLite-Parser. The output can be opened by any text editor. Usage is simple,
as shown here:

sqglparse.py -p -f dbname.db -o output.tsv

Here's the result:

Free Block 1861013 109 am ES5! 27121261 076-1437231224@g.usla #r371BD43151A8493C1E2 Yaak hhhhh

Free Block 1861473 7
P =]

Free Block 1881605 106 jC5~ ?>2126 03@=.whatsapp.net FF34R34B0C42R6BFDF.

. However, this book does not focus only on iOS forensics. This is why this
% chapter did not cover iCloud and data acquisition from iCloud backups. If
= you are interested in digging this way too, I recommend you read Learning
iOS Forensics, Mattia Epifani and Pasquale Stirparo, Packt Publishing.

Summary

In this chapter, we discussed some of the iOS internals including an overview of

the iOS architecture and filesystem, we went through iOS platform and hardware
security and also different boot modes. In this chapter, we introduced major methods
of acquiring an iOS device normal, logical, and physical acquisitions and how to

deal with some free and commercial forensic tools; this chapter also showed the data
and how this data is stored within an iDevice. In this chapter, we also explained

how iTunes backups are made, how lockdown certificates and property files are
important, and how to gather data from unencrypted backups and then how to crack
password protected backups. We also pointed to the fact that even if you cannot
crack a password protected backup you are still able to know its actual content by
inspecting property list files and Manifest .mbdb. We also had a look at the biometric
aspect of new iDevices.

We illustrated how to approach the forensic analysis of the well-known messaging
application WhatsApp, how we gathered data from its SQLite database, and how we
can recover fragments of removed records; this approach is the same for almost any
other application.

In the next chapter, we will be covering the Android platform and we will go
through different techniques to acquire data with evidential value from the
Android devices.

[123]

Android Forensics

Android-based smartphones have grown their consumer base in the past few years.
At the same time, investigation needs have evolved as a consequence of the new
smartphones that have entered the landscape. In order to answer some interesting
questions about Android forensics, this chapter will bring to light some important
points about Android OS internals, filesystem, data structure, and security models. It
will discuss how it is possible to logically and physically acquire an Android device.
We will also see what JTAGs are and what the chip-off technique is; this chapter will
also explain how to bypass lock screens, security, and encryption. In this chapter, we
will discuss a real case of forensic analysis of a third-party application.

This chapter will cover the following topics:

Android OS - all you need to know
Android security model

Bypassing security

Android logical data acquisition
Android physical data acquisition

JTAG and chip-off forensic examinations

Third-party application and a real case study

[125]

Android Forensics

Android OS - all you need to know

Android is an open source Linux-based operating system, which was first developed
by Android Inc. in 2003. Then in 2005 it was acquired by Google and was unveiled
in 2007. The Android operating system, like most operating systems, consists of a
stack of software components roughly divided into four main layers and five main
sections, as shown in the following diagram (source: https://upload.wikimedia.

org/wikipedia/commons/a/af/Android-System-Architecture.svg). Each layer
provides different services to the preceding layer:

APPLICATIONS

Contacts Phone Browser

APPLICATION FRAMEWORK

Activity Window Content View Notification
Manager Manager Providers System Manager

Package

Telephony Resource Location XMPP
Manager

Manager Manager Manager Service

LIBRARIES

Surface Media . Core
Manager Framework SQtite
OpenGL|ES FreeType WebKit Dalvik Virtual
Machine

SGL SSL libc

LINUX KERNEL

Display Camera Bluetooth Flash Memory Binder (IPC)
Driver Driver Driver Driver Driver

USB Keypad WiFi Audio Power
Driver Driver Driver Drivers Management

Figure 1: Android OS architecture

[126]

https://upload.wikimedia.org/wikipedia/commons/a/af/Android-System-Architecture.svg
https://upload.wikimedia.org/wikipedia/commons/a/af/Android-System-Architecture.svg

Chapter 4

The lowest layer is the Linux Kernel layer, which was edited by Google to make
some changes, such as the addition of the Flash filesystem (YAFFS2). The entire
Android OS is built on top of this layer. This layer contains all the essential drivers
to ensure the interaction between device hardware and the upper layers. The
Linux Kernel is an abstract layer between the hardware and the software (all other
layers); anything that needs hardware interaction is managed by this layer (from
the screen's brightness to camera button clicks). Above the Linux Kernel layer
comes the Software layer, which has two sections; the first section is Libraries
section, which holds Android's native libraries and APIs written in C/C++ and

are specific to a particular piece of hardware. They enable the device to handle
different data types. For example, off-screen buffering (responsible for windows'
transparency) is managed by the Surface Manager library. Media Framework is
also an important library that provides different media codecs to allow the handling
of different media formats. The second section is Android Runtime; before the
launch of version 5.0, Android used Dalvik Virtual Machine, with trace-based
just-in-time (JIT) compilation. However, with the release of Android 5.0 Lollipop,
Android made Android Runtime (ART) the only runtime option. ART is an
environment that makes use of ahead-of-time (AOT) compilation to compile the
application intermediate language (Java bytecode) into a native, system-dependent
machine code upon the installation of an application. This is meant to execute the
resulting binary natively. ART and Dalvik use the same input bytecode to maintain
downward compatibility.

[127]

Android Forensics

]

Every Android application is coded using Java and compiled to a
bytecode for the Java Virtual Machine (JVM); this bytecode is then
translated to a Dalvik bytecode in the form of .dex and . odex
(optimized Dalvik executable) files, as a part of any APK file. ART

and Dalvik make use of . dex files as the input while the . odex files

are replaced with Executable and Linkable Format (ELF) files using

the dex2oat utility responsible for the compilation process, so all
applications compiled using ART on the device will be executed natively
by the processor.

The major difference to note here is that instead of heuristically choosing
a part of bytecode to compile during execution (Dalvik), ART compiles
everything ahead of time. The following chart describes how this can
improve performance significantly (source https://en.wikipedia.
org/wiki/Android Runtime):

Resources &
Native Code

, Zip
Source ——» +-+ ——» DexFile APK

nstall

| |

. Resources &
ERRAE Native Code
—_r‘
dexopt v l dex2oat

quickened dex dex & native code
| dex &

OF‘?;X ELF File [« |

—
o
<C

]
Libraries

A A A A A l

Dalvik Native | | Art | Native |

—>
JIT

Dalvik

A comparison of Dalvik and ART architectures

[128]

https://en.wikipedia.org/wiki/Android_Runtime
https://en.wikipedia.org/wiki/Android_Runtime

Chapter 4

Above the Library/ Android Runtime layer is the Application Framework layer,
mainly composed of Java-compatible libraries based on Open]JDK (in December 2015,
Google announced that all Java implementation will be based on OpenJDK instead

of Apache Harmony: http://venturebeat.com/2015/12/29/google-confirms-
next-android-version-wont-use-oracles —proprietary—java—apis/). The basic
functions of Android-based devices, such as voice calls and resource management, are
managed via programs that interact directly with this layer. As you can see in Figure 1,
this layer consists of nine important blocks or key services. Activity Manager controls
and manages all the stack activities and lifecycle aspects of applications; Content
Providers manage inter-applications data sharing; Resource Manager is responsible
for managing all non-code embedded resources used in applications; Notification
Manager is a service that allows applications to display alerts and notifications; View
System provides an extensible set of views used to create application user interfaces;
Package Manager is a service that allows applications to find out information about
currently installed applications; Telephony Manager manages voice calls and gives
applications information about the telephony capabilities of the device (such as status
and subscriber information); and Location Manager gives access to geolocation
information and the location service using GPS or cell towers. This layer is followed
by the highest level and the topmost layer, the Applications layer, which represents
the programs that are directly used by the device owner, and for most smartphone
devices, we can distinguish two kinds of application: system apps that are shipped
along with the device (default browser, contacts manager, SMS client, and so on).
These apps are usually installed under /system/priv-app/ starting from Android
4.4, and user installed apps that are downloaded and installed by the users are usually
present in the /data/ directory.

Android security model

Understanding every smartphone's OS security model is a big deal in the forensic
context. All vendors and smartphones manufacturers care about securing their user's
data, and in most cases, the security model implemented can cause a real headache
to every forensic examiner, and Android is no exception. Android, as you know, is
an open source OS built on the Linux kernel and provides an environment offering
the ability to run multiple applications simultaneously. Each application is digitally
signed and isolated in its very own sandbox; each application sandbox defines the
application's privileges. Above the kernel, all activities have constrained access to
the system.

[129]

http://venturebeat.com/2015/12/29/google-confirms-next-android-version-wont-use-oracles-proprietary-java-apis/
http://venturebeat.com/2015/12/29/google-confirms-next-android-version-wont-use-oracles-proprietary-java-apis/

Android Forensics

Android OS implements many security components and has many considerations
for its various layers; the following diagram summarizes the Android security
architecture on ARM with TrustZone support:

---- Application sandbox ---
Application

Application Framework

Application

Secure 0S Services

Keystore DRM
Trusted APP f Trusted APP
]

User
Space
Native Libraries (SSL.. Bonic

Hardware TrustZone

Most recent Android devices provide a secondary environment/OS: the Secure

OS is dedicated to run security-sensitive operations, and this capability is usually
implemented in a separate processor or it can also be shared on the same processor,
such as the ARM TrustZone technology (to learn more about TrustZone, you can
refer to http://www.arm.com/products/processors/technologies/trust zone/).
The latest Samsung Galaxy S6 uses Samsung's in-house Exynos 7420 SoC, which

is an ARM-based SoC providing a hardware cryptographic accelerator that uses

a Direct Memory Access (DMA) engine to facilitate a full disk encryption. (An
interesting paper about the Samsung Exynos 7420 can be found at http: //www.
anandtech.com/show/9330/exynos-7420-deep-dive.) There are at least seven
manufacturers of SoC: Samsung, Qualcomm, MediaTek, Texas Instrument, Intel,
nVidia, and ST-Ericsson. In general, OEMs use the Secure OS services to provide
device-specific services and applications. All the cryptographic services based in the
Secure OS are exposed to the Android application via the KeyChain API.

Android makes use of industry-standard algorithms to provide cryptography
and data protection abilities in order to ensure three main functions: device
encryption, application security, and network connectivity and encryption
(SSL, VPN, and Wi-Fi).

[130]

http://www.arm.com/products/processors/technologies/trustzone/
http://www.anandtech.com/show/9330/exynos-7420-deep-dive
http://www.anandtech.com/show/9330/exynos-7420-deep-dive

Chapter 4

Full disk encryption

Similar to iDevices and iOS, Android user data is also encrypted before writing it to
the disk using an encrypted key, and all read operations automatically decrypt data
before returning it. This encryption/decryption process is a kernel feature that works
at the dm-crypt level. The encryption/decryption process relays on 128 AES with
cipher-block chaining (CBC) and ESSIV:SHA256; the OEMs can use AES-128 bit or
higher to encrypt the master key.

With the introduction of Android 5.0, some new encryption features have

been offered as fast encryption, which only encrypts user's data partition if the
ForceEncrypt flag is not set, which is also a newly introduced feature in order to
gain time at first boot stage. Android 5.0 also introduced support of encryption
without passwords and pattern support in addition to the hardware-backed storage
of the encryption key.

Depending on the device's settings, Android 5+ offers four encryption types: default,
PIN, password, and pattern. On the first boot, a randomly generated 128-bit master
key is generated and hashed with a default password and stored salt and then signed
through a trusted execution environment (such as TrustZone).

. The default password is default_password and is defined in the
Android Open Source project cryptfs.cathttps://android.
s

googlesource.com/platform/system/vold/+/master/
cryptfs.c.

By setting up a PIN/password/ pattern, the 128-bit key is re-encrypted and does

not cause user data re-encryption. Encryption in Android is managed by init and
vold.init calls vold (volume daemon) that sets a number of system properties to
trigger various tasks and stages on the encryption/decryption/ mounting processes
and then communicates the current state to the services framework. In order to
encrypt/decrypt the /data partition, a temporary filesystem (on-memory filesystem)
is mounted, which allows the user interface to be shown, and then the physical
partition is unmounted. To switch to the physical /data partition, all processes and
system services with open files on the temporary filesystem are stopped and then
restarted in the actual partition. These stop/start actions are triggered once the vold.
decrypt property is set to trigger_restart_framework, trigger restart_min_
framework, Or trigger shutdown framework. vold and init communicate with each
other by setting properties. A list of available properties for encryption is available at
https://source.android.com/security/encryption/:

[131]

https://android.googlesource.com/platform/system/vold/+/master/cryptfs.c
https://android.googlesource.com/platform/system/vold/+/master/cryptfs.c
https://android.googlesource.com/platform/system/vold/+/master/cryptfs.c
https://source.android.com/security/encryption/

Android Forensics

There are two main flows for Android devices: encrypting a previously unencrypted
device and booting an encrypted one. Each flow has two options, respectively:
encrypt a previously unencrypted device with ForceEncrypt and encrypt a
previously unencrypted device at the user's demand (starting from Android L, users
can initiate device encryption), then we have an option to boot an encrypted device
with no password set (using default password) and boot an encrypted device that
has a set password. Nikolay Elenkov describes, in detail, this last case where the
device is encrypted using either PIN, password, or a pattern in his book Android
Security Internals: An In-Depth Guide to Android's Security Architecture:

1.

The password encrypted device is detected because of the flag ro.crypto.
state = "encrypted" so vold sets vold.decrypt to trigger restart
min framework.

Mount the temporary filesystem (tmfs) at this stage; based on the parameters
passed from init.rc, init sets the following properties: ro.crypto.fs_
type, ro.crypto.fs _real blkdev, ro.crypto.fs mnt point, ro.crypto.
fs_options, and ro.crypto.fs_flags to save the initial mount options for
the /data partition.

The framework starts up and sees that vold.decrypt is set to trigger
restart_min_framework. This tells the framework that it is booting on a
tmpfs /data disk and it needs a password.

Once cryptfs cryptocomplete is successful, the framework displays a Ul
asking for the disk password. The UI checks the password by sending the
cryptfs checkpw command to vold. If the password is correct (which is
determined by successfully mounting the decrypted /data at a temporary
location, then unmounting it), vold saves the name of the decrypted block
device in the property ro.crypto.fs_crypto_blkdev and returns status 0 to
the UL If the password is incorrect, it returns -1 to the UL

. All encryptions featured in vold are invoked using cryptfs
% commands: checkpw, restart, enablecrypto, changepw,
K cryptocomplete, verifypw, setfield, getfield,
mountdefaultencrypted, getpwtype, getpw, and clearpw.

The vold.decrypt property is set to trigger reset_main. This stops
all services and allows the temporary filesystem (tmpfs /data) to be
unmounted.

The decrypted /data partition is prepared by vold and mounted.
All services boot using the decrypted /data filesystem.

[132]

Chapter 4

KeyChain and KeyStore

Android implements a set of standard cryptographic algorithms. These algorithms
are provided as APIs for several high level protocols (such as SSL and HTTPS)
and applications to use the system credential storage for private keys and
certificate chains.

Starting from Android 4.0, the KeyChain class allows applications to access private
keys and their corresponding certificate chain through system credential storage.

As for Wi-Fi and VPN, once a private key is requested, the application receives a
callback from an X509KeyManager (a key manager for X509 certificate-based key
pairs). Then it calls choosePrivateKeyAlias, a public method that starts an activity
for the user to select the alias for a private key/certificate pair then returns the
selected alias (if not null) via the KeyChainAliasCallback callback. The private key
and the X509Certificate are returned, respectively, after get PrivateKey (Context,
String) and getCertificateChain (Context, String) are called.

After the appearance of Android 4.3 (API level 18), the KeyStore class was
introduced and allowed applications to store credentials and cryptographic keys

in containers to harden their extraction. The type of the system key store can be
changed by setting the keystore. type property in the file named JaAvA_HOME/1ib/
security/java.security.

Application security

As most mobile platforms, Android focuses on application security by providing
several layers of protection in order to ensure application usability, stability, and
integrity. There are several Android application security features; the main are
application sandboxing and permissions, Security Enhanced Linux (SELinux),
and application signing.

Application sandboxing and permissions

Each application in Android runs in its very own dedicated virtual sandbox; this
is meant to isolate applications from each other. The application sandbox is in the
kernel, which is an extended model of the native code; every application above the
kernel layer runs within the application sandbox.

[133]

Android Forensics

Application resources are identified and isolated based on the Linux user-based
protection model, in which each application is assigned a unique user ID (UID)
(which is automatically generated) and is executed by that user in a separate process.
At the process level, security between the applications and the system is maintained
via the Linux standard facilities, such as user and group IDs that are assigned to
applications. Each application has its own data directory, which, at file level, ensures
that this application has the permission to read and write to only its own data
directory.

All systems with unique user IDs are defined in the android_filesystem config.h
header file, all application UIDs start from 10000 (A1D_aPP), and the corresponding
usernames for devices that do not support multiple physical users are in the form
uX_aYYY, where X corresponds to the Android user ID (for example, the root user is
assigned 0) and YYY is the offset from A1D_aPP. The following command line snippet
shows the Calendar application process executed as uo_a29:

$ ps

u0 a8 18788 182 925864 50236 ffffffff 400d073c S com.google.android.
dialer

u0 a29 23128 182 875972 35120 ffffffff 400d073c S com.google.android.
calendar

u0 a34 23264 182 868424 31980 ffffffff 400d073c S com.google.android.
deskclock

The ps utility lists process lists and supports the following parameters:
* -t:Shows threads
* -x:Shows time
* -P:Shows policy
A * -p:Shows process priorities
* -c:Shows CPU #
* <numbers: Filter by PID

* <strings: Filter by command name

[134]

Chapter 4

Conceptually, an Android application sandbox can be represented as follows:

Android application / Process space

(App Sandbox: Linux user ID: 12345)

/App Sandbox: Linux user ID: 54321\

Application
Linux user ID: 12345 Application
Linux user ID: 54321
v *\\
A
Resources A
Linux user ID: 12345 Resources

Linux user ID: 54321

[Fie] == 24 o)
Sensors
(o]] 2]
.)]

- J

Two applications on different processes (with different user-ids)

All applications are executed with no permission assigned; however, they can
request permissions via their manifest files. Permissions are granted in two main
ways, either by requesting the desired permissions through the appropriate
manifest-permissions (AndroidManifest.xml) or by running the same process with
other trusted applications.

The AndroidManifest.xml file is mandatory and every Android application
contains one in its root directory. All permissions desired by a given application are
declared within it. These permissions are meant to allow an application to access
restricted APIs and resources; for example, if an application wants to capture audio
output, the CAPTURE_AUDIO_OUTPUT permission must be declared in the manifest file.
The following is an example of the AndroidManifest .xml file:

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.example.soufiane">

<uses-permission android:name="android.permission. CAPTURE AUDIO
OUTPUT " />

</manifest>

[135]

Android Forensics

You can find all manifest permissions at https://developer.android.com/
reference/android/Manifest.permission.html.

Security Enhanced Linux — SELinux

SELinux is a mandatory access control (MAC) implementation of the Linux kernel as
a Linux security module. Starting from version 4.3, Android has started integrating
a modified SELinux version from the Security Enhancements for Android project
(http://seandroid.bitbucket.org). The goal of SELinux in Android is to

define well determined boundaries for application sandboxes. SELinux enhances
mandatory access control over all the processes by confining privileged ones and
automating security policy creation. SELinux operates on the default denial policy,
meaning that anything that is not explicitly allowed is denied. There are three basic
modes of operation in SELinux: disabled, permissive mode, and enforcing mode.
They all operate within the SELinux policy (the set of rules that guide the SELinux
security engine):

* Disabled: SELinux is disabled and no policy is loaded, except the default
Discretionary Access Control (DAC) security, which remains enforced.

* Permissive: In this mode, the policy is loaded and SELinux only warns and
logs permission denials.

* Enforcing: This mode enables and loads policy, which logs violations and
also logs and enforces denials.

Starting from Android 5.0, full enforcement is enabled, covering all the Android
domains (processes, group of processes, and so on); you can verify and change
SELinux mode with the getenforce and setenforce commands.

Application signing

Application signing in Android is based on Java JAR signing. Basically, all
application signing aims to guarantee authenticity (identifying and verifying the
author's identity) and integrity (making sure the application is not altered in any
way). The process of signing is implemented by a digital signature that makes the
use of a private key and the X.509 certificates. In Android, the certificate is mainly
used to verify that application updates are coming from the right authority, which
applies the same origin policy and to establish an inter-application trust relationship.

Signing an Android application in release mode requires a key store (a binary file
containing a set of private keys), a private key, adding the signing configuration to
the build file for the app module, and invoking the assembleRelease build task
from Android Studio.

[136]

https://developer.android.com/reference/android/Manifest.permission.html
https://developer.android.com/reference/android/Manifest.permission.html
http://seandroid.bitbucket.org

Chapter 4

The following screenshot shows the window to create a new key store in Android

Studio:
B

Key store path: |fhomefusersfkeystoresfandroid.jks

Password: | Confirm: [sessssss |
Key
Alias: | Myandroidkey |
Password: | Confirm: [seeesees |

Validity (years):

Certificate
First and Last Mame: | Firsthame LastMame

arganizational Unit: | Maobile Development

Organization: | MyCompany

City or Locality: | MyTown

State or Province: | MyState

Country Code (¢): | Ug| :|

m | Cancel |

A detailed step-by-step guide is available at https://developer.android.com/
tools/publishing/app-signing.html.

Bypassing security

Without any doubt, lock screens represent the very first starting point in every
mobile forensic examination. As for all smartphone OSes, Android offers a way to
control access to a given device by requiring user authentication; the problem with
recent implementations of lock screens in modern operating systems, in general and
in Android (since it is the point of interest of this chapter), is that beyond controlling
access to the system user interface and applications, lock screens have now been
extended to more fancy (showing widgets, switching users in multi-users devices,
and so on) and forensically challenging features, such as unlocking the system
keystore, to derive the key-encryption key (used with the disk encryption key), and
the credential storage encryption key.

[137]

https://developer.android.com/tools/publishing/app-signing.html
https://developer.android.com/tools/publishing/app-signing.html

Android Forensics

The problem with bypassing lock screens (also called keyguards) is that techniques
that can be used are very version/device dependent, thus there is neither a
generalized method nor a technique that works every time.

The Android keyguard is basically an Android application, whose window lives on
a high window layer with the possibility of intercepting navigation buttons in order
to produce the "lock" effect. Each unlock method (PIN, password, pattern, and face
unlock) is a view component implementation hosted by the KeyguardHostview,
which is a view container class.

All of the methods/modes used to secure an Android device are activated by
setting the current selected mode in the enumerable SecurityMode of the class
KeyguardSecurityModel. The following snippet shows KeyguardSecurityModel.
SecurityMode implemented, as seen in the Android open source project:

enum SecurityMode {
Invalid, // NULL state
None, // No security enabled
Pattern, // Unlock by drawing a pattern.
Password, // Unlock by entering an alphanumeric password
PIN, // Strictly numeric password

Biometric, // Unlock with a biometric key (e.g. finger print
or face unlock)

Account, // Unlock by entering an account's login and
password.

SimPin, // Unlock by entering a sim pin.
SimPuk // Unlock by entering a sim puk

}

Before starting our bypass and lock cracking techniques, dealing with system files
or "system protected files" assumes that the device you are handling meets some
requirements:

* Using Android Debug Bridge (ADB):

o

The device must be rooted

[e]

USB debugging is enabled on the device

* Booting into a custom recovery mode

* JTAG or chip-off to acquire a physical bit-by-bit copy

[138]

Chapter 4

Bootloader/recovery mode

Besides the normal booting process of Android, there are some maintenance modes:
fastboot (also called bootloader) and recovery mode. Either of the two can be
accessed via the start-up key combination (depending on the device model) or via
ADB commands.

Bootloader, or fastboot, is a BIOS-like system that packages the instructions to boot
an operating system kernel and is designed to run its own debugging environment.
Bootloader is extremely processor specific since it's the very first layer that has to be
executed; every Android device has a bootloader, but depending on the hardware
device, most of the OEMs have their own version especially designed for their
hardware. That's why most of the bootloaders are "locked". This is meant to force
users to stick with the Android version shipped within the device.

Bootloader in Android has a basic interactive mode and can be accessed in different
ways depending on the device; the following is a list of the most common devices

|
|
|

and how to get them to boot into fastboot mode:

Device Instruction Image

Samsung * Power off your
devices Samsung phone.

* Press and hold the
Power, Volume Down,
and Home buttons for
several seconds.

[139]

Android Forensics

Device

Instruction

Image

HTC
devices

Power off your HTC
phone.

Press and hold the
Power and Volume
Down buttons for
several seconds.

/

ey

. T .0

Sony
devices

Power down your
Sony Xperia phone.

Download and
install DooMLoRD's
FlashTool Xperia
Driver Pack.

Check and install
fastboot drivers.

Connect your USB
cable to the computer,
but not the phone.

Press and hold Volume
Up. Connect the other
end of the already
attached USB cable to
your phone.

[140]

Chapter 4

Device Instruction Image
Motorola * Power off your
devices Motorola phone.
* Press and hold Volume
Down. Then press and
hold the Power key
for about 2 seconds.
Release the Power key
whilst still holding
down the Volume
Down key for a second
or two more.
On some Motorola devices,
you'll need to connect the
phone to your PC whilst
holding the Volume Down
and Power keys.
Nexus * Power off your Nexus
devices device.

e Press and hold the
Power, Volume Up,
and Volume Down
keys simultaneously.
Don't release until
you're inside the
menu.

[141]

Android Forensics

Device Instruction Image
LG * Power off your LG
devices device.

¢ Connect your
USB cable to your
computer, but not your
phone.

* Press and hold the
Power and Volume Up
keys simultaneously.
Hold for about 5 to 8
seconds.

¢ Connect the other end
of the USB cable to
your phone.

{

You can also boot in both modes via the command line using ADB if USB debugging
is enabled on the device; this does not require a rooted device:

1. Install ADB (https://developer.android.com/sdk/index.html) and USB
drivers for the device model.

Connect the device to the computer using a USB cable.

To boot into bootloader mode for most Android devices, type this command
in the command window: adb reboot-bootloader:

rsh\Soufiane'\AppDatatLocal\Androidysdkyplatform-toolsradb reboot-bootloader

4. To boot into recovery mode for all Android devices, in the command
window type this: adb reboot recovery.

[142]

https://developer.android.com/sdk/index.html

Chapter 4

Rooting an Android device

Having a rooted device can also cause the examiner a lot of pain. A group of young
developers (called KingRoot Studio) interested in the underlying system of mobile
device publically released an easy-to-use root tool, KingRoot. This tool can work on
almost all devices from Android 2.x to 5.1.1.

KingRoot offers two methods for gaining root access on a given device, one using a
computer and the second directly on the device:

1. Download and install the KingRoot app directly on the device and
run it (the latest release at time of writing this book is http://king.
myapp . com/myapp/kdown/img/NewKingrootVv4 .85 C139 B255 en
release 2016_03_29_105203.apk). Before proceeding, make sure the
device is connected to Internet (even if this is not recommended in a
forensic investigation, it's necessary to have an Internet connection when
you root the device)

You should allow application installation from unknown sources by
following these steps:

Security

Encryption

Encrypt phone

Your phone and personal data are
Install blocked Passwords more vulnerable to attack by apps
from unknown sources. You agree
For security, your phone is set to Make passwords visible [that you are solely responsible for
block installation of apps obtained any damage to your phone or loss of
from unknown sources. data that may result from using
Device administration these apps.
CANCEL SETTINGS - p
Device administrators CANCEL o
View or deactivate device administrators

Unknown sources
Allow installation of apps from sources
other than the Play Store

Credential storage

Storage type

[143]

http://king.myapp.com/myapp/kdown/img/NewKingrootV4.85_C139_B255_en_release_2016_03_29_105203.apk
http://king.myapp.com/myapp/kdown/img/NewKingrootV4.85_C139_B255_en_release_2016_03_29_105203.apk
http://king.myapp.com/myapp/kdown/img/NewKingrootV4.85_C139_B255_en_release_2016_03_29_105203.apk

Android Forensics

2. Now you can proceed with KingRoot installation. The process is very simple,
as you can see in the following screenshot:

KingRoot

Do you want to install this application? It
will get access to:

KingRoot

Do you want to install this application? It
will get access to:

siorage

PRIVACY read the contents of your USB storage

®. read phone status and identity DEVICE ACCESS
Allow Google to regularly check device
activity for security problems, and
prevent or warn about potential harm.

€5 take pictures and videos T connect and disconnect from Wi-Fi

full network access
view network connections
view Wi-Fi connections.

dr modify or delete the contents of your USB
storage
read the contents of your USB storage

Learn more in the Goagle Settings
app:

close other apps e DECLINE ACCEPT
retrieve running apps

run at startup

DEVICE ACCESS

1, connect and disconnect from Wi-Fi
full network access
view network connections
view Wi-Fi connections

CANCEL NEXT 0

prevent phone from sleeping

mock location sources for testing

CANCEL INSTALL e

KingRoot KingRoot

Installing... App installed.

[144]

Chapter 4

4. At this stage, the application will verify the root status; if it's not rooted, the
application will prompt you to click on Start Root. All you need to do after
clicking is to wait until the process finishes:

7

Root sceess (s unavailable
Model: Nexus &

Success rate Time cost (avg) Gt roat

1 Onls 11 8pps

Verity Root Status.. Rooting...

8 iz don warry I your device reboet~

5. If you are prompted to allow Google to regularly check the device activity for
security problems, press Decline. Once done you will get a message telling
you root was successfully installed:

“) Root successfully

6 apps

draining your battery

Android Forensics

If you want to root the device by booting the system using a custom recovery
image, you can use Team Win Recovery Project (TWRP); it's an open-source
recovery image for Android-based devices that is supported by almost all Android

devices (https://twrp.me). You can find a detailed step-by-step guide at http://
galaxysé6root.highonandroid.com/galaxy-s6-root-news/how-to-root-
galaxy-sé6-or-s6-edge-with-twrp-recovery/.

Cracking a lock pattern

The lock pattern mode KeyguardSecurityModel.SecurityMode.Pattern
implementation requires drawing a predefined pattern on a 3 x 3 grid. The pattern
grid points are registered in order, starting from 0 at the top-left corner to 8 at the
bottom-right point. To be valid, a pattern must join at least 4 points and a maximum
of 9, and each used point cannot be reused within the current pattern, which
statistically means that the number of variations in a pattern lock is considerably low
compared to a nine-digit PIN. Having all combinations between 0123 and 876543210
is not a big deal.

The following is an "indexed" pattern lock screen:

Furthermore, the pattern lock is stored as an unsalted SHA-1 value, as we can see
from the LockPatternUtils class from the Android project:

private static byte[] patternToHash (List<LockPatternView.Cells>
pattern) {

[146]

https://twrp.me
http://galaxys6root.highonandroid.com/galaxy-s6-root-news/how-to-root-galaxy-s6-or-s6-edge-with-twrp-recovery/
http://galaxys6root.highonandroid.com/galaxy-s6-root-news/how-to-root-galaxy-s6-or-s6-edge-with-twrp-recovery/
http://galaxys6root.highonandroid.com/galaxy-s6-root-news/how-to-root-galaxy-s6-or-s6-edge-with-twrp-recovery/

Chapter 4

}

if (pattern == null) {
return null;
}
final int patternSize = pattern.size();
byte[] res = new byte[patternSize];
for (int i = 0; i < patternSize; i++) {
LockPatternView.Cell cell = pattern.get(i);
res[i] = (byte) (cell.getRow() * 3 + cell.getColumn()) ;
}
try {
MessageDigest md = MessageDigest.getInstance ("SHA-1");
byte[] hash = md.digest (res) ;
return hash;
} catch (NoSuchAlgorithmException nsa) {
return res;

In all Android versions, the hash value of the pattern lock is stored in the /data/
system/gesture.key file (and /data/system/users/<user ID>/gesture.keyon
devices that support multi-user access):

L_—_Hﬁ [roct] ~ | Name | Size | Type | Date Modified |

50 andﬁmm | || dropbox 4 Directory 29/01/2016 14z..
Eﬁ@ &b ifw 4 Directory 28/01/2016 11x...
[;E' : inputmethod 4 Directory 29/01/2016 14:..
) aasec install_sessions 4 Directory 28/01/2016 11:...
A3 appdib job 4 Directory 28/01/2016 11:...
T3 app-private netstats 4 Directory 28/01/2016 11:...
@) backup procstats 4 Directory 28/01/2016 11:..
103 dalvik-cache recent_images 4 Directory 20/01,/2016 09:...
E-0) data recent_tasks 4 Directory 29/01/2016 10:...
{3 dortpanic _ registered_services 4 Directory 28/01/2016 14,
{2 dm = synec 4 Directory 20/01/2016 14:...
FH) local usagestats 4 Directory 28/01/2016 11:...
-I(3) lost=found users 4 Directory 29/01/2016 14:...
) media |] appopsaxml 2 Regular File 20/01/2016 0%:...
{3 mediam £ batterystats.bin 5 Regular File 29/01/2016 141...
B mis |] called_pre_boots.dat 1 Regular File 28/01/2016 11:..,
0 property X |] device_policiesxml 1 Regular File 28/01/2016 22:...
g [EsoureeEachs | 1 entropy.dat 1 Regular File 29/01/2016 141...
L) securty ¥ framework_atlas.config 1 Regular File 28/01/2016 11:...

[_]..
| [gesturekey Pular File 28/01/2016 22....
D install_sessionsxml 1 Regular File 20/01/2016 14:...
D last-fstrim 0 Regular File 28/01/2016 11:...
D locksettings.db 4 Regular File 28/01/2016 11:...

[147]

Android Forensics

In the preceding screenshot, the gesture . key content
C8C0B24A15DC8BBFD411427973574695230458F0 is the hashed value of the swipe
pattern. The generated hash is always the same because there is no randomly
generated salt addition. There are several freely available scripts to generate all the
possible hashes and their respective patterns (https://github.com/kevinis/
AndroidPatternCracker) and there are freely available precompiled tables

(http ://www.android-forensics.com/tools/AndroidGestureSHAL. rar):

s B B » M
soL1E

1 Select * from RainbowT able where hash = ‘c8c0b24a15dc5bbfd41 142797357 4595230455

hash pattern
1 cBcDb24a15dcBbbfd411427973574605230458F0 [0 3, 6, 7, 8]

The actual pattern in our case was 03678, meaning it draws an L starting from the
upper-left corner:

You can also just "pull" the gesture. key file using ADB via the adb pull /data/
system/gesture.key command:

[148]

https://github.com/kevinis/AndroidPatternCracker
https://github.com/kevinis/AndroidPatternCracker
http://www.android-forensics.com/tools/AndroidGestureSHA1.rar

Chapter 4

If you get the Permission denied message, try to restart ADB as root by typing
adb root:

YWLocal\Androidiysdk\platform-toolsradb roo

Cracking a PIN/password

The major difference between PIN/password and pattern lock (in addition to the
different way they are stored) is that the PIN/password are salted and as we saw,
pattern locks are not. Essentially, PINs and passwords are equivalent; they compare
the hash of the user's inputs to a stored salted hash. The salt used is a random 64-bit
\mﬂuesuﬂedin/data/system/password.key(and/data/system/users/<user
ID>/ password.key on devices that support multi-user access).

The following is an example of a hash in the /data/system/password.key file:
F507780CA6762594B2C39F61279D544EAQ06AF3C95AA4CA29D6221FCT7D
E4AAEC5349C257F3.

As we can learn from the LockPatternUtils class (https://github.com/android
/platform frameworks base/blob/master/core/java/com/android/internal
/widget/LockPatternUtils.java), the hash is in fact a concatenation of the SHA1
hash and the MD5 hash:

public byte[] passwordToHash (String password, int userId) {
if (password == null) {
return null;

try {

byte[] saltedPassword = (password + getSalt (userId)).
getBytes () ;

byte[] shal = MessageDigest.getInstance ("SHA-1").
digest (saltedPassword) ;

byte[] md5 = MessageDigest.getInstance ("MD5") .
digest (saltedPassword) ;

byte[] combined new byte[shal.length + md5.length];
hal, 0, combined, 0, shal.length);
d5, 0, combined, shal.length, md5.

System.arraycopy (s
System.arraycopy (m
length) ;

[149]

https://github.com/android /platform_frameworks_base/blob/master/core/java/com/android/internal /widget/LockPatternUtils.java
https://github.com/android /platform_frameworks_base/blob/master/core/java/com/android/internal /widget/LockPatternUtils.java
https://github.com/android /platform_frameworks_base/blob/master/core/java/com/android/internal /widget/LockPatternUtils.java

Android Forensics

final char[] hexEncoded = HexEncoding.encode (combined) ;
return new String(hexEncoded) .getBytes (StandardCharsets.
UTF_8) ;
} catch (NoSuchAlgorithmException e) {
throw new AssertionError ("Missing digest algorithm: ", e);

}

This means that the PIN/password can be seen as password.key = SHA1($pass . $salt) .
MDb5($pass . $salt).

Starting from Android 4.4, the salt used for calculating the preceding hash is stored
in a dedicated database named locksettings.db, the latest version has a single
table and can be found under /data/system/locksettings.db.

The database contains one interesting table with the same name as locksettings,
and the following screenshot shows the columns:

hema | Pragmas b E) » =5 L= 3 & 9 I
atabase 1 select value from locksettings where name='lockscreen.password_salt’
- & main

- = Tables (2)

+ android_metadata
- locksettings
v Columns (4)
¥ Indexes (0)
§} system Indexes (0)
< Triggers (0)
= Views (0)
» @ System Catalogue (2) = a E P ﬁ —

Full view | Item View Script Output

Duration: 0.005 seconds * Col: 69 Row: 1/1

10 lockscreen.passwordhistory

_id name user value

1 1 lockscreen.disabled 0 0
2 2 migrated 0|true

3 3 lock_screen_owner_info_enabled 0 0
4 4 migrated_user_specific 0 true

5 |5 lockscreen.password_salt 0 2678589425530746611'
6 6 lock_pattern_autolock [1] [1]
7 8 lockscreen.password_type_alternate 0 0
8 9 lockscreen.password_type 0 196608
9 0

The following SQL query returns the salt:

select value from locksettings where name='lockscreen.password salt'

[150]

Chapter 4

It is 64-bit (long integer): 2678589428530746611. As you can see at this point we
know that our PIN is as follows:

e SHAI1: F507780CA6762594B2C39F61279D544EA06AF3C9
e MD5: 5AR4CA29D6221FC7DE4AEC5349C257F3
* Salt: \ (the hexadecimal form of the salt)

We can gather even more hints about the PIN/password from the /data/system/
device policies.xml file

<policies><active-password quality="196608" length="4" uppercase="0"
lowercase="0" letters="0" numeric="4" symbols="0" nonletter="4"/></
policiess>

We can now try to crack the weakest hash (MD5) using freely available tools, such as
Hashcat, which you can grab from https://hashcat .net/hashcat/.

We will run Hashcat with the following parameters: -m 10 (hash attack type is

md5 ($pass.$salt)), -a 3 (attack mode is brute-force) ?d»d?»d?d (built in charset

as ?d is a decimal). Using this, our execution query will be something similar to
hashcat-cli64.exe -m 10 hash.txt -a 3 ?d?d?d?d (with hash.txt containing
our hash:salt values):

The PIN here was successfully cracked in no time and is equal to 0912.

[151]

https://hashcat.net/hashcat/

Android Forensics

It may be interesting to note that an Android 5.x lock screen bypass, by exploiting
a vulnerability in Android 5.x (before build LMY48M), allows one to crash the lock
screen and gain full access to a locked device even if encryption is enabled. The
vulnerability affects password-protected devices (PIN and pattern locks are not
vulnerable).

The vulnerability is referenced as Elevation of Privilege Vulnerability in
Lockscreen (CVE-2015-3860) and you can trigger it using the following steps:

1. From the locked screen, open the Emergency Call window.

2. Type a few characters, for example 10 asterisks. Double-tap the characters to
highlight them and then tap the copy button. Then tap once in the field and
tap paste, doubling the characters in the field. Repeat this process to highlight
all, and then copy and paste until the field is so long that the double-tapping
can no longer highlight the field.

3. Go back to the lockscreen, then swipe left to open the camera. Swipe to pull
the notification drawer down from the top of the screen, and then tap on
the settings (gear) icon in the top-right corner. This will cause a password
prompt to appear.

4. Long-tap in the password field and paste the characters into it. Continue to
long-tap the cursor and paste the characters as many times as possible, until
you notice that the Ul crashes and the soft-buttons at the bottom of the screen
disappear, expanding the camera to fullscreen. Getting the paste button can
be finicky as the string grows. As a tip, always make sure that the cursor is
at the very end of the string (you can double-tap to highlight all, then tap
towards the end to quickly move the cursor there) and long-tap as close to
the center of the cursor as possible. It may take longer than usual for the
paste button to appear as you long-tap.

These steps are fully documented with screenshots at http://sites.utexas.
edu/iso/2015/09/15/android-5-1lockscreen-bypass/, and more details
about CVE-2015-3860 can be found at https://web.nvd.nist.gov/view/vuln/
detail?vulnId=CVE-2015-3860.

Android 3.0 introduced Full Disk Encryption (FDE) for the first time, the
implementation remained the same until Android 4.3. All Android versions use
crypto footer, which is an implementation similar to the encryption partition header
used by Linux United Key Setup (LUKS) but in a very light way (with all anti-
forensic, split/ merge, and more capabilities removed). Android supports only one
decryption passphrase and the only way to check if the entered passphrase is correct
or not is by trying to mount the encrypted partition; if you succeed, the passphrase is
right, otherwise the passphrase is wrong.

[152]

http://sites.utexas.edu/iso/2015/09/15/android-5-lockscreen-bypass/
http://sites.utexas.edu/iso/2015/09/15/android-5-lockscreen-bypass/
https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2015-3860
https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2015-3860

Chapter 4

If you visit crypt£s.h from the Android Open Source Project, you can see that the
crypto footer in Android 4.3 looks similar to the following:

struct crypt mnt ftr {
__le32 magic; /* See above */
__lel6 major version;
__lel6 minor version;
__le32 ftr_size; /* in bytes, not including key following */
__le32 flags; /* See above */
__le32 keysize; /* in bytes */
__le32 sparel; /* ignored */
__le64 fs _size; /* Size of the encrypted fs, in 512 byte sectors */

__le32 failed decrypt count; /* count of # of failed attempts to
decrypt and mount, set to 0 on successful mount */

unsigned char crypto type name [MAX CRYPTO TYPE NAME LEN]; /* The
type of encryption needed to decrypt this partition, null terminated

*/
bi

Considered as version 1.0 of FDE, the master key is encrypted using an AES-128
key-encryption key derived from the user PIN/password and the salt using 2000
iterations of Password-Based Key Derivation Function 2 (PBKDF2). This makes
brute-forcing it require obtaining a copy of the crypto footer, which resides in a
dedicated partition whose name is specified in encryptable flag in the f£stab file
and the encrypted userdata partition.

A very interesting discussion about cracking the FD3 v1.0 can be found at https://
hashcat .net/forum/thread-2270.html.

A 4-digit PIN can be brute-forced with a very high success rate using the
bruteforce_stdcrypto.py script (https://github.com/santoku/Santoku-
Linux/blob/master/tools/android/android bruteforce stdcrypto/
bruteforce_stdcrypto.py). A detailed step-by-step guide is available on https://
santoku-linux.com/howto/mobile-forensics/how-to-brute-force-android-
encryption/.

The most effective difference in Android 4.4 is replacing PBKDF2 with scrypt
(https://www.tarsnap.com/scrypt.html), after generating the disk-encryption
key (DEK). Android 4.4 applies scrypt with N=15, =3, and p=1 to the user PIN/
password and salt to produce a 32-bit key-encryption key, so as a part of the
upgrade, the crypto footer in Android 4.4 looks similar to the following:

struct crypt mnt ftr {
_1le32 magic;

[153]

https://hashcat.net/forum/thread-2270.html
https://hashcat.net/forum/thread-2270.html
https://github.com/santoku/Santoku-Linux/blob/master/tools/android/android_bruteforce_stdcrypto/bruteforce_stdcrypto.py
https://github.com/santoku/Santoku-Linux/blob/master/tools/android/android_bruteforce_stdcrypto/bruteforce_stdcrypto.py
https://github.com/santoku/Santoku-Linux/blob/master/tools/android/android_bruteforce_stdcrypto/bruteforce_stdcrypto.py
https://santoku-linux.com/howto/mobile-forensics/how-to-brute-force-android-encryption/
https://santoku-linux.com/howto/mobile-forensics/how-to-brute-force-android-encryption/
https://santoku-linux.com/howto/mobile-forensics/how-to-brute-force-android-encryption/
https://www.tarsnap.com/scrypt.html

Android Forensics

__lelé major version;
__lelé minor version;
__le32 ftr_size;

__le32 flags;

__le32 keysize;

_le32 sparel;

__le64 fs_size;

__le32 failed decrypt_cou
unsigned char crypto type
__le32 spare2;

unsigned char master keyl
unsigned char salt [SALT L
__le64 persist data offse
__le32 persist_data_size;
__le8 kdf type;

/* scrypt parameters. See
__les8 N _factor; /* (1 <<
__les r factor; /* (1 <<
__les p_factor; /* (1 <<

Vi

nt;
_name [MAX CRYPTO TYPE NAME LEN] ;

MAX KEY LEN] ;
EN] ;
t[2];

www . tarsnap.com/scrypt/scrypt.pdf */
N) */
r) */
p) */

This structure is considered as version 1.2 of FDE, which is still vulnerable to a
brute-force attack if the PIN used was simple, using the same script distributed

within Santoku Linux.

Android 5.0 and above brings with

struct crypt mnt ftr {
__le32 magic; /*
__lelé major version;
__lelé minor version;

__le32 ftr size; /*
__le32 flags; /*
__le32 keysize; /*
__le32 crypt type; /*

*

__le64 fs_size;

__le32 failed decrypt_cou
unsigned char crypto type
_le32 spare2;

unsigned char master keyl
__le64 persist data offse
__le32 persist data size;

it a 1.3 version of FDE with a new crypto footer:

See above */

in bytes, not including key following */
See above */

in bytes */

how master key is encrypted. Must be a
CRYPT TYPE XXX value */

nt;

_name [MAX_CRYPTO_TYPE_NAME_LEN] ;

MAX_KEY LEN] ;
t[2];

[154]

Chapter 4

__les

__les
__les
__les

kdf type;
/* scrypt parameters.
N_factor;
r factor; /*
p_factor; /*

/* The key derivation function used. */

See www.tarsnap.com/scrypt/scrypt.pdf */
/* (1 << N) */

(1 <<) */

(1 << p) */

__le64 encrypted upto;

__les

hash_first_block [SHA256 DIGEST LENGTH] ;

__le8 keymaster blob [KEYMASTER_BLOB_SIZE] ;
__le32 keymaster blob_size;

unsigned char scrypted intermediate key [SCRYPT LEN] ;

Vi

The major improvement in this implementation is the fact that there is no need for a
PIN/password and the key-encryption key has hardware protection, as suggested

by keymaster_blob [KEYMASTER_BLOB_SIZE], which refers to the size of the
asymmetric hardware-bound private key (KBK).

As described by the official documentation (https://source.
android.com/security/encryption/):

The encrypted key is stored in the crypto metadata. Hardware backing
is implemented using Trusted Execution Environment (TEE) signing
capability. Previously, we had encrypted the master key with a key
generated by applying scrypt to the user's password and the stored

salt. In order to make the key resilient to off-box attacks, we extend

this algorithm by signing the resultant key with a stored TEE key. The
resultant signature is then turned into an appropriate length key by one
more application of scrypt. This key is then used to encrypt and decrypt
the master key. To store this key, follow these steps:

* Generate a random 16-byte disk encryption key and a 16-byte salt.

* Apply scrypt to the user password and the salt to produce a
32-byte intermediate key 1 (IK1).

* Pad IK1 with zero bytes to the size of the hardware-bound private
key (HBK). Specifically, we pad as follows: 00 | | IK1 | | 00..00;
that is, one zero byte, 32 IK1 bytes, and 223 zero bytes.

* Sign a padded IK1 with HBK to produce 256-byte IK2.

* Apply scrypt to IK2 and salt (same salt as step 2) to produce
32-byte IK3.

* Use the first 16 bytes of IK3 as KEK and the last 16 bytes as IV.

* Encrypt DEK with AES_CBC, with key KEK, and initialization
vector IV.

[155]

https://source.android.com/security/encryption/
https://source.android.com/security/encryption/

Android Forensics

This means that at the time of writing this book, brute-forcing Android 5+ encrypted
disks is no longer efficient and no technique has been disclosed at the time of writing.

Android logical data acquisition

Logically acquiring the Android device allows gathering user data on the basis of
communication with the base operating system. In most cases, and if prerequisites
are verified (mostly a rooted device with USB debugging mode enabled), a logical
acquisition can expose most of the valuable information on the device, including
SMS, call history, application data, system logs, and media.

Gaining root access is a very important step in most Android forensic scenarios, and
the decision to root a device or not must be taken with approval from a court of law.
Most of the commercially available forensic tools offer automated, temporary root
for Android devices (such as XRY, Oxygen Forensic Suite, Paraben's Device Seizure,
or NowSecure Forensics Suite), but the result is still very device/ Android version
dependent.

If you are willing to do it manually, most of the logical acquisition process in
Android devices can be conducted using ADB functionalities.

Logical data acquisition using ADB

In addition to development/debugging purposes, ADB offers a bunch of capabilities
that are welcome in a forensic context, since ADB lets an examiner copy files and
folders from and to the device, executing shell commands on the device, getting
system and app logs, installing and removing applications, and debugging
applications running on the device.

Assuming that the ADB environment is correctly configured in the examiner
computer (a step-by-step guide can be found at http://www.howtogeek.
com/125769/how-to-install-and-use-abd-the-android-debug-bridge-
utility/), you can also use the Universal ADB Driver if you are on a Windows
machine, since it supports ADB and fastboot interfaces for most Android devices
(you can grab it from https://github.com/koush/UniversalAdbDriver). You
must make sure that USB debugging is enabled on the target device and the correct
drivers are installed.

[156]

http://www.howtogeek.com/125769/how-to-install-and-use-abd-the-android-debug-bridge-utility/
http://www.howtogeek.com/125769/how-to-install-and-use-abd-the-android-debug-bridge-utility/
http://www.howtogeek.com/125769/how-to-install-and-use-abd-the-android-debug-bridge-utility/
https://github.com/koush/UniversalAdbDriver

Chapter 4

To enable USB debugging mode in different Android versions, do the
following:

For Android 2.0-2.3.x, go to Settings | Applications |
Development | USB Debugging.

For Android 3.0- 4.1.x, go to Settings | Developer Options |
USB Debugging.

For Android 4.2.x and higher, enable the Developer Options

menu. Go to Menu | Settings | About phone or About tablet.

Then, locate the Build Number option and tap on it seven
times to enable Developer Options. Tap a few times more
until you see You are now a developer!. Then go to Settings |
Developer Options | USB Debugging.

For Android 5.x Lollipop, the procedure is the same as
Android 4.2.x.

Starting from Android 4.2.2, a new feature was introduced to enhance USB
debugging security. Secure USB Debugging allows only explicitly authorized
hosts to connect to the ADB daemon. The confirmation dialog looks similar to
the following screenshot:

The computer's RSA key fingerprint

IS:

Always allow from this computer

The choice can be made persistent by checking the Always allow from this
computer option, which will let the device store the computer's RSA keys (2048-bit

RSA keys locally generated by the ADB server), in order to avoid popping this dialog
up each time the device is connected to the same host.

[157]

Android Forensics

The interesting thing to do in a forensic examination is seize any computer that was
previously trusted, since the generated keys are stored as adbkey and adbkey . pub in
the following locations:

* Windows: $USERPOFILE%)\ .android or C:\Windows\System32\config\
systemprofile\.android

¢ Mac OS: /Users/<usernames/.android

By storing these files on the examiner computer, it will be considered to be trusted by
the device.

An interesting vulnerability that allows you to bypass Secure USB Debugging has
been disclosed and affects Android 4.4.2. No CVE reference was assigned to the

vulnerability, and you can get technical details about this vulnerability at https://
labs.mwrinfosecurity.com/advisories/2014/07/03/android-4-4-2-secure-

usb-debugging-bypass/.

If the previously mentioned conditions are verified, we can start pulling evidence
from the device, and the very first command to use is adb pull. The syntax is
as follows:

adb pull [-p] [-al] < remote file path on device. > [<local file path>]

Here, -p and -a are optional parameters to respectively show the transfer's progress
and to copy a pulled file's timestamp and mode.

The first thing to do is open a terminal/command window and navigate to the
Android aDB folder (available once you install Android SDK), after enabling Secure
USB Debug mode on the device and connecting it to the computer using a USB cable.
Make sure that it's connected correctly:

$ adb devices
List of devices attached
* daemon not running. starting it now on port 5037 *

* daemon started successfully *

90000a7854ca device

Our device is connected and correctly recognized. ADB offers a UNIX shell to issue
commands without entering the ADB remote shell on the device; the basic command
is adb shell:

$ adb shell

root@generic:/ #

[158]

https://labs.mwrinfosecurity.com/advisories/2014/07/03/android-4-4-2-secure-usb-debugging-bypass/
https://labs.mwrinfosecurity.com/advisories/2014/07/03/android-4-4-2-secure-usb-debugging-bypass/
https://labs.mwrinfosecurity.com/advisories/2014/07/03/android-4-4-2-secure-usb-debugging-bypass/

Chapter 4

The sharp # symbol means that you have root access on the device. Now we can start
exploring partitions:

1ls -1 data/data/

drwxr-x--x u0_al u0_ a0 2016-02-03 01:10 com.android.
backupconfirm

drwxr-x--x u0_al5 u0_al5 2016-02-04 13:16 com.android.
browser

drwxr-x--x ul0_alé u0 _alé 2016-02-03 01:11 com.android.
calculator2

drwxr-x--x u0_al?7 u0_al?7 2016-02-03 01:18 com.android.
calendar

drwxr-x--x ul0_ a3l u0_ a3l 2016-02-03 01:12 com.android.camera
drwxr-x--x ul0_ a4 u0 a4 2016-02-03 01:18 com.android.dialer
drwxr-x--x ul0_a24 ul_a24 2016-02-03 01:11 com.android.
documentsui

drwxr-x--x ul0_al4 u0 _al4 2016-02-03 01:11 com.android.
dreams.basic

drwxr-x--x ul0_a25 u0_a25 2016-02-03 01:19 com.android.email
drwxr-x--x u0_a5 u0_a5 2016-02-03 01:12 com.android.
gallery

drwxr-x--x ul0_a48 u0 a48 2016-02-03 01:12 com.android.
gesture.builder

drwxr-x--x ul0_a29 u0_ a29 2016-02-03 01:12 com.android.
htmlviewer

drwxr-x--x system system 2016-02-03 01:11 com.android.
inputdevices

drwxr-x--x u0_a30 u0_ a30 2016-02-03 01:16 com.android.
inputmethod.latin

drwxr-x--x system system 2016-02-03 01:18 com.android.
keychain

drwxr-x--x u0_a5 u0_ a5 2016-02-03 01:19 com.android.

providers.media

drwxr-x--x system system 2016-02-03 01:13 com.android.
providers.settings

drwxr-x--x radio radio 2016-02-03 01:18 com.android.
providers.telephony

[159]

Android Forensics

drwxr-x--x ul_a2 ul0_ a2 2016-02-03 01:16 com.android.
providers.userdictionary

drwxr-x--x u0_alo u0_alo 2016-02-03 01:11 com.android.
proxyhandler

drwxr-x--x ul_ a4l ul0 a4l 2016-02-04 13:43 com.android.
quicksearchbox

..etc

All /data/data/<app package> folders on the devices have the same subdirectory
architecture:

Folder Description

shared_prefs | XML of shared preferences

lib Custom library files required by
app

files Developer saved files

cache Files cached by the app

databases SQLite databases and journal files

In Android, similar to most smartphone operating systems, the most valuable
evidences resides on SQLite databases. Let's assume that we want to grab the
database of Android Browser /data/data/com.android.browser/. The file name

is browser2.db and its full path is /data/data/com.android.browser/databases/
browser2.db, as you can see in the following screenshot:

[160]

Chapter 4

Exit the shell mode by typing exit and pull the database file (and the temporarily
created .db-shmand .db-wal files) using adb pull, as shown here:

$ adb pull /data/data/com.android.browser/databases/browser2.db /home/
soufiane/Desktop/AndroidBrowserDBs/browser2.db
1466 KB/s (483328 bytes in 0.321s)

$ adb pull /data/data/com.android.browser/databases/browser2.db-shm /
home/soufiane/Desktop/AndroidBrowserDBs/browser2.db-shm

395 KB/s (32768 bytes in 0.080s)

$ adb pull /data/data/com.android.browser/databases/browser2.db-wal /
home/soufiane/Desktop/AndroidBrowserDBs/browser2.db-wal

1242 XKB/s (428512 bytes in 0.336s)

Now we can browse the database extracted using any SQLite utility. The browser2.db
database contains all the information related to user activity via the browser, as you
can see from the table and column names:

Database o -
- & main - B0 Columns (7) - 0 Columns (20)
- = Tables (9) _id _id
+ _sync_state title title
v _sync_state_metadata url url
¢+ android_metadata created folder
v bookmarks date parent
b visits position
v .images user_entered insert_after
v searches ¥ Indexes (0) deleted
v settings ¥ system Indexes (0) account_name
v thumbnails < Triggers (0) account_type
= = Views (2) e sourceid
» v_accounts - B Columns (3) version
+ v_omnibox_suggestions _id created
- [%) System Catalogue (2) search modified
sglite_master : date | dirty
sqlite_sequence i syncl
- Columns (2) sync2
_id sync3
thumbnail sync4
- SYNCS

[161]

Android Forensics

Querying the history table, for example, can return the titles of the visited pages,
URLSs, and how many times the page was visited and when:

Titles
Google
Sign in - Google Accounts
https://accounts.google.com/ServiceLogin?hl=en&passive=true&continue=https://www.google.com/webt
Google Accounts
Google - Android Apps on Google Play
Welcome to Facebook date UEIE
- - 1454592917858 3
Enter Security Code to Continue
1454591876048 2
Remember Browser
1454592856064 2
Facebook
- 1454591922655 1
Mobile Uploads
1454593432406 2
Facebook
1454593458187 1
https://www.google.com/webhp?source=android-home 1454593506354 1
https://accounts.google.com/ServiceLogin?hl=en&passive=true&continue=https://www.google.com/webhp%3f 1454593579100 z
https://accounts.google.com/ServiceLogin?hl=en&passive=true&continue=https://www.google.com/webhp%3F 1454593590962 1
https://accounts.google.com/CheckCookie?hl=en&checkedDomains=youtube&checkConnection=youtube¥%3A6 1454593822912 6
https://play.google.com/store/apps/details?id=com.google.android.googlequicksearchbox 1454593616727 1
https://m.facebook.com/?_rdr&refsrc=https%3A%2F%2Fwww.facebook.com%2F
https://m.facebook.com/checkpoint/?refid=8& rdr
https://m.facebook.com/login/checkpoint/
httne-//m Facehnnk camflnainfcave-device/?nevtg rdr
] -

All dates are in UNIX time format, as described in previous
chapters. The example of 1454599232 (from the preceding
screenshot) is equivalent to the following;:

e 2016-02-04T15:20:32+00:00 in ISO 8601
e Thu, 04 Feb 2016 15:20:32 +0000 in RFC 822, 1036, 1123, 2822
X * Thursday, 04-Feb-16 15:20:32 UTC in RFC 2822
‘ e 2016-02-04T15:20:32+00:00 in RFC 3339
~ Paths of traditional Android browsers are as follows:
e /data/data/org.mozilla.fennec
e /data/data/com.android.browser
e /data/data/com.opera.mini.android
e /data/data/opera.browser

e /data/data/com.skyfire.browser

[162]

Chapter 4

The adb pull command can extract an entire application directory; for example,
to pull the telephony folder that contains SMS database, the command will be
as follows:

adb pull /data/data/com.android.providers.telephony/ /Destination/Path/

The result will be as shown here:

This also means that if you want to pull the majority of a user's application data,
you can execute adb pull /data/data /Path/To/Your/Case/ and you will geta
ready-to-examine logical copy of a user's data:

$ adb pull -p /data/data/ ~/Desktop/Data
pull: building file list...

pull: /data/data/com.android.backupconfirm/lib -> /home/soufiane/Desktop/
Data/com.android.backupconfirm/1lib

pull: /data/data/com.android.providers.calendar/databases/calendar.db ->
/home/soufiane/Desktop/Data/com.android.providers.calendar/databases/
calendar.db

pull: /data/data/com.android.providers.calendar/lib -> /home/soufiane/
Desktop/Data/com.android.providers.calendar/1lib

failed to copy '/data/data/com.android.providers.calendar/lib' to '/home/
soufiane/Desktop/Data/com.android.providers.calendar/1lib': No such file
or directory

pull: /data/data/com.android.contacts/lib -> /home/soufiane/Desktop/Data/
com.android.contacts/lib

pull: /data/data/com.android.launcher/cache/widgetpreviews.db -> /home/
soufiane/Desktop/Data/com.android.launcher/cache/widgetpreviews.db

[163]

Android Forensics

pull: /data/data/com.android.launcher/databases/launcher.db-journal -> /
home/soufiane/Desktop/Data/com.android.launcher/databases/launcher.db-
journal

pull: /data/data/com.android.launcher/databases/launcher.db -> /home/
soufiane/Desktop/Data/com.android.launcher/databases/launcher.db

pull: /data/data/com.android.launcher/shared prefs/com.android.launcher2.
prefs.xml -> /home/soufiane/Desktop/Data/com.android.launcher/shared
prefs/com.android.launcher2.prefs.xml

pull: /data/data/com.android.launcher/files/launcher.preferences -> /
home/soufiane/Desktop/Data/com.android.launcher/files/launcher.
preferences

pull: /data/data/com.android.launcher/lib -> /home/soufiane/Desktop/Data/
com.android.launcher/1lib

478 files pulled. 0 files skipped.
265 KB/s (12818177 bytes in 47.143s)

ADB offers the possibility to extract a full backup of the device using the following
command:

adb backup [-f <file>] [-apk|-noapk] [-shared|-noshared] [-all]
[-system|nosystem] [<packages>]

The command parameters are as follows:
* -all: This will back up applications and user data without including APKs
to the current directory as a backup. ab file.
* -f: Lets you choose the path and backup file name.

* -apk or -noapk: Lets you choose whether or not APKs should be included in
your backup.

* -shared or -noshared: Lets you choose whether or not to back up data from
shared storage and the SD card.

* -systemor -nosystem: Indicates whether or not the -al11 flag includes
system applications.

* <packagess>: Explicitly lists packages that you especially want to backup.

To proceed with a backup, you must already know or bypass any lock screen, if set,
because when you back up a device, you will be prompted to interact with the device
(Android will ask you if you want to encrypt the backup using a password then
confirm (or not) the backup process).

[164]

Chapter 4

The basic adb backup -f Path/backup.ab -shared -all command will extract
all the possible user data and produce backup.ab on the given /path/:

b -shared -all

The extracted backup is in fact a compressed TAR file using a combination of the
LZ77 algorithm and Huffman coding (deflated), but it can be parsed using Android
Backup Extractor, a Java open source tool that you can download from http://
sourceforge.net/projects/adbextractor/ and can be executed with the
command abe.jar unpack backup.ab backup.tar, as shown here:

binxabe.jar unpack backup.ab backup.tar

If the command was successful, you should find the backup. tar file created and you
can explore/extract it using any compression/decompression utility (WinRAR, 7Zip,
and so on):

4] E |E backup.tarapps

MName

Doc rchive, unpacked size 31 416 430 bytes

perl
star-1.5.2-i686-pe-cygwin A com.example.android.rssreader
star-1.5.3-i686-pc-cygwin) com.example.android.notepad
star-ubuntu-lucid El com.cyanegenmed filemanager
| £ abejar 02 com.android.webview

| adb-split-extraction.sh 12 com.android.wallpapercropper

adb-split-no-extraction.sh 12 com.android.wallpaper.livepicker
1 -split-no- X 2

o Em— com.android.wallpaper.holospiral

— com.android.wallpaper
E backup.tar 0

com.android.vending

=/ LICENSETXT : com.android.soundrecorder
=| README.TXT 02 com.android.quicksearchbox
| £/ tar-bin-split.jar 20 com.android.proxyhandler
=| VERSION.TXT 02 com.android.provision

com.android.providers.userdictionary

Logical data acquisition using AFLogical OSE

AFLogical OSE is an open source Android forensics app, and the framework
available at https://github.com/viaforensics/android-forensics allows
an examiner to extract CallLog calls, contacts, MMS messages, MMSParts, and
SMS messages from Android devices. AFLogical OSE is already bundled with
Santoku Linux.

[165]

http://sourceforge.net/projects/adbextractor/
http://sourceforge.net/projects/adbextractor/
https://github.com/viaforensics/android-forensics

Android Forensics

The first thing to do is enable USB debugging on the device and connect it to the
computer. In a terminal window type aflogical-ose. You will be asked to enter the
password of the machine's superuser. Type it and press Enter:

$ aflogical-ose

Make sure android device is connected to USB

[sudo] password for soufiane:

321 KB/s (28794 bytes in 0.087s)
pkg: /data/local/tmp/AFLogical-OSE 1.5.2.apk
Success

Starting: Intent { cmp=com.viaforensics.android.aflogical ose/com.
viaforensics.android.ForensicsActivity }
Press enter to pull /sdcard/forensics into ~/aflogical-data/

If the SD card is ready, then before pressing Enter, select the data you want to extract
from AFLogical UI on the device and click on Capture:

+ CallLog Calls

+" Contacts Phones

" MMS
MMSParts

SMS

< O (]

[166]

Chapter 4

The terminal will show the following:

pull: building file list...

pull: /sdcard/forensics/20160204.1815/MMSParts.csv -> /home/soufiane/
aflogical-data/20160204.1815/MMSParts.csv

pull: /sdcard/forensics/20160204.1815/Contacts Phones.csv -> /home/
soufiane/aflogical-data/20160204.1815/Contacts Phones.csv

pull: /sdcard/forensics/20160204.1815/SMS.csv -> /home/soufiane/
aflogical-data/20160204.1815/SMS.csv

pull: /sdcard/forensics/20160204.1815/MMS.csv -> /home/soufiane/
aflogical-data/20160204.1815/MMS.csv

pull: /sdcard/forensics/20160204.1815/CallLog Calls.csv -> /home/
soufiane/aflogical-data/20160204.1815/Calllog Calls.csv

pull: /sdcard/forensics/20160204.1815/info.xml -> /home/soufiane/
aflogical-data/20160204.1815/info.xml

12 files pulled. 0 files skipped.
46 KB/s (59796 bytes in 1.244s)

All data acquired is stored in separated CSV files. The following is a preview from
CallLog Calls.csvand SMS.csv:

Insert Format Tools Statistics Data Help

@& 006 @I i i halos -

da ===@mMosE @y U == BAE -8
\ /56w fas@EH

3 = id

1 c 5] E F G H ! | L A b o P Q R T
Iumber date duration type new name numberty numberiabel
B6B5599TS 1454593290383 55 1 1 0

#SMS.csv - Gnumerle
insert Format Tools Statistics Data Help
do & RO E e @ E fn 00 -
- e = B = w , o w0 g o A =

aa zs=Ho O34 s SE BE 0 -4 -4

NAAE 6 o= oo B E

y = [d

< =] E F G H | J .3 L M N =] P
!tnmaﬂ Ic Address person dare date_sent protoced read StAtUS type reply_pal subject body service_center locked sub id
3 [} 1454593547595 1454593546000 0 0 -1 o Your Facebook security code: 759999 [} -1
2 568559974 1454592967244 1454552963000 o o 1 1 o How are u mate 1] 1
1 661264464 1454592937089 1454597836000 [} o -1 1 o Meet at the point at SAM o -1

[167]

Android Forensics

Android physical data acquisition

Acquiring the physical image of any device means extracting an exact bit-by-bit copy
of the original device's flash memory. In contrast to logical acquisition, physically
acquired images hold unallocated space, files, and the volume stack, in addition to
the extraction of data remnants present in the memory.

In the Android context, we need to root the device to obtain a superuser

privilege to fully access the ADB shell. A physical acquisition can be performed
via a custom bootloader, by changing the custom recovery image or using flashing
tools. We even have hardware-based acquisition techniques including JTAG and
chip-off. Physically acquiring a device means that you have indirectly acquired
everything within the device.

Linux-based operating systems include a built-in command-line tool called dd, used
(by definition) to copy from source to destination, block-by-block, regardless of their
filesystem type or operating system. This utility is included in Android!

Connect your rooted devices and in a terminal window type adb shell. As seen
earlier in this chapter, this will let us run the remote shell interactively. If your device
is rooted and correctly connected, you can now run the mount command to attach
the filesystem found on the device to one file tree, as you can see in the following
screenshot:

Ed soufiane@soufiane-VirtualBox: ~ -+ x

| File Edit Tabs Help

Chapter 4

As highlighted in the preceding screenshot, the data partition is at /dev/block/
mtdblockl. Now that we know which partition we want to physically acquire, we
will need to extract it bit-by-bit. At this point, we have a choice to either dump the
partition into an SD card or via a network directly on the examiner's computer.

If the device's SD card can be replaced by the examiner's one, make sure that the SD
card has sufficient space to hold the phone image. In the shell window, type 1s -all
to determine the partition to which the SD card is linked:

As shown in the preceding screenshot, in my case the SD card is symbolically linked
to /storage/sdcard.

And now, using the dd command, we can dump mtdblockl to /sdcard. The
command is as follows (the of parameter indicates the output file; other parameters
are explained later on in the chapter):

dd if=/dev/block/mtdblockl of=/storage/sdcard/physicalImage.dd bs=512
conv=notrunc, noerror, sync

Once dumping is done, you will see this result:

Now we can pull the physical image from the SD card to the examiner's computer
using the adb pull command, adb pull /storage/sdcard/ /path/,or simply by
exploring the SD card via explorer:

= PhysicalDump - + x
File Edit View Bookmarks Go Tools Help

[#] € v » A |@ /homefsoufiane/Desktop,/PhysicalDump Y
Directory Tree v

" 1w soufiane D

+ [@ .android

» [@ .AndroidstudioBeta

- — b

[169]

Android Forensics

If we want to acquire the image over the network, we will not write the image
dump to an SD card; instead, we will be enabling port forwarding on the device
via ADB. You can choose any port number if you are using Windows and any port
between 1023 and 65535 on Linux/Mac. The command is adb forward tcp:1986
tcp:1986, as shown here:

In the shell window, we will run the dd command:

dd if=/dev/block/mtdblockl conv=notrunc,noerror,sync | nc -1 -p 1986
The dd parameters are as follows:

* if:Input file
* conv: Conversion options: notrunc to not truncate the output file, noerror
to ignore errors and continue dumping, and sync is used in conjunction with

noerror and allows a padding block with null \ (x00) to maintain actual
offsets within the image.

The nc parameters are as follows:

* -1:Puts Netcat in listen mode (default is client mode)

* -p: Defines the local port (in this case, 1986 is the port that is being
listened to)

Open a new terminal window and be sure that Netcat (a UNIX built-in utility
abbreviated to nc), which is a network utility to read from and write to network
connections using TCP or UDDP, is correctly installed on the computer and on
the device.

[170]

Chapter 4

If Netcat is not installed on the device, you can download an

Android version and push it to the device. You can find many nc
implementations for Android online, such as SimpleNetCat (https://
github.com/dddpaul /android-SimpleNetCat) or NetCat
(https://github.com/MobileForensicsResearch/netcat)

It's preferable to install it directly on the RAM, keeping the process
forensically sound. This can be done by pushing nc on the /dev

~\l partition via the adb push nc /dev/netcat/nc command; then be
sure to give it permission to execute (chmod 111):
$ adb push netcat-master/new nc /dev/netcat/nc 241 KB/s
(20172 bytes in 0.081s)
$ adb shell
root@generic:/ # chmod 111 /dev/netcat/nc
root@generic:/ #
If you are on Windows, you can download and install Nmap
(https://nmap.org/download.html), which will let you use
NetCat via the command ncat.

Type in the following commands to establish a connection on the port 1986:

e For *nix:nc 127.0.0.1 1986 > /path/to/save/PhysicallImage.dd
e For Windows: ncat 127.0.0.1 1986 > X:/PATH/PhysicalImage.dd
The PhysicalImage.dd file should be created in the given directory. Once the

transfer is finished, which depends on the partition size, both terminals will return to
the command prompt and the shell window will confirm the data transfer:

The acquired image can be mounted and explored. In Windows, we can use tools
such as AccessData FTK Imager (http://accessdata.com/product-download/
digital-forensics/ftk-imager-version-3.4.2), which will give us access to a
logically mounted image, allowing us to view file types with Windows associations
in their native or associated applications, and copy files from the mounted image to
another location.

[171]

https://github.com/dddpaul/android-SimpleNetCat
https://github.com/dddpaul/android-SimpleNetCat
https://github.com/MobileForensicsResearch/netcat
https://nmap.org/download.html
http://accessdata.com/product-download/digital-forensics/ftk-imager-version-3.4.2
http://accessdata.com/product-download/digital-forensics/ftk-imager-version-3.4.2

Android Forensics

To mount the dumped image, open FTK Imager after downloading and installing
it. Click on File | Image Mounting, then click on the Browse button, and locate the

Image.dd file you previously acquired. Then click on the Mount button; once the
operation succeeds, click on Close:

— Add Image

Image File:
I E:\Soufiane'Physicalbump.dd

Mount Type: IPhysiaI & Logical

Crive Letter: INext Available (G:)

Led Led Lo

Mount Method: IBIod(Device [Read Only

‘Wrike Cache Folder:

E:\Soufiane .
Mount

—Mapped Image List
Mapped Images:
Drive I Method I Partition I Image
PhysicalDrive 1 Block Device/Read ... Image E:\Soufiane\Physicalbump. dd
E: File System/Read Only MNOMAME [ext4] E:\Soufiane\PhysicalDump. dd
< T [>

Unmount |
Close Q

[172]

Chapter 4

You can now find a drive mounted on the explorer, or via FTK Imager you can click
on File | Add all attached devices and start browsing the mounted disk:

Outits de tecteur ICEPC | - I a - ¥ 1 AccessOna FTK tmager 3401

Hichage Gestion (7] Fia View Mode Help

PC w O | Rec - aadtag dd 4
i e Evidence Tree

4 Dossiers (6) = & \\PHYSICALDAIVED

= W APHYSICALDRI
= =T NOMAME fed]
1 B0 o
E-) andeid-5.1+4e1
=) deta
L) add

L) app-asec
) appdb
L) app-pvate
) d)) backup
4 Peripheriques et lecteurs (4) # dabvkcache
5) data

) donipanic

3 dm
) local
Disgue local (E:) MNOMNAME (F:)) ot wfound

; - et T Bl e = 5 £ meda

- 364 G libres sur 452 G -~ FAT = mediadm
=) misc

) propesty

) resource cachs

Disque local [C:)
l
[

m Lectewr DVD/CD-RW (D:)
] -

£ secuty
=) system
) tombstones
) user
3 system
- gb

This said, a new acquisition technique was introduced by researchers Seung Jei
Yang, Jung Ho Choi, Ki Bom Kim, and Tae Joo Chang; the new method is based on
firmware update protocols by analyzing the commands used by the in-firmware
update process. The full paper has been released and can be viewed at http: //www.
sciencedirect.com/science/article/pii/S1742287615000535.

Analyzing the acquired image using Autopsy
Autopsy is a tool by Basis Technologies; it's a free digital forensics platform and
graphical interface to The Sleuth Kit (a library and collection of command line tools
that allow you to investigate disk images) and other digital forensics tools. It is used
by law enforcement, military, and corporate examiners to investigate what happened
on a computer. Autopsy is available on Linux, Mac OS, and Windows. You can
download it from http://www.sleuthkit.org/autopsy/.

[173]

http://www.sciencedirect.com/science/article/pii/S1742287615000535
http://www.sciencedirect.com/science/article/pii/S1742287615000535
http://www.sleuthkit.org/autopsy/

Android Forensics

Autopsy is an end-to-end moldable platform that, among other things, offers the
Android Analyzer module, which we will use to explore our image.

After downloading and installing Autopsy, create a new case by filling in the

case information (the base directory is where your analyzed data will be stored),
as follows:

L Caselnfo
o 2 Additional Information
| Cerniznesn Enter New Case Information:
-} 2
Open Recent Case Base Directory: | E:\Andraid_Case_Data 6 [Browse

Case Type: (®) single-user Multi-user
Case data wil be stored in the following directory:
|E:\android_Case_Data\android_Case |

| Open Bxisting Case
s

Autopsy”

OPEN| EXTENSIBLE | FAST

4

Click on Next and fill in the case number and examiner's name. After clicking on
Finish, a new wizard will be displayed that will invite you to enter the data source
(or your physical image) information. Make sure that the Select source type to add
option is set to image file, browse for your image file, and click on Next:

Steps Enter Data Source Information wizard (Step 1 of 3)

1. Enter Data Source
Information

2. Configure Ingest Modules

3. Add Data Source

Select source type to add: |Image File

Browse for an image file:

|E :\Shares\PhysicalDump'physicallmage.dd

Please select the input timezone: |(GMT+0:00) AfricafCasablanca

[] 1gnare orphan files in FAT file systems
(faster results, although some data will not be searched)

Press 'Mext’ to analyze the input data, extract volume and file system data, and populate a local database.

Finish

[174]

Chapter 4

Autopsy, as specified earlier, comes with a set of modules that provide different
capabilities, such as timeline analysis, hash filtering, keyword search, web artifact,
and so on. It's important to know that usually, it's preferable to keep them all even
if analysis will take time depending on the selected modules, but if you are dealing
with an Android image, make sure that you select the Android Analyzer module
and then click on Next:

Steps Confi Ingest dules wizard (Step 2 of 3)

1. Enter Data Source Information
2. Configure Ingest Modules
3. Add Data Source

Configure the ingest modules you would like to run on this data source.

Recent Activity

Hash Lookup

File Type Identification
Embedded File Extractor
Exif Parser

Keyword Search

Email Parser

Extension Mismatch Detector
F01 Verifier

I z Android Analyzer I
Interesting Files Identifier
PhotoRec Carver

JRIKRIRIRIRIEIE

K

[selectal | [Deselectal Advanced

[] Process Unallocated Space

< Back Finish Cancel

After clicking on Next, the main interface of Autopsy shows up and starts analyzing
the loaded image dump in order to parse and to categorize eventual evidences; the
analysis progress is visible and is divided into each module's status:

Analyzing files from dump.dd o o
010920, xm

Periodic Keyword Search Analyzing files from dump.dd “:]
Email Addresses: sowfiznetshin forensic@gmail.com

Embedded File Extractor I 100% |
f0171528: CERT.RSA

[175]

Android Forensics

Along with your computer performance, the time taken to analyze this process
depends on how big the image is and how many modules you checked before. You
can see in the following screenshot that the Android Analyzer module stored the
extracted content in a very fancy way:

f@ Results
L’J B Exvacted Content
1% call Logs (500)
-l Contacts (535)
-l EXIF Metadata (415)
[Encryption Detected (4)
I = Extension Mismatch Detected (3511)

= =B Messages (12047)

: E Web History (9613)
‘g Web Search (321)

By navigating through each category, you can see the arranged evidences, for
example, contacts, calls logs, or SMS:

Contacts
Source File Data Source Phone Number Email
———
8 contacts2.db dumnp.dd Mawal
8 contacts2.db dump.dd Sofuiane Tahiri (066) 855-9975 soufianetahiri@gmail. com
Messages
Source File Direction To Phone Mumber — Date/Time Read Subject Text Message Type
™ mmssms.db Cutgoing DRGES5I9TS 2016-02-04 12:47: 10 WET Unread This is a test message SM3 Message
Icall Logs
Source File To Phone Number Start Date/Time End Date/Time Direction Name Data Source
% contacts2.db 066559975 2016-02-01 2004549 WET 2016-02-01 20:45:4%9 WET OQutgoing Sofuiane Tahii dump.dd
':{ contacts2.db 0BRE559975 2016-02-01 Z0045:42 WET 2016-02-01 20:45:42 WET Outgoing Sofuiane Tahii - dumnp.dd
s contacts2.db 0668559975 2016-02-01 20045:35 WET 2016-02-01 20:45:35 WET Outgoing Sofuiane Tahii dump.dd

[176]

Chapter 4

You can also navigate through the image and preview and extract files and folders
within all partitions. Autopsy offers a very interesting feature, timeline analysis,
which is a point not to be neglected in any forensic examination. Timeline analysis
correlates time and date and all device activities (SMS, calls, e-mails, web activities,
read/write, and so on). The feature can be triggered by clicking on the Tools menu
and then the Timeline option and offers two different visualization types: the
Counts view, which sums the activities that occurred in a given time frame via a
stacked bar chart, and the Details view, which shows individual events or groups of
related events:

Visualizstisn Mode: |, Counts | & Details tnapne Visuslization Mede: il Counts & Details al Srapihol

CORE0101 D0:00:00 1 20360 L0L 00000 638 At |
Tatie | Thumnad |

3 T N TS TN 1003 J0OT 3011 21 O

The colors in both the views represent different event types: filesystem (file modified,
file accessed, file created, and file changed), web activity (downloads, cookies,
bookmarks, and so on), and misc types (messages, GPS route, location history, calls,
and so on). The event types can be filtered depending on your needs.

Autopsy is a user-friendly yet very efficient tool that offers a bunch of features, and
in most cases it can save you from paying a forensic tool license.

JTAG and chip-off forensic examinations

Joint Test Action Group (JTAG) is an association created by the electronics industry
for developing a method of verifying designs and testing printed circuit boards

after manufacture. Even if the name is still commonly used, this industry effort

has become an Institute of Electrical and Electronics Engineers (IEEE) standard
entitled Standard Test Access Port and Boundary-Scan Architecture. Applied in a forensic
context, JTAG consists usually of connecting to the standard Test Access Port (TAP)
on a device and then instructing the processor to transfer raw data to a connected
computer, meaning that JTAG usually requires disassembling the device.

[177]

Android Forensics

The following are the JTAG TAPs on a disassembled Samsung Galaxy S4 (source
http://forensicswiki.org/wiki/JTAG Samsung Galaxy S4 (SGH-I337)):

Figure 2

Once the JTAG TAPs are identified, the examiner solders the JTAG connectors
to them as shown (source: http://forensicswiki.org/wiki/JTAG Samsung
Galaxy S4 (SGH-I337)):

Figure 3

[178]

http://forensicswiki.org/wiki/JTAG_Samsung_Galaxy_S4_(SGH-I337)
http://forensicswiki.org/wiki/JTAG_Samsung_Galaxy_S4_(SGH-I337)
http://forensicswiki.org/wiki/JTAG_Samsung_Galaxy_S4_(SGH-I337)

Chapter 4

Now, via the respective used JTAG box software, the acquisition can be conducted
as shown (source: http://forensicswiki.org/wiki/JTAG Samsung Galaxy S4_
(SGH-I337)):

[Resurrection | ITAG Readjrite] & DCC Read/irite | Uiseful Plugins| = Box Service|

JTAG TCK Speed:
RTCK »!
§amp?= atMAX ?' i

f®' Resurrector Settings

SAMSUNG 2!

Samsung 1337 &l

£3 Custom Target Settings

l 1 DCC Loader LISE Interface

i o= | addcese: | 0x000000000000 48| | { arget (core):
: End Address: | 0x000400000000 SHAPDRAGON 54 ARMZTDML 4
- L) = || | eset methos:
‘Spare: | P91} [access ROM1 Address Space Bl (M Reser, wait 0 ms, Spec
Dy e ITAG 1/0 Voltage:
I Image File is Used (Main + Spare combined into single fie) & Use End Address, not Length 1:80
1 Use Address as Offset for Flash Files = ECC Module Enabled TAP# (Multichain position):
[@sw [Giswe][Joeserah || Asetnosoycose || @ specaiseros ||| L

Reading at 0x000067EADN00 Ectimated Time Left:4937.37 | 84.38 kB/s

Figure 5

In this case, a RIFF Box (http://www.riffbox.org/) was used, which is probably
the most used box in forensic examinations, as it comes with a variety of pin-outs
and device support. You can find an exhaustive list of JTAG (and chip-off) boxes and
tool manufacturers at http://forensicswiki.org/wiki/JTAG and Chip-Off
Tools_and_ Equipment.

Acquiring a physical image using JTAG is usually an extremely technical approach
and if it can be correctly conducted, the examiner can eventually gather the evidence
from a turned off or even a damaged device. However, the approach is not always
successful due to manufacturing constraints; this is why examiners can attempt

the chip-off technique, which consists of basically removing a chip (tested and
programmed using JTAG standards) from a circuit board and reading it using
commercial tools.

[179]

http://forensicswiki.org/wiki/JTAG_Samsung_Galaxy_S4_(SGH-I337)
http://forensicswiki.org/wiki/JTAG_Samsung_Galaxy_S4_(SGH-I337)
http://www.riffbox.org/
http://forensicswiki.org/wiki/JTAG_and_Chip-Off_Tools_and_Equipment
http://forensicswiki.org/wiki/JTAG_and_Chip-Off_Tools_and_Equipment

Android Forensics

Chip-off is by far the most expensive and intrusive method to acquire a physical
image. The process itself requires heating the device's circuit board in order to melt
the solder holding the chip:

The preceding image shows a device's chip about to be removed (source: https://
pressdispensary.co.uk/image library/qg991448.html). Once the chip is
successfully removed, the examiner must prepare adequate memory-reading
hardware, a chip adapter, and the software that goes with it. Depending on the chip's
nature (Thin Small Outline Package (TSOP) type, or Bag Grid Array (BGA) type),
the cost of handling it varies.

This being said, the major difference between JTAG and chip-off remains the
destructive side of chip-off, but both techniques, if successfully operated, can result
in a full flash memory dump.

[180]

https://pressdispensary.co.uk/image_library/q991448.html
https://pressdispensary.co.uk/image_library/q991448.html

Chapter 4

Third-party applications and a real case
study

In today's mobile forensic world, a very big part of valuable evidence can be found
by examining social media and messaging applications. The following will be a
walkthrough forensic analysis of Facebook Messenger.

Facebook Messenger is the official Facebook app that lets users have text
conversations with all of their connections (friends) on Facebook. Facebook
Messenger offers the possibility to send and receive text messages in conversations,
send and receive voice notes, make VOIP calls, share location and photos, and so on.
It becomes mandatory for examiners to be prepared to investigate crimes related to
online dating and social networks.

For the following investigation, a Samsung Galaxy J1 Ace running Android L 5.1.1
was the user. Facebook Messenger version 56.0.0.27.64 was installed and logically
acquired from the rooted device using the adb pull command:

[181]

Android Forensics

All Facebook Messenger data can be found under /data/data/com. facebook.orca.
The directory contains a bunch of folders and subfolders organized as follows:

F—1lib-m
f—1ib-

Figure 4

[182]

Chapter 4

The screenshot highlights directories and subdirectories that potentially have
valuable information. The app_gatekeepers\users\ folder contains a directory
named by the active user's Facebook ID:

——app gatekeepers

|
|
|
|
L

file_lock
gk_names
gk_state
gk_state.old

users
L_1491343894
file lock

You can find the corresponding profile by navigating directly using a browser to
facebook.com/1491343894.

The cache\image\v2.01s100.1\ and files\image\v2.01s100.1\ folders
contain numbered subdirectories, each holding a number of . cnt files; each file has a
27-character-long name, as follows:

| -JslGRfevaTVKTIcG-OMATq3bka.cnt
| welVdHTIgHSYb_XFmsuSDfbciel.cnt

By attempting to classify the filesystem of . cnt files using the £ile command,
we can find that in fact they are just JPEG files that are renamed (ot all . cnt files
are JPEGs):

[183]

Android Forensics

This eventually can be opened by a default viewer by changing the . cnt extension or
by dragging and dropping individual files in a photo editor:

Fichier Accueil Affichage

7 ME [l

Presse- Image Outils |Pinceaux| Formes Taille Couleurs
papiers™ ~ = *

The . cnt extention is certainly an abbreviation of contact, since
all files within files\image\v2.01s100. 1\ reveal the profile
pictures of contacts in Messenger conversations.

Photos in cache\image\v2.01s100.1\ can contain, in addition
to profiles pictures, photos exchanged within a conversation.

You should verify each . cnt file's header either manually or
by running the file command on it to determine the actual file
type, as it may be, in some cases, videos, photos, or audios for
audio messages.

[184]

Chapter 4

From highlights in Figure 4, we can also see a databases folder that contains many
SQLite databases named without the . db extension. Among the most interesting
ones we can find are contacts_db2, threads db2, prefs_db, and analytics db2.

The contacts_db2, as its name reveals, holds information about the contacts in the
user's Facebook Messenger account and contacts scraped from a user's phone book.

It has eight tables:

El _shared_version

/42 name: text

=4 wversion: integer

42 sqlite_autoindex__shared_version_1

El phone_address book snapshot
2 local_contact_id: integer
£ contact_hash: text

E android_metadata
=9 locale: text

EJ contacts

/2 internal_id: integer

El ephemeral_data

E9 contact_id: text

= fbid: text

= first_name: text

£ last_name: text

= display_name: text

=9 small_picture_url: text

=5 big_picture_url: text

=5 huge_picture_url: text

= small_picture_size: integer
=9 big_picture_size: integer

=9 huge_picture_size: integer
5 communication_rank: real

£ is_mobile_pushable: integer
B9 is_messenger_user: text

=9 messenger_install_time_ms: integer
=9 added_time_ms: integer

£ phonebook_section_key: text
£ is_on_viewer_contact_list: text
£ type: text

=9 link_type: text

= is_indexed: integer

£ data: text

=] bday_day: integer

=] bday_month: integer

=9 is_partial: integer

=] last_fetch_time_ms: integer

s fbid: text

=9 type: text
= data: text

42 sqlite_autoindex_ephemeral_data_1

E contacts_indexed_data

= type: text
=9 contact_internal_id: integer
= indexed_data: text

___f contacts_data_index
<# contacts_type_index

Ee contacts_db_properties

4 key: text

= value: text

£ sqlite_autoindex_contacts_db_pro...

ES favorite_contacts

s fbid: text

=9 display_order: integer

55' favorite_contacts_order_index
42 sqlite_autoindex_favorite_contacts_1|

2 contact_index_by_fbid
;%_, sqlite_autoindex_contacts_1

SQLite's sqlite_squence table is automatically created
whenever a table contains an autoincrement column. This table

/ keeps a track of the largest ROWID (the physical location of a row)
that a table has ever had.

[185]

Android Forensics

Most of the valuable information is found in the contacts table, which is made up
of 21 columns:

v |[E| contacts

|_:_', internal_id INTEGER [=) is_messenger_user TEXT
|é| contact_id TEXT Q messenger_install_time_ms IMTEGER
|é| fhid TEXT Q added_time_ms INTEGER
Iél first_name TEXT Q phonebook_section_key TEXT
IE‘I last_name TEXT Q is_on_viewer_contact_list TEXT
|;| display_name TEXT Q type TEXT
[=] small_picture_url TEXT (=] link_type TEXT
[=] big_picture_url TEXT =) is_indexed INTEGER
|;| huge_picture_url TEXT Q data TEXT
|;| small_picture_size IMTEGER Q bday_day IMTEGER
|;| big_picture_size IMTEGER Q bday_month IMTEGER
|;| huge_picture_size IMTEGER Q is_partial IMTEGER
|;| communication_rank REAL Q last_fetch_time_ms INTEGER
B is_mohbile_pushable INTEGER

This table, as you can see from the preceding screenshot, contains the first name,
the last name, Facebook ID, and the public link of a contact's profile picture for
each contact:

fhicd first_name last_name display_name small_picture_ur big_picture_url uge_picture_ur
Filter [Fiter Filter Filter [Fitter [Fitter [Fitter
102 Abdelouahed Aagmari Abdelouahed | https:fifbcdn-prl hitps ffbodn-prl https:#fbednprl
GE: MNawral Adnani MNawal Adnani hitpsfhcdn-prl hitps /fbcdn-prl hitps/fbcdn-prl
100 | https:fifbcdn-prl hitps:/fhcdn-prl hitps:/fthedn-prl
10t | hitps:fifbedn-prl hitps focdn-prl https:/fbcdn-prl
59t hitps:fifbedn-prl hitps ifocdn-prl https:ffbcdn-prl
h4i hitps:/ifbcdn-prl hitps:/fbcdn-prl hitps/ffbedn-prl
100 | https:fifbedn-prl hitps:/fbedn-prl hitps:/ftbedn-prl
5t hitps:fifbedn-prl hitps focdn-prl https:/fbcdn-prl
13 hitps:fifbedn-prl hitps ifocdn-prl https:ffbcdn-prl
7 hitps:fifbcdn-prl hitps:/fbcdn-prl hitps:/fhedn-prl

[186]

Chapter 4

The data column within the same table contains a huge repository of information
about each contact in the JSON/metadata format, such as the contact's day and
month of birth, city name, last fetch time, and so on:

ImCTNamEe j, Value i TEXT | Nawal
=Partial™: false, TastFetchTime™

Type of data currently in cell: Text / Numeric
2104 char(s)

The database contains the favourite contacts table, which has two columns:

Facebook ID and display order:

I =] favorite_contacts

| fbid

Q display_order

TEXT
INTEGER

The table holds the IDs of Facebook users that have been favored by the user. You
can correlate each user back to the contacts table using its fbid.

[187]

Android Forensics

The threads_db2 database is composed of 11 tables and contains information related
to sent/received messages:

E2 properties

=]

EE threads

0 ke et

S msg_id: text

J2 thread_key: text

& values text

2 sqlite_sutoindex_properties_1

[pinned_threads

/2 thread_key: text

2 display_order: integer

¢ sqlite_auteindex_pinned_threads_1

ions

group_c

thread_key: text

rank: float

sqlite_auteindex_group_conversa..

folders

thread_key: text

folder: text
timestamp_ms: integer

folders_timestamp_index

folder_counts

folder: text

unread_count: integer
unseen_count: integer
last_ssen_time: integer
last_action_id: integer

So | R EE B S (H S0 s |6 B 5 (D) [|H |5 [

sglite_autoindex_folder_counts_1

& thread_key: text

£ action_id: integer

5 text: text

& sender: text

& is_not_forwardable: int=ger

& timestamp_ms: integer

&5 timestamp_sent_ms: intsger
£ attachments: text

£ shares: text

£ sticker_id: text

£ msg_type: integer

£ affected_users: text

£ coordinates: text

£ offline_threading_id: text

5 source: text

£ channel_source: text

= send_channel: text

& is_non_authoritative: integer
= pending_send_media_attachment:.. |
& sent_share_attachment: string
= client_tags: text

& send_error: string

E5 send_error_message: string
& send_error_number: integer
= send_error_timestamp_ms: integer
£ send_error_error_url: string

2 publicity: text

£ send_gueue_type: text

5 payment_transaction: text

5 payment_request: text

E5 _shared_warsion

47 name: text

E5 version: integer

/o sqlite_sutoindex__shared_version..|

= has_| |able_attachment: inte...
£ app_attribution: text

£ content_app_zttribution: text

B xma: text

£5 admin_text_type: integer

£ admin_text_theme_calor: integer
£ admin_text_thread_icon_smaji: text|
£ admin_text_nickname: text

£ admin_text_target_id: text

£ admin_text_thread_message_lifet...
& admin_text_thread_journey_color..
£ admin_text_thread_journey_emaji...
& admin_text_thread_journey_nickn...
& admin_text_thread_journey_bot_c...
E5 message_lifetime: integar

E5 admin_text_thread_rtc_svent: text
E5 admin_text_thread_rtc_server_in
E3 admin_text_thread_rtc_is_wideo_...

7 messages_affline_threading_id_in...
4 messages_timestamp_index
¥ messages_type_index

& legacy_thread_id: text

& action_id: integer

&5 refetch_action_id: int=ger

&5 last_visible_action_id: int=ger
& sequence_id: integer

& name: text

&5 participants: text

&= former_participants: text

&5 bot_participants: text

&5 senders: text

& snippet: text

B snippet_sender: text

g2 admin_snippet: text

&5 timestamp_ms: integer

&= last_read_timestamp_ms: integer
&5 approx_total_message_count: int..
E2 unread_message_count: integer
2 last_fetch_time_ms: integer

Z pic_hash: text

ES pic: text

2 can_reply_to: integer

& cannot_reply_reason: text

22 mute_until: integer

2 is_subscribed: integer

& folder: text

2= draft: text

2 has_missed_call: integer

2 me_bubble_color: integer

2 other_bubble_color: integer

2 wallpaper_color: integer

2 last_fetch_action_id: integer

2 initial_fetch_complete: integer
2 custom_like_emaji: text

& outgoing_message_lifetime: integer
g5 custom_nicknames: text

&5 invite_uri: text

2 sqlite_autoindex_threads_1

7 threads_legacy_thraad_id_index

/o sqlite_autoindex_messages_1

B thread_users
&2 user_key: text

= first_name: text

= last_name: text

5 name: text

55 is_messenger_user: integer

2 profile_pic_square: text

2 profile_type: text

&9 is_commerce: integer

£ is_partial: integer

= user_rank: rzal

= is_blocked_by_viewer: intager

= is_message_blocked_by_viewar: i,
&5 commerce_page_type: text

£ can_viewer_message: integer

25 commerce_page_settings: text

= is_friend: integer

= last_fetch_time: integer

£ montage_thread_fbid: text

£ can_see_viewer_montage_thread:..,
£ is_messenger_bot: integer

&5 is_messenger_prometion_blocked...

4 sqlite_autoindex_thread_users_1

E2 ranked_threads
&2 thread_key: text

= display_order: intzger

& sqlite_auteindex_ranked_threads_1,

[android_metad |
|£ locale: text |

The folders table contains folders that the user created and when the user created
them. The table group conversations contains the column thread key, which
points to the messages table and contains the values for each group chat.

[188]

Chapter 4

The main table that remains is the messages table; the major columns are described
in the following table:

Column Description

msg_id Uniquely generated ID for each message.

thread key Uniquely generated ID for each chat session.

text Contains the content of each sent/received message.
sender Contains JSON data about the message sender, including

sender's e-mail address, full name, and Facebook user's ID.
An example is as follows:

{ "email":EDITEDFORPRIVACY, "user
key":"FACEBOOK: EDITEDFORPRIVACY
", "name":"Nawal Adnani"}

timestamp ms Contains the time a message was received or sent in UNIX
format.

attachments Contains JSON data about sent or received attachments (file
name, mime-type, file size, attachment URL, and so on).

pending send media_ | Indicates the path to recover sent attachments.

attachment

client tags Contains the client used to send message (web or mobile).

s You can identify the voice calls by looking for You called Facebook

Q User., Facebook User called you., and You missed a call from Facebook
User. in the text column of the messages table.

The prefs_db database is made of three tables, but the most interesting is the
preferences table:

E preferences E android_metadata
A key: et = locale: text
EH type: integer H = ™ =

EH value: text

c]:l name: text

/2 sqglite_autoindex_preferences_1

E5 wersion: integer

--------------------- /4 sqlite_auteindex__shared_wersion...

[189]

Android Forensics

The preference table is a key-value table that contains useful metadata about
sessions, user's account, and the used Messenger application. The /auth/user_
data/fb_session_cookies_string key, for instance, holds cookie information
(useful for session hijacking):

| wport || Ewport | [Text -

[{name”™: "c_user”, "valug™ "1+ 4", "expires”:"5un, 05 Feb 2017 17:22:55 GMT ", "expires_timestamp™:
14 3, "domain™:". facebook. com”, "path™"f", "secure":true},
{name”:"fr", “value™: 00 N |l LARA,
0. hWUIhWPx' | "expires” 'Sun, 05 Feb 2017 17:22:55 GM'I" expires hmesmmp
1486315375, "domain™: ", facebook. com™, "path ™/}, {name™: "xs", value™ " 142:
", “expires™:"5un, 05 Feb 2017 17:22:55 GM'I”','expires_ﬁmesiarnp':

1486315375, "domain™: ", facebook. com”, "path™: /", "secure ™ true}, { name™; 'csm',‘\talue': "2","expires™:"5un, 05 Feb
2017 17:22:55 GMT","expires_timestamp™: 1486315375, "domain ™", facebook.com”, path ™"/},
{name™"s", "value™") 00", "expires” 'Sun 05 Feb 2017 17:22:55 GMT", "expires_timestamp™:
14863153?5 "domain”: " facebook, com ", "path™ f','secure rtrue}, {name™: "datr”, 'value' ¥

'c”,"expires™ ™on, 05 Feb 2018 17:22:50 GMT", "expires_timestamp™:
1517851370, domaln‘ " facebook com”,"path”™:""}]

Type of data currently in cell: Text f Numeric
1010 char(s)

The /auth/user_data/fb_me_user key contains information about the
authenticated user including their full name, date of birth, link to public profile
picture, e-mail address, gender, phone number, and even the authentication token:

Uid": 1431343894, frst_name": Soufiane”, Tast_name": "Tahiri", name™: Soufiane Tahiri’, birth_date_years 'birtn_date_ month” ‘birth date_day| ,"gender”

"phones™ [[ull_number"s"+212668550975", "display_number™+ 0868-559975", i _verified"strue, “android_type™:03], 'pic_square™ hitps: ,','fbcdnﬂruﬁ\iﬁ akamamd nEtJhpruﬁ\Eak xtalju/tL0-1]
I 160% 160/11949452_10204387 185587560 147957389552153134 n.jpg? nc ad—z-
méoh=3a53d9240cc7/f8fa%h217ea6 12ha53280e =57383FF98_gda_=1963144513_2ff976d3240a2326edbb0976¢5 1f9e6 1", profile_pic_square™: [{url™: hittps: /fbcdn-profile-a.akamaihd. net/hprofile-ak-xta 1/v/t1.0-1/
n160x160/11943452_10204387185587960_147397389592153134_n.jpg?_nc_ad=z-msh=3a53d3240cc 7 73fadh2 1 7ea612ba53280e =57I83FFI8_ ada_ = 1463144513 _2ff9750324082326edbb0976¢5 196 17, "size™ 160},

Curl" ittps:ffocdn profie-a.akamaing. net/hprofile-ak-xta1/v/tL.0-14 11945452_10204987185587960_147997389592153134_n.jpg?_nc_ad=z-
[méoh=068c 14767652 76b54f5 7276 7EES._oda_ =1462358422_da32e8dace307ba68df 7670 15a5e0f6d", Size " 320}, L Url": hittps: /{fbcdn-profile-2. akamaihd net/hprofile-sk-xta 1fv/
t1.0-1/11949452_10204987185587960 5

4 9592153134 _n.jpg?_nc_ad=z-m&oh= 029c38d04e4a 2084425, . 76941488__oda__=1462227997_1451488017a18bd402a292d2ce 171e4a", "size™
9603], "is_pushable"true, "type": "user ‘auﬂ1 tok&n .

0,"can_see_viewer_montage_thread":false, is_deactivated_allowed_on_messenger ":false}

*,"profile_picture_is_sihouette":false, ‘montage_thread_foid":

[190]

Chapter 4

Finally, the analytics_db2 database contains four tables, as shown:

E2 _shared_version EH ewents

2 name: text & _id: integer B android_metadata

& version: integer B session_id: text = locale: text

/o sqlite_autoindex__shared_version..| [E5 app_version_name: text E analytics_db_properties

B2 app_version_code: integer
..................... = flush_tag: text
..................... B data: text

9 timestamp: integer 4 sglite_autoindex_analytics_db_pr..

2 key: text
£ walue: text

The analytics db properties table contains the active session ID, the active user's
ID, and last activity time, which is very important from a forensic point of view:

fuploading_session_id

freqular_beacon_id 2

Jeession_user_jd 1491343894 _
flast_send_time 1454780294851

flast_ewvent_time 1454780293704

fuploading_batch_seq_id 1

The events table contains exhaustive details about every single activity within

a session in the form of JSON data and stored in the data column. Data can be
extracted when a notification is dropped and when a message is read locally, when
a message is sent or received, and when it is delivered, including the message ID
(which can be correlated with the msg_id of messages table). The events table
contains some kind of in-depth analytics related to all the activities using Facebook
Messenger. An example of how the data is stored is as follows:

[T TS AT TIOHE TR log e T T e M S gING_DUD,_Bck” mare RS UTCe s pubeck”, Telry_Count (I par_Imastamp,_ms* "1 S547TRIT 00T Mrs_mes soge, st send_duhe” 25022 o Jog. Wngger ree_main,_fecent

e 1454779935 D8° “log type’ “cliesl_svent’ aeme™ *deinvery_jecoipt_receled”, mar” Cwatmmank_smasiemg* *1 454779997721 "mas snge_id” “mid 1654773957717 a1 58] ach 313053 “saguence_id™ 4518 “user_ti | -)

[*145ATE0001 091" "log_bvpe® “cleel sl rame® ‘mustaging,_ send_e_ma® fedim® {"skis® *steass® Srul_send_debe® TS kol mat_puth_stete® SCONNECTED" "curneed 4 k" 1 AEATB000094" el _push,_shste® *COMMECTED *rety,

[191]

Android Forensics

Summary

In this chapter, we had a look at the Android architecture and its security models,
how they are inherited and implemented; we saw how disk encryption has evolved
through Android versions, and how Android deals with sandboxes, SELinux, and
application signing; then we discussed various techniques for bypassing lock screens
and how to crack PINs and passwords. This chapter tried to clarify the importance
of rooting Android devices in order to help investigators gather the most evidence
from it.

Having a sound knowledge of Android internals, security implementation, and lock
screen bypasses lets us understand some techniques related to logical and physical
acquisitions using different techniques. This chapter explained how we can acquire
(logically and physically) an Android image and how we can analyze it using a free
and open source tool (Autopsy), and introduced the JTAG and chip-off techniques,
the differences between them, and how they are used in a forensic context.

This chapter demonstrated how the widely used instant-messaging application
Facebook Messenger is stored and how it stores its data on an Android device, and
then we went through its different databases to determine how evidence is stored.

The next chapter will discuss techniques and tools used in order to forensically
acquire and analyze a Windows Phone 8.x device.

[192]

Windows Phone 8 Forensics

The purpose of this chapter is to introduce Windows Phone 8 (WP8). In the first part
of this chapter, we will see the main differences between WP7 and WP8. Further on,
we will go through Windows 8 internals and describe the WP8 security models and
their implementation. This chapter will also describe the WP filesystem, following
which we will go through the steps to logically acquire a Windows Phone 8 device
and describe WP PINs and hardware encryption. We will also describe evidence
location in the Windows Phone registry and analyze the Windows Phone PIN.

This chapter will cover the following topics:

* Windows Phone 8 internals

* Partitions and the filesystem

* Windows Phone 8 security models

* Windows Phone 8 data protection

* Windows Phone 8 logical acquisition
* Windows Phone cloud acquisition

* JTAG and physical acquisition

* Artifact location and user PIN study

Windows Phone 7 versus Windows
Phone 8

Windows Phone is Microsoft's smartphone operating system developed as a
successor of Windows Mobile. In contrast to Windows Mobile, Windows Phone
mainly targets customer markets rather than the enterprise market. This explains
the significant progress it has made in the global smartphone market, moving it
to third position based on market share.

[193]

Windows Phone 8 Forensics

Windows Phone 7 was the first public release announced in 2010. In 2011, Microsoft
announced WP 7.5, which included the mobile version of Internet Explorer 9, Twitter
integration of People Hub, multitasking of third-party applications, and Windows
SkyDrive access. In October 2012, Microsoft announced Windows Phone 8, a newly
built operating system based on the Windows NT kernel (instead of Windows

CE) sharing many components with Windows 8. In April 2014, Windows Phone

8.1 added new features like the notification center, separate volume control, and
inclusion of Apple's Siri-like voice assistant, Cortana.

Basically, the major difference between WP 7.x and WP 8.x is the fact that WP 8.x
is the first mobile OS that uses the Windows NT kernel, the same kernel found in
desktop versions of Windows 8; this switch is very important from both security
and forensic points of view.

The implementation of the Windows NT kernel in WP 8.x implied core improvement
of the filesystem and security components and enables support for multicores CPUs,
support for microSD cards, native BitLocker encryption, and Secure Boot. Windows
Phone 8.x uses Windows Runtime (WinRT), proposing a totally new programming
model. Unmanaged APIs based on a lightweight version of Component Object
Model (COM) allow the WinRT component to be interfaced with from both managed
and unmanaged languages. On the other hand, Windows Phone 7.x supports only
managed code and can run only applications coded using C# or VB.Net; there is

no native access to the system or phone hardware, and therefore, it's impossible to
update WP 7.x to WP 8 due to limitations in hardware capabilities on previously
released WP hardware.

The kernel adopted is the same as Windows 8 and includes two distinct components
when it comes to smartphones: the NT Kernel, the NT filesystem (NTFS), and the
network layer as part of the Windows Core System and Mobile Core that includes
relevant components for a mobile platform such as Internet Explorer's rendering
engine (Trident) and CoreCLR.

Windows Phone 8 internals

Based on the Windows NT kernel, Windows Phone 8.x uses the Core System to
boot, manage hardware, authenticate, and communicate on networks. The Core
System is a minimal Windows system that contains low-level security features and
is supplemented by a set of Windows Phone-specific binaries from Mobile Core

to handle phone-specific tasks; this makes it the only distinct architectural entity
(from desktop-based Windows) in Windows Phone. The following is an abstract
representation of the Windows 8 and Windows Phone 8.x layers:

[194]

Chapter 5

Windows Phone 8 Windows Phone 8

Windows Phone Shell Windows Shell

App (People, Maps, Email etc.) User account management

Connection Management Remote Desktop

Platform Services | CD/DVD File System |
More... | |

IE Trident CoreCLR

Multimedia DirectX E| Multimedia || DirectX |

Mobile Core Mobile Core

Windows Core System Windows Core System

Windows contains the same components as Mobile Core, but they are
L part of a larger set of functionality.

Windows and Windows Phone are completely aligned at the Windows Core System
and run exactly the same code at this level. The shared core actually consists of the
Windows Core System and Mobile Core where the APIs are the same, but the code at
the backend has been changed to serve mobile needs.

As most mobile operating systems, Windows Phone has a pretty layered
architecture. The kernel and OS layers are mainly provided and supported by
Microsoft, but some layers are provided by Microsoft's partners, depending on
hardware properties. These layers are provided in the form of a Board Support
Package (BSP), which usually consists of a set of drivers and support libraries that
ensure low-level hardware interaction and boot process created by the CPU supplier.
Additionally, it comes through Original Equipment Manufacturers (OEMs) and
independent hardware vendors (IHVs) that write the required drivers to support
the phone hardware and specific components.

[195]

Windows Phone 8 Forensics

The following is a high-level diagram describing the Windows Phone architecture
organized by layer and ownership (source: https://sysdev.microsoft.com):

User-mode
drivers

(e Audio Video

stack | rendering
stack

Kernel . Kernel-mode
File system/ /O manager Network drivers
storage manager (KMDF)

PEP extensions

File system/

storage Security Networking

Y . Microsoft/OEM/SV .

SV refers to SoC vendor

Above the lowest level (hardware level) comes the layer responsible for the boot
process. After the phone's System on Chip (SoC) bootloaders initialize all the
hardware components, they boot the Unified Extensible Firmware Interface (UEFI)
and hand over the control to the UEFI applications (written by OEMs, SoC vendors,
and Microsoft itself) to use UEFI drivers and services. At this point, to deal with all
requirements of the Windows Phone boot modes (normal/update/restore/flash),
the UEFI environment launches the Boot Manager, which determines the boot mode.

[196]

https://sysdev.microsoft.com

Chapter 5

The following diagram describes this high-level process:

Device powered on

v

Fireware boot
loaders

Boot to phone
reset mode

Windows Phone
Boot Manager Boot to FFU
flashing mode

@ Boot to @ Boot to
main 0OS main OS

To facilitate interaction between the hardware and the rest of the operating system,
Microsoft provides the Hardware Abstraction Layer (HAL), which offers routines that
can be used to abstract the low-level hardware details from drivers and the OS; if the
HAL needs any extensions, the SoC vendors add their own HAL as HAL extension.

The Windows Core includes the Kernel-Mode Drivers Framework (KMDF). This
framework is responsible for the Windows Kernel-Mode I/O Manager, which
manages communication between applications and the interfaces provided by
device drivers, the filesystem, and storage. It is also responsible for the Kernel-Mode
Memory Manager, which manages physical memory (Random Access Memory)

by handling the allocation/deallocation of memory (virtually and dynamically)

and by supporting memory-mapped files, shared memory, and copy-on-write. The
KMDF also provides support for the Human Interface Device (HID) class drivers
and the Kernel-Mode Security Reference Monitor (this makes sure that any action
taking place on the OS is not violating system policy). The KM Security Reference
Monitor provides routines to work with Access Control List (ACL). The Windows
Core also provides low-level network components. All these Kernel-Mode drivers
are provided by Microsoft. Another stack is provided by the respective SoC vendors,
added to the Windows Core, that is, Power Management Engine plug-in (PEP)
extensions, which are third-party extensions to the Windows power management
architecture. The PEP communicates with the power management integrated circuit
through some bus to manage power rails and clock resources.

[197]

Windows Phone 8 Forensics

The Mobile Core has the User-Mode Drivers Framework (UMDF), which abstracts
hardware functionalities and runs in the user-mode environment. This stack is
provided exclusively by Microsoft and includes CoreCLR, Shell Services, Media
Foundation APIs (audio and video rendering stacks that offer the possibility to
access and sync media files on the device), and the DirectX 11 graphics layer,
inheriting several features previously available only on desktops (Direct2D APIs,
DirectWrite APIs, Windows Imaging Component APIs, and so on). The Mobile Core
also includes the Extensible Storage Engine (ESENT) that allows applications to
store and retrieve data via indexed and sequential access, and which is optimized
for applications that need high-performance and low-overhead storage of structured
or semi-structured data. The latest stack in this big layer is the radio/telephony
stack, which is an asset to APIs that help in the development of communications
applications for Microsoft Windows Phone.

At the top of the Kernel resides the main operating system within the application
platforms layer. It is a sub-layered stack made principally of the Windows Phone
Shell, System Application, Connection Management, and Platform Services, as seen
in the following diagram:

Windows Phone Shell

System Applications §

Connection Management %

Platform Services §

Package Execution Navigation Resource %
Manager Manager Server Manager

Let's see the stack:

* Package Manager: It handles the application's life cycle. It's responsible
for installations and uninstallations and for maintaining the application
metadata.

* Execution Manager: This is responsible for creating the hosting processes of
applications and controls the logical aspects of the application's execution
lifetime and background agents.

* Navigation Server: It manages all the movement between the foreground
applications on the phone. The Navigation Server works with the Execution
Manager to orchestrate which application to start or which application to
reactivate.

* Resource Manager: It is responsible for monitoring the system's resources
(CPU and memory usage) by enforcing constraints on the active processes.

[198]

Chapter 5

Partitions and the filesystem

When it comes to the Windows Phone, the key physical aspects of the data structure
in data store are not very well documented. Microsoft divides the architecture of

the Windows Phone storage model into five main sections: The partition layout
describes which partitions are defined on internal storage and what each partition

is responsible for. Expandable storage refers to how to use an SD card to expand
the storage capabilities of the device. The Folder layout explains how folders are
organized on the device and defines the API you use to access those folders. Storage
utilization explains how the use of storage is presented to the user and the methods
that you can use to clean up the storage. Lastly, the phone storage service refers to
the service that runs in response to certain storage events. Most of the documentation
is exclusively available to OEMs and paid company accounts.

A very interesting research has been conducted by Adrian Leong, aka
Cheeky4n6Monkey, on a physical copy of a Windows Phone device (http://
cheeky4némonkey.blogspot.com/2014/10/awesome-windows-phone-8-stuff.
html) in which 28 partitions have been detected after parsing the JTAG physical
image. For example, most of the partitions (26/28) are related to SoC for handling
different bootloaders, as seen in the following screenshot:

-1 DPP (1) [BMB]

i}l EF] (7) [2ME]

i1l RPM (8) [OMEB]

-l TZ () [OME]

i1l WINSECAPP (10) [OMB]
i}l BACKUP_SBLT (11) [1ME]
i1l BACKUP_SBL2 (12) [1MB]
i}l BACKUP_SBL3 (13) [2ME]
i1l BACKUP_UEFI (14) [2MB]
i}l BACKUP_RPM (15) [OME]
i1l BACKUP_TZ (16) [OME]
i}l BACKUP_WINSECAPP (17) [OME]
-l UEFI_BS_NV (18) [OME]
i1l EFI_NV (1) [OME]

i1l PLAT {20) [ME]

i}l EFIESF (21) [B4ME]

i1l MODEM_FS1(22) [3ME]
i1l MODEM_FS2 (23) [3ME]
i1l UEFI_RT_NV (24) [OME]
i1l UEFI_RT_NV_RPMB (25) [OME]
i1l MMOS (26) [78ME]

i1l Main0S (27) [2244MB]
i}l Data (28) [27347ME]

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

Lumia 920 (Windows Phone 8.1) partitions

[199]

http://cheeky4n6monkey.blogspot.com/2014/10/awesome-windows-phone-8-stuff.html
http://cheeky4n6monkey.blogspot.com/2014/10/awesome-windows-phone-8-stuff.html
http://cheeky4n6monkey.blogspot.com/2014/10/awesome-windows-phone-8-stuff.html

Windows Phone 8 Forensics

There are three main partitions on the Windows Phone that are forensically
interesting: MainOS, Data, and Removable User Data (not visible in the preceding
screenshot since Lumia 920 does not support SD cards). The MainOS partition
contains all the Windows Phone operating system components. The Data partition
stores all of the user's data, third-party applications, and the state of all applications.
The Removable User Data partition is considered by Windows Phone as a separate
volume and refers to all the data stored in the SD card (on devices that support

SD cards).

Each of the previously described partitions follows a folder layout and can be
mapped to their root folders with predefined Access Control Lists. Each ACL is

in the form of a list of Access Control Entries (ACE). Each ACE identifies the user
account to which it applies (trustee) and specifies the access right allowed, denied,
or audited for that trustee.

MainOS volume

The MainOS volume, as mentioned earlier, contains all the operating system
components. Just like the desktop-based Windows, its path is ¢:\ and it has the
environment variable $Systembrive%, which refers to the main operating system
partition. Several root folders are generated as part of the OS's image — the following
diagram shows the most important ones:

%SystemDrive%

Pragrams Windows

<AppName> System32

Drivers Config

Let's see the folders:

* 3gystemDrive$\Programs: This root folder contains all the built-in
applications; each application is installed in a separated folder, <AppName>,
as you can see in the following screenshot:

[200]

Chapter 5

PROGRAMS

Nom

ABOUTCPL

ACCESSIBILITYCPL
ACCESSLIB_SVC
ACTIONURIHOST
ADVERTISINGIDCPL

ALARMS

APHCHECK

APMUX

APPPREINSTALLER
APPRESOLVERUI
APPSDATAMIGRATOR
AUTHHOST_MSA
AUTHHOST_WAB_A
AUTHHOST_WAB B
AUTHHOST_WAB_C
AUTHHOST_WAB_ENTERPRISE
AUTHHOST_WAB_SS0
AUTHHOST_WAB_SSO_ENTERPRISE |

$SystemDrive$\Programs\<AppNames>: This folder contains all the
installation files of a given application. The <AppName > is unique to each
application and can be either a GUID or a display name. Each application
has Read/Execute ACL applied to its folder. The next screenshot shows the
FINDMYPHONE application folder:

5 5 FINDMYPHONE “ c,.|

MNom

%] ShellCommandDispatcherDll.g
[5 ShellCommandDispatcher.exe
%] LocationHelper.dll
%] FindMyPhoneRuntimeDIl.dIl |
[#] FindMyPhoneRuntime.exe
%] FindMyPhonelppRes.dil
%] FindMyPhonedppDil.dil
[#5] FindMyPhonedpp.exe

zh-tw

zh-cn

vi-vn

uz-latn-uz

uk-ua

tr-tr

th-th

[201]

Windows Phone 8 Forensics

* %SystemDrive%\Windows: This root folder holds all the read-only data files
that are part of the main operating system; this includes built-in system
executables, drivers, and services. The only writable file that this folder
contains is the system registry. We can find the following subdirectories

in this folder, as seen in the next screenshot:

[e]

and read-only data files

drivers

registry

%SystemDrive%\Windows\System32: Contains system executables
$SystemDrive%\Windows\System32\Drivers: Contains system

$SystemDrive%\Windows\System32\Config: Contains system

Windows

Ay Rer
~ o]

MNom
TOASTDATA
th-TH
TEMP
SYSTEMRESOURCES
systemn32
SYSTEM
sv-5E
sr-Latn-R5
sr-Latn-C5
sg-AL
sl-Sl
sk-5K
SCHEMAS
ru-RU
ro-RO

User Data volume

Similarly to the MainOS volume, the User Data volume has its environment path,
which refers to the partition as $DatabDrive%, and the physical path is c: \Data.
The following diagram shows how Microsoft describes the full User Data partition

folder layout:

[202]

Chapter 5

%DataDrive%

¢ SystemData SharedData #
<Service DefaultApp

S e p———

<AppName>

Programs

<AppName>

AppData

Roaming

FrameworkTemp

She"\TI Ies

The \Programs folder contains all installed applications that come from the
Windows Store. In the MainOS folders layout, the \programs folder contains as
many \<AppNames> folders as installed applications, where AppNames represents the
application's unique GUID or the application's name. The \Users folder holds the
default user account, built-in services, and public data folders. As subdirectories of
the \Users folder, you can find the following;:

Shared

* \<Service Accounts>: It contains service application data, including user
accounts for all services except LocalService and NetworkService system
services. Services have Full Access except Write DACL (the ability to modify
the ACL) applied ACL (FA-WDCL).

[203]

Windows Phone 8 Forensics

\DefaultAppAccount: This contains all applications' data, and there is a single
default user account profile for this data, as seen in the following screenshot:

~ | MName | Size | Type |
FrameworkTemp 1 Directory
i INetCache 1 Directory
B..“g D_;{J:DPDPSDATA INetCookies 1 Directory
-
713 {OFACECTE-7114-4E1E-ABAC 50664DB13817) INetHistory 1 Directory
- {10BE0AS7-8B13-42CF-8873-ABED2598FCEB} Local 1 Directory
73 {19CD0687-9808-4338-BEB-5F6BABATETIE} |g| L Locallow 1 Directory
-{-7) {1E0440F1-TABF-4B3A-863D-177970EEFB5E} PlatformData 1 Directory
-1 {236CCOF0-A250-4F1A-8F3A-B532D 7460823} Roaming 1 Directory
{23 {2377FE1B-C10F-47DA-52F3-FC517345A3C0) Temp 1 Directory
-3 {2FA58039-A6EA-4421-BACE-SFFACOCIECD} [Ts30 16 NTFS Index All..

#-{) 13219D30D-4A23-4F58-A91C-C44B04EBANCT}
#-{) {373CB76E-TFEC-45AA-B633-B00EBSCT3261}
112 {SOABAEFD-4F35-434B-5308-CB3251303AE4}
1-{2) {51F96ABA-9924-43D7-8D6C-76A24018D3ED}
-7 {594477C0-E991-4ED4-8BE4-466055670ERS}
72 {5C2F810E-7445-4ECB-9205-99514A5133F4}
#-7) {62F172D1-F552-4745-871C-2AFD1C95C 245}

£
£
£
£
£
£
£
[+ {31BBC6SC-503E-4561-8D85-A294D 54D FO6F}
£
£
B
B
B
B
B

\Public: This contains all data that does not belong to a single application
and data that is stored outside a given isolated application storage. In
general, \Public directory contains media files (music, videos, and photos)
and Microsoft Office documents. Subdirectories of \ Public have self-
explanatory names, which are as follows (seen in the next screenshot):

° Music

° video
Pictures

Documents

H Soufiane-Mobile
= Phone
Documents
Downloads
Music
Album
Artist
Playlist
PodcastSeries
Pictures
Camera Roll
Sample Pictures
Saved Pictures
Screenshots
WhatsApp

Ringtones

Videos

[204]

Chapter 5

At the same level as the \Users folder are \SystemData, which contains system-
wide files, and \SharedbData, a directory used by applications to share content (its
subdirectories are created by an application's components). The \test folder is
aimed at development purposes and does not contain data. It contains the following
subdirectories:

* \bin: A test binary deployment folder
* \common: Contains common configuration values

* \ $(_PROJECT):One directory per build project. Everything required by
test is deployed to this directory

* \metadata: Includes metadata for packages and binaries and contains
information about test dependencies

Removable User Data

Windows Phone considers Secure Digital (SD) cards as a separate volume and
supports only one SD card that is mounted as a separate drive assigned to D:\, with
$RemovableDataDrive% as the variable environment. The folder layout for SD cards
is similar to the $DataDrive% (\Users\Public) data layout in the User Data volume,

as seen in the following diagram:
%RemovableDataDrive%
! | | | I I |
. . . End user
WpsyStem managed 066

As highlighted in the preceding diagram, the $RemovableDataDrive% directory
contains two more folders other than the folders found in \Public in the internal
storage: \MapsData, which stores maps data, and \wpSystem, which contains
metadata specific to the operating system such as the cache and thumbnails. In
addition to this, any content loaded by the user, in any folder layout, is considered
as an end user managed folder.

Windows Phone 8.1 supports the following content on SD cards:

* Applications

e Music
e Photos
e Videos

[205]

Windows Phone 8 Forensics

* Map data
* Sideloading application XAPs

* User content in non-system managed locations like eBooks

Even though MainOS and User Data partitions are in the NTFS filesystem, Windows
Phone supports only Secure Digital High Capacity (SDHC) cards in the FAT
filesystem format (for cards up to 32 GB) and SD Extended Capacity cards

in the exFAT filesystem format (for cards up to 2 TB).

The filesystem adopted in the internal storage is one of the many advantages

of opting for the NT Kernel on Windows Phone 8+. The New Technology File
System (NTFS) has improved support for metadata, improved performance and
disk space utilization in addition to the "built-in" ACL, and filesystem journaling.
The NTEFS filesystem has many benefits over the FAT and exFAT filesystems, and a
high-level comparison can be found at http://windows.microsoft.com/en-us/
windows-vista/comparing-ntfs-and-fat-file-systems and https://support.
microsoft.com/en-us/kb/100108.

Application data storage

Application data refers to data that applications create and manage. Application
data, obviously, depends on the application and its life cycle and is only meaningful
to that application. The physical storage of application data is managed by the
operating system.

Each application is installed in its own isolated storage. In addition to this, each
application state separates their data according to the nature of the data in separate
folders. All installed applications go to \AppData, located at $Databrive%\Users\
DefaultAppAccount\AppDatal\.

This folder contains as many subdirectories as the installed applications. Each
subdirectory is created by the application at install time, and is given a GUID
equivalent to the application Windows Store ID; all application data must be
stored within this subdirectory.

The folders that exist in $DataDrive%\Users\DefaultAppAccount\
AppData\<WindowsStoreIDs> are as follows:

* \< WindowsStoreID >\Local: Contains all the data that is installed on the
device and which will not be synchronized with other devices on which the
user has installed the application. The content of this folder can be backed up
in the cloud.

[206]

http://windows.microsoft.com/en-us/windows-vista/comparing-ntfs-and-fat-file-systems
http://windows.microsoft.com/en-us/windows-vista/comparing-ntfs-and-fat-file-systems
https://support.microsoft.com/en-us/kb/100108
https://support.microsoft.com/en-us/kb/100108

Chapter 5

* \< WindowsStoreID >\Roaming: This folder contains all the data that can be
replicated in other devices on which the user has installed the application.

* \< WindowsStoreID >\Local\Shared: This folder is used only by Store
applications and contains legacy support for the shared content.

* \< WindowsStoreID >\Local\Shared\Transfer: This folder is used only
by Store applications and holds the data used by the Background Transfer
Service to download/upload files for the application.

* \< WindowsStoreID >\Local\Shared\Shell\Tiles: Used for live tiles
updates.

* \< WindowsStoreID >\Local\Temp: Contains temporary files that the
application framework can delete in response to a low-storage notification.

Windows phone 8 security models

Windows Phone 8.x is a very closed operating system. Documenting its internals and
security model is usually a painful task, but like all other operating systems, WP 8.x
provides many key platform security features to protect OS integrity, user's data, and
privacy.

To ensure system and user's data integrity, Windows Phone 8 mainly relies on
Secure Boot and the application platform security.

Windows Phone 8 Secure Boot

Windows Phone validates firmware images before loading the main operating
system using the Secure Boot technology, which is built on a chain of trust extended
to hardware and firmware. During manufacturing, a "root of trust" is made by
provisioning the hash of the public key used by the SoC vendors and original
manufacturers to sign the initial bootloaders. Thus, Secure Boot cryptographically
validates all the boot components from the pre-UEFI bootloader to the UEFI
environment followed by the main operating system and all the drivers and
applications that run on it. The implementation of the UEFI itself respects the UEFI
specifications standard available at http://www.uefi.org/specifications. The
UEFI firmware/hardware level is layered (at its high level) as follows:

) Code-signed chain
fﬂ UEF! Secure Boot of trust - I
Certified hardware TPM 2.0 - all phones I

[207]

http://www.uefi.org/specifications

Windows Phone 8 Forensics

The integration of cryptographic keys at the hardware level respects standards as
described by the second version of the Trusted Platform Module (TPM) to ensure

platform integrity and to offer (among others) the possibility of full-disk encryption.

TPM 2.0 makes use of cryptography algorithms like SHA-1, SHA-256, and RSA.
(To learn more about TPM, you can check the whitepaper from SANS at https://

www . sans.org/reading-room/whitepapers/analyst/implementing-hardware-

roots—trust—trusted—platform—module—age—35070.)

The Secure Boot workflow can be outlined as follows:

Power on
Input
4 Properly signed?
-~
Input
Yes
Blow
eFuse Pre-UEFI boot Properly signed?
loaders
Yes
Manufacturing
Input
UEFI boot :
?
B manager e o Properly signed?
Provision
secure Yes
boot keys Input
Each UEFI application i o
and driver Properly signed?
A4
@ UEFI keys
BCD correct?
No apply
default
BCD values
Properly signed?
Yes
Properly signed?
SoC vendor OEM . Microsoft .

Booth failure

No

[208]

https://www.sans.org/reading-room/whitepapers/analyst/implementing-hardware-roots-trust-trusted-platform-module-age-35070
https://www.sans.org/reading-room/whitepapers/analyst/implementing-hardware-roots-trust-trusted-platform-module-age-35070
https://www.sans.org/reading-room/whitepapers/analyst/implementing-hardware-roots-trust-trusted-platform-module-age-35070

Chapter 5

Assuming the scenario in which all verifications succeed, the very first stage of
integrity checks start by booting the device, which triggers the process of validating
the pre-UEFI bootloaders against the root of trust. This loads (if integrity is verified)
the UEFI boot manager. The UEFI boot manager loads, among others, all the UEFI
drivers and the Windows Phone boot manager —a UEFI component provided by
Microsoft, which ensures that the Boot Configuration Data (BCD) settings are
correct. If the settings are not right, the Windows Phone Boot Manager will restore
the BCD entries to the default value, and will continue by validating the operating
system bootloader. At this stage, the Windows Phone OS bootloader checks the
integrity of both the boot drivers and the kernel before continuing with the process
of validating (or not) all drivers and applications. If the verification fails at any level,
the boot process simply aborts.

Windows Phone 8 application security

The application platform and application security model implemented in Windows
Phone 8.x is one of the most complete and secure models in the smartphone market.
Beyond the fact that Windows Phone is built on top of the desktop version of the
Windows's kernel, Windows Phone remains a much more closed environment as
compared to Windows.

The very first security mechanism that applies to the Windows Phone application

is Code Signing; all code must be digitally signed by Microsoft in order to ensure
running only trusted code. All applications submitted to the Windows Store (the
successor of Windows Marketplace) are subjected to Microsoft's submission process
before being signed with a certificate issued by a certificate authority (at the time of
writing this chapter, Symantec is the exclusive provider of code signing certificates
for the Microsoft App Hub service: http://www.symantec.com/code-signing/
windows-phone/). In addition to application code signing, OS system files are also
digitally signed and verified at runtime; this prevents a file's execution if any data
tampering has occurred.

The Windows Phone application security infrastructure also provides WP 8.x
with what is called chambers or sandboxes. The implementation of application
sandboxing in Windows Phone 8.x inherits from the NT security primitives meant
to control an application's access to system resources and prevents them from
acceding other applications' data.

[209]

http://www.symantec.com/code-signing/windows-phone/
http://www.symantec.com/code-signing/windows-phone/

Windows Phone 8 Forensics

The process-isolation mechanism in Windows Phone 8.x is in the form of
AppContainers (as introduced by Microsoft in their Understanding Enhanced
Protected Mode post, which can be found at https://blogs.msdn.microsoft.com/
ieinternals/2012/03/23/understanding-enhanced-protected-mode /). The
official statement is:

Windows 8 introduces a new security sandbox, called AppContainer, that offers
more fine-grained security permissions and which blocks Write and Read Access
to most of the system. There's not a lot of documentation specifically about
AppContainer because all Metro-style applications run in AppContainers, so most
of the documentation is written from that point of view [...] it's the AppContainer
that helps ensure that an App does not have access to capabilities that it hasn't
declared and been granted by the user.

To define the permissions that can be granted to a given AppContainer, sandboxes in
Windows Phone are influenced by capabilities, requested using the wpAppManifest.
xml file of the application. The following is a high level abstraction of the Windows
Phone 8.x chambers:

Trusted Computing
‘Base (TCB)

Least Privilege
Chamber (LPC)

Dynamic
Build
(LPC)

As seen in the preceding diagram, Windows Phone 8.x has two distinct chambers:
Trusted Computing Base (TCB) and Least Privilege Chamber (LPC). The OS's
kernel and all the kernel-mode drivers operate in the TCB chamber, which means
that this is the chamber that has the most rights and privileges. For everything else
(applications developed by Microsoft, OEM, and third-party Windows Store apps),
Windows Phone 8.x applies the principle of Least Privilege very strictly by running
apps in the Least Privilege Chamber. By default, few privileges and permissions are
granted to applications, and to be able to grant a "special" privilege like accessing
the camera or using networks features, the application must explicitly request
capabilities at install time.

[210]

https://blogs.msdn.microsoft.com/ieinternals/2012/03/23/understanding-enhanced-protected-mode/
https://blogs.msdn.microsoft.com/ieinternals/2012/03/23/understanding-enhanced-protected-mode/

Chapter 5

Capabilities needed in order to carry out different application's tasks must be
explicitly specified by the application developer by editing the wpAppManifest.

xml file. Accessing the camera, microphone, or geolocation are examples of typical
capability requests in the Store application. Each capability is an entry in the manifest
file that, while installing the app, notifies the user of special software capabilities that
the app receives. The following are examples of some capabilities as described by
Microsoft:

* ID CAP_APPOINTMENTS: Provides access to appointment data
* ID CAP CONTACTS: Provides access to contacts data

* ID CAP_IDENTITY DEVICE: Provides access to device-specific information
such as a unique device ID, the manufacturer, or the model name

Once the capabilities are parsed from the manifest file, and explicitly granted by
the user at install time, the application's LPC chamber is then provisioned with
these capabilities.

The following is an example of the capabilities that are required by WhatsApp:

<App xmlns="" ProductID="{218a0ebb-1585-4c7e-a%ec-054cf4569a79}"
Title="WhatsApp" RuntimeType="Silverlight" Version="2.11.312.0"
Genre="apps.normal" Author="WhatsApp Inc." Description=""
Publisher="WhatsApp Inc." PublisherID="{c210c6cb-ed53-478d-a7d8-
86982edf24al}" IsBeta="false" PublisherId="{bc29b09f-c297-48d6-b6b5-
88c7234f4b6d} ">

<IconPath IsRelative="true" IsResource="false">Iconl.png</IconPath>
<Capabilities>

<Capability Name="ID CAP OEMPUBLICDIRECTORY" />

<Capability Name="ID CAP VOIP" />

<Capability Name="ID CAP IDENTITY DEVICE" />

Windows Phone data protection

Windows Phone 8.x addresses data protection by mitigating the risk of unauthorized
access to the device's data via two major mechanisms: the first is by controlling
device access and applying security policies, and the second is by offering BitLocker
technology that lets a user fully encrypt the device's disk.

[211]

Windows Phone 8 Forensics

Device access and security policies

The Windows Phone provides a first stage security mechanism, like most other
smartphone operating systems, in the form of a PIN or password. Access to a
Windows Phone device can be controlled by setting up a PIN via the settings panel
to lock access to the device. The Windows Phone does not provide a built-in pattern
lock mechanism.

PINs are set in the lock screen option found under the Settings menu, as seen in the
following screenshot:

SETTINGS

lock screen =

D Show password

New passwort

I:l Show password

on =

change password

5 minutes

Once the lock screen PIN is set, the user can configure a timeout to require it after
anywhere between 30 seconds and 30 minutes.

As for most of Microsoft's products, dealing with passwords, passcodes, and dealing
with a PIN in the case of Windows Phone, requires storing a hash value in the
Windows Phone registry. We will go through a detailed analysis of the Windows
Phone PIN in a later section of this chapter.

[212]

Chapter 5

Windows Phone 8+ also offers the possibility to make use of Exchange ActiveSync
v14.1 (a protocol allowing reconciling data between the device and an appropriate
Microsoft Exchange server) to synchronize functionalities and policy controls
previously set by an IT administrator. This ability to synchronize with a Microsoft
Exchange server makes it possible to add password policies for managing password
length and complexity. It's also important to note that in the case of syncing with an
Exchange Server, the IT administrator can initiate a remote device wipe by using the
Exchange Server Management Console.

BitLocker and hardware encryption

Starting with Windows Vista, Microsoft introduced BitLocker as a full disk
encryption technology, which is designed to protect users' data by encrypting
an entire volume. Windows Phone 8+ uses the same technology to support the
encryption of the entire phone's internal data storage.

BitLocker, by default, uses AES with a 128-bit or 256-bit key, depending on the
configuration in Cipher Block Chaining (CBC). (More information on AES-CBC

+ Elephant diffuser and the white paper is available at https: //www.microsoft.
com/en-us/download/details.aspx?id=13866.) The good news is that there is
no "simple" way to turn on device encryption on a Windows Phone device, and the
option can only be activated either via the Exchange ActiveSync policy (Require
Device Encryption) or the Device Management Policy. After being enabled,
BitLocker relies on the encryption key protected by TPM 2.0 (as described in the
Windows Phone 8 Secure Boot section of this chapter), which is a tamper-resistant
physical chip bound to the trusted boot chain.

The decryption process is triggered at the very first stage of booting, just after the
initialization of the TPM. The interaction with other UEFI-trusted boot components
lets the TPM store component measurements in the TPM's Platform Configuration
Registers (PCRs). Once the integrity of the PCR values is checked, the TPM uses the
Storage Root Key (SRK) to decrypt the Volume Master Key (VMK). The encrypted
Full Volume Encryption Key (FVEK) is then read from the volume and the
decrypted VMK is used to decrypt it. The disk sectors are decrypted with the FVEK
as they are accessed to deliver plaintext data to applications and processes.

[213]

https://www.microsoft.com/en-us/download/details.aspx?id=13866
https://www.microsoft.com/en-us/download/details.aspx?id=13866

Windows Phone 8 Forensics

The following figure describes the overall process (source: https://technet.
microsoft.com/en-us/library/ccl62804. aspx):

2

Decrypt volume| Encrypted VMK
master key
with the SRK

Disk
%) volume

TPM

1a 1T VMK @é‘}.

Platform measurements
are collected in the
TPM's PCRs

Encrypte
disk
sectors

4

Firmware MBR Bootloader || Decrypt FVEK Decrypt data
with the VMK with the FVEK

: l
Plaintext @ @
data m&‘u

The logical flow of BitLocker decryption process in BitLocker with TPM option

The strength of the AES algorithm and the hardware protection used make
decrypting a Windows Phone BitLocker encrypted volume not possible at the time
of writing this book. According to Microsoft (http://blogs.msdn.com/b/si_team/
archive/2006/03/02/542590.aspx), BitLocker is a backdoor free technology,
which means that, at the time this chapter is being written, there is no way to
recover data from an encrypted device.

[214]

https://technet.microsoft.com/en-us/library/cc162804.aspx
https://technet.microsoft.com/en-us/library/cc162804.aspx
http://blogs.msdn.com/b/si_team/archive/2006/03/02/542590.aspx
http://blogs.msdn.com/b/si_team/archive/2006/03/02/542590.aspx

Chapter 5

Windows Phone logical acquisition

Windows Phone 8.x is one of the most challenging smartphone operating systems in
a forensics context. Common acquisition methods are not fully supported and only
a few available forensic tools can perform partial logical acquisitions from Windows
Phone devices.

Most of the commercial tools offer only very limited data acquisition or only over-
the-air (cloud) acquisition, as we will see in the following sections. As most forensic
examiners rely on forensic tools, facing a Windows Phone 8.x device remains a
relatively big deal, especially when some tools list some devices as supported even
if that's not the case. The Computer Forensic Tool Testing (CFTT) program of the
National Institute of Standards and Technology publicly reports test results for
mobile device acquisition tools (http://www.cftt.nist.gov/mobile devices.
htm), and almost all tools fail when acquiring data from Windows-based devices.
Phone Forensics Express v2.1.2.2761 was not able to connect to a Nokia Lumia 920
device (a test conducted on December 18, 2015. The report is available at http://
www.dhs.gov/sites/default/files/publications/508 Test Report NIST
Mobile Phone%20Forensics%20Express%20v2.1.2.2761_ December%202015.
pdf). MOBILedit Forensic v7.8.3.6085 was able to successfully connect to an HTC
Win 8x, HTC PM2330, and a Nokia Lumia 920 but no data was extracted. When
selecting Phonebook from the connected device's pane, the following error occurs:
Requested operation is not implemented in current version (00002AFD) (the report

dates to December 18, 2015 and is available at https://www.dhs.gov/sites/
default/files/publications/508 Test%20Report NIST Mobile MOBILedit%20
Forensic%20v7.8.3.6085 December%202015.pdf) MOBILedit's result remains
the same if we try to extract the Phonebook even with the latest version, 8.2.0.8069
(at the time of writing this chapter), but the tool can access public folders (normally
accessible via computer explorer).

[215]

http://www.cftt.nist.gov/mobile_devices.htm
http://www.cftt.nist.gov/mobile_devices.htm
http://www.dhs.gov/sites/default/files/publications/508_Test Report_NIST_Mobile_Phone%20Forensics%20Express%20v2.1.2.2761_December%202015.pdf
http://www.dhs.gov/sites/default/files/publications/508_Test Report_NIST_Mobile_Phone%20Forensics%20Express%20v2.1.2.2761_December%202015.pdf
http://www.dhs.gov/sites/default/files/publications/508_Test Report_NIST_Mobile_Phone%20Forensics%20Express%20v2.1.2.2761_December%202015.pdf
http://www.dhs.gov/sites/default/files/publications/508_Test Report_NIST_Mobile_Phone%20Forensics%20Express%20v2.1.2.2761_December%202015.pdf
https://www.dhs.gov/sites/default/files/publications/508_Test%20Report_NIST_Mobile_MOBILedit%20Forensic%20v7.8.3.6085_December%202015.pdf
https://www.dhs.gov/sites/default/files/publications/508_Test%20Report_NIST_Mobile_MOBILedit%20Forensic%20v7.8.3.6085_December%202015.pdf
https://www.dhs.gov/sites/default/files/publications/508_Test%20Report_NIST_Mobile_MOBILedit%20Forensic%20v7.8.3.6085_December%202015.pdf

Windows Phone 8 Forensics

Windows Phone logical acquisition using
MOBILedit! Forensic 8.2

To acquire the \Public data using MOBILedit Forensic, make sure the device is
unlocked, then connect it using a USB cable. Once detected, click on the device as
seen in the following screenshot:

Fg MOBILedit! Forensic - =]

&

Updates Expired

Nokia)
Lumia 920 EO Connect

MOoBILedit
FORENSIC

Complete Data Extraction
from Phones and SIM Cards

| Q Phone Forensics Express

The tool offers two options: acquiring the device's Phonebook and exploring Files:

[216]

Chapter 5

F4 MOBILedit! Forensic -

[0 Nokia Lumia 920 (Read-Only)

Phonebook
Manufacturer: Nokia

Model: Lumia 920
Operator: Mot available
Phone time: unknown>
Hardware revision: N\

Software revision:

Cable name: Viicro USB, micro-USB, Nokia

B O

Windows Phone 8.10.142

- use

The Phonebook option results in the previously described error:

MOBILedit! 8.2

During phonebook reading following error has occured:
Reguested operation is not implemented in current
version (00002AFD)

[oc | [submitReport

Help...

[217]

Windows Phone 8 Forensics

The File option acquires data from the Documents, Downloads, Music, Pictures,
Ringtones, and Videos folders:

+4 MOBILedit! Forensic

(@ Files - Nokia Lumia 920

= I Files File Name Size Created Madified

= @@ Phone & Phone <folder> <unknown> <unknown>
#- @@ Documents

. Downloads

L Music

=@ Pictures

. i@ CameraRoll
& myFolder

& myFolder (2)
W Sample Pictures
Saved Pictures
@ Screenshots

| i@ Whatshpp
-@ Ringtones

L@@ Videos

(® Reread

In the preceding screenshot, you can see that all WhatsApp media goes to the
\Pictures\WhatsApp folder.

The \Pictures\Saved Pictures folder contains all the photos saved by the
device's user (from the web or from apps), and all screen captures are saved under
\Pictures\Screenshots. One interesting thing to note is that MOBILedit reveals
a subdirectory under the \Whatsapp folder, which is not listed via a normal
computer's explorer, named \ WhatsApp\PTT:

[218]

Chapter 5

@ PTT - Nokia Lumia 920

L 36201620545PM
I 362016 22049 PM
@ Camera Roll
@ Sample Pictures
® Saved Pictures
@ Screenshots
& Thumbnails
@ Thumbnails (4)
WhatsApp
PTT
= 201542
201543
i 2015-44
- 201545
” 2015-46
- 201547
201548
™ 201549
201550
i 201551
- 2015-52
i 2016-01
= 201602
i 2016-03
™ 201604
w 2016-05
™ 201606
= 2016-07
" 2016-08
- 2016-09
i 2016-10
@ Ringtones

= Videos

~

File Name

W 2015-42
¥ 2015-43
@ 2015-44
@ 2015-45
& 2015-46
[2015-47
[2015-48
[2015-49
[2015-50
i 2015-51
¥ 2015-52
¥ 2016-01
¥ 2016-02
¥ 2016-03
¥ 2016-04
@ 2016-05
[2016-06
[2016-07
[2016-08
> 2016-09
W 2016-10

Size
<folder>
<folder>
<folder>
<folder>
<folder>
<folder>
<folder>
<folder>
<folder>
<folder>
<folder>
<folder>
<folder>
<folder>
<folder>
<folder>
<folder>
<folder>
<folder>
<folder>
<folder>

Created

<unknown:>
<unknowns>
<unknown>
<unknown:>
<unknown>
<unknown>
<unknown>
<unknown>
<unknown>
<unknown>
<unknown:>
<unknowns>
<unknown>
<unknown:>
<unknown>
<unknown>
<unknown>
<unknown>
<unknown>
<unknown>

<unknown:>

<y
<y
<y
<y
<y
<y
<y
<y
<y
<y
<y
<y
<y
<y
<y
<y
<y
<y
<y
<y

<y

The folders under the \ PTT directory seem to follow the naming scheme year-
IncrementalInteger. Each of these folders contains one or more .aac.waptt
and/or .opus.waptt files, as seen in the following screenshot:

@ 2016-03 - Nokia Lumia 920

@ 362016 20545 PM

i 362016 22943 PM

@ Camera Roll

- Sample Pictures

- Saved Pictures

- Screenshots

-@® Thumbnails

@ Thumbnails (4)
& WhatsApp

E i PTT

- 2016-08

- 2016-09
= 2016-10

@ Ringtones

W Videos

~

File Name
] PTT-20160117-WADDO1 asc.waptt
] PTT-20160117-WAO002.asc.waptt
|1 PTT-20160117-WAQD03 aac. waptt
] PTT-20160117-WADD04 asc.waptt
] PTT-20160117-WAD05.asc.waptt
|1 PTT-20160117-WADOD6.aac. waptt
] PTT-20160117-WAODDE opus.waptt
] PTT-20160117-WADOO7.asc. waptt
[]PTT-201 smﬂwmno
|1 PTT-20160117-WAOD0I asc. waptt
] PTT-20160117-WAOD10.asc. waptt
] PTT-20160120-WA0OO|

Size
51,25 KB
6196 KB
2752 KB
76,49 KB
67,26 KB

135,04 KB
9,80 KB
106,41 KB
105,40 KB
114,90 KB
22,61 KB
520,40 KB

Created

<unknown>
<unknown>
<unknown>
<unknown>
<unknown>
<unknown>
<unknown>
<unknown>
<unknown>
<unknown>
<unknown>

<unknown>

<u
<y
<u
<u
<u|
<y
<u
<y
<yl
<u
<y

<u

[219]

Windows Phone 8 Forensics

You can extract single or multiple files by selecting the desired file/files and then
clicking on the button on the right panel, as shown in the next screenshot:

Then, choose the folder in your computer where you want to save extracted files.
By removing the .waptt from the files' extensions, we get playable AAC and OPUS
audio files. Those files represent WhatsApp's sent and received voice notes.

The OPUS file format is a lossy audio coding format designed to
efficiently code speech and general audio in a single format while
+ maintaining low-latency enough for real-time interactive communication
and low-complexity enough for lower-end ARM3 processors. You can
’ play the OPUS files using Media Player on Windows, but you need
to grab the OPUS codec. Links for codecs are at http: //www. free-
codecs.com/download/dc-bas s_source_mod.htm.

Windows Phone logical acquisition using
Oxygen Forensic Suite 2014

The Oxygen Forensic Suite software is a commercial product that allows a limited
logical acquisition of a Windows Phone 8.x device. It allows data to be extracted
from the device but offers limited analysis capabilities. To start the extraction, it is
necessary to connect the device and to unlock it if it's PIN/passcode-locked.

[220]

http://www.free-codecs.com/download/dc-bass_source_mod.htm
http://www.free-codecs.com/download/dc-bass_source_mod.htm

Then, you need to click on the Connect device button from the main screen, as

shown in the following screenshot:

This shows Oxygen's Extractor utility window, which lets the examiner choose either
device data extraction or backup import. Click on the Live device acquisition button

File Wiew Tools Service Help

&= =S |EEAIIdeuices »

Lr; Import backup file « H Save to archive =

IDewcesdeases

I.il Anigl
4%

and then click on Next, as highlighted on the following screenshot:

Live device acquisition

Connect device and extract data

oxygen backup
heygen Forensic® Suike backup files

Cl

@

iTunes backup

iTunes backups made from any Apple devices

Android backup/image
Andraid backupfimage

BlackBerry 10 backup
BlackBerry 10 backup file

Apple backup/image

‘@=m Apple backupfimage

Windows Phone backu
1| i
M windows Phone backup stored in the cloud

BlackBerry backup
BlackBerry backup File

[221]

Windows Phone 8 Forensics

Before the software begins the extraction procedure, you can choose the type of
connection you want to start. You can choose between Auto device connection and
Manual device selection, as shown in the following screenshot. For Windows Phone
8.x devices, it is generally sufficient to select Auto device connection:

Connection Mode

Please select one of connection modes:

B Auto device connection
Auto mode connects the first device detected on PC.

~@ Manual device selection

Manual selection mode allows to choose connection type and device model
from the list.

E MTK Android device connection

This mode allows to extract data by creating physical dumps from MTK
(MediaTeK) Android devices.

Mo rooting is required. Lock screen is bypassed.

The method may take a bit more time than physical dump via rooting.

The software will now start searching for a connected Windows Phone device:

Oxygen Forensic® Extractor
Detection of devices connected via cable.

Connect device via cable

Searching for devices via cable, It may take some time...

Connecting
device...

&y

Searching for a device... Please wait.

(@) Help < Back Cancel

[222]

Chapter 5

If it succeeds, the detection wizard will show information about the detected device
(model, serial number, and hardware and software revisions):

Device information:

Model:

SiM:

| MNokia Lumia 920

[dfet

Hardware Revision: | MNjA

Software Revision: | Windows Phone OS 8.10.14234.0

The examiner can then fill in information about the device and the current
investigation case, as seen in the next screenshot:

Device alias [Mokia Lumia 520
Case number |WP—Forensic—Book
Evidence number |Souﬁane Tahiri
Inspector |Souﬁane Tahiri

Hash algorithm |SHA—2 W |
Device owner |Souﬁane Tahiri |
Owner email |SouﬁaneTahiri @gmail.com]| |
Owner phone number Edit j

Parse applications databases and collect data for analytical sections (Aggregated Contacts, Links and Stats, etc.).
If not checked you can do it later in Oxygen Forensic® Suite. Read more. ..

At this point, the examiner can select the data he wants to extract by choosing the
ones supported by this method, as shown in the following screenshot:

Nokia Lumia 920
File structure
® selective reading
Images
Audio
Videos
Documents
Applications
Database files
Other files
O Ful reading

N

—

[223]

Windows Phone 8 Forensics

On clicking the Next button, the software shows the summary of the case (based
on the previously set options), and on clicking the Extract button, the acquisition
procedure starts and displays a progress bar:

Oxygen Forensic® Extractor
Wait while the data is being extracted from the device

Read files: 4,93 GB of 6,76 GB

Reading file: 1627 of 3946. C:\Pictures\Camera Roll\WP_20151230_13_43_13_Pro.jpg

Extracting
data...

‘Warning! The data is being extracted from the device right now.
Do not disconnect it or make any changes to the device.

The operation can take several minutes/hours depending on the data size. Once
finished, the wizard will invite you to save the extracted data to an archive, to open
the device in order to start analyzing data, or to export/print the device data report:

Extraction summary
Success

Final actions

Save toarchive

Save extracked device ko .ofb archive,

Open device

}-/ Open device and start analyzing.

Export and Print

Print or export full device data report,

Select the option that suits you the most and click on Finish.

The Oxygen Forensic Suite was able to only extract the public folder data; no
application data, phonebook, calendar, SMS, or e-mails, and so on were extracted.

[224]

Chapter 5

Sideloading contacts and appointments
acquisition agent

As seen in the previous section, phonebook and calendar entries are not acquired
even when using most of the well-known forensic tools. Extracting contacts

and appointments are, in many investigation cases, major evidences that help

in establishing links between a suspect and others involved in a given case. The
technique we are going to explain in this section requires the development and
deployment of an agent (or simply application) using Windows Phone SDK, which
will be installed on the target device with appropriate capabilities granted to report
back the device's phone book and calendar entries.

To extract the phonebook and appointments entries, we will use WP Logical, which
is a contacts and appointments acquisition tool designed to run under Windows
Phone 8.1 (details on how the application was implemented and the link to
download it are given in the WPLogical implementation section). Once deployed and
executed, WP Logical creates a folder with the name wpLogical MDY HMMSS_PM/
aM under the public folder \Phone\Pictures\, where M is for month, D is for day, Y is
for year, H is for hour, MM is for minutes, and ss is for seconds of the extraction date.
Inside the created folder, you can find appointments_ MDY HMMSS_PM/AM.html
and contacts MDY HMMSS PM/AM.html.

WP Logical extracts the following information (if found) related to each appointment,
starting from 01/01/CurrentYear at 00:00:00 to 31/12/CurrentYear at 00:00:00:

* Subject

* Location

* Organizer

* Invitees

* Start time (UTC)

* Original start time

* Duration (in hours)

* Sensitivity

* Replay time

* Was it organized by the user?

* Was it canceled?

* More details

[225]

Windows Phone 8 Forensics

It also extracts the following information about each contact found:

* Display name

* First name

* Middle name

* Lastname

* Phones (kind — personal, office, or home —and the numbers)

* Important dates

* E-mails (kind — personal, work, and so on—and the e-mail address)
* Websites

* Jobinfo
e Addresses
¢ Notes

e Thumbnail

WP Logical also allows the extraction of some device-related information such as the
phone's time zone, the device's friendly name, Store Keeping Unit (SKU), and
the like.

Windows Phone 8.1 is relatively strict regarding application deployment. WP Logical
can be deployed in the following two ways:

* Uploading the compiled agent to the Windows Store and getting it signed by
Microsoft, after which it becomes available in the Store for download

* Deploying the agent directly to a developer-unlocked device using the
Windows Phone Application Deployment utility

Since it is the quickest way, we will start with the developer unlocking the device.
Before we can deploy the agent to a Windows Phone device, we have to register the
phone for development. After we register it, we can install, run, and debug the agent
that targets Windows Phone 8.1. Before proceeding to the device unlock process, the
examiner must have the following;:

e Windows Phone SDK 8.1

* A Microsoft account (formerly known as a Windows Live ID. You can sign in
for an account at http://windows.microsoft.com/en-US/windows-1live/
sign-up-create-account —how.)

As part of Windows Phone 8.1 SDK, Microsoft offers Windows Phone Developer
Registration 8.1 as a standalone tool, which can be found at ¢: \Program Files
(x86) \Microsoft SDKs\Windows Phone\v8.1l\Tools\Phone Registration.

[226]

http://windows.microsoft.com/en-US/windows-live/sign-up-create-account-how
http://windows.microsoft.com/en-US/windows-live/sign-up-create-account-how

Chapter 5

Assuming that you've successfully installed the SDK and signed in for a Windows
Live account, start by turning on the device and unlocking the phone screen. Then,
connect the device to a computer by using a USB cable. On the computer, start
Windows Phone Developer Registration 8.1, and you will get a screen that looks
like the following screenshot:

Developer Phone Registration - Windows Phone

This tool unlocks your phone for debugging and testing Windows phone apps. To use this tool you
must have the following:

« A current developer account.
+ The Microsoft ID and password associated with your developer account available.
» A'Windows Phone that is connected to your computer, powered on, and screen unlocked.

For more information about registering as a developer, see Registration Info.

Status: Trying to detect Windows Phone device connected to the PC..

Verify that the Status message displays Identified Windows Phone 8 device. Click
the Register button to unlock the phone, as seen in the next screenshot:

Developer Phone Registration - Windows Phone

This tool unlocks your phone for debugging and testing Windows phene apps. To use this tool you
must have the following:

= A current developer account.

+ The Microsoft ID and password associated with your developer account available.

+ A Windows Phone that is connected to your computer, powered on, and screen unlocked.

For more information about registering as a developer, see Registration Info

Status: |Identified Windows Phone 8 device. Click the Register button to unlock the phone.

[227]

Windows Phone 8 Forensics

Click on Register. In the Sign In dialog box for your Microsoft account, enter the
e-mail address and password for your Microsoft account. Click on Sign In:

Connexion

Compte Microsoft Qu'est-ce que c'est 7
soufiane tahiri@live.com

Mot de passe

Se connecter

Votre compte n'est pas accessible 7

Vous n'avez pas encore de compte
Microsoft 7 Créer un compte maintenant

Confidentialité et cookies [Conditions d'utilisation

©2016 Microsoft

Once your phone is successfully registered, the Status message displays
Congratulations! You have successfully unlocked your Windows Phone,
as seen in the following screenshot:

Developer Phone Registration - Windows Phone

This tool unlacks your phone for debugging and testing Windows phone apps. To use this tool you
must have the following:

« A current developer account.

+ The Microsoft ID and password associated with your developer account available.

+ A Windows Phone that is connected to your computer, powered on, and screen unlocked.

For mare information about registering as a developer, see Registration Info.

I| Status: Congratulations! You have successfully unlocked your Windows Phone.

[228]

Chapter 5

Now once the device is registered, we can proceed by deploying the agent. You can
grab a packaged agent from https://github.com/soufianetahiri/Windows-
Phonne-Logical-Forensic/blob/master/WindowsPhoneLogical 1.0.0.2

AnyCPU. appX.

The Windows Phone 8.1 SDK also comes with Windows Phone Application
Deployment 8.1, a tool that lets us deploy our agent on the device. Make sure that the

device is connected to a computer, and start the deployment tool from c: \Program
Files (x86)\Microsoft SDKs\Windows Phone\v8.1\Tools\AppDeploy\

AppDeploy.exe:

Application deployment ER Windows Phone

Run this tool to install a prepackaged app on a registered Windows Phone.
Select the device target for installation and the app to be installed, and click "Deploy”

Target:

App:

||Devioe |'| |

gical_1.0.0.2_AnyCPU\WindowsPhonelLogical_1.0.0.2_AnyCPU.appx

Make sure you select Device from the Target dropdown list box. In the App field,
click on Browse and select WindowsPhoneLogical 1.0.0.2 AnyCPU.appx; then,
click on Deploy. Once deployed, a success message will be printed as follows:

App: gical_1.0.0.2_AnyCPUNWindowsPhoneLogical_1.0.0.2_AnyCPU.appx Browse

Deploy succeed

Deploy

[229]

https://github.com/soufianetahiri/Windows-Phonne-Logical-Forensic/blob/master/WindowsPhoneLogical_1.0.0.2_AnyCPU.appx
https://github.com/soufianetahiri/Windows-Phonne-Logical-Forensic/blob/master/WindowsPhoneLogical_1.0.0.2_AnyCPU.appx
https://github.com/soufianetahiri/Windows-Phonne-Logical-Forensic/blob/master/WindowsPhoneLogical_1.0.0.2_AnyCPU.appx

Windows Phone 8 Forensics

Now locate WindowsPhoneLogical on the device and start it:

d Candle
-

Sc

dowsPhoneLogical

Wordament

rechercher dans le Store

The user interface is simple and self-explanatory; check or uncheck Contacts and
Appointments depending on your needs, then click on the Acquire button, as seen
in the following screenshot:

[230]

Chapter 5

The log window will print out the acquired data, as shown here:

Once each process is done (contact and appointment extractions), close the

notification messages:

Appointements

Searching Contacts...

Searching Appointments...
Total appointments from : 1/1/2016 12:00:00 AM to 12/31/2016 12:00:04
Appointment saved:

Appointment saved:

Appointment saved: -
Appointment saved: |

Appointment saved:

Appointment saved:
Appointment saved:
Appointment saved:

Appointment saved: ;

All Contacts Extracted. All Appointments Extracted.

fermer fermer

[231]

Windows Phone 8 Forensics

Close WP Logical, unplug and replug the device, then go to the \ Phone\
pictures)\ folder via the computer's explorer. You will find a folder named like
WPLogical 3102016_55138_PM, where contacts and appointments are saved in
two separate HTML files, as you can see in the following screenshot:

| N R-

Fichier Accueil Partage Affichage

< v 4~| » CePC » Soufiane-Mobile :| Phone » Pictures » WPLogical_3102016_55138_PM | o c,| |:
Sample Pictures ~ Mom - Type
Saved Pictures € appointments_3102016_55138 PM.html Chrome HTML Document
Screenshots € contacts_3102016_55138_PM.html Chrome HTML Document

WhatsApp
WPLogical 3102016_55138_PM

Ringtones o

The generated files can be copied to the examiner's computer. Contacts are sorted in
a table like the following;:

st wabie b 3350 b Nk

“and woble Hamber g HA
Home Humer +212

el Wable Number 05 Tike Ofce Companyhame Cocke
Hotrude

b ae F i o B 2 Ko Personal el
“and. Wiobie Hamber 5 — =
reme. Dz

amter 43130

[232]

Chapter 5

You can click on each thumbnail to save it as a JPEG file. Appointments are sorted
as follows:

Cr e a1 | wil ako provide Fore
 Tegararg the

u shory — Gatre s Consuting

In addition to this, general details about the device and extraction are reported and

sorted as follows:
Acquisition details

Phone Timezone: (UTC) Casablanca

FriendlyName: Soufiane-lMobile

0S8 WindowsPhone Firmware Version: 3051.50009.1451.1001
Hardware Version: 6.5.0.

Product Name: RM-821_apac_taiwan_341

Store Keeping Unit: NOKIA RM-821_apac_taiwan_341

Total Items Extracted: 840

WP Logical implementation

Contacts and calendar entries reside on the Windows Phone 8.1 device as Contact
and Appointment data type. As described by Microsoft (https://msdn.microsoft.
com/en-us/library/windows/apps/windows.applicationmodel.contacts.
contact . aspx), the Contact class has many properties that can reflect forensically
interesting information such as a contact's address(s), e-mails, first and last name, job
info, phone number, and so on. The Appointment class also has properties that can
be used to correlate some of the user's activities, especially if the user synchronized
the device with Facebook or Gmail accounts, since the Windows Phone automatically
syncs all events from those services with the device's calendar. All properties are
available at https://msdn.microsoft.com/en-us/library/windows/apps/
windows.applicationmodel.appointments.appointment.aspx.

[233]

https://msdn.microsoft.com/en-us/library/windows/apps/windows.applicationmodel.contacts.contact.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/windows.applicationmodel.contacts.contact.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/windows.applicationmodel.contacts.contact.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/windows.applicationmodel.appointments.appointment.aspx
https://msdn.microsoft.com/en-us/library/windows/apps/windows.applicationmodel.appointments.appointment.aspx

Windows Phone 8 Forensics

The developed agent makes use of the APIs provided by the Windows Phone 8.1
SDK (https://dev.windows.com/en-us/downloads/sdk-archive) to make the
contacts and appointments information readable and ready to be explored from a
forensic workstation. The agent app is implemented using C#, and the main steps
involved in this implementation are as follows.

We first create objects of type ContactStore, which represents a database that
contains contacts, and of type AppointmentStore, which represents a store

that contains appointments. Then we invoke the methods contactManager.
RequestStoreAsync (), which retrieves a ContactStore object that enables
searching or retrieving contacts on the device, and AppointmentManager.
RequestStoreAsync (), which requests the AppointmentStore object associated
with the calling application as follows:

ContactStore contactStore = await ContactManager.RequestStoreAsync() ;

AppointmentStore appointmentStore = await AppointmentManager.RequestSt
oreAsync (AppointmentStoreAccessType.AllCalendarsReadOnly) ;

Now we can call the methods ContactStore.FindContactsAsync () and
AppointmentStore.FindAppointmentsAsync () and store the results on read-only
collections of elements of types Contact and Appointment respectively, as follows:

IReadOnlyList<Contact> contacts = await contactStore.
FindContactsAsync () ;

IReadOnlyList<Appointment> appointments = await appointmentStore.FindA
ppointmentsAsync (utcDateTime, TimeSpan.FromDays (365), options) ;

The FindAppointmentsAsync () method requires the following parameters:
* RangeStart: This is of the type date and represents the start time of the time

window for which appointments are retrieved

* RangeLength: This is of the type number and represents the length of the
time window for which appointments are retrieved

* oOptions: These are of type FindAppointmentsOptions and are used to specify
more options for this operation in the form of AppointmentProperties

At this point, IReadOnlyLists contain contacts and appointments data that we can
parse, sort, and store in a way that suits our need.

The full source code of the operational agent is publicly released and can be
downloaded from https://github.com/soufianetahiri/Windows-Phonne-
Logical-Forensic.

[234]

https://dev.windows.com/en-us/downloads/sdk-archive
https://github.com/soufianetahiri/Windows-Phonne-Logical-Forensic
https://github.com/soufianetahiri/Windows-Phonne-Logical-Forensic

Chapter 5

Windows Phone cloud acquisition

Windows Phone 8.x offers the possibility to back up the data on the device to
OneDrive, Microsoft's cloud service, to a user who signs in using a Microsoft account.

Depending on the settings previously set on the device, the Windows Phone cloud
backup can contain the following:

* The apps installed on the device along with high scores and progress from
the participating apps

* Account passwords

* Call history

* SMS and MMS messages

* Photos and videos

* Start screen layout and theme color

* Accounts previously set up on the device

* Internet Explorer favorites

* Custom words added to the device's dictionary

* Settings from around the device, including photos, messages, e-mails,
accounts, lock screen, speech preferences, and so on.

For detailed information on creating Windows Phone backups, you

can visit https://www.windowsphone.com/en-US/how-to/wp8/
e settings-and-personalization/back-up-my-stuff.

Access to My Windows Phone is available through the Microsoft single sign-

in service via the Windows Live! account, which means that the original user
credentials for that account are mandatory. Online backups can be acquired by the
examiner without having the original Windows Phone device in hands. To date,
only a few commercial forensic tools are able to acquire the Windows Phone cloud
data. Oxygen Forensic® Suite, Elcomsoft Phone Breaker, and Passware Password
Recovery Kit Forensic 2016 support this option.

Assuming that the user's Windows Live! credentials are known, the following
section demonstrates how to perform a cloud acquisition using Elcomsoft Phone
Breaker v5.20 and Passware Password Recovery Kit Forensic 2016.

[235]

https://www.windowsphone.com/en-US/how-to/wp8/settings-and-personalization/back-up-my-stuff
https://www.windowsphone.com/en-US/how-to/wp8/settings-and-personalization/back-up-my-stuff

Windows Phone 8 Forensics

Cloud acquisition using Elcomsoft Phone Breaker

The following description is given at the Elcomsoft website:

EPB allows you to download Windows Phone data provided you know the
credentials to the Microsoft account that was used for creating a backup of the data.

EPB can access the following data for the Windows Phone:

* Contacts
* Notes
* SMS messages

Downloaded data is saved in an archive containing databases with backup
information and a Manifest.xml file containing information about every device
from the account and the file name for every database file.

After starting EPB, select the Microsoft tab in the Tools menu and click on
Download Windows Phone data:

T Elcomsoft Phone Breaker = o -

Password Recovery Wizard 1 Tools

BlackBerry Apple Microsoft 2

Download Windows Phone data 3
Messages, Contacts and Notes

In the window that is displayed, provide the username and password of the
Microsoft account that was used for taking backup of the data and click on Sign in:

[236]

Chapter 5

Password Recovery Wizard Tools

Download Windows Phone data

User name soufiane.tahiri@live.com

@O & 06

Password ©

T

Select the location for saving the data downloaded from the Microsoft account in the
next window. Note that you can change the Microsoft user whose backup data you
want to download by clicking on Change user:

e} Elcomsoft Phone Breaker - oiIEl

Password Recovery Wizard Tools

Download Windows Phone data

I

@O & 0

Save datato D/

Click on Download to start downloading the backup data. When downloading is
finished, you can view the downloaded data at the location on the local computer
where it was saved by clicking on the View button (the little icon representing an
eye). Click on Finish to close the Download Windows Phone data window.

[237]

Windows Phone 8 Forensics

Cloud acquisition using Passware Password
Recovery Kit Forensic

On Passware's official website (https://www.passware.com/kit-forensic), the
developers of this tool affirm that a cloud acquisition is possible by downloading
backups and data from cloud services: Apple iCloud, MS OneDrive, and Dropbox.

To acquire the Microsoft OneDrive backup, start Passware Password Recovery Kit
Forensic and select Mobile & Cloud Forensics from the main window, as shown in
the following screenshot:

File View Tools Help

@Back @Forward @Startpage [ij Recover ~ Search &Buy MNow g Support @ Help

a

Recover File Password
Recover a password for a file

Quick Start

Recover file password...

Search for protected files... | Find Encrypted Files

Create Windows password reset Scan computer for encrypted files and containers
dick...

Open Job... ™. Full Disk Encryption

Decrypt HDD: BitLocker, TrueCrypt, PGP, FileVault2, etc.

Memory Analysis
\ Extract encryption keys and passwords from a memory image

Mobile & Cloud Forensics
Recover passwords for mobile backups and images

Internet & Network
Recover passwords for websites, email and network cennections

_ System & Registry
™ Edract passwords from external registry files

Please select a file to recover its password, or drag and drop a file to this window to start the recovery

[238]

https://www.passware.com/kit-forensic

Chapter 5

Then click on OneDrive to acquire the backup from Microsoft's cloud:

File View Tools Help

@ Back @ p— @ Start Page

Details

Recover passwords for mobile
backups and images.

g Support @) Help

, . iPhone Backup
‘tg Recover a password for an iTunes backup file

ol iCloud Backup
\ Acquire an iPhane or iPad data from Apple iCloud

Android Backup

Recover a password for an Android backup file

Windows Phone Image

#
| 4 Android Image
Recover a password for an Andreid device image
[Ny
I
@

Acquire data from a Windows Phone physical image

Q OneDrive

Acquire data from Windows OneDrive

% Dropbox
=

Acquire data from Dropbox

Using the known account's credentials, fill in the Login and Password fields, then

choose the path to save the downloaded data and click on Next, as seen in the

next screenshot:

[

File View Tools Help

@Bad: @Funﬂrard @smpage

Details 2

Specify the OneDrive credentials
or the memery image of the
target computer.

8 support @ Help
OneDrive Data Acquisition
® OneDrive Login

Login:

[soufiane tahiri@live.com

Password:

[#] hide the password

) Memory Analysis

Live memony irnage ot hibernation file:

[| [Browse...
Save extracted data to:
[EAwp_cloud_acquisition | [Browse...
Next >

[239]

Windows Phone 8 Forensics

Once the backup gets downloaded, you get a confirmation window like the
following screenshot:

File View Tools Help
HSEVERESUH:S @Priﬂt &,BuyNow g Support 0 Help

@ Back @ Fornard @ Start Page
Protection: Custem OneDrive protocol

o ——y Complexity: Instant Unprotection
Passwords found:
0 passwords
OneDrive Data
Total time elapsed: -_—
16 sec. Extracted data: E\wp_cloud_acquisition

Estimated cornpletion time:
[completed]

Demo version has extracted file names only. Use the full version of Passware Kit
Forensic to extract and download the full files (3 GB).

Download Progress

Downloaded:

360.1 KB

Download speed:

4,1 KB/s

Passwords found Attacks), Log /
Please select a file to recover its password, or drag and drop a file to this window to start the recovery |

The demo version extracts only filenames, as you can see from the preceding
screenshot. The backup size is 5 GB and the extracted data is organized on the
computer in a manner that mimics the OneDrive architecture, as shown here:

v wp_cloud_acquisition
e Documents
Office Lens

Personnel (Web)
b Images

Camera Roll
Images enregistrées
Mebile uploads

Musigque

Public

SMS

[240]

Chapter 5

JTAG and physical acquisition

Currently, the Windows Phone 8+ devices are physical acquisition resistant and
most (if not all) forensic tools cannot achieve it. However, Cellebrite claims on

their website that their UFED is the first in the industry to support the physical
extraction and decoding of Windows Phone devices running OS versions 8.0 and 8.1,
including HTC Pro, HTC HD2 T9193, Xperia X1, Nokia Lumia 520, and LG GM750
(http ://www.cellebrite.com/Pages/windows-phone-forensics-physical-
extraction-and-decoding-from-windows-phone-devices). This said, the test
(conducted by the Computer Forensic Tool Testing Program of the National Institute
of Standards and Technology) results of data acquisition using UFED 4PC v4.2.6.5
and Physical Analyzer v4.2.6.4 for Nokia Lumia 920 and HTC PM23300 running
Windows Phone 8.0 show that only extremely limited data was acquired: no SMS
messages, application data, Internet data, or social media data (including Facebook,
Twitter, and LinkedIn) were extracted, and no deleted file was recovered. The test
was conducted in January 2016 and can be viewed at https://www.dhs.gov/
sites/default/files/publications/508 Test Report NIST Mobile UFED4PC
v4.2.6.5 January 2016.pdf.

If the target device is not encrypted, Windows Phone devices and Nokia Lumia can
be subjects of physical acquisition by NAND. This is made feasible using JTAG,
which is a nondestructive approach that can bypass all security measures and access
the memory of the device. As described in the previous chapter, the JTAG technique
requires disassembling the device, reading the NAND by soldering the connecting
wires to the JTAG TAPs, and then acquiring the physical image using the RIFF JTAG
software. The soldering step can be skipped if the device jigs are available.

The following image shows a disassembled Nokia Lumia 620 with highlighted JTAG
TAPs located under an EMI shield above the SD card slot:

[241]

http://www.cellebrite.com/Pages/windows-phone-forensics-physical-extraction-and-decoding-from-windows-phone-devices
http://www.cellebrite.com/Pages/windows-phone-forensics-physical-extraction-and-decoding-from-windows-phone-devices
https://www.dhs.gov/sites/default/files/publications/508_Test_Report_NIST_Mobile_UFED4PC_v4.2.6.5_January_2016.pdf
https://www.dhs.gov/sites/default/files/publications/508_Test_Report_NIST_Mobile_UFED4PC_v4.2.6.5_January_2016.pdf
https://www.dhs.gov/sites/default/files/publications/508_Test_Report_NIST_Mobile_UFED4PC_v4.2.6.5_January_2016.pdf

Windows Phone 8 Forensics

The shield can be removed using a hot air rework station at a temperature of
approximately 350 centigrade, and the result will be as seen in the following image
(source: http://forensicswiki.org/wiki/File:6-Lumia620-EMI. jpg):

Now the examiner solders wires to the JTAG TAPs, as shown in the following image
(source: http://forensicswiki.org/):

[242]

http://forensicswiki.org/wiki/File:6-Lumia620-EMI.jpg
http://forensicswiki.org/

Chapter 5

At this point, the device is connected to the RIFF box and physical acquisition can be

started using the RIFF JTAG software:

D ITAG Manager for RIFF Bow. Version: 156 = =
| [Resurection|™ TTAG ReadWrite] % DCC rmd.Mhne'[u Useful Plugins| = Bax Service|

. ITAG TCK Speed |

e T &l |

| sarmple at Max el

) Custom Target Settings

etk
| DCCloader USB Interface |

!
I N i
. w _____} Addre 500 U Target (core): |
= — = ———— el Arddrpss F SNAFDRAGON 5+ |
gin: | [18 R i
Sparer| Ll ; | Access ROM1 Address Space ;5‘-] RESET, Wal =1
|| & Auto FulFissh Size |||} 3726 1o vetage: i
= image File is Used {Main + Spare combined into single file) | & Use End Address, not Langth | LBV |
= : Offset fior Flash Files | = g T |
Use Address as | | 7 ECC Modue Enabled ||| Ta8= (uibchain positon): !
0 Ul |
L Qsw [Bewe | Jomermh || lsetnobycode || O spccsisemnos J|IL 000000)
[Reading_ at (D001 18.C10000 , Estimated Time Left: 02:57:35 | B465 kB

In some cases, the soldering process can be avoided and a cleaner way could be
used if the device's jig is available; in such a case, a Dolphin clip is used along with
the adequate jig. As you can see, the following image shows a disassembled Nokia
Lumia 520 connected to a RIFF box using a Dolphin clip and the Lumia jig:

[243]

Windows Phone 8 Forensics

The Nokia Lumia JTAG set for Dolphin clip (7-in-1 jigs) has been developed for
Nokia Lumia 520, 620, 720, 820, 920, 925, and 928 mobile phones and can be found
athttp://www. fonefunshop.co.uk/cable picker/98235 Nokia Lumia JTAG
Jigs_For Dolphin Clip.html.

You can also get a Dolphin clip with the main cable set from http://gsmserver.
com/item/cables-and-adapters/dolphin-clip-with-main-cable-set/.

The physical image acquired can be parsed using Belkasoft Evidence Center.

Belkasoft Evidence Center is a digital forensic solution enabling security experts
and forensic specialists to collect and analyze digital evidence from computers and
mobile devices. Belkasoft Evidence Center can automatically locate, process, and
analyze evidence stored inside hard drives, forensic images, and dumps. Hundreds
of evidence types are supported out of the box, such as documents, e-mails, pictures
and videos, chats and browser histories, encrypted and system files, and so on.
Information on Belkasoft Evidence Center as well as the free demo download are
available at http://belkasoft.com/trial.

First, run the tool and then create a new case by filling in the case information by
giving a case name, specifying a folder to store the data, adding the investigator's
name, specifying the local time zone, and filling in the description of the case, as
shown in the following screenshot:

Case name:

_] New
Case folder: C:\Cases',
(i) Open Recent Investigator:
Time zone (UTCLE W
& Browse Existing
Description:
.’?* Network Case
@ Options

[T] Aways open last case and do not show this dialog

OK% Exit

[244]

http://www.fonefunshop.co.uk/cable_picker/98235_Nokia_Lumia_JTAG_Jigs_For_Dolphin_Clip.html
http://www.fonefunshop.co.uk/cable_picker/98235_Nokia_Lumia_JTAG_Jigs_For_Dolphin_Clip.html
http://gsmserver.com/item/cables-and-adapters/dolphin-clip-with-main-cable-set/
http://gsmserver.com/item/cables-and-adapters/dolphin-clip-with-main-cable-set/
http://belkasoft.com/trial

Chapter 5

On clicking the OK button, the tool will invite you to add evidence to the
created case:

o 4

-

What sources would you like to analyze?

Select drive, image, dump, device or other source to include to the case

Available types of data sources
() Drive image file or vitual machine disk

() Logical drive

(") Physical drive

(@) Mobile backup file, UFED or JTAG image I

\ 23 | =]

() Live RAM image file {pagefile sys, hiberfil sys, memory dumps)

() Selected folder

Analyze data source

Mext = | Cancel

Select the Mobile backup file, UFED or JTAG image option. Click on Next and the
tool will show the types of data it can handle, as seen in the following screenshot:

=] X

-

‘What would you like to search for?
Select from supported data types below

E

Instant Messengers
Browsers
Mailboxes

. Pictures

Videos

Registry

Encrypted files
Documerts

Mobile device backups
System Files

Cloud Services
Geolocation data
Network: Traffic

S38855s

<]

<]

- B - - - B - - - - - BB

E

Select all Select none

< Back ‘ | Next > h| | Cancel |

A

Windows Phone 8 Forensics

Once you click on Next and Finish, the tool starts searching and extracting important
types of evidence essential for an investigation, such as contacts and address books,
call logs, Skype chats and communication histories in third-party messengers,
browsing history, and cached social network conversations. The Task Manager
shows you the extraction progress (as seen in the following screenshot), and the
sorted evidence will be displayed on the left panel hosting the Case Explorer:

Task Manager 3 x
Task % completed Status Time: Elapsed [l
Searching for browsers, Searching for registries, ... 1} Starting up.... 0:00:01
Searching for emails, Search for geolocated data 0 Starting up... 0:00:01
Searching for pictures, Searching for videos, Se... 1] Starting up... 0:00:01
Searching for instant messengers 1] Starting up.... 0:00:01
Searching for encrypted files and volumes 0 Starting up... 0:00:01
Folder count estimation 100 Operation completed successfully 0:00:01

- 100 T S s B e R - | n-0nn? ¥
Running | Scheduled | Completed | %
‘ Cancel al | | Cancel task | | Wiew task log ‘

Depending on the size of the image being scanned, the tool will take a few minutes
or a few hours to complete the analysis and present the findings.

The following screenshot shows a SQLite database, carved from the JTAG physical
dump of a Nokia Lumia 520 shown in the built-in SQLite Viewer:

Case Explorer Files }* Data List

{=) BACKUP_SBL2 File name

Offset Length

() BACKUP_TZ L i L

=) Data
EQ Carved Data
-@ @ Data (154}
(g Firefox (2)
& Intemet Explarer 10 (155)

: Q Documents) File Search
i - @ Documents (10)

EQ Pictures

: [| Table name: | ScheDataObjects v

=@ |48 Pictures (3279)

(=g DPP

El+{=y EFIESP

EQ Browsers

@ g |"Windows\System32\cor
Q Carved Data

- @ EFIESP (13)

Instart Messengers

- ScheDataObjects
- ScheSyncRecords
-sqlite_sequence

- Unallocated space

| Carved data from unallocated space | Lnalocated space

L &3 Windows

Length

Data
010200 FE 0D D...

<

Current file:

Mumber of records: 1

[8] File Syst 3 Case Expl
ile Sy: em! e porel]

% Item Properties |E" Task Manager | Registry Viewer SQLite Viewer

[246]

Chapter 5

Belkasoft offers an interesting feature when it comes to Windows Phone 8 dumps,
that is, the possibility of parsing pagefile.sys, which is a file created by the
operating system (as for the desktop version of Windows OS) in order to overcome
the lack of RAM on a device. Thus, Pagefile. sys usually contains information used
by some applications running in the background such as opened Internet Explorer
tabs or chat sessions of social applications. The tool offers quite effective parsing
capabilities, and can carve the Windows Phone's Pagefile. sys file to extract
pictures, cached webpages, and data from social application.

Case Explorer X /@/m - X
=Q Jake Last Madfied Last Accessed -
ine | lodifie Cesse !

BL Q:r:g”‘:n” 314 UL Time: (UTC) Time (UTC) b)
i+-{) SLoaFlle oo pnE E I . image \B\wol_243269632\pagefile sys [k
E'W $lLogFile Cookie:defapps @t : i . |image\Swol_243269632 pagefile sys

BQ Carved Data Cookie:defapps @t : . |image\Bwol_243269632\pagefile sys
= . = SlogFile {2155) Cookie:defapps@s com/ |2 . |image ol _243265632 pagefile sys
", SlogFile entries (2159) | Cookie:defapps@s com/ |& . |image ol _243265632\pagefile sys
H-{uggt SMFT Cookie:defapps @t : . |image\Bwol_243269632\pagefile sys
Lt SMFT Cookie:defapps@s com/ |2 image "5'wol_243265632 pagefile sys =
i pagefie sys Pz o »
. Carved Data
Itern Properties o x

7 | kemtext Properties

et 1
Registry Files (34)

BQ Pictures

(=@ |§d Pictures (48) Cookie:d o
ﬁ Found Pictures (48} Last Modffied Time (UTC)
QY Analysis resutts Last Accessed Time (UTC)
< Forged picturss Location E
-9 Pictures with faces | | 4 Misc
¥ Pictures with text Hems ¥
¥ Pom pictures ltems

F Carved Data (48)
- Large picturss (2)

e

Artifact location and user PIN study

In this section, we will look for the location of some of the evidence generated by a
Windows Phone 8+ device. Usually, in a forensics investigation process, SMS/MMS
messages are some of the most looked-for evidence. Windows Phone 8.x stores MMS
data at $DataDrive$%:\SharedData\Comms\Unistore\data\ as .dat files under
subdirectories named 0 to +99 with more subdirectories named a to p.

[247]

Windows Phone 8 Forensics

The following is a picture contained within a received MMS:

[Evidence Tree > [[File List
) PROGRANS ~| Name Size | Type | Date Modified

B3 SharedData 2000000000000017700a.dat 14 Regular File 24/02/2016 15:52:51
{2 BingClient-0S5 U ¢

{3 BingCorfiguration
1) caswedatabase
.2 CAUpload

3 P
32 chihap

- Comms

123 AccountProviders
L) CommsCFS

1) Messaging

B Unistore

i B data

o
0

The SMS and contact information (including synced contacts from LinkedIn,
Facebook, and Twitter) data is stored under the $DataDrive%:\Users\
WPCOMMSERVICES\APPDATA\Local\Unistore\ directory as a store.vol file,
which is an ESE database:

vidence Tree # | |File List
-3 SENSOR _SERVICE -~ e Size | Type
ig;gpsvc [lsi30 16 NTFS Index Al
1) WLANCOUNTRYSVC || sterewvel 17408 Regular File
-V : .
EH{D) WPCOMMSSERVICES 2] USS.chk 8 RegularFile
S5 APPDATA & uss.og 3072 Regular File
) FrameworkTemp || USSres000O1 jrs 3072 Regular File
) INetCache || US5res0002 jrs 3072 Regular File
1) INetCookies [usstmp.log 3072 RegularFile
-3 INetHistory
[—]@ Local 0lca2al |00 00 00 00 00 Q0 00 00-00 OO0 00 00 00 00 00 00
) Microsoft 01cazb0 |00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
L) PimiccMaint 0lca2c0 |00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
@ Shared 0lca2d0 |00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
@ Temp 0lca2el |00 00 00 00 00 Q0 0O 00-00 OO0 00 00 00 Q0 00 00
L3 Unistore 01ca2£0 |00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00| -« wvromemmeenn--
d \UserData 01ca300 (00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 Q0| ----vvrvmvmvmnn-

The database is simply a huge repository of evidence and contains more than 54
tables (Activity, Appointment, EmailMetadata, EmailRecipientInfo, and so on).
You can explore it using the ESEDatabaseView downloadable from http: //www.
nirsoft.net/utils/ese_database_view.html. This utility can convert, on the fly,
the date/time from the MS Format to a readable format from the Options menu. The
following is the activity feed of the device owner and synced contacts from Twitter
and LinkedIn (from the table Activity):

[248]

http://www.nirsoft.net/utils/ese_database_view.html
http://www.nirsoft.net/utils/ese_database_view.html

Chapter 5

27/03/...
Twitter
Twitter
Twitter
Twitter
Twitter
Twitter
Twitter
Twitter
Twitter
LinkedIn
Linkedin
LinkedIn
LinkedIn
LinkedIn
LinkedIn
LinkedIn

Reuters Top News
WikiLeaks

RT

SAMS Institute, EMEA
RT

WikiLeaks

Wirus Bulletin
Meorgan Marguis-Boire
WikiLeaks

RT

Ashish

Williarr

Remo

Remc

Soufiane Tahiri
Shahriar

Shahriar

https://t.co/kWTXQcjlyk
https://t.co/eWYhEhKnlp
https://t.co/dLI3V7zQin
https://t.co/3kk1xPF 3wl
https://t.co/kylerDeul
https://t.co/eWYhEhKnlp
https://t.co/IFymH2EHWr
https://t.co/x9gFQiq27l
https://t.co/eWYhEhKnlp
https://t.co/wojSe5Flim
http://image-store.slidesharecdn.
_ 7f-4ff3-9bb3-eb1al4cal850-original jpeg
http://flip
https:/fwww.linkedin.com/pulse/digital-forensics-models-1-soufiane-tahiri:
http://buff.ly/1pb3MHt
http://buff.ly/1pb3MHt

Table names are stored in the Table MSysObjects under the column Name, and the
ID associated with each name is used as the name of other tables' columns. You can
use this table to correlate names. The \Unistore\ folder also contains a USs. 1og file,
which is an ESE database transaction rollback file. Examining this file can be useful,
since you can recover deleted SMS/MMS messages from it.

Windows Phone 8+ stores call history in an ESE database, also named Phone with
no extension, which can be found under $Databrive%:\Users\WPCOMMSERVICES\
APPDATA\Local\UserData\. The database contains one interesting table named
CallHistory holding all call details (start time, end time, caller location, resolved
numbers, and so on). The following screenshot shows the information that you can
gather regarding each call:

Id

Type
SeenbBit
Flags
Start Time
EndTime

ResolvedMumberProp
ResolvedContact

TeminationCauseCode
RawMumberHash
RawMNumber
RawCallerld
ResolvedMame
ResolvedMumber

Line

CallerLocation
COperatorMumMame

[249]

Windows Phone 8 Forensics

The Windows Phone, like all Microsoft operating systems, uses Internet Explorer as
its default navigator. Internet Explorer stores cached history and cookies. The cached
history is stored in the webCacheVvo01.dat database under $DataDrive%:\Users)\
DefApps\APPDATA\Local\Microsoft\Windows\. This database contains 42 tables
with 34 tables of the name Container_ X, where x goes from 1 to 34 and represents
the container ID. Each table seems to be related to an application (Skype, weather
app, Facebook, and the like) and each container table contains cached URL, access
count, creation time, and access time. In the following screenshot, container 31
seems to hold the cached contact data from Skype and container_25 holds the data
cached from Facebook. Container 31 seems to hold various browser cached URLs:

MedfiedTime AcotssedTime PostCheckTime SyncCount ExemptionDelta

[

3 1RITATIIE000000 130

[
o
[
o
5 0
0
¢
o

hitps/Fapi.slevpe. comusery

Navigation history and cookies are stored under $DataDrive%:\Users\DefApps\
APPDATA\ INERNETEXPLORER\INetCache\ and $DataDrive%:\Users\DefApps\
APPDATA\ INERNETEXPLORER\ INetCookies)\ respectively, as seen in the following
screenshot:

--@ TNetHistory ~] Name]
@ INSTALLERWORKER STTOT3EF
I_:_Hjﬂ INTERNETEXPLORER Microsoft
iﬁ Framework Temp MTLAMWOY
B0 INetCache
() 5TT973BF ROBMZCOW
{3) Microsoft _ RZB2L8IY
3 MTLAMWOY LIsis0
) ROBMZCOW |_| container.dat
‘{13 RZB2LBJY || MSIMGSIZ.DAT
{7 INetCookies || SuggestedSites.dat
- INSTALLERWORKER E
H 5130
B3 INTERNETEXPLORER 5 3YPQ3904.¢
{7 Framework Temp = '
&0 INetCache E| 42VFOPIOLt
-3 INetCookies] B40LONAS.B¢
i) INetHistory E| ASISC3NQ bt
E-3) Local || container.dat
07 Locallow =] DIWUMKVE et
-3 PlatformData =] FTRFM2AT bt
{7 Roaming |_1 LBOBOTND bt
-3 Temp =] omHLeKILEe
) KEYBOARDCPL K| TCZ2GS8Ght

[250]

Chapter 5

In order to take cloud backups, Windows Phone 8 must be configured using a
Windows Live! account. The configured account is stored in the CommsBackup . xml
file under $DatabDrive$:\Users\DefApps\APPDATA\Local\BackupVols\:

F) LEGUONUFDATE ~| Msme | size | Type | Date Medified
@ L3 LIVETOREN | CamemsBackupmi 2 Regular File 24/02/2016 154317
& JZ“‘MWM | CammsBackupml FileSlack 15 Filie Slack
EHED Mecrosolt
) Credertisis
&) Cyntn
E j;“m <7xml version="1.0" encoding="UTF-8" >
L3 Caches Root version="0x1">
3 Nottcations ltems Mame="Accounts">
1 SettngSyne - <ltem Name "Account” Num#rops "Ox1b"=
2 WebCache = roperty Name="AS, g >{B2830118- FBCH-4N74-BCIA-FDBBICEFBBED} </ NamedProperty >
[L) Windews Servicea perty Name:' Type”=0x5 dProperty=
0 Packages o prrty Mame= ion® 0% «/NamedProperty
10 PackageStaging =MamedProperty Name-"Ux0"-Outlook-y/NamedProperty >
2] =MNamadFroperty Mame 'nxx')ox.- JNamedPropﬂrq.-
2D Temp nllve.outlook.png </MamedProperty =
@ 3 Locallow eMamudPropert
) LOCATIONUACPL - Namederoperty Name "Ux4' »m.hotm mmw‘Namedepert\f
L] L4 aNamedProperty Name="0x6" perty:
23 : «MNamedProperty Name="0x6"=0x1- JNamedepert\a

MamedProperly Name="0x9" >0x800005a0 </ NamedProgerby >
=MamedPropearty Name="Uxa"-Ux4-=/NamedProperty:»
«MNamedProperty Name="0xc"=0x3 </NamedProperty =
MamedProperly Name="0xd" =0x2 </NamedProperty =

] |E

Custom Content Souces

As mentioned earlier in this chapter, in contrast to all kinds of evidences stored in
the form of ESE databases or XML files, the user's pass code is stored in the Windows
Phone registry, which is extremely similar to the desktop Windows registry. All
registry hives are stored under $SystemDrive%:\Windows\System32\config, as

you can see in the next screenshot:

Evidence Tree < [[File List
{2 svSE ~ Name size | Type | Date Modified
E-() SYSTEM. [78cD & Regular File 24/02/2016 10:22:52
[ES sz ' | BCD-TEMPLATE 16 Regular File 30/06/2014 03:21:38
g :i‘;“ ALLERS [BCD-TEMPLATE-EFI 20 Regular File 30/06/2014 03:21:38
) etz [pEFauLT 256 Regular File 24/02/2016 17:17:28
) backgrounds | DEFAULTLOGI 176 Regular File 24/02/2016 10:23:49
O beby [DEFAULTLOG2 0 Regular File 24/02/2016 10:23:49
5 babe [pRivers 40 Regular File 24/0/2016 15:45:22
200 BOOT | DRIVERS.LOG 2 Regular File 24/02/2016 10:23:47
0] cares [DRIVERS.LOG2 0 Regular File 24/02/201610:23:47
13 CATROOT [eam 8 RegularFile 30/06/2014 03:21:38
{2 Codelntegity [ep 1 Regular File 30/06/2014 03:21:38
i) Comme [ProvisionStore 3680 Regular File 24/02/201610:21:11
[E G corfs [sam 1280 Regular File 24/02/201617:17:28
oz [samLoG1 40 Regular File 24/02/2016 10:23:52
12 dadi [samL0G2 36 Regular File 24/02/201610:23:52
]E EER*":ERS E Security 256 Regular File 24/02/201617:17:28
- SECURITY.LOG1 156 Regular File 24/02/2016 10:23:52
Qoo |] SECURITY.LOG2 24 RegularFile 24/02/2016.10:23:52
E ::ﬁ"’] Software 12288 Regular File 24/02/2016 17:17:28
O s [SOFTWARELOG 828 RegularFile 24/0/2016 10:23:47
B cses | SOFTWARELOG2 780 Regular File 24/02/2016 10:23:48
e [T svSTEM 4864 Regular File 24/02/201617:17:28
D ctee [svSTEM.LOG1 340 Regular File 24/02/2016 10:23:48
=y [svsTEMLOG2 316 Regular File 24/02/2016 10:23:48
=y BEE 16 NTFSIndecAll.. 24/02/201610:22:59
D filph [BCD-TEMPLATE-EFI FileSlack 12 File Slack
e | DRIVERS.LOG1 FileSlack 2 File Slack
-2 hed [SAMLOG FileSlack 2 File Slack
-2 hin] SAM.LOG2 FileSlack 12 File Slack
12 hrbr [SOFTWARELOG1.FileSlack 4 File Slack
10 huhu |] SOFTWARE LOG2 FileSlack 4 File Slack
1D ICSXML || SYSTEM.LOG FileSlack 12 File Slack
E ‘fj” + || SYSTEM.LOG2 FileSlack 4 FileSlack

[251]

Windows Phone 8 Forensics

The most relevant hives are software and System, as per research conducted

by forensic experts Adrian Leong (http://cheeky4némonkey.blogspot .
com/2014/10/awesome-windows-phone-8-stuff.html) and Francesco Picasso
(http://blog.digital-forensics.it/2015/07/windows-phone-pin-cracking.
html). My own findings point to the fact that the PIN hash is stored in the software
hive registry key \Microsoft\Comms\Security\DeviceLock\ObjectXX, where Xx
could be 21 or 31. In my case, in a physical dump of a Lumia 920 running Windows
Phone 8.10.14234.375, the xx was equal to 21:

= -IL2) Comms -~ Name Type Value
0 | Security We|CredentialHash REG_BINARY (0x3) 800000 00 OE 00 00 00 20 00 00 000 ...
1) DeviceLock W8| CredentialctualLength REG_DWORD (0x4) 0x00000009 (3)
I3 Object1o Wo|RequireStrongWhenCreden... REG_DWORD (0x4) 0x00000001 (1)

IJ) Object12

=] obeco|

I Objectzz

I3 Objects

+-\2) ObjectindexTable13
=2 ObjectindexTable20
-+ TestHook

The object21 registry key contains three values: CredentialHash,
CredentialActualLength, and RequireStrongWhenCredentialSet that hold,
respectively, the hash value of the PIN set by the user, the PIN length, and a flag set
to 1 or 0 to require a string PIN or not when it is set up by the user. The PIN set on my
Lumia 920 is 9 digits in length, as suggested by the CredentialActualLength value
seen in the preceding screenshot. The bytes blob of the hashed PIN is as follows:

Off==t o1 2 3 ¢4 5 & 7 &8 9 & B C D E F

gooooooo g0 0o 0o o0 OE 00 00 00 20 00 00 00 08 29 F2 52 1 JaR
00000010 17 A3 87 34 45 B6 SD 4F 14 69 2E 4C BC 2C CC AF | £14EM]0 1.14.17
00000020 36 85 9D C4 2E DD 64 DB 64 98 2E 79 93 DD Ca &3 61 &4.Yi@51.vIVE:
00000030 8D D1 9F B8C B0 D4 8D 03 16 EE A2 34 57 03 22 D5 Hinio iedi "0
0ooooo40 DO Bl BD 9D 6F 8C BC SE EB 14 85 BE SE 68 85 DF Bik ol%™2 117hiIR
00000050 D4 DE 33 97 25 91 9D 75 89 E1 50 F3 8B 87 69 57 Ob31H" ulaPallil
00000060 57 FE 27 6F 00 0D CF SF GS& 2F EF a4 EC 80 46 05 Wp'eo I_Z/iFilF
00000070 57 41 A3 D2 1E 78 SD 85 4AC Ad 6D A9 74 24 A4 79 WAsD m]1lim@zxfy
goooooso 04 9E 3B YA OC FB CA 31 51 3C 1C 74 53 00 48 00 1.z 4aE1Q< =5 H
goooooso 41 00 32 00 35 00 36 00 00 00 BE 4A 50 44 4E 30 A 2 5 6 =»JEDH0
DODOD0AD | A6 CB 62 GB 83 50 58 FE 82 9B 24 23 70 72 AC 40 |Eb[1PEbII*#pr-@
DODODOBO | 63 93 23 56 95 7 31 61 4B E9 cl#VIC1aKl

The data size equal is to 0xBA (186 bytes). Francesco Picasso on his blog post
described very well how this data is arranged: the first two double-words represent
the length of the three following byte arrays, the second one is the Unicode (UCS-
2LE) string SHA-256, and the last array represents the SHA-256 hashed PIN, which is
exactly equal to the length of a SHA-256 hash (32 bytes):

[252]

http://cheeky4n6monkey.blogspot.com/2014/10/awesome-windows-phone-8-stuff.html
http://cheeky4n6monkey.blogspot.com/2014/10/awesome-windows-phone-8-stuff.html
http://blog.digital-forensics.it/2015/07/windows-phone-pin-cracking.html
http://blog.digital-forensics.it/2015/07/windows-phone-pin-cracking.html

Chapter 5

oooooo?o
oooooosn
oooooosn
0oooooan
000o0o0En

57 41 A3 D2 1E 78 5D &%
04 9E 3B 74 0OC FE C& 31
41 00 32 00 35 00 36 0

ab C8 82 5B 83 50 58 FE
B3 93 23 56 95 C7 31 el

]

4cC
51
nn
a2
4B

Ak 6D A9 ThA ZA A 7Y BEBGELT. B
ac 1c ?Am BiaD 155 H
00 EE 44 A2s5 8 S
95 2 23 70 T2 AC A0 SEE_) 4=
a9 3208 T

As with most of the newly implemented hashes, the PIN hash is produced using a
128 bytes pseudo randomly generated salt.

Of fzet o1 2 3 4
gooooooo 80 00 00 00 OE
ooooooio 17 A3 87 34 45
gooooozo | 36 85 9D 4 2E
oooooozo 8D D1 9F 8C 80
gooooo4n DO Bl BED 9D eF
goooooso D4 DE 33 97 25
goooooen | 57 FE 27 6F 00
gooooo?o 57 41 A3 D2 1E
gooooogo 04 SE 3B 7A OC
ooooooso 41 00 32 00 35
ooooooAnD Ak CB G2 BB B3
ooooooeBo 63 93 23 56 95

E

oo
BE
oD
D4
ac
91
oD
78
FE
oo
50
c7?

B 7 & 9 &4 B C D E F
0o oo 20 00 00 00O 08 29 F2 52
5D 4F 14 89 2E 4C BC 2C CC AF
64 DB 6A 98 2E 79 93 DD CA A3
8D 03 16 EE A2 34 57 03 22 DS
BC 5E EB 14 85 8E SE 68 88 DF
9D 75 89 E1 50 F3 8B 87 69 57
CF 5F G54 2F EF A4 EC B0 46 05
5D 85 4C AA 6D A9 74 24 A4 79
Ci 31 51 3C 1C [HA 53 00 48 00
36 00 00 00 BB 44 50 44 4E 30
L8 FE 82 SB 24 23 70 72 AC 40
3l 61 4B 89

Using the salt, the PIN hash, and the PIN length, we can try to recover the plain text
PIN using the wp8-sha256-pin-finder.py script available at https://github.
com/cheeky4némonkey/4n6-scripts/blob/master/wp8-sha256-pin-finder.py.

To execute this script, you must provide it with the salt, PIN hash, and PIN length

as follows:

python wp8-sha256-pin-finder.py salt hash length

As you can see in the next screenshot, the plain text PIN in my case was 662135560:

in-finder.py

[253]

https://github.com/cheeky4n6monkey/4n6-scripts/blob/master/wp8-sha256-pin-finder.py
https://github.com/cheeky4n6monkey/4n6-scripts/blob/master/wp8-sha256-pin-finder.py

Windows Phone 8 Forensics

In addition to this, we can find out when this PIN was set by viewing the value of
CredentialSetupTime in the registry key object22, as follows:

Mame Type Value

ﬁﬂ'l.l'UFailurECDunt REG_DWORD (0x4) 0x00000000 {0)

ﬁ%‘]AumReseFailureCDunt REG_DWORD (0x4) 0300000000 (0)

5| Activel APGUID REG_BIMARY (0x3) BSASBS AY 3556 4142 A7FD 27 2E OC 1F EA AG

o i REG_BIMARY (0x3) 80000000 0F 000000 2000000023C8 16EF94A 749
ﬁ%']CrEdEHﬁalSEt.lp'l’lmE REG_BINARY {Dx3) DO 2C740C IDEF D101

The value 0xD02C740C1D6FD101 is 8 bytes in length and represents Microsoft
Filetime, which is defined as a 64-bit value that represents the number of
100-nanosecond intervals that have elapsed since 12:00 AM. January 1, 1601
Coordinated Universal Time (UTC) (https://msdn.microsoft.com/en-
us/library/ms724290 (vs.85, loband) .aspx). Microsoft uses little endian
to store integers, which means that the given value must be written like
0x01D16F1D0C742CD0 before converting it to the decimal value:

1D1 6F1D 0C74 2CDO

HEX 1D1 6F1D 0C74 2CDO
DEC 131 008 034 724 130 000

OCT 7213 361 641 435 026 320

BIN 0001 1107 0001 0110 1111 0001
11000111 0100 0010 1100 1101

1101 0000
0000

This results in the value 131008034724130000, which can be converted to UTC time
using free online converters like http://www.silisoftware.com/tools/date.php.

Once converted to UTC, we can see that the PIN was set on the device on Sunday,
March 13, 2016 at 7:15:35 PM.

[254]

https://msdn.microsoft.com/en-us/library/ms724290(vs.85,loband).aspx
https://msdn.microsoft.com/en-us/library/ms724290(vs.85,loband).aspx
http://www.silisoftware.com/tools/date.php

Chapter 5

Summary

In this chapter, we went through different approaches towards Windows Phone

8.x forensic analysis. In contrast to most mobile OSs, the Windows Phone forensic
acquisition and analysis requires manual effort in addition to automated tools.

We saw that most of the available forensic tools cannot fully acquire data from a
Windows Phone device, which makes it a very challenging platform for forensic
examiners. There is no easy way to gain full access to a user's data in a Windows
Phone device, and in many cases, many tools and approaches must be used in order
to acquire evidence. With the introduction of full disk encryption, even extracting
the full memory dump using advanced techniques like JTAG is useless. This makes
it more painful for examiners dealing with this OS. As we discussed in this chapter,
by adopting the Windows NT kernel, Windows Phone 8.x inherited many of its
security enhancement features, making it harder to explore. We also explained the
sideloading technique to logically acquire some of the device's data. This technique
may not be forensically sound, but in most cases, it's the only available way to extract
some kind of data and should produce forensically sound evidences if the examiner
follows the standard best practices, which we will discuss in the next chapter.

[255]

Mobile Forensics —
Best Practices

The purpose of this chapter is to go beyond the technical aspects of smartphone
device forensics and introduce you to some of the best practices of recovering digital
evidence from a mobile device under forensically sound conditions. This chapter will
describe the methodology of the forensic process used for mobile devices and will
present guidelines for specific activities in the handling of digital evidence.

This chapter will cover the following topics:

* Mobile forensics process

e Mobile device identification

° Physical characteristics
° Device info

° Service provider

[257]

Mobile Forensics — Best Practices

Presenting a mobile forensics process

The first chapter of this book introduced an abstraction of different forensic
frameworks. Smartphone forensics is an evolving field of digital forensics; it was
described by Digital Forensics Research Workshop in 2001 as follows:

The use of scientifically derived and proven methods toward the preservation,
collection, validation, identification, analysis, interpretation, documentation, and
preservation of digital evidence derived from digital sources, for the purpose of
facilitating or furthering the reconstruction of events found to be criminal, or helping
to anticipate unauthorized actions shown to be disruptive to planned operations.

In real world challenges and actual circumstances, conducting a forensic examination
is subject to the local legal system and its rules of evidence and different constraints
related to the device itself (OS, device model, technical challenges, and so on), as well
as the case being investigated. A forensics examination dealing with a smartphone

can be extremely difficult and requires us to write to the target device, side load an
agent, install a bootloader, or remove a chip in many, if not all, cases; thus, smartphone
forensics is not always subject to a single model or framework and the examiner will,
in general, adopt and adapt different stages from different models in order to acquire
evidence that is acceptable in a court of law. Since standard read-only protection does
not always work during an investigation, every procedure must be subject to a prior
test, validation, and documentation. Following a well-established methodology is very
crucial, especially when dealing with mobiles, as not following the proper guidelines
during evidence gathering can result in loss or damage to the evidence or render
evidences inadmissible in court of law.

It's important to note that there is no standard smartphone forensic model. However,
in order to ensure that the result of each device examination is consistent and
defendable, every smartphone forensic process should follow specific steps to
produce potential digital evidence that can be of evidential value.

The investigation is generally trigged by an evidence intake phase, which is a
determinant phase in which the examiner develops the specific objectives of each
case. This initial phase entails paperwork to document a custody chain, ownership
information, the type of incident the mobile device was involved in, and the

type of data and information the requester is seeking. The documentation phase

is an omnipresent phase that will last the whole process and before starting the
identification, most of the examiners (whether representing agencies or organizations)
use forms to document the intake of devices.

[258]

Chapter 6

The very first stage of the investigation is identification; this step can dramatically
influence the overall investigation process and can lead to an efficient management
of the overall time and effort spent on the examination. Before proceeding in an
investigation case, the examiner must always keep in mind to identify at least four
major points:

Legal authorities: It's important to be aware of the local legislation before
starting to look into the data within a device. Prior to any device examination,
the examiner must start by determining and documenting the legal authorities
that exist for the search of the device, in order to define the scope, breadth,
and depth of the Electronically Stored Information (ESI) which he is
authorized to examine. If an examination is requested pursuant to a warrant,
the examination must be limited to the scope of that warrant, and in the case of
the examination is pursuant to consent, the examiner must not go beyond the
limitations of the consent (for example, consent to examine messages within a
particular date range). Being aware of legal restrictions can be very limitative
in terms of the scope of the examination and can save the examiner valuable
time and effort while extracting and documenting data.

Goals of the examination: Depending on the data requested, identifying

the goals of the examination determines how deep the examiner must go in
order to extract desired evidence. Each case, is unique and having a clear
understanding of this fact helps to determine the goals of the examination,
helping the examiner decide the level or levels of examination. In some
cases, the examination includes recovering deleted data, which depends on
the device and is usually only feasible if particular tools are available. The
goals of the examination have a consequent impact on selecting the tools and
techniques required when examining a device and increase the efficiency of
the examination process.

Identifying the device: Identifying the make and model of the device,

as well as its information, is a step that every examiner must follow and
document properly as a part of an examination. The information regarding
the identification of the device should be well documented, since it can assist
the examiner in the determination of the tools he will need. We will discuss
more about device identification in the next section.

[259]

Mobile Forensics — Best Practices

* Removable and external data storage: Identifying if the device offers the
option to extend its memory using an SD card is important. Finding out the
slots of these small-scale storage modules is difficult, but once identified it's
wise to remove it to preserve the data that it contains, document the serial
number and any other identifying detail, activate the write protection switch
if present, and then create a forensic duplicate of the content. This media
storage can be handled in a traditional forensic manner, in the same way as
any other storage media. Today's smartphones also allow external storage
of data "over the air", using cloud based-storage similar to iCloud, Google,
or OneDrive. The examiner should consider this even when accessing the
stored data on the cloud is subject to further legal authority. In addition
to this, most modern (and even less modern) smartphones are designed to
synchronize their content with a trusted computer, which is, in general, the
user's computer. The examiner must consider the potential existence of a full
or partial backup of the device's data on the device owner's computer.

In addition to this, the examiner must identify any other source of potential evidence,
especially biological evidence, as most smartphones can be considered an interesting
repository of fingerprints and sources of DNA; thus, prior to the device examination,
and in order to avoid any unwanted contaminations, considerations should be made
as to whether or not the other evidence collection issues exist and the examiner is
invited to wear gloves when handling the evidence.

The identification process is a great facilitator of the preparation phase, while
identifying the case needs the examiner to start the preparation for the examination of
the device. The forensic workstation, cables, and software relative to the device being
examined are prepared; depending on the previously identified and documented make
and model of the device, the examiner can start gathering information regarding the
available tools that can extract data from the desired device. Choosing the appropriate
tool depends on many factors; in addition to the resources available to the examiner or
to the organization/agency responsible for the investigation, the goals of examination
and the type of the device are determinant in choosing the appropriate tools.

[260]

Chapter 6

Given the hardware and software difference between computers and smartphones
and in contrast to the available computer forensics tools, smartphone forensics
tools are considerably different due to the fact that most smartphone operating
systems are typically closed, which makes interpreting their internals very hard.
The examiner has a variety of software that he can use, including commercial, open
source forensic tools, and even non-forensic tools designed to manage a device's
content. On the other hand, the examiner should be aware of the fact that non-
forensics tools may allow the flow of information from both the computer to the
device and from the device to the computer, which is not forensically sound and is
not designed to include integrity hashes.

Many smartphone forensic tools use the same protocols and techniques as non-
forensic tools in order to communicate with the device, but they are designed in a
manner to extract and calculate integrity hashes of data from a device.

Forensic hash validation

A forensic hash is used to maintain the integrity of an acquisition by
computing a cryptographically strong and non-reversible value over
the acquired data. After acquisition, any changes made to the data
can be detected, since the new hash value computed over the data
will be inconsistent with the old value. For non-forensic tools, hash
values should be created using a tool, such as shalsum, and retained
for integrity verification. Even tools labeled as forensic tools may not

. compute a cryptographic hash, and in these cases an integrity hash

% should be computed separately.
L

Note that mobile devices are constantly active and update information
(for example, the device clock) continuously. Therefore, back-to-back
acquisitions of a device will be slightly different and produce different
hash values when computed over all the data. However, hash values
computed over selected data items, such as individual files and
directories, generally remain consistent. If hash inconsistencies occur,
they may require the examiner to perform an element-by-element
verification, thus ensuring data integrity. Hash validation across
multiple tools is challenging due to proprietary reporting formats
(source: NIST Guidelines on Mobile Device Forensics).

[261]

Mobile Forensics — Best Practices

Preparing the appropriate tools is not always an easy task and understanding the
different types of mobile acquisition tools and the data they are capable of recovering
is important for the examiner. The National Institute of Standards and Technology
(NIST) has developed a Mobile Device Tool Classification System (http://
nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-101r1.

pdf), which provides a framework for forensic examiners to compare the extraction
methods used by different tools to acquire data and to let an examiner easily classify
and compare the extraction methods of different tools. The tools listed on the NIST
guidelines are grouped by the tool-levelling system developed by the Sam Brothers
and designed to categorize forensic tools by the depth to which they are capable

of accessing data on a device. The tool classification system is displayed in the
following diagram:

Hex
Dumping / JTAG

Logical Extraction

As you move up the pyramid (from the bottom, level 1, to the top, level 5), the
methods and methodologies involved in acquisition become more technical,
invasive, time consuming, and tools get more expensive. Depending on the goals

of the examination and circumstances, and before picking the appropriate level, the
examiner must be aware of the fact that once a level is used, alternating the levels
might not be possible. Using each level can permanently modify or destroy data if
the methodology or tools are not utilized properly. Proper training and mentoring is
critical in obtaining the highest success rate for data extraction and the analysis of the
data contained within mobile devices.

[262]

http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-101r1.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-101r1.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-101r1.pdf

Chapter 6

A Micro Read involves recording the physical observation of the gates on
a NAND or NOR chip with the use of an electron microscope. Due to the
extreme technicalities involved when performing a Micro Read, this level

_ of acquisition would only be attempted for high profile cases equivalent

a to a national security crisis after all other acquisition techniques have been
L— exhausted. Successful acquisition at this level would require a team of

experts, proper equipment, time, and an in-depth knowledge of proprietary
information. There are no known law enforcement agencies performing
acquisitions at this level. Currently, there are no commercially available
Micro Read tools (source: NIST Guidelines on Mobile Device Forensics).

The following table provides a non-exhaustive classification of some tools currently
used in mobile device forensics and the facilities they provide: acquisition, analysis,
or reporting;:

Tool Acquisition | Network type Analysis | Reporting
level
GSM | CDMA | iDEN/
TDMA
BlackLight 2 X X X X
MOBILedit! 2
Forensic
UFED Classic (and | 2 X X X X X
Touch) Logical
XRY Logical 2 X X X X X
Device Seizure 2/3 X X X X X
EnCase 2/3 X X X X
Smartphone
Examiner
XRY Complete 2/3 X X X X X
CDMA Workshop | 3 X X
Oxygen Forensic 2 X X X X
Suite (Analyst)
UFED Touch 2/3 X X X X X
Ultimate
Lantern 2/3 X X X X

[263]

Mobile Forensics — Best Practices

Headings contained within the table are as follows:

¢ Tool: Contains tool name.

* Acquisition level: Contains level(s) at which the tool performs data
extractions: 1 is manual extraction, 2 is logical extraction, 3 is physical
extraction, 4 is chip-off, and 5 is Micro Read.

* Network type: This specifies the acquisition of devices operating over which
networks is possible.

* Analysis: Indicates whether the tool provides the examiner with the ability to
perform an examination or analysis of the acquired data or not.

* Reporting: Indicates whether the tool provides the examiner with the ability
to generate reports or not.

You can find more about forensic tools at http://toolcatalog.nist.gov/
taxonomy/index.php. Additionally, the examiner must remember that a single tool
will be sufficient to acquire all the data from all devices; various mobile forensic tools
offer different capabilities for processing different devices, and this variation of tools
from one software vendor to another may lead to the use of different definitions for
mobile data extraction techniques. Therefore, the examiners have to pay attention to
understand how the vendor is using definitions with regards to the capabilities of its
tool (some examples of differences in semantics include: object extraction, container
extraction, logical extraction, logical acquisition, filesystem extraction, physical
extraction, physical acquisition, physical memory dump, device profile, and so on.)

After being prepared enough to go further on the investigation, the first step in
recovering digital evidence starts by securing and preserving it. In order to exploit
the eventually extracted evidence correctly, the examiner must secure and evaluate
the scene and must be familiar with mobile devices and with tangential equipment,
such as media, cables, and power adapters. The overall scene should be roughly
searched for associated peripherals (such as removable media, Universal Integrated
Circuit Card (UICCs), or personal computers), thus ensuring that related evidence is
not overlooked. The examiner must consider interviewing the owner or user of the
device and is invited to request any security codes, passwords, or gestures needed
to gain access to the device content. If the device is found in a damaged state, it does
not mean that an eventual exploitation is impossible; the damaged equipment should
be taken back to the lab in order to try a restore it to the working state. The Scientific
Working Group on Digital Evidence (SWGDE) has developed guidance regarding
the best practices for the collection of damaged mobile devices available at https://
www . swgde . org/documents/Current%20Documents/2016-02-08%20SWGDE%20
Best%20Practices%20for%20Collection%200f%20Damaged%20Mobile%20
Devices v1-1.

[264]

http://toolcatalog.nist.gov/taxonomy/index.php
http://toolcatalog.nist.gov/taxonomy/index.php
https://www.swgde.org/documents/Current%20Documents/2016-02-08%20SWGDE%20Best%20Practices%20for%20Collection%20of%20Damaged%20Mobile%20Devices_v1-1
https://www.swgde.org/documents/Current%20Documents/2016-02-08%20SWGDE%20Best%20Practices%20for%20Collection%20of%20Damaged%20Mobile%20Devices_v1-1
https://www.swgde.org/documents/Current%20Documents/2016-02-08%20SWGDE%20Best%20Practices%20for%20Collection%20of%20Damaged%20Mobile%20Devices_v1-1
https://www.swgde.org/documents/Current%20Documents/2016-02-08%20SWGDE%20Best%20Practices%20for%20Collection%20of%20Damaged%20Mobile%20Devices_v1-1

Chapter 6

During the whole process, the examiner must be as vigilant as possible while
documenting the scene; attention must be paid to everything and not only the

device itself. The evidence must be accurately accounted for and identified, and
even non-electronic materials, such as invoices, manuals, and packaging, may
provide useful information about the capabilities of the device, the network used,
account information, and, in some cases, unlocking codes. A record of all visible data
should be created. All digital devices, including mobile devices, which can store
data, should be photographed along with all the peripherals, such as cables, power
connectors, removable media, and connections.

By definition, a mobile device is intended to communicate via cellular phone
networks, Bluetooth, Infrared, and wireless (Wi-Fi), which brings us to the
importance of isolating it from the network as a step of securing the evidence. The
examiner must be aware that some mobiles can be remotely locked or wiped by
simply receiving a command (a text message, for example); isolating the device
from communication sources helps to keep the integrity of the evidence by disabling
capabilities, such as receiving incoming calls or text messages that may alter

the current state of data stored on the sized device. In addition to the incoming
data, isolating the device also prevents the altering of current stats via outgoing
data, such as GPS location, that may be delivered to an adversary providing the
geographic location of the forensic examiner. In the situation where a device is
found connected to a personal computer, the examiner should make a capture of
this personal computer's memory before unplugging the device and then stopping
synchronization.

The NIST Special Publication 800-101 regarding Guidelines on Mobile Device Forensics
provides some key implications for proper device isolation that are summarized here:

* Enabling the Airplane mode requires interaction with the mobile device using
the keypad, which poses some risk; however, this risk can be reduced if the
technician is familiar with the device in question and also documents the
actions taken (on paper or on video). Remember that the Airplane mode does
not prevent the system from using other services such as GPS in all cases.

* Turning off the mobile device may activate authentication codes (for
example, UICC PIN and/or handset security codes), which are then required
to gain access to the device, thus complicating acquisition and delaying
examination.

[265]

Mobile Forensics — Best Practices

* Keeping the mobile device on but radio isolated (for example, Wi-Fi, cellular
and Bluetooth), shortens battery life due to increased power consumption,
as devices that are unable to connect to a network raise their signal strength
to maximum. After some time, the failure to connect to a network may cause
certain mobile devices to reset or clear network data that otherwise would
be useful if recovered. Faraday containers may attenuate the radio signal
but not necessarily eliminate it completely, thus allowing the possibility
of communications to be established with a cell tower, if in its immediate
vicinity. The risk of improper sealing of the Faraday container (for example,
a bag improperly sealed or exposed cables connected to the forensic
workstation may act as an antenna) and unknowingly allowing access to the
cell network also exists.

The examiner has to be aware of the fact that even if a device is totally isolated,

user data can still be affected if the device is programmed to send an alert for
appointments or if alarms are set previously. For example, in many devices the alarm
is capable of turning on and establishing network connectivity on an inactive device.
Another example to be considered is key remapping; some users remap hardware
keys to perform a different action other than the default. If a non-desired situation
arises, the examiner should document it.

Once the device is ready to be analyzed, the examiner should seal this in a container
and label it according to the agency or organization specifications to begin the device
processing. Depending on the sensitivity of the case being examined, the examiner
should also bear in mind the organization's or agency's backlogs of digital forensics
casework and can envisage an on-site triage if possible, which involves a manual or
logical on-scene acquisition, followed immediately by an initial analysis of the data
extracted. Special attention must be paid to devices that offer full disk encryptions and
they must be processed immediately if found in an unlocked state. The NIST Special
Publication 800-101 presents a Generic On-Site Decision Tree that can be used as a
general guide for organizations and agencies to help with the prioritization of on-site
triage examinations via the description of some of the actions and decision points.

The examiner will have to answer some basic questions, such as:
* Is the device in an unlocked state and functional, thus permitting a manual or
logical data extraction?
* Is the extraction urgent?

* Can the mobile device be transported to a forensics laboratory in less than
2 hours?

* Is the device supported by the tool and has the examiner received proper
training?

* Does the device show that it has more than 50% remaining battery power?

[266]

Chapter 6

Have a look at the following diagram:

Generic Triage
Decision Tree

Unlocked /
Undamaged?

Lab less than
2 hours away?

Contact Expert

Tool /
Training?

Battery More
than 50%°?

Isolation Technique:
* Airplane Mode
* Radio Isolation

Isolation Technique:
* Airplane Mode
* Radio Isolation
* Pull Battery
- Power Off

Lab Processing!

Data Extraction

Need more
data?

May require
external power

Generic Triage Decision Tree (source: NIST Special Publication 800-101 Revision 1)

[267]

Mobile Forensics — Best Practices

Whether it's an on-site extraction or in a forensic laboratory, the previously identified
tools to work with should be used to process only specific items requested for
recovery. If any concern exists about the requested data, the examiner is advised to
contact the submitter for clarification before any processing. In the cases involving

a limited scope search warrant, the examiner should take care to only report items
covered by the warrant. The examiner is recommended to document the version of
the tools being used with a consideration to also document the order of software and
hardware used during the device's processing.

During the acquisition phase, the examiner is advised to use a reference clock and to
document the date and time from the device and then determine the differences from
the reference clock if any. The date and time on the device is important information
that can be affected during acquisition. It's very important to document differences
of date and time if detected.

If the device has installed any data storage extension (for example, microSD card),
the examiner should remove it prior to any acquisition in order to avoid any data
alteration during acquisition processes. Memory cards should be acquired separately
using traditional forensics processes. If, for one reason or another, the examiner is
not able to process the data storage extension separately, documenting the date and
time of both the device and card acquisition is especially important.

In this process, the examiner intends to extract digital evidences and must pay
attention to separate relevant information from irrelevant information. This

process must be followed by a careful documentation of the stats and the content

of every piece of extracted data. Having enough information about the case being
investigated helps in setting a starting point of potential evidences and provides

a clear idea about the type of data, keyword or phrase the examiner can target
when analyzing the extracted data. The set of capabilities and features that modern
smartphones offer, including e-mails, personal information management, social
media, or messaging, can point the examiner to different potential evidences

that a device can hold, including contact information (phonebook), calendar and
appointments, outgoing, incoming, and missed phone calls, photos, videos and
different media files, web browsing activities, social media related data, geolocation
data, electronic mails and documents, and more. During the process of acquisition,
the examiner should prepare a basic background about the incident or the case being
investigated by answering five important questions about the case: Who? (who is
involved), What? (what is the nature of the occurred events?), When? (establishing a
timeline of events), Why? (the examiner should have enough information about the
motivations behind the events) and How? (devices, application, or whatever tools
were used by individuals involved).

[268]

Chapter 6

Once extracted, the data is effectively processed. The examiner should be aware

of the fact that forensic tools can report incomplete, erroneous, and sometimes
conflicted data. This engages the examiner in a verification and validation process
in which he must verify the accuracy of the extracted evidence. The examiner has
several methods to make sure that the extracted data is accurate. If the examiner

has the possibility to handle the device itself (if it's not locked or if the unlock code
is known), he can proceed by comparing the extracted data to the data displayed

on the device. Manually scrutinizing the device can make irreversible changes to
some evidence (such as missed calls or unread messages), so the examiner must be
extremely careful when handling the device directly and is invited to video record
the process of manually navigating the device's content via its interface menu.

The most common verification technique is using hash values. If the examiner

was successful in extracting the filesystem, forensic tools can be used to hash the
extracted files (as mentioned earlier in this chapter) and any extracted file can be then
checked against the original file in order to verify its integrity. Extracting files and
hashing them twice (maybe using different tools) can be another option to confirm a
file's integrity. It's important to note that there are cases where data extraction alters
files, as explained in Hashing Techniques for Mobile Device Forensics by Shira Danker,
Rick Ayers and Richard P. Mislan (http://citeseerx.ist.psu.edu/viewdoc/dow
nload?doi=10.1.1.437. 3256&rep=repl&type=pdf).

If level 3 or 4 acquisitions (physical acquisitions) were supported, the examiner can
check manually the underlying hex code using different techniques (as explained in
Chapter 2, Do It Yourself - Low-Level Techniques) to decode data and correlate/confirm
results reported by forensic tools; this method is quite challenging, time consuming,
and requires a certain level of expertise and experience with file formats and encoding
methods, but it is still efficient and should not be ignored in the evidence validation
process. The examiner may need more than one technique to validate his finding.

To recapitulate the verification options, the examiner can:

* Compare extracted data with data on the device
* Use hash values to determine file integrity

* Manually carve physical dump

[269]

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.437.3256&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.437.3256&rep=rep1&type=pdf

Mobile Forensics — Best Practices

After being sure of the integrity of the acquired data, the examiner will document
and report his findings. As described in this section, documentation is a task that
follows the examiner during the whole investigation process and the examiner
should note what was done or noticed during the acquisition and examination while
respecting the eventual represented organization or agency's policies. Maintaining

a careful record of what was done and what was observed during the previous
stages of the overall investigation process will be of great value when writing

the final report. To facilitate documentation and reporting, the examiner can use
examination worksheets in order to be sure that all the basic information is reported.
The examiner must remember that a good report relies on good documentation
(including notes, photographs, and generated contents using forensic tools).

The National Institute of Justice (NIJ) provides samples of worksheets
on their publication Forensic Examination of Digital Evidence: A Guide

for Law Enforcement (https://www.ncjrs.gov/pdffilesl/
nij/199408.pdf) that can be adapted to the examiner's need. The
following is sample of a removable media worksheet:

Removable Media Worksheet

Case Number: Exhibit Number:

Laboratory Number: Control Number:

Media Type / Quantity

Diskette [] LS-120 [] WOME Zip [] WOMBZip []
1GB Jaz [] 2GBJaz [] Magneto-Optical [] Tape []
oo oD] Other []
Examination
Exhibit # Triage Duplicated Browse Unerase Keyword

~\‘Q Sub-Exhibit # Search

Examiner Date Supervisor Review Date

| Digital Evidence Removable Media Worksheet Page 1of 2

[270]

https://www.ncjrs.gov/pdffiles1/nij/199408.pdf
https://www.ncjrs.gov/pdffiles1/nij/199408.pdf

Chapter 6

The reporting is done when all the relevant data is bookmarked and the search has
been done. Most modern forensic tools provide a built-in reporting feature that
follows a predefined template that can be customized by the examiner in order to
include the organization (or agency) logo and report header. Most generated reports
include the examiner's name, a case number, the device type and category, the case's
title, date, and categories of evidences found. In addition to this, the automatically
generated reports can be usually customized to either include the relevant evidence
found, extracted data, or let the examiner choose whether data is to be included or
not in the final report in order to minimize its size and to facilitate its readability.
The examiner should not consider a generated report as the final report; in addition
to the forensic tool generated report, the final report should include a summary of
all actions taken, conducted analysis, and the relevance of the evidence acquired.
Obviously, the type of data that needs to be presented determines the support that
will be used, so evidentiary data, such as video or audio, should be included in the
final report on removable media.

It's mandatory that the final report includes every piece of information capable of
identifying the case. The examiner should be sure that his final report outlines the
test results and findings and has his signature.

The report is an important part of the forensic investigation and will definitely be
scrutinized once presented to the concerned party. The examiner should make sure
that his final report:

* Summarizes the incident or the case being investigated.

* Is technically sound and includes a glossary explaining the acronyms and
technical terms.

* Is understandable. Knowing to whom the report will be presented will help
the examiner in writing it using "appropriate words".

* Isclearly formatted and structured and has a logical progression of evidence.

* Includes conclusions, recommendations, and opinions. In addition to
evidence, the examiner should include where the evidence leads to and
is encouraged to include his opinion based on facts, his own experiences,
and expertise.

* Adheres to laws as appropriate (a report of a Homeland Security case is not
redacted as a report of a gambling case).

While redacting his final report, the examiner should keep in mind the decision
maker's requirements, and obviously the final report must meet those requirements.

[271]

Mobile Forensics — Best Practices

According to The National Institute of Standards and Technology in Guidelines on
Mobile Device Forensics, the report must include the following information:

Identity of the reporting agency

Case identifier or submission number
Case investigator

Identity of the submitter

Date of evidence receipt

Date of report

Descriptive list of items submitted for examination, including the serial
number, make, and model

Identity and signature of the examiner
The equipment and setup used in the examination

Brief description of steps taken during examination, such as string searches,
graphics image searches, and recovering erased files

Supporting materials, such as printouts of particular items of evidence,
digital copies of evidence, and chain of custody documentation

Details of findings:

[e]

Specific files related to the request

o

Other files, including deleted files that support the findings

String searches, keyword searches, and text string searches

Internet-related evidence, such as website traffic analysis, chat logs,
cache files, e-mail, and news group activity

Graphic image analysis

Indicators of ownership, which could include program registration
data

Data analysis
Description of relevant programs on the examined items

Techniques used to hide or mask data, such as encryption,
steganography, hidden attributes, hidden partitions, and file
name anomalies

Report conclusions

[272]

Chapter 6

In addition to this list of information that a report could include, the Scientific
Working Group on Digital Evidence in their second version of Best Practices for
Mobile Phone Forensics suggest the following elements to be included as well:

* Copy of legal authority

* Chain of custody

* Photographs or documentation of any visible damage

* Information regarding the packaging and condition of the phone

* Sulfficient detail to enable another examiner, competent in the same area of
expertise, to repeat the findings independently

* Documentation of any anomalies in the data acquisition (for example,
acquisition disruptions, faulty cables, and incoming data)

* Substantive communication notes regarding the case

* Supplement reports related to the examination

The full list of elements can be found at https://www.swgde.org/documents/
Current$%20Documents/2013-02-11%20SWGDE%20Best%20Practices%20for%20
Mobile%20Phone%20Forensics%$20V2-0.

The report written is meant to be presented. The examiner should consider how

its final reports will eventually be presented clearly to a wide variety of audiences,
who will decide whether to use the evidence acquired in court or not. The audience
can vary depending on the nature of the case (legal and technical experts, law
enforcement officers or corporate managers, and so on). In most cases, it's preferable
to present the final report in both paper and electronic format as the extracted data
could be important to supported forensic tools for further analysis if required.
Pictures of call history logs or text messages can be visually compelling to a non-
technical person (like a jury). The examiner can use Mind Map or the Timeline
software to present his findings so that the progression and the correlation of events
can be shown clearly to the audience.

MindView-Law Enforcement (http://www.matchware.com/) is a great tool for
creating professional timelines of accidents and crime scene data and enables
examiners to quickly brainstorm and input data and then present this data as a
timeline or export it to PowerPoint, Word, or an HTML website.

[273]

https://www.swgde.org/documents/Current%20Documents/2013-02-11%20SWGDE%20Best%20Practices%20for%20Mobile%20Phone%20Forensics%20V2-0
https://www.swgde.org/documents/Current%20Documents/2013-02-11%20SWGDE%20Best%20Practices%20for%20Mobile%20Phone%20Forensics%20V2-0
https://www.swgde.org/documents/Current%20Documents/2013-02-11%20SWGDE%20Best%20Practices%20for%20Mobile%20Phone%20Forensics%20V2-0
http://www.matchware.com/

Mobile Forensics — Best Practices

The following is a sample of a criminal profiling mind-map template from the

MindView tool:

How accurate?

offender characteristics

Sl = p the profile report

_Sfogesion= ARRAERAE 4
Responding officer's documentation /
|
Autopsy report .
(2 Police and expert reports

The offense

The crime scene

[E Time & date

About the crime
] Manner of attack

Weapans / tools used

Gther criminal profile reports 1
!
other. !

[E1 Name / address / phone number

Profession / trade \
Ecanomic circumstances

@ About the victim(s)

Associates

Criminal Profiling

| Motive 1

— % B ot

Police record?

Family

| Trademarks or peculiarities
|

Spoken or written words

4

{ About the perpetrator Clothing
¥
/) Vehicles used

A other.

The overall forensics process ends with archiving acquisition case files in adequacy
to the organization or agency policies and applicable laws. Archiving is an important
step of the process in which all the retained documentation and data should be stored
in useable, proprietary, and non-proprietary formats. The examiner should also think
about retaining a copy of tools used to facilitate viewing data at a later date.

[274]

Chapter 6

Similar to any forensic investigation, several approaches and techniques can be used
to acquire, examine, and analyze data from a mobile device; this section provided

a proposed process in which guidelines from different standards and models
(SWGDE's Best Practices for Mobile Phone Forensics, NIST's Guidelines on Mobile Device
Forensics, Developing Process for Mobile Device Forensics by Det. Cynthia A. Murphy)
were summarized. As a recapitulation of what was said, the following flowchart
schematizes the overall process:

Evidence
Intake

Presentation

_m Identiﬁcatio .
Preparation

Securing /
Preserving

Verification /
Validation

Processing

Here's the process in detail:

* Evidence intake: Triggers the examination process. This step should be
documented.

* Identification: The examiner needs to identify the device's capabilities and
specifications. The examiner should document almost everything during the
whole process of identification.

* Preparation: The examiner should prepare tools and methods to use and
must document them.

[275]

Mobile Forensics — Best Practices

Securing and preserving evidences: The examiner is invited to protect the
evidences and to secure the scene as well as isolate the device from all the
networks. The examiner should be vigilant when documenting the scene.

Processing: At this stage, the examiner should start performing the actual
(and technical) data acquisition and analysis and document steps, tools used,
and all his findings.

Verification and validation: The examiner should be sure of the integrity of
his findings and must validate acquired data and evidences. This step should
be documented as well.

Reporting: The examiner produces a final report in which he documents
process and finding.

Presentation: This stage is meant to exhibit and present finding.

Archiving: At the end of the forensic process, the examiner should preserve
data, report, tools, and all his findings in common formats for an eventual
later use.

There have been many worldwide efforts to produce a solid framework and to
standardize digital forensics in order to help lead a mobile forensic investigation
successfully, and many organizations and states are publishing standards and best
practices guidelines that the examiners can visit to expand their knowledge of digital
forensics. The following is an example of the references:

ISO/IEC 27037:2012, Information technology - Security techniques -
Guidelines for identification, collection, acquisition, and preservation of
digital evidence

ASTM E3046 - 15, Standard Guide for Core Competencies for Mobile Phone
Forensics

Internet Engineering Task Force (IETF) RFC 3227, Guidelines for Evidence
Collection and Archiving

European Network of Forensic Science Institution (ENFSI), Guidelines for
Best Practice in the Forensic Examination of Digital Technology

Association of Chief Police Officers (ACPO), Good Practice Guide for
Digital Evidence

[276]

Chapter 6

* Scientific Working Group on Digital Evidence (SWGDE), SWGDE
Proposed Techniques for Advanced Data Recovery from Security Digital
Video Recorders Containing H 264 Data

* Scientific Working Group on Digital Evidence (SWGDE), Scientific
Working Group on Digital Evidence Bylaws

Mobile device identification

Device identification is an interesting and important part of any investigation process
that allows an examiner to choose an appropriate forensic tool to identify a particular
device at a later time. A mobile device is identified by its make, model, and service
provider. In the most recent devices, the manufacturer's label is visible in the device's
battery compartment but the examiner should be aware of the fact that removing

the battery may affect the state of the device's volatile memory even if the device is
found in an inactive/turned off state.

There are many "tips" that the examiner can use to identify a mobile device including
the following:

Physical characteristics

The examiner can rely on the device's physical characteristics to identify its make
and model. The dimensions, weight, shape, and unique design of some particular
devices can help the examiner to either immediately identify a device or to query
available online repositories (http://www.gsmarena.com/search.php3, http://
mobile.softpedia.com/phoneFinder, and http://www.phonescoop.com/phones/
finder.php) based on the selected attributes to get the device's specifications. In
order to be sure of the match, the examiner is invited to use more than one source.

Depending on the examiner's experience, identifying some manufacturers of mobile
devices is easy and the correlation between the size, number of contacts, and shape
of the device's data cable and the manufacturer of the device may be helpful in
identification.

[277]

http://www.gsmarena.com/search.php3
http://mobile.softpedia.com/phoneFinder
http://mobile.softpedia.com/phoneFinder
http://www.phonescoop.com/phones/finder.php
http://www.phonescoop.com/phones/finder.php

Mobile Forensics — Best Practices

Device info

Information regarding the device can be found on the battery cavity; most mobile
device manufacturers print their logos and list the make, model number, and some
of (or all) the device's unique identifiers, such as the Electronic Serial Number
(ESN), the Mobile Equipment Identifier (MEID), the Federal Communications
Commission Identification Number (FCC ID), and the International Mobile
Identifier (IMEI). The following photo shows the manufacturer logo, make, model,
IMEI, and FCC ID of a Nokia Lumia 720:

The ESN and MEID are specific to Code-Division Multiple Access (CDMA) mobile
devices, with CDMA being a digital cellular technology that uses spread-spectrum
techniques.

The ESN is a unique 32-bit ID that identifies the device on the CDMA network,
and the examiner must be aware that the ESN can be listed either as 11 digits in
decimal format or as eight hexadecimal digits, which are not numeric conversions
of each other, and the examiner can use services such as http://www.elfgrin.
com/esndhconv. php to convert values. The first 8-14 bits of the ESN identify the
manufacturer and the remaining bits represent the assigned serial number.

[278]

http://www.elfqrin.com/esndhconv.php
http://www.elfqrin.com/esndhconv.php

Chapter 6

The MEID is a substitute of the ESN due to its 32-bit limitation. The examiner is more
likely to find only the MEID, since there has been a shortage of ESN since November
2008. The MEID is 56-bits and is listed in hexadecimal as: eight bits representing the
regional code, 24 bits representing the manufacturer code, and 24 bits representing
the manufacturer's assigned serial number.

Just like MEID, the IMEI identifies all mobile devices on the Global System for
Mobile Communications (GSM) and the Universal Mobile Telecommunications
System (UMTS) networks. The IMEI has a total of 15 numeric digits, 14 digits plus a
check digit, and can be decoded to identify the device's manufacturer, brand, power
class, band, and more. The initial eight digits are the Type Allocation Code (TAC)
and represent the device's model and revision. Services such as http://www.nobbi .
com/tacquery .php can be used to identify phone and manufacturer by TAC. The
next six digits represent the device's serial number and the last digit represents the
check digit calculated using the Luhn algorithm.

A database lookup service is available at https://imeidata.net/ and can return
detailed information about the IMEI being looked for, as you can see from the
following screenshot:

354 7154 | 66

IMEI: 354 66
Allocating Body:
Type Allocation Code: m:l
Serial Number: (4 6]
Luhn Checksum: [6 |
Manufacturer: NOKIA CORPORATION
Brand: NOKIA
Model: 5201
Network & Information: Free Check Now
Blacklist (Lost/Stolen): Free Check Mow
Band:

802 11b/g/n, Bluetooth, GSM 1800, GEM 1900, GEM 900, GSM850 (GSM200), HSDPA, HSUPA, LTE
FDD BAND 1, LTE FDD BAND 20, LTE FDD BAND 3, LTE FDD BAND 7, LTE FDD BAND 8, NFC,
WCDMA FDD Band |, WCDMA FDD Band V, WCDMA FDD Band VIl

[279]

http://www.nobbi.com/tacquery.php
http://www.nobbi.com/tacquery.php
https://imeidata.net/

Mobile Forensics — Best Practices

The FCC ID is independent of the network and is found in almost every hardware
that generates a radio signal. On mobile devices, the FCCID can help the examiner
find the device's manufacturer and retrieve the device user manual, device photos,
radio frequency test results, and in some cases JTAG taps. The first three characters
of the FCC ID represent the manufacturer code and the remaining 14 characters/
digits are the product code. The FCC provides a database lookup service available at
the FCC website at https://www.fcc.gov/general/fcc-id-search-page.

The examiner should make sure that any research he does regarding codes and
unique device identifiers is properly documented too.

Service provider

The service provider or the carrier for a mobile device can be identified by its printed
logo on the device; in some cases, the carrier prints its logo as a branding and
advertising effort and this could help the examiner to identify the carrier on which
the device operates. The examiner is advised to keep in mind that mobile devices

are subject to unlocking technology in order to operate under a different carrier,

so the examiner should examine the Subscriber Identity Module or Subscriber
Identification Module (SIM) if present.

The SIMs is shipped in three different formats with different sizes: Mini SIM (2FF),
Micro SIM (3FF), and Nano SIM (4FF):

The SIM circuit is a part of the function of a UICC and one appellation could be
used to refer to the other. Each UICC is imprinted with a unique identifier called
the Integrated Circuit Card Identification (ICCID), which may be 19 to 20 digits
long and respects ITU-T recommendation (http://www.itu.int/en/ITU-T/
publications/Pages/recs.aspx). It consists of two digits representing the major
industry identifier as defined by ISO/IEC 7812, one to three digits representing the
country code, one to four digits representing the issuer identifier, 12 to 14 digits
representing the account ID, one digit for checksum using the Luhn algorithm, and
an extra digit (the 20th) returned by the AT#ccID command.

[280]

https://www.fcc.gov/general/fcc-id-search-page
http://www.itu.int/en/ITU-T/publications/Pages/recs.aspx
http://www.itu.int/en/ITU-T/publications/Pages/recs.aspx

Chapter 6

Variable identification numbers (country code, issuer identifier, and account ID) are
a fixed number of digits within a country, world zone, or for each particular issuer
identifier number. You can learn more from E.118 at http://www.itu.int/rec/
dologin pub.asp?lang=e&id=T-REC-E.118-200605-I! !PDF-E&type=items.

The International Numbering Plans website (http://www.numberingplans.
com/?page=analysis&sub=simnr) supports ICCID queries for this information.

Summary

This chapter covers the essential best practices for performing a mobile device
investigation process accurately; we covered the important mobile forensics phases,
starting from evidence intake to the archiving stage. The process described was
based on the NIST guidelines for mobile device forensics. Even if it's true that
technical examination may one differ from device to another, the examiner is always
invited to adopt and roughly follow a consistent framework in order to produce
repeatable, presentable, and defensible results.

In the upcoming appendix, we will present a step-by-step guide for preparing a
forensic workstation based on Santoku Linux.

[281]

http://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-E.118-200605-I!!PDF-E&type=items
http://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-E.118-200605-I!!PDF-E&type=items
http://www.numberingplans.com/?page=analysis&sub=simnr
http://www.numberingplans.com/?page=analysis&sub=simnr

Preparing a Mobile Forensic

Workstation

Mobile incident response is a little different from computer incident response,
especially if we point out some unique properties of mobile devices, such

as the introduction of application stores models, lack of administrative

access to smartphones, and mobile's explosive growth. The dramatic growth
of annual smartphone unit sales has left the forensic community a lack of
time to mature (source for the following graph: http://ben-evans.com/
benedictevans/2 015/11/7/mobile—ecosystems—and—the—death—of—pcs):

0S5 & Android

smartphones

Mobile phones

Mobile is the new scale

Mobile was always bigger than PCs, but separate. Smartphones broke down that wall

1984 MWE6 WEE 11VO0 1WO2 1994 1996 1998 2000 2002 2004 2006 2008 200 2012 204

[283]

http://ben-evans.com/benedictevans/2015/11/7/mobile-ecosystems-and-the-death-of-pcs
http://ben-evans.com/benedictevans/2015/11/7/mobile-ecosystems-and-the-death-of-pcs

Preparing a Mobile Forensic Workstation

This growth gave birth to many common scenarios in which an examiner would
be solicited to respond to a mobile incident, such as malware infection, suspicious
device behavior, stolen or lost device, e-discovery, legal hold, or data breach. Thus,
setting up an appropriate environment is a key component of mobile incident
response. The community is continuously trying to keep pace with this unstoppable
growth of technology. The easiest way to set up a mobile forensic workstation is
by adopting one of the freely available open source Linux distributions, specially
crafted to let the mobile forensic examiners acquire and analyze data from most
smartphones by including most of the useful tools and utilities related to mobile
forensics. This section will describe how to set up Santoku Linux on a virtual
environment. The examiner can also decide to install the operating system directly
on a computer, but it's recommended to use virtual environments.

Before setting up Santoku, the following is required:

* Santoku Linux . 150 file (https://santoku-linux.com/download/).

* VirtualBox or VMWare Player (in this section, the latest version of Oracle VM
VirtualBox version 5.0.16 was used. It can be downloaded from https://
www.virtualbox.org/wiki /Downloads).

* A host machine with a dual-core processor (minimum), 8 GB RAM, and 40
GB (or larger) free hard drive space.

After installing and running VirtualBox (the default installation path is ¢: \Program
Files\Oracle\VirtualBox\), click on New to create a new virtual machine. A
wizard will show up to guide you through different parameters. The first screen

is to choose the name and the virtual machine's operating system:

[284]

https://santoku-linux.com/download/
https://www.virtualbox.org/wiki/Downloads
https://www.virtualbox.org/wiki/Downloads

Appendix

Name and operating system

Please choose a descriptive name for the new virtual machine
and select the type of operating system you intend to install
on it. The name you choose will be used throughout VirtualBox
to identify this machine.

Name: |Sanmku WM

Type: |L'n.|x

\iersion: |Lh.l1lu (B4-bit)

Click on Next and select the appropriate amount of memory for the virtual machine;
it's recommended to select at least 4 GB:

Memory size

Select the amount of memary (RAM) in megabytes to be
allocated to the virtual machine.

The recommended memory size is 768 MB.

[285]

Preparing a Mobile Forensic Workstation

Click on Next and choose Create a virtual hard disk now on the screen that follows:

Hard disk

If you wish you can add a virtual hard disk to the new
machine, You can either create a new hard disk file or select
one from the list or from another location using the folder icon.

If you need a more complex storage set-up you can skip this
step and make the changes to the machine settings once the

machine is created.

The recommended size of the hard disk is 8,00 GB.
O Do not add a virtual hard disk

® Create a virtual hard disk now

) Use an existing virtual hard disk file

[santoku.vhd (Normal, 80,00 GB)

| Create

Click on Create and select the VDI (VirtualBox Disk Image) option on the following

screen:

Hard disk file type

Please choose the type of file that you would lke to use for the new virtual
hard disk. If you do not need to use it with other virtualization software you

can leave this setting unchanged.
®) VDI (VirtualBox Disk Tmage)
) VMDK (Virtual Machine Disk)
() VHD (Virtual Hard Disk)

(2 HDD (Parallels Hard Disk)

) QED {QEMU enhanced disk)

) QCOW (QEMU Copy-On-Write)

[286]

Appendix

Click on Next; on the Storage and physical hard disk screen leave the Dynamically
allocated option selected and click on Next. On the File location and size screen, you
can click on the folder icon to choose the location where the virtual hard disk drive
will be stored and then select the size of it either by adjusting the slider or by typing
the value in gigabytes depending on your needs; however, it's recommended that
you allocate around 40 GB:

File location and size

Please type the name of the new virtual hard disk file into the box below or dlick
on the folder icon to select a different folder to create the file in.

|E:\VMs\Sanbolq.| M _book\Santoky VM. vdi |

Select the size of the virtual hard disk in megabytes. This size is the limit on the
amount of file data that a virtual machine will be able to store on the hard disk.

Click on the Create button, and from the VirtualBox's main window, select the newly
created virtual machine and click on Settings:

File Machigpe Help
ld F O - @ oot
New Settings Discard Start

(@, General

Name: Santoku VM
. Operating System: Ubuntu (54-bit)

I System

Base Memory: 4098 MB Santoku VM

Boot Order: Floppy, Optical, Hard Disk

Acceleration: WT-x/AMD-V, Mested Paging, KVM
Paravirtualization

r’; (™ Powered OFf 1 Display

) 19 map

[287]

Preparing a Mobile Forensic Workstation

Select the Storage option on the left of the Settings screen and then click on the CD
icon next to Controller: IDE. To add an optical drive, a question box will pop up;
select Choose disk:

General ‘ Storage ‘

System Storage Tree

Displa e Controller: IDE @ @
play ‘fou are about to add a new optical drive

Storageo - @ e @ to controller IDE.
>
i
>

Controller: SATA
‘iﬁ onreler Would you like to choose a virtual optical
Audio Santoku VM.vdi disk to put in the drive or to leave it

empty for now?
Network | Leave empty | | Choose di&; Cancel

Serial Ports 9

Navigate to your downloaded santoku_0.5.iso file, click on Open and then on Ok,
which will bring you back to the main VirtualBox menu.

The virtual machine is now ready and we can proceed with the Santoku installation;
select the newly created virtual machine from the main menu and click on Start.

To begin an installation process, choose install - start the installer directly and hit
Enter:

Santoku 0.5

T'ives = boptSEhEs v S tem - el v
xforcevesa— boot INveSin safie graphics m
1l

MEmbEs L R IC T CEE
hd = booits thestarstahard s disk

[288]

Appendix

Choose your language and click on Continue; on the Installation type screen, select
Erase disk and install Santoku, and click on Install Now as follows:

e

Installation type

This computer currently has no detected operating systems. What would you like to do?

© Erase disk and install Santoku
Warning: This will delete any files on the disk.

() Encrypt the new Santoku installation For security
You will choose a security key in the next step.

(") use LVM with the new Santoku installation
This will set up Logical Volume Management. It allows taking snapshots and easier partition resizing.

() something else
You can create or resize partitions yourself, or choose multiple partitions for Santoku.

(>auit { Back || -Install Now-

Choose your time zone and keyboard layout, user name and password settings, and
click on Continue. After the installation is complete, reboot when prompted and then
log in using the username and password you created during the installation process.

The last step that remains is installing VirtualBox Guest Additions; this is an optional
step that will improve the VM graphic, shared folders, and offers other features.
Click on Devices | Insert Guest Additions CD image...:

File Machine View Input | Device

soufiane-VirtualBox Optical Drives @D enus OO
Metwork
UsB
Webcams

Shared Folders

Shared Clipboard
Drag and Drop

Insert Guest Additions CD image...
& g

[289]

Preparing a Mobile Forensic Workstation

If asked for authentication, type in the password you created during the installation
process, click on OK, and close the Removable media detection window that
appears. Next, open a terminal window by navigating to Accessories | LXTerminal
or simply press Ctrl + Alt + T on the keyboard:

il 2] [Archive Manager
Ii. Graphics v (8] character Map
@ Internet v [Disks
B oOffice + | [File Manager PCManFM
Fa Programming » | B Galculator
| Santoku + | Image Viewer
H51 sound & Video + @@ ipython
Q system Tools » 4 Leafpad
4} Preferences |
[@ screenshot
Run L_al Xpad

2 Logout

Execute the install script by running the following command:

sudo sh /media/username/VBOXADDITIONS 5.0.16 105871/VBoxLinuxAdditions.run

You will need to enter the administrator password, which you set up during
installation. In the preceding command, swap username with the username you
are logged in with, and in VBOXADDITIONS_5.0.16_105871 the version following
VBOXADDITIONS may be different:

Ei soufiane@soufiane-VirtualBox: ~ - + x

[290]

Appendix

Optionally, you can update local packages index by typing the following command:
sudo apt-get update

After the command is completed, upgrade the packages by typing the following
command:

Sudo apt-get upgrade
If asked to continue, type y and hit Enter.

The Santoku Linux VM is now operational; if you want to connect a mobile device
to it, click on Devices | USB and select a detected device, as you can see from the
following screenshot:

:'f"f‘("iSantuku\f'M[Running]—OmclE\r'MVirtuale - (=] -
File Machine View Input Help

L Webcams : :
i i CHICONY HP Basic USE Keyboard [0300!
File Edit Tab [Shared Folders asic cyboar

| Nokia Lumia 920 (RM-821) [0100] Q

Do not hesitate to visit https://santoku-1linux.com/howtos/ to get familiar with
the environment and tools it offers.

"Emﬁhd’ilermlshtﬂ’KG) Tpr s ' rﬁmmﬁﬁtmdomtmedm@&mmemmpmh @w
EP Network 3
& use (2] » | @ | USB Settings..
13
»

Obviously, Santoku is not the only option. SANS Institute published a white paper
entitled Building a Low Cost Forensics Workstation (https://www.sans.org/reading-
room/whitepapers/incident/building-cost-forensics-workstation-89 5),
which describes the requirements for a low cost forensics workstation that can be
used in electronic investigations, and they offer a free Linux distribution dedicated
to incident response and digital forensics called SANS Investigative Forensic
Toolkit (SIFT) Workstation Version 3 (https://digital-forensics.sans.org/
community/downloads). SIFT is a very respectable and well-maintained distribution
that includes a collection of various tools to aid you in performing forensics analysis
tasks. You can find the whole documentation, user manual, tools, commands, and
scripts at https://sift.readthedocs.org/en/latest/.

In addition to Santoku and SIFT, CAINE (Computer Aided INvestigative
Environment) is another Linux-based distribution that offers an interesting
forensic environment and is available at http://www.caine-1live.net/.

[291]

https://santoku-linux.com/howtos/
https://www.sans.org/reading-room/whitepapers/incident/building-cost-forensics-workstation-895
https://www.sans.org/reading-room/whitepapers/incident/building-cost-forensics-workstation-895
https://digital-forensics.sans.org/community/downloads
https://digital-forensics.sans.org/community/downloads
https://sift.readthedocs.org/en/latest/
http://www.caine-live.net/

Index

Sym bols chip-off forensic examinations 177
real case study 181
7-bit ASCII table third-party applications 181-191
reference 52 Android OS architecture
Android Runtime 127
A Application Framework 129

Applications layer 129
Libraries section 127
Linux Kernel layer 127
Software layer 127
Android physical data acquisition

Abstract Digital Forensics Model (ADFM)
about 7
Approach Strategy 7
Preparation 7

Returning Evidence 7 about 168-173
Access Control Entries (ACE) 200 acquired image, analyzing
Access Control List (ACL) 197 with Autopsy 173-177
AccessData FTK Imager 171 Android Runtime 127
Activity Manager 129

Android security model
ADB o about 129, 130
used, for Andr.cn.d. logical application security 133
data acquisition 156-164 full disk encryption 131
Advanced Encryption Standard (AES) 45 AppContainers 210
AFLogical OSE Apple File Conduit (AFC) protocol 79
about 165 application data storage 206

used, for Andrf)i.d' logical Application Framework layer 129
dat tion 165-167
ata acquisition 269~ application security,
ahead-of-time (AOT) 127 Android security model

Android Analyzer module 174 about 133
Android Backup Extractor application sandboxing 133
URL '165 application signing 136, 137
Android keyguard 138 permissions 134, 135
Android logical data acquisition SELinux 136
about 156 Applications layer 129
ADB, using 156-165 artifact location 247-254
AFLogical OSE, using 165-167 Autopsy
Android OS about 173
about 126, 127 URL 173

[293]

B

Bag Grid Array (BGA) type 180
Belkasoft Evidence Center
about 244
URL 244
BitLocker 214
Board Support Package (BSP) 195
Boot Configuration Data (BCD) settings 209
bypassing security
about 137,138
Android device, rooting 143-146
bootloader/recovery mode 139-142
lock pattern, cracking 146-148
PIN/password, cracking 149-156

C

CAINE (Computer Aided INvestigative
Environment)
URL 291
Cellebrite 241
chambers 209
Chaos Computer Club (CCC) 117
Cipher Block Chaining (CBC) 213
Code-Division Multiple Access (CDMA)
mobile devices 278
Code Signing 209
command parameters
-all 164
-apk 164
-f 164
-noapk 164
-noshared 164
-nosystem 164
<packages> 164
-shared 164
-system 164
Common Language Runtime (CLR) 57
Component Object Model (COM) 194
Computer Forensic Investigation Process
(CFIP)
about 5
Acquisition 5
Admitting 5
Evaluation 5
Identification 5

Computer Forensic Tool Testing (CFTT)
program 215
Content Providers 129
Cortana 194
crypto footer 152
CryptoTool
about 47
URL 47

D

Data 200
data protection
Complete Data Protection 69
Data Protected Until First User
Authentication 69
Data Protection Unless Open 69
No Protection 69
DB Browser for SQLite
reference 119
DE4DOT
URL 62
decompiler 57
decompiling 57-62
Deployment phases, IDIP
about 8
confirmation and authorization 8
detection and notification 8
device backup 85
Device Firmware Upgrade (DFU) mode 76
dex2jar
about 60
reference 60
dex2oat utility 128
Digital Crime Scene Investigation Phases,
IDIP
Digital Crime Scene Reconstruction 10
Document Evidence and Scene 10
Presentation of Digital Scene Theory 10
Preservation of digital scene 10
Search for Digital Evidence 10
Survey For Digital Evidence 10
Digital Forensic Research
Workshop (DFRWS)
about 6, 20
Analysis 6
Collection 6

[294]

Examination 6

Identification 6

magic numbers 20

Presentation 6

Preservation 6

reference 6
Direct Memory Access (DMA) 69
disassembler 57
disassembling 57-62
disk-encryption key (DEK) 153
dm-crypt level 131

E

Elcomsoft 50
Elcomsoft Forensic Disk Decryptor
about 50
URL 50
Elcomsoft iOS Forensic Toolkit
executing 95-98
URL 94
Electronically Stored Information (ESI) 259
Electronic Serial Number (ESN) 278
encoding
about 51
ASCII 52,53
character 51
character set 51
coded character set 51
code point 51
code unit 51
UNICODE/UTE-8 52,53
URL encoding 54
encryption
about 44, 45
public key encryption 48, 49
symmetric key encryption 45-48
End of Central Directory Record 26
End of Image (EOI) 21
End-To-End Digital
Investigation (EEDI) process
about 11
Analysis of Individual events 11
Chain of evidence construction 12
Collecting Evidence phase 11
Corroboration 12
Event deconfliction 12

Event normalization 12

Preliminary Correlation step 11

Second level correlation 12

Timeline analysis 12
ESEDatabaseView

reference 248
Executable and Linkable

Format (ELF) file 128

Execution Manager 198
Exif (Exchangeable image file format) 20
expandable storage 199
Extensible Storage Engine (ESENT) 198

F

Facebook Messenger 181
fastboot mode, Android 139
Federal Communications Commission
Identification Number (FCC ID) 278
file carving
about 20
JPEG format, carving 20-23
ZIP format, carving 24-27
FindAppointmentsAsync() method
Options 234
RangeLength 234
RangeStart 234
Flash filesystem (YAFFS2) 127
Folder layout 199
forensic tools
reference 264
full disk encryption,
Android security model
about 131, 132
KeyChain class 133
KeyStore class 133
Full Disk Encryption (FDE) 152
Full Volume Encryption Key (FVEK) 213

G

Generic On-Site Decision Tree 266

Global Regular Expression Print (Grep) 41

Global System for Mobile
Communications (GSM) 279

GPSAltitude 35

GPSAltitudeRef 35

[295]

GPS analysis

metadata, extracting 27-39
GPSLatitude 35
GPSLongitude 35
group ID (GID) 69

H

Hardware Abstraction Layer (HAL) 197
Hashcat
reference 151
hashing 55-57
Hierarchical File System Plus (HFS+)
about 66
allocation file 67
Attributes File 67
Catalog File 67
Extents Overflow File 67
improvements 66
Startup File 67
Volume Header 67
Human Interface Device (HID)
class drivers 197

ideviceinfo
references 81
iDevices models
references 81
ILSpy
URL 61
Image File Directory (IFD0) 28
independent hardware vendors (IHVs) 195
Info.plist 101
Institute of Electrical and Electronics
Engineers (IEEE) 177
Integrated Circuit Card Identification
(ICCID) 280
Integrated Digital Investigation
Process (IDIP)
about 7
Deployment phases 8
Digital Crime Scene Investigation Phases 9
Physical Crime Scene Investigation
Phases 9
Readiness Phases 8
Review Phase 10

Intel type data alignment 28
International Mobile Identifier (IMEI) 278
iOS acquisition
about 80
acquisition methods 80
advanced logical acquisition 80
logical acquisition 80, 84-90
normal/ direct acquisition 80-83
physical acquisition 80, 90
iOS acquisition and forensic approaches
about 76
iOS acquisition 80
iOS artifacts recovery 98
iOS boot process 76
lockdown certificate 78, 79
operating modes 76
unique device identifier (UDID) 77
iOS architecture
about 64
Cocoa Touch layer 64
Core OS layer 65
Core Service layer 65
Medjia layer 65
iOS artifacts recovery
about 98
data recovery 98-105
evidence gathering 98-105
iPhone Analyzer, used 105-109
MOBILedit! Forensic, used 110-115
iOS filesystem 66, 67
iOS platform
about 67
hardware security 68-70
IP-Box 82
iPhone Analyzer
reference 105
used, for artifact recovery 105-109
iPhone Backup Browser
reference 104

J

Java Virtual Machine (JVM) 57,128
JD-GUI

reference 60
JFIF (JPEG File Interchange Format) 20
Joint Test Action Group (JTAG) 177

[296]

JPEG format
carving 20
JTAG 241
JTAG TAPs 178
just-in-time (JIT) compilation 127

K

Kernel-Mode Drivers
Framework (KMDF) 197

KeyChain API 130

Keychain Data Protection 70

keyguards 138

KingRoot 143

L

Least Privilege Chamber (LPC) 210

Lempel-Ziv-Markov chain algorithm
(LZMA) 25

Linux Kernel 127

Linux United Key Setup (LUKS) 152

Location Manager 129

logical acquisition 84-90

Low-Level Bootloader (LLB) 76

Luhn algorithm 279

MainOS volume
%SystemDrive %\ Programs 200
%SystemDrive % \ Programs\

<AppName> 201
%SystemDrive%\ Windows 202
about 200

mandatory access control (MAC)

implementation 136

Manifest.mbdb 102

Manifest.plist 103

markers 20

MDS?5 algorithm
URL 56

Media Framework 127

Message-Digest Algorithm (MD5) 55

metadata
about 27

administrative 27
descriptive 27
extracting 28-39
structural 27
mobile device identification
about 277
device info 278, 279
physical characteristics 277
service provider 280
MOBILedit backup 85
MOBILedit! Forensic
about 110
used, for artifact recovery 110-115
MOBILedit! Forensic 8.2
about 85
for Windows Phone logical
acquisition 216-220
Mobile Equipment Identifier (MEID) 278
mobile forensics
about 2
features 2-4
mobile forensics process
evidence intake phase 258
preparation phase 260
presenting 258-276
mobile forensic workstation
preparing 283-291
Motorola type byte 28

N

National Institute of Justice (NIJ)
reference 270

National Institute of Standards and
Technology (NIST) 45, 262

National Software Reference Library
(NSRL) 56

Navigation Server 198

NetCat 171

New Technology File System (NTFS) 206

Nmap 171

normal/direct acquisition 83

Notification Manager 129

NT filesystem (NTFS) 194

[297]

o)

operating modes, iOS
DFU mode 77
normal mode 76
recovery mode 76
OPUS file format 220
Original Equipment
Manufacturers (OEMs) 195
Oxygen Forensic Suite 2014
for Windows Phone logical
acquisition 220-224

P

Package Manager 129, 198
partition layout 199
partitions
about 200
Data 200
MainOS 200
MainOS volume 200
Removable User Data 200, 205, 206
User Data volume 202-205
Passware Password Recovery Kit Forensic
for cloud acquisition 238-240
reference 238
Password-Based Key Derivation Function 2
(PBKDF2) 153
percent-encoding 54
PGPdump
about 50
URL 50
Phone Forensic Express
reference 113
phone storage service 199
physical acquisition
about 90, 241-247
Jailbreaking iOS 9 91-94
with Elcomsoft iOS Forensic Toolkit 94-98
Platform Configuration
Registers (PCRs) 213
plist Editor Pro
reference 73
Portable Operating System Interface
(POSIX) layer 65

Power Management Engine plug-in (PEP)

extensions 197
Pretty Good Privacy (PGP) 48
property list (plist) 74
public key encryption 48-50

R

Readiness Phases, IDIP

about 8

Infrastructure Readiness 8

Operation Readiness 8
recovery mode, Android 139
Reference Data Set (RDS) 56
Removable User Data 200, 205
Require Device Encryption 213
Resource Manager 129,198
Review Phase, IDIP 10
RFC 3174

reference 56
RIFF Box

URL 179

S

sandboxes 209
SANS Investigative Forensic
Toolkit. See SIFT
Santoku
references 81
Santoku Linux
URL 284
Scientific Working Group on Digital
Evidence (SWGDE) 264
scrypt 153
Secure Boot Chain 76
Secure Digital High Capacity
(SDHC) cards 206
Secure Digital (SD) cards 205
Secure Hashing Algorithm (SHA) 55
Security Enhanced Linux. See SELinux
security models, Windows Phone 8
about 207
application security 209-211
data protection 211
Secure Boot 207-209

[298]

SELinux
about 136
modes of operation 136
SIFT 291
SIFT Workstation Version 3
URL 291
SimpleNetCat 171
smartphone forensics challenges
about 14
built-in security 16
cloud 17
data volatility 17
different filesystems 16
encrypted data wiping 16
hardware variations 15
operating systems updates 15
smartphone forensics models
about 4
Abstract Digital Forensics Model (ADFM) 7
Computer Forensic Investigation
Process (CFIP) 5
Digital Forensic Research
Workshop (DFRWS) 6
End-To-End Digital
Investigation (EEDI) process 11
Integrated Digital Investigation
Process (IDIP) 7
Systemic Digital Forensic
Investigation 12-14
SP-network (SPN) 45
SQLite file format
reference 122
standard iTunes backup 85
Start of Image (SOI) 21
Status.plist 104
Storage Root Key (SRK) 213
storage utilization 199
stored data
identifying 70-76
Store Keeping Unit (SKU) 226
string dump and analysis 39-44
Subscriber Identification Module (SIM) 280
Surface Manager library 127
symmetric key encryption 45-47

Systemic Digital Forensic Investigation
(SRDIFM) model
about 12
Analysis phase 14
Communication Shielding 14
Documentation of Scene 14
Evidence Collection 14
Examination step 14
Preparation 13
Preservation phase 14
Result phase 14
Securing the Scene phase 13
Survey and Recognition phase 13
System on Chip (SoC) 196

T

Team Win Recovery Project (TWRP) 146
Telephony Manager 129
temporary filesystem (tmfs) 132
Test Access Port (TAP) 177
Thin Small Outline Package (TSOP)
type 180

third-party applications, Android OS 181
third party applications, iOS 117-122
Touch ID fingerprint recognition, Apple

about 116

fingerprint pattern 116, 117
Trusted Computing Base (TCB) 210
Trusted Execution Environment (TEE) 155
Trusted Platform Module (TPM) 208
TrustZone

reference 130
Type Allocation Code (TAC) 279

U

Unicode Transformation Format (UTF) 52
Unified Extensible Firmware Interface
(UEFI) 196
Unified Resource Identifier (URI) 54
Uniform Resource Locator (URL) 54
Uniform Resource Name (URN) 54
unique user ID (UID) 134
Universal Integrated Circuit
Card (UICCs) 264

[299]

Universally Unique ID (UUID) 72
Universal Mobile Telecommunications
System (UMTS) 279
User-Mode Drivers
Framework (UMDF) 198
user PIN study 247-254

\"

View System 129
vold (volume daemon) 131
Volume Master Key (VMK) 213

w

Windows Phone 7
versus, Windows Phone 8 (WP8) 193, 194
Windows Phone 8 (WP8)
about 193
application data storage 206
filesystem 199, 200
internals 194-198
partitions 199, 200
security models 207
Windows Phone backups
reference 235
Windows Phone cloud acquisition
about 235
Elcomsoft Phone Breaker used 236, 237
Passware Password Recovery
Kit Forensic used 238-240

Windows Phone data protection
about 211
BitLocker and hardware
encryption 213, 214
device access and security policies 212
Windows Phone Developer
Registration 8.1 226
Windows Phone logical acquisition
about 215
appointments acquisition agent 225-233
contacts, sideloading 225-233
implementing 233, 234
MOBILedit! Forensic 8.2, using 216-220
Oxygen Forensic Suite 2014, using 220-224
Windows Runtime (WinRT) 194
WP Logical 225

X

X509KeyManager 133

Y4

ZIP format
carving 24-27

[300]

	Cover

	Copyright
	Credits
	About the Author
	About the Reviewer
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Mobile Forensics and the Investigation Process Model
	Why mobile forensics?
	Smartphone forensics models
	Computer Forensic Investigation Process
	Digital Forensic Research Workshop
	Abstract Digital Forensics Model
	Integrated Digital Investigation Process
	End-to-end digital investigation process
	Systemic Digital Forensic Investigation

	Smartphone forensics challenges
	Operating systems' variety and changeability
	Important hardware variations
	Different filesystems
	Built-in security
	Encrypted data wiping
	Data volatility
	The cloud

	Summary

	Chapter 2: Do It Yourself – Low-Level Techniques
	Getting acquainted with file carving
	Carving the JPEG format
	Carving the ZIP format

	Extracting metadata – GPS analysis
	String dump and analysis
	Encryption versus encoding versus hashing
	Encryption
	Symmetric key encryption
	Public key encryption

	Encoding
	ASCII and UNICODE/UTF-8
	URL encoding

	Hashing

	Decompiling and disassembling
	Summary

	Chapter 3: iDevices from a Forensic Point of View
	The iOS architecture
	The iOS filesystem
	iOS platform and hardware security
	Identifying stored data
	iOS acquisition and forensic approaches
	iOS boot process and operating modes
	Unique device identifier
	Lockdown certificate
	iOS acquisition
	Normal/direct acquisition
	Logical acquisition
	Physical acquisition

	iOS artifacts recovery – evidence gathering and data recovery
	Artifact recovery using iPhone Analyzer
	Artifact recovery using MOBILedit! Forensic

	It's going biometric!
	Third-party applications
	Summary

	Chapter 4: Android Forensics
	Android OS – all you need to know
	Android security model
	Full disk encryption
	KeyChain and KeyStore

	Application security
	Application sandboxing and permissions
	Security Enhanced Linux – SELinux
	Application signing

	Bypassing security
	Bootloader/recovery mode
	Rooting an Android device
	Cracking a lock pattern
	Cracking a PIN/password

	Android logical data acquisition
	Logical data acquisition using ADB
	Logical data acquisition using AFLogical OSE

	Android physical data acquisition
	Analyzing the acquired image using Autopsy

	JTAG and chip-off forensic examinations
	Third-party applications and a real case study
	Summary

	Chapter 5: Windows Phone 8 Forensics
	Windows Phone 7 versus Windows Phone 8
	Windows Phone 8 internals
	Partitions and the filesystem
	MainOS volume
	User Data volume
	Removable User Data

	Application data storage

	Windows phone 8 security models
	Windows Phone 8 Secure Boot
	Windows Phone 8 application security
	Windows Phone data protection
	Device access and security policies
	BitLocker and hardware encryption

	Windows Phone logical acquisition
	Windows Phone logical acquisition using MOBILedit! Forensic 8.2
	Windows Phone logical acquisition using Oxygen Forensic Suite 2014
	Sideloading contacts and appointments acquisition agent
	WP Logical implementation
	Windows Phone cloud acquisition
	Cloud acquisition using Elcomsoft Phone Breaker
	Cloud acquisition using Passware Password Recovery Kit Forensic

	jTAG and physical acquisition
	Artifact location and user PIN study
	Summary

	Chapter 6: Mobile Forensics – The Best Practices
	Presenting a mobile forensics process
	Mobile device identification
	Physical characteristics
	Device info
	Service provider

	Summary

	Appendix : Preparing a Mobile Forensic Workstation
	Index

