
[1]

www.allitebooks.com

http://www.allitebooks.org

Mastering QlikView Data
Visualization

Take your QlikView skills to the next level and
master the art of creating visual data analysis
for real business needs

Karl Pover

P U B L I S H I N G

professional expert ise dist i l led

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Mastering QlikView Data Visualization

Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: April 2016

Production reference: 1200416

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78217-325-0

www.packtpub.com

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

Credits

Author
Karl Pover

Reviewers
Ralf Becher

Miguel Ángel García

Michael Tarallo

Commissioning Editor
Kartikey Pandey

Acquisition Editor
Tushar Gupta

Content Development Editor
Rohit Singh

Technical Editor
Siddhesh Patil

Copy Editor
Priyanka Ravi

Project Coordinator
Izzat Contractor

Proofreader
Safis Editing

Indexer
Monica Ajmera Mehta

Graphics
Kirk D'Penha

Disha Haria

Production Coordinator
Conidon Miranda

Cover Work
Conidon Miranda

www.allitebooks.com

http://www.allitebooks.org

About the Author

Karl Pover is the owner and principal consultant of Evolution Consulting, which
provides QlikView consulting services throughout Mexico. Since 2006, he has been
dedicated to providing QlikView presales, implementation, and training for more
than 50 customers. He is the author of Learning QlikView Data Visualization, and he
has also been a Qlik Luminary since 2014. You can follow Karl on Twitter
(@karlpover) or on LinkedIn (https://mx.linkedin.com/in/karlpover).
He also blogs at http://poverconsulting.com/.

First and foremost, I would like to thank my wife, Pamela. I owe you
several long weekends.

Thanks to the team at Evolution Consulting, especially Julian
Villafuerte, Carlos Reyes, and Jaime Aguilar, for taking on more
responsibility. A special thanks to Julian for taking the time to
review the final version of this book, and Alejandro Morales for
helping me develop a few extensions.

As always, thanks to my parents, Judy and Bill, for their love and
support throughout my life.

I am grateful to all the technical reviewers, and especially Ralf
Becher, who contributed material to this book. I also appreciate the
work done by Rohit Kumar Singh and the rest of the Packt team,
who gave me a little extra time to make this a great book.

Last, but not least, thanks to all the customers, past and present,
who have always asked for the impossible.

www.allitebooks.com

https://mx.linkedin.com/in/karlpover
http://poverconsulting.com/
http://www.allitebooks.org

About the Reviewers

Ralf Becher has worked as an IT system architect and as an IT consultant since
1989 in the areas of banking, insurance, logistics, automotive, and retail. He founded
TIQ Solutions in 2004 with partners. Based in Leipzig, his company specializes
in modern, quality-assured data management. Since 2004, his company has been
helping its customers process, evaluate, and maintain the quality of company data,
helping them introduce, implement, and improve complex solutions in the fields
of data architecture, data integration, data migration, master data management,
metadata management, data warehousing, and business intelligence.

Ralf is an internationally-recognized Qlik expert with a strong position in the Qlik
community. He started working with QlikView in 2006, and he has contributed to
QlikView and Qlik Sense extensions. He has also contributed add-on solutions for
data quality and data integration, especially for connectivity in the Java and Big Data
realm. He runs his blog at http://irregular.bi/.

Miguel Ángel García is a business intelligence consultant and QlikView solutions
architect. Having worked through many successful QlikView implementations from
inception to implementation and performed across a wide variety of roles on each
project, his experience and skills range from presales to application development
and design, technical architecture, and system administration, as well as functional
analysis and overall project execution.

Miguel is the coauthor of the book QlikView 11 for Developers, published in November
2012, and its corresponding translation to Spanish, QlikView 11 para Desarrolladores,
published in December 2013. He has also participated as a technical reviewer in
several other QlikView books.

Miguel runs a QlikView consultancy, AfterSync (http://aftersync.com/), through
which he helps customers discover the power of the Qlik platform. He currently has
the QlikView Designer, QlikView Developer, and QlikView System Administrator
certifications, issued by Qlik, for versions 9, 10, and 11.

www.allitebooks.com

http://irregular.bi/
http://aftersync.com/
http://www.allitebooks.org

Michael Tarallo is a senior product marketing manager at Qlik. He has more than
17 years of experience in the Data Integration and Business Intelligence space from
both open source and proprietary BI companies. Currently at Qlik, he is responsible
for a broad spectrum of Marketing and Sales enablement activities for QlikView and
Qlik Sense. He is best known for working with the Qlik Community and providing
its members with valuable information to get them started with Qlik Sense, which
includes the creation of high-quality video content. He has produced numerous
videos ranging from promotional to instructional. Prior to Qlik, Mike worked for
UPS, Information Builders, Pentaho, and Expressor. His career has spanned from
data analysis, customer support, and account management to a solution architect and
leader, crafting customer solutions, and painting visions of the "art of the possible"
with the companies' software. He humbly admits that he is "a confident jack of all
trades but a master of many."

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

eBooks, discount offers, and more
Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at customercare@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

Instant updates on new Packt books
Get notified! Find out when new books are published by following @
PacktEnterprise on Twitter or the Packt Enterprise Facebook page.

www.allitebooks.com

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

[i]

Table of Contents
Preface vii
Chapter 1: Data Visualization Strategy 1

Data exploration, visualization, and discovery 2
Data teams and roles 4

Data research and development 5
Data governance team 8

Agile development 10
User story 11
Minimum Viable Product 11

QlikView Deployment Framework 14
Exercise 1 15

Summary 15
Chapter 2: Sales Perspective 17

Sales perspective data model 18
Exercise 2.1 19
Data quality issues 22

Missing dimension values 22
Missing fact values 24

Data formatting and standardization 26
Case 26
Unwanted characters 27
Dates and time 27
Master calendar 28

Customer stratification. 30
Pareto analysis 30
Exercise 2.2 31
Exercise 2.3 34

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Customer churn 36
Exercise 2.4 38
Exercise 2.5 41

QlikView extensions and the cycle plot 42
Exercise 2.6 43

Governance – design template 44
Summary 46

Chapter 3: Financial Perspective 47
Financial perspective data model 48

Exercise 3.1 48
Financial report metadata 51

AsOfCalendar 53
Income statement 54

Exercise 3.2 56
Custom format cell 61
Exercise 3.3 65

Balance sheet 66
Exercise 3.4 67
Exercise 3.5 69

Cash flow statement 70
Exercise 3.6 71

Summary 73
Chapter 4: Marketing Perspective 75

Marketing data model 76
Customer profiling 79

Parallel coordinates 79
Exercise 4.1 80
Exercise 4.2 83

Sankey 84
Exercise 4.3 85
Exercise 4.4 86

Market size analysis 86
Exercise 4.5 88
Exercise 4.6 89
Exercise 4.7 91

Social media analysis 92
Sales opportunity analysis 97

Exercise 4.11 98
Summary 99

Table of Contents

[iii]

Chapter 5: Working Capital Perspective 101
Working capital data model 102
Rotation and average days 106

Days Sales of Inventory 106
Exercise 5.1 107

Days Sales Outstanding 108
Exercise 5.2 108

Days Payable Outstanding 109
Exercise 5.3 110
Exercise 5.4 111

Working capital breakdown 111
Exercise 5.5 112

Inventory stock levels 114
Exercise 5.6 116

Aging report 117
Exercise 5.7 118

Customer stratification 119
Stratification by distribution 120

Exercise 5.8 120
Exercise 5.9 122

Visualizing stratification 125
Exercise 5.10 126

Summary 129
Chapter 6: Operations Perspective 131

Operations data model 131
Handling multiple date fields 135

On-Time and In-Full 136
Exercise 6.1 137
OTIF breakdown 139

Exercise 6.2 139
Exercise 6.3 140
Predicting lead time 142

Exercise 6.4 143
Exercise 6.5 144

Supplier and On-Time delivery correlation 148
Exercise 6.5 149

Planning in QlikView with KliqPlan 151
Planning tool extensions 151

Sales forecasts and purchase planning 152
Other applications 154

Summary 154

Table of Contents

[iv]

Chapter 7: Human Resources 155
Human resources data model 156

Slowing changing dimensions attributes 158
Personnel productivity 160

Exercise 7.1 160
Exercise 7.2 162

Personnel productivity breakdown 163
Age distribution 164

Exercise 7.3 164
Salary distribution 167

Exercise 7.4 167
Employee retention rate 170

Exercise 7.5 171
Employee vacation and sick days 172

Exercise 7.6 172
Employee training and performance 174

Exercise 7.7 175
Personal behavior analysis 176

Exercise 7.8 178
Summary 179

Chapter 8: Fact Sheets 181
Customer fact sheet consolidated data model 182
Customer Fact sheet Agile design 186

Creating user stories 187
User story flow 188
Converting user stories into visualizations 189
Going beyond the first visualization 191

Customer Fact sheet advanced components 192
Bullet graph 192

Exercise 8.1 193
Exercise 8.2 195

Sparklines 196
Exercise 8.3 196

Customizing the QlikView User Experience 198
Quick access to supplementary information 198

Exercise 8.4 199
Dynamic data visualization 200

Exercise 8.5 201

Table of Contents

[v]

Regional settings 205
Currency 205
Language 205
Date and number formats 206

Customer Fact sheet n QlikView 206
Summary 207

Chapter 9: Balanced Scorecard 209
The Balanced Scorecard method 210

The financial perspective 212
The customer perspective 212
The internal business process perspective 213
The learning and growth perspective 214

The Balanced Scorecard consolidated data model 214
The Balanced Scorecard information dashboard design 218

The Gestalt principles of perceptual organization 218
Proximity 219
Enclosure 220
Closure 221
Connection 222
Continuity 223
Similarity 224

Creating the filter pane bubble 225
Exercise 9.1 226
Creating an interactive tutorial 228
Exercise 9.2 228

Measuring success with XmR charts 231
Exercise 9.3 233

Summary 238
Chapter 10: Troubleshooting Analysis 239

Troubleshooting preparation and resources 239
Positive mindset 240
General debugging skills 240

Reproduce 240
Diagnose 241
Fix 242
Reflect 242

Resources 242
QlikView Help 242
Local knowledge base 243
Qlik Community 243
Qlik Support 244

Table of Contents

[vi]

Reporting issues 245
Common QlikView application issues 247

Common QlikView data model issues 247
All expression values are exactly the same 248
The expression total is not equal to the sum of the rows 249
Duplicate values in a list box 250
Data doesn't match user expectation 252

Common QlikView expression issues 255
The expression does not calculate every row 255
The amounts in the table are not accumulating 256

Summary 258
Chapter 11: Mastering Qlik Sense Data Visualization 259

Qlik Sense and QlikView developers 259
Visualization extension examples for cross-selling 261
Plan to master Qlik Sense data visualization 266
Summary 268

Index 269

[vii]

Preface
This may be a horrible way to start a book, but in all honesty my first real-world
QlikView experience was a failure. I was assigned to do a proof-of-concept with
a prospective client's IT department, and they insisted that I share every mouse
click and keystroke on a large projection screen with them. I had taken a QlikView
designer and developer course and was developing a QlikView template in my spare
time, but this hadn't prepared me for the live development of a real application.

I fumbled around the screen as I developed their first data model and charts. They
must have doubted my competence, and I was embarrassed. However, I was
surprised to hear that they were impressed with how little time it had taken me to
convert raw data to interactive data visualization and analysis. I had created the
required indicators and finished their first application within three days.

The goal of the proof-of-concept was to demonstrate the value that QlikView could
provide to the prospective client's company, and it all seemed to have gone well.
After all, I had created an attractive, functional QlikView application that was
filled with the indicators that the IT department had requested. However, I failed
to demonstrate QlikView's value directly to the business users; in the end, the
prospective client never purchased QlikView.

All was not lost because I ultimately learned that, although it is important to
understand all of QlikView's technical features, we can't display its value by only
memorizing the reference manual. If we really want to master QlikView, we have
to go beyond the technical functionality and learn what business value QlikView
enables us to deliver. Moreover, we must bring about a data discovery initiative
that changes a company's culture.

Preface

[viii]

This first experience occurred ten years ago and these first failures have given way
to success. I am lucky to have the opportunity to work as a QlikView consultant
and participate in projects that encompass multiple organizations and various
functional areas. All of their difficult challenges and excellent ideas have helped me
to constantly learn from our mutual successes and failures.

During the last ten years that I've implemented QlikView projects, I've found
that many businesses share much of the same advanced data analysis goals. For
example, most sales departments in every company dream about having an easy
way to visualize and predict customer churn. We will go over these common, but
complicated, business requirements that you can apply to your own company.

As a QlikView master, you have to be just as comfortable discussing the most
appropriate performance indicator with a business user, as you are with scripting
out a data model that calculates it. For this reason, at one end, we will explain the
business reasons for a particular visualization or analysis and, at the other end, we
will explain the data model that is necessary to create it.

We will then develop different types of data visualization and analysis that look to
push the boundaries of what is possible in QlikView. We will not focus on QlikView
syntax or function definitions. Instead, we will see how to apply advanced functions
and set analysis to real business problems. Our focus on the business problem will also
lead us to look beyond QlikView and see what other tools we can integrate with it.

Practice leads to mastery, so I've included sample data models and exercises
throughout this book. If they apply to your business, I recommend that you copy and
paste these exercises over your own data to see what feedback you get from your
business users. This extra step of adjusting the exercise's code to make it work with
a different dataset will confirm your understanding of the concept and cement it in
your memory.

Ultimately, I hope that, by sharing my experience, I will help you succeed where I
first failed. In doing so, when you finally fail, it will be because you are attempting
to do something beyond what I have done. Then, when you finally overcome your
failure and succeed, I can learn from you, the master.

What this book covers
Chapter 1, Data Visualization Strategy, begins our journey to create a data-driven
organization using QlikView.

Chapter 2, Sales Perspective, explains the data model's importance to data
visualization, and shows us how to create advanced analyses, such as customer
stratification, churn prediction, and seasonal trends.

Preface

[ix]

Chapter 3, Financial Perspective, illustrates the usage of metadata to format an income
statement, a balance sheet, and a cash flow statement.

Chapter 4, Marketing Perspective, walks us through various types of visualization that
reveal customer profiles, potential markets, social media sentiment, and the sales
pipeline.

Chapter 5, Working Capital Perspective, describes how to analyze days sales of
inventory, days sales outstanding, and days payable outstanding, at both a high
and a detailed level. It also explains how they are important in order to determine
customer stratification.

Chapter 6, Operations Perspective, shows us how to analyze our service levels, predict
supplier lead times, and investigate whether on-time deliveries depend on the
supplier.

Chapter 7, Human Resources, reveals how to visualize personnel productivity and
personal behavior analysis.

Chapter 8, Fact Sheets, demonstrates an ad hoc design method to create a customer
fact sheet that includes bullet graphs, sparklines, and a customized UX.

Chapter 9, Balanced Scorecard, details a more formal design method to build an
information dashboard containing balanced scorecard metrics.

Chapter 10, Troubleshooting Analysis, takes a look at resources and methods to debug
problems in our QlikView applications.

Chapter 11, Mastering Qlik Sense Data Visualization, explains what Qlik Sense means to
a QlikView developer and proposes a plan to master Qlik Sense data visualization.

What you need for this book
To complete the exercises in this book, you will need to download and install
QlikView Desktop from Qlik (http://www.qlik.com) and the exercise files from
the Packt website (https://www.packtpub.com/).

Who this book is for
This book is for those who have some QlikView experience and want to take their
skills to the next level. If you are just beginning with QlikView, please read QlikView
11 for Developers, by Miguel Garcia and Barry Harmsen, before reading this book.

http://www.qlik.com
https://www.packtpub.com/

Preface

[x]

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"We can include other contexts through the use of the include directive."

A block of code is set as follows:

[Customer Purchase Frequency Tmp]:
Load distinct _KEY_Date as [Customer Purchase Date],
 _KEY_Customer
Resident Facts
Where _ActualFlag = 1
 and [Net Sales LC] > 0;

Any command-line input or output is written as follows:

C:\Qlik\SourceData\99.Shared_Folders\9.Misc\3.Images\ Bubble_UpperLeft_
Arrow.png

New terms and important words are shown in bold. Words that you see on the
screen, for example, in menus or dialog boxes, appear in the text like this: "In the last
step, select the option to Set as default theme for this document."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

Preface

[xi]

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for this book from your account at
http://www.packtpub.com. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have the files e-mailed directly
to you.

You can download the code files by following these steps:

1. Log in or register to our website using your e-mail address and password.
2. Hover the mouse pointer on the SUPPORT tab at the top.
3. Click on Code Downloads & Errata.
4. Enter the name of the book in the Search box.
5. Select the book for which you're looking to download the code files.
6. Choose from the drop-down menu where you purchased this book from.
7. Click on Code Download.

You can also download the code files by clicking on the Code Files button on the
book's webpage at the Packt Publishing website. This page can be accessed by
entering the book's name in the Search box. Please note that you need to be logged in
to your Packt account.

Once the file is downloaded, please make sure that you unzip or extract the folder
using the latest version of:

• WinRAR / 7-Zip for Windows
• Zipeg / iZip / UnRarX for Mac
• 7-Zip / PeaZip for Linux

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support

Preface

[xii]

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/
diagrams used in this book. The color images will help you better understand the
changes in the output. You can download this file from https://www.packtpub.
com/sites/default/files/downloads/MasteringQlikviewDataVisualization_
ColorImages.pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

https://www.packtpub.com/sites/default/files/downloads/MasteringQlikviewDataVisualization_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringQlikviewDataVisualization_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringQlikviewDataVisualization_ColorImages.pdf
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

[1]

Data Visualization Strategy
What is the difference between graphic design and data visualization? What
distinguishes our actions when we design a website from when we design an
executive dashboard? What separates somebody who creates a meaningful icon
from another who creates an insightful bar chart?

While both graphic design and data visualization aim to create effective visual
communication, data visualization is principally concerned with data analysis.
Even though we, who design dashboards and charts, are motivated to create
something aesthetically pleasing, we are more passionate about what the data
can tell us about our world. This desire to explore our universe via data, and then,
communicate our discoveries is the reason that we dedicate our time to learning
how best to visualize it.

In this is book, our mission is to create a data-driven business. We start our
journey by defining a series of strategies to create and share knowledge using data
visualization. In parallel, we propose how we can effectively organize ourselves,
our projects, and the applications we develop so that our whole business starts
to use insightful visual analysis as quickly as possible. Also, as we survey the
entire perspective of our data visualization strategy, we review how we are going
to implement it using, arguably, the best data exploration and discovery tool—
QlikView.

Let's take a look at the following topics in this chapter:

• Data exploration, visualization, and discovery
• Data teams and roles
• Agile development
• QlikView Deployment Framework

Data Visualization Strategy

[2]

Data exploration, visualization, and discovery
Data visualization is not something that is done at the end of a long, costly Business
Intelligence (BI) project. It is not the cute dashboard that we create to justify the
investment in a new data warehouse and several Online Analytical Processing
(OLAP) cubes. Data visualization is an integral part of a data exploration process
that begins on the first day that we start extracting raw data.

The importance and effectiveness of using data visualization when we are exploring
data is highlighted using Anscombe's quartet. Each of the following scatterplots
analyzes the correlation between two variables. Correlation can also be explained
numerically by means of R-squared. If we were to summarize the correlations of each
of the following scatterplots using R-squared, we would discover that the number
is be the same for each scatterplot, .816. It is only by visualizing the data in a two-
dimensional space do we notice how different each correlation behaves:

Some tools make it cumbersome to visualize data as soon as it is extracted. Most
traditional BI solutions have separate tools for each phase of their implementation
process. They have one tool that extracts data, another that creates the OLAP cubes,
and yet another that constructs visualizations.

Chapter 1

[3]

QlikView is a tool that allows us to extract, transform, model, and visualize data
within the same tool. Since we can visualize data from the moment it is extracted and
throughout the rest of the extraction, transformation, and load (ETL) process, we are
more likely to discover data anomalies at an earlier stage in the development process.
We can also share our discoveries more quickly with business users, and they in
turn can give us important feedback before we invest too much time developing
analytical applications that don't provide them with real value. Although QlikView
is considered a BI software, it stands out amongst its peers due to its extraordinary
ability to explore, visualize, and discover data.

In contrast, the implementation of a traditional BI tool first focuses on organizing
data into data warehouses and cubes that are based on business requirements
created at the beginning of the project. Once we organize the data and distribute
the first reports defined by the business requirements, we start, for the first time, to
explore the data using data visualization. However, the first time business users see
their new reports, the most important discovery that they make is that we've spent
a great amount of time and resources developing something that doesn't fulfill their
real requirements.

Organize Distribute Discover

Traditional BI

Data Discovery

Discover OrganizeDistribute

We can blame the business user or the business requirements process for this failure,
but nobody can exactly know what they need if they have nothing tangible to start
from. In a data discovery tool like QlikView, we can easily create prototypes, or what
we later explain as Minimally Viable Products (MVPs), to allow business users to
visualize the data within a matter of days. They use the MVP to better describe their
needs, discover data inadequacies, and among other things, confirm the business
value of the analysis with their executive sponsors. Only after making and sharing
these first discoveries do we invest more of our resources into organizing an
iteratively more mature data analysis and visualization.

Data Visualization Strategy

[4]

Data Visualization Strategy 1: Use data visualization as an
integral part of data exploration and discovery from the very
beginning, and all throughout our project.

We've established a general data visualization strategy to support our data
exploration and discovery. Now, let's review the strategies that we assign to the
teams who are tasked with not only exploring the data directly, but also making sure
everyone else in the business can perform their own data exploration.

I often come across customers who have data quality issues. They
often battle with whether to hold off investing in QlikView until
they've cleaned the data or invest in QlikView regardless of the
poor data quality. Those who implement QlikView over poor-
quality data data quality and make the problem transparent tend
to clean their data more quickly and more effectively.

Data teams and roles
The exact composition of the teams whose principal job is to enable their coworkers
to make data-driven decisions will vary as a business's entire data strategy matures.
However, many misinterpret what it means to run a mature data-driven business.
They believe that at some point all data will and should be governed, and that the
team that develops the first QlikView data exploration and discovery projects with
will be that governing body.

While a mature data-driven business does count with a large set of governed data
and a talented data governance team, it should never be without new, unknown
datasets, or without ideas about how to exploit existing datasets in new ways. It is
also unrealistic that the same team enforce conformity at the same time that they
must strive to innovate. It is for that reason that every mature data-driven business
should have both a data research and development (R&D) team, and a data
governance team. Each team will have a different data visualization strategy.

Chapter 1

[5]

Data Governor

Educator

Data Engineers/
Data Visualization

Designers

Administrators /
Support

Data Entrepreneurs

Data Scientists

Data Engineers /
Data Visualization

Designers

Data Visualization
Programmers

Passive Active

Governed
Data

Universe of Data

Data Governance Data R&D

Business Users

Data research and development
The data R&D team is constantly investigating and creating new solutions to our
business problems. When we implement our first data exploration and discovery
projects using QlikView, it is common to find out that we are part of a cross-
functional, investigative, and proactive team. This team can be the keystone of a
more formal data R&D team.

At a minimum, the team should consist of data engineers, data visualization
designers, and data entrepreneurs. Data scientists and data visualization
programmers may be optional in the beginning, but they become important elements
to add as we continue to revolutionize how our business uses data.

It is worth repeating that even though this team will start the data exploration and
discovery process, it will not evolve into the data governance team. Instead, this
team will continue to look for ever more innovative ways to create business value
from data. Once the team develops a stable solution with a long life expectancy, they
will migrate that solution and transfer their knowledge to the data governance team.

Data Visualization Strategy

[6]

Our data R&D teams will range in size and capacity, but in general, we aim to cover the
following roles within a team that uses QlikView as its primary data exploration tool.

The list of roles is not all-inclusive, and our business may
have particular necessities or other tools for which we need
to add other roles.

• Data entrepreneurs: We look to fill this role with a business analyst who
has knowledge of the company, the available datasets, and the business user
requirements. We also look for our data entrepreneur to be an early adopter and
a cornucopia of ideas to solve the most important problems. They work with all
the other team members to develop solutions as the product owner.

• Data engineers/data visualization designers: Although this role can be
split between two people, QlikView has revolutionized this role. We can
now realistically expect that the same person who extracts, transforms,
and models data, can also formulate metrics and design insightful data
visualization with the data entrepreneur's guidance.

• Data visualization programmers: Although this profile is likely not
necessary in the beginning, we will eventually need somebody proficient in
web development technologies who can create custom data visualizations.
For example, we would need this role to create charts that are not native to
QlikView like the following cycle plot chart we use for our sales perspective
in Chapter 2, Sales Perspective. This role can also be outsourced depending on
its importance.

Chapter 1

[7]

• Data scientists: Data science is an ambiguous term. Like many of us who
work with data, data scientists are ultimately concerned with extracting
knowledge from data. However, they are more focused on using statistics,
data mining, and predictive analysis to do so. If they aren't part of the team
from the beginning, we should add them later to ensure that the data R&D
team continues to innovate.

As far as data visualization is concerned, every member of the data R&D team uses
it to make sense of the data and communicate their discoveries with their peers. As
such, they should be given space to experiment with advanced data visualization
techniques, even when those techniques may appear obscure, or even esoteric. For
example, the following scatterplot matrix may not be suitable for most business
users, but may help a data scientist create a predictive model:

Data Visualization Strategy 2: Encourage the data R&D team
to experiment with new data visualization techniques.

Data Visualization Strategy

[8]

When the data R&D team creates a stable, long-term analytical solution that
is going to be used by business users to make their own discoveries, then they
should migrate that solution to the data governance team. At this point, both
teams should work together to make the data visualization as clear and simple as
possible for the business user. While we may be able to train them to use some new
data visualization techniques, we will also have to translate other advanced data
visualizations into the more commonly used sort.

Data governance team
Data governance is a fundamental part of enabling our entire business to be data
driven. The data that is used across the whole company to support common
business activities, such as employee performance reviews, financial investments,
and new product launches, should be held to a set of standards that ensures its
trustworthiness. Among the standards that the data governance team defines and
enforces are business rules, data accuracy, data security, and data definitions. The
data governance team's job is no less challenging than that of the data R&D team, not
the least being because they are the face of the data for most of the business users.

Data governance has a responsibility to make sure data is visualized in a way
that is accessible to all business users. Data visualizations should use proper
colors, adequate labeling, and approved metrics. The data governance team is also
responsible for helping the business users understand data visualization standards,
and support those who are going to actively use data to create their own analyses.

Just like our data R&D team, the exact size and makeup of the data governance team
will vary. The following list contains the roles that we wish to fill in a team that uses
QlikView as its primary data exploration tool:

• Data governor: We look for somebody with a similar background as the
data entrepreneur in the data R&D team to fill this role. However, the data
governor's responsibility is to ensure data quality, uniform business rules,
security, and accessible data visualization. They can also be referred to
as data stewards. Similar to data entrepreneurs, they help the other team
members prioritize pending tasks.

Chapter 1

[9]

• Data engineer/data visualization designer: We create this role to receive
solutions from the R&D team and bring them up to the data governance's
standards. In addition, they develop QlikView applications for internal
control. Even though they don't belong to the R&D team, we expect them
to develop innovative ways to visualize the data so that they can enforce
the company's data standards more effectively. For example, the following
process control chart is an example of the visual analysis that would help
them detect data anomalies:

• Administrator/Support: This role helps us reduce the distractions our data
engineers and data visualization designers face when dealing with daily
administration and support issues. Since common QlikView support issues
include users unable to access their applications and automatic reload failures,
we can often assign the same person to both administrator and support.

• Educator: This role performs the never-ending and pivotal job of making
business users feel comfortable using the analytical solutions that we
develop. Along with teaching business users to use QlikView, they also
review the application's content. It is important to note that understanding
data visualization is not innate. Therefore, our educators have the
responsibility to teach business users how to interpret both simple and
advanced data visualizations.

The data governance team may experiment with some data visualization techniques
to best analyze , for example, data accuracy or QlikView Server log data. However,
for the most part, the data governance team is responsible for establishing and
enforcing data visualization standards that create trustworthiness, increase
accessibility, facilitate maintenance, reduce training time, and promote clear
enterprise communication.

www.allitebooks.com

http://www.allitebooks.org

Data Visualization Strategy

[10]

Data Visualization Strategy 3: Enable the data governance
team to establish and enforce data visualization standards.

Each team has a separate set of tasks and priorities. However, all data teams should
take advantage of agile project management. The data governance team should be
especially careful not to confuse data governance with the creation of bureaucratic
project management methods. Otherwise, any competitive advantage gained by
using QlikView for fast, flexible data exploration and discovery will be wasted.

Agile development
QlikView is software that is best implemented using agile project management
methods. This is especially true when we work closely with the business user to
deliver data visualization and analysis that provide real value.

The exact agile project management method that we use is not important. The most
popular methods are Scrum, Lean, and Extreme Programming (XP). We can find
plenty of books and other material that help us decide which method best fits our
situation. However, we do take time in this book to review the overall principles
that define agile project management:

"Manifesto for Agile Software Development
We are uncovering better ways of developing software by doing it and helping
others do it. Through this work we have come to value:
Individuals and interactions over processes and tools
Working software over comprehensive documentation
Customer collaboration over contract negotiation
Responding to change over following a plan
That is, while there is value in the items on the right, we value the items on the
left more.
Kent Beck, Mike Beedle, Arie van Bennekum, Alistair Cockburn, Ward Cunningham,
Martin Fowler, James Grenning, Jim Highsmith, Andrew Hunt, Ron Jeffries, Jon
Kern, Brian Marick, Robert C. Martin, Steve Mellor, Ken Schwaber, Jeff Sutherland,
Dave Thomas
© 2001, the above authors, this declaration may be freely copied in any form, but
only in its entirety through this notice."

Chapter 1

[11]

We take the liberty to mix a few key words from the different agile methods
throughout the rest of the book. The following is a list of the most important terms
that we will use, and the context in which we will use them. We also reference the
specific method that uses the term.

User story
In each chapter we will describe a series of business user requirements using user
stories. A user story is common to all agile methods, and describes the business user
requirements from the user's perspective in their own words. The following is an
example user story from the sales department:

"As a salesperson, I would like know who my most important customers are so that
I can focus my attention on them."

An epic is a collection of multiple user stories with a common theme.

User stories have a way of helping us look through the eyes of the business users as
we develop the best ways to visualize data. This user empathy is important when we
create a Minimum Viable Product.

Minimum Viable Product
Henry Ford famously said, "If I had asked people what they wanted they would
have said faster horses." If we always ask the business users what they want, they are
likely to say prettier Excel tables. We often have to depend on our data entrepreneur,
or ourselves as data visualization designers, to develop new ways of analyzing data
in QlikView. Then, we have to sell the idea to the business user. In these cases, we
are new product developers more than we are software developers.

Data Visualization Strategy

[12]

In his book Lean Startup, Eric Ries explains how startups use agile methods for new
product development. He recommends building a Minimum Viable Product (MVP),
measuring how a customer uses the MVP, and then learning how to improve it.

A QlikView prototype might, for example, only show that it is possible to create
a bar chart. A QlikView MVP is a working application that may have only a bar
chart, but it displays pertinent information to the user. We can then learn from the
user's interaction with the MVP and listen to his or her feedback. We go through the
following iterative process each time we decide whether or not to build additional
functionality into the MVP. We usually continue this loop pictured here until the
value we can add to the MVP is less than the cost to develop it:

Minimum+ Viable:
Good products for
startups to build

Crappy Products
nobody wants to
use

Products built by
companies better-
financed than you

Minimum Viable

Chapter 1

[13]

Ideas

Learn Build

Data CodeMeasure

Even if we have already developed a QlikView application for
a department, we should continue to use the MVPs to introduce
new functionality.

Whether we realize it or not, we may already follow a process similar to the one in
the previous diagram when we develop data visualization and analysis in QlikView.
As we begin to master QlikView, we should continue to follow the same iteration,
or use a more well-established agile method like Scrum. However, we should avoid
using waterfall project management methodologies that don't take advantage of
QlikView's flexibility.

In each chapter, we will teach you to create several different visualizations that you
can use to create a QlikView MVP using your own business data. Then, you can
listen to your business users' feedback and learn how to incrementally improve it
based on your business's unique necessities. In this way, we will help you avoid
the trap of replicating Excel, or whatever other tool you had previously used, in
QlikView.

Data Visualization Strategy

[14]

Data Visualization Strategy 4: Collaborate closely with the
business user using agile project management methods.
Data Visualization Strategy 5: Propose our own solutions to
business problems using new technologies like QlikView, and
avoid only reproducing legacy reporting methods.

Along with collaborating closely with the business users and their needs, we also
have to be concerned with the overall technical architecture of our solution. Our first
technical architecture requirement is to establish a common framework that will
make developing QlikView throughout our whole business easier.

QlikView Deployment Framework
The QlikView Deployment Framework (QDF) allows us to easily reuse resources
and separate tasks between different teams and people. A common folder structure,
data, color schemes, and expressions are among the resources that we can share
between the data governance team, the R&D team, and active business users.

The QDF is built using a resource container architecture. In the same way that a
shipping container on board a ship or stacked in a port can easily be moved from one
place to another, QDF containers are independent capsules that can easily be moved
and stored in different computers and servers.

When we install QDF, we assign it to a folder where we are going to store these
containers. How we define a container depends on how we want to organize the
QlikView applications in our business. A container may be a project, it may be a
department, or it may define a phase in the Extraction, Transform, and Load (ETL)
process.

The QDF has two special containers: 0.Administration and 99.Shared_Folders.
The 0.Administration container keeps track of the containers that are in the QDF
folder. It also contains templates that we can use to create our own containers and
a few QlikView applications that monitor QlikView usage and governance. The
99.Shared_Folders container stores all the resources that we want all containers
to share.

We can find out more information about the latest version of
the QDF in the QDF group in the Qlik Community (http://
community.qlik.com/groups/qlikview-deployment-
framework). Magnus Berg and Michael Tarallo have created an
excellent repository of written documentation and step-by-step
videos to help us implement the QDF in our business.

http://community.qlik.com/groups/qlikview-deployment-framework
http://community.qlik.com/groups/qlikview-deployment-framework
http://community.qlik.com/groups/qlikview-deployment-framework

Chapter 1

[15]

We will need to install QDF on our computers before we can perform the advanced
analysis exercises in Chapter 2, Sales Perspective.

Exercise 1
In order to install the QlikView Deployment Framework, we carry out the
following steps:

1. Go to the QlikView Deployment Framework group in Qlik Community
(http://community.qlik.com/groups/qlikview-deployment-framework).

2. Follow the instructions on the group's home page to install the latest version
of QDF and learn more about how to use QDF.

Summary
Our mission is to create a data-driven business, and data visualization plays a
key role in accomplishing can perform the advanced analysis exercises. The data
visualization strategies that we defined in this chapter are the following:

Data Visualization Strategy 1: Use data visualization as an integral part of data
exploration and discovery from the very beginning and all throughout our project.

Data Visualization Strategy 2: Encourage the data R&D team to experiment with
new data visualization techniques.

Data Visualization Strategy 3: Enable the data governance team to establish and
enforce data visualization standards.

Data Visualization Strategy 4: Collaborate closely with the business user using agile
project management methods.

Data Visualization Strategy 5: Propose our own solutions to business problems
using new technologies like QlikView and avoid only reproducing legacy reporting
methods.

Now, let's begin to apply these strategies and create advanced data analysis in our
sales department's QlikView application.

http://community.qlik.com/groups/qlikview-deployment-framework

[17]

Sales Perspective
The success of all businesses is at some point determined by how well they can sell their
products and/or services. The large amount of time and money that companies spend
on software that facilitates the sales process is testament to its importance. Enterprise
Resource Planning (ERP), Customer Relationship Management (CRM), and Point
of Sales (PoS) software not only ease the sales process, but also gather a large amount
of sales-related data. Therefore, it is not uncommon that a company's first QlikView
application is designed to explore and discover sales data.

Before we begin to create data visualization and analysis for our sales perspective,
let's review the data model that supports it. In the process, we will resolve data
quality issues that can either distract users' attention away from a visualization's
data or distort how they interpret it. Next, we'll introduce two common sales
department user stories and build solutions to stratify customers and analyze
customer churn. Finally, let's take our first look at QlikView extensions and
overall application design.

In this chapter, let's review the following topics:

• The data model for the sales perspective
• Common data quality issues
• Customer stratification and churn analysis
• QlikView extensions and the cycle plot chart
• QlikView design templates

Let's get started and review the data model that we will use to create our sales
perspective in QlikView.

Sales Perspective

[18]

Sales perspective data model
Our company sells gadgets to customers throughout the United States and our sales
perspective data model is based on data from an ERP system. The following figure
shows the data model that we are going to work with throughout this chapter:

Chapter 2

[19]

Exercise 2.1
With the following steps, let's migrate the sales perspective container from the book's
exercise files to where we've installed QDF on our computers and start to explore the
data together:

1. In the Ch. 2 folder of the book's exercise files, copy the container called
1001.Sales_Perspective to the QDF folder that is located on your
computer. By default, the QDF folder will be C:\Qlik\SourceDate.

2. In the QDF folder, open the VariableEditor Shortcut in the
0.Administration container.

3. Click Container Map Editor. If the button hangs, then enable the Open
Databases in Read and Write mode in the Setting tab of the Edit Script
window and try again.

4. In the container map table, go to the empty line after 99.Shared_Folders,
and under the Container Folder Name column, click the black arrow
indicating that it is an input field.

5. Enter the name of the new container that we just copied, 1001.Sales_
Perspective, into the input field.

6. Continue along the row and enter the Variable Prefix as Sales and the
Container Comments as Container for Sales Perspective.

7. Click the Update Map and create Containers button that is located in the
top-left of the container map table, and when prompted, click Update
Container Map.

8. Save the QlikView file.

Now that we've finished migrating the container to our local QDF, let's open
Sales_Perspective_Sandbox.qvw in the 1.Application folder of the 1001.Sales_
Perspective container and explore the sales data in more detail.

The data model that we are using is a star schema and it includes a set of events
common to many companies. In the fact table at the center of the model, we store the
following events:

• Sales invoices
• Sales credit memos
• Sales budget

The sales budget may not come from our ERP. It may exist in
Excel or in the database of a specific-planning software.

Sales Perspective

[20]

Sales invoices are the principal event of the data model. We don't use the general
journal entries that the sales invoices often generate in an ERP system because it does
not have the level of detail that a sales invoice does. For example, product details are
often not included in the general journal entry.

However, it is important that the total sales amount from our sales invoices matches
the total sales that we have in our financial reports. For that reason, it is important to
consider any sales cancelation or other sales adjustment. In this data model, sales credit
memos properly adjust our total sales amount to match the financial reports that we
will see in Chapter 3, Financial Perspective.

Finally, we cannot analyze or judge our sales performance without comparing it
with something. Basic sales analysis involves comparing current sales with either
historical or planned sales. Therefore, we should aim to have at least two years of
sales data or the sales budget in our data model. In this data model, we have both
historical sales and planned sales data.

Planned sales can be either a sales budget, a sales forecast,
or both.

All of these events are discrete events. In other words, they only exist at a discrete
point in time. The fact table that stores discrete events is called a transactional fact
table. The date dimension in a transactional fact table holds the date when the
event occurred.

Along with the date dimension, we use the 7Ws (who, what, where, when, how
many, why, and how) in the following table to describe an example set of metrics
and dimensions that we expect to find in a sales perspective data model:

Dimensions
7Ws Fields Comments
Who Customer Sometimes, customers are only identifiable by the

sales ticket number from a POS system. Otherwise, we
hope to have a rich set of attributes that describe our
customers as in the case of our data model.

Who Sales Person In our data model, the sales person is defined at
the invoice level. This might also be an attribute of
a customer, a product, or an office. We also should
include any sales structure hierarchy if it exists.

What Item Whether it be a product or a service, we should
describe what we sell to a customer in a detailed
dimension table.

Chapter 2

[21]

Dimensions
7Ws Fields Comments
Where Billing Address,

Shipping Address

The location can either be related to the customer, the
sales office, or the store where the sale took place.

When Date Here, we record the exact date of the sales invoices
and credit memos. We don't usually make daily sales
budgets, so we assign our monthly budget to the first
day of the month.

Why Promotion
Description

Giving a possible reason for sales variation versus
historical or planned sales is a part of the analytical
process. Therefore, we should include any element
that is intended to cause variation, such as sales offers
and promotions, into the data model.

How _OnlineOrderFlag We should also include whether we sell our products
face to face, online, telephonically, or through any
other sales channel.

Metrics
7Ws Fields Comments
How
many

Net Sales The net sales field records an invoice's sales dollar
amount after discount. It also stores the net sales
budget so we use _ActualFlag or _BudgetFlag
fields to determine whether the amount is actual or
budget.

How
many

Quantity Sales quantity helps us understand sales in a manner
that is independent of any change to the sales
price. Quantity can be based on different units of
measurement. For example, we can measure hours,
kilograms, or pieces.

How
many

Gross Profit Although gross profit is not always easy to calculate
and might not be available, it is vital to understand the
effectiveness of our sales. Like net sales. The amount
can also be actual or budget.

For more information on data modeling, read Data Warehouse Toolkit by Ralph
Kimball, and Agile Data Warehouse Design by Lawrence Corr.

Sales Perspective

[22]

Data quality issues
Great data visualization and analysis starts with having a well-built data model that
contains high-quality data. If this is our first data exploration and discovery project,
one of the most important discoveries that we are going to make is that our data
contains a great deal of garbage. One of the most noticeable data-quality issues is the
absence of a value in a field.

For example, in Sales_Perspective_Sandbox.qvw, the Vendor attribute in the Items
table does not always have a value. The absence of a value in a field is referred to as
a null value. In QlikView, a user can't select a null value. However, we often want to
select null values to know which items have missing attributes and send that list of
items to whomever is responsible for the catalog's data quality.

In order to select item's with missing vendor information, we replace all the null
values in the Vendor field with the string N/A, by inserting the following code before
we load the Items table in order to replace all null value in the load script:

MappingNULL_NA:
Mapping
LOAD NULL() as NULL,
 'N/A' as Mapped_Value
AutoGenerate (1);
MAP Vendor USING MappingNULL_NA;

Although we have the option to suppress null values in the
Dimensions tab of a QlikView object, we never use this
option unless we understand why the dimension values are
null. These null values may indicate a larger problem with
our data or the data model.

Missing dimension values
The previous mapping will not get rid of all the null values that we see in our charts
because what we perceive in QlikView to be a null value may in fact be a missing
value. Unlike missing values, null values can be observed the in the table where they
reside. For example, can go to the Table Viewer, preview the Items table, and see
the null values in the Vendor field.

However, what if the fact table contains an item key that refers to an item that does
not exist in the Items table? Or, what if the fact table is missing the item key for
some transactions? Despite running our previous null value mapping, we will still
see Vendor as null in QlikView because the item key that the fact table refers to does
exist in the Items table. It is a missing value.

Chapter 2

[23]

The way to give users the ability to select missing items values to replace incorrect
and null item keys in the fact table with a key to a fictitious item. The key to the
fictitious item is defined as negative one (-1). Our first step to replace incorrect and
null item keys is to create a mapping table using the Items table where we map all
the existing item keys with their own values:

MappingMissingIncorrectItemsKeys:
Mapping
LOAD _KEY_ItemID,
 _KEY_ItemID
FROM
$(vG.QVDPath)\2.Transform\Items.qvd
(qvd);

The second step is to save the original value stored in _Key_ItemID in another field
and apply this map to the _Key_ItemID field when we load the Facts table:

Facts:
LOAD [Document ID],
_KEY_ItemID as Original_ItemID,
 applymap('MappingMissingIncorrectItemsKeys',_KEY_ItemID,-1) as
 _KEY_ItemID,
 _KEY_Date,
 ...
FROM
$(vG.QVDPath)\2.Transform\Facts.qvd
(qvd);

Our final step is to create a fictitious item called 'Missing' with an item key of
negative one (-1) in the Items table:

Concatenate (Items)
LOAD -1 as _KEY_ItemID,
 'Missing' as [Item ID],
 'Missing' as Item,
 'Missing' as [Item Source],
 'Missing' as [Item Group],
 ...
AutoGenerate (1);

Sales Perspective

[24]

Missing fact values
After the previous two adjustments, we will still encounter some missing values in
QlikView. For example, do you notice anything missing from the following chart
that shows the monthly net sales for the item Bamdax 126 in Sales_Perspective_
Sandbox.qvw.?

If you noticed that various months do not appear on the horizontal axis, then you are
correct. As Bamdax 126 is not sold during every month, there is no relation between
Bamdax 126 and the months when the item was not sold. The values are missing,
and these missing values distort the line chart.

In order to completely resolve this issue, we would have to complement the fact table
with the Cartesian product of any or all dimension key sets, and in effect, measure
nil events. However, we should take into account that this may cause a severe
degradation of our QlikView application's performance. Therefore, we should apply
this solution pragmatically to solve specific analytical needs.

In this case, we specifically want to see a more accurate net sales trend for Bamdax
126 that includes the months that we did not sell the item. We do this by adding the
following code to our load script after loading the Facts table. The code creates a
Cartesian product of the Product and Date dimension key sets and adds it to our
Facts table:

Missing_Facts_Tmp:
Load distinct makedate(Year(_KEY_Date),Month(_KEY_Date)) as _KEY_Date,
 1 as _ActualFlag
Resident Facts;

Chapter 2

[25]

Left Join (Missing_Facts_Tmp)
Load distinct _KEY_ItemID
FROM
$(vG.QVDPath)\2.Transform\Items.qvd
(qvd);

Concatenate (Facts)
Load *
Resident Missing_Facts_Tmp;

DROP Table Missing_Facts_Tmp;

In order to reduce the number of rows in the Cartesian product we
only use the month and year of the date. We could have optimized
it further using the exists() function to concatenate the dimension
combinations that don't already exist in the Facts.

Finally, we untick the Suppress Zero-Values checkbox in the Presentation tab of the
line chart in order to see the correct net sales trend for Bamdax 126. You will notice
that the following line chart shows that Bamdax 126 is purchased almost every two
months. It is difficult to make this observation in the previous chart.

Again, be very careful when creating a Cartesian product in
QlikView. We create a Cartesian product by joining two or
more tables that do not have a field in common. If the tables
are large, then this may cause QlikView to use all the available
RAM memory and freeze the computer.

Sales Perspective

[26]

These steps to eliminate null and missing values in the data model will help improve
our data analysis and visualization. However, we will most likely not use all the
fields in the data model, so we shouldn't waste time to clean every field or create
every missing value until they've proven their business value.

Data formatting and standardization
While QlikView is not data-cleansing software, it does allow us to implement some
formatting and standardization that makes it easier to visualize data. We perform
these actions in the data model load script as best practice. However, we can also use
the same QlikView functions directly in any QlikView object.

Case
We read by identifying the overall shape of words. If we use text values with all
uppercase letters, then all the words have the same block shape. Which makes words
harder to identify and reduces readability. Also, all uppercase text values tend to be
less aesthetically appealing.

A quick search in Google reveals that some people have
begun to challenge this belief. Hopefully, future scientific
studies will soon allow us to make the best decision and
confirm how to optimize text readability.

An even worse scenario is when a field has some text values in all uppercase and
others in lowercase. This is common when we integrate two data sources, and it is an
unnecessary distraction when we visualize data.

First, we use the capitalize() function when the field is a proper noun, such as
customer name, employee name, or city. The function will return a mixed-case text
value with the first letter of every word being a capital letter. Secondly, we use the
upper() function to standardize text fields that are abbreviations, such as state or
units of measurement. Lastly, we use the lower() function to standardize all other
text fields.

Chapter 2

[27]

This solution is not perfect for some text values, such as a street
address that contains both proper nouns and abbreviations.
For example, Cedar St. NW requires a more nuanced approach.
However, a street address is rarely used for analysis, and any
extra effort to standardize this or any other field should be
weighed against its business value.

Unwanted characters
Text values with strange characters can also be an unnecessary distraction.
Characters, such as a number sign (#), an exclamation mark (!), a vertical bar (|), and
so on, can sometimes find their way into text descriptions where they don't belong.
We can eliminate them with the purgechar() function or the replace() function.

Also, extra spaces between words in a dimension value can make our charts look
sloppy. QlikView tends to eliminate leading and trailing spaces, but it doesn't
eliminate extra spaces between words. We can accomplish this using the following
expression, preferably in our load script:

replace(replace(replace(FieldName,' ','<>'),'><',''),'<>',' ')

Hopefully, in the future, regular expressions will be native
to QlikView, and we will have a greater ability to clean and
standardize data. Barry Harmsen has created custom script
functions that allow us to use regular expressions in the load
script (http://www.qlikfix.com/2010/10/18/regular-
expressions-in-the-load-script/). A third-party tool
called QVSource also allows us to use regular expressions
in the load script (http://wiki.qvsource.com/Using-
Regular-Expressions-In-QlikView.ashx).

Dates and time
Finally, we make sure that all date fields have the same format. This is especially the
case when we extract data from different data sources. We use the date() or time()
function to change the format to the default date format that we define in the list of
system variables at the beginning of the script.

When we create analysis that is intended for an international audience where some
users use the MM/DD/YYYY format and others use the DD/MM/YYYY format,
we should consider using the YYYY/MM/DD format. This format won't leave users
guessing whether 11/1/2016 refers to November 1, 2016 or January 11, 2016.

http://www.qlikfix.com/2010/10/18/regular-expressions-in-the-load-script/
http://www.qlikfix.com/2010/10/18/regular-expressions-in-the-load-script/
http://wiki.qvsource.com/Using-Regular-Expressions-In-QlikView.ashx
http://wiki.qvsource.com/Using-Regular-Expressions-In-QlikView.ashx

Sales Perspective

[28]

Master calendar
Along with formatting field values, we also standardize the use of whole dimension
in order to facilitate analysis of tables. Those that we reuse between different data
models are called conformed dimensions. The date dimension is ubiquitous and
serves as a great example to create the first conformed dimension.

The range of dates that we use in each data model may change, so instead of using
the exact same table for each data model, we create a master calendar reusing the
same script. We call these reusable scripts subroutines, and in QDF we store script
subroutines in the following file path:

C:\Qlik\SourceData\99.Shared_Folders\3.Include\4.Sub

Although QDF has a master calendar subroutine, we will use the master
calendar subroutine that is available from QlikView Components (http://
qlikviewcomponents.org). Qlikview Components is a library of script subroutines
and functions that were developed by Rob Wunderlich and Matt Fryer. We prefer
this mastercalendar subroutine because it automatically creates several calendar-
based set-analysis variables that we can use in our charts.

QDF is not the end but rather the means. It is designed to be
flexible so that we can adapt it to our needs. We can create,
import, and modify any reusable component that best fits our
business requirements.

We can download the latest release of QlikView Components from GitHub
(https://github.com/RobWunderlich/Qlikview-Components/releases). We
then integrate it with our QDF by copying the Qvc.qvs file that is found under the
Qvc_Runtime folder to C:\Qlik\SourceData\99.Shared_Folders\3.Include\4.
Sub. We choose to save it to 99.Shared_Folders so that we can use these
subroutines and functions in every container that we create.

In our load script, we add the following code after initializing QDF:

$(Include=$(vG.SharedSubPath)\Qvc.qvs);

We then add the following code to create the master calendar and the calendar-based
set-analysis variables:

SET Qvc.Calendar.v.CreateSetVariables = 1;
call Qvc.CalendarFromField('_KEY_Date');

http://qlikviewcomponents.org
http://qlikviewcomponents.org
https://github.com/RobWunderlich/Qlikview-Components/releases

Chapter 2

[29]

Every QlikView Components release contains working
examples of all its subroutines. We can use these examples to
learn the possible parameters and results of each subroutine.

We finish the load script by running a subroutine that eliminates any temporary
variables that were used to create the master calendar:

CALL Qvc.Cleanup;

After running our load script, we now have the following master calendar:

Most of these columns look familiar. However, the columns that end with Serial
may be new to you. To those of us who have battled with defining date ranges with
set analysis, the Serial columns help make this an easier task.

For example, we can calculate year-to-date (YTD) sales easily with the following
expression:

sum({$<Year={$(=max(Year))},Month=,_DateSerial={"<=$(=max(
_DateSerial))"},_ActualFlag={1}>}[Net Sales])

However, instead of repeating this set analysis in every chart, we can use the
calendar-based set-analysis variables to calculate YTD sales. We can improve the
preceding expression using the set-analysis variable called vSetYTDModifier:

sum({$<$(vSetYTDModifier),_ActualFlag={1}>} [Net Sales])

We can review all of the available calendar-based set-analysis variables in Settings |
Variable Overview.

Now that we've reviewed the sales perspective data model and methods in the load
script make it support cleaner data visualization and analysis, let's look at our first
user story.

www.allitebooks.com

http://www.allitebooks.org

Sales Perspective

[30]

Customer stratification.
Many of the user stories that we take into account when we start to use more advanced
data analysis and visualization techniques are not new. For example, we have probably
already used basic QlikView methods to resolve the following user story.

As a sales representative, I want to see who my most
important customers are so that I can focus my time and
effort on them.

The simplest way to define customer importance is to base it on how much they've
purchased or how much profit they've generated. In its simplest form, we can resolve
this user story with a bar chart that ranks customers by sales or gross profit.

However, given our increasing experience with QlikView, we'll take another look
at this user story and use a more advanced analysis technique called customer
stratification. This method groups customers according to their importance into bins.
The number of bins can vary, but for this exercise we will use four bins: A, B, C, and
D. We use two techniques to stratify customers. The first technique involves using
the Pareto principal, and the second involves using fractiles. We will review the first
technique in this chapter, and then in Chapter 5, Working Capital Perspective, we will
review the second technique.

Pareto analysis
Pareto analysis is based on the principle that most of the effects come from a few
causes. For example, most sales come from a few customers, most complaints come
from a few users and most gross profit come from a few products. Another name
for this analysis is the 80-20 rule, which refers to the rule of thumb that, for example,
80% of sales come from 20% of customers. However, it is important to note that the
exact percentages may vary.

We can visualize this phenomena using the following visualization. Each bar
represents the twelve-month rolling net sales of one customer. The customers are
sorted from greatest to least and their names appear along a line that represents the
accumulation of their sales. The customers whose names appear below the horizontal
reference line called 80% total sales line make up 80% of the total company's twelve-
month rolling net sales. These are the customers in which we want to dedicate more
of our time to provide great service:

Chapter 2

[31]

We also confirm that we don't depend on too few customers by including a reference
line that represents 20% of the total number of active customers. While the exact
percentage depends on the business, we usually hope to have 20% or more of our
customers make up 80% of our sales. The preceding chart clearly shows whether
this is true by verifying that the accumulated sales line crosses the 80% total sales
reference line to the right of where the 20% total customers reference line does.

Exercise 2.2
Let's construct this chart in Sales_Perspective_Sandbox.qvw using the following
chart properties. These are only the principal chart properties that are necessary to
create the chart. Adjust the color, number format, font, and text size as you like:

Chart Properties Value
General / Chart Type Choose to create a combo chart.
Dimensions / Used
Dimensions

Use the following code to create a calculated dimension labeled
Customers:

=aggr(rank(sum({$<$(vSetRolling12Modifier),
_ActualFlag={1}>} [Net Sales]),4)/count({$<$(v
SetRolling12Modifier),_ActualFlag={1}>} Total
Customer),Customer)

Sales Perspective

[32]

Chart Properties Value
Expressions Use the following code to create an expression labeled Rolling

12-Month Net Sales:
sum({$<$(vSetRolling12Modifier),
_ActualFlag={1}>} [Net Sales])

Choose to display the expression as a bar:
Expressions Use the following code to create an expression labeled

Accumulated Net Sales:
sum({$<$(vSetRolling12Modifier),
_ActualFlag={1}>} [Net Sales])

Choose to display the expression as a line and enable the Full
Accumulation option.

Expressions Use the following code to create an expression labeled
Customer:
if(
 sum({$<$(vSetRolling12Modifier),
_ActualFlag={1}>} [Net Sales])
 /
 sum({$<$(vSetRolling12Modifier),
_ActualFlag={1}>} Total [Net Sales])

>=.05,

Customer,
''
)

Choose to display the expression as Values on Data Points.
Axes / Dimension Axis Choose to Continuous option in the Dimension Axis section.
Presentation /
Reference Lines

Use the following code to create a reference line labeled 80%
Total Sales:
=sum({$<$(vSetRolling12Modifier),_ActualFlag
={1}>} [Net Sales])*.8

Choose the option to Show Label in Chart and the option to
locate it on the Primary Y axis.

Presentation /
Reference Lines

Use the following code to create a reference line labeled 20%
Total Customers:
=.2

Choose the option to Show Label in Chart and the option to
locate it on the Continuous X axis.

Chapter 2

[33]

We avoid overlapping labels on the data points by adding some intelligence into
the expression called Customer and only show the label when the customer's sales
participation is greater than 5%.

While this is a powerful visualization, we simplify customer stratification for our
sales representatives and assign each customer a particular letter according to how
they are ranked as per the Pareto analysis. Those that are assigned the letter A are
our most important customers, while those that are assigned the letter D are our least
important customers. The following table details how we assign each letter to our
customers:

Assigned Letter Accumulated Sales Percentage
A 0-50%
B 50-80%
C 80-95%
D 95-100%

If we use the chart accumulation options like in the previous exercise or other
methods like inter-row chart functions to determine which group each customer
belongs to, we are forced to always show every customer. If we select any customer
or apply any other filter then we lose how that customer is classified. In order to
assign a letter to each customer and view their classification in any context, we use
a method that uses alternate states. Let's perform the following tasks to classify our
customers based on rolling twelve-month net sales.

This method was first introduced by Christof Schwarz in the Qlik
Community (https://community.qlik.com/docs/DOC-6088).

https://community.qlik.com/docs/DOC-6088

Sales Perspective

[34]

Exercise 2.3
Perform the following steps for this exercise:

1. Create an Input Box that contains three new variables: vPctSalesA,
vPctSalesB, and vPctSalesC. Assign the values 50%, 80%, and 95% to each
variable, respectively.

2. In Settings -> Document Properties, click Alternate States… in the General
tab. Add three new alternate states: A_CustomerSales, AB_CustomerSales,
and ABC_CustomerSales.

3. Create a button named Calculate Stratification with the following
actions:

Actions Values
Copy State
Contents

We leave the Source State empty and use the following Target State:
A_CustomerSales

Pareto Select We will use the following field:
Customer

We will use the following expression:
sum({$<$(vSetRolling12Modifier),_ActualFlag={1}>} [Net
Sales])

We will use the following percentage:
=vPctSalesA

We will use the following alternate state:
A_CustomerSales

Copy State
Contents

We leave the Source State empty and use the following Target State:
AB_CustomerSales

Pareto Select We will use the following field:
Customer

We will use the following expression:
sum({$<$(vSetRolling12Modifier),_ActualFlag={1}>} [Net
Sales])

We will use the following percentage:
=vPctSalesB

We will use the following alternate state:
AB_CustomerSales

Chapter 2

[35]

Actions Values
Copy State
Contents

We leave the Source State empty and use the following Target State:
ABC_CustomerSales

Pareto Select We will use the following field:
Customer

We will use the following expression:
sum({$<$(vSetRolling12Modifier),_ActualFlag={1}>} [Net
Sales])

We will use the following percentage:
=vPctSalesC

We will use the following alternate state:
ABC_CustomerSales

4. Finally, create a straight table with Customer as the dimension and the
following two expressions:

Label Expression
Rolling
12-month net
sales

=sum({$<$(vSetRolling12Modifier),_ActualFlag={1}>}
[Net Sales USD])

Classif. aggr(if(len(only({A_CustomerSales} Customer)) <> 0,
'A',
 if(len(only({AB_CustomerSales} Customer)) <> 0, 'B',
 if(len(only({ABC_CustomerSales} Customer)) <> 0,
'C',

if(len(only(Customer)) <> 0,'D'))))

,Customer)

5. Optionally, add a background color that corresponds to each letter with the
following expression:

if(len(only({A_CustomerSales} Customer)) <> 0, blue(100),
 if(len(only({AB_CustomerSales} Customer)) <> 0, blue(75),
 if(len(only({ABC_CustomerSales} Customer)) <> 0,
blue(50),blue(25)))))

Sales Perspective

[36]

After some final adjustments to each object's presentation, we should have
something similar to the following figure:

Using this method we can select any customer and still observe how it is classified.
We can perform this same stratification technique using other additive metrics,
such as gross profit. Also, instead of customers, we can also stratify items or sales
representatives.

The second part of stratification involves using nonadditive metrics. For example,
we cannot use the Pareto principal to classify customers based on the average
number of days they their invoices. In Chapter 5, Working Capital Perspective we will
review how we can classify customers using fractiles and create a visualization that
gives us a general overview of how they are stratified.

Sales representatives can now easily see which customers have the most impact on
sales and dedicate more time to provide them with better service. At the
same time, they need to avoid losing these customers. So let's take a look at how we
can help them anticipate customer churn.

Customer churn
Customer churn is a measure of the company's tendency to lose customers. Our user
story speaks of the need to detect at-risk customers and prevent them from becoming
a lost customer.

Chapter 2

[37]

As a sales representative, I want to see which customers
I'm at risk of losing so that I can take action today to
prevent their leaving.

Surely, there are many variables that we may use to predict customer churn. In this
case we expect customers to consistently make a purchase every so many days, so we
will use a variable called customer purchase frequency to detect those that we are at
risk of losing.

We could calculate the average number of days between purchases and warn sales
representatives when the number of days since a customer's last purchase exceeds
that average.

However, a simple average may not always be an accurate measure of a customer's
true purchasing behavior. If we assume that their purchase frequency is normally
distributed then we use the t-test to determine within what range the average is
likely to fall. Moreover, we prefer the t-test because it can be used for customers that
have made less than thirty or so purchases.

If we want our model to be sensitive to customer inactivity then we send an alert
when the days since their last purchase exceeds the average's lower limit. Otherwise,
if we don't want to overwhelm the sales representatives with alerts then we use the
average's upper limit to determine whether we are at risk of losing a customer. We'll
apply the later case in the following example.

Before we calculate the upper limit of a t-distribution, we need to add a table to the
data model that contains the number of days that elapse between field the purchases
each customer makes. We add the Customer Purchase Frequency with the
following code that we add to the load script after having loaded the Facts table:

[Customer Purchase Frequency Tmp]:
Load distinct _KEY_Date as [Customer Purchase Date],
 _KEY_Customer
Resident Facts
Where _ActualFlag = 1
 and [Net Sales] > 0;

[Customer Purchase Frequency]:
Load [Customer Purchase Date],
 _KEY_Customer,
 if(_KEY_Customer <> peek(_KEY_Customer),0,[Customer Purchase
Date] - Peek([Customer Purchase Date])) as [Days Since Last Purchase]
Resident [Customer Purchase Frequency Tmp]
Order by _KEY_Customer,[Customer Purchase Date];
DROP Table [Customer Purchase Frequency Tmp];

Sales Perspective

[38]

The previous script will produce the following table:

This is a great opportunity to use a histogram to understand the distribution of a
customer's purchasing frequency. We can also compare the distribution to a normal
or a t-distributions in the same chart. Let's use the following properties to create our
histogram:

Exercise 2.4
Chart Properties Value
General / Chart
Type

Choose to create a combo chart.

Dimensions /
Used Dimensions

Use the following code to create a calculated dimension called Days
Since Last Purchase:

=ValueLoop($(=min([Days Since Last
Purchase])),$(=max([Days Since Last Purchase])),1)

Expressions Use the following code to create a expression called Number of
Purchases:

sum(if([Days Since Last Purchase]=ValueLoop($(=min([
Days Since Last Purchase])),$(=max([Days Since Last
Purchase])),1),1))
/
count([Days Since Last Purchase])

Choose to display the expression as a bar.

Chapter 2

[39]

Chart Properties Value
Expressions Use the following code to create a expression called Normal

Distribution:
NORMDIST(ValueLoop($(=min([Days Since Last
Purchase])),$(=max([Days Since Last Purchase])),1)

,avg([Days Since Last Purchase]),stdev([Days Since
Last Purchase]),0)

Choose to display the expression as a line.
Expressions Use the following code to create a expression called t-Distribution:

TDIST((fabs(ValueLoop($(=min([Days Since Last
Purchase])),$(=max([Days Since Last Purchase])),1)
-avg([Days Since Last Purchase])))
 /
 (Stdev([Days Since Last Purchase]) /
sqrt(count([Days Since Last Purchase]))) ,count([Days
Since Last Purchase]),1)

Choose to display the expression as a smooth line.
Axes /
Dimension Axis

Choose to Continuous option in the Dimension Axis section.

Presentation /
Reference Lines

Use the following code to create a reference line called Mean Days
Since Last Purchase:
=Avg([Days Since Last Purchase])

We set the following location:
Choose the option to Show Label in Chart and the option to locate it on
the Continuous X axis.

Presentation /
Reference Lines

Use the following code to create a reference line called Upper
Limit (95%):

=TTest1_Upper([Days Since Last
Purchase]-0,(1-(95)/100)/2)

Choose the option to locate it on the Continuous X axis.
Presentation /
Reference Lines

Use the following code to create a reference line called Lower
Limit (95%):

=TTest1_Lower([Days Since Last
Purchase]-0,(1-(95)/100)/2)

Choose the option to locate it on the Continuous X axis.

Sales Perspective

[40]

After additional adjustments to the presentation, we have the following chart. This
particular chart compares the actual purchasing frequency distribution for customer
Gevee. with both a normal and a t-distribution curve:

If we alert the sales representatives any time that a customer waits more than the
mean number of days, then we could be sending too many false alarms, or in other
words false positives. However, if we define at-risk customers as those who wait
longer than the upper limit of the 95% confidence level, we have a higher probability
of alerting the sales representative about customers that are really at-risk, or true
positives.

Let's also keep in mind that not all lost customers have the same effect on the
company, so let's combine the stratification that we performed earlier in the
chapter with our churn-prediction analysis. In this way, sales representatives
know to focus their attention on A customers that are at-risk, and not invest too
much time to follow-up on D customers. The following table shows what this
analysis may look like:

Chapter 2

[41]

We add the following expression to the customer-stratification table that we created
in a previous exercise. The background color expression calculates the days since the
last purchase and compares it with the upper limit of the 95% confidence level. Refer
the following table for a clear view:

Exercise 2.5
Expressions Expression for an at-risk customer

=''

We set the Background Color as follows:
if(max({$<_ActualFlag={1},Year=,Month=,_
DateSerial={"<=$(=max(_DateSerial))"}>} Total _KEY_
Date)
- max({$<_ActualFlag={1},Year=,Month=,_
DateSerial={"<=$(=max(_DateSerial))"}>} _KEY_Date)
>
TTest1_Upper({$<_ActualFlag={1},Year=,Month=,_
DateSerial={"<=$(=max(_DateSerial))"}>} [Days Since
Last Purchase]-0,(1-(95)/100)/2), red(100))

Customer stratification together with customer-churn prediction is a very powerful
business tool. Now, let's take our first look at QlikView extensions and introduce
the cycle plot.

Sales Perspective

[42]

QlikView extensions and the cycle plot
If we are going to work with advanced data visualization in QlikView, we have to
get used to working with extensions. We can either develop the QlikView extension
ourselves or use open source extensions that are available in Qlik Branch (http://
branch.qlik.com).

For example, we are presented with the challenge to find a better way to visualize
year-over-year (YoY), week-over-week (WoW), or any other period-over-period
analysis. The following line chart demonstrates how difficult it can be to compare a
large number of periods:

A cycle plot (Cleveland, Dunn, and Terpenning, 1978) offers a alternate way to compare
a large number of periods. The following cycle plot is a QlikView extension that
displays the average sales by weekday in each month and compares it to the total
average sales represented by a flat horizontal line:

http://branch.qlik.com
http://branch.qlik.com

Chapter 2

[43]

Exercise 2.6
Let's create this cycle plot in Sales_Perspective_Sandbox.qvw using the following
steps:

1. In the Ch. 2 folder of the book's exercise files, double-click the CyclePlot.
qar file. QlikView will automatically open and notify you that the extension
has been installed successfully.

2. In Sales_Perspective_Sandbox.qvw, activate WebView.
3. Right-click over an empty space and select New Sheet Object.
4. Click Extensions Objects and drag the extension called Cycle Plot to a

empty place in the sheet.
5. Define the following properties to the cycle plot. The expression is

sum({$<_ActualFlag={1}>} [Net Sales])
/
count(distinct _KEY_Date)

Sales Perspective

[44]

The properties of an extension are unique to that extension.
We should review the extension's documentation for more
information about each option.

We should now see the cycle plot similar to the one previously shown. We will
continue to explore more QlikView extensions in later chapters.

Governance – design template
Although we may think that we should create a design template before creating the
first application, it is often better to do so once we've created the first application.
After we've made the design adjustments that the business user requests then we can
use that application as a template for future ones.

Chapter 2

[45]

We convert the first QlikView application into a design template by first leaving only
the sheets with unique layouts. A layout may include a background, a logo, a sheet
title, and lines that separate sections. We may also leave a few example objects, such
as list boxes and charts, that serve as references when we create the actual objects
that are specific to the each perspective. We save this template into a new QVW file
and use a copy of it every time we create a new QlikView application. The following
image shows an example layout that we use as a design template:

When we create the actual objects for a QlikView application, we can either use the
Format Painter Tool to transfer the property options of the existing reference objects
to the new ones, or we can create a simple QlikView theme based on an existing
chart. The key to making an effective theme is to not over fit the design. We should
only be concerned with simple properties, such as borders and captions. Let's create
a simple theme and enable it to be used to create all new objects from this point on:

1. In the Properties dialog of the pareto analysis we created in Exercise 2.2, let's
click Theme Maker… in the Layout tab.

2. We select New Theme and save our theme as Basic_Theme.qvt in
C:\Qlik\SourceData\99.Shared_Folders\9.Misc.

3. We select Object Type Specific and Caption Border.

Sales Perspective

[46]

4. In the Object Type Specific properties, we select only Axis Thickness, Axis
Font, Axis Color, and Chart Title Settings.

5. In the Caption and border settings, we leave the default selections.
6. In the last step, select the option to Set as default theme for this document.

We can also change this setting in the Presentation tab of the Document
Properties.

We will now save a few seconds every time we create a new chart object. We should
repeat the same procedure for any other objects we frequently create.Also, if we
notice any other repetitive design changes that we are making to new objects, we can
update the theme using the same Theme Maker wizard.

Summary
Our QlikView sales perspective is a great place to start to use more advanced data
visualization and analysis techniques. Sales departments traditionally have both the
resources and the data available to continue to improve their QlikView applications.

Apart from the sales data model that we reviewed, we should continue to include
additional data. Adding cross-functional data from finance, marketing, and operations
gives sales representatives the information that they need to succeed. We can also add
external data sources, such as census data or any other government data. When we add
this additional data, we should keep in mind the cleaning and standardization tips that
we learned in this chapter.

Like customer stratification and customer churn, we can often create minimally
viable solutions using basic QlikView. However, we can develop a better solution
by understanding and applying more advanced techniques like Pareto analysis and
statistical distributions.

We can also add more powerful visualizations and analysis if we use extensions. The
cycle plot is an excellent example of a useful visualization that is not available as a
native QlikView object. In the next chapter, let's review the data model, user stories,
analytical methods and visualization techniques for the financial perspective.

[47]

Financial Perspective
The financial perspective includes arguably the most important measures of a
business. We judge the actions and metrics of all other perspectives based on the
effect that they have on the financial situation. Financial reports, such as the balance
sheet, the income statement, and the cash flow statement, are universal measures
of a company. These reports are used by outside investors, creditors, and the
government, and there is a standard way that they are presented.

Accountants use standardized bookkeeping practices to record the financial data.
Although we don't have to learn everything that they know about bookkeeping,
we do have to understand the basic idea of what it means. For example, we have to
understand how to interpret debits and credits in the data that originates from the
accounting software. We also have to understand whether a measure is calculated
over a certain period or based on an accumulated total. We review a financial data
model that will consider these points and makes it easier to calculate financial metrics.

When we develop a QlikView financial perspective, we have to be ready for a
challenge. The task is made even more arduous due to the static nature of the reports
to which the business users are accustomed. QlikView is a data discovery tool and
not a static report builder. Therefore, we need to add metadata to the data model
that helps us to format these reports. We also review a few areas where we can take
advantage of QlikView to visualize otherwise simple tables.

In this chapter, we will review the following topics:

• The data model for the financial perspective
• Metadata to format reports
• Standard financial reports
• Expenses and other financial indicators

Let's get started and review the data model that we use to create our financial
perspective in QlikView.

Financial Perspective

[48]

Financial perspective data model
The data model for our financial perspective is similar to our sales data model.
Let's load the data model and review it.

Exercise 3.1
For this exercise, you need to perform the following steps:

1. In the Ch. 3 folder of the book's exercise files, copy the container called
1002.Financial_Perspective to the QDF folder located on your computer.
By default, the QDF folder will be C:\Qlik\SourceData.

2. In the QDF folder, open the VariableEditor shortcut in the
0.Administration container.

3. Click Container Map Editor.
4. In the container map table, go to first empty line, and under the Container

Folder Name column, enter the name of the new container that we just
copied, 1002.Financial_Perspective, into the input field.

5. Continue along the row and enter the Variable Prefix as Financial and
the Container Comments as Container for Financial Perspective.

6. Click the Update Map and create Containers button located at the top-left of
the container map table, and when prompted, click Update Container Map.

7. Save the QlikView file.

If we open 1.Application\Financial_Analysis_Sandbox.qvw and look at the data
model then we can review the following data model.

Chapter 3

[49]

Similar to the data model for the sales perspective, the one that we use for the
financial perspective contains a fact table surrounded by dimension tables. In the fact
table at the center of the model, we store the following events:

• General journal entries
• Financial budget

General Journal (GJ) entries record all financial information. For example, different GJ
entries are created to reflect the financial effects of a sales invoice, a purchase invoice,
or a bank deposit. We can also create journal entry directly, without any supporting
document.

A GJ entry consists of two types of numeric values: debit, and credit. Each entry
assigns a debit or credit amount to two or more General Ledger (GL) accounts in
such a way that the total debit amount always equals the total credit amount. The
following diagram shows a general journal entry for a sales invoice:

Whether an account is debited or credited depends on the normal balance of the
account. For example, GL accounts that measure sales have a normal credit balance.
So, if we want to increase the value of sales, then we would credit the account.
Inversely, if the customer cancels a sale, we decrease the value of sales by debiting
the account.

As keeping track of debits and credits can become confusing, we simplify the handling
of debits and credits in the data model and calculate a third field called [GJ Amount]::

[GJ Amount] = Debit – Credit

The following table shows the [GJ Amount] values for the previous GJ entry. At first
it may seem counterintuitive that we increase sales with a negative amount, but we
will talk about how to handle the sign of the Amount field when we talk about the
data model's dimensions tables.

Financial Perspective

[50]

Similar to the sales data model, a GJ entry is a discrete event. Other than the date
dimension, the financial data model does not have many dimensions. Let's take a
look at the few dimensions that regularly describe GJ entries in the following table.

We can also encounter a financial data model that is based on a
recurring event that measures the balance of each GL account
on a monthly basis. We will look at this type of data model in
Chapter 5, Working Capital Perspective.

Dimensions
7Ws Fields Comments
What GL Account This is the most important dimension that describes the GL

accounts that correspond to the GJ entry amounts. We use it
to identify the GL account type and how we should handle
the amount in the reports. Great financial analysis is made
easier when accountants precisely define and use a list of GL
accounts called a chart of accounts (COA).

Who /
Where

Cost Center This is a field that usually defines the business department
or unit to which a certain cost or expense can be assigned.
The cost centers can be based on segmented numbers that,
for example, define the company with the first two numbers,
the branch with the next three numbers, and the department
with the last three numbers. Revenue is described by a similar
dimension called a profit center.

What Project Project accounting is important to determine the cost and
possible income of any business endeavor. Like this field,
there may also exist other high-level groupings that are
important to the company.

When Date We record the exact date of the GJ entries. Our financial
budgets are defined on a monthly basis, so we assign a budget
to the first day of the month.

Metrics
7Ws Fields Comments
How
many

GJ Amount This field is the result of subtracting the credit amount from
the debit amount.

Chapter 3

[51]

The data model for our financial perspective is a slight variation of the star schema.
As the AsOfCalendar dimension table is not directly linked to the Facts table, but
rather, they are linked to other dimension tables; this data model is called a snowflake
schema. We prefer to use the star schema, but we've kept two dimensions separate
so that we can explain their purpose better in the next two sections. Even though we
create an additional link in the data model, the small size of both dimension tables
means that there will be no perceivable change to the application's performance.

Financial report metadata
The GLAccountsGroup table contains information on how to organize and format
the financial reports. The field called Account – Factor is of particular importance
because it helps determine how to handle the sign of the GJ Amount for the reports.
For example, if we sum the sales amount directly from the GJ Amount field, we will
get a negative number because the GL account for sales has a normal credit balance.
However, when we look at this number in a report, we want to see it as a positive
number. So, we multiply the sum by the number in Account – Factor in order to
change the sign of sales.

In general, the first digit of a GL account number indicates the account type and
whether we need to change the sign of the amounts assigned to it. The following
diagram shows the normal balance of the principal account types according to a
common numbering scheme and the value we will store in Account – Factor:

Along with Account – Factor, we also store information about how each financial
report groups the GL accounts differently. Unlike customer and product groups in
the sales perspective, GL account groups are not only informative, but they are also
an essential part of financial analysis. We must take care to verify each account's
grouping with an accountant, or else we risk creating erroneous analysis.

Financial Perspective

[52]

Finally, we also include information about how we want to format our financial
reports in the same table. We assign a particular format to each group and
calculation. By defining that information in this table, we maintain the report's
format much easier than if we defined the format directly in the QlikView object:

Let's review the data that we store in our GLAccountsGroup table in more detail.
Each of the following numbers corresponds to one or more columns in the
previous diagram:

1. The first column defines the report that corresponds to the grouping or
calculation that define in this row. In this case, we have three reports: an
income statement, a balance sheet, and a cash flow statement.

2. In the next column, we include the text description of the account grouping
or calculation.

3. Here, we define the order in which each concept must be displayed. We
choose numbers in increments of a hundred so that we have room to insert
new concepts in between two others without having to reassign the value of
every other concept.

4. Account groupings are usually defined by a range of GL accounts. We use
intervalmatch() in the script to link this table with our GLAccounts table.
For more information on intervalmatch() review the QlikView help
documentation where you can find a great example of how it works.

5. We define factor to be negative one (-1) for all accounts with a normal credit
balance. We also apply a factor of negative one (-1) to every calculated
group that includes a credit account. For example, we use negative one (-1)
as a factor for gross profit because it is the sum of income (a normal credit
balance) and costs (a normal debit balance). In doing so, we obtain the
following results:

Chapter 3

[53]

 ° If income is greater than costs, we have a profit. As income is a
normal credit balance, we first see this as a negative number. As we
want to see profit as a positive number, we multiply it by a factor of
negative one (-1).

 ° Otherwise, if costs are greater than income, we have a loss. As costs
are a normal debit balance, we first see this as a positive number. As
we want to see loss as a negative number, we multiply it by a factor
of negative one (-1).

6. We decide whether we want the account group's description and to appear
in bold (), italic (<i>), or bold italic (<i>) . If we want the text to be
normal, we leave the cell blank.

7. We use indentation to help users recognize any group hierarchies. The
number represents the amount of spaces that we will use to indent the
group's text description.

8. We can color normal text dark grey and important text black. A good dark grey
to use is rgb(128,128,128) or DarkGray().

9. Finally, we leave the option to highlight certain rows with a background color.

Once we define the financial report metadata in the data model, we can then easily
format our financial reports. We can also use this technique to maintain the format of
any other legacy report in QlikView. Before we create our first financial report, let's
look at one other element in the data model that facilitates financial analysis.

AsOfCalendar
When we perform financial analysis, we have to be able to easily adjust over which
period we are going calculate each metric. For example, return on assets is net
income divided by total assets. Net income is calculated over the past twelve months
while total assets is an accumulated amount calculated over all previous months.

We can use set analysis to calculate these metrics at any one moment in time;
however, we also would like to visualize the trend of these metrics. The best way
to calculate that trend is to combine set analysis with an AsOfCalendar.

Financial Perspective

[54]

An AsOfCalendar contains the same months and years as a regular calendar.
However, when we select a date in the AsOfCalendar, we see everything that is prior
to this data in the Facts table. For example, in the following diagram if we select
2013-Jun in the AsOf Year-Month field, then we see all months prior to it in the data
model as possible values in the Year-Month field:

We use a subroutine, Qvc.AsOfTable in QV Components, to create the
AsOfCalendar and insert the following script after creating the MasterCalendar
table. We also add the AsOf Year and AsOf Month fields manually to make the
table more useful. The table also contains a field called AsOf Months Ago that tells
us how many months difference there is between the AsOf Year-Month and the
Year-Month. This field can be quite useful when we need to calculate rolling periods:

CALL Qvc.AsOfTable('Year-Month');
AsOfCalendar:
Load *,
 Month([AsOf Year-Month]) as AsOfMonth,
 Year([AsOf Year-Month]) as AsOfYear
Resident [AsOfTable_Year-Month];
Drop table [AsOfTable_Year-Month];

In order to take advantage of this calendar, we also need to replace the usual year
and month filters with ones that use AsOf Year and AsOf Month. The filters will
look exactly the same as the year and month filters in the sales perspective that uses
the master calendar table. However, in the following sections, we see what changes
we have to make to accurately calculate the expressions.

Let's start visualizing the financial perspective with the three most important reports.

Income statement
An income statement is an essential report for all the business's stakeholders. We'll
take an executive's perspective for our user story.

Chapter 3

[55]

As an executive, I want to know whether the business made or
lost money over a certain period of time. I also want to know
the possible reasons for this result so that I can measure the
results of the strategic actions that I took during that period.

Financial statements have been around for so long that most business users are going
to want to see them in the format that they are accustomed to. As legacy reporting
in QlikView involves using advanced methods, let's take the time to create them in
their standard format. We will then look at how we can make a report more visual
and easier to understand at a glance.

In the following income statement example, we start by calculating the sales that we
generated during the course of the year. Proceeding downward through the report,
we subtract the costs and expenses that were incurred in these same period. Then at
certain moments in the report, we calculate a subtotal. For example, gross profit is
sales minus costs, operating profit is gross profit minus expenses, and net profit is
operating profit minus other concepts, such as taxes and interest.

Each of these main groups (sales, costs, and expenses) can be divided into further
subgroups. These subgroups depend on the business and what the stakeholders
want to measure. For example, we want to dissect expenses into various subgroups,
such as travel and payroll, and see how each affects whether we make money or not.
Let's create an income statement in the following Exercise 3.2.

Financial Perspective

[56]

Exercise 3.2
In the Financial_Perspective_Sandbox.qvw application that is found in the C:\
Qlik\SourceData\1002.Finance_Perspective\1.Application, let's start by
creating a straight table with the following properties:

1. Add the [Account - Concept] field as a dimension.
2. Add the following five metrics:

Label Expression
='' only({1<[Account - Report]

={'Income_Statement'}>}
[Account - Order])

=monthname(
max(
[AsOf Year-
Month]
))
&
chr(10)
& 'Monthly'

sum({$<[Account - Report]={'Income_Statement'},
[Month]=,[Year]=,_MonthSerial={'$(=max
(_AsOfMonthSerial))'}>} [GJ Amount])
* only([Account - Factor])

% sum({$<[Account - Report]={'Income_Statement'},
[Month]=,[Year]=,_MonthSerial={'$(=max
(_AsOfMonthSerial))'}>} [GJ Amount])
* only([Account - Factor])
/
sum({$<[Account - Report]={'Income_
Statement'},[Account - Concept]={'Total Revenue'},
[Month]=,[Year]=,_MonthSerial={'$(=max
(_AsOfMonthSerial))'}>} Total [GJ Amount]) * -1

=chr(10) &
'YTD'

sum({$<[Account - Report]={'Income_Statement'},[Mon
th]=,[Year]={$(=max(AsOfYear))},
_MonthSerial={'<=$(=max(_AsOfMonthSerial))'}>} [GJ
Amount]) * only([Account - Factor])

% sum({$<[Account - Report]={'Income_Statement'},
[Month]=,[Year]={$(=max(AsOfYear))},
_MonthSerial={'<=$(=max(_AsOfMonthSerial))'}>} [GJ
Amount])
* only([Account - Factor])
/
sum({$<[Account - Report]={'Income_
Statement'},[Account - Concept]={'Total Revenue'}
,[Month]=,[Year]={$(=max(AsOfYear))},
_MonthSerial={'<=$(=max(_AsOfMonthSerial))'}>}
Total [GJ Amount])
* -1

Chapter 3

[57]

The first expression looks unusual. It doesn't aggregate anything and doesn't even
appear in the example income statement. That's because it works as a placeholder for
account groups that do not have any GJ entries during the selected period. Unlike
QlikView, legacy reports usually show dimensions even when the sum of their
corresponding metric is zero. We change the expression's Text Color to white() so
that it is hidden from the user.

Now that we've added the necessary dimension and expressions let's change
a few detailed properties and apply the financial report metadata to the QlikView
object:

1. In the Dimensions tab, select the Account – Concept and insert a blank space
in the Label field.

2. Click Edit… and insert the following code to enable the text indentation:
=Repeat(' ',[Account - Text Indent]) & [Account - Concept]

3. Expand the dimension's properties and click Background Color. Click Edit…
and insert the following code:
=Only({1} [Account - Background Color])

4. Click Text Color and click Edit… and insert the following formula:
=Only({1} [Account - Text Color])

Financial Perspective

[58]

5. Finally, click Text Format and then click Edit… and insert the
following formula:
=Only({1} [Account - Text Format])

6. In the Dimensions tab, there is a little-used option that we can use to adjust
the row spacing to make the table more readable and aesthetically pleasing.
Click Advanced… in the Dimensions tab and make the two changes that
appear in the following diagram:

7. Now, let's apply the same formatting changes to the expressions, as follows:

Chapter 3

[59]

8. In the same way that we defined the properties of the dimension, we define
the Background Color, Text Color, and Text Format in the Definition field
for every expression except for the one we use as a placeholder:

Background
Color

=Only({1} [Account - Background Color])

Text Color =Only({1} [Account - Text Color])

Text Format =Only({1} [Account - Text Format])

9. Finally, for each expression select the No Totals radio button in the Total
Mode section.

10. Let's move on to the Sort tab. Go through the steps in the following diagram to
properly sort the report's concepts. The sort expression is =only({1<[Account
- Report]={'Income_Statement'}>} [Account - Order]):

We can reduce the work in this step if we use the dual() function
in the script to combine the text description and order number into
one field:
dual([Account – Concept], [Account – Order]) as
[Account – Sorted Concept]

We would then only need to sort [Account – Sorted
Concept] by Numeric Value.

Financial Perspective

[60]

11. Now in the Presentation tab, let's copy the options that are seen the
following diagram:

It is good practice to align the column label in the same way that we did to its data.
We also keep the label close to the data and vertically align the label on the bottom of
a two-line header. Make sure to set these alignments for every expression.

Along with proper formatting, we want to alert users to any negative values. Such
values in one of the income statement's calculated groups, such as Gross Profit
or Operating Profit, indicate a loss. If found in other groups they may indicate an
unusual transaction that affects an account contrary to its normal balance. We enable
these alerts in the Visual Cues tab.

If we have room enough to only use whitespace to divide columns, let's remove the
borders in the Style tab in two easy steps:

1. Uncheck Vertical Dimension Cell Borders.
2. Uncheck Vertical Expression Cell Borders.

Finally, let's perform these last two steps to clean the number format and to hide
the caption:

1. In the Number tab, define both expressions as integers.
2. In the Caption tab, uncheck Show Caption.

Chapter 3

[61]

We should now have a fairly clean income statement, but what if we want to go a little
further and change the background of the column header or row borders? We can use
a hidden feature called Custom Format Cell to make these additional changes.

Custom format cell
Straight tables and pivot tables have an additional properties dialog to further
customize a table's style. It is not available by default, so first we go to the Settings
file menu, and then User Preference….

In the Design tab of User Preferences, tick the option to Always Show Design
Menu Items, as shown in the following screenshot:

We now have a new option called Custom Format Cell when we right-click over
any table:

This option opens a window that allows us to define the cell borders, cell
backgrounds, text color, text style, and text size of each dimension and expression.
Any change that we make to one cell applies to all other cells belonging to the same
expression or dimension. In other words, we cannot define a different format for two
different cells of the same expression or dimension.

Financial Perspective

[62]

Regardless of this limitation, Custom Format Cell does provide us with several
options to create a custom table style. Let's go ahead and make our final changes to
the format of the income statement as follows:

You will notice that on the left-hand side of the window, we can navigate throughout
the table and define the style for each dimension and expression without having to
close the window and reopen it by right-clicking on a different area of the table. Let's
start by clicking on the first expression's column header:

1. Change the Background Color to white.
2. Now, click on the first cell with data.
3. Change the Border before cell to nothing.
4. Change the Border after cell to nothing.
5. Select All Dimensions and Expression in the Apply change to

drop-down box and click OK.

If we add a few more metrics and move the account names to the center of the table,
we can achieve a more detailed winged report with monthly metrics on one side
and year-to-date metrics on the other. You can review the following example in the
exercise solution file:

Chapter 3

[63]

Now that we have a well-formatted income statement, let's examine how we can
use common visualization techniques to make it more effective. We use a slightly
modified version of the previous user story to identify the key points that executives
look for in an income statement.

As an executive, I want to quickly see how the income statement
has been changing over the course of this year. I also want to see
how each period compares to the same period last year so that I can
discover whether my strategies are improving our financial results.

Modern accounting has been around for more than 500 years, and we are probably
not going to change how accountants visualize data in our lifetime. The accountant's
instinct to use numbers and tables to solve this user story may result in something
like the following example, which is a common format to analyze how an income
statement is trending:

Any argument to say that they shouldn't analyze data in this way will cause
them to question QlikView's ability to satisfy their reporting needs. Therefore, I
recommend that we do it in the way that they are most comfortable with. Luckily,
the AsOfCalendar table makes this report possible without reverting to methods,
such as island tables and if-statements, that can cause the report's calculation time
to grow exponentially. You can review the details on how to make the table in the
exercise solution file.

Financial Perspective

[64]

Then, in addition to the table, we should propose more abstract ways to view the
data more efficiently. Converting a table full of metrics into an abstract visualization
is one of the most difficult challenges that we will ever face as data visualization
designers. We have to come to terms with the fact that we cannot fit every metric into
one chart without making it as hard to read as the originating table. Regardless of
whether we use lines, bars, points, or some purportedly omniscient chart, we cannot
fit everything into one visualization.

The best solution is to create a group of charts in which each element highlights a
different aspect of the income statement. For example, we can create one bar chart to
analyze year-to-date amounts and variations, and another graph to analyze monthly
amounts and variations. Then we can add a line chart to view the trend of the
most important account groups, and another to view the trend of detailed expense
accounts.

Another alternative is to use the same familiar table structure to create a grid chart.
Again, if we try to fit everything into one chart, we have to sacrifice a certain level of
detail, metrics, or dimensions. At the same time, we can use the following grid chart
to start a story that will lead us to look at specific charts and tables as we dive deeper
into our story:

In order to make this chart, we have to sacrifice measuring year-to-date metrics.
We've maintained the same number of dimensions, but we've replaced actual
numbers with color and year-over-year variation with an arrow. Even so, we can
quickly perceive that we had our highest sales in July and August 2015, while
strangely, our cost of goods sold was highest in December 2014. The fact that cost of
goods sold is not always correlated to sales is curious. Such an observation may be a
great place for a business user to start a story that leads to price and inventory
analysis.

Chapter 3

[65]

Exercise 3.3
In the Financial_Perspective_Sandbox.qvw application, let's first create a variable
that makes the chart expressions cleaner, as follows:

1. Add the following variables that calculate the GJ amount for the current
month and the same month last year:

Name Definition
vExp_CYMTD_
GJAmount

sum({$<[Account - Report]={'Income_Statement'},
[AsOf Months Ago]={0}>} [GJ Amount])

vExp_LYMTD_
GJAmount

sum({$<[Account - Report]={'Income_Statement'},
[AsOf Months Ago]={12}>} [GJ Amount])

2. Clone the income statement that we created in Exercise 3.2 and change the
chart type to pivot table.

3. Add the dimensions AsOfYear and AsOfMonth to the cloned table and pivot
them so that they become columns as in the previous figure.

4. Replace the existing metric with the following that creates an up arrow, or
chr(9650) if the current month is greater than the same month last year
and a down arrow otherwise, or chr(9660). This expression also serves as a
placeholder for inactive accounts:

Label Expression
Month if(

 $(vExp_CYMTD_GJAmount) * only([Account - Factor])
 /
 $(vExp_LYMTD_GJAmount) * only([Account - Factor])
 -1
 <0,chr(9660),
 if(
 $(vExp_CYMTD_GJAmount) * only([Account - Factor])
 /
 $(vExp_LYMTD_GJAmount) * only([Account - Factor])
 -1
 >0,chr(9650),
 if(not isnull(only({1< [Account - Report]={'Income_
Statement'}>} [Account - Concept]))
 ,'')
)
)

Financial Perspective

[66]

5. Add the following code as a background color of the expression. The aggr()
function helps define a different range of lightness and darkness for each
account. Otherwise, the accounts with the largest numbers like revenue and
costs would always be a dark color and every other smaller account a light
one:
ColorMix2 (
 if($(vExp_CYMTD_GJAmount) * -1 < 0
 ,-Sqrt(($(vExp_CYMTD_GJAmount) * -1)/min(total <[Account
- Concept]> aggr($(vExp_CYMTD_GJAmount)* -1,[Account -
Concept],AsOfMonth,AsOfYear)))
 ,Sqrt(($(vExp_CYMTD_GJAmount) * -1)/max(total <[Account
- Concept]> aggr($(vExp_CYMTD_GJAmount)* -1,[Account -
Concept],AsOfMonth,AsOfYear))))
 , ARGB(255, 255, 128, 0), ARGB(255, 0, 64, 128), ARGB(255, 255,
255, 255))

6. Add white(150) as the expression's text color. We make the arrow slightly
transparent so that it contrasts less with the background, which makes for
easier reading and a more refined look.

We now have an income statement grid chart. We can experiment with the options
that we learned earlier in this section to add cell borders and any fine-tuning
adjustments. After doing so, let's move on to the next important financial report—the
balance sheet.

Balance sheet
We use the following user story to understand the needs of the business users that
require a balance sheet.

As an executive, I want to understand the overall financial health
of the business so that I can create the necessary strategy to ensure
its future.

As an executive, I want to understand the overall financial health of the business so
that I can create the necessary strategy to ensure its future.

The balance sheet is a complete analysis of a company's financial situation. It is
the sum of all GJ amounts divided into three principal groups: assets, liabilities,
and capital. The income statement from the previous section is a small part of the
balance sheet that is classified as Retained Earnings in the capital account group. The
following is an example balance sheet:

Chapter 3

[67]

Unlike an income statement where we only see financial movements over a certain
period of time, a balance sheet shows us an accumulated total of all the financial
movements that have occurred prior to the selected month. Another requirement is
that total assets must always be equal to the sum of liabilities and capital.

Also, we often divide assets, liabilities, and capital into smaller account groups that
permit us to perform a deeper financial analysis of the company. For each group we
calculate its percentage contribution with reference to total assets or total capital and
liabilities. Finally, variation is calculated between consecutive periods. Year-over-
year analysis is less common because seasonality is not as important for the balance
sheet as it is for the income statement.

We create a balance sheet in the same way that we create an income statement. Let's
create one in the next exercise.

Exercise 3.4
We start to create our balance sheet by cloning the income statement that we created
in Exercise 3.2 and then go through the following steps:

1. Change the placeholder expression to the following code:
only({1<[Account - Report]={'Balance_Sheet'}>} [Account - Order])

2. Change the expression that calculates the current month to the following code:
sum({$<[Account - Report]={'Balance_Sheet'},[Month]=,[Year]=,
_MonthSerial={'<=$(=max(_AsOfMonthSerial))'}>} [GJ Amount]) *
only([Account - Factor])

Financial Perspective

[68]

3. Change the expression that calculates the percentage contribution liabilities
to the following code:
sum({$<[Account - Report]={'Balance_Sheet'},[Month]=,[Year]=,
_MonthSerial={'<=$(=max(_AsOfMonthSerial))'}>} [GJ Amount])
* only([Account - Factor])
/
sum({$<[Account - Report]={'Balance_Sheet'},[Account -
Concept]={'Total Assets'}
,[Month]=,[Year]=,_MonthSerial={'<=$(=max(_AsOfMonthSerial))'}>}
Total [GJ Amount])

4. Replace the remaining two expressions in the cloned chart by repeating steps
two and three to calculate the previous month's balances. In doing so, we
change the set analysis that refers to _MonthSerial from {'<=$(=max
(_AsOfMonthSerial))'} to {'<=$(=max(_AsOfMonthSerial)-1)'}.

5. Add variation and percentage variation columns as shown in the example
balance sheet.

6. Change the set analysis in the sort expression so that it refers to [Account
-Report]={'Balance_Sheet'}.

When we create data visualization that supports a balance sheet, we tend to analyze
the ratio between amounts. For example, a metric such as return on assets, which
is the net income divided by the average total assets, tells us how well a company
uses its assets to earn a profit. Another example is the acid test ratio that divides
current assets, such as cash, accounts receivable, and short-term investments, by
current liabilities, such as accounts payable. This ratio tells us how well the business
can cover short-term liabilities. Similar to these there are numerous other ratios that
the accounting department may use to evaluate the current financial situation of a
company. You can find out what a certain financial ratio means and how to calculate
it at http://www.investopedia.com/.

The actual visualizations for these ratios are often quite simple. In part, this is true
because The balance sheet has relatively few dimensions that pertain to it. Fields
related to company and time are usually the only applicable dimensions that are
available. Even so, it can be difficult to calculate them in QlikView and we often
calculate financial ratios for a selected moment in time using set analysis. However,
when we add the AsOfCalendar to the data model, we have the ability to analyze
how they change over time.

In the next exercise, let's make a simple line chart that shows how return on assets
behave over time.

http://www.investopedia.com/

Chapter 3

[69]

Exercise 3.5
1. Add the following variable that includes two parameters that allow us to

see the end-of-month balance of any concept. The first parameter defines the
concept, and the second determines whether the balance is from the current
month or any previous month. Zero (0) is the current month, one (1) is the
previous month, two (2) is the month before that, and so on:

Name Definition
vExp_EOM_
GJBalance

sum({$<[Account - Report]={'Balance_
Sheet'},[Account - Concept]={$1},[AsOf Months
Ago]={">=$2"}>} [GJ Amount])

2. Create a bar chart with [AsOf YearMonth] as the dimension and with the
following expression. The expression divides the last three months of net
income by the three-month average of assets:
(sum({$<[Account - Report]={'Balance_Sheet'},[Account
- Concept]={'Current Retained Earning'},[AsOf Months
Ago]={">=1<=3"}>} [GJ Amount LC]))*-1
/
(
RangeSum(
$(vExp_EOM_GJBalance('Current Assets',0))
,$(vExp_EOM_GJBalance('Current Assets',1))
,$(vExp_EOM_GJBalance('Current Assets',2))
)/3
)

Financial Perspective

[70]

3. Adjust the bar chart's properties to produce a graph that is similar to the
following figure:

Without the AsOfCalendar table, this trend analysis and visualization would
be difficult and slow to create. We use the [AsOf Months Ago] field in the
set analysis to calculate over a rolling period that depends on the value of the
[AsOf YearMonth] dimension.
Unlike the Accumulation option in the Expression tab or the above()
function, we don't have to worry about the first few values of a selected
data months being incorrect. Whether the user selects one month or one
year, every bar in this chart will show the correct value. Although the final
visualization is simple, the data model and calculation that we need to create
it is quite elegant.

Cash flow statement
A cash flow statement is a report that analyzes the financial movements that affect
cash flow.

As an investor, I want to understand how the company
receives and spends its cash so that I can understand whether
the company is funded by its own operations, investing in the
future, and/or borrowing excessively.

Chapter 3

[71]

Cash flow is classified in the following ways:

• Operations can be calculated using a direct or indirect method that is
explained as follows:

 ° The indirect method starts with the net income from the income
statement and adjusts it according to the net changes of accounts
receivable (A/R), accounts payable (A/P), and inventory

 ° The direct method sums cash transactions between our customers,
suppliers, and employees

• Investing includes purchasing and selling assets, such as offices or equipment
• Financing includes receiving or paying a bank loan

To create a cash flow statement, we have to find every G/L account that affects the
accounts that represent cash assets. In order to be successful at this, we have to team
up with an accountant who can help us find and classify these accounts. When the
total cash flow in this statement equals the net change of all cash assets then we've
successfully found all the accounts.

In the next exercise, we will create a high-level cash flow statement using the more
popular indirect method.

Exercise 3.6
We start to create our cash flow statement by cloning the balance statement that we
created in Exercise 3.2 and then go through the following steps:

1. Change the placeholder expression to the following code:
only({1<[Account - Report]={'CashFlow'}>} [Account - Order])

Financial Perspective

[72]

2. Change one of the expressions to calculate net movements across all accounts:
sum({$<[Account - Report]={'CashFlow'},[AsOf Months Ago]={0}>} [GJ
Amount] * [Account - Factor])

3. Change one of the expressions to calculate the relative percentage between
each amount and the total cash flow:
sum({$<[Account - Report]={'CashFlow'},[AsOf Months Ago]={0}>} [GJ
Amount] * [Account - Factor])
/
sum({$<[Account - Report]={'CashFlow'},[Account - Concept]={'Total
Cash Flow'},[AsOf Months Ago]={0}>} Total [GJ Amount] * [Account -
Factor])

4. Delete all other expressions.
5. Change the set analysis in the sort expression so that it refers to [Account -

Report]={'CashFlow'}.

The magic we do to create this report is in the financial report metadata that
we reviewed earlier in this chapter. We use the Factor field the following table
to add or subtract amounts as defined by the accountant. This method of report
making is not always easy to grasp at first, so we should take our time to explore and
experiment with the metadata.

Chapter 3

[73]

The most important analysis introduced by the user story in the beginning of the
section is to see what percentage of cash is received or spent within each group of
activities. The cash flow statement looks distinct for different businesses during each
stage in their lives. A start-up will not have much cash flow in operations, but it will
have a lot of investment and financing activities. A mature company will have a
more balanced cash flow with the greater amount classified as operations. A simple
bar chart to that compares these three principal activities over time would be the
optimal visualization.

Summary
A QlikView financial perspective is a challenge for any master. The creation of clean,
clear, traditional financial reports is just as important as any other way to visualize
data. However, we shouldn't stop there. We should strive to go beyond these first
reports and create charts that allow financial analysts and executives to discover
opportunities that are not so easy to find in a table full of numbers.

Be sure to review the use of the financial report metadata and the as-of calendar as
tools to help create the income statement, balance sheet, and cash flow statement.
They are also vital to create the supporting data visualization.

In the next chapter, we will leave behind traditional reports and experiment with
more advanced data visualization in the QlikView marketing perspective.

[75]

Marketing Perspective
The most successful businesses understand the market that they serve. They
understand that talking with a customer about their needs is more effective than
babbling about their own product or service. We can use the marketing perspective
to analyze actual customers, potential customers, business competitors, and society
at large. Although we have a fair amount of internal data about our own customers,
we also look for other data resources to examine other market variables.

One of the internal data sources that we can exploit is the Customer Relationship
Management (CRM) system. This includes data about current customers that isn't
necessarily related to actual sales, such as visits, sales opportunities, and service calls.
It also stores sales opportunities with potential customers. In addition to a CRM, we
can also use the same sales data from Chapter 2, Sales Perspective, to better understand
our current customers' purchasing behavior.

Depending on the company, we may also find data that is useful from external
sources. If the business is actively involved in social networks, then we can gather
market data from Facebook, Twitter, or LinkedIn. We can also purchase data from
market research companies or download free, public data from several governmental
and nongovernmental organizations.

In this chapter, we will review the following topics while we create the QlikView
marketing perspective:

• Marketing data model
• Customer profiling
• Market analysis
• Social media analysis
• Sales opportunity flow analysis

Let's get started with a look at how we combine the CRM data with the existing sales
data model from Chapter 2, Sales Perspective.

Marketing Perspective

[76]

Marketing data model
A CRM system serves several functions. Along with keeping track of our sales process
and the level of customer service, it also gives us first-hand data about our customers
and leads. It contains an evolving event called a sales opportunity that, in itself,
contains various discrete events, such as visits, and calls, and sales quotes. All this data
is important first-hand information about our market. This is especially true in the
case of sales quotes, which are documents that are similar to invoices and give us an
idea what customers are interested in buying, how much they plan to purchase, and at
what price. An opportunity may also include information about its origins, competing
offers, and any reason why we failed to convert it into an actual sale.

A CRM system also tends to add more information to the customer catalog, such as
demographic information. If customers are people, then we may gather data about
their age, sex, education level, income level, marital status, and so on. Otherwise, if
our customers are businesses, then we may gather data about the industry group
that they belong to along with the number of employees and annual revenue. We
may also add more detailed geographical data, such as latitude and longitude.

We can find the marketing perspective container called 1003.Marketing_Perspective
in the Chapter 4, Marketing Perspective, folder of the book's exercises. Let's load this
container into the QDF in the same way that we did in Chapter 2, Sales Perspective. Once
we've transferred the container, let's open the marketing perspective called Marketing_
Perspective_Sandbox.qvw in the 1.Application folder and see how sales
opportunities and other marketing data combine with the previous sales data model.

As you can see, the following data model is quite similar to that of the sales
perspective. We've added some additional fields in the Facts table to help us
measure the following events:

• Sales opportunities
• Sales quotes
• Customer-related activities, such as visits and calls

Sales quotes and activities are discrete events that occur on a given date. However,
sales opportunities are evolving events that go through several stages. Each stage
represents a step that we expect to perform in every sales process. For example,
going to the first meeting, sending a sales quote, and negotiating the final sales terms
are common steps in a sales process.

Chapter 4

[77]

In our analysis, we want to know how the process is evolving. More specifically,
we want to identify its current step along how it progressed through past steps. We
use intervalmatch() in the load script to link the start and end dates of each step
with the corresponding discrete dates in the MasterCalendar table. A side effect of
using intervalmatch() is the existence of a synthetic key table in the data model. A
synthetic table is QlikView's way of linking tables that share more than one key field.
Usually, we avoid using these tables as they may affect the performance of the data
model, but in this case we leave it in the data model. Any attempt to eliminate the
synthetic key table created by intervalmatch() often nullifies its purpose or causes
the related tables to grow too large.

Marketing Perspective

[78]

Finally, we add business demographic data and geographical data to the customer
catalog along with a related table with public census data that helps us look for new
markets that share the same attributes as the business's current customers.

We can download the latest US business census data from
http://www.census.gov/. The census data that we use in this
data model is from http://www.census.gov/econ/susb/.

Apart from this additional data, we reuse many of the dimensions and metrics that
we saw in Chapter 2, Sales Perspective. For example, Customer, Sales Person, and Item
also exist in this data model. Let's take a closer look at some of the new dimensions
and metrics that pertain to marketing.

Dimensions
7Ws Fields Comments
Who Customer NAICS

(2-digit)
This customer attribute comes from the
North American Industry Classification
System (NAICS), which is a hierarchical
group of numbers that classify our
customers.

Who Customer Employee
Size

This attribute helps us determine the
demographics of the customer base.

Who Competitor This market information helps us to
examine who we are competing against and
measure our success rate against them.

Where Sales Opportunity
Stage

This is where we identify both the current
and closed steps of an evolving sales
process.

Metrics
7Ws Fields Comments
How
Many

Potential Sales This is where we estimate how much
we will be able to sell to a customer or a
prospect.

How
Many

Sale Opportunity
Close %

This is a standard practice to calculate
a more accurate potential sales amount,
which is is to multiply it by the probability
that we will succeed in closing the sale. As
we progress through the sales process the
probability increases.

http://www.census.gov/
http://www.census.gov/econ/susb/

Chapter 4

[79]

Now that we have a marketing data model, let's create current customer profiles and
discover where we can find similar businesses according to the census data.

Customer profiling
In the marketing data model, we use each customer's NAICS code, employee size,
and average revenue to create profiles. We want to look for profitable customers, so
we also cross this data with the the gross profit each customer generates. We use a
parallel coordinates chart and a Sankey chart to visualize customer profiles.

As a market analyst, I want to discover demographic characteristics of
our current customers so that I can search for potential customers among
companies with similar attributes.

Parallel coordinates
In Marketing_Perspective_Sandbox.qvw, we are going to make the following
parallel coordinates chart. This chart helps us analyze multivariate data in a two-
dimensional space. We often use metrics that result in numbers to create it and
we can find such example at http://poverconsulting.com/2013/10/10/kpi-
parallel-coordinates-chart/.

However, in the following chart, we use descriptive values for NAICS, Size, and
Average Revenue that we can see in detail in the text popup. The highlighted line
represents construction companies that have 10-19 employees and $100,000-$250,000
in annual revenue. The width of the line represents the relative number of customers
of this type compared to other types.

www.allitebooks.com

http://poverconsulting.com/2013/10/10/kpi-parallel-coordinates-chart/
http://poverconsulting.com/2013/10/10/kpi-parallel-coordinates-chart/
http://www.allitebooks.org

Marketing Perspective

[80]

Exercise 4.1
Before we begin to create this chart, let's create the following variable:

Variable
Label Value
vIgnoreSelectionToHighlight [Customer NAICS]=,

[Customer Employment Size]=,

[Customer Est. Annual Revenue]=

Now, let's create a line chart with the following property options:

Dimensions
Label Value
Customer Attributes CustomerProfileAttribute

Customer Profile ='NAICS:' & [Customer NAICS]
& ' || Emp. Size:' & [Customer Employment Size]
& ' || Revenue:' & [Customer Est. Annual Revenue]

Expressions
Label Value

Chapter 4

[81]

Attribute Value pick(match(only({$<$(vIgnoreSelectionToHighlig
ht)>} CustomerProfileAttribute),'NAICS','Size','A
vg Revenue','Avg Gross Profit')

,only({$<$(vIgnoreSelectionToHighlight)>}
[Customer NAICS (2digit)])
 /max({$<$(vIgnoreSelectionToHighlight)>}
total
[Customer NAICS (2digit)])+(Rand()/50-(1/100))

,only({$<$(vIgnoreSelectionToHighlight)>}
[Customer Employment Size])
 /max({$<$(vIgnoreSelectionToHi
ghlight)>} total [Customer Employment
Size])+(Rand()/50-(1/100))

,only({$<$(vIgnoreSelectionToHighlight)>}
[Customer Est. Annual Revenue])
 /max({$<$(vIgnoreSelectionToHig
hlight)>} total [Customer Est. Annual
Revenue])+(Rand()/50-(1/100))

,avg({$<$(vIgnoreSelectionToHighlight)>}
 aggr(sum({$<$(vIgnoreSelectionToHighlight)>}
[Gross Profit])
,Customer,CustomerProfileAttribute,[Customer
NAICS],[Customer Employment Size],[Customer Est.
Annual Revenue]))
/max({$<$(vIgnoreSelectionToHighlight)>}
 total aggr(sum({$<$(vIgnoreSelectionToHighlig
ht)>}
[Gross Profit])
,Customer,CustomerProfileAttribute,[Customer
NAICS],[Customer Employment Size],[Customer Est.
Annual Revenue]))
)

Expression
Attributes

Value

Line Style ='<w' & (count(Customer)/max(total aggr(count(Cu
stomer),CustomerProfileAttribute,[Customer NAICS
(2digit)],[Customer Employment Size],[Customer
Est. Annual Revenue])) * 7.5 + .5) & '>'

Marketing Perspective

[82]

The CustomerProfileAttribute dimension is an island table in the data model that
includes a list of customer attributes for this chart. We use this island table instead
of a valuelist() function because we are going to use the aggr() function in the
metric expression. In a chart, the aggr() function works properly only when we
include every chart dimension as a parameter, and it doesn't accept a valuelist()
function as a parameter.

The expression is quite long because it includes a different expression for each
attribute. If we are not accustomed to the use of pick() or match(), we should
review their functionality in QlikView Help. In the script that loads the data
model, we assign a number value behind each attribute. For example, we use the
autonumber() function to assign a number for each NAICS description. This
number's only purpose is to define a space for the description along the Y-Axis.
Its magnitude is meaningless.

We then normalize the number by dividing each customer attribute value by the
maximum value of that particular attribute. The result is a number between 0
and 1. We do this so that we can compare variables that have different scales of
magnitude. We also add a random number to the attribute value expression when
it is descriptive, so as to reduce overlapping. Although it is not a perfect solution, a
random number that moves the line one-hundredth of a decimal above or below the
actual value may help us handle a greater number of lines.

We also dynamically define each line's width in the Line Style expression attribute.
A line's width is defined as <Wn> where n is a number between .5 and 8. We calculate
each line's width by first calculating the percentage of customers each represents,
which give us a number between 0 and 1. Then, we multiply that number by 7.5 and
add .5 so that we use the line width's full range.

Finally, the numbers along the Y-Axis don't add any value, so we hide the axis and
we add dimensional grid lines that are characteristic of parallel coordinate charts. It
is likely that this chart will contain myriad lines, so we make every color in the color
bucket about 50% transparent, which helps us see overlapping lines, and we disable
the option to show the chart legend.

Although this chart is already loaded with features, let's add the ability to
dynamically highlight and label the profiles that are most interesting to our analysis.
When we are done, we should be able to select a line and have it stand out amongst
the others and reveal the detailed profile it represents.

Chapter 4

[83]

Exercise 4.2
We added the first element of this feature in the previous exercise when we defined
the set analysis of various functions as {$<$(vIgnoreSelectionToHighlight)>}
in the chart's expression. This causes the expression to ignore all selections made
to the profile attributes. The final step to enable dynamic highlighting is to add the
following code to the background color expression attribute of the chart expression:

if(
not match(only({1} [Customer NAICS (2digit)]&'_'&[Customer Employment
Size]&'_'&[Customer Est. Annual Revenue]),
 Concat(distinct [Customer NAICS (2digit)]&'_'&[Customer Employment
Size]&'_'&[Customer Est. Annual Revenue],','))
,LightGray(200)
)

The next step is to reveal the labels of only the highlighted lines. To do so, we use the
dual() function to mask the line's number values with text. The general layout of the
Attribute Value metric will be dual(text,number). The number parameter will be
the expression that already exists in Attribute Value and the text parameter will be
the following code:

if(
 count(total distinct [Customer NAICS (2digit)]&'_'&[Customer
Employment Size]&'_'&[Customer Est. Annual Revenue])
<>

Marketing Perspective

[84]

 count({1} total distinct [Customer NAICS (2digit)]&'_'&[Customer
Employment Size]&'_'&[Customer Est. Annual Revenue])

 and CustomerProfileAttribute='Size'

 ,'NAICS:' & [Customer NAICS] & ' || Emp. Size:' & [Customer
Employment Size] & ' || Revenue:' & [Customer Est. Annual Revenue]

,''
)

This code only returns a nonempty text when at least one line is filtered and only
appears on the data point where the dimension value is equal to Size. We make the
text conditional so as to reduce the risk overlapping labels. We also make the label
stand out by adding the ='' to the Text Format expression attribute. Finally, only
when we tick the Values on Data Points option for the Attribute Value metric will
any label appear.

Optionally, we left out the set analysis that contains the
vIgnoreSelectionToHighlight variable in the line width expression in
the first exercise, so that every line that isn't selected becomes extra thin to let
the highlighted lines stand out more. If you want to conserve the line width
of the lines that are not highlighted, then we add the set analysis that contains
vIgnoreSelectionToHighlight to this expression.

The parallel coordinates chart offers us a native QlikView solution to visualize
customer profiles. Let's also look at another powerful visualization that we can add
to QlikView by means of an extension.

Sankey
Similar to the parallel coordinates, the Sankey chart is an excellent method to analyze
the relationship between dimensional attributes. In the following chart, the width of
the bands represents the number of customers that have each attribute value. We can
easily see which are the most common at the same time that we see how each attribute
value relates to the others.

The order of the attributes is important. For example, we can infer that all
construction companies have 10-19 employees using the following chart, but we can't
say that all construction companies have 10-19 employees and an annual revenue of
$10-25 million. The only thing we can be sure of is that all construction companies
have 10-19 employees and an annual revenue of $10-25 million or $25-50 million.

Chapter 4

[85]

This visual representation may seem inferior to the previous section's parallel
coordinates chart where we could follow a continuous line. However, the Sankey
is easier to read than a parallel coordinates chart when we are dealing with a large
number of customer profiles. In every analytical problem that we encounter, we
should respect both the weakness and strengths of type of visualization as we
analyze data.

Let's create this chart in our marketing perspective sandbox.

Exercise 4.3
The following steps show you how to create a marketing analysis sandbox:

1. Download and install the Sankey extension created by Brian Munz in Qlik
Branch (http://branch.qlik.com/#/project/56728f52d1e497241
ae69783).

2. In Web View, add the extension to the marketing perspective sandbox and
assign the [Customer Profile Path] field to Path.

3. Add the following expression to Frequency:

=count(distinct Customer)

http://branch.qlik.com/#/project/56728f52d1e497241ae69783
http://branch.qlik.com/#/project/56728f52d1e497241ae69783

Marketing Perspective

[86]

We should now have a Sankey chart with three attributes: NAICS, Employee Size,
and Annual Revenue. The [Customer Profile Path] field contains a comma-
delimited list of these predefined attributes. We decide to dynamically calculate
the fourth attribute that measures the average yearly gross profit that a customer
contributes to the business. This allows us to select certain products and see how
much gross profit each profile contributes only to these products. Let's go back to the
properties of the Sankey and add this dynamic attribute to the path.

Exercise 4.4
1. Navigate to the edit expression window of Path by clicking on the cog button

and then the expression button.
2. Add the following expression to the edit expression window:

=[Customer Profile Path] & ',' &
 class(
 aggr(avg(
 aggr(sum([Gross Profit])
 ,Customer,Year))
 ,Customer)
 ,100000,'GP')

We add the dynamic attribute using the class() function over two aggr() functions
that calculate each customer's average annual gross profit contribution. The cross
between a customer's contribution and its attributes helps us to not only look for new
customers, but profitable new customers. Let's take a look at how we can use the
census data to look for a new profitable market.

Market size analysis
Now that we can identify profitable customer profiles, we use the census data to look
for companies that fit that profile. We begin our search using a layered geographical
map that helps us choose which regions to focus our marketing efforts in.

As a market analyst, I would like to visualize potential markets
geographically so that I can execute a more effective advertising
campaign.

Chapter 4

[87]

Even though we have geographical data, such as states, or countries, it doesn't mean
that we should use a map to visualize it. Bar charts are usually enough to analyze the
top ranking geographical regions. However, maps can be useful when it is important
to see both the physical proximity of each entity along with the magnitude of the
associated metrics. For example, in the United States, we can expect California and
Texas to rank the highest because they have the largest populations. However, the
group of smaller states in the northeast may not rank as high as separate states in a
bar chart, but, in a map, we can appreciate the proximity of their populations.

QlikView does not have a native map chart object. However, there are multiple
third-party software options that are well-integrated with QlikView. QlikMaps
(http://www.qlikmaps.com), GeoQlik (http://www.geoqlik.com), and Idevio
(http://www.idevio.com) create popular mapping extensions for QlikView.

In this example, we are going to use Idevio to create geographical analysis. You can
request an evaluation license and download the extension from http://bi.idevio.
com/products/idevio-maps-5-for-qlikview. We install this extension like
any other by double-clicking the .qar file. Once you've installed it, let's create the
following geographic heat map that reveals the number of companies that are similar
to our own customers in each state:

http://www.qlikmaps.com
http://www.geoqlik.com
http://www.idevio.com
http://bi.idevio.com/products/idevio-maps-5-for-qlikview
http://bi.idevio.com/products/idevio-maps-5-for-qlikview

Marketing Perspective

[88]

Exercise 4.5
1. In WebView, right-click anywhere on the sheet and select New Sheet

Object.
2. In the Extension Objects, add a Idevio Map 5 object and a Area Layer object

to the sheet.
3. Open the Properties dialog of the Area Layer object and set STATE as the

Dimension and the following expression as the Color Value:
=sum([NUMBER OF FIRMS])

4. Click More… and go to the Location tab.
5. Make sure Advanced Location is not enabled and select United States in

the Country drop-down box.
6. In the Legend tab, disable the Color Legend Auto option and add an empty

space to the first expression field and Number of Companies in the second
expression field. This last step will make the legend clean and simple.

We've used states in this example, but geographic maps that have a greater level of
detail, such as counties, or zip codes, have greater analytical value. Also, political or
administrative boundaries may not always be the best way to divide a population.
Imagine if meteorologists used the previous map to show today's weather forecast.
Like weather analysis, we may more easily recognize patterns in human behavior if
we were to use heat map that can group data beyond artificial boundaries.

Let's create the following geographical analysis that helps us appreciate the market
size of the northeast that is made up of smaller states:

Chapter 4

[89]

Exercise 4.6
The following steps help us to create the geographical analysis:

1. In WebView, right-click anywhere on the sheet and select New Sheet
Object.

2. In the Extension Objects, add a Heatmap Layer object to the sheet.
3. Open the Properties dialog of the Heatmap Layer object and set STATE as the

Dimension and the following expression as the Weight Value:
=sum([NUMBER OF FIRMS])

4. Click More… and go to the Location tab.

Marketing Perspective

[90]

5. Make sure that Advanced Location is not enabled and select United States
in the Country drop-down box.

6. In the Legend tab, disable the Color Legend Auto option and add an empty
space to the first expression field and Number of Companies in the second
expression field.

At first, we'll see both layers together in the same map. Left-click the Area Layer
legend and disable Visible. We can now appreciate how the proximity of each state's
populations can create groups outside their political boundaries. Along with counties
and zip codes, this type of heat map also works well with latitude and longitude.

As we saw in the previous exercise, we can overlap several analytical layers in
the same geographical map. This multilayering effect can provide a data-dense,
insightful chart. For example, we can combine a bubble, area, and chart layer to
compare market size, market penetration, and customer location in the same map.
The following chart uses the same area layer that we created in Exercise 4.5 along
with overlapping bubble and chart layers:

Chapter 4

[91]

Exercise 4.7
First, let's add the layer of pie charts and then let's add the points that indicate
customer locations. Although pie charts are not an ideal data visualization, in this case,
they are the best possible solution until we can add other charts, such as bullet graphs:

1. In WebView, right-click anywhere on the sheet and select New Sheet
Object.

2. In the Extension Objects, add a Chart Layer object to the sheet.
3. Open the Properties dialog of the Chart Layer object and set STATE as the ID

Dimension.
4. Define the Chart Dimension Label as % Market Penetration and the

following expression as the Chart Dimension:
=ValueList('% Customers','% Not Customers')

5. Define the Chart Value Label as % and the following expression as the Chart
Value:
=round(
pick(match(ValueList('% Customers','% Not Customers'),'%
Customers','% Not Customers')

,count(DISTINCT if(STATE=[Billing State], Customer)) / sum([NUMBER
OF FIRMS])*100

,(1-count(DISTINCT if(STATE=[Billing State], Customer)) /
sum([NUMBER OF FIRMS]))*100

)
,.01)

6. Click More… and go to the Location tab.
7. Make sure that Advanced Location is not enabled and select United States

in the Country drop-down box.
8. In the Legend tab, disable the Color Legend Auto option and add an empty

space to the first expression field and % Market Penetration in the second
expression field.

9. In the Presentation tab, adjust the Radius to 20.
10. In the Color tab, disable the Auto option. Select By Dimension in Color

Mode and Categorized 100 in Color Scheme. Adjust Transparency to 25.
11. Close the Properties dialog of the Chart Layer object, and in the Extension

Objects, add a Bubble Layer object to the sheet.

Marketing Perspective

[92]

12. Open the Properties dialog of the Bubble Layer object and set Customer as
the ID Dimension.

13. Define Latitude / ID as =[Billing Latitude] and Longitude as =[Billing
Longitude].

14. Define Size Value as 1.
15. Click More… and go to the Legend tab, disable the Size Legend Auto

option, and add Customer in the first expression field.
16. In the Shape and Size tab, define Min Radius and Max Radius as 2.
17. In the Color tab, disable the Auto option. Select Single Color in the Color

Mode and Black in the Color Scheme. Adjust Transparency to 25.

If we select one of the most common customer profiles (NAICS: Educational
Services || Emp. Size: 100-499 || Revenue: $25000000-$50000000) and
zoom into the central part of the United States around Iowa and Wisconsin, we can
reproduce the chart as shown in the previous figure. After creating the maps and its
different layers, we organize the legends next to the map, so that the business user
can left-click any of the legends at any time to hide or show a layer as they see fit. We
also help the user add as many layers as possible by using visual elements such as
transparency, as we did in the previous exercise.

Social media analysis
Once we understand the demographics of our current customers and our potential
market, we may want to understand what they are saying about our company,
products, and services. Over the last decade, social media sites, such as Twitter,
Facebook, and LinkedIn, have become an increasingly important source of data
to measure market opinion. They can also exert a large amount of influence on a
potential customer's decision to do business with us more than any other marketing
campaign that we run.

As a market analyst, I want to analyze what our customers are saying
about us through social media sites so that I can take an active role to
increase customer satisfaction and convince potential customers to do
business with us.

Data from social media sites is often unstructured data. For example, we cannot
directly analyze text comments without first using a semantic text analysis tool.
Along with several other different types of analysis, these tools apply advanced
algorithms over text in order to extract keywords, classify it under certain topics, and
determine its sentiment. The last piece of data, text sentiment, is whether the text has
a positive, negative, or neutral connotation.

Chapter 4

[93]

In the following example, we use QlikView's RESTful API to extract tweets
containing the hashtag, #qlik, from Twitter. The RESTful API is a free connector
from QlikView. You can download the installation file and the documentation that
explains how to retrieve data from Twitter at Qlik Market (http://market.qlik.
com/rest-connector.html).

After extracting the data, we use the same RESTful API to evaluate each tweet's
keywords and sentiment using a semantic text analytical tool called AlchemyAPI
(http://www.alchemyapi.com/). AlchemyAPI is free for up to one thousand API
calls per day. If you want to evaluate more than one thousand texts, then they offer
paid subscription plans. We've stored the result of this process and the example
script in Twitter_Analysis_Sandbox.qvw which we can find in the application
folder of the marketing perspective container.

In the following exercises, we first use powerful data visualization techniques, such
as a histogram and a scatterplot, to analyze text sentiment. Then, we'll use a word
cloud to display important keywords extracted from the texts. Although a bar chart
is a more effective way to compare keyword occurrence, a word cloud may make for
an insightful infographic summary of all the tweets.

http://market.qlik.com/rest-connector.html
http://market.qlik.com/rest-connector.html
http://www.alchemyapi.com/

Marketing Perspective

[94]

Exercise 4.8
Sentiment is divided into three groups. We represent sentiments that are negative
as a negative number, those that are positive as a positive number, and those that
are neutral as zero. The closer the number is to -1 or 1, the more negative or positive
the sentiment, respectively. Histograms are the best data visualization method to
view the distribution of numerical data. In order to create a histogram, we create
numerical bins as a calculated dimension and then count how many instances fit
into each bin. We also take care to visualize this diverging sequence with a similarly
diverging color scheme:

1. Add the following color variables that we will use throughout the next three
exercises:

Variable Name Variable Definition
vCol_Blue_ColorBlindSafePositive ARGB(255, 0, 64, 128)

vCol_Orange_ColorBlindSafeNegative ARGB(255, 255, 128, 64)

vCol_Gray_ColorBlindSafeNeutral ARGB(255, 221, 221, 221)

2. Add a bar chart with the following calculated dimension that creates
numerical bins one-tenth of a decimal wide:
=class([Sentiment Score],.1)

3. Add the following expression that counts the number of instances that fit into
each bin:
=count([Tweet Text])

4. Open the Edit Expression window of the metric's Background Color
attribute and, in the File menu, open the Colormix Wizard….

5. In the wizard, use avg([Sentiment Score]) as the Value Expression.
6. Set the Upper Limit color to $(vCol_Blue_ColorBlindSafePostive) and

the Lower Limit color to $(vCol_Orange_ColorBlindSafePositive).
Enable the Intermediate option, set the value to 0 and the color to $(vCol_
Gray_ColorBlindSafeNeutral). Finish the Colormix Wizard….

7. Go to the Axes tab and, in the Dimension Axis section, enable Continuous.
8. In the Scale section that is found within Dimension Axis, set Static Min to

-1 and Static Max to 1.

Chapter 4

[95]

After cleaning up this presentation, we should now have a chart that is similar to
the one pictured before the exercise, which shows how tweets are distributed by
sentiment score. We easily note that most of our tweets with the #qlik hashtag are
positive. Now, let's compare a tweet sentiment with the number of times that users
like that tweet.

Exercise 4.9
Scatterplots are the best data visualization method to view the relationship between
two numerical values. In the previous chart, each dot represents a tweet. Its two-
dimensional position depends on its number of likes and its sentiment. We also
use the same diverging color scheme as the histogram in order to emphasize the
sentiment.

1. Add a scatterplot chart with Tweet Text as the dimension and the following
two metrics:

Metric Label Metric Expression
Sentiment avg({$<Retweet={0}>} [Sentiment Score])

Likes sum({$<Retweet={0}>} [Like Count])

2. Similarly to the previous exercise, use the Colormix Wizard under the
Sentiment metric to determine each dot's color.

The scatterplot shows us that most tweets are positive and that those that are
moderately positive tweets are the ones that receive the most likes.

Marketing Perspective

[96]

The next step in our social media analysis is to visualize the keywords that are used
in these tweets by importance. Although we could compare keyword instance using
a bar chart more accurately, a word cloud provides an excellent way to present an
executive summary of all tweets:

Exercise 4.10
Word clouds can be a great way to visually analyze unstructured data, such as
text. The size of each keyword or phrase is related to its importance, which can be
determined by the number of times that it appears in a text or a relevance score.
In this case, we've used AlchemyAPI to extract keywords or phrases and give
them a relevance score between 0 and 1. In the same way an internet search engine
ranks search results according to their relevance to a query, AlchemyAPI ranks a
keyword's relevance to each tweets. The higher the relevance value, the larger the
text size. We also use a diverging color scheme for the text color so as to determine
whether they are more common in tweets with negative or positive sentiments:

1. Download and install the Word Cloud extension created by Brian Munz in
Qlik Branch (http://branch.qlik.com/#/project/56728f52d1e497241
ae69781).

2. In Web View, add this extension to the sheet and assign the Keyword field
to Words.

http://branch.qlik.com/#/project/56728f52d1e497241ae69781
http://branch.qlik.com/#/project/56728f52d1e497241ae69781

Chapter 4

[97]

3. Add the following expression to Measurement:
=sum([Keyword Relevance])

4. In Color Expression, paste the expression created by the Colormix Wizard in
either of the two previous exercises.

As we would expect, the words QlikView and Qlik Sense are common in our word
cloud. These words in the context of training is also quite common. The biggest
single keyword trend is the word Anniversary. Its relevance in each tweet where
it appeared multiplied by the number of times is was retweeted make it the largest
word in the cloud. If we want to investigate which tweets are related to Anniversary,
we can click on the word.

We also discover that the negative tweets are mistakenly classified by the sentiment
analysis tool. The words generic and mixed usually have a negative connotation,
but they are neutral words referring to technical subjects in this case. All sentiment
analysis tools will occasionally classify words incorrectly and we can use the word
cloud to identify these errors.

After all our work to understand our current customers, find potential markets,
and analyze our social media presence, we want to figure out the tangible
consequences of our work. Let's end this chapter by analyzing sales opportunities.

Sales opportunity analysis
The sales pipeline is the bridge between marketing and sales. Potential customers
that are discovered by a market analysis or motivated by a advertising campaign
are registered in the CRM system as leads. The sales team then goes through a series
of steps to convert the lead into a customer. These steps may include having a first
meeting, sending product samples, or sending an initial sales quote.

It is very important to monitor the number of opportunities that we have in the
pipeline along with their progress through the steps. An opportunity that doesn't
advance consistently through each step is likely to end up as a lost opportunity. It
is also important to monitor the potential amount of sales that we currently have in
the pipeline. This potential amount not only tells us what we can expect to sell in the
immediate future, it also gives us first-hand information about a market's potential.

Let's create a flow chart like the following figure that shows us how each sales
opportunity is progressing through the different stages of a sales process. Each line
represents a sales opportunity. As it climbs higher, it is advancing to the next step in
the sales process.

Marketing Perspective

[98]

We can also appreciate the total number of opportunities that are at each stage
throughout the month, and how many total opportunities are moving between
stages. The lines that come to an end before the final month in the chart are
opportunities that are closed.

Exercise 4.11
This chart is only possible when we've linked the master calendar with the sales
opportunities using intervalmatch(), as we did for this data model:

1. Create a line chart with Date and Document ID as dimensions.
2. Create a metric labeled Sales Opportunity Stage with the following

expression:
dual(
only([Sales Opportunity Stage ID])
,only([Sales Opportunity Stage ID])
+
 aggr(
 rank(
 -only({$<_DocumentType={'Sales Opportunities'}>}
[Document ID])
 ,4,1)
 ,Date,[Sales Opportunity Stage ID],[Document ID])

Chapter 4

[99]

/
 max(total
 aggr(
 rank(
 -only({$<_DocumentType={'Sales Opportunities'}>}
[Document ID])
 ,4,1)
 ,Date,[Sales Opportunity Stage ID],[Document ID])
)
*.5
)

3. In the Axes tab, enable the option to Show Grid in the Expression Axes
section and set the Scale with the following values:

Option Value
Static Min 1
Static Max 6.75
Static Step 1

The text value of the metric returns the sales opportunity stage, while the number
is the sales opportunity stage plus a decimal amount that makes each line stack one
on top of the other. The decimal amount is calculated by dividing the rank of the
Document ID, which is a sequential number by the total number of documents in
each stage during each day.

Summary
As we saw in this chapter, the QlikView marketing perspective is filled with
opportunities to visualize both internal and external data sources. We should
also take advantage of third-party extensions to expand QlikView's analytical
capacity. At the same time, we can find different ways to adjust QlikView's native
visualizations to perform more advanced analysis. Let's now take a more detailed
look at the company's finances and analyze its inventory, accounts receivable, and
accounts payable in the next chapter.

[101]

Working Capital Perspective
A business's financial health depends heavily on its short-term assets, such as
inventory and Accounts Receivable (A/R), along with short-term liabilities, such as
Accounts Payable (A/P). If these elements are managed well, then the business will
have the cash to invest in finding potential customers, developing new products, and
hiring new talent. We refer to these three pivotal financial measurements as working
capital.

We can find inventory, A/R, and A/P, as separate line items in the balance sheet
that we created for our financial perspective in a previous chapter. However, there
is also a series of additional analyses that all three have in common. For example,
the analysis of the average number of days that a product is in inventory, a customer
takes to pay an invoice, or the business takes to pay a vendor invoice requires the
same type of data model and formulation. We can also make this information more
actionable if we include it in a product, customer, or vendor stratification. As an
example, we will complement the customer stratification that we began to create in
our sales perspective.

After we examine what each has in common, we also look at the distinct operational
analysis of each measurement that helps us maintain a healthy working capital.
For example, a customer aging report can help lower the average number of days
a customer takes to pay an invoice. Inventory stock level analysis can also help
procurement know when to purchase the correct amount of inventory and lower just
the right amount of a product.

Working Capital Perspective

[102]

In this chapter, we review the following topics while we create our QlikView
working capital perspective:

• Working capital data model (snapshots)
• Account rotation and cash-to-cash analysis
• A detailed analysis of working capital
• Inventory stock level analysis and customer aging report
• A more complete customer stratification

Let's get started and look at how we combine these three elements of working capital
into one data model.

Working capital data model
The working capital data model can be constructed in a variety of ways. The most
important feature of the data model is its ability to accumulate account balances
over time. In Chapter 3, Financial Perspective, we accomplish this by adding an as-of
calendar. However, we can also create a model that uses periodic snapshots and
avoid accumulating individual transactions after every user selection. A periodic
snapshot is a recurring event that saves a copy of the data at the end of every day,
week, or month.

Even though we may end up only using monthly snapshots in a
QlikView application, it is wise to take a daily snapshot of the data
and save it in QVD files in case business requirements change.

In this chapter, we will use a periodic snapshot to measure following events in the
data model:

• Month-end inventory balances by item and warehouse over three years
• Day-end inventory balances by item and warehouse over the last the last

three months
• Month-end balances of A/R invoices over the last three years
• Month-end balances of A/P invoices over the last three years

Periodic snapshots do not record individual payments or inventory movements,
which may be important for some banking or operational analysis. However, such
details are not important when we first analyze working capital.

Chapter 5

[103]

If we've only recently started to create data snapshots, some of the analysis we
perform will be deficient as many metrics are calculated over 90-day periods.
However, we sometimes have the option to recreate past snapshots using
transaction-level data. Even if they are not completely accurate, they are often worth
the effort. The decision on whether we wait until we have enough real snapshots or
to recreate past snapshots frequently depends on which option takes less time. It also
depends on whether the opportunity gained by having them now is greater than the
resources spent to recreate the past.

Many of the dimensions that we use to describe these events are the same
dimensions that we've used in previous perspectives. We reuse the same tables so
that it is easier to maintain the data models and to ensure that everybody in the
organization is viewing the same information. Let's take a look at the dimensions
and metrics that describe these events:

Working Capital Perspective

[104]

Dimensions
7Ws Fields Comments
Who Customer This is a dimension that we first saw in Chapter

2, Sales Perspective.
Who Supplier This is who provides products or services

to the business. This dimension has similar
information to that of the Customer
dimension.

What Item This is a dimension that we first saw in Chapter
2, Sales Perspective.

When Month, Year These are the same dimensions that we've
seen in the previous perspectives. However,
instead of recording, for example, the date of
an invoice or a payment, it records the date
when a snapshot was taken of a customer's
outstanding balance.

How _Periodicity This dimension allows periodic snapshots with
different frequencies to be loaded into one data
model. For example, we load daily inventory
snapshots of the past few months and monthly
ones of the past few years. We do this so as to
only upload the data that is useful. Otherwise,
we risk degrading the QlikView application's
performance.

Where Warehouse This dimension describes where we store
goods so that they can easily be distributed
to the customers who purchase them. We
measure inventory levels by Warehouse.

Metrics
7Ws Fields Comments
How Many Item Lead Time This is where we store a predefined time that is

needed to receive an item in inventory, which
helps procurement know when to purchase or
produce a product.

How Many A/R Invoice
Balance

This is where we measure the outstanding
balance of each customer invoice. The
outstanding balance is the original invoice
amount minus any corresponding payment or
credit memo amount. In the ERP system, we
link invoices with their related payments and
credit memos through a bookkeeping process
called reconciliation.

Chapter 5

[105]

How Many A/P Invoice
Balance

This is the same concept as A/R Invoice
Balance, but it measures the outstanding
balance of purchase invoices.

How Many Inventory
Balance Quantity

Inventory
Balance

This is where we measure both the quantity
and monetary value of the business's
inventory.

While the calendar dimension is related to every event, every other dimension
describes only one event. For example, supplier only describes month-end A/P
invoices. It is helpful to understand the relationship between dimensions and metrics
in a data model in order to know what type of analysis we can perform. However,
we cannot obtain this information explicitly from the QlikView table viewer nor the
previous 7Ws table.

Therefore, We use the following table to explain the relationship between metrics
and dimensions in a data model. We insert all the metrics in the first column and
then create a column for each dimension. The X records where a relationship exists
and helps us determine how we can visualize the data:

Dimensions

Metrics

Month/
Year

Date Customer Supplier Item Warehouse

A/R Invoice
Balance

X X

A/P Invoice
Balance

X X

Inventory
Balance
Quantity

X
Past three
years

X
Past three
months

X X

We maintain the relationship as it is likely to exist in the ERP system. For example,
payments do not include information about items. This is not always good enough
for the visualizations that we want to create. Even though payments don't include
item detail, we may want to know the estimated average number of days that a
customer pays for a certain item. We examine how to resolve this problem as we
develop the analysis and visualizations for the working capital perspective.

Working Capital Perspective

[106]

Rotation and average days
At a higher level, we analyze each element of working capital using the same
methods. The overall objective is to know the average number of days that it takes
for an item in stock to be sold, a customer to pay, or a supplier to be paid.

As a business owner, I want to know how long it takes from the day I
pay my supplier to the day the customers pay me so that I can work to
free up cash and make investments to grow the company.

We can help free up cash for the business if we reduce the number of days that
an item is in a warehouse or the number of days that a customer takes to pay an
invoice. Inversely, we want to increase the number of days that we can wait to
pay our suppliers without any penalty. Let's start our working capital analysis by
calculating the average number of days that an item is in a warehouse. We call this
key performance indicator Days Sales of Inventory (DSI).

Days Sales of Inventory
If we store inventory for too long, then it takes up space that could be put to better
use or sold. If we store inventory for too few days, then we increase the risk of not
being able to satisfy customers' needs. Days Sales of Inventory (DSI) tells us the
average number of days that we store items in inventory based on our average
inventory balance and our cost of sales. The following formula calculates DSI over a
one-year period:

Days Sales of Inventory = (Annual Average Inventory Balance / Annual Cost of Sales) * 365

Let's create a bar chart that displays total DSI by month. We calculate each month's
DSI over a rolling one-year period:

Chapter 5

[107]

Before beginning the following exercise, we import this chapter's exercise files into
the QDF as we did in Chapter 2, Sales Perspective.

Exercise 5.1
Let's create a bar chart with the following property options:

Dimensions
Label Value
AsOf Year-Month AsOf Year-Month

Expressions
Label Value
DSI avg({$<_Periodicity={'Monthly'}

 ,[AsOf Months Ago]={">0<=12"}>}
 aggr(
 sum({$<_Periodicity={'Monthly'}
 ,[AsOf Months Ago]={">0<=12"}>}
 [Inventory Balance])
 ,[Year-Month],[AsOf Year-Month])
)
/
sum({$<[AsOf Months Ago]={">0<=12"}>} [Cost])
*
365

Similar to the financial perspective, we use the [AsOf Months Ago] field in the set
analysis to calculate over twelve rolling months. We first use the aggr() function
to sum the inventory balance of each Year-Month and then calculate the average
monthly balance. We are careful to include [AsOf Year-Month] in the aggr()
function because this function only works properly when it contains all fields used as
a chart dimension.

We also make sure to use the same set analysis in the avg() function outside the
aggr() as we do in the sum() function within the aggr() function. A function's set
analysis only applies to the fields that are directly located within the function. It is
never adopted by a parent function or inherited by a nested one. We, therefore, have
to repeat it for every function. Feel free to experiment and remove the set analysis
from one of the functions to see how the values in the graph change.

An acceptable DSI varies per industry but a result between 60 and 240 days is
common. The previous chart shows that the company has too much inventory in
relation to its sales. At one end, it needs to stop purchasing or producing goods and,
at the other end, it needs to increase sales. Let's now take a look at how well we
collect customer payments.

Working Capital Perspective

[108]

Days Sales Outstanding
Although sales are important, if we don't collect payment for these sales in a
reasonable amount of time, then we won't have the cash necessary to keep the
business running. Days Sales Outstanding (DSO) is a key performance indicator
that measures the average number of days it takes a customer to pay an invoice. Its
calculation is quite similar to that of DSI:

Days Sales of Outstanding = (Annual Average A/R Balance / Annual Net Sales) * 365

Let's now add DSO to the bar chart that we created in the previous exercise.

Exercise 5.2
Let's add the following expression to the bar chart from Exercise 5.1. We change the
bar chart to a stacked bar chart in the Style tab:

Expressions
Label Value
DSO avg({$<_Periodicity={'Monthly'}

 ,[AsOf Months Ago]={">0<=12"}>}
 aggr(
 sum({$<_Periodicity={'Monthly'}
 ,[AsOf Months Ago]={">0<=12"}>}
 [A/R Invoice Balance])
 ,[Year-Month],[AsOf Year-Month])
)
/
sum({$<[AsOf Months Ago]={">0<=12"}>} [Net Sales])
*
365

Chapter 5

[109]

A healthy DSO depends on the business, but we should expect anything between
15 and 90 days. In the previous chart, we started the year with a DSO that wasn't
too far from this range, but, as the year progressed, the DSO grew. As DSO is a ratio
that is based on sales and A/R balance, this increase could be caused by an increase
in the A/R balance, a decrease in sales, or a mixture of the two. Alongside any DSO
analysis, we recommend creating auxiliary charts that can show what is causing
the DSO to change. This recommendation also applies to DSI and the final working
capital element—Days Payable Outstanding.

Days Payable Outstanding
In order to determine whether we have a healthy DSO and DSI, we compare them
with the key performance indicator Days Payable Outstanding (DPO). DPO
measures the average number of days before we pay our suppliers and has the same
structure as the previous two indicators:

Days Payable of Outstanding = (Annual Average A/P Balance / Annual Cost of Sales) * 365

Let's now add DPO to the bar chart that we created in the previous exercise.

Working Capital Perspective

[110]

Exercise 5.3
Let's add the following expression to the bar chart from Exercise 5.2:

Expressions
Label Value
DPO -avg({$<_Periodicity={'Monthly'}

 ,[AsOf Months Ago]={">0<=12"}>}
 aggr(
 sum({$<_Periodicity={'Monthly'}
 ,[AsOf Months Ago]={">0<=12"}>}
 [A/P Invoice Balance])
 ,[Year-Month],[AsOf Year-Month])
)
/
sum({$<[AsOf Months Ago]={">0<=12"}>} [Cost])
*
365

An ideal DPO is greater than the sum of DSO and DSI. Such a situation means that
the business's suppliers finance its operations. Regardless of whether this is really
possible, we aim to reduce the time it takes to convert cash spent into cash received,
which is called the Cash Conversion Cycle (CCC):

Cash Conversion Cycle = DSO + DSI – DPO

We make a slight change to the previous chart so that we can explicitly analyze CCC.

Chapter 5

[111]

Exercise 5.4
Let's go through the following steps to adjust the bar chart from Exercise 5.3:

1. Change the bar chart to a combo chart in the General tab.
2. In the Expressions tab, add the following expression:

Expressions
Label Value
CCC DSO + DSI – DPO

Enable only the Bar option for all the expressions except CCC, which should
only have the Symbol option enabled.

3. In the Axes tab, select CCC in the Expressions list and enable Right (Top) in
the Position section. Enable Split Axis.

We can now analyze all the working capital elements in a single chart. In the
previous chart, we can see how an increase in DPO has been offset by an even
greater increase in DSI. In the next section, let's look at how we can break down and
analyze each of the working capital elements. We'll do this using DSI as an example.

Working capital breakdown
We complement the previous section's working capital analysis with a closer look
at the elements that make up each measure. In the case of DSI, we analyze Average
Inventory Value and Annual Cost of Goods Sold (COGS). This auxiliary analysis
helps us understand whether an increasing DSI is the result of rising inventory levels
or decreasing sales. It also helps us detect which product is not rotating frequently
enough.

As a warehouse manager, I want to know which items spend the most
time in the warehouse and whether this is because there is too much
stock or too few sales. This information will help me reduce the amount
of unnecessary stock and free up available cash.

Working Capital Perspective

[112]

Let's combine the related metrics and have them share the same dimension axis, as in
the following visualization:

Exercise 5.5
1. Let's create three separate combo charts. We represent the current period

with bars and the last period with circles. In each chart, we set the orientation
to be horizontal, and move the legend to the top. When we use Ctrl + Shift
to place the legend on top, we wait until its red outline covers the entire top
section so that the labels appear in a row:

Title DSI
Dimensions
Labels Value
Item Item

Expressions
Labels Value
Current avg({$<_Periodicity={'Monthly'},[AsOf Months

Ago]={">0<=12"}>}
 aggr(
 sum({$<_Periodicity={'Monthly'},[AsOf Months
Ago]={">0<=12"}>} [Inventory Balance])
 ,[Year-Month],Item)
)
/
sum({$<[AsOf Months Ago]={">0<=12"}>} [Cost])
*365

Past This is the same as the Current DSI but replace [AsOf Months
Ago]={">0<=12"} with [AsOf Months Ago]={">12<=24"}

Chapter 5

[113]

Title Average Inventory Value
Dimensions
Labels Value
Item Item

Expressions
Labels Value
Current avg({$<_Periodicity={'Monthly'},[AsOf Months

Ago]={">0<=12"}>}
 aggr(
 sum({$<_Periodicity={'Monthly'},[AsOf Months
Ago]={">0<=12"}>} [Inventory Balance])
 ,[Year-Month],Item)
)

Past This is the same as the Current Inventory Value but replace
[AsOf Months Ago]={">0<=12"} with [AsOf Months
Ago]={">12<=24"}

Title COGS
Dimensions
Labels Value
Item Item

Expressions
Labels Value
Current sum({$<[AsOf Months Ago]={">0<=12"}>} [Cost])

Past This is the same as the Current COGS but replace [AsOf Months
Ago]={">0<=12"} with [AsOf Months Ago]={">12<=24"}

Create a container object and, in the Presentation tab, select Container Type
as Grid. Set Columns to 3 and Rows to 1.

2. Drag each chart into the container object.
3. In the Sort tab of each chart, enable only Expression and select Descending.

Insert the following code into the expression field:
avg({$<_Periodicity={'Monthly'},[AsOf Months Ago]={">0<=12"}>}
 aggr(
 sum({$<_Periodicity={'Monthly'},[AsOf Months

Working Capital Perspective

[114]

Ago]={">0<=12"}>} [Inventory Balance])
 ,[Year-Month],Item)
)
/
sum({$<[AsOf Months Ago]={">0<=12"}>} [Cost])
*365

4. We cannot scroll through the three charts at the same time, so, in the
Dimension Limits tab of each chart, let's select the option to Restrict which
values are displayed using the first expression.

5. In the same tab and under the Show Only option, we change the value to
First.

6. In the Presentation tab, disable the option to Suppress Zero-Values.
7. Finally, after verifying that each row of bars corresponds to the same

item, let's remove the dimension labels in the second and third charts by
deselecting the Show Legend option in the Dimensions tab.

Instead of using a common scroll bar, we repeatedly click on the bar that represents
Others in order to scroll through the charts and review more items. When we
analyze all three measures in a single view, it becomes clear that the DSI of most
of the items is increasing and that this increase is due to both an increase in the
inventory value and a decrease in COGS.

After breaking down each working capital element and analyzing its parts, the next
step is to analyze more closely the operations that cause these results. Let's continue
to explore the inventory data in more detail and compare each product's inventory
levels with their corresponding minimum, reorder, and maximum levels.

Inventory stock levels
The business defines each product's minimum, reorder, and maximum stock
levels so as to maintain an adequate quantity in inventory. We often calculate
these numbers and insert them into an ERP system that automatically generates
purchase orders or work orders every time an item reaches the reorder stock limit In
QlikView, we can use sales and purchase cycle data to easily calculate each limit and
compare it to historical inventory behavior.
We use the following formulas to calculate each stock level:

As a purchasing team manager, I want to dynamically calculate stock
limits so that I can be sure to have just the right amount of stock
according to historical sales trends.

Chapter 5

[115]

Reorder Stock Level = Max Lead Time * Max Daily Sales

Minimum Stock Level = Reorder Stock Level – (Avg Lead Time * Avg Daily Sales)

Maximum Stock Level = Reorder Stock Level – (Min Lead Time * Min Daily Sales) +
Reorder Quantity

We use a predefined lead time, or the time needed to restock an item, from the item
master data table. We review, how to dynamically calculate the lead time in Chapter
6, Operations Perspective. We also assume that the minimum daily sales amount of any
item is 0 and that the reorder quantity is equal to the reorder stock level. Given these
assumptions the maximum stock level is the reorder stock level multiplied by two.

Like much of the information at a glance. We therefore use the following trellis chart
to compare each item's historical inventory behavior with the calculated stock levels.

Working Capital Perspective

[116]

Exercise 5.6
Let's create a line chart with the following dimensions and expressions:

Dimensions
Labels Value
Item Item

Year-Month Year-Month

Expressions
Labels Value
Actual Stock sum({$<_Periodicity={'Monthly'}>} [Inventory

Balance Quantity])

Reorder Stock
Level

max(Total <Item> {$<$(vSetRolling12Modifier)>}
 aggr(

sum(Quantity)
 ,_KEY_Date, Item)
)
*
max([Item Lead Time])

Min Stock
Level

[Reorder Stock Level]
-
sum({$<$(vSetRolling12Modifier)>}
 Total <Item>
Quantity)
/
networkdays(
 addmonths(max(Total _KEY_Date),-12)
 ,max(Total _KEY_Date)
)
*
avg([Item Lead Time])

Max Stock
Level

2*[Reorder Stock Level]

In the Dimensions tab, click Trellis… and tick the Enable Trellis Chart
option.

1. Set Number of Columns to Fixed and 2. Set Number of Rows to Fixed and 2.

Chapter 5

[117]

2. In the Expressions tab, change the Line Style properties of Reorder Stock
Level, Min Stock Level, and Max Stock Level to a thin, dotted line. For
example, use '<S2><W.5>'.

3. In the Sort tab, select the option to sort by Y-value.

The set analysis variable in the previous expression is from Rob Wunderlich's
QlikView Component's library and allows us to determine the stock levels based on
twelve months of sales data. The actual twelve-month period we use depends on the
date that we select in QlikView. In the particular case of Min Stock Level, we use the
networkdays() function to calculate the average daily sales by working days. We
also have the option to calculate the maximum and minimum daily sales using more
advanced methods. For example, we can experiment with the fractile() function and
use 5% or 95% fractiles to remove outliers. We can also use the same t-distribution
functions that we used in Chapter 2, Sales Perspective, to calculate a more conservative
daily sales average.

Finally, let's create a customer aging report that helps us monitor the operations that
impact DSO.

Aging report
If we are to lower DSO, we need to make sure that customers pay on time. We
monitor collections using a customer aging report. The following report shows the
customers' total balances and categorizes it into bins based on the original due date
of the each payment. As we're mostly interested in the past due payments, it groups
these amounts into thirty-day period bins.

As the collections team manager, I want to quickly recognize which
customers are the most delinquent and which have the largest debt
so that I can follow up with these customers.

The same report structure can be used to monitor suppliers in order to maintain
a healthy DPO:

Working Capital Perspective

[118]

Exercise 5.7
Let's create a pivot table with the following dimensions and expressions:

Dimensions
Labels Value
Customer Customer

Status [A/R Invoice Days Overdue Bin]

Expressions
Labels Value
A/R Balance sum({$<_Periodicity={'Monthly'}>} [A/R

Invoice Balance])

<space> sum({$<_Periodicity={'Monthly'}>} [A/R
Invoice Balance])

 <space> =''

1. Select the second expression and select Linear Gauge in Display Options.
2. Click Gauge Setting and define the Min in the Gauge Settings section as 0

and Max as the following expression:
sum({$<_Periodicity={'Monthly'}>} [A/R Invoice Balance])

3. In the Segments Setup section, delete Segment 2 and change the color of
Segment 1 to blue.

4. In the Indicator section, select Mode Fill to Value.
5. Disable the Show Scale option.
6. Enable the Hide Segment Boundaries and Hide Gauge Outlines options.
7. In the Sort tab, select Status and only enable Numeric Value.
8. In the Presentation tab, enable the option to Show Partial Sums for both

dimensions and enable the option to show Subtotals on Top.
9. Pivot the table as shown in the previous figure.

The creation of the [A/R Invoice Days Overdue Bin] field in the script makes this
report easy to create. In the script, we subtract the invoice due date by the date of the
data snapshot and then use several nested if-statements to assign that result to a bin.
As this field is relative to each snapshot's date and not today's date, we can analyze
the aging report over time. The field is also a dual() data type where Current is 0,
0-30 is 1, 31-60 is 2, and so on. This feature allows us to sort the field more easily by
selecting only Numeric Value option in the Sort tab.

Chapter 5

[119]

How well a customer pays us, or their DSO is an important indicator of how
important that customer is to our business. Let's continue the customer stratification
exercise that we started in Chapter 2, Sales Perspective, and see how we use DSO to
evaluate a customer's importance.

Customer stratification
In Chapter 2, Sales Perspective, we had the following user story:

As a sales representative, I want to see who my most important
customers are so that I can focus my time and effort on them.

A customer's importance is determined by a mixture of measures. In the sales
perspective, we started to determine a customer's importance using a Pareto analysis
over sales. The following diagram shows the results of a customer stratification
based on sales:

We can use Pareto analysis to stratify all measurements whose total is the sum of its
parts, such as gross profit and quantity. However, there is another set of customer
metrics whose total is an average of its parts. For example, the total company DSO
is a weighted average of the DSO of each customer. In this case, we use quartiles to
stratify customers.

Working Capital Perspective

[120]

Finally, once we have more than one measurement that stratifies customers, we look
at how to combine them both numerically and visually. Even though we discuss
customer stratification, the same principles apply to stratification based on any
other dimension, such as item, sales representative, or supplier. The only difference
between these is the exact measurements that we use to stratify them.

Stratification by distribution
When the measurement that we want use to stratify customers is based on averages,
we use the distribution of the averages to classify them. As we use four letters to
stratify customers in the example, we group them by quartiles. Each quartile will
contain the same—or nearly the same—number of customers.

Let's create the following chart in the next exercise to see how quartiles group
customers by DSO:

Exercise 5.8
Let's create a bar chart with the following property options:

Dimensions
Label Value
Customer Customer

Expressions
Label Value

Chapter 5

[121]

DSO avg({$<_Periodicity={'Monthly'}
 ,[AsOf Months Ago]={">0<=12"}>}
 aggr(
 sum({$<_Periodicity={'Monthly'}
 ,[AsOf Months
Ago]={">0<=12"}>}
 [A/R Invoice Balance])
 ,[Year-Month],[Customer])
)
/
sum({$<[AsOf Months Ago]={">0<=12"}>} [Net
Sales])
*
365

1. In the Presentation tab, add the first reference line. This represents the first
quartile and uses the following expression:
fractile(
 aggr(
 avg({$<_Periodicity={'Monthly'},[AsOf Months
Ago]={">0<=12"}>}
 aggr(
 sum({$<_Periodicity={'Monthly'},[AsOf Months
Ago]={">0<=12"}>} [A/R Invoice Balance])
 ,[Year-Month],Customer)
)
 /
 sum({$<[AsOf Months Ago]={">0<=12"}>} [Net Sales])
 *365
 ,Customer)
,.25)

2. Add three more reference lines for the second, third, and fourth quartile. For
each quartile, We use the same expression as in the previous step and change
the second parameter in the fractile function from .25 to .5, .75, and 1,
respectively.

 We make slight changes to the aggr() function in the expression we used to
calculate DSO in Exercise 5.2. calculated total DSO by year-month, We replace [AsOf
Year-Month] with [Customer] as this is the dimension we use this chart. We also go
as far as to use a second aggr() function to calculate each fractile as the fractile()
function only works over a set of numbers. This second aggr() function creates a list
that contains the DSO of every customer for the fractile() function.

Working Capital Perspective

[122]

Stratification by distribution divides the customers into nearly equal-sized bins.
The bar belongs to the nearest quartile reference line above it. According to the
previous chart, Divanoodle, Fanoodle, and Skipfire are in the first quartile. Every
other quartile has two customers. As the best customers have a low DSO, we classify
customers in the first quartile as A, in the second quartile as B, in the third quartile as
C, and in the fourth quartile as D.

Let's add DSO to the customer stratification we started in the sales perspective:

Exercise 5.9
1. Let's create the following variables:

Variable
Label Value
vExp_DSOCustomer avg({$<_

Periodicity={'Monthly'},[AsOf
Months Ago]={">0<=12"}>}
 aggr(
 sum({$<_
Periodicity={'Monthly'},[AsOf
Months Ago]={">0<=12"}>} [A/R
Invoice Balance])
 ,[Year-Month],Customer)
)
/
sum({$<[AsOf Months
Ago]={">0<=12"}>} [Net Sales])
*365

Chapter 5

[123]

vExp_
DSOCustomerStratificationBoundaries

fractile(Total
 aggr(
 $(vExp_DSOCustomer)
 ,Customer)
,$1)

2. In the working capital perspective, let's create the same customer
stratification table that we created in the sales perspective (Exercise 2.3).

3. Let's add the following expressions to the previously created customer
stratification table:

Expressions
Label Value
DSO $(vExp_DSOCustomer)

DSO Class if($(vExp_DSOCustomer) < $(vExp_DSOCustomerStr
atificationBoundaries(.25)),'A'
 ,if($(vExp_DSOCustomer) < $(vExp_DSOCustom
erStratificationBoundaries(.5)),'B'
 ,if($(vExp_DSOCustomer) < $(vExp_DSOCu
stomerStratificationBoundaries(.75)),'C','D'
)))

Total
Weighted

match([Sales Class],'D','C','B','A') * .6
+
match([DSO Class],'D','C','B','A') * .4

Total Class pick(round([Total Weighted])
,'D'
,'C'
,'B'
,'A'
)

4. Change the background color of the DSO Class expression to the following
expression:
if($(vExp_DSOCustomer) < $(vExp_DSOCustomerStratificationBoundarie
s(.25)),blue(100)
 ,if($(vExp_DSOCustomer) < $(vExp_DSOCustomerStratificationBoun
daries(.5)),blue(75)
 ,if($(vExp_DSOCustomer) < $(vExp_DSOCustomerStratification
Boundaries(.75)),blue(50),blue(25))))

Working Capital Perspective

[124]

5. Change the background color of the Total Class expression to the following
expression.
pick(round([Total Weighted])
,blue(25)
,blue(50)
,blue(75)
,blue(100)
)

We create the vExp_DSOcustomerStratification variable with a $1 parameter so
that we can calculate different factiles using only one variable. In general, when we
encounter several expression variables whose only difference is a number, we reduce
them to one variable and add a parameter.

The Total Weighted stratification is calculated by first converting the letters A,
B, C, and D of each individually stratified metric into the numbers 1, 2, 3, and 4,
respectively. In this example, We use the match() function to efficiently turn the
letters into numbers. We then multiple each number by a factor that allows us define
how important each metric is to the final customer stratification. Other than the fact
that the sum of the factors should be equal to one, they are completely arbitrary and
depend on the business's strategy. For example, as we want to put more emphasis on
the sales stratification, we multiply it by .6 and the DSO stratification by .4.

As the sum of factors is equal to one, the sum of the all the weighted stratifications
is between one and four which makes it possible for us to convert it back to a
letter format. In this example, we use the pick() function in Total Class to
convert a rounded Total Weight back into letters. In this way, we can combine
multiple customer stratifications into one. For many business users, such as sale
representatives, this can help them more easily determine a customer's importance
according to the business's strategy. Finally, we introduce a way to visualize how
individual customer measures influence how they are classified.

Chapter 5

[125]

Visualizing stratification
We can use a native scatterplot to compare two measures used for stratification. For
example, we create the following chart using the expressions we use in the customer
stratification table. The legend at the top is a group of eight text objects—one for each
dot and letter:

The scatterplot helps us identify whether each classification describes a tight group
of closely-related customers or a disparate group of loners. It also helps describe the
characteristics of an ideal customer. Although scatterplots appear to be too simple
for complex stratifications that use more than two variables, it has the advantage of
being easy to read. For most business users, we can add two cyclical expressions to a
scatterplot and give them the power to compare any two of a potentially large group
of customer stratification metrics. For the more experienced analysts, we can also
create a more involved visualization called a scatterplot matrix.

Working Capital Perspective

[126]

The following figure shows a scatterplot matrix that compares three variables: Sales,
DSO, and Gross Profit:

Exercise 5.10
1. Download and install the scatterplot matrix from Qlik Branch

(http://branch.qlik.com/#/project/56d99a0a20d00edd11554ea9).

http://branch.qlik.com/#/project/56d99a0a20d00edd11554ea9

Chapter 5

[127]

2. Add a third stratification metric based on gross profit. Use the example of the
sales stratification in Chapter 2, Sales Perspective, in Exercise 2.3 to create the
gross profit stratification that is based on a Pareto.

3. Add the following variables:

Variable
Label Value
vExp_DSOCustomerStratification if($(vExp_DSOCustomer) <

$(vExp_DSOCustomerStrati
ficationBoundaries(.25)
),'A'
 ,if($(vExp_
DSOCustomer) < $(vExp_DS
OCustomerStratificationB
oundaries(.5)),'B'
 ,if($(vExp_
DSOCustomer) < $(vExp_DS
OCustomerStratificatio
nBoundaries(.75)),'C',
'D')))

vExp_SalesCustomerStratification if(len(only({A_
CustomerSales}
Customer)) <> 0, 'A',
 if(len(only({AB_
CustomerSales}
Customer)) <> 0, 'B',
 if(len(only({ABC_
CustomerSales}
Customer)) <> 0, 'C',
 if(len(only({$}
Customer)) <> 0,'D'))))

vExp_
GrossProfitCustomerStratification

if(len(only({A_
CustomerGrossProfit}
Customer)) <> 0, 'A',
 if(len(only({AB_
CustomerGrossProfit}
Customer)) <> 0, 'B',
 if(len(only({ABC_
CustomerGrossProfit}
Customer)) <> 0, 'C',
 if(len(only({$}
Customer)) <> 0,'D'))))

Working Capital Perspective

[128]

In the Web View, add a New Sheet Object called Scatterplot Matrix:

Dimensions
Label Value
Customer Customer

Customer
Classification

=aggr(
 pick(
 round(
 match($(vExp_SalesCustomerStratification),'D',
'C', 'B','A') * .35
 +
 match($(vExp_DSOCustomerStratification),'D','C',
'B','A') * .3
 +
 match($(vExp_GrossProfitCustomerStratification),
'D','C','B','A') * .35
)
,'D'
,'C'
,'B'
,'A'
)
,Customer)

Expressions
Label Value
Rolling 12-month
net sales

=sum({$<$(vSetRolling12Modifier),_ActualFlag={1}>}
[Net Sales])

DSO $(vExp_DSOCustomer)

Rolling 12-month
gross profit

=sum({$<$(vSetRolling12Modifier),_ActualFlag={1}>}
[Gross Profit])

Multivariate analysis leads to complex data visualization. The scatterplot matrix
serves as a tool for more advanced analysts who want a rough idea of correlations
and clustering between multiple variables at a glance. For example, we can observe
that there is a stronger relationship between gross profit and sales than there is
between DSO and either of these two metrics.

In the same way we use DSO for customer stratification, we can also use DSI
and DPO for product and supplier stratification. This type of analysis helps us
understand each working capital element within the context of other measurements.
For example, a top-selling customer with a high DSO may be acceptable. However,
we might lower the credit available to customers that buy little and have a high DSO.

Chapter 5

[129]

Summary
We started analyzing the working capital perspective at a high level and then
worked our way through different levels of analysis that empowers the whole
business to help raise capital for further development. Additionally, a more complete
customer stratification helps sales representatives focus on customers that pay
in fewer days. We can also develop item and supplier stratification and help the
purchasing or production department.

Finally, we empower warehouse, purchasing, and collection teams to do their jobs
more effectively with inventory stock levels and aging reports. Let's continue to
make them more productive and create an operations perspective.

[131]

Operations Perspective
Effective business operations use capital in an efficient way to deliver what the
business sells. In other words, we have to discover just the right number of resources
needed to deliver the best-possible customer service. In this chapter, we use
data to avoid late deliveries and slow responses to our customers' needs without
bankrupting our business.

We will start this chapter by examining company-wide indicators and then we will
work our way through the data to discover opportunities to improve our internal
operations. We will expand on historical analysis and add the ability to use statistics
to predict future supplier behavior. We will also add accuracy to our predictive
analysis with the help of an integrated planning tool that we will use to confirm
future demand.

In this chapter, we will review the following topics while we create our QlikView
operations perspective:

• Operations data model (accumulating snapshot)
• On-time in-full analysis
• Predicting supplier lead times
• Supplier and on-time delivery correlation analysis
• Planning in QlikView with KliqPlan

Operations data model
Operations involve multiple discrete events that are represented as documents in
the ERP system. For example, our customer selling cycle includes a sales quotation,
a sales order, a customer delivery, a sales return, a sales invoice, and a sales credit
memo. Our supplier purchasing cycle includes a purchase order, a delivery, a return,
a purchase invoice, and a purchase credit memo.

Operations Perspective

[132]

Although we can create a transactional fact table that allows us to analyze each
discrete event, we are interested in analyzing the relationship between the events
more than the events themselves. For example, we want to know how much time
it took to deliver a product after receiving its originating purchase order. It would
also be insightful to compare the quantity that we delivered with the quantity of
the originating purchase order. We would have to work between multiple rows
in a transactional fact table to discover this information; and just like a row-based
database, we would find it challenging to work between rows in QlikView.

Therefore, we create a table where one instance of the whole operational process is
stored in only one row. Each instance is an evolving event that is updated every time
it reaches a milestone in the process. For example, in the beginning a row may only
contain a sales order. When this sales order becomes a sales delivery, we update this
row with data from the sales delivery. We refer to this fact table as an accumulating
snapshot.

We measure the following evolving events in our data model:

• Customer selling cycle
• Supplier purchase cycle

We keep the accumulating snapshot table simple by modeling every cycle as a
one-way, linear process. In our ERP system, we can begin this process with any
discrete event. For example, we may start the selling cycle with a sales quotation,
or we could skip this step and start with a sales order. In the script, we assume that
a document created from nothing is a new cycle and concatenate a new row to the
accumulating snapshot.

When we generate a document from another document, we assume that we are
adding on to an existing cycle. We link this new document's data with an existing
row that contains the base document's data. For example, if we generate a sales
invoice from a customer delivery, we will insert this invoice into the same row as the
base delivery document.

Each event contains multiple dates and amounts that correspond to different discrete
events in the process. For example, one row can potentially contain the sales order
date, the delivery date, and the sales invoice date. As such, accumulating snapshots
tend to have more columns and fewer rows than a transactional fact table.

Although we focus on the number of rows in a fact table when we
estimate the size of a QlikView application, the number of columns
in a fact table is also important to consider. A large number of
columns (>50) in a fact table may cause slow response times.

Chapter 6

[133]

As sales and purchasing cycles have a similar sequence of events, we use the same
columns for each cycle. For example, we use a column called [Order Quantity] to
hold the quantity of both sales and purchase orders. We differentiate between each
order using a field called [Process Type] that holds a text value that is either Sales
or Purchasing. Even with this table optimization, the fact table contains almost one
hundred columns.

Operations Perspective

[134]

Most of this data model's dimensions are similar to the ones from previous
perspectives. The difference is in how it handles dates. Each date has its own master
calendar and they all share a common master calendar. We need a bridge table to
link this common master calendar to the fact table so that it can handle the multiple
date fields that exist in each row. Before we look deeper into this subject in the next
section, let's review the 7Ws of our operations data model:

Dimensions
7Ws Fields Comments
Who Customer This is a dimension that we first saw Chapter

2, Sales Perspective.
Who Sales Person This is a dimension we first saw in Chapter 2,

Sales Perspective.
Who Supplier This is a dimension we first saw in Chapter 5,

Working Capital Perspective.
What Item This is a dimension we first saw in Chapter 2,

Sales Perspective.

What [Quote Line Status],

[Order Line Status],

[Delivery Line Status],

[Invoice Line Status]

This is how we keep track of both finished and
pending cycles in the accumulating snapshot.
The last step of pending cycles has an O as its
line status. Otherwise, the line status is C.

When Month, Year This is a common set of calendar fields where
we store the dates of multiple discrete events.

When [Quote Due Date],

[Order Due Date],

[Delivery Due Date],

[Invoice Due Date]

This is where we store event-specific due
dates.

How [Quote First Step],

[Order First Step],

[Delivery First Step],

[Invoice First Step]

This indicates with a Yes or No value how the
operations cycle was started.

Where Warehouse Warehouse is a dimension that we first saw
in Chapter 5, Working Capital Perspective.

Chapter 6

[135]

Metrics
7Ws Fields Comments
How
Many

[Quote Quantity],

[Order Quantity],

[Delivery Quantity],

[Invoice Quantity]

These are the metrics that we measured in
our transactional fact table, which are also
in an accumulating snapshot. However, all
these metrics are on one row and we begin
the name of each metric with the name of the
discrete event that it measures.

Handling multiple date fields
When we have multiple date fields on one row, we can't just fit every date into
one calendar. At the same time that we handle multiple date fields in one common
calendar, we also create a master calendar for each important date. The important
dates in this case are when we create a new document in a cycle. We use these dates
and the same calendar subroutine that we used in previous perspectives to create a
separate calendar for each date field for that date. We use calendars that correspond
to certain documents in the analysis that we perform in this perspective:

call Qvc.CalendarFromField('_KEY_Quote_Date','QuoteCalendar','Quote');

We also create a common calendar that helps the user navigate through the data
without having to first think about what calendar to filter. This calendar behaves
as shown in the following figure. When we select a process cycle that is identified by
_KEY_ProcessID, which is equal to 1399, we notice that it contains multiple dates
starting from May 15, 2012, until June 9, 2012. As a result, we can see in the common
calendar's Year and Month filters that both May and June 2012 are possible values:

Operations Perspective

[136]

We make this behavior possible by creating a bridge or link table between the fact
table and the CommonCalendar dimension. This link table is called DateLink and it
stores the date of each cycle's discrete events in individual rows:

The following code is an example of the script to include the dates of the first two
discrete events in the DateLink table. The other dates can also be added in the
same way:

DateLink:
Load
 _KEY_ProcessID,
 [Quote Document Date] as _KEY_Date,
 'Quote' as [Document Type]
Resident Operational_Process
Where not isnull([Quote Document Date]);

Concatenate (DateLink)
Load
 _KEY_ProcessID,
 [Order Document Date] as _KEY_Date,
 'Order' as [Document Type]
Resident Operational_Process
Where not isnull([Order Document Date]);

Now that we've reviewed the operations data model and how we handle multiple
date fields, let's start to analyze our operational cycles.

On-Time and In-Full
Our objective is to help the teams that are in charge of purchasing, production,
and shipping, to deliver on the expectations that the sales and marketing teams
have built for our customer. We may sell items based on prices or quality, but our
customers expect us to deliver what we sell. The first requirement is that we deliver
our products On-Time and In-Full (OTIF).

As a logistics manager, I want to analyze what percentage of our orders
are OTIF so that I can look for opportunities to improve our operations
or adjust the expectations built by the sales team.

Chapter 6

[137]

We are not only concerned about whether the delivery arrives on time but also
whether it is completed without any returns. Although, in some cases, early
deliveries may be a problem, we will assume that they are not in this case. We
calculate OTIF with the following formula:

OTIF = the number of line items shipped on or before promised delivery and complete divided
by the total number of line items shipped

When we use the number of line items, we apply an equal weight to all line items,
regardless of whether they represent large or small volumes. If we want to place
a bias on deliveries that generate more value for the company, we can replace the
number of line items with gross profit, sales, or quantity. We calculate OTIF by line
item and by total quantity in the following chart:

Exercise 6.1
Before beginning the following exercise, we import this chapter's exercise files
into the QDF as we did in Chapter 2, Sales Perspective. Let's create a bar chart that
analyzes OTIF with the following property options in 1.Application\Operations_
Perspective_Sandbox.qvw:

Dimensions
Label Value
Delivery Year-Month DeliveryYear-Month

Operations Perspective

[138]

Expressions
Label Value
On-Time In-Full by
Line Item

sum({$<[Process Type]={'Sales'},[Delivery First
Step]={'No'}>}
 if([Delivery Document Date]<=[Order Due Date]
 and [Order Quantity]=rangesum([Delivery
Quantity],-[Return Quantity])
 ,1)
)
/
count({$<[Process Type]={'Sales'},[Delivery First
Step]={'No'}>}
 DISTINCT [Delivery Line No.]
)

On-Time In-Full by
Total Quantity

sum({$<[Process Type]={'Sales'},[Delivery First
Step]={'No'}>}
 if([Delivery Document Date]<=[Order Due Date]
 and [Order Quantity]=rangesum([Delivery
Quantity],-[Return Quantity])
 ,[Delivery Quantity])
)
/
sum({$<[Process Type]={'Sales'},[Delivery First
Step]={'No'}>}
 [Delivery Quantity])

We use the Delivery Year-Month field as a dimension because we specifically want
to analyze the deliveries in the month that they were made. In each expression, we
use an if-statement within the sum() function. For better performance, we can also
migrate this logic to the script and create a field in the data model that identifies
which line items were OTIF. The conditional expression of the if-statement evaluates
whether what we promised in the sales order matches the delivery. Therefore, we
filter out delivery documents that start a sales cycle in the set analysis because no
promise was ever documented in the ERP system.

An accumulating snapshot tends to contain many null values that represent steps in
the cycle that have yet to happen or that never will. In QlikView, binary functions,
such as +, -, *, and /, do not work when one of the variables is a null value. For
example, the =8+null() expression returns a null value instead of eight. On the
other hand, the rangesum() function treats a null value as if it were zero, so we add
we use it to sum [Delivery Quantity] and [Return Quantity] because they often
contain a null value.

Chapter 6

[139]

We can gather from our OTIF analysis that, for six months in 2013, we delivered
100% of our orders on-time and in-full. The most difficult month in 2013 was June
when we delivered 80% of the line items and 72% of the quantity satisfactorily.
Assuming that we use a standard unit of measurement for all of our products, this
discrepancy between line items and quantity is due to a higher OTIF among lower-
quantity deliveries. Let's now analyze how we work through our data to discover
opportunities to improve our OTIF.

OTIF breakdown
There are various ways to analyze OTIF in more detail. Just like we did with the DSI
calculation in our working capital perspective, we can break up the OTIF calculation
into its parts. For example, we can analyze on-time deliveries separately from in full
deliveries and also analyze the total absolute number of deliveries per month see
its behavior.

We can also analyze the different cycles that support OTIF. For example, we can
explore data from the production cycle, the purchasing cycle, or the shipping cycle.
As we've added the purchasing cycle to our operations perspective, we can easily
analyze our suppliers' OTIF rate in the following chart:

Exercise 6.2
To perform this exercise:

1. Clone the chart that we created in Exercise 6.1.
2. Change the code, [Process Type]={'Sales'}, in the metric expressions to

[Process Type]={'Purchasing'}.

Operations Perspective

[140]

Finally, we can break down the cycles by their corresponding dimensions, such as
supplier, customer, sales person, or item. We notice in the previous chart that our
suppliers do not have a high OTIF and we decide to break down the metric
by supplier:

Exercise 6.3
To perform this exercise:

1. We create the following variable so that the code looks cleaner:

Variable
Label Value
vSA_PurchaseDelivery_
NotFirstStep

{$<[Process Type]={'Purchasing'}
,[Delivery First Step]={'No'}>}

Chapter 6

[141]

2. Let's create a bar chart with the following dimensions and metrics options:

Dimensions
Label Value
Supplier Supplier

Days Late =aggr(
 if(only($(vSA_PurchaseDelivery_NotFirstStep)
[Delivery Days Late])<=0, dual('On Time',1)
 ,if(only($(vSA_PurchaseDelivery_NotFirstStep)
[Delivery Days Late])<=3, dual('1-3 Days Late',2)
 ,if(only($(vSA_PurchaseDelivery_NotFirstStep)
[Delivery Days Late])<=15, dual('4-15 Days Late',3)
 ,if(only($(vSA_PurchaseDelivery_NotFirstStep)
[Delivery Days Late])<=30, dual('16-30 Days Late',4)

 ,dual('>30 Days Late',5)))))
,_KEY_ProcessID)

Expressions
Label Value
% of Deliveries count($(vSA_PurchaseDelivery_NotFirstStep)

 DISTINCT [Delivery Line No.])
/
count($(vSA_PurchaseDelivery_NotFirstStep)
 Total <Supplier> DISTINCT [Delivery Line No.])

Number of
Deliveries

count($(vSA_PurchaseDelivery_NotFirstStep)
 Total <Supplier> DISTINCT [Delivery Line No.])

3. Change the background color attribute expression for % of deliveries to the
following code:
=aggr(if(only($(vSA_PurchaseDelivery_NotFirstStep) [Delivery Days
Late])<=0, RGB(171,217,233)
 ,if(only($(vSA_PurchaseDelivery_NotFirstStep) [Delivery Days
Late])<=3, RGB(254,217,142)
 ,if(only($(vSA_PurchaseDelivery_NotFirstStep) [Delivery Days
Late])<=15, RGB(254,153,41)
 ,if(only($(vSA_PurchaseDelivery_NotFirstStep) [Delivery Days
Late])<=30, RGB(217,95,14)
 ,RGB(153,52,4))))),_KEY_ProcessID)

4. Select the expression Number of Deliveries and, in Display Options,
disable Bar and enable Values on Data Points.

Operations Perspective

[142]

5. In the Sort tab, sort the Supplier by Expression in Descending order using
the following code:
count(Total <Supplier> $(vSA_PurchaseDelivery_NotFirstStep)
 DISTINCT [Delivery Line No.])

6. Sort Days Late using Numeric Value.
7. In the Style tab, change Orientation to horizontal bars and change the

Subtype to Stacked.

We've created the [Delivery Days Late] field in the script to make for cleaner code
and reduce calculation time. For larger datasets, it may also be necessary to create
days late bins in the script instead of using a calculated dimension, as we did in this
exercise. Either way, we should create bins using the dual() function so that we can
easily sort them.

We can use this chart for any step in a cycle that has a due date. We group all on-
time instances in one bin and then we divide late instances into bins that represent
ranges that are analytically significant. On the other hand, if we simply want to
analyze the time that it takes to complete a step, we can use a histogram. Let's take
what we've discovered about our suppliers' OTIF and analyze each item's real
lead time.

Predicting lead time
Lead time is the time that it takes from the moment that we order an item to the
moment that we receive it in inventory. We first saw lead time in our working
capital perspective in Chapter 5, Working Capital Perspective. In that chapter, we used
a predefined lead time to calculate each item's reorder stock level. In this section we
look at how to use data to calculate a more accurate lead time. We can also apply
these same methods to analyze the time taken to complete any of the steps in a cycle.
For example, we can measure how long it takes to generate a customer invoice or
convert a quotation into an order.

We begin our analysis by visualizing the average time that it takes from the moment
we create a purchase order until we create an inventory delivery receipt. We analyze
the trend of average lead times by month.

Chapter 6

[143]

Exercise 6.4
Let's create a bar chart with the following dimensions and metrics options:

Dimensions
Label Value
OrderYear-Month OrderYear-Month

Expressions
Label Value
Average Lead Time avg({$<[Process Type]={'Purchasing'}>} [Lead

Time])

We create a [Lead Time] field in the script that is the difference between
[Delivery Document Date] and [Order Document Date]. The avg() function
works without the help of aggr() because we want the average lead time of each line
item, which has the same level of detail as our accumulating snapshot.

Operations Perspective

[144]

If the only statistical measurement that we use is average, then we risk over-
simplifying our analysis and failing to define optimal inventory levels. Let's
study the time span between a purchase order and its receipt in more detail with
a distribution analysis that we first saw in the sales perspective in Chapter 2, Sales
Perspective:

Exercise 6.5
Lead time distribution contains the following three objects:

Let's first create the Lead Time Details table:

Dimensions
Label Value
Item Item
Expressions
Label Value
Mean avg({$<[Process Type]={'Purchasing'}>} [Lead Time])
Mean 95% t-Dist Lower
Limit

TTest1_Lower({$<[Process Type]={'Purchasing'}>}
 [Lead Time], (1-(95)/100)/2)

Mean 95% t-Dist Upper
Limit

TTest1_Upper({$<[Process Type]={'Purchasing'}>}
 [Lead Time], (1-(95)/100)/2)

<empty> =''

Chapter 6

[145]

95% Normal Dist Upper
Limit

avg({$<[Process Type]={'Purchasing'}>} [Lead Time])
+2*Stdev({$<[Process Type]={'Purchasing'}>}
 [Lead Time])

97.5% Fractile Fractile({$<[Process Type]={'Purchasing'}>}
 [Lead Time],.975)

Max max({$<[Process Type]={'Purchasing'}>} [Lead Time])

Just as we did in Chapter 2, Sales Perspective, we calculate the mean and evaluate its
range using a t-distribution. We can use one of these results as the average lead time
to calculate our minimum stock level. For example, we can use the upper limit if we
want to reduce the risk of any inventory shortage or the lower limit if we want to
reduce the risk of purchasing too much stock.

The other set of statistics tells us the maximum lead time that we've recorded and
introduces two alternatives that we can use to avoid stocking too many items if the
maximum happens to be an outlier. The first alternative, 95% Normal Dist Upper
Limit assumes that we have more than thirty lead times in our data sample and that
lead times are distributed normally. If this is the case, then we can add the mean
and two standard deviations to calculate the upper limit of a 95% confidence level
for a standard normal distribution. The result is the lead time that we predict will be
larger than 97.5% of past and future lead times.

We can also use fractiles to remove possible outliers. The result of the 97.5% fractile
is a number that is larger than 97.5% of past lead times. This fractile works regardless
of how lead times is distributed and is easier for the business user to grasp. We
can also use it as a test to evaluate whether lead times are normally distributed. If
there is a large difference between the 97.5% fractile and the upper limit of the 95%
confidence level, then lead times may not be normally distributed.

We may also decide to use the actual maximum lead time even when it is an outlier
because the cost of not having an item in stock is greater than the cost of storing too
much inventory. Which method we use to determine maximum lead time depends
on our strategy and neither is perfect. We should test the accuracy of each and
constantly fine tune the calculation according to our findings.

1. Let's create a Combo Chart that helps us visualize lead time distribution and
the key numbers in our Lead Time Details table:

Dimensions
Label Value
Lead Time =ValueLoop($(=min([Lead Time]))

 ,$(=max([Lead Time])).1)

Operations Perspective

[146]

Expressions
Label Value
Lead Time sum({$<[Process Type]={'Purchasing'}>}

 if([Lead Time]=
round(ValueLoop($(=min([Lead Time]))

,$(=max([Lead Time])),.1)),1))
/
count({$<[Process Type]={'Purchasing'}>} [Lead Time])

Normal
Distribution

NORMDIST(
 ValueLoop($(=min([Lead Time]))

,$(=max([Lead Time])),.1)
 ,avg({$<[Process Type]={'Purchasing'}>} [Lead Time])
 ,stdev({$<[Process Type]={'Purchasing'}>} [Lead
Time])
 ,0)

t-Distribution TDIST(

(fabs(ValueLoop($(=min([Lead Time])),$(=max([Lead
Time])),.1)

-avg({$<[Process Type]={'Purchasing'}>} [Lead Time])))

/

 (Stdev({$<[Process Type]={'Purchasing'}>} [Lead Time])
/ sqrt(count({$<[Process Type]={'Purchasing'}>} [Lead
Time])))

,count({$<[Process Type]={'Purchasing'}>} [Lead Time])

,1)

2. In the Axes tab, enable the Continuous option in the Dimension Axis section.
3. In the Presentation tab, add the six metrics in the Lead Time Details table as

reference lines along the continuous x axis. Make the line style and color the
same as the previous figure so that we can create a legend in the next step.

4. Finally, let's add a Line Chart that serves as our Reference Line Legend:

Dimensions
Label Value
Lead Time =ValueLoop(0,2)

Expressions
Label Value
Max =dual(if(ValueLoop(0,2)=1,'Max',''),sum(.1))

95% Normal
Dist Upper
Limit

=dual(if(ValueLoop(0,2)=1
 ,'95% Normal Dist Upper Limit',''),sum(.2))

Chapter 6

[147]

97.5% Fractile =dual(if(ValueLoop(0,2)=1
 ,'95% Fractile',''),sum(.3))

Mean 95% t-Dist
Lower Limit

=dual(if(ValueLoop(0,2)=1
 ,'Mean 95% t-Dist Lower Limit',''),sum(.4))

Mean =dual(if(ValueLoop(0,2)=1,'Mean',''),sum(.5))

Mean 95% t-Dist
Upper Limit

=dual(if(ValueLoop(0,2)=1
 ,'Mean 95% t-Dist Upper Limit',''),sum(.6))

5. Modify the Background Color and Line Style in the following way:

Expression Background Color Line Style
Max RGB(178,223,138) ='<s1>'
95% Normal Dist Upper Limit RGB(178,223,138) ='<s2>'
97.5% Fractile RGB(178,223,138) ='<s3>'
Mean 95% t-Dist Lower Limit RGB(192,192,192) ='<s1>'
Mean RGB(192,192,192) ='<s2>'
Mean 95% t-Dist Upper Limit RGB(192,192,192) ='<s1>'

6. In the Expressions tab, enable Values on Data Points in the Display Options
section.

7. Disable Show Legend in the Presentation tab.
8. Disable Show Legend in the Dimensions tab.
9. Enable Hide Axis in the Axes tab.
10. Resize and adjust each of the objects as necessary.

As in Chapter 2, Sales Perspective, we use the valueloop() function as a dimension to
create a continuous X-Axis so that we can visualize the distribution curves. We also
use it in the Reference Line Legend to create a dummy line with three points. We
then use the dual() function in each line's expression to add a text data value in the
center point.

We've just used advanced statistical methods to create a more complex model to
estimate lead time. Let's now use another statistical method called the Chi-squared
test of independence to test whether on-time deliveries depend on the supplier.

Operations Perspective

[148]

Supplier and On-Time delivery correlation
When we want to test whether two numeric metrics are correlated, we use scatterplot
charts and R-squared. Similarly, we can also test the correlation between two
categorical groups using the Chi-squared test of independence.

In this example, we want to confirm that the supplier is not one of the factors that
determines a delivery's timeliness. In order to test this hypothesis, we calculate
a value called p, which is the probability that supplier and delivery status are
independent. Before analyzing the results of the Chi-squared test of independence,
we decide that if p is less than .05, then we will reject the assumption that delivery
timeliness does not depend on the supplier. This then implies that there is a
relationship between them. We call this point (.05) where we would reject the
hypothesis of independence as the critical point. Let's analyze and evaluate whether
there is a relationship between these two variables:

Chapter 6

[149]

Exercise 6.5
Our independence test contains the following three objects:

1. Let's first create the Delivery Status and Supplier Matrix pivot table:

Dimensions
Label Value
Supplier Supplier
Status Status
Expressions
Label Value
Number of
Deliveries

count({$<[Process Type]={'Purchasing'}>} [Delivery
ID])

We notice from the table that there are deliveries that have a null status.
Upon further investigation, we find that some deliveries do not have
originating orders and therefore no due date to evaluate the timeliness
of the delivery.
Aside from that observation, it is hard to use this matrix to detect whether
the status depends on the supplier or not. Therefore, we use a statistical
method to evaluate the numbers.

2. Let's create the Chi Dist Details table that contains the statistical results.
This straight table has no dimensions and the following expressions:

Expressions
Label Value
p Chi2Test_p(Supplier,Status

 ,aggr(count({$<[Process Type]={'Purchasing'}>}
 [Delivery ID])
,Status,Supplier))

Degrees of
Freedom

Chi2Test_df(Supplier,Status
 ,aggr(count({$<[Process Type]={'Purchasing'}>}
 [Delivery ID])
,Status,Supplier))

Chi-squared Chi2Test_Chi2(Supplier,Status
 ,aggr(count({$<[Process Type]={'Purchasing'}>}
 [Delivery ID])
,Status,Supplier))

Operations Perspective

[150]

The p value of .89 is much larger than the critical point of .05, so we don't
have enough evidence to reject our assumption that [Delivery Status]
and Supplier are independent. If the p value were below .05, then that
would imply that [Delivery Status] and Supplier are correlated in
some way.
We use degrees of freedom and Chi-squared to create and build the
distribution curve. We can confirm that our chi-squared of 7.98 is far from
the chi-squared that crosses the critical point in the distribution curve in
the chart.

3. Let's create a Line Chart with the following dimensions and expressions:

Dimensions
Label Value
Lead Time =ValueLoop(0,100,1)

Expressions
Label Value
Chi Distribution CHIDIST(ValueLoop(0,100,1)

 ,$(=Chi2Test_df(Supplier,Status
 ,aggr(count({$<[Process Type]={'Purchasing'}>}
 [Delivery ID]),Status,Supplier))))

4. In the Axes tab, enable the Continuous option in the Dimension Axis section.
5. Add the following reference lines along the continuous x axis of the chart:

Reference Lines
Label Value
Chi-squared =Chi2Test_Chi2(Supplier,Status

 ,aggr(count({$<[Process Type]={'Purchasing'}>}
 [Delivery ID]),Status,Supplier))

Critical Point =CHIINV(.05,$(=Chi2Test_df(Supplier,Status
 ,aggr(count({$<[Process Type]={'Purchasing'}>}
 [Delivery ID]),Status,Supplier))))

Chapter 6

[151]

In a Chi-squared distribution curve, the p value of .89 is actually the area of the
curve to the right of Chi-squared value of 7.98. QlikView draws an accumulated
distribution curve that indicates the area that corresponds to a particular Chi-
squared value. Therefore, we can see that the Chi-squared reference line crosses the
accumulated Chi-squared distribution curve where the y value is close to .89. We
also note that it is far from the critical point.

We've used advanced statistical methods to perform both relational analysis and
predictive analysis. Other than predictive analysis through statistical methods, our
business users can also input data into QlikView and help us plan demand.

Planning in QlikView with KliqPlan
Each person in our company is a data source and it is important that they can easily
input data that will enrich our analysis. If we combine analysis with planning, then
we can be better prepared for the future and support our statistical analysis. In
QlikView, business users can simultaneously analyze and input data.

Traditionally, data input in QlikView is limited to what-if scenarios that use
variables or input fields. However, when we have a large number of variables,
neither of these methods are ideal. A large number of variables is hard to maintain
and input fields take up too much RAM. Furthermore, users cannot easily input a
large number of values at once and there is a risk they will lose their input that is not
directly saved to a database.

Planning tool extensions
As an alternative, we have the option to use an extension that enables us to perform
more advanced data input in QlikView. One of these extensions is called KliqPlan
(http://www.ktlabs.com) and it allows users to input data directly into a relational
database from a QlikView application. It can also read the content from a relational
database in real time and allow users to reload a QlikView application from
their browser.

http://www.ktlabs.com

Operations Perspective

[152]

In order to implement KliqPlan, you should be familiar with SQL and go through its
manual to learn all the property options of its extensions. Although these property
options are unique to KliqPlan, it reuses QlikView expression logic to dynamically
calculate many property options.

Sales forecasts and purchase planning
If we have a tool like KliqPlan, sales representatives can simultaneously analyze their
past sales data and input what they expect to sell over the course of the next month.
We can facilitate their planning by using QlikView expressions in a KliqPlan table to
propose a future sales amount. For example, we can use a rolling average to predict
next month's sales but still allow the sales representatives to adjust it accordingly.

We can then use this information to better plan our purchasing and production
activities. We can cross-analyze data from sales representatives with historical data
to confirm that it is not exaggerated. We may even experiment with multiple forecast
versions as we learn more about our sales process.

Chapter 6

[153]

It is especially insightful to visualize actual and forecast data side-by-side like in the
following figure:

We use rangesum() and set analysis to combine actual and forecast data into the
same line. Our expression would be similar to the following code:

rangesum(
sum({$<_ActualFlag={1},_MonthSerial={'<=$(=max({$<_ActualFlag={1}>}
_MonthSerial))'}>} [Net Sales])
,sum({$<_BudgetFlag={1},_MonthSerial={'>$(=max({$<_ActualFlag={1}>}
_MonthSerial))'}>} [Net Sales])
)

We then use the following code for the Line Style attribute expression:

if(_MonthSerial < max({$<_ActualFlag={1}>} Total _
MonthSerial),'<s1>','<s2>')

Along with the use of historical data, new products and customers are an important
part of planning. Therefore, KliqPlan includes a component called KliqTable that
allows users to add new customers and products.

Operations Perspective

[154]

Other applications
KliqPlan is designed as a planning tool, but we can use it for any task that requires
us to input data directly in QlikView. We often face analytical tasks that require the
user to add information that cannot be found in any other data source. We usually
end up using Excel files to input data that is not found anywhere else, but, in some
cases, KliqPlan may be the better option, as in the following examples:

Options where
KliqPlan is better

Description

Balanced Scorecard Often, the goals and actual results of some of the indicators do not
come from any ERP, CRM, or other formal operational database.
For example, we may not have software to manage training and
every month somebody has to input the number of employees that
are certified QlikView developers. Instead of using Excel a user can
input this data directly into Qlikview with KliqPlan.

Formal What-if
Scenarios

Before KliqPlan, we used QlikView's native input fields to develop
financial what-if scenarios for a customer. They used a series of
drivers, such as the daily number of customers and the average
amount spent by each customer, to create an estimated profit and
loss statement.
We developed a macro to export the profit and loss statement in
XML so that SAP BW could import it into its database. The user then
had to wait for QlikView to reload the new information from SAP
BW. This functionality can now be developed using KliqPlan.

Summary
This chapter is a great opportunity to improve our internal processes and provide
great customer service without bankrupting the company. After we explore the
data with basic statistical methods, we should experiment with more predictive and
complex analyses that can make our processes more effective.

Our ability to use such methods depends on the people that execute our internal
processes. We need talented people to continually innovate how we analyze use
data. As such, we will dedicate the next chapter to our human resources perspective.

[155]

Human Resources
We've created each of our previous perspectives with the objective of becoming
a data-driven business. Robert Kaplan and David Norton considered the
measurements in the learning and growth of employees as the infrastructure to enable
ambitious objectives in the financial, customer, and internal-business process perspectives.
We need to invest resources in our human capital so that they are capable of using
data to help themselves and work at their optimal level. In this chapter, our goal is to
learn more about our employees and help them be more effective.

First, we are interested in which factors make our team more productive. We use
data from our Human Resource Management System (HRMS) to calculate metrics,
such as headcount, salary, vacation days, sick days, and turnover by pertinent
dimensions, such as job function, functional area, and demographics. Then, we
compare these measurements with financial metrics, such as sales and gross profit.

Our organization's success is based on how well we develop our human talent.
Therefore, we use additional metrics to measure performance and training. Along
with our enterprise perspective, we also empower our employees to measure
themselves. We look to achieve mutual success in helping them establish their own
goals and measure their own performance with their own personal perspective.

We will cover the following topics as we develop our QlikView human resources
perspective:

• HR data model
• Personnel productivity
• Personal behavior analysis

Let's begin by reviewing the HR data model that we will create from our
HRMS system.

Human Resources

[156]

Human resources data model
The HR data model is a transactional fact table with discrete events. This includes
the employee-related events along with a few financial events that help us measure
productivity. We record the following events in this model:

• Employee payroll
• Employee absences
• Employee training
• Employee hiring and dismissals
• General Journal (GJ) entries related to sales, costs, and expenses

Here is a representation of this model:

Chapter 7

[157]

We combine these events into one fact table and use the same type of master
calendar as in Chapter 2, Sales Perspective. The data model includes a new dimension
table called Employees. Let's review the 7Ws of our HR data model.

Dimensions
7Ws Fields Comments
Who Employee This is the focus of our HR data model. We

include various attributes that are related
to their role in the company and general
demographic information here.

When Month, Year This is where we include a single master
calendar that describes the exact date of an
event.

Where Office We cannot usually measure sales
by employee unless they are a sales
representative. So, along with describing an
employee's geographical location, we also
use Office so that we can evaluate the
productivity of an employee group.

What _FactType We store the event type of each fact table
row in order to determine what event
it represents. One row could record an
absence, a training day, a hiring, a dismissal,
or a paid salary.

What GL Account This is a dimension that we first saw Chapter
3, Financial Perspective.

Why Absence Type This is where we store why an employee was
absent and whether it was due to sickness,
vacation, or unexcused.

Metrics
7Ws Fields Comments
How Many [Absence],

[Training],
[Hiring],
[Dismissal]

Several events, such as vacation, training,
hiring, and dismissals, are measurements
only because of the fact that they occurred on
a given date. Therefore, we create a field that
measures the event using the number, 1, and
use it as a counter in our analysis.

Human Resources

[158]

How Much [Monthly Salary] We measure how much each employee
earns on a monthly basis. We also define
our headcount as the number of employees
that receive pay. We create a field called
[Headcount Counter], which contains
the number 1 every time they are paid.

How Much [Sales], [Costs],
[Expenses]

We measure this in the same way as we did
in Chapter 3, Financial Perspective.

Slowing changing dimensions attributes
Over time, employees will learn and grow and they will earn promotions or transfer
to different departments in the company. Some HRMS systems, such as SAP HR,
contain tables that conserve history and tell us when an employee has changed their
job position or department. Other systems may just contain an employee's current
information and not save any record of their past job positions or departments.

Descriptive information that may change over time is called Slowly Changing
Dimensions (SCD). Other examples include reassigning customers to new sales
representatives, rearranging customers groups, or rearranging product groups. We
need to understand the effect that SCDs can have on our analysis and how business
users expect to visualize this data. The following are the most common types of
SCD's (Kimball and Ross 2013):

SCD Type SCD Description
Type 0: Retain Original This dimension attribute value never changes.
Type 1: Overwrite This is when we erase history and overwrite the old

attribute value with the new one in the dimension table.
Type 2: Add New Row This is when we conserve history and store the new

attribute value in a new row in the dimension table.

Chapter 7

[159]

Often, users need SCD types 1 and 2 in order to answer all of their questions. For
example, we may want to assess each office's current employee knowledge. So, we
use SCD Type 1 to analyze the amount of training taken by employees regardless of
whether some of this training was taken while assigned to other offices. On the other
hand, we may want to analyze which office is investing more in training. In this case,
we would need to use SCD Type 2 so that we can take into account where employees
were working when they were trained.

Therefore, it is worthwhile to allow advanced users the option to compare both types
in one application. We'll store Type 1 dimension attributes in fields that contain the
word "Current" (for example, Employee Current Job Title) and Type 2 dimension
attributes in fields that contain the word "Historical" (for example, Employee
Historical Job Title).

We can easily create a SCD Type 1 field by assigning the current HRMS attribute
value to the appropriate field in the script. The creation of SCD Type 2 is more
complicated. We have to link the value in the _KEY_Date field in the Facts table
to the attribute value's valid date interval defined by the [Valid Start Date]
and [Valid End Date] fields in the Employees dimension table. We use the same
intervalmatch() function that we used in Chapter 4, Marketing Perspective, to create
the relationship between the Facts and Employees tables in our HR data model.
For more information on how to handle SCD in a QlikView data model, read Henric
Cronström's blog post on the subject at https://community.qlik.com/blogs/
qlikviewdesignblog/2013/06/03/slowly-changing-dimensions.

If the ERP or HRMS doesn't save the dates that a dimension
attribute is valid and overwrites the values, we can use QVDs to
conserve an attribute's history. The start and end dates are created
in the script after we detect that a change has been made. A quick
way to discover attribute value changes is using the hash function
described in Barry Harmsen's blog (http://www.qlikfix.
com/2014/03/11/hash-functions-collisions/).

https://community.qlik.com/blogs/qlikviewdesignblog/2013/06/03/slowly-changing-dimensions
https://community.qlik.com/blogs/qlikviewdesignblog/2013/06/03/slowly-changing-dimensions
http://www.qlikfix.com/2014/03/11/hash-functions-collisions/
http://www.qlikfix.com/2014/03/11/hash-functions-collisions/

Human Resources

[160]

Personnel productivity
Human Resources costs can represent up to 70 to 80 percent of the total cost of
doing business (Lawler and Boudreau 2012). Our first goal is to analyze headcount,
payroll, and how much revenue (or profit) we generate per employee and payroll
dollar spent.

As an HR analyst, I want to discover who our most
productive teams are so that I can share their practices
with the rest of company.

We start our analysis by comparing headcount and payroll. As these amounts use a
different scale, we use the left axis of a dot plot chart for headcount and the right axis
for payroll. Before beginning the following exercise, we import this chapter's exercise
files into the QDF as we did in Chapter 2, Sales Perspective.

Exercise 7.1
1. In 1.Application\HR_Perspective_Sandbox.qvw, let's create a combo

chart that measures headcount and payroll by year-month, as follows:

Dimensions Details
Label Value
Year-Month Year-Month

Chapter 7

[161]

Expressions
Label Value
Headcount count(distinct [Headcount Counter])

Payroll sum([Monthly Salary])

2. In the Expressions tab, enable only Symbol in the Display Options section.
Define Headcount as Dots and Payroll as Circles.

3. In the Axes tab, disable the Forced 0 option for both expressions. Select
Payroll and enable the Right (Top) option in the Position section.

4. Adjust the look of the chart accordingly.

When we use a dual axis and remove the Force the axis to zero option, QlikView
automatically aligns the maximum and minimum values of each metric so that they
are at the same height along the Y-axis. We can, therefore, compare the percentage
growth of the two metrics. For example, in the Headcount and Payroll chart, both
Headcount and Payroll reach their minimum value in December 2014. At the end
of 2015, Payroll is higher along its axis than Headcount, so we can conclude that it
grew at a faster rate than Headcount. In other words, it implicitly shows an increase
in the average payroll per employee.

Also, as we are more interested in the trend of the two metrics than the actual
amounts, we can avoid forcing the axis to zero. It is sometimes useful to do this
when we are working with a dot plot or a line chart. However, we should be careful
to avoid doing the same to bar charts because the length of a bar traditionally
represents the total actual value.

Let's apply the same method to compare these two metrics with the company's
revenue and determine our personnel's productivity. The first formula compares
revenue and headcount:

Revenue per employee = total revenue divided by total headcount

The second formula calculates employee productivity in terms of actual cost:

Employee Productivity = total revenue divided by total payroll

Human Resources

[162]

The ideal result of these metrics differ by industry, so we should compare our results
with businesses from the same industry. Within our own company, we can also
compare the results of different offices or branches. In order to do so, we create a dot
plot chart that is similar to the previous example, but use the Trellis option so that
we can create a series of the same chart by office. Every chart in this series uses the
same axis scale so that we can compare the results of different offices as if they were
located in only one chart.

Exercise 7.2
1. Let's create a combo chart that measures headcount and payroll by

year-month.

Dimensions Details
Label Value
Office Office
Year-Month Year-Month
Expressions
Label Value
Revenue per
Employee

-sum({$<[Account - Concept]={"Total Revenue"}>}
[GJ Amount])
/
count(distinct [Headcount Counter])

Employee
Productivity

-sum({$<[Account - Concept]={"Total Revenue"}>}
[GJ Amount])
/
sum([Monthly Salary])

Chapter 7

[163]

2. In the Dimensions tab, click Trellis… and enable the Enable Trellis Chart
option. Fix the Number of Columns to 2 and the Number of Rows to 1.

3. In the Expressions tab, enable only Symbol in the Display Options
section. Define Revenue per Employee as Dots and Employee Productivity
as Circles.

4. In the Axes tab, disable the Forced 0 option for both expressions. Select
Payroll and enable the Right (Top) option in the Position section.

We can easily see that the office in Iowa is more productive than the one in
Wisconsin when the chart uses the same axis scale. Given that the Iowa and
Wisconsin offices have equivalent departments and employee functions, the next
step is to break down our personnel productivity and analyze why one office may
have higher productivity than the other. We begin this process by visualizing our
employees' profile and actions.

Personnel productivity breakdown
We begin the analysis of each office's teams by investigating their overall
compositions and actions. We have a variety of metrics that may help us understand
why one team may perform better than another. The following is a list of common
metrics that we can use in our HR perspective:

• Age distribution
• Salary distribution
• Employee-retention rate
• Employee sick and vacation days
• Employee training and performance

Human Resources

[164]

Age distribution
Let's begin with our analysis and compare the age distribution between the two
offices. Instead of using a histogram, we use a frequency polygon so that we can
compare more than one distribution in the same chart.

Exercise 7.3
1. Create the following variable:

Variables Details
Label Value
vEmployeeAgeBinSize 1

Chapter 7

[165]

2. Let's create the following line chart:

Dimensions Details
Label Value
Age =ValueLoop(

 $(=floor(min({$<_Employee_Active_Flag={1}>}
 [Employee Age]),vEmployeeAgeBinSize))
 ,$(=floor(max({$<_Employee_Active_
Flag={1}>}
 [Employee Age]),vEmployeeAgeBinSize))
 ,vEmployeeAgeBinSize
)

Employee Current
Office

Employee Current Office

Expressions Details
Label Value
Number of
Employees

sum({$<_Employee_Active_Flag={1}>}
 if(floor([Employee Age],vEmployeeAgeBinSize)
 =ValueLoop(
 $(=floor(min({$<_Employee_Active_Flag={1}>}
 [Employee Age]),vEmployeeAgeBinSize))
 ,$(=floor(max({$<_Employee_Active_Flag={1}>}
 [Employee Age]),vEmployeeAgeBinSize))
 ,vEmployeeAgeBinSize
)
 ,1,0)
)

3. In the Expressions tab, enable the Polynomial of 2nd degree option in the
Trendlines section.

4. In the Presentation tab, disable the Suppress Zero-Values option.
5. In the Axes tab, enable the Continuous option.
6. Create an Input Box to edit the vEmployeeAgeBinSize variable.

Normally, we would use the class() function to create a histogram; however,
the class() function generates bins from existing values. A bin without any
corresponding value behaves in the same way that missing or null values behaved in
Chapter 2, Sales Perspective. Although we are not affected by this behavior when we
use a bar chart, we are not so lucky when we work with a line chart. The line jumps
from one existing bin directly to another without representing the missing bins as
zero.

Human Resources

[166]

Therefore, we use the valueloop() function rather than the class() function
because valueloop() is a list of numbers that have no relationship with the data. We
define the range of valueloop() dynamically with the min() and max() functions
and the bin size is determined by the value of the vEmployeeAgeBinSize variable.
The floor() function helps to round down Employee Age so that we can assign it to
the proper bin. We usually use floor() to round down to the nearest one, but we
can also use it to round down to the nearest five, ten, or thousand.

Finally, we add a second degree polynomial trend line to get a general idea of the
shape of the distributions. As both resemble a normal distribution, this trend line
does give us a general idea of the distribution. We can observe that the Wisconsin
office in general has a greater number of young employees and fewer middle-aged
ones. If the distribution does not resemble a normal distribution, we can try using
trend lines of different degrees or, more simply, enlarge the bin size. Notice how
different the distributions look without the trend lines and with an Employee Age
Bin Size of 5:

Chapter 7

[167]

Salary distribution
The next analysis entails comparing how well each office pays their employees. We
can analyze salary distribution among various groupings, such as office, job function,
age, gender, and performance. In the following exercise, we are going to compare
how each office pays each job function. Along with the option to use a frequency
polygon trellis chart to compare the Salary Distribution by Job Function and Office,
we can also use the following box plot chart:

Exercise 7.4
1. Let's create the following combo chart:

Dimensions Details
Label Value
Employee
Current Job Title

Employee Current Job Title

Employee
Current Office

Employee Current Office

Expressions
Label Value

Human Resources

[168]

Lower Quartile Fractile(
 Aggr(only({$<_Employee_Active_Flag={1}>}
 [Employee Current Salary]),[Employee Current
Office],
 [Employee ID],[Employee Current Job Title])
, 0.5)
-
Fractile(
 Aggr(only({$<_Employee_Active_Flag={1}>}
 [Employee Current Salary]),[Employee Current
Office],
 [Employee ID],[Employee Current Job Title])
, 0.25)

Upper Quartile Fractile(
 Aggr(only({$<_Employee_Active_Flag={1}>}
 [Employee Salary]),[Employee Current Office],
 [Employee ID],[Employee Current Job Title])
, 0.75)
-
Fractile(
 Aggr(only({$<_Employee_Active_Flag={1}>}
 [Employee Salary]),[Employee Current Office],
 [Employee ID],[Employee Current Job Title])
, 0.5)

Dummy
Expression

=0

2. In the Expressions tab, enable the Bar option for every expression and the
Has Error Bars option for Lower Quartile in the Display Options section.

3. Define the following attribute expression for Lower Quartile:

Attribute Expressions
Label Value
Background
Color

if([Employee Current Office]='Iowa'
 ,ARGB(100,178,171,210)
 ,ARGB(100,253,184,99)
)

Bar Offset Fractile(
 Aggr(only({$<_Employee_Active_Flag={1}>}
 [Employee Current Salary]),[Employee Current
Office],
 [Employee ID],[Employee Current Job Title])
, 0.25)

Chapter 7

[169]

Error Below ([Lower Quartile])
-
Min(
 Aggr(only({$<_Employee_Active_Flag={1}>}
 [Employee Current Salary]),[Employee Current
Office],
 [Employee ID],[Employee Current Job Title])
)

Error Above -([Lower Quartile])
+
Max(
 Aggr(only({$<_Employee_Active_Flag={1}>}
 [Employee Current Salary]),[Employee Current
Office],
 [Employee ID],[Employee Current Job Title])
)

4. Define the following attribute expression for Upper Quartile:

Attribute Expressions
Label Value
Background
Color

if([Employee Current Office]='Iowa'
 ,ARGB(200,178,171,210)
 ,ARGB(200,253,184,99)
)

5. In the Error Bars section of the Presentation tab, change Width to Narrow,
Thickness to Medium, and Color to a dark gray.

6. In the Axes tab, define the Static Max with the following code:
Max(
Aggr(only({$<_Employee_Active_Flag={1}>}
[Employee Current Salary]),[Employee Current Office]
,[Employee ID],[Employee Current Job Title])
)*1.1

We could create a simple box plot using Box Plot Wizard in the file menu, Tools;
however, in this case, we are limited to using one dimension. As a workaround,
we use a combo chart with bars and error bars to create a box plot. As a part of this
technique, we have to consider the fact that QlikView will draw the same number of
error bars as there are expressions. As we have three distinct values in the Employee
Current Office field, we add a third, dummy expression that is not visible because
the value is zero. If the second dimension has five distinct values, we create a total of
three dummy expressions.

Human Resources

[170]

Although this trick may seem awkward at first, the chart is not effective when the
second dimension has a large number of distinct values. Therefore, we never expect
to choose one with more than five or so values and it is not much trouble to create
three dummy expressions.

The last adjustment involves the maximum value of the expression axis scale. The
maximum that QlikView automatically calculates is unnecessarily large. So, we
dynamically calculate the maximum plus a ten percent cushion. This makes it easier
to compare the different box plots.

Employee retention rate
As a high-employee turnover can affect a team's productivity, we analyze how
many employees leave each month. We also analyze how many people we hire and
how our team evolves as they accumulate more years of experience. Along with
using histograms, frequency polygons, and box plots to visualize the distribution of
experience, we can also show a summarized distribution over time with a stacked
bar chart.

Chapter 7

[171]

Exercise 7.5
1. Let's create the following bar chart:

Dimensions
Label Value
Year-Month Year-Month
Expressions
Label Value
Dismissals -sum(Dismissal)

3+ Years
Experience

count({$<[Employee Tenure in Months]={">36"}>}
 distinct [Headcount Counter])

2-3 Years
Experience

count({$<[Employee Tenure in Months]={">24<=36"}>}
 distinct [Headcount Counter])

1-2 Years
Experience

count({$<[Employee Tenure in Months]={">12<=24"}>}
 distinct [Headcount Counter])

0-1 Year
Experience

count({$<[Employee Tenure in Months]={">0<=12"}>}
 distinct [Headcount Counter])

New Hires sum(Hiring)

2. In the Style tab, enable the Stacked option in the Subtype section.

This chart is simple to create because much of the work is done in the script. We
create a new row in the fact table for every dismissal and new hire. The Dismissal
and Hiring fields contain the value, 1, so that we only have to sum them up
to discover the total occurrences of each event. Also, every time we add to the
employee payroll event, we calculate how many months have passed since they
started working for the company.

Human Resources

[172]

Employee vacation and sick days
When our employees take too little vacation and too many sick days, this may
indicate an overstressed team who may not be as productive as they could be. We
can analyze these events with a bar or line chart, but if we want to visualize them
on a daily level, it may be more insightful to use a calendar heat map. This heat map
was inspired by Julian Villafuerte's blog post at https://qlikfreak.wordpress.
com/2014/03/09/heat-map/.

Exercise 7.6
1. Let's create the following pivot table chart:

Dimensions
Label Value
Month Month
Week Week
<empty> Year
 <empty> =if(wildmatch(Weekday,'s*','t*')

 ,left(Weekday,2),left(Weekday,1))

Expressions
Label Value
% Absent sum({$<[Absence Type]={'Sick Day','Unexcused'}>}

Absence)
/
(count(Total <Month,Year> distinct [Headcount Counter])
*
max(Total <Month,Year> Day))

https://qlikfreak.wordpress.com/2014/03/09/heat-map/
https://qlikfreak.wordpress.com/2014/03/09/heat-map/

Chapter 7

[173]

2. Pivot this table's dimensions as shown in the following figure:

Human Resources

[174]

3. In the Background Color expression attribute, go through the Colormix
Wizard found in the File menu. Use the same formula in the value
expression as we did in the metric expression.

4. Copy the formula generated by Colormix Wizard and paste it in the Text
Color expression attribute.

5. In the Presentation tab, disable the Allow Pivoting option and enable the
Always Fully Expanded option. Replace the dashes in Null Symbol and
Missing Symbols with spaces.

6. In the Style tab, disable the Vertical Dimension Cell Borders option.
7. Open the Custom Format Cell dialog window and make all backgrounds

and borders white.

Sick days will tend to increase as the team grows; so, instead of basing our heat map
on the actual number of sick days, we calculate sick days as a percentage of the total
number of employee working days. According to the chart, after a lull in sick days
in the beginning of 2015, there seems to have been an increase in the later part of
the year. We can also compare the different offices by adding [Employee Current
Office] as a dimension and placing it above the Year dimension.

Employee training and performance
Our final break down of employee productivity is to analyze our employee training
and the results of this training. We expect employees to have greater success in the
company after they are trained; however, sometimes it is inevitable that they leave
or transfer to another office. Along with analyzing whether employees stay with the
company after training, we also take advantage of the SCD Type 2 in our HR data
model to analyze how often employees transfer or earn promotions after their training.

Chapter 7

[175]

Exercise 7.7
Let's create the following bar chart:

Dimensions
Label Value
Employee Historical
Office

Employee Historical Office

Expressions
Label Value
Dismissal -sum({$<_Employee_Active_Flag={0}>} Training)

Promotion /
Transfer

-count({$<Training={1},_Employee_Active_Flag={1}>}
distinct
 if([Employee Historical Job Title]
 <> [Employee Current Job Title]
 and [Employee Historical Office]
 <> [Employee Current Office]
,[Employee ID]))

Human Resources

[176]

Transfer -count({$<Training={1},_Employee_Active_Flag={1}>}
distinct
 if([Employee Historical Job Title]
 = [Employee Current Job Title]
 and [Employee Historical Office]
 <> [Employee Current Office]
,[Employee ID]))

Active w/o Change sum({$<_Employee_Active_Flag={1}>} Training)
-[Promotion]
+[Promotion / Transfer]
+[Transfer]

Promotion count({$<Training={1},_Employee_Active_Flag={1}>}
distinct
 if([Employee Historical Job Title]
 <> [Employee Current Job Title]
 and [Employee Historical Office]
 = [Employee Current Office]
,[Employee ID]))

The Training={1} set analysis filters the data model, so we only see each employee's
historical job title and office at the time he or she was trained. In this data model, we
constantly update the current job title and office in every employee record so that we
can always compare it with the historical records.

We use an if-statement within the count() function in this example in order to
highlight how to compare fields of different SCD types. If we are dealing with a large
amount of data, then we migrate this if-statement to the script and create a flag in the
data model that indicates which dimension attributes have changed. We can then use
this flag in the expression's set analysis.

In the chart, we observe that both offices suffer from a large number of dismissals
after training employees and employees in the Wisconsin office tend to transfer
when they earn a promotion. This example demonstrates why it is important to
understand how the data model handles slowly changing dimensions and how we
use both SCD Type 1 and SCD Type 2 to create an insightful analysis.

Personal behavior analysis
We collect a huge amount of data about each employee's work habits. Much of
this data is located in log files generated when they connect to company servers or
work on their own computers. A company that excessively uses this information to
evaluate their employee's may be considered intrusive by their employees and the
result may be counterproductive.

Chapter 7

[177]

However, if we train employees in such a way as to form a mutually beneficial
relationship, then we can rely on the employees themselves to analyze and
improve their own productivity. In this case, the responsibility of the company
is to give employees the proper tools to be more effective. One such tool may be
RescueTime (https://www.rescuetime.com/), which helps a person keep track of
which programs and websites he or she uses throughout the day. It also assigns a
productivity score to each activity. For example, facebook.com has the minimum
productivity score of -2, while MS Word scores the maximum score of 2, and MS
Outlook may have a neutral productivity score of 0. The following chart reveals the
productivity of a person's computer activities throughout several days:

https://www.rescuetime.com/

Human Resources

[178]

Exercise 7.8
1. Let's create the following bar chart in 1.Application\Personal_

Performance_Analysis.qvw in the HR_Perspective container:

Dimensions
Label Value
Date Date
Time Time
Expressions
Label Value
<Empty> =1

2. Place the following code in the Background Color expression attribute:
=pick(match(round(
 sum([Time Spent (seconds)]*Productivity)
 /sum([Time Spent (seconds)])),-2,-1,0,1,2)
 ,RGB(215,25,28)
 ,RGB(253,174,97)
 ,RGB(255,255,191)
 ,RGB(171,217,233)
 ,RGB(44,123,182)
)

3. In the Axes tab, enable the Continuous option in the Dimension Axis
section.

4. In the Dimensions tab, click Trellis… and enable the Enable Trellis Chart
option with Number of Columns set to 1.

In this chart, the colors belong to a typical heat map that uses a diverging color
sequence. Red indicates unproductive activity and blue indicates productive activity.
The white space in between indicates that no activity was detected.

Chapter 7

[179]

Summary
This chapter first analyzed the productivity of our personnel. Once we found
an opportunity to improve, we explored what may have made one team more
productive than the rest. We also proposed the idea that employees can use data that
they collect about their own activities to analyze and improve their own personal
productivity.

In the same way that we focus on one employee, it is also useful to create reports that
focus on one customer, product, supplier, or sales person. Let's take a look at how we
can use fact sheets to better execute our day-to-day tasks.

[181]

Fact Sheets
When sales representatives make customer visits, we want to give them the
opportunity to quickly review information about each customer and make every
visit as productive as possible. Our proposal to meet this need is to combine the most
important measures from several perspectives into one customer fact sheet.

In the same way that we create a customer fact sheet, we can also create a product,
an employee, a supplier, or a branch fact sheet. In each fact sheet, we focus on
one master data element and include related facts from multiple perspectives.
For example, in our customer fact sheet, we include information from our sales,
marketing, working capital, and operations perspectives.

Our goal is to discover techniques to best summarize key performance indicators
with numbers, spark lines, and bullet charts. We also aim to allow business users to
create their own dynamic reports in order to answer any new questions that they
may ask.

We will cover the following topics in this chapter as we build a customer fact sheet:

• Consolidated data models
• Agile data visualization design
• Bullet graphs and sparklines
• Customizing the QlikView User Experience

Fact Sheets

[182]

Customer fact sheet consolidated
data model
Fact sheet data models combine facts from various perspectives. The customer fact
sheet data model combines information from our sales, marketing, working capital,
and operations perspectives. However, we don't necessarily include all the facts that
are measured in each perspective. In this example, we store the following events in
our data model's fact table:

• Sales invoices
• Sales credit memos
• Sales budget
• Sales opportunities
• Sales quotes
• Sales activities like customer meetings and service calls
• Month-end A/R invoice balances
• Customer selling cycle

There are two principal ways to combine all of these events into one data model in
QlikView. The first option is to combine all these events into one fact table, while
the second option is to create a link table between various fact tables. The link
table contains existing key combinations of every fact table, and serves as a bridge
between the separate fact tables and a common set of dimensions.

On one hand, the link table creates an additional layer of links in the QlikView data
model that often slows the performance of our analysis and data visualization. On
the other hand, combining all these separate fact tables into one all-inclusive fact
table may drastically increase the application's use of RAM memory if the tables
contain a large number of columns.

For this example, we choose to combine all these fact tables into one table. As this
consolidated table is directly linked to the dimension tables, it is more likely to have
better performance, unless, in the extreme case, it creates an extremely wide fact
table with numerous columns. If performance becomes an issue, we test this fact
table against the option to create a link table.

Chapter 8

[183]

According to Qlik, the recent upgrade of QlikView's Associative Data
Indexing Engine to the second-generation columnar-based QIX engine
in QlikView 12 improves the performance of wide-data tables.

Whether we use one fact table or a link table, we may confront a situation where
the data volume is too much to include each detailed transaction. In this case, we
only add fields and the level of detail that we know that we are going to use. In
our following example, we explore the ideal case of when we can add all customer-
related data at the most detailed level.

We've already used most of this data model's tables in previous perspectives. We
add a few tables called island tables that have no relationship to this data model.
These tables store data that helps us create certain elements of our user experience.
For example, we are going to allow business users to choose the currency and
language of the QlikView application. We also allow business users to choose from a
list of metrics and dimensions in order to create their own reports on the fly:

Fact Sheets

[184]

Dimensions
7Ws Fields Comments
Who Customer This is the central character in this data

model. We first saw Customer in in
Chapter 2, Sales Perspective.

Who Sales Person This plays a supporting role in our
customer fact sheet, but we may later use
this as the central focal point of a Sales
Person fact sheet. We first saw this field in
Chapter 2, Sales Perspective.

When Month, Year

OrderMonth, OrderYear

QuoteMonth, QuoteYear

DeliveryMonth,
DeliveryYear

These make up a common calendar to
know when both transactional facts
and snapshots took place. Although
the calendar also tells us when an event
occurred in an accumulating snapshot,
we've also loaded the separate calendars
of each step. We saw how to handle
multiple calendars in Chapter 6, Operations
Perspective.

What Item This is another dimension that plays a
supporting role in our customer fact sheet,
but which also deserves its own fact sheet.
We first saw Item in Chapter 2, Sales
Perspective.

What _FactType This field is used to help us sift through the
large number of different facts that we've
added to our customer fact sheet.

Metrics
7Ws Fields Comments
How
Much

[Net Sales LC],

[Net Sales USD],

[Gross Profit LC],

[Gross Profit USD],

Quantity

These measure discrete events, such
as invoices, credit memos, and sales
budget, which use the same fields. We
use set analysis with the _FactType, _
ActualFlag, and _BudgetFlag fields to
differentiate the amounts if necessary. We
use different fields for LC (local currency)
and USD (US Dollars) amounts to support
multi-currency analysis.

How
Much

[Customer Activity
Counter]

This is an example of how we measure
other discrete events that are related to
customers, such as activities that we extract
from our CRM system.

Chapter 8

[185]

How
Much

[A/R Invoice Balance
LC],

[A/R Invoice Balance
USD]

These fields measure a recurring event that
is the A/R balance monthly snapshot. We
must take care to never add more than one
month's snapshot.

How
Much

[Quote Quantity],

[Order Quantity],

[Delivery Quantity],

[Invoice Quantity]

This data model includes the same
metrics that were present in the operation
perspective's sales process accumulating
snapshot.

We have to be careful when performing analysis over a data model that mixes
transactional facts with periodic and accumulating snapshots. For example, the
pitfalls that we can avoid here are: while we can sum transactional facts over
various months or years, we cannot sum periodic snapshots over time. The sum of
several months' balances does not serve any analytical purpose. We can prevent any
incorrect summation using set analysis to select the latest month's balance even when
the user selects more than one month.

In the case of the accumulating snapshot, the challenge is to determine which date
we need to use for our analysis. In the customer fact sheet, we expect the user to
select a certain period using fields from the common calendar. In an expression that
requires that we analyze the average time delivery for a certain month, we use set
analysis to clear the common calendar selection and transfer this selection to the
corresponding delivery calendar fields.

In addition to the 7Ws table, we create the following table to clarify how each
event is recorded in the fact table. The manner in which we've classified most of
the facts should be obvious from the way we've used them in their corresponding
perspectives. The one event that is not so clearly defined is a sales opportunity.
In other data models, we may handle the sales opportunities like a traditional
accumulating snapshot that is similar to the sales operations process. However,
in Chapter 4, Marketing Perspective, we recorded each stage in our sales pipeline as
a separate row instead of a separate column. This treatment is similar to that of a
slowly changing dimension, but, instead of a dimension, this is a long-lived event.

Even though each stage is stored by row and not by columns, we treat it the same as
any other accumulating snapshot. For example, we cannot sum the amounts between
different stages; however, we may want to analyze how the amount changes as we
progress through the sales pipeline process:

Fact Sheets

[186]

Facts

Fact Type

Sales Sales
Budget

Activities Sales
Opportunities

Sales
Operational
Process

A/R
Invoice
Balances

Transactional X X X
Periodic
Snapshot

X

Accumulating
Snapshot

X X

Finally, when we mix several events together, as we did for our working capital
perspective, we tend to have a fact table with mixed granularity. We use the
following table to visualize at what level of granularity we can analyze each metric:

Dimensions

Events

Month/Year Date Customer Sale Person Item

Sales X X X X X
Sales Budget X X X X X
Activities X X X X
Sales Opportunities X X X X
Sales Operational
Process

X X X X X

A/R Invoice Balances X X

In our example data model, the A/R Invoice Balances event is the least detailed and
cannot be viewed by the Date, Sales Person, or Item filters. Also, we cannot analyze
events, such as activities and sales opportunities by Item.

Now that we've reviewed our customer fact sheet data model, let's design how we
want to visualize our customer fact sheet.

Customer Fact sheet Agile design
We aim to involve our business users from the beginning of the customer fact sheet
design. As a non-technical, collaborative process, we use Agile project tools, such as
Post-It notes and a whiteboard to begin the design process. We begin by writing user
stories that we think would be important to include in the fact sheet on Post-It notes.

Chapter 8

[187]

Creating user stories
The user epic we want to solve with our customer fact sheet is as follows:

As a sales representative, I need an easy way visualize all the
information related to a customer and its relationship to the business
so that I can plan more productive customer calls and meetings.

This user epic then gets broken down into the following user stories that we can
eventually translate into a type of data visualization:

• As a sales representative, I need to compare this year's accumulated sales
against last year's sales so that I can detect changes to our customers' buying
habits

• As a sales representative, I need to compare this year's accumulated sales
against the budget so that I can detect whether I'm going to reach the
company's objective

• As a sales representative, I need to know of any outstanding payment that
is owed to the company so that I can remind the customer and identify the
cause

• As a sales representative, I need to know a customer's available credit and
payment performance so that I can be prepared if they ask for more credit

• As a sales representative, I need to know a customer's open opportunities
and quotations so that I focus on their closing

• As a sales representative, I need to benchmark this customer against others
so that I can identify opportunities to negotiate better terms

• As a sales representative, I need to know how well we have delivered our
products or services and of any recent service complaints so that I can be
prepared to address such issues

• As a sales representative, I need to know how much a customer is expected
to purchase so that I can foresee any abnormal behavior

• As a sales representative, I need to know what products I can recommend to
a customer so that I can increase sales

• As a sales representative, I need to be able to create my own visualizations so
that I can easily answer any ad-lib questions

Fact Sheets

[188]

User story flow
After we've written out the user stories, let's include a shorter version of each of them
on a Post-it note and begin to arrange how we want to organize them in a customer
fact sheet. Let's group related user stories together before determining what data
visualization satisfies their requirements.

Customer Fact Sheet

YTD sales
vs

LYTD sales

YTD Sales
vs

YTD Budget

Open Opportunities

Open Quotes

Expected Future
Purchases

Market trends

Cross-selling

Profitability

Service Compliants

DSOCustomer Benchmark

% Perfect Deliveries

Total A/R Balance

Overdue A/R Balance

Available Credit

We create a scenario where a sales representative opens the customer fact sheet and
reviews the first group of sales-related indicators. They first compare the current
status of the YTD sales against last year's sales and the budget. The next information
that they review is what is going to fuel the growth in these numbers in the short-
term. This data can be found in open sales quotes and opportunities, in addition to
the customer's available credit to close these new sales. The final sales indicators
predict future sales and make suggestions to sell products that the customer has yet
to purchase. We call this last concept cross-selling and recommend products based on
what similar customers are purchasing.

Chapter 8

[189]

After reviewing sales, the sales representative reviews post-sales activities that could
affect future sales. The first indicator is the customer's A/R Balance and how much
of it is overdue. They also analyze how well we as a company have delivered our
products and whether there have been any service complaints.

Now that we have a general overview of our customer, we compare it with other
customers using the customer stratification method that we've developed as a
benchmarking method. We look closely at their profitability and DSO to give us a
better idea how we should negotiate pricing and credit terms. Customer stratification
also indicates with what priority we should follow up on all the previous indicators.

Converting user stories into visualizations
Once we've logically grouped our user stories and understood how they are
interconnected, we convert each element of the story into a visualization. Just like
the previous exercise, we design our customer fact sheet in a non-technical and
highly collaborative way.

It is quite easy to create an application in QlikView, but it isn't as easy or as inclusive
as using Post-it notes and a whiteboard. Although we can begin to design many
applications directly in QlikView or develop visualizations in real time in front of the
business users, we prefer a non-technical first approach for the following reasons:

• If business users actively participate in an application's design, then they
will make it their own at an early stage and avoid asking for frivolous
changes later.

• If we design a QlikView application in the presence of the business user, we
risk getting hung up by a complex formula or data visualization. Nobody,
especially a busy user, likes to wait ten minutes while someone is trying to
figure out why their expression doesn't work properly.

• We break the habit of receiving asynchronous feedback about our designs,
which can be less productive and create a discouraging 'us against them'
attitude.

• We can use this collaborative design as part of our project documentation.
A picture of the design may be worth a thousand or more words.

Today's collaborative technology still involves looking at our computer screens
more than looking at our peers and, as such, we still do not have the same
communication fidelity as a face-to-face activity. While video conference calls and
virtual whiteboards may be the best solution for remote teams, it is otherwise better
for everyone to gather around a real whiteboard with dry erase markers and Post-it
notes.

Fact Sheets

[190]

The following figure shows the layout of our customer fact sheet. As many data-
analysis applications use the same set of visualizations, we can save time and
paper by breaking down the visual components into smaller, reusable parts. For
example, we can reuse the sparklines, bullet charts, tables, monetary numbers, and
percentages for other collaborative design exercises.

Open Quotes

vs. Budget

$ xxxxx

vs. LY

$ xxxxx

vs. Credit

Cross-selling

$ xxxxx

xxxxx

xxxxx

Post-sale

Benchmark

xx %

xx %

xx %

Service Compliants

% Perfect
Deliveries

Overdue A/R
Balance

ABC

ABC

ABC

Profitability

DSO

Customer
Stratification

Customer Fact Sheet

Future Sales

Recent Results

$ xxxxx

Actual Sales

$ xxxxx

Open Opportunities

Expected Sales

Dynamic Chart

$ xxxxx

$ xxxxx

Let's organize our fact sheet in the same way that we broke down the user stories.
We start at the upper, left-hand side of the sheet and review the customer's recent
sales activity. We propose to use the actual monetary amounts, a sparkline, and
two bullet charts to show actual sales and compare it with last year's sales and
the budget. The next section reveals possible future sales from opportunities and
quotes along with these amounts in comparison with the customer's credit limit.
We also add a line chart to evaluate expected customer behavior and cross-selling
recommendations that may improve sales. We end the main section of the fact sheet
with a dynamic chart that the sales representatives can use to do their own visual
ad-hoc analysis.

On the upper, right-hand side of the sheet, we include visualizations that fulfill the
user story requirements that are related to post-sales activities. We propose using
actual and relative numbers along with sparklines to represent the customer's
overdue A/R Balance, % perfect deliveries, and the number of service complaints.

Chapter 8

[191]

Finally, we end the fact sheet by benchmarking our customer using the customer
stratification method that we developed in previous perspectives. Along with a
general rating, we also include details about profitably and DSO.

This design does a great job of introducing each concept and fulfills the basic
requirements of each user story. However, we often cannot fulfill an entire user story
requirement with only one visualization.

Going beyond the first visualization
At first glance, the customer fact sheet should pique user curiosity and beg them to
investigate each concept in greater detail. We can, of course, create a sheet that is
dedicated to each section, but, many times, the user has a quick question that they
want answered in one click without changing their context.

Alongside the general layout of the customer fact sheet, we include a second level
of more detailed visualizations that users can access with one click. The following
figure illustrates how we extend the original design to show how we want to display
and visualize the details of several metrics.

Open Quotes

vs. Budget

$ xxxxx

vs. LY

$ xxxxx $ xxxxx

vs. Credit

Cross-selling

$ xxxxx

xxxxx

xxxxx

Post-sale

Benchmark

xx %

xx %

xx %

Service Compliants

% Perfect
Deliveries

Overdue A/R
Balance

ABC

ABC

ABC

Profitability

DSO

Customer
Stratification

Customer Fact Sheet

Future Sales

Recent Results

$ xxxxx

Actual Sales

$ xxxxx

Open Opportunities

Expected Sales

Dynamic Chart

Details

Details

Details

Details

Act/LY/Bud

Historical

Historical

Historical

Item Item

$ xxxxx

Fact Sheets

[192]

Together with the user, we choose the appropriate visualization for each concept.
We also plan to take advantage of Fast Change and Cyclical Dimensions to make them
more dynamic. If a user has more questions that can't be answered will these two
levels of visualization, then we can give them the opportunity to navigate to a sheet.

Customer Fact sheet advanced
components
Now that we've discussed the business story behind the customer fact sheet, let's
review the different visualizations that compose it. We aim to create this perspective
in the most precise way possible, so each one of the Post-it notes in our design will be
separate objects. The labels and the numbers will be text objects that we align using
the design grid tool that we introduced in Chapter 2, Sales Perspective.

In the next sections, we will review the following, more advanced components:

• Bullet graphs
• Sparklines

Bullet graph
The bullet chart was invented by Stephen Few to replace the bloated gauge chart in
an information dashboard. Its compact design allows us to insert more information
into a single view. The following bullet graph definition is from Mr. Few's website
(https://www.perceptualedge.com/articles/misc/Bullet_Graph_Design_
Spec.pdf) and you can read more about their use in his book Information Dashboard
Design:

https://www.perceptualedge.com/articles/misc/Bullet_Graph_Design_Spec.pdf
https://www.perceptualedge.com/articles/misc/Bullet_Graph_Design_Spec.pdf

Chapter 8

[193]

We can find an excellent, easy-to-use bullet graph made by Stefan Walther in Qlik
Branch (http://branch.qlik.com/#/project/56728f52d1e497241ae6980a).
 There are also a few means to create a bullet graph using native QlikView objects.
Let's explore one way that uses a single object. Before beginning the exercise,
let's import this chapter's exercise files into the QDF as we did in Chapter 2, Sales
Perspective. The following bullet chart compares actual sales YTD against the budget
YTD:

Exercise 8.1
In 1.Application\CustomerFactSheet_Sandbox.qvw, let's create the following
combo chart:

Dimensions
Label Value
<Empty> ='Actual Sales vs. Budget YTD'
Expressions
Label Value
0-70% .7 * 1
70-90% .2 * 1
90-110% .2 * 1

1. In the Expressions tab, define each expression as a Bar in the Display
Options section. Select the first expression and enable the Has Error Bars
option in the Display Options section.

2. Define the following attribute expressions for 0-70%:

Attribute Expressions
Label Value
Error Above (-.7 * 1) + 1
Error Below (.7 * 1) - 1

http://branch.qlik.com/#/project/56728f52d1e497241ae6980a

Fact Sheets

[194]

The Error Below formula can be confusing because the result is subtracted
from the top of the bar in order to calculate the beginning of the error line.
For example, if Error Below were .1, then the error line would start .1 below
the top of the bar and, if it were -.1, then the line would start .1 above
the top of the bar. Therefore, we first add the bar expression (.7) and then
subtract 1 so that the result (-.3) will cause the error line to begin .3 above
the bar. The Error Above calculation results in .3 so the error line also ends
.3 above the bar. When the Error Below and Error Above are the same, then
a line is drawn across the width of the bar.

3. In the Style tab, enable the Stacked option in the Subtype section and select
the horizontal bars in the Orientation section.

4. In the Presentation tab, change the Width and Thickness to Medium in the
Error Bars section.

The next series of steps involves a trick to create a Stock expression. Stephen
Redmond explained how to add a Stock expression in his book, QlikView for
Developers Cookbook. Before we begin, click OK to close the Chart Properties window
and open it again.

1. In the Expressions tab, add a new expression and enter 0 into the Edit
Expression window. Disable the Line option and enable the Stock option in
the Display Options section.

2. Click OK to close the Chart Properties window and open it again.
3. Define the following attribute expressions for a new stock expression:

Attribute Expressions
Label Value
Stock High sum({$<$(vSetYTDModifier),_ActualFlag={1}>}

 [Net Sales USD])
/
sum({$<$(vSetYTDModifier),_BudgetFlag={1}>}
 [Net Sales USD])

Stock Low 0

The only fault in this native, one-object bullet graph is the inability to change
the width of the line that encodes the performance measurements. We
increase the chart's readability by organizing the chart's Color tab so that the
qualitative ranges are very light and the stock line is black.

Chapter 8

[195]

The advantage of a one-object bullet graph is that we can easily modify it into a
series of bullet graphs that are based on absolute values. The following chart allows
us to compare how our sales are performing against the budget in both relative and
absolute terms by item. We can easily create this by using the result of the previous
exercise.

Exercise 8.2
The following exercise tells you how to recreate the chart using the result of the
previous exercise:

1. Clone the chart from the previous exercise and replace the calculated
dimension with Item.

2. Replace 1 in every expression, including the Error Below and Error Above
attribute expressions, with the following code:
sum({$<$(vSetYTDModifier),_BudgetFlag={1}>}
 [Net Sales USD])

3. Change the Stock High attribute expression to the following expression:

sum({$<$(vSetYTDModifier),_ActualFlag={1}>}
 [Net Sales USD])

Fact Sheets

[196]

We now have an excellent alternative to using an extension or overlaying two charts
when we create a bullet graph in QlikView. We place the single bullet graphs in the
customer fact sheet and open the more detailed ones when the user clicks on that
performance indicator. Next, let's review how to create sparklines for our fact sheet.

Sparklines
Sparklines are small, high-resolution graphs that allow users to understand the
general trend of a performance indicator. A sparkline can be a line, a bar, or a win/
loss chart, and they are drawn without any axes. We can easily create sparklines in a
QlikView table using the Mini Chart Representation in the Display Options section.
However, we may occasionally want to create a sparkline from a more customizable
QlikView chart object.

In the following sparkline, we can review the percentage of deliveries that were OTIF
over the last twelve months. Along with observing the performance indicator's trend,
we can also appreciate how often the percentage of perfect deliveries fell below two
different ranges. The top, dark-colored range is our preferred target, while the next
light-colored range is our minimally acceptable range. Any point below these ranges
is unacceptable.

Exercise 8.3
Let's create the following combo chart:

Dimensions
Label Value
Delivery Year-
Month

DeliveryYear-Month

Expressions
Label Value

Chapter 8

[197]

OTIF sum({$<$(vSetRolling12Modifier)
 ,_FactType={'Sales Process'}
 ,[Delivery First Step]={'No'}>}
 if([Delivery Document Date]<=[Order Due Date]
 and [Order Quantity]
 =rangesum([Delivery Quantity]
 ,-[Return Quantity])
 ,1)
)
/
count({$<$(vSetRolling12Modifier)
 ,_FactType={'Sales Process'}
 ,[Delivery First Step]={'No'}>}
 DISTINCT [Delivery Line No.])
-1

90-100% -.1

80-90% -.1

1. In the Expressions tab, define OTIF as line and the other two expressions as
a Bar in the Display Options section.

2. Insert '<w.5>' into the Line Style attribute expression for OTIF.
3. In the Style tab, enable the Stacked option in the Subtype.
4. In the Presentation tab, set the Bar Distance and Cluster Distance to 0 in the

Bar Settings section.
5. In the Presentation tab, disable the Suppress Zero-Values option.
6. In the Axes tab, select the expression OTIF and disable the option, Forced 0.
7. Finally adjust the colors and hide all elements other than the lines and the

background created by the bars.

We may also add context to the primary sparkline by adding a second sparkline
within the same two-dimensional space. We must be careful to give users more data
without distracting their attention from the main information. We do this by making
the second line lighter and transparent so that it will never overlap the first. In the
following example, we compare this year's actual sales with last year's sales in the
same sparkline:

Fact Sheets

[198]

Customizing the QlikView User
Experience
Much of the QlikView User Experience (UX) is customizable. For example, we
can develop ways to guide users through a well-defined series of reports or give
them the power to create their own reports. We can also allow them to change the
interface's language or the currency. In this section, we will create the following UX
components:

• Quick access to supplementary information
• Dynamic data visualization
• Regional settings

Quick access to supplementary information
When users notice something interesting in concise visualizations such as numbers,
sparklines, and bullet graphs, they often want to take a glance at the details that
compose it. For example, in our customer fact sheet, we want to quickly analyze the
detail behind the high-level comparison between actual and budget sales. During the
design stage we chose to open a detailed comparison by item when the user clicks on
vs. Budget, as shown in the following figure:

Chapter 8

[199]

Exercise 8.4
Let's create the following variable:

Variable
Label Value
vCustomerFactSheetPopUp None

1. Adjust the position of the detailed bullet graph that we created in
exercise 8.2.

2. In the Layout tab of the chart's properties, enable Custom in the Layer
section and set it to 3.

3. Also in the Layout tab, enable the Conditional option in the Show section
and enter the following code in the expression field:
=vCustomerFactSheetPopUp='BudgetDetail'

4. Create an empty text object that spans the whole fact sheet.
5. In the General tab of the text object change the background color to a

transparent gray.
6. In the Layout tab, enable Custom in the Layer section and set it to 2.
7. Also in the Layout tab, enable the Conditional option in the Show section

and enter the following code in the expression field:
=vCustomerFactSheetPopUp<>'None'

8. In the Actions tab, create a Set Variable action with the following values:

Action
Label Value
Variable vCustomerFactSheetPopUp

Value None

9. Create a text object that contains the following text:
Vs. Budget

10. In the Actions tab, create a Set Variable action with the following values:

Action
Label Value
Variable vCustomerFactSheetPopUp

Value BudgetDetail

Fact Sheets

[200]

If everything works correctly, then the detailed bullet graph will appear in front of a
transparent, gray background. When we want to close the detail and go back to the
general view of our customer fact sheet, we click on the grayed-out background. We
could also create a Close button, but it is now common UX practice to close a pop-up
window by clicking anywhere else on the screen.

As only one pop-up window will appear at any one time, we use one variable to
determine which popup is displayed. One variable is obviously easier to maintain
than having one for each corresponding popup. However, if we want to give the
users the ability to open as many detailed charts as they like, then we would have to
create a control variable for each popup.

Dynamic data visualization
It is relatively easy to create a dynamic straight table or pivot table in QlikView and
we can find examples in various demos to imitate. However, it can be a challenge
to create a simple way for users to make their own attractive graphic charts in a
server environment. Qlik Sense is the ultimate tool for users who want to create their
own charts and stories, but we can also give users the power to build insightful,
ad-hoc data visualization in QlikView. The following chart was created using a few
variables that users can readily modify in a server environment:

Chapter 8

[201]

Exercise 8.5
Let's create the following variables:

Variables
Label Value
vNumDimensions 1

vChartTitle Please add the chart's title here.
vSortMetric =pick(match('|' & GetFieldSelections

(_SortMetric,'|') & '|'
, '|Net Sales|' , '|Gross Profit|'
, '|Volume|')

,'sum({$<_ActualFlag={1}>}
 [Net Sales USD])'
,'sum({$<_ActualFlag={1}>}
 [Gross Profit USD])'
,'sum({$<_ActualFlag={1}>} [Quantity])')

vColorMetric =pick(match('|' & GetFieldSelections
(_ColorMetric,'|') & '|'
, '|Net Sales|' , '|Gross Profit|'
, '|Volume|')

,'sum({$<_ActualFlag={1}>}
 [Net Sales USD])'
,'sum({$<_ActualFlag={1}>}
 [Gross Profit USD])'
,'sum({$<_ActualFlag={1}>} [Quantity])'

)

vAscDsc Dsc

vAscDscNum =if(vAscDsc='Asc',1,-1)

vColorScheme Diverging

vNumDimensionValues 10

1. Add vChartTitle, vNumDimensions, vNumDimensionValues, vAscDsc, and
vColorScheme to an Input Box.

Fact Sheets

[202]

2. In the Constraints tab, set the Input Constraints for vNumDimensions,
vAscDsc, and vColorScheme to Predefined Values Only and disable the
Enable Edit Expression Dialog option. For the same variables, select the
Value List as Predefined Values in Drop-down and enable Listed Values
in the Predefined Values section. The list values should be the following for
each variable:

Variables
Label Listed Values
vNumDimensions 0;1;2;3

vAscDsc Asc;Dsc

vColorScheme Diverging;Sequential

3. Create four list boxes for the _Metric_LeftAxis, _Metric_RightAxis,
_ColorMetric, and _SortMetric fields and insert them in a container.

4. Create a bar chart with the following dimensions and metrics:

Dimensions
Label Value
Dimension 1 A cyclical dimension with the following fields:

Billing State
Customer
Item
Sales Person
Year
Month

Dimension 2 A cyclical dimension with the same fields as Dimension 1
Dimension 3 A cyclical dimension with the same fields as Dimension 2
Expressions
Label Value
Net Sales sum({$<_ActualFlag={1}>} [Net Sales USD])

Gross Profit sum({$<_ActualFlag={1}>} [Gross Profit USD])

Volume sum({$<_ActualFlag={1}>} Quantity)

5. In the General tab, enable all the Fast Type Change options except Gauge
Chart.

Chapter 8

[203]

6. In the Dimensions tab, tick the Enable Conditional option for all dimensions
and place the following values for each of them:

Dimensions
Label Value
Dimension 1 vNumDimensions>=1

Dimension 2 vNumDimensions>=2

Dimension 3 vNumDimensions=3

7. In the Expressions tab, tick the Conditional option for all expressions and
place the following values for each of them:

Expressions
Label Value
Net Sales SubStringCount(

'|' & GetFieldSelections(_Metric_LeftAxis,'|') & '|'
, '|Net Sales|')

Gross Profit SubStringCount(
'|' & GetFieldSelections(_Metric_LeftAxis,'|') & '|'
, '|Gross Profit|')

Volume SubStringCount(
'|' & GetFieldSelections(_Metric_LeftAxis,'|') & '|'
, '|Volume|')

8. In the Background Color attribute expression run the Color Mix Wizard
twice using the expression, $(vColorMetric). In the first run-through select
a sequential color scheme from light blue (247, 251, 255) to dark blue
(8, 48, 107). In the second run-through select a diverging color scheme
from dark red (178, 24, 43) to dark blue (33, 102, 172) passing
through a light gray (247, 247, 247) at 0. Place the resulting color mix
functions into the following if-statement:
if(vColorScheme = 'Diverging'
,ColorMix2 (…)
,ColorMix1 (…)
)

Use the same code for the background color of every expression.

9. Copy and paste a duplicate of each expression so that there is a total of six
expressions. In the duplicate expression replace _Metric_LeftAxis in the
Conditional expression with _Metric_RightAxis.

Fact Sheets

[204]

10. In the Sort tab, tick the Override Group Sort Order option and then tick the
Expression option and insert the following code in the expression field:
=$(vSortMetric)*vAscDscNum

Repeat the same steps for every dimension.

11. In the Presentation tab, tick the Enable X-Axis Scrollbar option and insert
the following code in the expression field:
=vNumDimensionValues

12. In the Axes tab, select the duplicate copy of each expression and enable Right
(Top) in the Position section:

13. In the Numbers tab, adjust each expression's number format and symbols,
appropriately:

The user now has a way to create custom visualizations using only a few variables.
We can continue to create more variables to control the property options defined by
an expression field or preconfigure certain properties that can only be modified in
the properties windows. However, the result of the previous exercise allows users to
create the best possible charts using the fewest variables.

The cyclical dimensions are also more user friendly as they are located next to their
axis or legend. We create three of them because graphs may use a maximum of three
dimensions. Each should be sorted each dimension alphabetically or numerically
by default, but we can easily select an expression by which to sort them in either
ascending or descending order. We've also added a variable to limit the number of
dimension values as there are often more than those that can fit in a graph at
one time.

The metrics are divided by left and right axis as it is common practice to visualize
two metrics that do not share the same scale. We also include the ability to add a heat
map to the custom visualization to make them more insightful. The heat map can
either be sequential, if the metric can only be positive, or it can be diverging if the
metric can also be negative.

Although it seems like we use few variables in comparison to the hundreds
that exist in the chart properties windows, the users can create a wide variety of
different visualizations. Users who want the ability to create even more personalized
charts should start working with Qlik Sense, which we will review in Chapter 11,
Mastering Qlik Sense Data Visualization.

Chapter 8

[205]

Regional settings
Currency, language, date formats, commas, and decimals can change depending on
the region and users often become more engaged in the data discovery process when
the effort has been made to respect their regional preferences. Some options, such as
currency, are best left to the user to select, while others, such as date formats, should
be automatic.

Currency
Contrary to what we may think, the currency used to analyze data does not depend
on a user's country. Although some analysis may be done using the local currency, it
is common to analyze data using one of the reserve currencies, such as the US dollar
or the Euro. For this reason, we often add a currency filter to the user interface.

The values of the currency field correspond to the names given to the monetary
amount fields in the data model, such as [Net Sales LC] and [Net Sales USD].
In this way, we can easily make our application multicurrency using the following
code:

sum({$<_ActualFlag={1}>} [Net Sales $(=Currency)])

Language
In a similar way to how we make our application multicurrency, we also make it
multilingual. We create a table with one field called Language that contains values
that correspond to the field names in another table that contain the texts belonging to
each language:

Fact Sheets

[206]

Then, in every multilingual label, we use the following code to calculate a label. We
use a descriptive ID, like Sales, for our labels so that we can identify expressions
and objects without having to manually look up numerical IDs in a table:

=only({$<LabelID={'Sales'}>} $(=Language))

Along with the labels, we also choose which descriptive field to use for list boxes
and dimensions. For example, we have two fields in our Customer table that
describes customer groups. [Customer Group ENG] contains English descriptions
and [Customer Group ESP] contains Spanish descriptions. We use the following
code as an expression in our list box or as a calculated dimension:

=[Customer Group $(=Language)]

Although we give the user the option to select any language, the application should
open in the user's preferred language. One way to do this is to distribute a copy of
the QlikView file with

the language prefiltered by the QlikView Publisher. Another way is to use section
access to reduce a field that we use to select the preferred language upon opening
the QlikView document.

Date and number formats
Date and number formats depend on the country and it should be automatically
selected when opening the QlikView document. We use a set of variables that return
the preferred formats based on a user's region along with the formatting functions,
num() and date() in order to dynamically format the data.

We can define a user's region using Section Access. The following code is an example
of how the dynamically formatted expressions will look:

date([Date],$(vRegional_DateFormat))
num(sum(Quantity),$(vRegional_NumberFormat_FixedDecimal)
 ,$(vRegional_Decimal),$(vRegional_Thousand))

Customer Fact sheet n QlikView
In the following figure, we bring together text objects, bullet graphs, sparklines,
and the dynamic chart to create the customer fact sheet that we designed using
Post-it notes and a whiteboard:

Chapter 8

[207]

Create the pending expected sales chart in the next chapter and review the cross-
selling chart extensions in Chapter 11, Mastering Qlik Sense Data Visualization.

Summary
Like the customer fact sheet, we can also create item, project, sales representative, or
supplier fact sheets. In the next chapter, we will use many of the same visualizations
to build a dashboard based on the balanced scorecard methodology. We will also use
a more formal design process to help us organize our business strategy and reveal
the results of our initiatives.

[209]

Balanced Scorecard
Over the course of this book, we learned how to analyze business data through
various perspectives. We started with the sales perspective and then went on to
develop visualizations for financial, marketing, working capital, operations, and
human resources perspectives. Then we brought several perspectives together in a
fact sheet that analyzed a customer through a sales representative's point of view.

Our next step is to unite the most pertinent perspectives and analyze the business as
a whole from a business owner's point of view. This result is often referred to as the
company's information dashboard. Stephen Few was the first person to investigate
the real purpose of the information dashboard in his book, Information Dashboard
Design, and he defines dashboards as follows:

A dashboard is a visual display of the most important information needed to
achieve one or more objectives, consolidated and arranged on a single screen so the
information can be monitored at a glance.

We often design an information dashboard using the same freestyle process that
we applied to create our customer fact sheet. However, we can also use a more
disciplined approach such as a Balanced Scorecard (BSC) to unite the business's
various perspectives into one consolidated viewpoint. This popular method was
first developed by Robert S. Kaplan and David P. Norton to both drive and manage
company strategy.

In this chapter, we will create an information dashboard that is based on the
Balanced Scorecard method. We will cover the following topics in this chapter:

• The Balanced Scorecard method
• The Balanced Scorecard data model
• The Balanced Scorecard information dashboard design
• Additional QlikView UX customization
• Measuring process change with an XmR chart

Balanced Scorecard

[210]

The Balanced Scorecard method
The BSC method focuses on the following four perspectives:

• Financial
• Customer
• Internal business process
• Learning and growth

In each perspective, an organization should define a series of objectives,
measurements, targets, and initiatives that help align its activities with its
vision and strategy.

Source: Robert S. Kaplan and David P. Norton, "Using the Balanced Scorecard as a Strategic Management
System," Harvard Business Review (January-February 1996):76

Chapter 9

[211]

The financial perspective is the traditional way to measure an organization, but these
measurements tend to tell us more about past events rather than future ones. In
other words, the financial perspective uses lagging rather than leading performance
indicators. For example, in the financial perspective, sales revenue is a lagging
performance indicator that measures the results of a business's past efforts to market,
sell, and deliver its products and services. The BSC method helps us to drive and
foresee future sales revenue by using leading performance indicators, or we need
to use performance drivers, that measure new customer acquisition, customer
satisfaction, new product development, and employee retention.

An organization's performance indicators depend on its strategy to accomplish
what it envisions as a successful business. The BSC method teaches us how to
create a Strategy Map through the financial, customer, internal business process,
and learning and growth perspectives. This Strategy Map communicates a series of
objectives and the cause-and-effect relationships between them.

In our example, our vision of success is to increase the size of our business; therefore,
our principal financial objective is to increase revenue. Our strategy to accomplish
this is to increase customer retention and customer product mix. We've created the
following Strategy Map that breaks down the strategy into objectives that are based
on the four BSC perspectives:

Balanced Scorecard

[212]

In the following sections, we will review what performance indicators we will use to
measure the success of our objectives in each perspective.

The financial perspective
Our financial objective is to increase revenue, so our first financial performance
indicator will be revenue growth. We define growth based on Year-over-Year (YOY)
monthly and Year-to-Date (YTD) growth. We look at growth in terms of monetary
amounts and percentages, as both ways can be insightful. Also, given that our
strategy involves customer product mix and customer retention, we decide to detail
revenue growth by product line and to measure the percentage of revenue that
comes from existing customers.

Strategic objective Strategic measurement
Increase Revenue • YOY revenue growth

• YOY revenue growth of existing
customer by product line

• Percentage revenue from existing
customers

The next step is to review how to measure the customer objectives that are part of
our strategy to increase revenue.

The customer perspective
Our customer objectives are to increase customer retention and customer product
mix. We measure our customer retention using the customer churn rate or the
percentage of customers lost. We are not a business that sells products through a
subscription, so we consider a customer as lost if they haven't purchased anything in
the last twelve months.

We measure customer product mix by evaluating the average number of product
lines that a customer purchases during a given period of time. The exact time
period that we use often depends on the type of industry our customers belong to
and their buying rhythm. In order to simplify this example, we will use the same
time period as we do for the customer churn rate; that is, twelve months. In more
complex scenarios, we can use analysis techniques, such as a t-test, to evaluate each
customer's purchasing rhythm like we did in Chapter 2, Sales Perspective.

Chapter 9

[213]

We use YOY comparisons on a monthly and YTD basis for both indicators, which is
consistent with the financial indicators:

Strategic objective Strategic measurement
Increase customer retention YOY change in customer churn rate.
Increase customer product mix YOY change in average product lines

purchased by the customer.

The next step is to review how to measure the internal business process objectives
that we will use to drive an increase in customer retention and customer product mix.

The internal business process perspective
In a similar way to how supermarkets grew by providing one place to purchase
many products, our plan is to promote cross-selling in order to increase customer
product mix and customer retention. Cross-selling is simply the act of selling an
additional product or service to a customer. However, it can be a powerful way to
increase customer satisfaction and retention.

In the customer perspective, we measure the result of our efforts to increase cross-
selling using the indicator average product lines per customer. However, in this
perspective, we aim to use an indicator that focuses on the sales representatives'
efforts to promote cross-selling independent of customer actions.

When we first explained lagging indicators, we referred to financial indicators
as lagging and every other indicator as leading. In reality, the terms leading and
lagging are relative. Therefore, a measurement such as average product lines per
customer can be a leading indicator for future revenue growth, but it can also be a
lagging indicator of increased cross-selling. We use another measurement such as the
number of cross-selling quotations as the leading indicator of average product lines
per customer and a confirmation of sales representatives' efforts to promote
cross-selling.

Strategic objective Strategic measurement
Increase cross-selling YOY changes in the number of sales quotations

with products lines not purchased by customers.

The next step is to review the learning and growth objectives that will enable sales
representatives' to be able to promote cross-selling.

Balanced Scorecard

[214]

The learning and growth perspective
Human talent is often what determines the overall success of our strategies. The
investment in employees' knowledge and growth is what drives all the objectives in
every other perspective. In our example, we are going to give sales representatives
product knowledge training and tools that suggest cross-selling opportunities that
they may, otherwise, not recognize.

We measure an increase in product knowledge by evaluating the number of
employees that attend each training session this year as compared to the last year.
We also evaluate the effectiveness of the training and their behavior outside the
classroom by analyzing their usage of the cross-selling analysis tool:

Strategic objective Strategic measurement
Increase product knowledge YOY change in number of employees who attended

product knowledge training sessions.
Average number of days that the sales
representatives use the cross-selling analysis tool.

Now that we've defined the strategic measurements that we are going to use to
evaluate the strategic objectives in our BSC, we will review the necessary data model
and its supporting information dashboard.

The Balanced Scorecard consolidated
data model
Similarly to the fact sheet data model, the BSC data model combines facts from
various perspectives. In accordance with the strategic measures that we defined
in the previous section, the BSC data model combines information from our sales,
marketing, and human resources perspectives. To be specific, we store the following
events in our data model's fact table:

• Sales invoices
• Sales credit memos
• Sales quotes
• Employee training
• Employee QlikView usage

Chapter 9

[215]

The last event is related to the personal behavior analysis that we performed in the
human resources perspective in Chapter 7, Human Resources. However, instead of
using a data log from RescueTime, we will use QlikView's own session and audit
logs to evaluate how employees' use QlikView's applications.

It is also common to add events from the financial, working capital, and operations
perspectives. In this example, as we are only measuring revenue in the financial
perspective of the BSC, we use the more detailed sales perspective to calculate
revenue growth. As this model has the potential to become quite large, we leave the
other perspectives out until a new strategic measurement requires their inclusion.

Unlike the customer fact table data model, this one only contains discrete events;
therefore, it is far simpler. We only use one calendar table that describes the exact
date when each event occurs. The rest of the dimension tables include descriptive
information about sales representatives, items, and customers.

Balanced Scorecard

[216]

As company information dashboards may be used to communicate strategy to the
whole company and also to external stakeholders, we include the same regional
settings island tables. We also include the option to create dynamic visualizations as
we did in the customer fact table. Let's sum up our data model using the 7Ws table:

Dimensions
7Ws Fields Comments
Who Customer We first saw Customer Chapter 2, Sales

Perspective.
Who Sales Person We first saw Sales Person in Chapter 2, Sales

Perspective.
When Month, Year We use only one common calendar, as all events

are discrete. In the case that we have to manage
accumulating snapshots and periodic snapshots
in one data model, we use the customer fact table
data model as an example.

What Item We first saw Item in Chapter 2, Sales Perspective.
What _FactType Like the customer fact sheet data model, we

use this field to help us distinguish between the
different events in a single fact table.

Metrics
7Ws Fields Comments
How
Much

[Net Sales LC],

[Net Sales USD],

[Net Sales Quotes
LC],

[Net Sales Quotes
USD],

Although the sales quotation and sales invoice
share many of the same concepts, we've elected to
create a separate set of fields for each document.
While this risks creating an extremely wide table,
it makes for simpler metric expressions that don't
necessarily require set analysis.

How
Much

[Headcount
Counter]

We count the number of employees that have
been in training with this field.

How
Much

[QV Session
Counter]

We count the number of times an employee has
used QlikView with this field.

Chapter 9

[217]

When we create a data model containing multiple perspectives, we take care to only
add data that is necessary to calculate the required measurements. This is ultimately
the best way to optimize the QlikView data model. Column-wise, we remove fields
that are not used as a dimension, expression, or filter. Row-wise, we filter data that
is not pertinent to the analysis. For example, we eliminate many of the fields that we
created for our sales perspective, such as [Gross Sales USD] and [Cost USD]. We
also reduce the number of rows in the fact table by only including QlikView sessions
that pertain to cross-selling analysis.

In the following table, we confirm that all the facts are transactional and that they
describe events that take place at a discrete moment in time:

Facts

Fact type

Sales
invoices

Sales credit
memos

Sales
quotations

Employee
training

Employee
QlikView
usage

Transactional X X X X X

We also describe how each event is related to each dimension table. In our example
data model, the facts that represent employee training and QlikView usage cannot be
analyzed by customer or item:

Dimensions

Events

Month/Year Date Customer Sales Rep Item

Sales Invoices X X X X X
Sales Credit Memos X X X X X
Sales Quotations X X X X X
Employee Training X X X
Employee QlikView
Usage

X X X

Now that we've reviewed our BSC data model, let's continue to design how we want
to visualize a company's information dashboard based on the BSC method.

Balanced Scorecard

[218]

The Balanced Scorecard information
dashboard design
Information dashboards that display BSC-related measures are often designed
to replicate the strategy map or the cause-and-effect relationships between
each measure. Just as we took a more disciplined approach to combine various
perspectives, we will also reflect on a set of formal design rules called the Gestalt
principles of perceptual organization to design the information dashboard.

The Gestalt principles of perceptual
organization
Molded by human evolution, we are biased in the way that we visually perceive
our environment. For example, how do we recognize the form of a tree, based on
individual leaves and branches? We recognize the shape of a tree by grouping leaves
that are close together, are of similar color and shape, or even by how the leaves are
connected to the branches.

In the early twentieth century, a group of researchers called Gestalt (the German
word for form or shape) psychologists began to study how we were able to unite
individual perceptual inputs into complete objects. The following figure is a
nonexhaustive list of visual occurrences that we use to perceive groups of individual
elements called the Gestalt principles of perceptual organization:

Chapter 9

[219]

As in the natural world, we use these same principles to organize how we perceive
artificial constructs. For example, even though the following sentence is readable, it
is less efficient if we don't use proximity to group letters into words:

ThisisatestoftheGestaltprincipleofproximity.

In the same way that we group letters into words with one space, words into
sentences with a period, and sentences into paragraphs with a new line, we can also
spatially organize the objects of an information dashboard. As it is based on the BSC
method, we want to group individual elements into measurements, perspectives,
and cause-effect relationships. Along with proximity, we will review the other
common principles that we can use to create these three groups.

Proximity
When we work with proximity in an information dashboard, we focus on how white
space divides the visual elements on the screen. We often use white space to group
information because this does not add any potentially distracting nondata ink. For
example, in the following whiteboard design, we use proximity to group nineteen
individual visual elements into three groups that represent the three strategic
measurements (YOY Revenue Growth, YOY Revenue Growth by Product Line, and %
Revenue Existing Customers) in our financial perspective:

YOY Revenue Growth

Var. Actual

Actual

$ xxxxx xx %

$ xxxxx

Var. Target

YOY Revenue Growth
by Product Line

% Revenue Existing
Customers

Var. Actual

Actual

x.x ppts xx %

xx %

Var. Target

The decision to use proximity to group each measurement leaves us with a
greater opportunity to use less obtrusive methods to organize perspectives and
relationships. For example, if we were to use the Gestalt principles of closure and
and draw a line between each measurement, then we may have to draw a thicker,
darker, and more distracting line to separate each perspective. Instead, we are now
able to assemble perspectives in subtler ways.

Balanced Scorecard

[220]

Enclosure
A more explicit way to group elements is to enclose them with a line or a
background color. We often use enclosure when we cannot use proximity to group
items. For example, when we want to display large amounts of data on a single
screen and there is not sufficient white space to separate each visual element, we
can use enclosure. In the following whiteboard design, we use a line to draw a box
around each perspective:

Balanced Scorecard
YOY Revenue Growth

Var. Actual

Actual

$ xxxxx xx %

$ xxxxx

Var. Target

YOY Revenue Growth
by Product Line

% Revenue Existing
Customers

Var. Actual

Actual

x.x ppts xx %

Var. Target Financial

YOY Customer
Churn Rate

Var. Actual

Actual

xx %

Var. Target

YOY Average Prod
Per Customer

Var. Actual

Actual

xxxxx xx %

$ xxxxx

Var. Target

YOY Cross.Selling
Sales Quotes

Var. Actual

Actual

xxxxx xx %

xxxxx

Var. Target

YOY Average Days Use
QV per Sales Rep

Var. Actual

Actual

xxxxx xx %

xxxxx

Var. Target

YOY Average Product
Training per Sales Rep

Var. Actual

Actual

xxxxx xx %

xxxxx

Var. Target

Customer

Internal

Learning

Filter
Month YTD

x.x ppts

xx %

xx %

Enclosure is a stronger grouping method than proximity, and we should use it with
care so that we do not to interrupt the flow of information in a dashboard. Let's
take a look at how we can use the next Gestalt principle, closure, to make enclosure
subtler and reduce its nondata ink.

Chapter 9

[221]

Closure
We don't need a shape to be entirely discovered in order to perceive what form it
takes. In the previous whiteboard design, if we draw a single line between each
perspective, we still perceive the rectangular enclosures that group each one:

Balanced Scorecard
YOY Revenue Growth

Var. Actual

Actual

$ xxxxx xx %

$ xxxxx

Var. Target

YOY Revenue Growth
by Product Line

% Revenue Existing
Customers

Var. Actual

Actual

x.x ppts xx %

Var. Target Financial

YOY Customer
Churn Rate

Var. Actual

Actual

xx %

Var. Target

YOY Average Prod
Per Customer

Var. Actual

Actual

xxxxx xx %

xxxxx

Var. Target

YOY Cross.Selling
Sales Quotes

Var. Actual

Actual

xxxxx xx %

xxxxx

Var. Target

YOY Average Days Use
QV per Sales Rep

Var. Actual

Actual

xxxxx xx %

xxxxx

Var. Target

YOY Average Product
Training per Sales Rep

Var. Actual

Actual

xxxxx xx %

xxxxx

Var. Target

Customer

Internal

Learning

Filter
Month YTD

x.x ppts

xx %

xx %

We have now created a subtler way to group different perspectives. An even subtler
way would be to replace the lines with the names of each perspective in a very large
font size. Sometimes, a simple outdented heading, such as "Balanced Scorecard" in
the previous whiteboard design, is enough to perceive an enclosure. However, we
elect to use a line so that we avoid overlapping headings with the lines that we will
use in the following section to connect related measurements.

Balanced Scorecard

[222]

Connection
In the previous sections, we used proximity to group measurements, and we used
enclosure and closure to group perspectives. In the following sections, we'll use
connection, continuity, and similarity to assemble the cause-and-effect relationships.
Connection groups elements together more powerfully than proximity but less
than enclosure. In the following whiteboard design, we link cause-and-effect
measurements in accordance with our strategy map:

Balanced Scorecard
YOY Revenue Growth

Var. Actual

Actual

$ xxxxx xx %

$ xxxxx

Var. Target

YOY Revenue Growth
by Product Line

% Revenue Existing
Customers

Var. Actual

Actual

x.x ppts xx %

Var. Target Financial

YOY Customer
Churn Rate

Var. Actual

Actual

xx %

Var. Target

YOY Average Prod
Per Customer

Var. Actual

Actual

xxxxx xx %

xxxxx

Var. Target

YOY Cross.Selling
Sales Quotes

Var. Actual

Actual

xxxxx xx %

xxxxx

Var. Target

YOY Average Days Use
QV per Sales Rep

Var. Actual

Actual

xxxxx xx %

xxxxx

Var. Target

YOY Average Product
Training per Sales Rep

Var. Actual

Actual

xxxxx xx %

xxxxx

Var. Target

Customer

Internal

Learning

Filter
Month YTD

x.x ppts

xx %

xx %

Even though we've now grouped the cause-and-effect measurements, we've
also created possible confusion between these new lines and the ones that group
each perspective. When we confront conflicting elements, we are often inclined
to differentiate them by making one stronger and more explicit than the other.
However, for example, if we were to make the lines dividing the perspectives thicker
so as to differentiate them from the others, then we risk stealing attention away from
what should be the most important element in the dashboard: the data. Let's see how
we can use continuity to make sure that our grouping techniques complement rather
than supplant the data.

Chapter 9

[223]

Continuity
Similarly to closure, we don't have to see a complete line in order to perceive one.
We can use the Gestalt principle of continuity to create a subtler, dashed line that
connects the related measures in the following whiteboard design:

Balanced Scorecard
YOY Revenue Growth

Var. Actual

Actual

$ xxxxx xx %

$ xxxxx

Var. Target

YOY Revenue Growth
by Product Line

% Revenue Existing
Customers

Var. Actual

Actual

x.x ppts xx %

Var. Target Financial

YOY Customer
Churn Rate

Var. Actual

Actual

xx %

Var. Target

YOY Average Prod
Per Customer

Var. Actual

Actual

xxxxx xx %

xxxxx

Var. Target

YOY Cross.Selling
Sales Quotes

Var. Actual

Actual

xxxxx xx %

xxxxx

Var. Target

YOY Average Days Use
QV per Sales Rep

Var. Actual

Actual

xxxxx xx %

xxxxx

Var. Target

YOY Average Product
Training per Sales Rep

Var. Actual

Actual

xxxxx xx %

xxxxx

Var. Target

Customer

Internal

Learning

Filter
Month YTD

x.x ppts

xx %

xx %

Continuity can also work in a more subtle way when we align objects in the
dashboard. For example, the grouping of each perspective is reinforced by the
fact that the measurements are vertically aligned. We may also notice that the
measurements found in the customer and learning perspectives are also horizontally
aligned even though they have no direct relationship. We've aligned them so that the
dashboard is symmetric and aesthetically pleasing. In this case, the lines that we've
added to enclose each perspective and separate the measurements help lower the
risk that they will be interpreted as a meaningful group. We will now review the last
Gestalt principle that will help us to further distinguish between the lines that we use
to enclose the perspectives and the ones that connect related measurements.

Balanced Scorecard

[224]

Similarity
Finally, we interpret elements that are alike as part of the same group. Visual
likeness can be determined by the elements' color, shape, and size. For example,
in the whiteboard design, we've used the principle of similarity to group elements
that are alike but dispersed throughout the dashboard. In the previous figure, we
can decipher individual bullet charts as neon green and calculated numbers as pale
yellow and efficiently identify them during an extremely dynamic agile design
exercise.

In the actual dashboard, we use the similarity principle to reaffirm the distinction
between the two sets of lines that we use to define two distinct groupings. In the final
version of our design that we've migrated to QlikView in the following figure, we
use black lines to divide the perspectives and light gray lines to group the cause-and-
effect relationships.

Chapter 9

[225]

In the same way that we used the continuity principle, we use similarity to
differentiate groups by making one subtler rather than making one more explicit. If
we were to use a different hue to group the cause-and-effect relationships, then we
risk stealing unnecessary attention away from the actual measurements again. In the
previous figure, we can appreciate how well the eight BCS measurements stand out
at first glance. Then, upon further exploration, we can see how they are first grouped
by their perspective and then by their cause-and-effect relationship.

The Gestalt principles of perceptual organization are an important set of rules that
help us make user-interface design less an art and more a science. However, they
still leave us with plenty of leeway to create unique, aesthetic interfaces. In the
next section, we will review how to incorporate a filter pane without changing our
original information dashboard design.

Creating the filter pane bubble
The idea that an information dashboard should fit on a single screen is often a design
challenge. In QlikView, it is common practice to place the filters to the left and at the
top of the screen, where they may take up twenty percent or more of the available
screen. Although QlikView list boxes are themselves informative objects that tell us
what data is both related and unrelated to the current selection, they aren't always
the most important objects on the screen.

This is especially the case with information dashboards, whose principal goal
is to provide information that can be monitored at a glance and not necessarily
dynamic analysis. However, it would also be a shame to use QlikView to create a
fixed information dashboard, so let's allow the user to make data selections in an
information dashboard in a way that doesn't take up so much space.

Balanced Scorecard

[226]

Exercise 9.1
Before beginning the exercise, let's import this chapter's exercise files into the QDF
as we did in Chapter 2, Sales Perspective. To create a filter pane bubble, let's do the
following steps in 1.Application\BalancedScorecard_Sandbox.qvw:

1. First, let's add the following text object to the top, right-hand side corner of
the screen. In this case, we've used explicit enclosure to make it stand out
more than just simple text:

2. Next, let's place list boxes for the [Sales Person], [Customer Group ENG],
and [Item Group ENG] fields in a single object container.

3. Then, let's place the container that we created in a previous step, a current
selections object, and a search object in the grid container object. The
container should look like the following figure after we align it with the
Other Selections text object and assign it to the Top layer in the Layout tab:

Chapter 9

[227]

4. Create a variable called vToggleFilterPane and define the grid container's
Conditional Show expression as =vToggleFilterPane.

5. Create a Set Variable action in the Other Selections text object with
vToggleFilterPane as the Variable and the following code as the Value:
=if(vToggleFilterPane = 1, 0, 1)

6. Finally, let's use the following code to define the background color of the
Other Selections text object. We only change the color to green if we make a
selection in a field that is neither Year nor Month, as their selected values are
evident in their respective list boxes:

if(
 len(
 purgechar(
 replace(
 replace(
 GetCurrentSelections('|')
 , 'Year: '&GetFieldSelections(Year),''
)
 , 'Month: '&GetFieldSelections(Month),''
)
 ,'|'
)
)
 ,LightGreen()
 ,RGB(232,232,232)
)

We intentionally use QlikView's native selection color for the background of the
Other Selections text object. As they review the information dashboard, this helps
remind the user of their selection, just like any list box. They can then quickly click
Other Selections to edit or remove their selection. If they remove their selection,
then Other Selections turns gray. It would also be reasonable for this to turn white.
Although, we've reused QlikView's native color scheme, we may need to create a
quick tutorial to help the user understand the application's unique interface.

Balanced Scorecard

[228]

Creating an interactive tutorial
There are a series of features that users expect to be the same in every application,
such as the selection color scheme, bookmarks, cyclical dimensions, fast-type
changes, and the ability to export to Excel. However, besides these powerful, generic
features, every QlikView application is singular; each has its own data, data model,
charts, filters, buttons, and actions. Therefore, if we expect users to get the most out
of our applications, then it is often necessary to walk them through the application.

If the application serves one or two users, then the most effective way to show them
the application is to give them a short personal tour. However, if we are dealing
with an application that has more than a hundred users or has users that are prone
to change, then we may want to create more efficient training material. Along with
recorded videos lessons, we should also think about something more interactive that
forces the user to start playing with the application.

Exercise 9.2
Let's embed a tutorial into our information dashboard and create its first steps in the
following exercise:

1. Create variables called vToggleTutorial and vTutorialStepNumber.
2. Add a text object that uses the following information icon and place it in the

upper, right-hand side corner:
C:\Qlik\SourceData\1201.Balanced_Scorecard\9.Misc\3.Images\Info_
Icon.png

3. Create a Set Variable action in the information icon's text object with
vToggleTutorial as the Variable and the following code as the Value:
=if(vToggleTutorial = 1, 0, 1)

4. Create another Set Variable action in the information icon with
vTutorialStepNumber as the Variable and with 1 as the Value.

Chapter 9

[229]

5. Let's add Step 1 and create a text object as it appears in the next figure with
this background image and assign it to the Top layer in the Layout tab, as
follows:
C:\Qlik\SourceData\1201.Balanced_Scorecard\9.Misc\3.Images\
Bubble_Without_Arrow.png

6. Define the text object's Conditional Show expression as the following code:
=vToggleTutorial and vTutorialStepNumber=1

7. In the text object, create a Set Variable action with vTutorialStepNumber as
the Variable and 2 as the Value.

8. Let's add Step 2 and create a text object as it appears in the next figure with
this background image and assign it to the Top layer in the Layout tab, as
follows:
C:\Qlik\SourceData\1201.Balanced_Scorecard\9.Misc\3.Images\
Bubble_UpperCenter_Arrow.png

Balanced Scorecard

[230]

9. Define the text object's Conditional Show expression as the following code:
=vToggleTutorial and vTutorialStepNumber=2

10. In the text object, create a Set Variable action with vTutorialStepNumber
as the Variable and the following code as the Value:
=if(only(Year)=2015 and only(Month) = 9, 3, 2)

11. Let's add Step 3 and create a text object as it appears in the next figure with
this background image and assign it to the Top layer in the Layout tab, as
follows:
C:\Qlik\SourceData\1201.Balanced_Scorecard\9.Misc\3.Images\
Bubble_UpperLeft_Arrow.png

12. Define the text object's Conditional Show expression as the following code:
=vToggleTutorial and vTutorialStepNumber=3

13. In the text object, create a Set Variable action with vTutorialStepNumber
as the Variable and the following code as the Value:

=if(vToggleFilterPane, 4, 3)

We stop the exercise at this point as we create all other steps in the same following
way:

• Describe to the user what they are seeing from their perspective
• Give the user an action to perform before going on to the next step

Chapter 9

[231]

The next steps in the interactive tutorial will help the user make a selection in the
filter pane and understand that not all the measurements can be filtered by customer
or item. It will then describe the measurements and any additional functionality that
they may have, such as the detailed pop-ups that we saw in the customer fact sheet,
or a link to another sheet or document.

We use the Set Variable action in each text object to validate the user's actions and
proceed to the next step. We can easily validate user selections and the values in
variables, which is what we use to create most custom QlikView UX. We can even
validate some native functionality, such as changing a cyclical dimension, with the
GetCurrentField() function or changing sheets with the GetActiveSheetID()
function. However, other native functionality, such as exporting to Excel or creating
a bookmark cannot be validated through chart functions, so we can only describe
their functionality in the tutorial.

In all the other cases, the best practice is to create an interactive tutorial that offers
users the chance to learn and remind themselves over and over again through active
participation. Just like when somebody shows us how to get somewhere by car and
we tend to learn more when we are the driver and not the passenger, we put the user
in the driver's seat as we show them how to explore data.

Measuring success with XmR charts
The BSC information dashboards helps us monitor the success or failure of the
company's initiatives to reach its objectives and we define this success by creating a
target for each measurement. In the dashboard, we've added a series of alerts in the
form of dots that only appear when the measurement is below target. For simplicity,
we've defined all the targets to be ten percent YOY growth.

The dots are created using chr(9679).
You can get Unicode geometric shapes at http://www.
alanwood.net/unicode/geometric_shapes.html.

Along with reaching our targets, we also should analyze the effect on the sales
process using statistical process control. Like all measures, monthly sales naturally
fluctuates beyond our control. Therefore, how do we differentiate between variations
that are natural and those that are caused by a change in the sales process?

http://www.alanwood.net/unicode/geometric_shapes.html.
http://www.alanwood.net/unicode/geometric_shapes.html.

Balanced Scorecard

[232]

In his book, Understanding Variation: The Key to Managing Chaos, Donald Wheeler
recommends using the XmR chart. The X stands for average and the mR for moving
ranges. It is often used to analyze whether a process is under control or whether
process improvement initiatives are successfully reducing process variability.
For example, if we were to manufacture bolts, we would notice that each bolt's
exact diameter would vary. Some variation is fine as long as the bolt still fits its
corresponding screw. However, if the bolts' diameters vary so much so that many
have to be scraped and remade, then we confront a costly problem. It is, therefore,
important that we monitor the manufacturing process to determine whether its
variation is under control. Stephen Redmond includes a recipe to create an XmR
chart in QlikView in his book, QlikView for Developers Cookbook.

In the previous context, we assumed that a variation is unwanted and that the XmR
charts help us eliminate it. However, we can also use it when we want the results of
a process to vary. For example, we don't want our sales process to be a controlled
process with a predictable result month-in, month-out; but rather, we hope for
variation that indicates that our monthly sales average is increasing. We use the XmR
chart to eliminate the noise of natural variation and confirm whether this is really
happening.

The usage of the XmR chart in this context has been mastered by the Performance
Measure Specialist, Stacey Barr (staceybarr.com). Her book, Practical Performance
Measurement: Using the PuMP Blueprint for Fast, Easy and Engaging KPIs, helps
companies adopt better performance measurement techniques, such as this version
of the XmR chart.

The following chart shows the actual sales and its average, or central line, within a
range where sales could naturally vary, or the natural process limit. Unlike rolling
averages, the central line only changes under certain conditions. In the chart that
results from the following exercise, we change the central line and the range under
the following conditions:

• If a value is outside of the natural process limit
• If eight consecutive points lie either above or below the central line (we

recalculate the central line and the process limit beginning with the point
from which the streak began)

• If ten out of twelve points lie either above or below the central line (we
recalculate the central line and the process limit beginning with the point
from which the streak began)

The target that we include in the XmR chart is for the central line to reach.
In this way, we can be sure that we've reached it due to real process
improvement and not because of natural variation. The target is represented
by a single dot in the chart:

Chapter 9

[233]

Exercise 9.3
To create an XmR chart, do the following:

1. Let's create the following variables:

Variables
Label Value
vPointsGreaterThanCL if($1=1

 ,Above([Central Line]) >
 Below(Sales,0)
 ,RangeSum(Above([Central Line]) >
 Below(Sales,$(=$1-1))
 ,$(
 $(=if($1=1
 ,'=0'
 ,'vPointsGreaterThanCL($(=$1-1))'
)
)
)
)
)

Balanced Scorecard

[234]

Variables
Label Value
vPointsLessThanCL if($1=1

 ,Above([Central Line]) <
 Below(Sales,0)
 ,RangeSum(Above([Central Line]) <
 Below(Sales,$(=$1-1))
 ,$(
 $(=if($1=1
 ,'=0'
 ,'vPointsGreaterThanCL($(=$1-1))'
)
)
)
)
)

These variables count the number of points above or below the central line
within a given set of points. In QlikView, a conditional expression that
is true is equal to -1. So, instead of using if(Above([Central Line])
> Below(Sales,0),1,0), we just use Above([Central Line]) >
Below(Sales,0) and take care of the negative sign later in the chart.
These variables also use a parameter so that we can count the number of
points above or below the central line out of the next six, ten, twenty, or fifty
points, and we will be able to use the same variable. We also want to avoid
calling the variable for each individual point, like in the following code:
-sum($(vPointGreaterThanCL(1)) + $(vPointGreaterThanCL(2))
+ $(vPointGreaterThanCL(3)) + $(vPointGreaterThanCL(4)))

Therefore, we make the variable recursive so that we can arrive at the same
result as the previous code with only one call:
-sum($(vPointsGreaterThanCL(4)))

This one call will start by evaluating the point four rows down and then call
itself to evaluate the point three rows down. It will continue this process until
it reaches the current row.
As a final note, we have to be careful to also make the dollar-sign expansion
in the recursive function recursive or else it will get stuck in an infinite loop
of dollar-sign expansions and cause QlikView and, possibly, the computer to
lock-up.

Chapter 9

[235]

2. Next, let's create the following combo chart:

Dimensions
Label Value
Year-Month Year-Month
Expressions
Label Value
Sales sum({$<_ActualFlag={1}>} [Net Sales USD])

Central Line //if one of the conditions is met then recalculate CL
//check first row
if(RowNo()=1
 ,RangeAvg(Below(Sales,0,count(Total distinct {$<
_ActualFlag={1}>} [Year-Month])))
 ,if(
//check if value outside process limit
 (Sales>above([True Max]) or Sales<above(Min))
 or
//check if next 8 values above or below CL
 ((RangeMax(Above([Central Line])
 ,Below(Sales,0,8))=Above([Central Line])
 or RangeMin(Above([Central Line])
 ,Below(Sales,0,8))=Above([Central Line]))
 and
 count(Total distinct {$<_ActualFlag={1}>}
 [Year-Month])-RowNo()+1 >= 8)
 or
//check if next 10 of 12 values above or below CL
 (-1*$(vPointsGreaterThanCL(12))>=10
 or -1*$(vPointsLessThanCL(12))>=10)
 ,RangeAvg(Below(Sales,0,count(Total distinct {$<
_ActualFlag={1}>} [Year-Month])-RowNo()+1))

//if none of the conditions are met then use previous
//CL
,Above([Central Line])
))

Min =[Central Line] - 2.66 * [Moving Range Average]

Max =[True Max] - IF(Min<0,0,Min)

Balanced Scorecard

[236]

CL Target if(RowNo()=1
 ,RangeAvg(Below(Sales,0,count(Total distinct
 {$<_ActualFlag={1}>} [Year-Month])))*1.1
 ,Above([CL Target])
)

True Max =[Central Line] + 2.66 * [Moving Range Average]

Moving Range
Average

//if one of the conditions is met then recalculate MR
//check first row
if(RowNo()=1
//check first row
 ,RangeAvg(Below([Moving Range]
 ,0,count(Total distinct
 {$<_ActualFlag={1}>} [Year-Month])))
 ,if(
//check if value outside process limit
 (Sales>above([True Max]) or Sales<above(Min))
 or
//check if next 8 values above or below CL
 ((RangeMax(Above([Central Line])
 ,Below(Sales,0,8))=Above([Central Line])
 or RangeMin(Above([Central Line])
 ,Below(Sales,0,8))=Above([Central Line]))
 and count(Total distinct
 {$<_ActualFlag={1}>}
 [Year-Month])-RowNo()+1 >= 8)
 or
//check if next 10 of 12 values above or below CL
 (-1*$(vPointsGreaterThanCL(12))>=10
 or -1*$(vPointsLessThanCL(12))>=10)
 ,RangeAvg(Below([Moving Range],0,count(Total
 distinct {$<_ActualFlag={1}>}
 [Year-Month])-RowNo()+1))

//if none of the conditions are met then use previous
//CL
 ,above([Moving Range Average])
))

Moving Range fabs(Above(Sales)-Sales)

3. In the Expressions tab, define Sales as Line and Symbol, Central Line as
Line, Min as Bar, Max as Bar, and CL Target as Symbol in the Display
Options section. For the rest of this expression, deselect all the Display
Options and enable the Invisible option.

Chapter 9

[237]

4. Define the Background Color attribute expressions for Min as the following
code:
IF(Min<0,ARGB(100,158,202,225),White())

5. Define the Background Color attribute expressions for Max as the following
code:
ARGB(100,158,202,225)

6. Define the Background Color attribute expressions for CL Target as the
following code:
if(
 max(Total [Year-Month]) =
 only([Year-Month])
,black(),black(0))

7. In the Style tab, enable the Stacked option in the Subtype section.
8. In the Presentation tab, set the Bar Distance and Cluster Distance to 0 in the

Bar Settings section.
9. In the Colors tab, enable the colors accordingly.

The expressions for Moving Range Average and Moving Range are invisible, but
they help us make cleaner calculations of the natural process limits, Min and Max.
We could also have assigned the expressions to variables and used a dollar-sign
expansion. However, we elect to use invisible expressions because they are visual
when we export the chart to Excel; therefore, they make the chart easier to debug if
we detect any anomaly.

Also, as we use stacked bars to draw the natural process limit's blue background,
Max only calculates the distance between Min and itself. If Min is positive, then
Max will not be equal to the actual maximum process limit. So, we use an invisible
expression called True Max to evaluate whether any value is beyond the limit. Also,
if Min is positive, it's background color is white so that only the area between the
minimum and maximum limits is blue.

In Moving Range Average and Central Line, we check the three conditions that
indicate the process has changed. If it has changed, then we recalculate these two
variables from the point when a streak begins, so we have to be forward looking using
the below() function. Also, when we do the recalculation, we do it over all the values
from this point onward in the chart. We determine the exact number of values after
this point using the following code as the third parameter in the below() function:

count(Total distinct {$<_ActualFlag={1}>} [Year-Month])-RowNo()+1)

If we were to use a different dimension other than [Year-Month], we would replace
it here.

Balanced Scorecard

[238]

Finally, the explanation for why we use the constant value, 2.66, to calculate the
Min and True Max, and the conditions that indicate a process change can be found
in Understanding Variation: The Key to Managing Chaos, Donald Wheeler. We can also
find a XmR chart recipe in Stephen Redmond's QlikView for Developers Cookbook and
get a different perspective on how to create one in QlikView. Also, a more detailed
explanation about the design and purpose of this chart can be found in Stacey
Barr's Practical Performance Measurement: Using the PuMP Blueprint for Fast, Easy and
Engaging KPIs.

We incorporate this chart into the customer fact sheet as the expected
sales chart. It also serves to align the company's BSC revenue target with
the targets for each customer.

Summary
The Balanced Scorecard, the Gestalt principles, and the XmR charts are excellent
opportunities to formalize and elevate our level of mastery in QlikView. Like these
methods of performance measurement, visualization, and analysis, there are others
and there will be more in the future. The XmR chart is the last and most advanced
QlikView chart that we will create in this book and it serves as a final example of
how far we can go beyond the basics.

Now, it is time for you to go beyond the content of this book and use QlikView in
even more advanced and insightful ways. In the next chapter, we will review how to
troubleshoot the unknown issues you may encounter in order to help you continue
to experiment and lead QlikView into uncharted realms.

[239]

Troubleshooting Analysis
A paradox development is that we often spend more time troubleshooting QlikView
applications than we do developing them. Such is the case that if nobody complains
about an incorrect calculation or missing data, then they probably aren't using what
we've created. When we become aware of a potential problem, we also tend to invest
more time understanding and searching for the anomaly than we do fixing it. Even
though this is time well spent when we encounter an issue for the first time, we
should avoid repeating the same investigation every time the same issue reoccurs.

In this chapter, we are going to review several common anomalies that occur when
we perform data analysis and visualization in QlikView. We document their possible
causes and solutions as we would in a knowledge base that we create to help save
time when we come across the same issues in the future. Let's cover the following
topics to improve our QlikView troubleshooting skills:

• Troubleshooting preparation and resources
• Reporting issues
• Common data model issues
• Common expression issues

Troubleshooting preparation and
resources
First, let's go over the general approach that we take when troubleshooting in
QlikView and what resources are available to make it easier.

Troubleshooting Analysis

[240]

Positive mindset
If we want to create successful QlikView applications, then we have to be prepared
to maintain them for many years to come or transfer our knowledge to another
person. In reality, we never completely finish great QlikView applications
and we continuously transform them when new business questions arise. The
troubleshooting, maintenance, corrections, and adjustments that we perform after
the initial development is also an excellent opportunity to learn from our mistakes.
We also learn what is truly important to business users and constantly improve the
quality and value of our work. Therefore, we're better off being positive about post-
development work because in the absence of all this feedback, it is hard to master
QlikView.

General debugging skills
In addition to a positive mindset, we must possess the basic ability to debug
problems. In his book, Debug It!: Find, Repair, and Prevent Bugs in Your Code (Pragmatic
Programmers), Paul Butcher proposes the following iterative steps to debug any code:

• Reproduce
• Diagnose
• Fix
• Reflect

These steps also apply to us when we troubleshoot issues in QlikView. Let's take a
look at how each applies to QlikView in the following sections.

Reproduce
The first step to debugging any issue is to reproduce it. This allows us to diagnose the
anomaly more easily and then confirm that it has been fixed. If we cannot reproduce
the issue, then our only recourse is to run a general review of all the components
involved and see whether anything stands out as a possible cause. If we don't discover
any potential problem, then we could also decide to enable any logging that could help
us learn more about the anomaly if it occurs again.

If we can reproduce the issue on our own computer or directly on the server, then
it is probable that the issue originates from the QlikView Server, the QlikView
document, or the data. Otherwise, if we are only able to recreate the anomaly on
the user's own computer, then the problem is usually caused by the network or
something in the user's own computer.

Chapter 10

[241]

For example, QlikView will occasionally not update values that have been cached
by the user's web browser. Even though the business user is looking at the same
QlikView document with the same selections as those on other computers, they will
see different numbers. In this case, we can fix this issue by clearing the user's web
browser cache.

Diagnose
Once we reproduce the anomaly, we begin to explore its cause by dividing the
problem into smaller parts and independently testing each one. In general, a
QlikView document can be broken down into the following parts:

• Script
• Data model
• Expression
• Variable
• Action
• Macro
• Object

In addition to the parts that compose a QlikView document, we also explore the
following elements that directly affect it:

• Data
• QlikView Server components
• User's actions

Each of these parts can be recursively divided into smaller and smaller parts. For
example, we start by testing an expression and then isolate the problem to its set
analysis. We then break this set analysis down into smaller parts and experiment
with each set modifier until we find the one that causes the issue.

Also, we often go between various elements in search of the issue's root cause. For
example, if we've isolated the issue with an expression to one of its set modifiers but
we don't find anything wrong with it, then we look at the set modifier field in the
data model. After reviewing the data model, we may need to review the script and,
eventually, the source data to find the root cause.

Troubleshooting Analysis

[242]

Fix
If we know how to fix an issue's root cause, then we can solve the problem right
away. Otherwise, we experiment with possible solutions that we find using the
resources that we have available or through our own invention.

We must be careful and take into account that fixing one issue may cause another
to appear. Therefore, when we solve our initial problem, we should quickly
test anything that may be affected by this fix. We should also define a short list
of key tests that we run regardless of whether or not we think that they were
affected by the fix. These tests confirm the accuracy and functionality of the most
important measurements and charts, along with confirming that the application can
successfully reload data.

Reflect
Along with documenting the issue's cause and solution, we reflect on whether the
same error could exist in other parts of the application. We also consider whether the
same issue may affect other existing QlikView applications or even ones currently
being developed. If it does, we analyze if and when to fix them.

We also contemplate on how we can reduce the probability that the same issue will
recur. If the mistake is ours, then we should learn from it as soon as we fix it. The
issue could also have been caused by some misunderstanding or miscommunication
between ourselves and another party. In this case, we work together to find the
solution to this issue and continue to work closely to avoid similar ones in the future.
In more complex environments, we may also decide to implement tools or processes
that help us quickly detect or even prevent future issues.

Resources
There are a number of resources that are available to help us during the whole
troubleshooting process, especially when we cannot diagnose or fix the issue. We
explore the most popular resources in the next section.

QlikView Help
QlikView Help is filled with examples of both chart and script functions as well as
detailed explanations of almost every QlikView property option. This is often the
first resource to go to when we have a question about how QlikView works. The
sections about set analysis and incremental loads using QVDs are exceptionally well
explained.

Chapter 10

[243]

Local knowledge base
Every QlikView application is unique and we should not just depend on a general
QlikView knowledge base to fix our problems. Therefore, we need an efficient way
to explore development-related documentation along with past issues and their
solutions.

The software that we choose for this job depends on our business's culture.
One option is to use a note-taking app, such as Microsoft OneNote
(https://www.onenote.com/) or Evernote (https://evernote.com/) and
have the team share a notebook. We can also use a more minimalist notepad
approach, such as GitHub Gist (https://gist.github.com/). We may also use
a wiki, such as Atlassian Confluence (https://www.atlassian.com/software/
confluence), or a social platform, such as Jive (https://www.jivesoftware.com/),
which is the same tool that the Qlik Community uses.

Qlik Community
Qlik Community (https://community.qlik.com/) is one of Qlik's greatest assets.
Developers from various partners, customers, and even Qlik are readily available
to help anyone who has a question about QlikView or Qlik Sense. It is also a great
repository filled with QlikView tools, templates, and how-to documentation.
Let's keep in mind the following tips when we use Qlik Community:

• Search for a solution before asking a question. We rarely ask something that
has never been asked before. Our exact data, script, or expression will be
different. However, if we diagnose our issue well enough, then we should be
able to find a solution to the same problem regardless of the exact example
used in the Qlik Community discussion.

• If we don't find an existing solution, then we create a new discussion with
a brief explanation of our issue along with a QlikView application that
demonstrates the problem. If we can't upload an application, then we should
upload one or more of the following artifacts:

 ° A screenshot of the issue
 ° The current script
 ° The current expression code
 ° Sample data
 ° Our expected results

An example application or any of these artifacts is far easier to understand
than a thousand-word explanation.

https://www.onenote.com/
https://evernote.com/
https://gist.github.com/
https://www.atlassian.com/software/confluence
https://www.atlassian.com/software/confluence
https://www.jivesoftware.com/
https://community.qlik.com/

Troubleshooting Analysis

[244]

• If somebody helps us, then we should mark their answer as either helpful or
correct so that they earn points for their contribution. Qlik Community runs
on gamification and earning points is like making money. Let's help keep it
this way and spend the extra minute that it takes to "pay" those who help us.

• We must avoid the expectation that somebody else will do our work for us.
Some so-called QlikView developers create discussions to find people who
will develop a report that they themselves are paid to develop. This is an
incorrect use of Qlik Community.

• We can't always expect to find answers to our questions in Qlik Community,
especially if the issue is related to QlikView Server. We should escalate such
issues with Qlik Support.

Qlik Support
If QlikView isn't working as documented in QlikView Help or the issue is related to
QlikView Server, then Qlik Support is the best resource to use. Let's keep in mind the
following tips when we use Qlik Support:

• Let's not overinflate an issue's priority. If the issue concerns something
cosmetic, such as a chart's color, then do not classify it as urgent. Nothing is
more annoying or starts a support case on the wrong foot as an overstated
priority.

• We can expect the support team to ask us for all sorts of logs, files, and
screenshots to help them troubleshoot the issue. Some of the things that they
ask us to do or send will appear to be superfluous. However, keep in mind
that they are tasked with trying to understand and debug hundreds of issues
on remote computers. As this is not any easy job, they do tend to ask for as
much information as possible.

• Let's not take advantage of the distance to act overly rude or aggressive.
Similar to road rage, technical support rage can be counter-productive. We
should promptly and politely answer their inquiries and remain calm.

Chapter 10

[245]

Reporting issues
An issue that is well-documented is half solved. The fastest, most effective way
to report an issue in a QlikView application is to take a screenshot of the anomaly
using an image and video screen capture tool like TechSmith's Snagit (http://www.
techsmith.com/snagit.html). Along with taking an accurate screenshot, it also
allows us to easily add annotations that clearly communicate the problem.

In addition to capturing a screenshot, we can also make our troubleshooting process
more efficient if we report the anomaly directly into an issue tracking system.
BugHerd (https://www.bugherd.com) is a bug capturing tool that we can use
to track issues or integrate it with other issue trackers, such as Jira or Zendesk.
When we capture an issue in BugHerd, it takes an automatic screenshot, records
information about the user's system environment, and allows the user to add any
additional comment or file.

http://www.techsmith.com/snagit.html
http://www.techsmith.com/snagit.html
https://www.bugherd.com

Troubleshooting Analysis

[246]

We can create a BugHerd project with the hostname, http://QlikViewServerName/
QvAJAXZfc and use BugHerd's Google Chrome extension in a QlikView Server
environment. In case we don't use Google Chrome or we want to report issues
directly in the QlikView Desktop WebView, we can use Ralf Becher's BugHerd
QlikView document extension (https://github.com/ralfbecher/QlikView_
Extension_BugHerd). This extension doesn't take an automatic screenshot, but we
can easily attach one to the issue.

In order for the extension to work properly, you may have to add
https://www.bugherd.com to the list of Trusted Sites in the
Security tab found in Internet Options.

Once we report an issue, we can keep track of its status in a BugHerd project or in
one of several issue-tracking tools that integrates with it. The BugHerd project uses
the following Kanban board to organize issues:

https://github.com/ralfbecher/QlikView_Extension_BugHerd
https://github.com/ralfbecher/QlikView_Extension_BugHerd
https://www.bugherd.com

Chapter 10

[247]

Now that we've reported several issues with help from BugHerd and Snagit, let's
review various issues that we commonly encounter in our QlikView applications.

Common QlikView application issues
Along with issues that concern expressions or object properties, we also tend to
discover issues related to the data, load script, or model at the moment we create
visualizations. Let's review the common issues based on their source in the
following sections.

Common QlikView data model issues
We always have to be prepared to review previous steps in the development process
when we are diagnosing and fixing a data visualization issue.

Troubleshooting Analysis

[248]

All expression values are exactly the same
The following screenshot is an example of what happens when the field that we use
as a dimension has no relationship with the field(s) that we use in an expression:

This issue is especially common when we are making quick adjustments to a data
model and delete a key field or rename it in only one table, thus breaking an existing
link. Another reason may also be that we mistakenly add a field from a legitimate
island table to a chart.

When we notice the issue illustrated in the previous chart, our first action should be
to look at the data model and confirm whether the tables are linked. If they are in fact
not linked, then we fix this error by linking the tables in the script. If they shouldn't
be linked, we change either the chart's dimension or expression to contain fields that
are related to each other.

Chapter 10

[249]

The expression total is not equal to the sum of the
rows
When business users export QlikView charts to Excel, they may occasionally report
that the sum of the rows in Excel does not match the total in QlikView. For example,
the total in the QlikView chart in the following screenshot does not equal the sum
of the rows:

We can confirm this discrepancy when we export the table to Excel and calculate the
sum of the rows.

A common (and incorrect) fix to this error is to change the way that the chart calculates
the total. If we change Total Mode to Sum of Rows, we will fix the problem in this
particular chart, but we are most likely ignoring an underlying problem with the data
model. We should always use Expression Total as Total Mode:

Troubleshooting Analysis

[250]

The sum of the rows doesn't equal the expression total because the chart uses fields
whose tables have a many-to-many relationship. For example, in the case of the
previous example, the error is caused by an item that is assigned to two different
item groups. Therefore, two rows in the Items table are linked to the same multiple
rows in the Facts table.

If the item is supposed to be in two groups, then we may need to add a business rule
to prorate the amount between the two groups. For example, we could prorate the
total sales amount so that 40% is assigned to Widgets and 60% to Whatchamacallits.
However, in most cases, this issue is caused by poor data quality or an error in the
load script.

Duplicate values in a list box
List boxes always show a list of unique values. However, as in the following list box,
we sometimes come across ones that appear to contain repeat values. Before we start
proclaiming that we've found a bug in QlikView, let's review how QlikView handles
data types.

We rarely have to worry about data types in QlikView. For example, we don't
declare fields to be a varchar, nvarchar, int, double, or text data type like we do in
SQL. In QlikView, the only thing that we have to remember is that every field value
is a dual data type or, in other words, it has two values: a string, and a number.

Chapter 10

[251]

The string value is the one that is displayed in a list box and it's possible that the
same string represents different numbers. Even if the numbers have the same string,
the list box will not group them into one entry. We force the list box to show the
number values that are paired with each string using the following options in the
Number tab of the list box's property dialog window.

We maximize the precision of the number in order to avoid scientific
notation (e) from appearing when the number is too big or too small.

We can now confirm that the dates represent distinct numbers. We expect the
number, 41639, to correspond to the string, 12/31/2013. However, the fractional part
of each number is different because it represents a particular time during the day.

Troubleshooting Analysis

[252]

The source of this issue is in the load script and this is where we should fix it. In this
case, the Date() function, which manipulates the string part of a field value, is used
to format a field value that contains a timestamp. Although the string part of the
values is formatted as expected, the number part of the value remains the same. If
we want to convert a timestamp into a date, then we first need to convert the number
part from a decimal into an integer using the Floor() function and then format the
string using the Date() function. For example, we use the following code in the load
script to fix our example:

…
Date(Floor(CreateDate),'MM/DD/YYYY') as CreateDate,
…

Data doesn't match user expectation
Business users often report that the numbers in QlikView don't match their
expectations or their own manual reporting. Given QlikView is where they visualize
data, this is going to be where they detect numerous data-related issues even if the
problem originates in the data source.

When business users report data discrepancies in a stable QlikView application,
our first step should be to follow the data's lineage to its source. If the source is
correct, then we break down the problem into the different steps of the same path
that the data follows until it reaches the user—extraction, transform, model, and
visualization.

Along with creating a well-designed folder structure for our QlikView applications,
there are a couple of tools that can help us understand the exact path that
data takes from its source until its visualization. The first tool is QlikView
Governance Dashboard, which you can download from Qlik Market
(https://market.qlik.com/qlikview-governance-dashboard.html).

QlikView Governance Dashboard offers a complete overview of a QlikView
deployment. Once we've entered in the necessary information in the Configuration
tab and then reloaded the application, we can review data lineage in the Lineage tab:

https://market.qlik.com/qlikview-governance-dashboard.html

Chapter 10

[253]

In the Lineage tab, we can select a source table in the Sources table and take a look
at which QlikView files use this table in the Processes table. We can also review
whether it is used to create a QVD in the Generated QVDs/QVXs table. In the
same way that we navigate from the source table to its target, we can also begin our
analysis by selecting a target table in Generated QVDs/QVXs and investigating
which process generates it from which possible sources.

The second tool is the DataLineage subroutine in QlikView Components (QVC)
(https://github.com/RobWunderlich/Qlikview-Components). In the same way
that we used a QVC subrountine to create a master calendar, we first include the
QVC library in the load script of the QlikView application whose data lineage we
want to analyze:

$(Include=..\qvc_runtime\qvc.qvs)

https://github.com/RobWunderlich/Qlikview-Components

Troubleshooting Analysis

[254]

Then, we call the DataLineage subroutine:

CALL Qvc.DataLineage;

Finally, we call the Cleanup subroutine to clean up any global variables:

CALL Qvc.Cleanup;

Once we reload the application, we can create the following table that details the
application's data lineage:

These two tools can help us discover data lineage at the table level. Once we
understand it at this level, we analyze it at the field level by reviewing the load
scripts of each QlikView application involved in the process.

Once we have an idea of the data lineage, we walk through the following steps to
diagnose the issue:

1. Confirm that the source QVDs are being updated properly.
2. Review the data in the QVDs at the extraction level and confirm that it shows

the same values as the data source.
3. Review the data in the QVDs at the transform level and confirm that it shows

the values we expect. The majority of data issues caused by QlikView will be
found at this stage.

4. Review the raw data in the data model and confirm that it shows the values
that we expect.

Chapter 10

[255]

5. Test the visualization that shows the incorrect result in the QlikView
application. If the result is calculated by a complex expression or a calculated
dimension, then we begin to test it without any set analysis or conditional
statements. We then add, bit by bit, the components that were left out and
confirm that we see the values that we expect after each change.

Hopefully, we will find the cause of the issue in the first few steps and fix the
problem quickly. If not, then at least by the time we get to the visualization, we can
be confident that the problem is there.

In many cases, we can review QVD data more efficiently by opening
it in EasyQlik QViewer (http://easyqlik.com/) rather than by
creating a temporary Qlikview application to load it.

Common QlikView expression issues
Complex analysis can make for complex expressions and potential issues. Let's
review the common issues caused by erroneous expressions.

The expression does not calculate every row
The following table shows the total sales and average monthly sales by customer and
item group. However, common sense tells us that if a customer has an amount in
Total Sales, then there should also be an amount listed in Monthly Sales Avg and
not a null value. It also seems strange that the Monthly Sales Avg values that do
appear are larger than the Total Sales amounts on the same row.

http://easyqlik.com/

Troubleshooting Analysis

[256]

In the Monthly Sales Avg column, we used the following code with an aggr()
function to calculate the average monthly sales of each customer and item group:

avg(aggr(sum(Amount),Month))

However, the dimensions in the aggr() function should always include the same
fields that are defined as the chart's dimensions. If we change the expression to
include Customer and [Item Group] as parameters to the aggr() function, then we
get a table with the correct numbers.

avg(aggr(sum(Amount),Month,Customer,[Item Group]))

The amounts in the table are not accumulating
Set analysis is a powerful tool, but it is not a panacea for every analytical need. The
following table is an example of a chart that cannot be created using set analysis:

Chapter 10

[257]

The false belief that set analysis may be the way to create this chart is born from its
ability to create the following chart that contains the same monthly and accumulated
sales columns:

In this chart, we used the following code to calculate Accumulated Sales:

sum({$<Month={"<=$(=max(Month))"}>} [Net Sales])

When we use a chart dimension in the set modifier of an expression, we have to
understand that this expression can only calculate over the data that corresponds
to the dimension value in that row , or in the case of a pivot table, that column. For
example, the following chart uses the previous expression in a table with Month as a
chart dimension and we can see what happens when we select March, as follows:

Troubleshooting Analysis

[258]

Accumulated Sales does not accumulate because set analysis is not an inter-row
function or, in other words, it does not see data outside the data slice defined by
the dimension values. Even if we use the Total keyword to allow the previous
expression to calculate overall data, we still don't get the result that we expect
because the maximum Month in the set modifier (March) is the same for every value
in the Month chart dimension:

The solution in order to create the table at the beginning of this section is to use
inter-row functions, such as above() or below(), in combination with range
functions, such as rangesum(). We use the following code for Accumulated Sales:

rangesum(before(sum([Net Sales]),0,ColumnNo(Total)+1))

We can also use the Accumulation section in the Expressions tab if we use
a straight table and only one dimension, or we can use a more robust solution
such as the As Of Calendar we used in Chapter 3, Financial Perspective.

Summary
There will always be new issues to investigate and resolve and we have a whole host
of resources available to help us troubleshoot them. However, as we resolve more
issues and become more experienced, the most important resource will be our own
local knowledge base. If we haven't started one yet, then we can start one with the
short list of common issues that we reviewed in this chapter.

In the next and final chapter, we will take a look at Qlik Sense, which in some ways
allows us to build on the experience that we've gained by working with QlikView.
However, in others ways, it challenges us to forget what we know and learn
something new.

[259]

Mastering Qlik Sense
Data Visualization

In 2014, Qlik released the first version of its next-generation data visualization and
discovery tool, Qlik Sense. Once thought to be a revamped QlikView, it has instead
turned out to be part of something larger. Let's take a quick look at what Qlik Sense
means to QlikView developers, especially in the area of data visualization.

Let's review the following topics as we devise a plan to master Qlik Sense
data visualization:

• Qlik Sense and what it means for QlikView developers
• Qlik Sense visualization extension examples for cross-selling
• Plans and resources to master Qlik Sense data visualization

Qlik Sense and QlikView developers
In short, Qlik Sense is an application to help nontechnical users perform data
visualization, analysis, and storytelling, within a governed environment. In this self-
service BI tool, users can create simple data models and metric calculations without
writing, or even seeing, one line of code. Also, Qlik Sense automatically generates
cleaner, more intuitive visualizations without the need to memorize a myriad of
property options.

As each new version is released, more and more features will be added to simplify
tasks that were once only possible through coding. However, there will still be the
need to code the more advanced data models and metric calculations. For example,
users with technical aptitude will still be needed to facilitate the advanced analysis
that we've seen in this book.

Mastering Qlik Sense Data Visualization

[260]

How we develop the load script and chart expressions remains largely unchanged
between Qlik Sense and QlikView. Therefore, many data visualization tips and
tricks that depend on manipulating the script, a calculated dimension, or a measure
expression will work in both tools. On the other hand, Qlik Sense's chart objects have
been built anew from the ground up, and they have no direct relationship to the ones
in QlikView. Therefore, any tips or tricks that involve a particular chart property
option in QlikView will most likely not work in Qlik Sense.

Even though Qlik Sense's chart objects currently offer fewer customizable properties
than QlikView's, we can expect more property options to be added with each new
version. However, as Qlik Sense's design intent is to be one that nontechnical users
can easily manipulate, it would be unlikely that its property dialogs will reach
QlikView's complexity or flexibility. Therefore, if we limit ourselves to employ
only what is natively available in Qlik Sense, we will fail take full advantage of the
opportunities that it offers.

For this reason, it is important that we change how we approach Qlik Sense. There
won't be many opportunities to resolve our challenges by playing with an object's
property options. So, the primary solution to most of our problems will be to develop
a new, or edit an existing visualization extension. If we are not familiar with JavaScript,
HTML5, and CSS, then we will need to invest time to learn these web programming
skills. Such investment is more worthwhile when we see how it can also create
opportunities to use Qlik-supported data analytics outside of Qlik Sense.

Qlik Sense is, in fact, only an example of what one could build on top of the Qlik
Analytics Platform (QAP), a developer platform that gives us the opportunity to
use Qlik's associative data model to address any data analytics need. We can use
QAP to embed custom data analytics into existing applications or create our own
personalized analytical tools. For example, we can embed data analytics in our
customer or supplier portals, our ERP, or our CRM.

Although we can also create extensions in QlikView, we can never make them as
powerful as native chart objects. However, QAP gives us access to the same APIs
that Qlik uses to develop Qlik Sense, so visualization extensions can be just as robust.
In the following section, let's take a look at an example of how we can use a visual
extension to help sales representatives discover cross-selling opportunities.

Chapter 11

[261]

Visualization extension examples for
cross-selling
As part of our balanced scorecard in Chapter 9, Balanced Scorecard, we purposed
giving sales representatives a tool that allowed them to analyze cross-selling
opportunities. We've decided to deliver this tool using Qlik Sense for the following
two reasons:

• Nontechnical users, such as sales representatives, can create their own
analysis

• Developers can create more powerful visualization extensions to help sales
representatives discover cross-selling opportunities

The following three Qlik Sense data visualizations were created by Ralf Becher
(http://irregular-bi.tumblr.com/). The first chart is a table that contains a
numerical interpretation of how different items or item sets are related. It was
created using a data mining algorithm called Apriori (https://en.wikipedia.org/
wiki/Apriori_algorithm), which is used to discover associations between items or
item sets and is a popular method to perform basket analysis.

Although we can use native QlikView and Qlik Sense to analyze individual
associations, a visualization extension using the Apriori algorithm offers a more
robust solution to discover the statistical correlation of every possible association.
Similarly to how we use R-squared along with a scatterplot to understand
correlations, we use confidence, support, and lift to understand association rules.

The first row in the table in the next figure evaluates the association rule, "If
Toughfind 1292 and True Ronlam are purchased, then Stathold is purchased by
the same customer." According to this table, Toughfind 1292, True Ronlam, and
Stathold are purchased by 22.2% of all customers (Support). Also, if a customer
purchases Toughfind 1292, True Ronlam, they are 100% likely to purchase Stathold
(Confidence).

http://irregular-bi.tumblr.com/
https://en.wikipedia.org/wiki/Apriori_algorithm
https://en.wikipedia.org/wiki/Apriori_algorithm

Mastering Qlik Sense Data Visualization

[262]

The final column, called Lift, takes Confidence and divides it by the overall
probability that a customer purchases Stathold. For example, if Stathold was
purchased by 50% of all customers, then Lift would be 2.00 (100%/50%). This
would imply that there is a relationship between purchasing Stathold, given that a
customer purchases Toughfind 1292, and True Ronlam. In short, a Lift greater than
1.00 implies an association between the item sets, and the greater the lift, the stronger
the relationship. In the case of Toughfind 1292, True Ronlam, and Stathold, a lift of
4.5 indicates a strong association:

The table in the previous figure alone is powerful, but there are also a couple
of visualizations that we can use to detect any customer purchase behavior that
would otherwise be difficult to discover. We can also use them to give us a general
overview of the data. Again, we use extensions to visualize this complex dataset that
would otherwise be laborious, if not impossible, to create through native objects.

Chapter 11

[263]

The first chart is a network chart that connects customer nodes to the product nodes
that they purchase. Along with the Gestalt principle of connection to perceive the
general connectivity between products and customers, we also use the principle of
proximity to detect clusters that may indicate stronger relationships. For example,
the remoteness of the customer Wordtune indicates how little their purchasing
behavior has in common with that of other customers:

Mastering Qlik Sense Data Visualization

[264]

Another example is the cluster of product nodes that comprises the products, Hot
Tom, Triolam, and Jobdax, that indicates a strong relationship between them. Upon
further investigation, we confirm that all three products are purchased by the same
customers. We can find cross-selling opportunities by zooming in on these product
clusters to see which customers have yet to purchase one of the related products.
We could also do the inverse and zoom in on related customer clusters and look for
products which have not been purchased by every related customer.

We could also make cross-selling recommendations based on the length of the path
between customer and product nodes. For example, Customer A's path to Product Y
is three nodes long if Customer A purchases the same Product X as Customer B, who,
in turn, also purchases Product Y. Therefore, we may have an opportunity to sell
Product Y to Customer A:

In order to create a list of opportunities based on path distance, we calculate the
shortest path between customer and product nodes using the Dijkstra algorithm
(https://en.wikipedia.org/wiki/Dijkstra's_algorithm) and define the
maximum path length that we will interpret as an opportunity. As a longer path
implies a weaker relationship between a product and its potential buyer, we create
our recommendations using paths of three or fewer nodes. Using the path shown
in the previous figure as an example, we will see both Product Y (3-node path) and
Product X (1-node path) being recommended for sale to Customer A.

Finally, we visualize these cross-selling recommendations using a Sankey chart that
is similar to the one we use in the marketing perspective in Chapter 4, Marketing
Perspective. In the chart, we can visualize the general extent of the cross-selling
opportunities through the connections between customer and product. We can also
perceive the number of opportunities per customer and per product through the size
of the bar that represents them. For example, the outlier, Wordtune, has the most
cross-selling recommendations. On the other hand, there are few opportunities to
cross-sell the Zamex and Trisdox products:

https://en.wikipedia.org/wiki/Dijkstra's_algorithm

Chapter 11

[265]

The Qlik Sense visualization extensions that Ralf Becher created are an example of
what we can expect from those who want to also become masters in Qlik Sense data
visualization. For those of us who have mastered QlikView and are excited to meet
this new challenge, let's go over the top-ten list of things that will be important to us
during the next year as we learn to master Qlik Sense.

Mastering Qlik Sense Data Visualization

[266]

Plan to master Qlik Sense data
visualization
For those of us who are QlikView developers with little or no web development
experience, developing visualization extensions can seem like a daunting task.
However, if we've mastered QlikView's load script and chart expressions and we've
learned how to effectively use data visualization and analysis to solve numerous
business problems, then this is the most obvious next step forward into growth. Let's
review our top-ten list of activities and resources that we need to consider to make
this next step successful:

1. Take care of the fundamentals and learn HTML5, CSS, and JavaScript.
If you have no web development experience or it's been a while since you've
actively used HTML, CSS or JavaScript, then brush up on the fundamentals
using the free tutorials available at http://www.w3schools.com/. If you
want something with even more structure, you can also try http://www.
asmarterwaytolearn.com/.

2. Go through Qlik Sense developer's help documentation and create your first
extensions.
Qlik's online help documentation contains a simple tutorial that will help
you get familiar with the development environment called the Dev Hub,
and the available APIs, as you create your first extension. As of Qlik Sense
2.2, you can find documentation to create visualization extensions, and
the tutorial at https://help.qlik.com/en-US/sense-developer/2.2/
Content/extend.htm. Make sure that you are looking at the latest version
of the documentation by selecting the most current version in the top section
of the page. You can also find a similar tutorial by Stefan Walther at GitHub
(https://github.com/stefanwalther/qliksense-extension-tutorial).

3. Get updated information and insight from the Qlik-related blogs.
Review the Qlik Branch blog (http://branch.qlik.com/) and search for
extensions at http://www.askqv.com/ to get the latest news about how to
use extensions.

4. Get live advice from the experts.
There is nothing like live advice from an expert to make sure that you are on
the right path. Ralf Becher, who created the extensions used in this chapter,
gives online classes on the subject through Q-On Training Center at http://
www.q-on.bi/.

http://www.w3schools.com/
http://www.asmarterwaytolearn.com/
http://www.asmarterwaytolearn.com/
https://help.qlik.com/en-US/sense-developer/2.2/Content/extend.htm
https://help.qlik.com/en-US/sense-developer/2.2/Content/extend.htm
https://github.com/stefanwalther/qliksense-extension-tutorial
http://branch.qlik.com/
http://www.askqv.com/
http://www.q-on.bi/
http://www.q-on.bi/

Chapter 11

[267]

5. Learn to use a data visualization JavaScript library.
Keep it simple and learn to use the most popular open source data
visualization JavaScript library D3 (https://d3js.org/). Along with online
examples and documentation, you can also find plenty of books on the
subject.

6. Find a visualization to develop and just get started.
Again, keep it simple and choose a D3 chart that looks fun, and then get
started developing it. Even if it's an animated chart that ends up being
useless in the end, pick something that will motivate you to show it off.

7. Fail fast and look for answers in the work done by others.
Although it is important that you try to do it yourself first, when you do
get stuck, don't hesitate to look over the example extensions found in C:\
Users\<username>\Documents\Qlik\Examples\Extensions, or the
extensions created by fellow developers in Qlik Branch (http://branch.
qlik.com/).

8. Contribute to the Qlik Branch.
Now that you've created the first extension on your own, it's time to give
back to the community. As you now know what kind of work is out there in
the Qlik Branch (http://branch.qlik.com/), choose your next extension
based on what you think would be useful to others and upload it. As well as
helping others enrich their data visualization, they help you by testing your
extension in different environments and giving you feedback.

9. Take the time to learn what will make you better (sharpen the saw).
Once you have mastered the fundamentals and become a contributor to
Qlik Branch, go back to learn anything that you feel would make your
development better, such as jQuery, Angular JS, other data visualization
JavaScript libraries, or even a predicative analysis JavaScript library.

10. Create an extension to solve a real business need.
Find a data analysis need that you cannot directly resolve using Qlik Sense
and develop a solution using an extension. This could be a user requirement
for a visualization that cannot be created using native chart objects, or a data
mining example, such as basket analysis. Once you have a customer that
demands certain functionality and you are challenged to deliver a solution,
you will quickly become a proficient Qlik Sense developer.

https://d3js.org/
http://branch.qlik.com/
http://branch.qlik.com/
http://branch.qlik.com/

Mastering Qlik Sense Data Visualization

[268]

Summary
Just as Qlik invested time and resources to rebuild a new, deeper foundation, we
also need to take the time to sharpen the saw and become more capable developers.
We need to learn web development skills in order to extend Qlik Sense's ability to
provide self-service analytics, and make insightful data analysis and visualization
ubiquitous using the Qlik Analytics Platform.

Amid all these new developments, QlikView will persist to address the needs of
organizations which require analytical applications with a personalized UX. As
such, it will continue to be the backbone analytics tools for many customers, and
as such, we need to continue to push the limits of what is possible in QlikView. In
this book, we've seen examples of how far we can take QlikView within various
business perspectives, and by no means is this an exhaustive list of what is possible.
Its real intention is to give you the confidence to think outside the box and find the
best solution to the user stories that you encounter. When you do, I look forward to
learning from you, the QlikView master.

[269]

Index
A
Accounts Payable (A/P) 101
Accounts Receivable (A/R) 101
agile development

about 10, 11
minimum viable product (MVP) 11
user story 11

AlchemyAPI
URL 93

Annual Cost of Goods Sold (COGS) 111
Apriori

URL 261
AsOfCalendar 53
Atlassian Confluence

URL 243
Average Inventory Value 111

B
Balanced Scorecard (BSC) Method

about 209-212
Business process perspective 213
consolidated data model 214-217
customer perspective 212
financial perspective 212
growth perspective 214
internal perspective 213
learning perspective 214

Balanced Scorecard (BSC) Method,
dashboard design

about 218
Gestalt principles of perceptual

organization 218, 219

balance sheet 66-70
BugHerd

URL 245, 246
BugHerd QlikView document extension

URL 246
bullet graph

about 192-196
URL 192

Business Intelligence (BI) 2

C
capital breakdown

working 111-114
capital data model

working 102-105
Cash Conversion Cycle (CCC) 110
cash flow statement 70-73
census data

URL 78
Chi-squared test of independence 147
cross-selling

visualization extension examples 261-265
CSS

tutorials, URL 266
Customer Fact sheet

Agile design 186
data model, consolidated 182-186
in QlikView 206

Customer Fact sheet, advanced components
about 192
bullet graph 192-196
sparklines 196, 197

[270]

Customer Fact sheet, Agile design
about 186
first visualization 192
user stories, converting into

visualizations 189-191
user stories, creating 187
user story, flow 188, 189

customer profiling
about 79
market size analysis 86-89
parallel coordinates 79-84
sales opportunity analysis 97-99
Sankey 84-86
social media analysis 92-97

Customer Relationship Management (CRM)
system 75

customer stratification
by distribution 120-124
visualizing 125-128

D
dashboard 209
data exploration 2
data model

about 132
marketing 76-78

data model, financial perspective
about 48-51
AsOfCalendar 53, 54
balance sheet 66-70
cash flow statement 70-73
custom format cell 61-66
financial report metadata 51-53
income statement 54-61

data model issues, QlikView
about 247
data, requirements 252-255
expression total 249, 250
expression values, similarity 248
list box, duplicate values 250-252

data model, sales perspective
about 18-21
case 26
customer churn 36-41
data, cleansing 26

dates and time 27
dimension value, missing 22, 23
exercise 31-36
fact value, missing 24, 25
master calendar 28-30
null values 22
pareto analysis 30, 31
standardization 26
unwanted characters 27

data teams and roles
about 4
data governance team 8-10
data research and development

(R & D) team 5-8
data visualization 2-4
Days Payable Outstanding (DPO) 110
Days Sales of Inventory (DSI) 106, 107
Days Sales Outstanding (DSO) 108-111
Dijkstra algorithm

URL 264

E
Enterprise Resource Planning (ERP) 17
Evernote

URL 243
expression issues, QlikView

about 255
row calculation, issues 255, 256
table, amounts 256-258

extensions
URL 266

Extraction, Transform, and Load (ETL) 14
Extreme Programming (XP) 10

F
filter pane bubble

creating 225-227

G
GeoQlik

URL 87
Gestalt principles of perceptual

organization
about 218, 219

[271]

closure 221
connection 222
continuity 223
enclosure 220
proximity 219
similarity 224, 225

GitHub
URL 266

GitHub Gist
URL 243

governance 44, 46
graphic design

and data visualization 1

H
hash function

URL 159
HTML

tutorials, URL 266
Human Resource Management Systems

(HRMS) 155
Human resources data model

about 156-158
dimensions attributes, changing

slowly 158, 159

I
Idevio

URL 87
income statement 55-61
interactive tutorial

creating 228-231
inventory stock levels 115-117
issues

reporting 245, 246

J
JavaScript

tutorials, URL 266
JavaScript library D3

URL 267

K
KliqPlan

about 151
other applications 154
sales forecasts and purchase planning 152
tool extensions, planning 151
URL 151

KliqTable component 153

M
market size analysis 86-92
Microsoft OneNote

URL 243
Minimally Viable Products (MVPs) 3, 11-14

N
North American Industry Classification

System (NAICS) 78

O
Online Analytical Processing (OLAP) 2
On-Time and In Full (OTIF)

about 136, 137
bar chart, creating 137, 138
breakdown 139-142
lead time, predicting 142-146
supplier and On-Time delivery,

correlation 149, 150
operations data model

about 131-134
multiple date fields, handling 135, 136

P
parallel coordinates

about 80-84
URL 79

personal behavior analysis 176, 178
personnel productivity, breakdown

about 163
age distribution 164-166

[272]

employee retention rate 170, 171
employee training and

performance 174-176
employee vacation and sick days 172-174
salary distribution 167-170

Point of Sales (PoS) software 17

Q
Qlik Analytics Platform (QAP) 260
Qlik Branch

URL 126
Qlik Branch blog

URL 266
Qlik Community 243
QlikMaps

URL 87
Qlik Market

URL 93
Qlik Sense

developers 259, 260
Qlik Sense 2.2

URL 266
Qlik Sense data visualization

mastering 266, 267
URL 261

Qlik Support 244
QlikView

Customer Fact sheet 206
developers 259, 260

QlikView application issues
about 247
data model issues 247
expression issues 255

QlikView Components
URL 28

QlikView Deployment Framework (QDF)
about 14, 15
URL 14, 15

QlikView extensions
and cycle plot 42-44

QlikView Help 242
QlikView User Experience (UX)

customizing 198
dynamic data visualization 200-204

regional settings 205
supplementary information,

quick access 198-200
Q-On Training Center

URL 266
QVSource

URL 27

R
regional settings

about 205
date and number formats 206
language 205

report
aging 117, 118

rotation and average days 106

S
sales opportunity analysis 97-99
Sankey

about 84-86
extension, URL 85

Slowly Changing Dimensions (SCD)
attributes 158

social media analysis 92-97
sparklines 196, 197
Strategy Map 211

T
troubleshooting

debugging skills, general 240
diagnose 241
issue, fixing 242
local knowledge base 243
preparing for 239, 240
Qlik Community 243
Qlik Support 244
QlikView Help 242
reflect 242
reproduce 240
resources 242

[273]

U
Unicode geometric shapes

URL 231

W
Word Cloud extension

URL 96

X
XmR charts

about 231, 232
creating 233-236

Y
Year-over-Year (YOY) growth 212
Year-to-Date (YTD) growth 212

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Data Visualization Strategy
	Data exploration, visualization, and discovery
	Data teams and roles
	Data research and development
	Data governance team

	Agile development
	User story
	Minimum Viable Product

	QlikView Deployment Framework
	Exercise 1

	Summary

	Chapter 2: Sales Perspective
	Sales perspective data model
	Exercise 2.1
	Data quality issues
	Missing dimension values
	Missing fact values

	Data formatting and standardization
	Case
	Unwanted characters
	Dates and time
	Master calendar

	Customer stratification.
	Pareto analysis
	Exercise 2.2
	Exercise 2.3

	Customer churn
	Exercise 2.4
	Exercise 2.5

	QlikView extensions and the cycle plot
	Exercise 2.6

	Governance – design template
	Summary

	Chapter 3: Financial Perspective
	Financial perspective data model
	Exercise 3.1
	Financial report metadata

	AsOfCalendar
	Income statement
	Exercise 3.2
	Custom format cell
	Exercise 3.3

	Balance sheet
	Exercise 3.4
	Exercise 3.5

	Cash flow statement
	Exercise 3.6

	Summary

	Chapter 4: Marketing Perspective
	Marketing data model
	Customer profiling
	Parallel coordinates
	Exercise 4.1
	Exercise 4.2

	Sankey
	Exercise 4.3
	Exercise 4.4

	Market size analysis
	Exercise 4.5
	Exercise 4.6
	Exercise 4.7

	Social media analysis
	Sales opportunity analysis
	Exercise 4.11

	Summary

	Chapter 5: Working Capital Perspective
	Working capital data model
	Rotation and average days
	Days Sales of Inventory
	Exercise 5.1

	Days Sales Outstanding
	Exercise 5.2

	Days Payable Outstanding
	Exercise 5.3
	Exercise 5.4

	Working capital breakdown
	Exercise 5.5
	Inventory stock levels
	Exercise 5.6

	Aging report
	Exercise 5.7

	Customer stratification
	Stratification by distribution
	Exercise 5.8
	Exercise 5.9

	Visualizing stratification
	Exercise 5.10

	Summary

	Chapter 6: Operations Perspective
	Operations data model
	Handling multiple date fields

	On-Time and In-Full
	Exercise 6.1
	OTIF breakdown
	Exercise 6.2

	Exercise 6.3
	Predicting lead time
	Exercise 6.4
	Exercise 6.5

	Supplier and On-Time delivery correlation
	Exercise 6.5

	Planning in QlikView with KliqPlan
	Planning tool extensions
	Sales forecasts and purchase planning
	Other applications

	Summary

	Chapter 7: Human Resources
	Human resources data model
	Slowing changing dimensions attributes

	Personnel productivity
	Exercise 7.1
	Exercise 7.2

	Personnel productivity breakdown
	Age distribution
	Exercise 7.3

	Salary distribution
	Exercise 7.4

	Employee retention rate
	Exercise 7.5

	Employee vacation and sick days
	Exercise 7.6

	Employee training and performance
	Exercise 7.7

	Personal behavior analysis
	Exercise 7.8

	Summary

	Chapter 8: Fact Sheets
	Customer fact sheet consolidated
data model
	Customer Fact sheet Agile design
	Creating user stories
	User story flow
	Converting user stories into visualizations
	Going beyond the first visualization

	Customer Fact sheet advanced components
	Bullet graph
	Exercise 8.1
	Exercise 8.2

	Sparklines
	Exercise 8.3

	Customizing the QlikView User Experience
	Quick access to supplementary information
	Exercise 8.4

	Dynamic data visualization
	Exercise 8.5

	Regional settings
	Currency
	Language
	Date and number formats

	Customer Fact sheet n QlikView

	Summary

	Chapter 9: Balanced Scorecard
	The Balanced Scorecard method
	The financial perspective
	The customer perspective
	The internal business process perspective
	The learning and growth perspective

	The Balanced Scorecard consolidated data model
	The Balanced Scorecard information dashboard design
	The Gestalt principles of perceptual organization
	Proximity
	Enclosure
	Closure
	Connection
	Continuity
	Similarity

	Creating the filter pane bubble
	Exercise 9.1
	Creating an interactive tutorial
	Exercise 9.2

	Measuring success with XmR charts
	Exercise 9.3

	Summary

	Chapter 10: Troubleshooting Analysis
	Troubleshooting preparation and resources
	Positive mindset
	General debugging skills
	Reproduce
	Diagnose
	Fix
	Reflect

	Resources
	QlikView Help
	Local knowledge base
	Qlik Community
	Qlik Support

	Reporting issues
	Common QlikView application issues
	Common QlikView data model issues
	All expression values are exactly the same
	The expression total is not equal to the sum of the rows
	Duplicate values in a list box
	Data doesn't match user expectation

	Common QlikView expression issues
	The expression does not calculate every row
	The amounts in the table are not accumulating

	Summary

	Chapter 11: Mastering Qlik Sense
Data Visualization
	Qlik Sense and QlikView developers
	Visualization extension examples for cross-selling
	Plan to master Qlik Sense data visualization
	Summary

	Index

