

Mastering Symfony

Orchestrate the designing, development, testing, and
deployment of web applications with Symfony

Sohail Salehi

BIRMINGHAM - MUMBAI

[FM-2]

Mastering Symfony

Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: April 2016

Production reference: 1210416

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78439-031-0

www.packtpub.com

www.packtpub.com

[FM-3]

Credits

Author
Sohail Salehi

Reviewers
Mickaël Andrieu

Vincent COMPOSIEUX

Tito Miguel Costa

Commissioning Editor
Usha Iyer

Acquisition Editors
Tushar Gupta

Richard Harvey

Content Development Editor
Aishwarya Pandere

Technical Editors
Pranil Pathare

Danish Shaikh

Copy Editor
Tasneem Fatehi

Project Coordinator
Nidhi Joshi

Proofreader
Safis Editing

Indexer
Mariammal Chettiyar

Production Coordinator
Nilesh Mohite

Cover Work
Nilesh Mohite

[FM-4]

About the Author

Sohail Salehi is a full stack web developer who is constantly seeking creative
solutions for complex problems. He believes that what has been taught as
universalities should be considered as a basic stepping stone to real-life challenges.
They cannot be used as practical solutions. He learned that a one-size-fits-all solution
does not work in the IT world. Every business, every coding challenge, and every
environment setup has its own signature and requires some tweaking on basic
principals to make sure that it receives a reliable cost-effective solution.

When he is not staring at his computer screen, he is watching sunsets and sunrises,
swimming and surfing in the ocean, and putting his subconscious mind at work by
asking creative questions while facing life's ups and downs on a daily basis.

I would like to thank the Packt Publishing team for being supportive
at all times and also being patient with me at the times I've gone
wild and updated the book contents over and over again.

[FM-5]

About the Reviewers

Mickaël Andrieu is a passionate open source engineer, contributor, and
maintainer of projects such as Symfony, CasperJS, and Certificationy. He is
currently a core developer and technical evangelist of the open source e-commerce
solution, PrestaShop, built around the Symfony framework in its latest version. An
ex-developer at SensioLabs, he has accumulated good expertise in PHP and the
Symfony framework.

When he is not working on his own project, he teaches best development practices to
engineering students or advices big companies on their open source strategies.

He has worked at SensioLabs and Lp digital system.

He will probably be working on another book, as Llewellyn F. Rozario just contacted
him for another review.

[FM-6]

Vincent COMPOSIEUX is a French web engineer who loves technologies such as
PHP, Python, NodeJS, and Go. He is based in Paris and working at Ekino, a French
web agency that focuses on quality.

Previously, he has worked for e-commerce companies and web agencies on multiple
web projects with high traffic.

He loves web technologies and frameworks and has experience using the Zend
framework, Magento, and Symfony.

He has great experience of Symfony because he has been using it since the very first
version and is actively involved in the Symfony community.

Indeed, he has developed some bundles such as FeedBundle to manage RSS and
Atom feeds, GoogleTranslateBundle to use the Google Translate API to translate
content, and some others. He is also a contributor to the Sonata bundles suite.

You can contact him and see more on his personal website, http://vincent.
composieux.fr.

Tito Miguel Costa is a full stack web application developer with over 10 years of
experience in PHP. He started using Symfony back in 2007, when version 1.0 was
released and it remains his favorite framework until now. Back in Portugal, where he
is originally from, he organized several courses and oriented a dissertation on how to
optimize and scale projects built with Symfony. Currently, he maintains several open
source bundles and works as a senior Symfony developer at Lendable, one of the
most promising start-ups in London.

http://vincent.composieux.fr
http://vincent.composieux.fr

[FM-7]

www.PacktPub.com

eBooks, discount offers, and more
Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at customercare@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib

[i]

Table of Contents
Preface vii
Chapter 1: Installing and Configuring Symfony 1

Why Symfony? 1
Influenced by Symfony 2
How bright is the future? 3

Installation 4
Composer and Packagist 6

Installing Symfony via Composer 9
The road map 11
Checking the installation 12

Summary 12
Chapter 2: The Request and Response Life Cycle 13

The big picture 13
Anatomy of a bundle 16

Generating a new bundle 18
Best practices 21

Custom bundles versus AppBundle 22
Creating templates with TWIG 23

Controller/View interaction 24
Conditional templates 25
Make it dynamic 26
Database configurations 26
Generating an entity 27
Installing bundles created by others 29

Creating data fixtures 30
Loading data fixtures 31

Table of Contents

[ii]

Dynamic templates and controllers 32
The big picture with MVC 34
Summary 35

Chapter 3: Setting Up the Environment 37
The importance of Continuous Integration 38
Amazon Web Services 38
Elastic Compute Cloud 40

Creating a new instance 41
Setting up the server 45

Installing Apache 45
Installing MySQL and PHP 45
Installing Jenkins 46
Setting up security and installing plugins in Jenkins 48

Simple Email Service 53
Configuring Jenkins 55

Installing PHP tools 56
Sniff Symfony codes 58

Orchestrating the build process 58
Creating a new job in Jenkins 64
Running the first build 69

How does GitHub alert Jenkins about new pushes? 70
Do I need CI? 72
Summary 73

Chapter 4: Using Behavior-Driven Development in Symfony 75
Getting started with BDD 76

Is BDD a replacement for TDD? 76
What is Behat? 77

Installing and configuring Behat 77
The features we need for this project 78

More information about the project 79
Gherkin – the common language 80

Writing a scenario for the about page 81
Seeing it in action 81
Headless versus zombie 83
Using the Selenium2 controller for automated tests 83

The about page does not follow BDD 85
A scenario to show the user's details 85
Implementing the user's details scenario 88
Testing the scenario 89

More about the acceptance test flow in Mink 90

Table of Contents

[iii]

Defining and prioritizing features 91
Codeception – the BDD style testing framework 92

Installing the Codeception framework 93
Bootstrapping Codeception 93
Test suits 95
The testers 97
Adding sample tests 98
Running the tests 99

Summary 101
Chapter 5: Business Logic 103

Choosing between creating a Model or entity 104
So where does the business logic live? 106
Reviewing the facts and building entity relationships 106

Creating ERDs using MySQL Workbench 107
Adding a new entity 109
Adding a new relationship 111
Creating actual tables from a diagram 112
Generating entities 115
Data fixtures 116

Some business logic features and scenarios 120
TDD and BDD with Codeception 121

Step one – creating a functional test 122
Developing the missing code 123
Step two – creating the unit tests 124
Setting up the database for a test environment in the right way 125
Dropping and recreating the database for each test 126
Creating unit tests 127
Writing the code to pass the test 130
Running functional and unit tests 131
Step three – creating an acceptance test 132

On the CI side of the story 134
Summary 135

Chapter 6: Dashboard and Security 137
How security is organized in Symfony? 138

Authentication 139
Authorization 140

Handling users with FOSUserBundle 140
Security settings 142
Adding the required configurations to FOSUserBundle 143
Adding routes 143

Table of Contents

[iv]

Updating the tables 144
A simple road test 145

Generating automated data fixtures 147
Introducing AliceBundle 147
Creating data fixtures with Alice 148
Relationship with Alice 149
Setting up the login redirection 150

Creating tests for the new controller 151
Creating the Dashboard Controller 152
Securing the dashboard 154

The Sonata project 154
Installing and configuring Sonata bundle 155
Adding contents to the dashboard 156
Creating admin feature for entities with relations 159

Integrating FOSUserBundle into the admin area 160
Installing SonataUserBundle 160
SonataUserBundle configuration 161
Updating the routes 162
Setting the security 164
Checking the installation 165
Putting SonataUserBundle in charge 166

User dashboard 169
Generating CRUD 169

Modifying the forms 171
Summary 172

Chapter 7: The Presentation Layer 173
How assets are organized 173
Asset management 174
How templates are organized 175
Let's mold the clay 176
To navigate or not to navigate 179
What is Bootstrap? 180
MopaBootstrapBundle 180

Bootstrap configuration 182
Creating your first menu 184

Rendering the menu in a template 186
The Dashboard template 186
Overriding templates 188

Profile-related templates 188
Changing the backend logo 191
Summary 192

Table of Contents

[v]

Chapter 8: Project Review 193
The dashboard's contents 193

Visual blocks that provide statistics about tasks 194
A feature file for the finished tasks block 195
Implementing the finished tasks block 197
Implementing the dashboard controller 200

Uploading files with SonataMediaBundle 201
Adding an attachment feature to the Task entity 202

Team and team members 203
The Team entity 204

Adding a notification system 207
Adding time tracking properties 208

The notification business logic 210
Events, event dispatchers, and event listeners 212
The Notifier event listener 213

Summary 215
Chapter 9: Services and Service Containers 217

How to create a service 218
How are services beneficial to our projects? 218
How to call a service 219
How to configure a service 220
Why is it called a Dependency Injection Container? 220
Why didn't we import services inside the bundle? 222
How to create and load services via autowiring 223
Organizing services with tags 224
Summary 225

Chapter 10: Custom User Commands 227
Creating and registering commands 227
Creating commands for tasks 228

The configuration part 229
The execution part 230

Adding interactivity to commands 233
Console helpers 233

Summary 238
Chapter 11: More about Dev, Test and Prod Environments 239

Why do we need different environments? 239
The environment configuration file 240

Processing configuration files 240
Creating a new environment 242

The config file 242

Table of Contents

[vi]

The front controller 244
Summary 244

Chapter 12: Caching in Symfony 245
Definition of a cache 245

Characteristics of a good cache 247
Caches in a Symfony project 248
Key players in the HTTP cache header 250
Using the Symfony reverse proxy cache 251

Set expiration for dashboard page 252
Validation strategy 256

How to mix expiration and validation strategies 257
Doctrine cache 258

Putting it all together 260
ESI for selective caching 261
Sophisticated bundles 262
Summary 262

Index 263

[vii]

Preface
Welcome to your journey in Mastering Symfony. It is my duty and absolute pleasure
to show you a different side of Symfony's world and take your development
knowledge to a whole new level. In this book, I will not only sharpen your Symfony
skills, but will also show you how to look at a project from different angles.

As a backend developer, you can always stick to your skill set and deliver a good
job. However, it would be excellent if we could experience the way a business
requirement is born, how a project manager sees the problem, what kind of
technologies a system administrator uses to host the project, and how it affects
developers, before finally knowing how to establish a more efficient work flow with
frontend developers.

Having already published a few books, I am proud to say that this one—Mastering
Symfony—is unique. After warming you up with some introductory materials, I
will take you to the heart of the devil and show you how to find your way around
a seriously robust project with mountains of real-life challenges. To run this show
properly, I needed a decent-size stage. That's why I've decided to build a project
management web application over the tutorials of this book. This web application
gives me enough space to explore and expand many of Symfony's features required
for my goal.

After the two introductory chapters, I will talk about how to set up a project
properly. In other words, I will discuss the importance of concepts such as version
control, continuous integration, deployment process, behavior-driven development,
and so on. I will use Amazon Web Services to host our development, test, and
deployment servers and show you how to integrate AWS tools and technologies into
your Symfony project.

Preface

[viii]

Then, I will talk about why the development culture has changed recently and
why, before writing a single line of code, we have to be clear about scenarios and
behaviors. I will discuss Behat and Mink and, more importantly, show you how to
utilize them in your projects.

Finally, after I feel confident about everything being in the right place, we will start
the real coding. In our Model layer, we will create business logic via Doctrine and
feed it with data fixtures. In our Controller layer, we will develop and use a dozen of
amazing functionalities coming from various bundles, and in our View layer, we will
explore the Twig template engine thoroughly and implement slick frontend features
and mobile functionality with the Bootstrap 3.x framework.

A good web app should be able to provide decent security, a user-friendly dashboard,
and reasonable speed. That's where I will expand the security concept in Symfony
and discuss the Sonata project, followed by the idea of CMF. For those who concern
themselves with performance, I will show you how to create blazing fast Symfony
applications with the help of reverse proxy caching systems such as Varnish.

What this book covers
Chapter 1, Installing and Configuring Symfony, helps you understand the idea of
packages and package management along with the installation of Symfony.

Chapter 2, The Request and Response Life Cycle, introduces you to basic Symfony
concepts such as bundles, routing, twig, doctrine, and so on over the course of a
request/response life cycle.

Chapter 3, Setting Up the Environment, shows you how to set up development, test,
and deployment environments in AWS and set up Behat and Git for BDD and
version control respectively.

Chapter 4, Using Behavior-Driven Development in Symfony, covers Behat and Mink and
how to use them to create reliable projects.

Chapter 5, Business Logic, discusses the model layer and Doctrine thoroughly.

Chapter 6, Dashboard and Security, shows you authentication and authorization steps
in a security checking process and how to create a control panel for our project using
the Sonata project and its bundles. The FOSUserBundle will be explained as well.

Chapter 7, The Presentation Layer, discusses the Twig template engine and Bootstrap 3.x
framework. We will see how to use a bundle to integrate Bootstrap into our templates.

Chapter 8, Project Review, reviews what we have created so far and optimizes the
code further.

Preface

[ix]

Chapter 9, Services and Service Containers, explains concepts such as Dependency
Injection, Service Containers, and Services.

Chapter 10, Custom User Commands, walks you through the steps to create customized
commands for Symfony's console.

Chapter 11, More about Dev, Test, and Prod Environments, is a short chapter about
Symfony environments. We will see how different they are from each other, how
we can customize them based on project requirements, and how to create our own
environments with their own front controller.

Chapter 12, Caching in Symfony, talks about performance optimization and the usage
of Varnish and Memcached in our project.

What you need for this book
Although examples of this book can be adapted and executed on any machine, my
headspace is mainly around Linux and OSX platforms. For a deeper focus on the
subject itself, I would suggest a Windows user to install Linux via a virtual machine
such as Oracle's VirtualBox and follow the samples in a Linux environment. In
Chapter 3, Setting Up the Environment, we will need an AWS account. Thanks to
Amazon, there is a 1-year free tier account, which gives us enough resources to follow
examples in this book. Before installing Symfony, make sure that you have the latest
stable version of PHP and MySQL installed already. Having a database management
application such as MySQL Workbench, HeidiSQL, or NaviCat is optional but it is
nice to have them.

Who this book is for
This book is for PHP developers who have already used Symfony and are looking
to master the framework to its fullest potential. In other words, I presume that you
have been using PHP and object-oriented techniques for a while and are familiar
with Symfony basics already. To make sure that we are on the same page, I will give
you a crash course at the beginning of this book; then we will explore more advanced
topics as we proceed.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Preface

[x]

Code words in text are shown as follows: "We can inherit other templates through
the use of the extends() tag."

A block of code is set as follows:

public function aboutAction($name)
{
 $em = $this->container->get('doctrine')->getManager();
 $repo = $em->getRepository('ProjectBundle:Assignee');
 $photographer = $repo->findOneBy(array('name' =>$name));
 return $this->render('ProjectBundle:Default:about.html.twig',
 array('Assignee' =>$Assignee));
}

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

public function aboutAction($name)
{
 $em = $this->container->get('doctrine')->getManager();
 $repo = $em->getRepository('ProjectBundle:Assignee');
 $photographer = $repo->findOneBy(array('name' =>$name));
 return $this->render('ProjectBundle:Default:about.html.twig',
 array('Assignee' =>$Assignee));
}

Any command-line input or output is written as follows:

app/console doctrine:fixtures:load --append

New terms and important words are shown in bold. Words that you see on the screen,
in menus or dialog boxes for example, appear in the text like this: "in Symfonyprofiler
page click on the Security button to see if the current user is authenticated".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

Preface

[xi]

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for this book from your account at
http://www.packtpub.com. If you purchased this book elsewhere, you can visit
http://www.packtpub.com/support and register to have the files e-mailed directly
to you.

You can download the code files by following these steps:

1. Log in or register to our website using your e-mail address and password.
2. Hover the mouse pointer on the SUPPORT tab at the top.
3. Click on Code Downloads & Errata.
4. Enter the name of the book in the Search box.
5. Select the book for which you're looking to download the code files.
6. Choose from the drop-down menu where you purchased this book from.
7. Click on Code Download.

You can also download the code files by clicking on the Code Files button on the
book's webpage at the Packt Publishing website. This page can be accessed by
entering the book's name in the Search box. Please note that you need to be logged in
to your Packt account.

Once the file is downloaded, please make sure that you unzip or extract the folder
using the latest version of:

• WinRAR / 7-Zip for Windows
• Zipeg / iZip / UnRarX for Mac
• 7-Zip / PeaZip for Linux

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support

Preface

[xii]

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/
diagrams used in this book. The color images will help you better understand the
changes in the output. You can download this file from https://www.packtpub.
com/sites/default/files/downloads/MasteringSymfony_ColorImages.pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated
material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

https://www.packtpub.com/sites/default/files/downloads/MasteringSymfony_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MasteringSymfony_ColorImages.pdf
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

[1]

Installing and Configuring
Symfony

This chapter is merely a refresher for those who are pretty confident in using
Symfony and an introduction for those who are quick learners! You can expect to
read about how to install the Symfony Standard Edition package and manage its
dependencies via Composer. After installation, we will check to make sure that
everything is configured properly. The following are the main topics that we will
talk about in this chapter:

• Discussing Symfony
• Using Composer and Packagist
• Installing Symfony
• Checking the installation
• Running a PHP built-in web server

Why Symfony?
I don't like to talk about features, numbers, and statistics. I don't do detailed
comparisons between frameworks as well. Instead, I'd like to share an experience
with you. As a PHP developer, I worked for the New Zealand Herald newspaper
for a while. Sure, they are not the oldest newspaper in the world, but in 2013, they
celebrated their 150th anniversary, which makes it very clear that over the years, they
have created layers and layers of code on top of each other and used or tried almost
every framework and technology in their website and internal newspaper systems.
Their repositories contain tons of legacy codes written in different languages. You
won't believe it if I say different parts of their system were implemented in Perl, Java,
C#, ColdFusion, and PHP, and there was (perhaps, still is?) an API layer that acts as
a communicating bridge between all of them.

Installing and Configuring Symfony

[2]

Due to many factors such as maintenance costs, in the past few years, people at
the NZ Herald decided to migrate their entire applications and services into one
integrated system; something that is reliable, efficient, and easy to expand and
maintain. Having experienced many frameworks already, the solution architects at
NZ Herald chose Symfony as their framework.

They realized that those colorful graphs and pretty pictures that compare
benchmarking results for various frameworks are worth nothing when it comes
to real-life problems. They experienced the efficiency of various frameworks in the
day-to-day challenges and understood that no matter how fast the development
speed might look at the beginning, the most important thing is how reliable
it actually is and how much it costs when it comes to maintaining the project.
They simply put a price tag on many factors including performance, abstraction,
decouplement, portability, integration, and above all, how well organized the code
base will be after spending several years and using several men for the development.
Guess what? Symfony beat every PHP framework out there.

What I'm trying to say is that Symfony is not just another tool for web app or website
development. It is a new culture for web development, a solid reliable foundation
that you can build your project on top of with peace of mind. I call it a new culture
because for the first time, I see that it has made various PHP communities talk to
each other and work together. I believe this is the most important PHP achievement
ever. In the years to come, we will see more about this movement.

Influenced by Symfony
I believe one of the main reasons why Symfony stands out of the crowd is the
way it defines the Model-View-Controller (MVC) design pattern. This is the key:
Symfony defines MVC while many other frameworks try to simply follow MVC
rules. Can you see the difference? This means that Symfony contains MVC but does
not constrain it. Have a look at the MVC definition and keep it in mind that as we
continue the journey through the chapters of this book, you will see what I mean by
this. Maybe, this is reason that other PHP frameworks and Content Management
Systems (CMS) adapted the Symfony components and started to follow in its
footsteps.

If you look at the following link, you will see the other great players such as Drupal,
phpBB, Laravel, Composer, Doctrine, Behat, and many others who use and benefit
from Symfony components:

http://symfony.com/projects

http://symfony.com/projects

Chapter 1

[3]

For those who concern themselves with performance and their judgment is blinded
by Hello World benchmarking results, I can talk about large companies such as BBC,
CBS, and many others who chose Symfony.

Please don't tell me that these big boys didn't do due diligence before making a
big decision like choosing a framework. They know the amount of pressure their
website receives on a hourly basis and they do care about the quality of their service.
There must be a good reason that they chose Symfony over other frameworks. In a
nutshell, Symfony helps have a better organized code that reduces the maintenance
costs tremendously and, at the same time, it can benefit from modern caching
systems such as Varnish, which help with a better performance. Chapter 12, Caching
in Symfony is all about performance improvement and caching systems.

How bright is the future?
In December 2013, when Fabien Potencier—the creator of Symfony—announced
that he raised seven million dollars to boost Symfony and its ecosystem, I literally
dropped other frameworks and decided to invest and focus even more on Symfony.

It is clear to me if he was capable of making his mark without raising money, then
from 2014 onwards, he will be able to make a huge impact on the PHP world.

Don't get me wrong; I've been using other frameworks and respect other teams who
made an effort to create a web development tool with PHP. I have used famous
frameworks such as Zend to domestic packages such as MySource Matrix and
SilverStripe. As a hobbyist, I also try new libraries and ideas in the open source
world. However, every PHP developer needs to choose a right direction and set
of tools as his main weapon. For me, it is Symfony, and I can see that Symfony
developers will be in even higher demand soon.

Assuming that you are an experienced PHP developer and familiar
with open source development, the tutorials in this book are provided
for Linux and Mac platforms. I politely invite Windows users to
install a VM application such as Oracle VirtualBox and any Linux
distribution to follow the provided examples. You can download it
from https://www.virtualbox.org/.

https://www.virtualbox.org/

Installing and Configuring Symfony

[4]

Installation
There are four ways to install the Symfony framework:

• Download the archive file in the root of our project and unpack it there
• Clone the project from GitHub
• Use the Symfony installer tool
• Use Composer to install it for us

The easiest way is to download the Symfony installer and make it publicly accessible
via the following commands:

$ sudo curl -LsS https://symfony.com/installer -o /usr/local/bin/symfony

$ sudo chmod a+x /usr/local/bin/symfony

Now create a new project simply by running the following command:

$ symfony new mava

As this command shows, it will ask the Symfony installer to create a new folder in
the current path called mava, and when you hit enter, you will see that the Symfony
source code will be downloaded to that folder:

If you don't mention a version number or branch name in
the installer command, it downloads and installs the latest
stable version of Symfony.

Chapter 1

[5]

In the list of things that we can do after installation is running the application
immediately, without installing a virtual host. Thanks to the PHP built-in web
server, we can run it via Symfony's console and browse the mava app at port 8000
on localhost:

$ bin/console server:run

The following screenshot shows how http://localhost:8000 looks like in your
favourite browser:

Installing and Configuring Symfony

[6]

Downloading the example code
You can download the example code files for this book from your
account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and
register to have the files e-mailed directly to you.
You can download the code files by following these steps:

• Log in or register to our website using your e-mail address and
password.

• Hover the mouse pointer on the SUPPORT tab at the top.
• Click on Code Downloads & Errata.
• Enter the name of the book in the Search box.
• Select the book for which you're looking to download the code

files.
• Choose from the drop-down menu where you purchased this

book from.
• Click on Code Download.

You can also download the code files by clicking on the Code Files
button on the book's webpage at the Packt Publishing website. This
page can be accessed by entering the book's name in the Search box.
Please note that you need to be logged in to your Packt account.
Once the file is downloaded, please make sure that you unzip or extract
the folder using the latest version of:

• WinRAR / 7-Zip for Windows
• Zipeg / iZip / UnRarX for Mac
• 7-Zip / PeaZip for Linux

Composer and Packagist
Composer is a dependency manager application that can be used to install
PHP packages.

Some developers prefers Composer, not just because it is easy to use, but it is far
more efficient when it comes to keeping track of the project dependencies. In fact,
the main reason for creating Composer was to provide a reliable and consistent
environment to develop PHP projects.

http://www.packtpub.com
http://www.packtpub.com/support

Chapter 1

[7]

Imagine a team of PHP developers who work on the same project using various
libraries and resources. Sometimes, it can be a nightmare if updating an existing
library or installing a new one crashes the code of another developer in the team.
Someone should be in charge of tracking all dependencies and controlling the
updates and installs to make sure that the project development runs smoothly. In
the past, that person used to be the lead developer, but thanks to Composer, the
dependency management during development, staging, and production phases is
handled automatically by Composer.

Let's get started by downloading Composer if you don't have it already:

$ curl -sS https://getcomposer.org/installer | php

I presume that you have already installed the latest stable version
of PHP and required extensions and libraries including curl. In case
you don't have curl, you can install Composer via the following
command:
$ php -r "readfile('https://getcomposer.org/
installer');" | php

Move it to your /usr/local/bin folder so that it is accessible from everywhere in
your machine:

$ sudo mv composer.phar /usr/local/bin/composer

Depending on the distribution of your Linux, this path might
be /usr/bin instead. Use the echo $PATH command to find
out about the location.

Composer is just a manager. It does not store any libraries or packages in itself.
However, it works very closely with a package repository called Packagist to make
sure that it gets the right packages with the correct dependencies. To do so, Packagist
talks to Composer via a configuration file called composer.json, which contains
many settings including dependency information.

Installing and Configuring Symfony

[8]

Symfony Standard Edition is a package saved in https://packagist.org/. Go to
the website and search symfony and you will see the Symfony framework along with
a list of Symfony components as the search result:

In this book, we will deal mainly with three Composer commands:

• $ composer create-project [package] [/path] [version]: This
creates a brand new project by downloading a specific version of a package
to the specified directory

• $ composer install: This installs a package and fetches all the dependent
packages to your project

• $ composer update: This updates the current packages

Let's see how to install the Symfony Standard Edition package via Composer.

Did you know that with the self-update option, you can upgrade
the Composer to the latest stable version?
$ composer self-update

https://packagist.org/

Chapter 1

[9]

Installing Symfony via Composer
Fire a terminal and go to /var/www. I chose to install Symfony there to keep it simple
and avoid different usernames and folders. Create a new folder called mava and set
the ownership to yourself:

$ cd /var/www

$ sudo mkdir mava

$ sudo chown -hR <YourUserName>:<YourUserName> mava

Now type the following command:

$ composer create-project symfony/symfony mava/

As you can see in the following image, version 3.0.1 is the latest stable version. We
can always choose a long-term support version if we want to take a conservative
approach toward a project or we can choose the development version if we are crazy
enough to ask for everything cutting-edge. Normal people like me always choose the
latest stable version. In other words, it is a trade-off between the latest features and
longest support:

If the installation process runs smoothly, you will see a bunch of packages being
downloaded and installed to the /mava directory:

Using version ^3.0 for symfony/symfony

./composer.json has been updated

Loading composer repositories with package information

Updating dependencies (including require-dev)

 - Installing psr/log (1.0.0)

 Loading from cache

 - Installing doctrine/lexer (v1.0.1)

Installing and Configuring Symfony

[10]

 Loading from cache

 - Installing doctrine/annotations (v1.2.7)

 Loading from cache

 - Installing doctrine/collections (v1.3.0)

 Loading from cache

 - Installing doctrine/cache (v1.6.0)

 Loading from cache

 - Installing doctrine/inflector (v1.1.0)

 Loading from cache

 - Installing doctrine/common (v2.6.1)

 Loading from cache

etc...

After Composer has finished downloading and unpacking all the dependencies, it
will ask a couple of questions including sample demo, database settings, and mailer
settings. Just accept the default answer by pushing Enter:

Creating the "app/config/parameters.yml" file

Some parameters are missing. Please provide them.

database_driver (pdo_mysql):

database_host (127.0.0.1):

database_port (null):

database_name (symfony):

database_user (root):

database_password (null):

mailer_transport (smtp):

mailer_host (127.0.0.1):

mailer_user (null):

mailer_password (null):

locale (en):

secret (ThisTokenIsNotSoSecretChangeIt):

debug_toolbar (true):

debug_redirects (false):

use_assetic_controller (true):

Chapter 1

[11]

These settings will be saved in the app/config/parameters.yml file, and we always
have a chance to change them later. If everything was okay, at the end, the cache will
be cleared and the default assets will be installed as follows:

The road map
If you are concerned about how long your choice of the Symfony version is going
to be supported, visit the http://symfony.com/roadmap page, scroll down, enter
the version number, and push the Check button. You will see a detailed description
about the support duration:

http://symfony.com/roadmap

Installing and Configuring Symfony

[12]

Checking the installation
To make sure that Symfony installed properly, first run the PHP built-in server:

$ bin/console server:run

Then, visit the following link in your browser:

http://localhost:8000/config.php

If you see the following image, then you are good to go. You can ignore the
suggested recommendations for now:

Summary
In this chapter, we read about the practicality of Symfony and the basic reasons why
big companies are using it. We read about the Symfony road map and its potential.
We ran the built-in web server to be able to see our Symfony instance. We saw how
to use Composer to install Symfony and how to check the installation afterward.

In the next chapter, I will walk you through the request/response life cycle and show
you how to use Symfony to generate code and shape it based on your needs.

[13]

The Request and Response
Life Cycle

This chapter is a quick look at Symfony's fundamental features. We will use the
request/response life cycle as a tool to discuss Model-View-Controller (MVC) in
general and explore Symfony concepts such as routing, action (or controller, if you
like), TWIG, Doctrine, and application setup. We will have a look at bundles and
see how all of these concepts are organized in a bundle. Apart from creating a new
bundle in this chapter, we will discuss the installation and how to modify and use
bundles created by other developers.

The big picture
The request/response life cycle can be summarized in these two simple steps:

1. Firstly, you send your request by entering a URL in your browser.
2. The server then responds with a page and message (success, failure, and so

on) depending on your request. End of story.

The Request and Response Life Cycle

[14]

The following image shows an example of the request/response life cycle:

A web server receives a request and passes it to an action unit for further processing.
In our case, this action unit is somewhere in Symfony and is in charge of receiving
requests. Depending on their type, it will fetch a resource (such as a record from the
database or an image from the server's hard drive) or do something (like sending an
e-mail or assembling and returning a JavaScript Object Notation (JSON) string).
Finally, it renders a page based on the results and sends it back to the browser. After
the job is done, this action unit marks the request and response as terminated and
looks for the next request, as shown in the following diagram:

Chapter 2

[15]

The general request/response life cycle on a server with Symfony

Look at your /web folder in your Symfony installation from the previous chapter.
You can see that there is an app_dev.php file over there. Open the file (or the app.
php file if you like) and pay attention to the last four lines:

$request = Request::createFromGlobals();
$response = $kernel->handle($request);
$response->send();
$kernel->terminate($request, $response);

These lines summarize the preceding story beautifully.

You can see how it is represented in the following screenshot. These are the four
steps that Symfony takes to process a request and send a response:

The Request and Response Life Cycle

[16]

Well, that's the purpose of using Symfony. It sits on the web server and makes it
serve for each receiving request. The second line calls a handle() method. This
method is the main reason why we are here. It might look like just one innocent
method, but in fact, the handle() method is in charge of managing other units that
deal with databases, JSON strings, REST and SOAP requests, processing e-mails,
rendering templates, and who knows what else in the future. Note that the handle()
method manages the incoming requests by finding (routing) the right controller
action and getting a response from it. However, it doesn't personally do the job
itself. So do not underestimate the method. It might not look like doing much, but
it controls everything. It makes the server components dance on the arrival of every
single request.

Let's put this information in our big picture and see how it looks:

The handle() method facilitates the flow between the browser and server

Now we have a good template to refer to. In each of the following topics, I will
update this big picture so that you can get the idea of each concept easily.

Anatomy of a bundle
When you install Symfony (via the default installer), it comes with a very basic
controller and template. That is why we can see the default Welcome! screen by
visiting the following URL:

http://localhost:8000

Chapter 2

[17]

The general folder structure for a Symfony project is as follows:

└── mava

 ├── app

 ├── bin

 ├── src

 ├── tests

 ├── var

 ├── vendor

 └── web

The folders that we are interested at the moment are src/ and app/. They contain
the code and template for the Welcome! screen. In the src/ folder, we have a bundle
called AppBundle with the following basic structure:

src/

└── AppBundle

 ├── AppBundle.php

 └── Controller

 └── DefaultController.php

The default controller is where the so-called handle() method passes the request
and expects a response. Let's have a look in this controller:

// mava/src/AppBundle/Controller/DefaultController.php
class DefaultController extends Controller
{
 /**
 * @Route("/", name="homepage")
 */
 public function indexAction(Request $request)
 {
 return $this->render('default/index.html.twig', [
 'base_dir' => realpath($this->container->
 getParameter('kernel.root_dir').'/..'),
]);
 }
}

The Request and Response Life Cycle

[18]

Behind the scene, the handle() method asks the router to find a matching route for
the home page request. The router looks at the available routes stack, finds the one
defined for the indexAction() method, and passes the request to it.

If you are wondering what the route for indexAction() is, look at the @Route()
annotation in the comments before the method body. This annotation defines the route
for the action. You can prove it by looking at the available routes in the command line:

$ bin/console debug:router

 -------------------------- -------- -------- ------ ----------------

 Name Method Scheme Host Path

 -------------------------- -------- -------- ------ ----------------

 _wdt ANY ANY ANY /_wdt/{token}

 _profiler_home ANY ANY ANY /_profiler/

...

 homepage ANY ANY ANY /

 -------------------------- -------- -------- ------ ----------------

As you can see, the last line shows the route name and path for the home page.

Let's go back to controller indexAction() and see what happens to the request
that we just received. We have only one simple render() function, which basically
assembles a string for the project base URL and passes it to a template stored in the
Resources/ directory to be rendered.

The template engine gets the base_dir parameter, uses it in the available template,
generates an HTML page, and returns it as the response.

This default bundle is minimized to the very basic structure and is for demonstration
purposes only. Let's create a new bundle and see how it looks.

Generating a new bundle
There are two ways to create a new bundle. You can do it manually by creating
classes or YAML files and organizing them in folders created manually in the
src/ folder of your project (and use your IDE's code generation feature to fill
the blanks along the way).

You can also use the Symfony's interactive console to do the job for you. While
you are at the root of the project, create a new bundle called MyBundle via the
following command:

$ bin/console generate:bundle

Chapter 2

[19]

Set the name and accept all default answers for the next questions. At the end, you
will see a message confirming that the bundle was generated successfully:

> Generating a sample bundle skeleton into src/MyBundle OK!

> Checking that the bundle is autoloaded: OK

> Enabling the bundle inside app/AppKernel.php: OK

> Importing the bundle's routes from the app/config/routing.yml file: OK

> Importing the bundle's services.yml from the app/config/config.yml
file: OK

Let's see what each of these lines mean. The first line confirms that we have the
folder structure for the new bundle. Check the src/ directory and you will see
this here:

src/

├── AppBundle

│ ├── AppBundle.php

│ └── Controller

│ └── DefaultController.php

└── MyBundle

 ├── Controller

 │ └── DefaultController.php

 ├── MyBundle.php

 ├── Resources

 │ ├── config

 │ │ └── services.yml

 │ └── views

 │ └── Default

 │ └── index.html.twig

 └── Tests

 └── Controller

 └── DefaultControllerTest.php

The Request and Response Life Cycle

[20]

Compared to the default AppBundle, we have a few more files and folders in the
generated bundle. We will get to that in a minute.

Now check the AppKernel.php file and, as you can see, the bundle is registered in
our project:

// mava/app/AppKernel.php
class AppKernel extends Kernel
{
 public function registerBundles()
 {
 $bundles = [
 // . . .
 new AppBundle\AppBundle(),
 new MyBundle\MyBundle(),
];
 }
 // . . .
}

In the app/config/routing.yml file, we can see settings for the new bundle. We
chose the default option while generating the bundle. This means that routes will be
created from the controller action methods and their @Route() annotations:

app/config/routing.yml
my:
 resource: "@MyBundle/Controller/"
 type: annotation
 prefix: /

Finally, in app/config/config.yml, the (future) services of our generated bundle
are imported:

app/config/config.yml
imports:
 - { resource: parameters.yml }
 - { resource: security.yml }
 - { resource: services.yml }
 - { resource: "@MyBundle/Resources/config/services.yml" }

This means that we are all set and good to start coding. To prove this, open the
DefaultController for our new bundle and change @Route() as follows:

class DefaultController extends Controller
{
 /**

Chapter 2

[21]

 * @Route("/my", name="mypage")
 */
 public function indexAction()
 {
 return $this->render('MyBundle:Default:index.html.twig');
 }
}

Now, we can find the new route with the debug:router console command and we
can see it in action by visiting http://localhost:8000/my in the browser.

Best practices
The question here is why do we need a new bundle? Couldn't we modify the current
AppBundle instead? Yes, we could. Actually, it is totally up to you how you organize
your code. Symfony won't complain about creating a new folder at the route of
your project, naming it whatever you like, and organizing your code in a couple of
subfolders over there. As long as you register your bundle in AppKernel.php and
update the routing and config file with proper references, everything is fine.

Before doing this, ask yourself: does this contribute to the easier maintenance of
your project? Think about the developers who are going to take over and maintain
the code after you. We can have one bundle, call it AppBundle, and put all the
application logic in its folders, or we can have as many bundles as we wish and
create each piece of application logic in one of them (UserBundle, ProjectBundle,
TaskBundle, and so on).

There is absolutely no right or wrong way and the way you organize your code
has no effect on Symfony's performance. However, what I've learned from my
past experiences is to keep things as simple as possible. Basically, from Symfony
3.x onward, I have decided to use the default Symfony application structure and
AppBundle as a base for everything.

I create a new structure only if I need to reuse my code in some other projects (that is,
a third-party bundle) or my project requires some specific configurations that cannot
be met by default Symfony settings.

To help you make decisions about what to do and how to write and organize your
code, Symfony has a best practices document that you can find here:

http://symfony.com/doc/current/best_practices/index.html

What I will do during this book is mention the related best practices for each
topic in an information box where we need to make a decision about coding or
organizing style.

http://symfony.com/doc/current/best_practices/index.html

The Request and Response Life Cycle

[22]

To keep things simple and increase the project maintainability,
keep your code in the AppBundle.

Custom bundles versus AppBundle
When we use AppBundle as a code base, the app/ directory of our project can be
seen as part of AppBundle. Sure, it has other files and folders that take care of other
bundles available in the /vendor directory, for example, but we can benefit a lot
from the app/ folder.

For example, if you look at the MyBundle/Resources folder, you will find two
subfolders named Resources/config/ and Resources/views/, which hold service
definitions (and other required settings in the future) and template files for that
bundle.

However, with AppBundle, we already have a folder named app/, so conveniently,
we can use the available app/config for our configuration needs and app/
Resources/views for our templates. Using this approach, referencing these files are
much easier.

Compare the render() method in indexAction() of each controller. In the
AppBundle controller, we simply referenced the template file without mentioning the
name of the bundle. When there is no bundle name, Symfony by default looks in the
app/Resources/views directory to find the required template:

return $this->render('default/index.html.twig');

To check the contents of the app/Resources/views directory use the following
command:

$ tree app/Resources/views/

app/Resources/views/

├── base.html.twig

└── default

 └── index.html.twig

In MyBundle, we have to mention the bundle name in the reference:

return $this->render('MyBundle:Default:index.html.twig');

Chapter 2

[23]

Did you notice the tests/ folder that Symfony created in the root
of the project? We can use it to write tests for AppBundle.

We got two elements of MVC so far: Controller and View. Let's have a look at the big
picture that we have now:

Creating templates with TWIG
Symfony has its own template engine called TWIG. It is a simple scripting language
with a few tags and only three main rules:

• Whatever goes between {% %} should be executed
• Whatever is expressed via {{ }} should be printed
• Whatever is enclosed by {# #} is just a comment

As we continue, we will see how to use TWIG to create sophisticated and dynamic
templates based on our project needs. For now, let's just see what a TWIG file
looks like.

The render() method from the previous topic has two parameters: the path to
our TWIG template and its parameter. By default, all templates are in the app/
Resources/views folder. If you go there, you will find another folder called
default. That's why the middle part of the path parameter is default:

return $this->render('default/index.html.twig', [
 'base_dir' => realpath($this->container-
 >getParameter('kernel.root_dir').'/..'),
]);

The Request and Response Life Cycle

[24]

Obviously, in the default folder, we have the template file itself. So basically, we
follow the [subdirectory in /Resources/views]/[template name] format to
access our templates.

There are two questions here:

• Why didn't we mention the full path as Resources/views/Default?
By default, Symfony knows that all templates should be organized in
Resources/views, so we can ignore that part and keep references nice and
short.

• Why do we even need a subfolder in Resources/views? Wouldn't it be
cleaner and shorter if we keep every template in the root of Resources/views?
Yes, you can, but it is not very well organized. For example, imagine that we
have several routes for different menu items: /about, /about/{name} and
/project, /project/{id}. You can keep templates for these routes in the
root and give them unique names, or you can create subfolders About/ and
Project/ and keep the related templates in each of them.

Controller/View interaction
Let's add a new controller action in AppBundle and call it aboutAction(). This
method will receive a name and says something about it:

// mava/src/AppBundle/Controller/DefaultController.php
class DefaultController extends Controller
{
// ...
 /**
 * @Route("/about/{name}", name="aboutpage")
 */
 public function aboutAction($name)
 {
 return $this->render('about/index.html.twig', array('name' =>
 $name));
 }
}

The new @Route() annotation for this method suggests that we need a new folder
called about/ and an index template as follows:

{# mava/app/Resources/views/About/index.html.twig #}
Hello {{ name|capitalize }}!

Today is: {{"now"|date("m/d/Y")}}

Chapter 2

[25]

As you can see, we can decorate the contents of a .twig file in any way you like. For
example, we can capitalize the name using the capitalize filter and show the date
by applying the date() filter to the current timestamp.

There is a lot to say about TWIG and I will show you how to use
it practically in the chapters to come.

User is one of the key entities of our project. They will be recognized as team
members and organized in several different groups. Keeping this in mind,
let's create an about page and see how we can see details about a specific user.

Conditional templates
In the previous example, imagine that we want to make the {name} parameters
optional. In other words, if there is a name in the URL, then we want to see a name-
related message, and if there is no name, then we want to see a general message.

Let's start by changing the @Route() annotation:

// mava/src/AppBundle/Controller/DefaultController.php
class DefaultController extends Controller
{
 // . . .
 /**
 * @Route("/about/{name}", name="aboutpage",
 defaults={"name":null})
 */
 public function aboutAction($name)
 {
 return $this->render('about/index.html.twig', array('name' =>
 $name));
 }
}

The defaults parameter nominates a default value for the name variable. If we
don't set a value for name, then it will be set to null. So now our aboutAction() can
receive requests from both /about and about/{name}.

The Request and Response Life Cycle

[26]

Let's see how the template can handle these requests. Get rid of the previous contents
of About/index.html.twig and replace them with the following blocks:

{# mava/app/Resources/views/About/index.html.twig #}
{% if name %}
 {{name}} is a member of our team.
{% else %}
 mava is a web app for task management and team collaboration.

{% endif %}

As you noticed, I used the {% if <condition> %} tag to create a conditional
structure. The idea is to create one template to handle various routes. Sure, we could
create two separate templates and routes for /about and /about/name, but that's
how we can work smarter and not harder. So basically, our template says that if I see
a value for the name variable, I will go in the if block; otherwise, I will follow the
else block.

Make it dynamic
So far, it was about a static controller dealing with a static template. Let's see how
we can feed our template with data from a database. Instead of handling database
queries directly, we will use an Object Relational Mapper (ORM).

Doctrine is the ORM that we are using in this book. It is
powerful and by default integrated into Symfony, which makes
it very convenient to use.

The Doctrine's job is to treat PHP classes and objects like they are tables and records.
This way, we don't need to write SQL queries for Create, Read, Update, and Delete
(CRUD) actions. All we need to do is ask our ORM to do the job for us. That makes
coding a lot easier and fun.

Database configurations
Before using Doctrine, we need to make sure that our database settings are correct.
Make sure that you have installed MySQL and its PHP drivers already and you have
a valid MySQL username and password. You might find database management
applications handy. I use MySQL Workbench, but feel free to choose anything that
appeals to you.

Chapter 2

[27]

To check the database configuration in your Symfony project, open the app/config/
parameters.yml file and set your own db username and password:

app/config/parameters.yml
parameters:
 database_driver: pdo_mysql
 database_host: 127.0.0.1
 database_port: null
 database_name: mava
 database_user: <Your Username>
 database_password: <Your Password>
 mailer_transport: smtp
 mailer_host: 127.0.0.1
 mailer_user: null
 mailer_password: null
 locale: en
 secret: ThisTokenIsNotSoSecretChangeIt
 debug_toolbar: true
 debug_redirects: false
 use_assetic_controller: true

As you can see, the database name for our project is mava. To create this database,
run the following command:

$ bin/console doctrine:database:create

Generating an entity
The database is created and we can create our tables in it. In Doctrine terminology,
we don't call them tables anymore. Technically, they are PHP classes called entities.
To generate an entity named User, run the following command:

$ bin/console doctrine:generate:entity

Then, follow the interactive steps as follows:

The Entity shortcut name: AppBundle:User

Determine the format to use for the mapping information.

Configuration format (yml, xml, php, or annotation) [annotation]:

We only need three fields for our entity:

New field name (press <return> to stop adding fields): name

Field type [string]:

Field length [255]:

The Request and Response Life Cycle

[28]

Is nullable [false]:

Unique [false]:

New field name (press <return> to stop adding fields): bio

Field type [string]: text

Is nullable [false]:

Unique [false]:

New field name (press <return> to stop adding fields): email

Field type [string]:

Field length [255]:

Is nullable [false]:

Unique [false]:

If you check your database, you won't see the new table yet but there are some
changes in our bundle directory.

There is a new Entity/ folder in our bundle and a PHP class called User.php in it.
This file contains some property definitions and getter and setter methods for each
property:

 /**
 * @var string
 * @ORM\Column(name="name", type="string", length=255)
 */
 private $name;

 /**
 * Set name
 * @param string $name
 * @return User
 */
 public function setName($name)
 {
 $this->name = $name;
 return $this;
 }

 /**
 * Get name
 * @return string
 */

Chapter 2

[29]

 public function getName()
 {
 return $this->name;
 }

The comments before the variable and method definition are not just ordinary
comments. They are generated by console (when we choose an annotation) and a
way of communication between our entity and Doctrine. For example, take a look at
this comment:

 /**
 * @var string
 * @ORM\Column(name="name", type="string", length=255)
 */

It tells Doctrine that we need a column called name with a string (255) type.
Now that we have our entity defined, it is time to generate the related table in our
database:

$ bin/console doctrine:schema:update --force

Check your database now and you will see the User table over there. For more
details about the Doctrine annotation, visit http://docs.doctrine-project.org/
projects/doctrine-orm/en/latest/reference/annotations-reference.html.

Installing bundles created by others
To play with our new entity, we need some records. We can add records manually
or we can ask Symfony's console to do the job for us. These sample records are called
data fixtures and there is a bundle to load and use fixtures. This bundle is called
doctrine-fixtures-bundle and this is how we install it:

1. In the root of your project open composer.json file and add the following
entry to it:
"require": {
 //...
 "doctrine/doctrine-fixtures-bundle": "2.3.0"
},

2. Now add this bundle to your vendor/ folder:
$ composer update doctrine/doctrine-fixtures-bundle

http://docs.doctrine-project.org/projects/doctrine-orm/en/latest/reference/annotations-reference.html
http://docs.doctrine-project.org/projects/doctrine-orm/en/latest/reference/annotations-reference.html

The Request and Response Life Cycle

[30]

3. Finally, open the app/AppKernel.php file and add the following line at the
end of the $bundles array:
// app/AppKernel.php
//...
$bundles = array(
 //...
 new Doctrine\Bundle\FixturesBundle\DoctrineFixturesBundle(),
);
//...

Congratulations, you just installed a new bundle in your project! To load data
fixtures in our entity, we need to create them first.

Creating data fixtures
Technically, a data fixture is a PHP class with a few initialized objects. In AppBundle,
create this directory and file structure:

/DataFixtures/ORM/LoadUsers.php

Add the following content to our class:

<?php
// mava/src/AppBundle/DataFixtures/ORM/LoadUsers.php
namespace AppBundle\DataFixtures\ORM;
use Doctrine\Common\DataFixtures\FixtureInterface;
use Doctrine\Common\Persistence\ObjectManager;
use AppBundle\Entity\User;

class LoadUsers implements FixtureInterface
{
 public function load(ObjectManager $manager)
 {
 // todo: create and persist objects
 }
}

This is the general structure of a data fixture. As you can see, it implements
FixtureInterface and has a load() method for data persistence.

Chapter 2

[31]

All we need to do is create a few objects, set their values, and ask our object manager
to persist them:

 public function load(ObjectManager $manager)
 {
 $user1 = new User();
 $user1->setName('John');
 $user1->setBio('He is a cool guy');
 $user1->setEmail('john@mava.info');
 $manager->persist($user1);

 $user2 = new User();
 $user2->setName('Jack');
 $user2->setBio('He is a cool guy too');
 $user2->setEmail('jack@mava.info');
 $manager->persist($user2);

 $manager->flush();
 }

Remember those setters and getters in our User entity? That's how we use them here.
These two objects are all set and ready to be persisted in our database. The flush()
method executes both queries in one shot. This means that we can have multiple
queries created and run them in one step. This is the beauty of Doctrine. Now we are
all set and ready to load what we have created.

Loading data fixtures
Loading can be done via a simple command:

$ bin/console doctrine:fixtures:load

It will ask you if you want to erase the previous content of the table first. Answer Y
and press Enter:

Careful, database will be purged. Do you want to continue Y/N ?Y

 > purging database

 > loading mava\CoreBundle\DataFixtures\ORM\LoadUsers

The Request and Response Life Cycle

[32]

Now check your User table. As you can see, there are two new records here:

In case you decide to append new records to the current table, use
the following command:
$ bin/console doctrine:fixtures:load --append

Dynamic templates and controllers
Now that we have a few records in our table, let's see how to fetch them via
controller and feed their properties to our templates. What we expect from our
dynamic template is to receive an object and show its properties. In our case, the
object is User and its properties are name, bio, and email. So, edit the about/index.
html.twig template as follows:

{# mava/app/Resources/views/about/index.html.twig #}

{% if user %}
 <h1>User Profile</h1>
 Name: {{user.name}}

Chapter 2

[33]

 email: {{user.email}}

 Bio: {{user.bio}}

{% else %}
 mava is a web app for task management and team collaboration.

{% endif %}

Next, add a few lines to aboutAction() to retrieve information about the given user:

<?php
// AppBundle/Controller/DefaultController.php
// …
use AppBundle\Entity\User;
// ...
 /**
 * @Route("/about/{name}", name="aboutpage",
 defaults={"name":null})
 */
 public function aboutAction($name)
 {
 if ($name) {
 $user = $this->getDoctrine()
 ->getRepository('AppBundle:User')
 ->findOneBy(array('name'=>$name));
 if (false === $user instanceof User) {
 throw $this->createNotFoundException(
 'No user named '.$name.' found!'
);
 }
 }
 return $this->render('about/index.html.twig', array('user' =>
 $user));
 }

This action first accesses the Doctrine service, and, via this, approaches the User
entity. The next step would be to find the first record that has a john value for its
name property.

If no record is found, an exception will be thrown; otherwise, the found object will be
passed to the index.html.twig template.

The Request and Response Life Cycle

[34]

That's it. If you visit the http://localhost:8000/about/john or
http://localhost:8000/about/jack URL, you will see that it works as we expected:

The big picture with MVC
We have already seen how the controller and view parts of MVC fit into the request/
response life cycle. In every project, the database is the place to keep the business
logic; this is why it is called model. In the model part of MVC, we define entities and
the relationship between them. In our example, the User entity is part of our model.

The big picture can be updated as follows:

Symfony MVC interactions in a request/response life cycle

Chapter 2

[35]

Summary
In this chapter, we were provided with a bird's-eye view of the request/response
life cycle. You learned how Symfony deals with requests and how Model, View, and
Controller fit into this image.

We saw how to use a console to generate loads of useful classes and set up dynamic
templates, routes, and controllers. Finally, we saw how to harness the power of
Doctrine to deal with database-related requests.

As I mentioned at the beginning, this was a quick look at Symfony's popular features
to warm you up for what is coming next.

In the next two chapters, there won't be any development. Instead, we will have a lot
of environment settings to make sure that our development process goes as smoothly
as possible.

[37]

Setting Up the Environment
This chapter might give you the impression of doing a system administrator's job. It
is all about setting up a few accounts and configuring functionality for Continuous
Integration (CI).

First, we will take a look at the definition of CI and understand why it is not a luxury
anymore, rather, a must have feature in any project. Then, we will see how to utilize
Amazon Web Services to set up a test and deployment server.

We will use Jenkins as a CI application and show you how to integrate it into your
Amazon Web Services account, install required plugins to test PHP projects, and
finally, prepare our Symfony project to benefit from the whole infrastructure.

When everything is set up properly, we will create a simple testing code and watch
how CI does the rest of the jobs: running tests, generating reports, and deploying the
application automatically.

As you may have guessed, we won't have much Symfony development in
this chapter. However, once CI is in place, we will see how easy, elegant, and
professional the rest of our journey will be.

In this chapter, we will cover the following topics:

• Discussing the importance of Continuous Integration
• Using Amazon Web Services
• Using Elastic Compute Cloud
• Setting up the server
• Setting up Simple Email Service
• Installing PHP tools
• Orchestrating the build process
• Creating a new job in Jenkins
• Running the first build

Setting Up the Environment

[38]

The importance of Continuous
Integration
Imagine that we are a team working on the subject of this book (which is a task
management and team collaboration web application). Suppose that I'm working on
CoreBundle, you are working on ProjectBundle, and James (another developer)
is working on UserBundle. As individuals, we are doing our job professionally; we
create tests and scenarios, maintain best practices for the coding, and make sure that
all tests pass successfully every time we finish developing a new feature. However,
there is one big problem here. There is not that much communication here because
we work individually.

Having said this, we will much likely experience Integration Hell at the end when we
try to integrate all the individual components into the main application. Statistics
show that the amount of resources spent on fixing these integration issues sometimes
equals to the same amount spent on creating the code itself.

CI is a software development practice that helps catch integration bugs the moment
they are born. It is like a big brother watching every member of the development
team and, as soon as he/she tries to integrate a new feature into the main
application, big brother takes the code, runs everyone's tests against it, generates
some reports, and only if everything is okay, generates a fresh build for the project
and notifies everyone about it.

The moral of the story is it does not make bugs disappear, but because it looks for
them constantly, finding and fixing them is easier and faster.

Amazon Web Services
Our digital assets are mostly on the cloud these days. Think about where you keep
photos, music, blogs, and documents. Sure, you might have a local backup, but most
of us have an account and access our digital assets via a website.

Amazon Web Services (AWS) is a cloud computing platform. It contains several
building blocks that offer flexibility to create almost any cloud service you can dream
about, from hosting digital assets mentioned in the previous paragraph to a Software
as a Service (SaaS) web application, which is the purpose of this book. The good
news is that you don't need to pay for this and, thanks to Amazon's generosity, there
is a one-year free tier membership. Simply visit https://aws.amazon.com/free/
and click on the Create a Free Account button, as shown in the following screenshot:

https://aws.amazon.com/free/

Chapter 3

[39]

In this chapter, we are going to use two AWS for our project: EC2 and SES. To find
out what these abbreviations stand for and what they do, keep reading.

To give you an idea of how we are going to use AWS, the overall architectural
diagram of our project will be something as follows:

Setting Up the Environment

[40]

First, developers push their changes to the GitHub repository. Then, Jenkins, which
is installed in our CI server, pulls these changes and runs tests, generates reports,
and makes a new build automatically. Finally, a notification e-mail is sent via SES to
the team.

Yes, we are going to use Jenkins as our CI application. It is robust, easy to install, and
comes with loads of out-of-the-box features that we can use. To install Jenkins, we
need to set up our CI server first.

Elastic Compute Cloud
Amazon Elastic Compute Cloud (EC2) is the largest public cloud in the world and
we will use EC2 to set up our CI server.

Assuming that you have already created your free account on AWS, you should be
able to see the console area when you log in.

As you can see in the following image, it is packed with loads of components, and if
this is the first time you are here, it might look overwhelming. Don't worry, we only
need two of these services for this chapter:

Chapter 3

[41]

Creating a new instance
Our CI server is basically a virtual machine running Linux, which, in AWS
terminology, is called an instance. So, from now on, when you see the term instance, it
means a virtual machine on the cloud. To create your first instance, follow these steps:

1. Under the Compute & Networking option, click on EC2.
2. Before doing anything, you need to select the right region for better

performance. In the upper-right hand corner of the page, there is a
drop-down list where you can select the closest area to you, as shown in
the following screenshot:

3. Now, click on the big blue button saying Launch Instance and select the
latest version of the Ubuntu server. Pay attention; some options have a Free
tier eligible label and some don't. After selecting EC2, a validation from
Amazon is required. This validation could take from several minutes to days:

Setting Up the Environment

[42]

4. As you can see in the following screenshot, only t2.micro is free. Select this
plan and click on Next: Configure Instance Details.

5. The next two steps are configuration (3. Configure Instance) and adding
storage (4. Add Storage). Simply accept the default settings and move on
to Step 5: Tag Instance. Here, we will choose a Tag name for our virtual
machine. Enter the name Mava in the Value field and proceed to the next step:

6. This step is where you set up the firewall for your CI server and define which
ports should be open to the outside world. In the Security group name field,
type Mava. We need SSH and HTTP access to our server, so click on the Add
Rule button, choose HTTP, and press the Review and Launch button:

Chapter 3

[43]

7. When you press the Review and Launch button, as shown in the following
screenshot, it asks for a public and private key pair in order to access our
EC2 instance. Choose Create a new key pair. Type the name mava-keys for
it. Now you can click on the Launch Instances button. It takes a few seconds
to generate the instance and when it is finished, you can click on the View
Instances button to see it. Be patient as it takes a while to change the status
from pending to running:

Do not lose your key. If you lose it, you have to delete your
instance completely and start over again. Due to security reasons,
Amazon doesn't keep a backup of your key.

Setting Up the Environment

[44]

8. While it is in the running mode, click on your instance and copy the Public
DNS address:

9. Right now, you have enough information to connect to your EC2 instance:
ssh -i ~/Downloads/mava-keys.pem ubuntu@ec2-54-79-31-45.ap-
southeast-2.compute.amazonaws.com

However, this is a very long command and not very safe as well. First, we
want to make sure that only we have read and write access to our key. So fire
a terminal window, copy the instance key to your .ssh folder, and set the
permission as follows:
$ mv ~/Downloads/mava-keys.pem ~/.ssh/

$ chmod 400 ~/.ssh/mava-keys.pem

10. Now, for more convenience, let's create an alias for that long ssh command.
Open the .ssh/config file and add the following contents to it. Remember
that for Hostname, you have to add your own Public DNS value that you
copied from step 8:
Host ec2
 Hostname ec2-54-79-31-45.ap-southeast-
 2.compute.amazonaws.com
 User ubuntu
 IdentityFile ~/.ssh/mava-keys.pem

11. Now you can connect to your instance via this short command:
ssh ec2

12. For the first time, you will be prompted with the following:
Are you sure you want to continue connecting (yes/no)? Yes

Chapter 3

[45]

13. Answer Yes and congratulations! You are now connected to your EC2
instance on the Amazon cloud:
ubuntu@ip-172-31-29-153:~$

Setting up the server
Now that we have our instance set up and we are connected to it successfully, it is
time to add the required tools and components to it. Basically, it is a fresh Ubuntu
box with nothing on it. To make it act like a CI server, we need to install LAMP
(Linux, Apache, MySQL, and PHP), Jenkins, and a few other libraries.

Installing Apache
Having the Linux in place already, let's start by installing the Apache web server:

1. Before installing anything, first of all, update your Linux packages and install
English language packs and locales:
$ sudo apt-get update

2. Then, install the locale package as follows:
$ sudo apt-get install language-pack-en

3. Now we can install Apache2 and some required modules to proxy the
Jenkins server:
$ sudo apt-get install apache2

$ sudo a2enmod proxy

$ sudo a2enmod proxy_http

4. Now restart Apache:
$ sudo service apache2 restart

Apache2 is now installed and ready to serve web requests.

Installing MySQL and PHP
To finalize the LAMP stack, we need to install MySQL and PHP:

$ sudo apt-get install php5 php5-mysql mysql-client mysql-server

Enter your MySQL password for the root user when you are prompted.

Setting Up the Environment

[46]

Installing Jenkins
Installing Jenkins is a three-step process:

1. First, we need to add the Jenkins package to our Linux repositories and
update them:
$ wget -q -O - http://pkg.jenkins-ci.org/debian/jenkins-ci.org.key
| sudo apt-key add -

$ echo "deb http://pkg.jenkins-ci.org/debian binary/" | sudo tee
-a /etc/apt/sources.list.d/jenkins.list

$ sudo apt-get update

2. Then, we need to install Jenkins:
$ sudo apt-get install jenkins

3. Finally, we need to set up a virtual host for our Jenkins application. To do so,
create a new jenkins.conf file and add the following content to it:
$ sudo vim /etc/apache2/sites-available/jenkins.conf

<VirtualHost *:80>

 ServerName ec2-54-79-31-45.ap-southeast-2.compute.amazonaws.com

 ProxyRequests Off

 <Proxy *>

 Order deny,allow

 Allow from all

 </Proxy>

 ProxyPreserveHost on

 ProxyPass / http://localhost:8080/

</VirtualHost>

4. Now enable the site:
$ sudo a2ensite jenkins

5. Restart Apache:
$ sudo apache2 reload

Chapter 3

[47]

To test your installation, simply fire a browser window and visit your hostname
(in my case, ec2-54-79-31-45.ap-southeast-2.compute.amazonaws.com). If
everything is set up properly, you should be able to see a welcome page as follows:

So far, we set up a free AWS account, created an EC2 instance (a Ubuntu virtual
machine), and installed a LAMP stack and Jenkins in it. Now we are ready to
configure Jenkins.

Setting Up the Environment

[48]

Setting up security and installing plugins
in Jenkins
We need some sort of security to make sure that only an authorized user can access
and manage Jenkins:

1. First, we need to set the security. Navigate to Manage Jenkins | Configure
Global Security and check the Enable security box:

Chapter 3

[49]

Note that the options you choose for your security are totally dependent on
your projects and needs. For this book, select the options that you see in the
preceding image.

2. As soon as you press the Save button, you will be asked for a username and
password. Simply click on the Jenkins link on top of the page to lead to a
sign-up page. Fill in the form here and press Sign up:

Setting Up the Environment

[50]

3. Now, we need to install plugins required for CI. Navigate to Manage Jenkins
| Manage Plug-ins, and you will see that there are some plugins installed
already in the Updates tab. Before installing any new plugins, select them
all and update them:

4. When you press the Download now and install after restart button, a
progress page shows up with the list of plugins to install. Check the option
at the bottom of this page to restart Jenkins:

Chapter 3

[51]

Note that when you restart Jenkins, it might take a couple of
minutes and ask you to log in again.

Setting Up the Environment

[52]

5. Now, go to the Manage Plug-in page again and visit the Available tab this
time. On the search field, look for the following plugins one by one, select
them, and when they are all selected, download and install them. Each
plugin should be self-explanatory, but if you want more details about each
one of them, visit their websites and read the documentation:

 ° GitHub (access to GitHub repositories)
 ° Checkstyle (reading CodeSniffer logs in the Checkstyle format)
 ° Clover PHP (processing PHPUnit's Clover log file)
 ° Crap4J (processing PHPUnit's Crap4J XML log file)
 ° DRY (processing phpcpd logs in the PMD-CPD format)
 ° HTML Publisher (publishing documentation generated by phpDox,

for instance)
 ° JDepend (processing PHP_Depend logs in the JDepend format)
 ° Plot (processing phploc CSV output)
 ° PMD (processing PHPMD log files in the PMD format)
 ° Violations (processing various log files)
 ° xUnit (processing PHPUnit's JUnit XML log file)

6. Apart from adding the GitHub plugin to Jenkins, we need to go back to our
instance terminal and install Git here:
$ sudo apt-get install git

Now security settings and required plugins are in place and ready to set up
management settings. Before that, we need to set up a mail server. This mail
server will act as a notification system. In other words, every time a build is made
successfully or fails or some reports are generated during CI, we need to be informed
about it. So we need a mail server to send these notifications to us.

AWS comes with a service to handle e-mails, and we are about to see how to use it in
our project.

Chapter 3

[53]

Simple Email Service
Amazon Simple Email Service (SES) is an SMTP server to send limited amounts
of e-mails per day. At the time of writing this book, it is about 200 e-mails per day,
which is more than enough. To set up SES, follow these steps:

1. On the console page, click on SES under App Services:

Setting Up the Environment

[54]

2. On the next page, click on SMTP Settings, and copy the server name and
port number to a file as you will need them for the next step:

3. Click on the Create My SMTP Credentials button and wait until you
are redirected to the IAM service (another Amazon service to manage
credentials). Click on the Create button:

Chapter 3

[55]

4. Copy and paste the username and password fields in the following page
because you will need them for the next topic as well:

The credentials provided here are fake. Don't use them. Use
your custom ones. You don't think I'm going to expose my
password to the world, do you?

Configuring Jenkins
Now that we have the mail server and Jenkins plugins in place, it is time to configure
Jenkins itself, by preforming the following steps:

1. Navigate to Manage Jenkins | Configure System and, leaving all other
settings as default, scroll down to Jenkins Location. As you can see, it is
already set to our EC2 instance. Set the e-mail address that you want all
notifications sent from:

2. Under SSH Server, disable SSHD port.

Setting Up the Environment

[56]

3. Scroll further down to the E-mail Notification section and click on the
Advanced button. Check Use SMTP Authentication and Use SSL. Now fill in
this form with SMTP server settings that you did from the previous section:

If you'd rather use your own SMTP settings instead of SES, feel free to
replace this form with your settings.

4. Click on the Test configuration button, and if everything is set up correctly,
you will see a success message and receive an e-mail shortly.

5. Finally, click on the Save button at the bottom of this page.

Installing PHP tools
We installed some plugins in our Jenkins, but to make these plugins work, we
need to install some PHP tools on our EC2 instance. We can install these tools via
Composer on our Symfony project, but this is not a good practice. They will sit in the
vendor/ directory and make our Symfony project big and heavy.

Chapter 3

[57]

Instead, we are going to install them in the CI server itself and benefit from them for
every project we define in Jenkins:

1. Assuming that the SSH connection to our EC2 instance is still live, open a
terminal window and add the following PEAR channels to the system:
$ sudo pear channel-discover pear.pdepend.org

$ sudo pear channel-discover pear.phpmd.org

$ sudo pear channel-discover pear.phpdoc.org

$ sudo pear channel-discover pear.symfony-project.com

2. Now install PHP tools as follows:
$ sudo pear install pdepend/PHP_Depend

$ sudo pear install phpmd/PHP_PMD

$ sudo pear install phpunit/phpcpd

$ sudo pear install phpunit/phploc

$ sudo pear install --alldeps phpunit/PHP_CodeBrowser

$ sudo pear install phpdoc/phpDocumentor-alpha

You might have used some of these tools and some of them
might look new to you. I am not going to go through all of
them and explain what they do. It needs another book to go
through all the details. Instead, I encourage you to have a
look at their documentation and briefly familiarize yourself
with their functions.
You can find a list of URLs for these tools on their official
website or https://packagist.org/.

One last thing that you may notice is why we didn't install these packages via
Composer. Note the following command:

$ sudo pear install phpunit/phpcpd

It is better if you replace the preceding command with this one:

$ sudo composer global require 'sebastian/phpcpd=*'

https://packagist.org/

Setting Up the Environment

[58]

It is certainly better to use Composer. However, there is a catch to this. I've noticed
that when you install packages via Composer, for some reason Jenkins doesn't like
it and fixing build bugs might give you a major headache. So, to play it safe, install
them via PEAR channel and play with Jenkins for a while. When you master the
basics, there is always room for creating more EC2 instances and setting up the
required tools like a pro.

You can find more about the basics on the http://jenkins.org/ website.

Sniff Symfony codes
Symfony has its own coding standards. To benefit from CodeSniffer in our project,
we need to introduce Symfony standards and make it the default standard:

1. First, find the PEAR directory:
$ pear config-show | grep php_dir

2. Now, go to the Standards folder in CodeSniffer (in our EC2 instance, the
path is cd /usr/share/php/PHP/CodeSniffer/Standards/) and clone the
following repository:
$ sudo git clone git://github.com/escapestudios/Symfony2-coding-
standard.git Symfony2

3. Now make Symfony the default coding standard:
$ phpcs --config-set default_standard Symfony2

Orchestrating the build process
To automate the build process, we are going to use Apache Ant. Ant looks for a
build.xml file in the root of the Symfony project, parses the contents, and based
on what it finds, starts to run the PHP tools that we installed earlier.

So, in the root of your project, create the build.xml file with the following content
(you can grab this file from the project's GitHub repository, https://github.com/
Soolan/mava-project):

<?xml version="1.0" encoding="UTF-8"?>

<project name="Mava" default="build">
 <property name="workspace" value="${basedir}" />
 <property name="sourcedir" value="${basedir}/src" />
 <property name="builddir" value="${workspace}/app/build" />

 <target name="build"

http://jenkins.org/
https://github.com/Soolan/mava-project
https://github.com/Soolan/mava-project

Chapter 3

[59]

 depends="prepare,vendors,parameters,lint,phploc,pdepend,
 phpcpd,phpmd-ci,phpcs-ci,phpdoc,phpunit,phpcb"/>

 <target name="build-parallel" depends="prepare,lint,tools-
 parallel,phpunit,phpcb"/>

 <target name="tools-parallel" description="Run tools in
 parallel">
 <parallel threadCount="2">
 <sequential>
 <antcall target="pdepend"/>
 <antcall target="phpmd-ci"/>
 </sequential>
 <antcall target="phpcpd"/>
 <antcall target="phpcs-ci"/>
 <antcall target="phploc"/>
 <antcall target="phpdoc"/>
 </parallel>
 </target>

 <target name="clean" description="Cleanup build artifacts">
 <delete dir="${builddir}/api"/>
 <delete dir="${builddir}/code-browser"/>
 <delete dir="${builddir}/coverage"/>
 <delete dir="${builddir}/logs"/>
 <delete dir="${builddir}/pdepend"/>
 <delete dir="${builddir}/docs/*"/>
 </target>

 <target name="prepare" depends="clean" description="Prepare for
 build">
 <mkdir dir="${builddir}/api"/>
 <mkdir dir="${builddir}/code-browser"/>
 <mkdir dir="${builddir}/coverage"/>
 <mkdir dir="${builddir}/logs"/>
 <mkdir dir="${builddir}/pdepend"/>
 </target>

 <target name="lint" description="Perform syntax check of
 sourcecode files">
 <apply executable="php" failonerror="true">
 <arg value="-l" />
 <fileset dir="${sourcedir}">
 <include name="**/*.php" />
 <modified />

Setting Up the Environment

[60]

 </fileset>
 <fileset dir="${basedir}/src/">
 <include name="**/*Test.php" />
 <modified />
 </fileset>
 </apply>
 </target>

 <target name="phploc" description="Measure project size using
 PHPLOC">
 <exec executable="phploc">
 <arg value="--log-csv" />
 <arg value="${builddir}/logs/phploc.csv" />
 <arg path="${sourcedir}" />
 </exec>
 </target>

 <target name="pdepend" description="Calculate software metrics
 using PHP_Depend">
 <exec executable="pdepend">
 <arg value="--jdepend-xml=${builddir}/logs/jdepend.xml" />
 <arg value="--jdepend-chart=${builddir}/pdepend/dependencies.
svg" />
 <arg value="--overview-pyramid=${builddir}/pdepend/overview-
 pyramid.svg" />
 <arg path="${sourcedir}" />
 </exec>
 </target>

 <target name="phpmd" description="Perform project mess detection
 using PHPMD and print human readable output. Intended for
 usage on the command line before committing.">
 <exec executable="phpmd">
 <arg path="${basedir}/src" />
 <arg value="text" />
 <arg value="${workspace}/app/phpmd.xml" />
 </exec>
 </target>

 <target name="phpmd-ci" description="Perform project mess
 detection using PHPMD creating a log file for the continuous
 integration server">
 <exec executable="phpmd">
 <arg path="${sourcedir}" />
 <arg value="xml" />

Chapter 3

[61]

 <arg value="${workspace}/app/phpmd.xml" />
 <arg value="--reportfile" />
 <arg value="${builddir}/logs/pmd.xml" />
 </exec>
 </target>

 <target name="phpcs" description="Find coding standard
 violations using PHP_CodeSniffer and print human readable
 output. Intended for usage on the command line before
 committing.">
 <exec executable="phpcs">
 <arg value="--standard=Symfony2" />
 <arg path="${sourcedir}" />
 </exec>
 </target>

 <target name="phpcs-ci" description="Find coding standard
 violations using PHP_CodeSniffer creating a log file for the
 continuous integration server">
 <exec executable="phpcs" output="/dev/null">
 <arg value="--report=checkstyle" />
 <arg value="--report-file=${builddir}/logs/checkstyle.xml" />
 <arg value="--standard=Symfony2" />
 <arg path="${sourcedir}" />
 </exec>
 </target>

 <target name="phpcpd" description="Find duplicate code using
 PHPCPD">
 <exec executable="phpcpd">
 <arg value="--log-pmd" />
 <arg value="${builddir}/logs/pmd-cpd.xml" />
 <arg path="${sourcedir}" />
 </exec>
 </target>

 <target name="phpdoc" description="Generate API documentation
 using phpDox">
 <exec executable="phpdoc">
 <arg line="-d '${sourcedir}' -t '${builddir}/docs' --
 title='Tempo' " />
 </exec>
 </target>

 <target name="phpunit" description="Run unit tests with

Setting Up the Environment

[62]

 PHPUnit">
 <exec executable="phpunit" failonerror="true">
 <arg value="-c" />
 <arg path="${basedir}/app/phpunit.xml" />
 </exec>
 </target>

 <target name="phpcb" description="Aggregate tool output with
 PHP_CodeBrowser">
 <exec executable="phpcb">
 <arg value="--log" />
 <arg path="${builddir}/logs" />
 <arg value="--source" />
 <arg path="${sourcedir}" />
 <arg value="--output" />
 <arg path="${builddir}/code-browser" />
 </exec>
 </target>

 <target name="vendors" description="Update vendors">
 <exec executable="composer" failonerror="true">
 <arg value="update" />
 </exec>
 </target>

 <target name="parameters" description="Copy parameters">
 <exec executable="cp" failonerror="true">
 <arg path="app/config/parameters.yml.dist" />
 <arg path="app/config/parameters.yml" />
 </exec>
 </target>

</project>

Now create a build/ subdirectory in the app/ directory of your project. This is
where you keep a configuration file for each PHP tool separately.

Don't go to the build/ directory yet. While you are still in the app/ directory, create
a phpmd.xml file and add the following content to it:

<?xml version="1.0"?>
<ruleset name="Symfony2 ruleset"
 xmlns="http://pmd.sf.net/ruleset/1.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://pmd.sf.net/ruleset/1.0.0 "
 xsi:noNamespaceSchemaLocation=
 "http://pmd.sf.net/ruleset_xml_schema.xsd">
 <description>

Chapter 3

[63]

 Custom ruleset.
 </description>

 <rule ref="rulesets/design.xml" />
 <rule ref="rulesets/unusedcode.xml" />
 <rule ref="rulesets/codesize.xml" />
 <rule ref="rulesets/naming.xml" />

</ruleset>

In the root of your project, rename phpunit.xml.dist to phpunit.xml and replace
the content as follows:

<?xml version="1.0" encoding="UTF-8"?>

<!-- http://phpunit.de/manual/4.1/en/appendixes.configuration.html
 -->
<phpunit xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="http://schema.phpunit.de/
 4.1/phpunit.xsd"
 backupGlobals = "false"
 backupStaticAttributes = "false"
 colors = "true"
 convertErrorsToExceptions = "true"
 convertNoticesToExceptions = "true"
 convertWarningsToExceptions = "true"
 processIsolation = "false"
 stopOnFailure = "false"
 syntaxCheck = "false"
 bootstrap="app/autoload.php"
>
 <php>
 <ini name="error_reporting" value="-1" />
 </php>
 <testsuites>
 <testsuite name="Project Test Suite">
 <directory>tests</directory>
 </testsuite>
 </testsuites>

 <php>
 <server name="KERNEL_DIR" value="app/" />
 </php>
 <logging>

Setting Up the Environment

[64]

 <log type="coverage-html" target="build/coverage" title="mava"
 charset="UTF-8" yui="true" highlight="true"
 lowUpperBound="35" highLowerBound="70"/>
 <log type="coverage-clover" target="build/logs/clover.xml"/>
 <log type="junit" target="build/logs/junit.xml"
 logIncompleteSkipped="false"/>
 </logging>
 <filter>
 <whitelist>
 <directory>src</directory>
 <exclude>
 <directory>src/*Bundle/Resources</directory>
 <directory>src/*/*Bundle/Resources</directory>
 <directory>src/*/Bundle/*Bundle/Resources</directory>
 </exclude>
 </whitelist>
 </filter>
</phpunit>

Creating a new job in Jenkins
At this stage, the setup and configuration part is over and we are ready to create our
first CI job:

1. Log in to your Jenkins application and click on New Item in the left
navigation bar. Then, choose a name for the job, select Build a free-style
software project, and press OK:

Chapter 3

[65]

2. Under the Source Code Management section, choose Git and add
the mava project repository here (The mava project is located at
git@github.com:Soolan/mava.git; you are welcome to fork this
project to your local repository or create a new repository and push
your own Symfony project here.):

3. As you can see, because of the lack of credentials, an error message is shown.
To fix the problem, we need to add the Jenkins credentials to our mava
GitHub repository. In the EC2 instance terminal, log in as Jenkins:
$ sudo su – jenkins

4. Now, generate public/private key pairs:
$ ssh-keygen -t dsa

Generating public/private dsa key pair.

Enter file in which to save the key (/var/lib/jenkins/.ssh/id_
dsa):

Enter passphrase (empty for no passphrase):

Enter same passphrase again:

Your identification has been saved in /var/lib/jenkins/.ssh/id_
dsa.

Your public key has been saved in /var/lib/jenkins/.ssh/id_dsa.
pub.

The key fingerprint is:

Setting Up the Environment

[66]

3d:23:cd:97:8f:60:60:27:5d:a8:c9:fc:de:fb:34:e1 jenkins@ip-172-31-
29-153

The key's randomart image is:

+--[DSA 1024]----+

| .. |

| ... |

| o+oo |

| .=B . |

| S.O o . |

| o.= + . |

| . .. E |

| |

| .o. |

+-----------------+

5. Now copy the public key content to the clipboard:
$ cat ~/.ssh/id_dsa.pub | xclip

6. Go to your GitHub repository, choose the Settings tab, and select Deploy
keys from the left navigation bar. Click on the Add deploy key button. Then,
in the text area that appears, paste the content of id_dsa.pub:

Chapter 3

[67]

7. When you press the Add key button, you are first asked for your GitHub
repository password and then you can see the deployed key on the list:

8. Now, go back to Jenkins and copy the failing command on error message:

9. Go to the terminal (with Jenkins as user) and run the copied command:
jenkins@ip-172-31-29-153:~$ git ls-remote -h git@github.
com:Soolan/mava.git HEAD

The authenticity of host 'github.com (192.30.252.130)' can't be
established.

RSA key fingerprint is 16:27:ac:a5:76:28:2d:36:63:1b:56:4d:eb:df
:a6:48.

Are you sure you want to continue connecting (yes/no)? yes

Warning: Permanently added 'github.com,192.30.252.130' (RSA) to
the list of known hosts.

10. Head back to Jenkins and remove the GitHub repository. If you enter the
repository this time, you can see that the error message will be gone. That's
how Jenkins talks to GitHub.

Setting Up the Environment

[68]

11. Scroll down to Build Triggers and check the option as shown in the
following image:

12. Under the Build section, click on Add build step drop down list and select
Invoke Ant. This will use Ant as the task manager. Clearly, we need to install
Ant before we are able to use it in Jenkins. So, on the instance terminal, run
the following command:
$ sudo apt-get install ant

13. Scroll down to the Post-build Actions section and select E-mail Notification
from the list. As you may have noticed, the e-mail notification won't show
up until you save the current settings first and open the settings again. Now,
you can enter e-mail(s) of recipient(s). If there is more than one recipient,
separate the e-mails with a comma. Select all the checkboxes in this section
and, at the end, press the Save button:

Chapter 3

[69]

Running the first build
This is the moment of truth. In the past 30 pages, we installed and configured many
packages and libraries to see this moment. To see how Jenkins works, click on the
Build Now button and watch the build process in action:

You can always click on the build link at any time and watch the process live by
choosing Console Output:

Setting Up the Environment

[70]

As you can see, the project build has no errors and if you go back to the Jenkins
dashboard, you will see the blue success icon that indicates our first build has
completed successfully:

It is likely to face a couple of errors before working successfully. As you can see, we
have a long list of different things to set up. So a misspelled name or wrong path is
not unusual. What I encourage you to do is read the error message carefully, go to
the line number in the build.xml file, and see how you can fix it.

Sometimes, you may need to work around it. You might copy executable files to your
/usr/local/bin folder and change the XML file accordingly. I tried to use AWS as
a platform for all of us to minimize possible errors and situations. However, it does
not guarantee a challenge-free configuration process. To be honest, it took me 14
attempts to finally get Jenkins going. So don't be discouraged if it didn't work at
the first attempt.

How does GitHub alert Jenkins about new
pushes?
If you remember from the Configuring Jenkins section of this chapter, we defined a
build trigger as follows:

Build when a change is pushed to GitHub. In other words, Jenkins starts doing its job
as soon as it finds out there are some new changes in the code.

There is one problem here. Can you spot it? Yes, that's correct; it sounds like
one-way communication. GitHub allows Jenkins to pull new changes, but how
on earth should Jenkins know when to pull the new changes?

1. To fix this issue, go to the Settings tab in your GitHub repository, click on
Webhooks & Services from the left navigation menu, and choose Jenkins
(Git plugin) under the Services section.

Chapter 3

[71]

2. Now enter your Jenkins server URL on the next page:

3. Now, go back to Jenkins settings and check Poll SCM under Build Triggers
with the following value and save:

These settings tell Jenkins to poll GitHub frequently and, in case there are new
pushes, to pull them to the Jenkins server and get on with the build process. Now
they are talking.

Setting Up the Environment

[72]

To test this, open one of your Symfony templates and make some changes.
For example, let's add a line to the bottom of the about template:

// src/mava/CoreBundle/Resources/views/About/index.html.twig
{% if name %}
 {{name}} is a member of our team.
{% else %}
 mava is a web app for task management and team collaboration.

{% endif %}

{{ 'Jenkins Rocks!!!' }}

Now save, commit, and push the changes to the GitHub repository:

$ git commit -a -m "checking communications"

$ git push

Look at your Jenkins. As soon as the push command comes through, Jenkins
automatically schedules a new build and executes the required tasks:

Do I need CI?
A wise man once said, if you want to have a caring, productive, and supportive team
in your IT company, ask people to do different tasks at least once a month. Ask the
system administrator to sit by a customer support member for a day. Ask developers
to sit on a system administrator's chair and ask a customer support member to
manage the company for a day.

It might sound scary, but surprisingly, people start seeing daily problems from a
totally different perspective and sometimes offer creative solutions that cannot be
offered by a professional just because he/she is blinded by so many years of solving
problems in the usual way.

Chapter 3

[73]

This was the purpose of this chapter. Look at the title of this book one more time.
You can not master Symfony if, as a developer, you are not willing to explore behind
the scenes of CI for a Symfony project. You need to know about the latest technology
and tools offered by big boys like Amazon and you need to learn how to utilize them
in your projects. It might take a while to digest all of the information provided here.
Take your time and spend a week or two reviewing CI concepts. When you fully
understand the foundation, you will see how easy and sweet project development
will be and how productive you will become.

We are not completely done with CI settings. Remember those PHP libraries that
we installed at some stage? As we go through actual PHP development during
the chapters to come, I will show you how to use these libraries to spot problems
efficiently, generate reports, and define automated tasks based on your project needs.

Summary
In this chapter, you learned about the necessity of the CI server and how it can be
beneficial to any project. We saw how to use cloud services such as AWS to host a CI
server. We went through the nitty-gritty of CI configurations and the way in which it
talks to our code repositories.

The next chapter is about another development methodology that is called
Behavior-driven Development and tools and bundles that integrate this feature
into a Symfony project.

[75]

Using Behavior-Driven
Development in Symfony

To have a successful and satisfying career as a developer, communication is vital.
You might experience a situation where the result of your development efforts was
not good enough to make your client happy. Reasons such as misunderstanding
a request, constantly changing the development ground, lack of effective testing
procedures, and so on cause a project to fail. If you look closer, you will see that
communication is the key and can solve many problems before they even happen.

You might be a good developer and communicate with and understand your
fellow developers very well. There might be an amazing project manager who
communicates with the client clearly. However, how clear is it when it comes to
communication between technical and non-technical members of a project?

In this chapter, we will cover the following topics:

• A common language called Gherkin, which is very easy to understand and
helps technical and non-technical people talk to each other clearly

• How to use Gherkin in Behat, which is a PHP package for Behavior-Driven
Development, in order to define crystal-clear project features and write clever
scenarios that are agreeable and acceptable for both parties

• How to use Mink, which is another PHP package to handle browser-related
activities and test scenarios created for each feature

Using Behavior-Driven Development in Symfony

[76]

Getting started with BDD
Behavior-Driven Development (BDD) is a software development process
introduced by Dan North to clarify the purpose of a development request and
simplify acceptance tests. In BDD, you basically define a feature for a project in plain
and human readable sentences and, when it is accepted by everyone, then you start
creating the required code to implement that feature.

In contrast to this, in Test-Driven Development (TDD), it is not unusual to be
carried away by many unnecessary tests. As you know, in TDD, you have to write
a failing test first and then develop the code to pass the test. The question is how
would you know that you are heading in the right direction? In other words, how
can you be sure that the test you have created in the first place is beneficial to
your project? Yes, of course, you can do things right by creating those tests first.
However, doing things right is totally different from doing right things. Again, it is
all about the money and your client would not be happy to waste their resources on
unnecessary things.

BDD was invented to improve the testing experience. You can visualize it as one step
above TDD. You define a feature in plain and simple English (or any other human
language), make an agreement on it, and then get involved in the implementation
and testing details. It is like a compass that helps you find the right direction before
fighting wind and waves.

Is BDD a replacement for TDD?
Absolutely not! There might still be some debates about the relationship between
BDD and TDD. Keep in mind that BDD is not a replacement for TDD. They
work together to improve the idea of acceptance tests. You still need to test your
methods and classes (unit testing), but before that, you need to make sure that your
application functions the way it is defined and agreed (functional testing).

Long story short, for functional testing, we will use Behat, Mink, and a few browser
emulators and this is where we engage in BDD.

For unit testing, we will use PHPUnit and a group of related packages that we have
set up on our CI server already (Chapter 3, Setting Up the Environment) and this is
where TDD happens.

Later in this chapter, we will introduce Codeception and move all sorts of tests in
one integrated and easy-to-use environment.

Chapter 4

[77]

What is Behat?
Behat is a BDD framework for PHP projects. When you run it for the first time, it
reads a text file containing a project feature description written in a human readable
language, and because there is no code written yet, it fails the tests and generates the
required steps to achieve the goal for that feature.

These generated steps are actually empty PHP methods. Your job is to write the code
for each step. (We will deal with that shortly.) Assuming that the code is in place, by
running Behat for the second time, it will go through all the required steps one more
time and check whether that feature passes all tests. To see Behat in action, let's start
by installing it.

Installing and configuring Behat
To get the basic Behat software (and its related libraries) up and running is a simple
two-step process. Just add them to your composer.json file:

 "require-dev": {
 // ...
 "behat/behat": "dev-master",
 "behat/mink-extension": "dev-master",
 "behat/mink": "dev-master",
 "behat/mink-selenium2-driver": "dev-master",
 "behat/symfony2-extension": "dev-master",
 "behat/mink-browserkit-driver": "dev-master",
 "behat/mink-goutte-driver": "dev-master"
 },

Run the following command:

$ composer update

After downloading the required package, this command creates an executable file in
the bin directory.

Before initializing Behat, we need to configure it by telling it which plugins we are
interested in and where the base URL of our project is. Create a behat.yml file in the
root of your project and add these lines to it:

/var/www/mava/behat.yml
default:
 extensions:
 Behat\Symfony2Extension: ~
 Behat\MinkExtension:

Using Behavior-Driven Development in Symfony

[78]

 goutte: ~
 selenium2: ~
 base_url: http://localhost:8000/app_dev.php

We will look at each line beneath the extensions in the Mink topic. For now, just
initialize Behat for your Symfony bundle as follows:

$ bin/behat

By checking your project directory structure, you will notice that there is a new
folder in the root called features. This is where you create those plain text files
that define the project's features. For example, if you want to check the login
functionality, you have to create a features/login.feature file.

There is a subdirectory called features/bootstrap. The real tests happen in this
subdirectory. We will see how to define a feature and its required steps soon. For
now, let's think about all the possible features for the mava project.

The features we need for this project
This is a task management application. So, while I think about features that my
application should have, a few keywords such as project, task, member, and
workspace pop into my mind. Now, based on these keywords, I can create a mind
map and organize my thoughts:

Chapter 4

[79]

Keep in mind that ideally your client has thought about what
he wants and made a few sketches for each page element and
functionality. For the purpose of this book, let's pretend that
I'm your client and I'm asking you to build a Minimum Viable
Product (MVP) around my idea. To make it challenging, I will act
like a non-technical, bossy, and greedy client. All I will provide
is that general mind map and, basically, I don't have anything
to represent the structure of each page. I have the details in my
mind, but it is up to your art of communication to extract this
critical information and turn that idea into a web application.

Looking at the mind map, you can see two groups of features. It seems the frontend
features include showing some pages to non-authenticated users and providing
access to authenticated users for specific pages. The backend does the same except
it is for website administrators only. Let's see how to clarify these features by
communicating to the client (me).

More information about the project
Let's say we had a meeting and I explained what I'm looking for and you
summarized the project facts as follows:

• This is an MVP, so we need to make the project work with some minimum
and basic functionality

• It is a web application for task management and contains workspace,
project, task, and member entities

• Each task belongs to one project only but each project may contain
multiple tasks

• Each project can be defined in one workspace only but each workspace can
have multiple projects

• Each task can be assigned to one member only but each member can have
multiple tasks

• The frontend pages include a contact us page, static about page, search box,
which is redirected to a search result page, and login/register form, which
will be redirected to user account/user registration pages

• The backend is the same but only users with administrative roles can access it
• Task entity contains these properties: title, description, due date, and

attachments
• Project entity contains these properties: title, description, and due date
• Member entity contains these properties: name, role, e-mail, and password

Using Behavior-Driven Development in Symfony

[80]

• Workspace entity contains these properties: title and description
• User should be able to log in to their account and manage their own

workspaces, projects, tasks, and members
• Administrator should be able to log in to the backend and manage website

static pages plus everyone's workspaces, projects, tasks, and members

So, we had the meeting and you bullet-pointed your understanding of the project.
Now let's convert these features to a common language and see if we are on the
same page.

Gherkin – the common language
The Behat framework was originally inspired by the Cucumber project, which is the
BDD framework for Ruby. So don't be surprised that the language to explain project
features is called Gherkin. Gherkin is a simple language created to describe features
in a human readable format.

Here is a sample code written in Gherkin:

Feature: about page
 In order to see about page contents
 As a user
 I am able to visit about page

It does look ridiculously obvious, doesn't it? Isn't clarity what we wanted? Don't
let its simplicity trick you. As we proceed, you will see that there is a lot of power
behind it. Here is what's happening in the previous code snippet:

• The first line is the feature title. Choose something relevant to your feature.
• The second line explains the benefit or value of that feature—what it does for

our project. It will become very handy by the time you finish writing all the
features and want to prioritize them.

• The third line indicates the person/concept that will benefit from it.
• The last line explains briefly how it is going to happen.

The about page feature on its own doesn't do anything. In order to see this feature
in action, we need to add some scenarios to it.

Chapter 4

[81]

Writing a scenario for the about page
A scenario is basically a possible situation where features can act upon. This means
that each feature can have many scenarios. Consider the about page that we created
in Chapter 2, The Request and Response Life Cycle. When you visit /about, you see
a general about page. When you visit /about/{name}, there are two possible
scenarios: if {name} exists, you see their about page and if it doesn't, you see an error
page. So we have three possible scenarios for the /about page. Let's add them to our
feature and see how it looks:

Feature: about page
 In order to see about page contents
 As a user
 I am able to visit about page

 Scenario: Visiting about page
 Given I am on "/about"
 Then I should see "mava is a web app"

 Scenario: Visiting about page for an existing user
 Given I am on "/about/john"
 Then I should see "He is a cool guy"

 Scenario: Visiting about page for non existing user
 Given I am on "/about/jim"
 Then I should see "Not Found"

As you can see, each scenario starts with the keyword Scenario: followed by the
title for it. Each line after that represents a step for that scenario. Here, we have seen
the simplest form of it as a two-step scenario. The Given keyword demonstrates the
scene (the requirement) for our scenario. The Then keyword explains the outcome of
the scenario.

There are other keywords (When, And, and But) in Gherkin and I will show you how
to use them as we proceed.

Seeing it in action
Now that we have a feature with three possible scenarios, let's see how it works:

1. Choose a name for this feature and save the feature in the following
directory:
mava/features/about.feature

Using Behavior-Driven Development in Symfony

[82]

2. Open /features/bootstrap/FeatureContext.php and modify the class
as follows:
<?php
//...
use Behat\MinkExtension\Context\MinkContext;

class FeatureContext extends MinkContext
{
 //...
}

I will talk about Mink and what it does soon.

3. Run the feature:
$ bin/behat

After running Behat, it looks in the features folder and opens the about.feature
file. Then, it will go through every step defined in each Scenario, ask Mink to
evaluate the contents of each page, and see if it matches with the value provided.

Behind the scenes, Mink will use a browser emulator called Goutte to check the URL
provided in each scenario and read the response contents for each page.

In this feature, we have three scenarios and six steps, and as you can see, all of them
passed successfully. Here is the output of that command:

Chapter 4

[83]

Headless versus zombie
With our first feature test passed, now is the perfect time to study the
behat.yml file:

/var/www/mava/behat.yml
default:
 extensions:
 Behat\Symfony2Extension: ~
 Behat\MinkExtension:
 goutte: ~
 selenium2: ~
 base_url: http://mava.dev/app_dev.php

Under the extensions key, there are two entries: Symfony2Extention is used
to integrate Behat into Symfony projects and MinkExtension is where the real
acceptance tests happen. Technically, Mink is a framework that forces a browser
emulator or browser controller to do what it says.

A headless browser emulator such as Goutte does not have any GUI attached. That's
why it is called headless. It runs from the command line and, because it has no
window, it is very light and fast. As you saw in the previous topic, checking all three
scenarios took a fraction of a second (look at the last line of the previous image). The
drawback is that you cannot test JavaScript calls in it.

On the other hand, a browser controller forces a real browser to open a window, fill
in the forms, click on buttons, and do anything you normally do while surfing the
web. As it can force (zombify) the browser to do these tasks automatically, it is called
a browser controller. Selenium2 is one of the best browser controllers in the world,
and Zombie.js is another popular one. The good news is that they are capable of
handling JavaScript libraries.

As we don't want to deal with every headless or zombie directly, we ask Mink to
harness their power and use it to our benefit. As you can see in the behat.yml file,
we have goutte and selenium2 entries defined under the MinkExtension key. We
saw how Goutte works; let's see how to use Selenium2.

Using the Selenium2 controller for automated
tests
We need to install Selenium2 first and to do so follow the steps:

1. Download the Selenium2 driver:
http://www.seleniumhq.org/download/

http://www.seleniumhq.org/download/

Using Behavior-Driven Development in Symfony

[84]

2. Run it by executing the following:
$ java -jar ~/Downloads/selenium-server-standalone-[latest-
version].jar

3. Now edit the features/about.feature file as follows:
Feature: about page
 In order to see about page contents
 As a user
 I am able to visit about page

 @javascript
 Scenario: Visiting about page
 Given I am on "/about"
 Then I should see "mava is a web app"

 @javascript
 Scenario: Visiting about page for an existing user
 Given I am on "/about/john"
 Then I should see "He is a cool guy"

 @javascript
 Scenario: Visiting about page for non existing user
 Given I am on "/about/jim"
 Then I should see "Not Found"

Adding an @javascript annotation before each scenario means that we need
a browser controller. So Mink will look into its drivers and choose Selenium2
over Goutte.

4. Now run the tests again:
$ bin/behat

You will see that for each scenario, a browser window opens automatically and a
page related to the specified URL is loaded.

By default, Selenium2 uses Firefox. So you need to have
it installed in your machine. It is possible to use any other
browser if you wish. To do so, install your desired browser
driver and set up a config file to choose that driver. See the
Selenium documentation for more details:
http://www.seleniumhq.org/docs/

http://www.seleniumhq.org/docs/

Chapter 4

[85]

The about page does not follow BDD
The process so far is politically correct but technically it does not satisfy what I
promised at the beginning of this chapter. In BDD, we are supposed to define a
feature and its scenarios first, and then start coding. Well, the about page and its
variations have been developed in Chapter 2, The Request and Response Life Cycle,
already. The reason I chose them was only to show BDD elements in action.
However, don't worry, we will start afresh and completely get rid of the about page
and whatever attached to it soon.

In other words, in the chapters to come, we won't jump into coding for anything
unless it has been defined and prioritized as a feature and some crystal-clear
scenarios have been written for it. This chapter is just an introduction to BDD and we
cannot cover everything here. So for now, we will leave some topics such as how to
create scenario outlines, parametric scenarios, backgrounds, and so on for later and
come back to them in a practical situation later.

Knowing how BDD generally works, let's create a scenario for something that does
not exist yet. This way, we will see how Behat and Mink interact with each other.

As your client, imagine that I ask you to hide part of the about page for each member
and show it only by pressing a button. Currently, we have a name, biography, and
e-mail for each member. However, in the future, there might be a lot of fields. So
being able to show them on demand will probably make the page look more tidy
and organized.

A scenario to show the user's details
Get rid of all the scenarios in about.feature except the second one and modify it
as follows:

Feature: about page
 In order to see about page contents
 As a user
 I am able to visit about page

 @javascript
 Scenario: showing details of an existing user in about page
 Given I am on "/about/john"
 When I press more
 Then I should see "email"

There is a new step here called When. This step contains the action that the user will
take in the scenario and the action here is pressing a button.

Using Behavior-Driven Development in Symfony

[86]

Now open feautures/bootstrap/FeatureContext.php and make it implement the
snippet class while it is still extending MinkContext:

<?php
// …
use Behat\MinkExtension\Context\MinkContext;
class FeatureContext extends MinkContext implements
 SnippetAcceptingContext
{
 /...
}

If you run Behat now, you will see a different response:

Let's talk about the details of each step:

• The Given step (green line) passed successfully because we have
implemented the /about/john page in Chapter 2, The Request and Response
Life Cycle, already

• The When step (orange line) is undefined, which means that we don't have
the details button yet, and it is our job to create it

• The Then step (blue line) was skipped because it depends on the When step

Chapter 4

[87]

At the end of this output, there is a code snippet for the missing step. If
you look at the FeatureContext class, you will see that it implements
SnippetAcceptingContext. Thanks to this interface, we had that snippet generated
for us. All you need to do is copy this method and paste it in the FeatureContext
class or, instead of doing it manually, you can ask Behat to do it for you:

$ bin/behat --append-snippets

Now check your FeatureContext class and you will see a new method over there:

<?php
// ...
class FeatureContext extends MinkContext implements
 SnippetAcceptingContext
{
 /...
 /**
 * @When I press more
 */
 public function iPressMore()
 {
 throw new PendingException();
 }
}

This will be our blueprint for development. By running Behat again, you will see that
the undefined step has turned to pending now:

Let's summarize what just happened. We defined a feature in a human readable
language and created a scenario for it. The client can understand it and the developer
can understand it and, based on this language, Behat generated a code snippet (a
blueprint, if you like) for the developer. Now that we have a clear direction to go in,
the development process feels easy and straightforward and, more importantly, feels
closer to the BDD idea.

Using Behavior-Driven Development in Symfony

[88]

Implementing the user's details scenario
Let's start by modifying the user template:

1. Open the user.html.twig file and change it as follows:
{# mava/src/AppBundle/Resouces/views/About/user.html.twig #}
<h1>User Profile</h1>
Name: {{user.name}}

Bio: {{user.bio}}

<button
 type="button"
 onclick="location.href='{{ path('about', {'name':
 user.name}) }}'">
 more
 </button>

2. In the same place, create a new template and add the following content to it:
{# mava/src/AppBundle/Resouces/views/About/more.html.twig #}
<h1>User Profile</h1>
Name: {{user.name}}

email: {{user.email}}

Bio: {{user.bio}}

3. Now define a new route for it:
{# mava/src/AppBundle/Resouces/config/routing.yml #}
app_about_more:
 path: /about/{name}/details
 defaults: { _controller: AppBundle:About:details}

4. Finally create a new action in the AboutController class for it:
// mava/src/AppBundle/Controller/AboutController.php
class AboutController extends Controller{
 public function detailsAction($name)
 {
 $user=$this->getDoctrine()
 ->getRepository('AppBundle:User')
 ->findOneByName($name);
 return $this->render(
 'AppBundle:About:more.html.twig',
 array('user' => $user)
);
 }

Chapter 4

[89]

It is not the best way to implement it but for our testing purposes, it is quick and
easy. By visiting the http://localhost:8000/about/john URL, you will see that
the e-mail field has disappeared and there is a more button instead and pressing the
button reveals the e-mail. Now let's see how Mink does the acceptance tests.

Testing the scenario
We just implemented the When step of our scenario, which means that we need to
change the pending mode to something functional. Open the FeatureContext.php
file and edit it as follows:

// mava/features/bootstrap/FeatureContext.php
<?php
//...
class FeatureContext extends MinkContext implements
 SnippetAcceptingContext
{
 //...
 /**
 * @When I press the details button
 */
 public function iPressTheDetailsButton()
 {
 //throw new PendingException();
 $this->getSession() // the browser
 ->getPage() // the DocumentElement
 ->findButton("more") // the NodeElement
 ->press(); // what you want to do with it
 }
}

The class extended from Mink so that we have access to a lot of methods, which I
will go through as we proceed. In the example, we have getSession(). Whenever
you see the word session in your BDD tests, it means browser (a driver instance).
As we used the @javascript annotation in our scenario, Mink is going to use
Selenium2 to force Firefox to do something for us.

The getPage() returns the current page. Consider any Page() object as a DOM. It
contains all the HTML elements of the current page. As our scenario says that we
are on the /about/john page (the Given step), we can traverse the nodes and do
whatever we like.

Using Behavior-Driven Development in Symfony

[90]

The findButton("more") acts like a jQuery selector and finds an element for us.
There are a few other methods in the find() family, which I will show later. Here,
we explicitly aimed for a button. Now we found the button and by calling the
press() method, simulated the button push action, which led us to the /about/
john/details page.

If you run Behat again, you will see that a browser window opens automatically,
the /about/john page is visited, the more button is pushed, and the details page
is shown. At the end, the browser window will close automatically. Looking at the
acceptance test results, we can see that all three steps passed successfully:

There is a shortcut to find and press a button in one call. You can use
the following approach if you like:

$this->getSession()->getPage()->pressButton('more');

More about the acceptance test flow
in Mink
As you saw in the previous topic, an acceptance test with Mink is all about finding
elements in a page and checking to see whether they do what is expected from them.
Behind the scenes, there are four important Mink objects that carry a lot of heavy
lifting for us:

• Driver: The Driver class implements Behat\Mink\Driver\
DriverInterface, and Mink deals with every browser emulator or browser
controller through this interface. We have two drivers installed in our project
(Goutte and Selenium2), but keep in mind that the current version of Mink
comes with five drivers out of the box.

• Session: Controlling the browser happens through the Session object. This
is where Mink sends HTTP requests and listens for responses.

Chapter 4

[91]

• DocumentElement: This is the actual web page containing all the
page elements.

• NodeElement: Through this object, you can access and manipulate all the
elements in a page.

In general, the acceptance test workflow looks something like this:

Defining and prioritizing features
Considering the mind map at the beginning of this chapter and knowing some facts
about the mava project, we can write some feature files in Gherkin. Let's start with
the backend:

workspace.feature
Feature: Workspace administration
 In order to manage workspaces
 As an admin
 I am able to see, add, edit and delete workspaces in the backend

Some possible scenarios for this feature would be as follows:

 @javascript
 Scenario: seeing a list of available workspaces
 Given I am logged in as admin
 And There are 3 workspaces
 And I am on "/admin"
 When I click on "Workspaces"
 Then I should see 3 items in the table

 @javascript
 Scenario: adding a new workspace

Using Behavior-Driven Development in Symfony

[92]

 Given I am logged in as admin
 And I am on "/admin/workspaces"
 When I click on "New"
 And I fill the "Title" with "My Workspace"
 And I fill the "Description" with "Testing add functionality"
 And I press "save"
 Then I should see "New workspace created"

 @javascript
 Scenario: editing a workspace
 Given I am logged in as admin
 And I am on "/admin/workspaces"
 When I click on "edit"
 And I fill the "Title" with "edited title"
 And I fill the "Description" with "edited description"
 And I press "save"
 Then I should see "All changes are saved"

 @javascript
 Scenario: deleting a workspace
 Given I am logged in as admin
 And I am on "/admin/workspaces"
 When I click on "delete"
 And I press "yes"
 Then I should see "The workspace has been removed"

With the examples that you have seen so far, these Gherkin commands make
sense now, don't they? The rest of the features are similar. I'm not going to write
all of them here. Instead, we will pick a few of them in each chapter, write all the
possible scenarios for each, and start development till they pass functional and unit
tests. For now, keep in mind that for the purposes of this book, backend features
(administrative area first and website next) have a higher priority compared to
the frontend.

Codeception – the BDD style testing
framework
I would like to introduce another PHP testing framework that has an easier learning
curve and some unique features to create unit, functional, and acceptance tests.

Chapter 4

[93]

In Codeception—unlike Behat—we don't need to write the scenarios in another
language (Gherkin) and all the steps of test scenarios will be written in PHP. This
is one of the main reasons for debates on the Behat versus Codeception topic. If
you search for it on Google, you will find that there is a war going on out there. I
have used and will use both of them in my personal projects. I won't compare and
recommend one over another. They both have their own strengths and weaknesses,
and it is totally up to you to decide which one you are comfortable with.

In this topic, I will talk about installing, bootstrapping, and creating a few tests in
Codeception and, in the chapters to come, the main focus will be on Symfony itself.
In other words, tests, no matter which framework you are going to choose, will be
kept in the tests/ folder at the root of your project and should have the same effect
no matter which test framework you choose.

Did you know that you can install and use both Behat and
Codeception frameworks side by side in your project?

Installing the Codeception framework
Before installation, the first thing that I want you to do is go to the root of your
project and delete the tests/ folder completely. This folder will be created again by
Codeception and we will add our own tests as we go. Now install Codeception via
Composer as follows:

$ composer require "codeception/codeception"

This command will install the latest stable version of Codeception and required
dependencies in your vendor directory.

Bootstrapping Codeception
Now we need to create a directory structure (bootstrap) for our tests. Look at the
vendor/bin directory and you will find a bunch of binary files, including codecept
that we will use for command-line calls. For example, to initialize Codeception for
our project, we will use the following command:

$ vendor/bin/codecept bootstrap

Using Behavior-Driven Development in Symfony

[94]

The output confirms that a couple of files and folders are created under the tests/
directory and there is a configuration file called codeception.yml at the root of
our project:

Initializing Codeception in /var/www/packt/mava

File codeception.yml created <- global configuration

tests/unit created <- unit tests

tests/unit.suite.yml written <- unit tests suite configuration

tests/functional created <- functional tests

tests/functional.suite.yml written <- functional tests suite
configuration

tests/acceptance created <- acceptance tests

tests/acceptance.suite.yml written <- acceptance tests suite
configuration

tests/_output was added to .gitignore

tests/_bootstrap.php written <- global bootstrap file

Building initial Tester classes

Building Actor classes for suites: unit, functional, acceptance

 -> UnitTesterActions.php generated successfully. 0 methods added

\UnitTester includes modules: Asserts, \Helper\Unit

UnitTester.php created.

 -> FunctionalTesterActions.php generated successfully. 0 methods added

\FunctionalTester includes modules: \Helper\Functional

FunctionalTester.php created.

 -> AcceptanceTesterActions.php generated successfully. 0 methods added

\AcceptanceTester includes modules: PhpBrowser, \Helper\Acceptance

AcceptanceTester.php created.

If you check out the /var/www/packt/mava/tests directory, you will see the newly
created files here:

Chapter 4

[95]

Test suits
Let's skip the configuration files and folders for now, (I will come back to them as we
proceed) and focus on the following folders only:

tests/acceptance/

tests/functional/

tests/unit/

These folders hold the code for acceptance, function, and unit tests respectively.
Looking at each folder, we will find that they have an empty bootstrap file at the
moment. This file will be the home for extra test-related settings that we need in
the future.

Using Behavior-Driven Development in Symfony

[96]

For now, let's create two simple unit and functional tests for our
DefaultController. Run the following commands to create these tests:

$ vendor/bin/codecept generate:test unit DefaultController

$ vendor/bin/codecept generate:cest functional DefaultController

In these commands, we generated the tests and saved them in their related folders
(suits). You might have noticed that in the real filename, the type of test is mentioned
at the end of the file. For example, generate:test unit creates a test file in the
unit/ folder as follows:

/tests/unit/DefaultControllerTest.php

The generate:cest functional command creates a test file in the functional/
folder as follows:

/tests/functional/DefaultControllerCest.php

Apart from generate:test and generate:cest generators, there are two other
commands to generate test files.

• generate:cept: This will have the same effect as the cest command except
that the test structure will be created in a plain coding style and you won't
see any classes or objects.

• generate:phpunit: This will create the pure PHPUnit-style test. Keep in
mind that Codeception unit tests (generate:test) are extended traditional
PHPUnit tests and have added some methods on top of that. We will see
them in action in the chapters to come.

So, to recap, the following are the four test file generators:

• generate:cept

• generate:cest

• generate:test

• generate:phpunit

Did you know that you can use g instead of generate to keep
commands shorter?

vendor/bin/codecept g:test unit [testfilename]

Chapter 4

[97]

We will choose cest over cept because cest creates a class style for the tests, and
we will choose test over phpunit because, apart from the usual PHPUnit methods,
it has a few extra methods that will make our life a lot easier.

While generating cest files, it is important to keep the last part of
the name, [SomeControlName]Cest, as it is, because that's how
Codeception recognizes these functional test files. If you remove
the last part, that test won't be executed.

The testers
Check the contents of the new test file in test/functional/
DefaultControllerCest.php and notice the object type, FunctionalTester:

<?php
class DefaultControllerCest
{
 public function _before(FunctionalTester $I)
 {
 }

 public function _after(FunctionalTester $I)
 {
 }

 // tests
 public function tryToTest(FunctionalTester $I)
 {
 }
}

The FunctionalTester object is responsible for calling all functional test-related
methods during this course. If you are wondering where this name came from, open
the tests/functional.suite.yml file and look at the class_name key:

tests/functional.suite.yml
class_name: FunctionalTester
modules:
 enabled:
 # add framework module here
 - \Helper\Functional

Using Behavior-Driven Development in Symfony

[98]

You can change the class_name value to whatever makes you happier. Just
remember to use the same name in the test class as well. As long as we are here, let's
add some configurations. Replace the comment below the enabled key with the
following lines:

modules:
 enabled:
 - Symfony2:
 app_path: 'app'
 var_path: 'var'
 environment: 'test'

Why Symfony2? Why are we not using Symfony3 in the settings? We are using
Symfony3 after all, right? That's because, at the time of writing this chapter, the
module name is called Symfony2 and if you try something else, you will get the
following error messages:

[Codeception\Exception\ConfigurationException]

 Module Symfony3 could not be found and loaded

I believe that, eventually, some modifications will be applied to the Codeception
module names and we can use the correct name.

Adding sample tests
It is time to create some unit and functional tests for our DefaultController. First
of all, unlike the usual Symfony tests, you don't have to follow the same Bundle/
ControllerTest naming convention to create tests in Codeception. You can call
your tests whatever you like and as long as there is the Cest part at the end of
the test class names, you are good. However, in this book, I will follow the same
Symfony naming convention for the sake of readability.

Keeping this in mind, add a new method to the unit test file as follows:

// tests/unit/DefaultControllerTest.php
<?php
class DefaultControllerTest extends \Codeception\TestCase\Test
{ // . . .
 public function testAboutAction()
 {
 $this->assertTrue(true);
 }
}

Chapter 4

[99]

We don't need to go deep into testing at the moment, so a simple assertion will do
the job. For a functional test, add the following code:

// tests/functional/DefaultControllerCest.php
<?php
class DefaultControllerCest
{
 //...
 public function indexActionTest(FunctionalTester $I)
 {
 $I->wantTo('too see the welcome message on home page');
 $I->amOnPage('/');
 $I->see('Welcome');
 }
}

This is a very simple test showing an introductory message (using the wantTo()
method), making a request to the index page (using the amOnPage('/') method),
and checking the response contents looking for the word 'Welcome' (using the see()
method). Basically, this is the same BDD scenario, which is written in PHP here.

Running the tests
To run the tests, we simply pass the run option to the codecept command:

$ vendor/bin/codecept run

This command goes through all three test suits looking for test files and executing
them one by one. This is the output when all tests pass successfully:

Codeception PHP Testing Framework v2.1.5

Powered by PHPUnit 4.8.22 by Sebastian Bergmann and contributors.

Unit Tests (1) --

Test about action (DefaultControllerTest::testAboutAction) Ok

Functional Tests (1) --

Too see the welcome message on home page (DefaultControllerCest::indexAct
ionTest) Ok

Using Behavior-Driven Development in Symfony

[100]

Acceptance Tests (0) ------------------------

Time: 588 ms, Memory: 27.00Mb

OK (2 tests, 2 assertions)

Other ways of running tests is to specify all the tests in a specific suit:

$ vendor/bin/codecept run functional

You can also run just one specific test in a specific suit:

$ vendor/bin/codecept run unit DefaultControllerTest

While running tests, we can ask Codeception to generate the scenario that we have
created in PHP in plain English:

$ vendor/bin/codecept run functional --steps

As you can see, the output is slightly different this time and more descriptive:

Functional Tests (1) --

Too see the welcome message on home page (DefaultControllerCest::indexAct
ionTest)

Scenario:

* I am on page "/"

* I see "Welcome"

 PASSED

This was only an introduction to Codeception and you will learn more about it.
For example, we will see how to use Selenium2 for acceptance tests in the following
chapters.

Chapter 4

[101]

Summary
In this chapter, you learned how to revolutionize your development habits by
harnessing the power of BDD through Behat and Codeception testing frameworks.

We saw how to use a common human readable language called Gherkin to build a
bridge between technical and non-technical members of a project.

We wrote features and scenarios in Gherkin and asked Behat to create code snippets
based on them.

You learned how to use Mink to control headless browser emulators and zombified
browser controllers in order to do web acceptance tests for us.

We saw how to use Codeception to do the same but with PHP scenarios, and
we will see more of Codeception mainly on the subject of acceptance tests, in the
chapters to come.

The good news is that the hard part is almost over and from now on, we will
immerse ourselves into pure and sweet development tasks.

In the next chapter, we will study the business logic. This involves entities and their
relationships with each other and, more importantly, the mechanisms that fetch,
modify, and store entities in a database.

[103]

Business Logic
Business logic (also known as the domain logic) is all about the way business wants
to handle the data. With this definition, it seems that the Model layer in a Model-
View-Controller (MVC) framework could be one of the places to deal with business
logic. Forget about MVC because Symfony is more like Request/Response in nature.
So, it is your responsibility to create the Model if you need and it is totally up to you
how to organize the business logic in your project.

There is a debate about Symfony being an MVC framework.
Some developers believe that because entities in Symfony are a
data-persistence layer and not a model layer, this makes Symfony
a VC framework and not an MVC framework. Sure, you can
create Models yourself, but that is where the debate comes from.
You have to CREATE them. They DON'T EXIST by default. My
thoughts on this? Don't let the terminology trick you. Read about
the debates and opposing ideas as much as you can, but at the
end of the day, ask yourself two fundamental questions:

• Which definition, idea, tool, or whatever helps you create
a practical code?

• Which one of them leads to a cost-effective result when it
comes to security and maintenance?

Some people prefer to beef up their controllers with business logic; some prefer
to use an entity repository. I personally prefer to create a Service-Oriented
Architecture (SOA) and move part (if not all) of the business logic to services
and utilities (custom classes). We will talk about services, service containers, and
dependency injection in detail in Chapter 7, The Presentation Layer. There, I will
explain SOA practically.

Business Logic

[104]

However, here is the challenge: moving the business logic to a service sometimes can
be tricky and, as we know, this project is supposed to be a Minimum Viable Product
(MVP) at the beginning. So, if you are going to prototype something fast, it is better
to keep the business logic in entity repositories and access them through controllers.

However, in this book, I'm going to give you the best of both worlds. First, we create
a business logic like a normal human being and put it where it lazily lives by default.
Then, a few chapters later, we turn everything into a service and make our business
logic look like it is on steroids. This way, the controllers will be kept lean and clean
and business logic will be importable/reusable anywhere else in the world. Building
a web application on top of independent services is a well-known development best
practice. Yes, I know, it is going to be a bumpy road, but you will feel fantastic at the
end. Long story short, if you are not willing to SoC your code, then what is the point
of mastering Symfony?

"In computer science, separation of concerns (SoC) is a design principle for
separating a computer program into distinct sections, such that each section
addresses a separate concern."

 – Wikipedia

So here is the plan for this chapter:

• First, we will talk about the required entities for this project
• Then, based on the relations between entities, we will create the .orm.yml

configuration files and ask Symfony to generate entities and their empty
repositories

• Next, we will write some scenarios for business logic and use Codeception to
create the blueprints for the failing tests

• At the end, we will implement, test, and push the code to our GitHub
repository, where it wakes up Jenkins and asks him to initiate a new
build for us

Choosing between creating a Model
or entity
The common mistake among some Symfony developers is that they think an entity is
a Model or, even worse, it can be modified to look like a Model. I have seen entities
that consist of a bunch of traits and services are injected into some of them. The end
result is bulky code, which is hard to maintain and very slow to run.

Chapter 5

[105]

Adding extra features to an entity is a bad practice. Keep entities as a data-
persistence layer and, if you need a Model, create one. There, you can inject the
services if you have to.

You might notice some third-party bundles such as FOSUserBundle have another
folder called Model and keep objects similar to entities here. They also have extra
code, usually called managers, to take care of additional needs and injecting other
services.

As a general rule, if you are happy with Doctrine, then use entities. However, if you
want your bundle be independent of any persistence layer and have extra features
and services injected into your code, use Model. Here, we are definitely going to use
a relational database only (MySQL) and we are definitely going to follow the MVP
approach. So, it is not necessary to create Models for now. In case you are interested
in databases such as MongoDB or NoSQL, then the best practice is to create Model
for bundles and decouple the persistence layer from it. This takes a little bit of extra
work, of course, but it is one of the best practices as well. The following figure shows
the difference between two practices used:

Business Logic

[106]

So where does the business logic live?
Let's go back to the definition of business logic again. It defines the business
requirements and rules that will be applied to the data. This includes the ways data
is created, represented, and modified. To give you a short answer, according to our
MVP approach, it lives in our AppBundle under the /Entity folder. However, later
it will move to a couple of services (which can be kept in any folder and can be called
globally from anywhere in the project).

Let me clarify the purpose of using Entity, EntityRepository, and Service in our
project. Entity represents an object definition for a thing in real life (that is, workspace,
project, task, or user). EntityRepository is where you define methods to do database
queries (that is, using CRUD on entities). You can do the same in a Service but the
difference is that a Service can be called globally anywhere in your project. Moreover,
it is instantiated only once and on demand (no matter how many times you call it).
This means that it doesn't waste any memory and helps create an optimized project.

Reviewing the facts and building entity
relationships
Based on some facts provided in the previous chapter, we have four entities so far:
Workspace, Project, Task, and User. Each entity (table) has its own properties (columns)
and there is some relationship between these entities. For example, each project can be
defined in one workspace only but each workspace can have multiple projects or each
task can come from one project only but each project can consist of multiple tasks.

This project is all about task management. So, to visualize it better, imagine that
workspace is like a playground for all other entities to deal with tasks, as shown in
the following figure:

Chapter 5

[107]

Currently, we are at the MVP level but as we proceed, the entity structure of the
project gets bigger and more complex. So, understanding the whole business logic
would be much easier if we create a diagram containing all entities, properties, and
relationships.

The best way to create a visual concept from the project facts is to use an online or
desktop app to create Entity Relationship Diagrams (ERDs). You might prefer old-
fashioned pen and paper, but in case you want to experiment with gadgets, then
places such as http://erdiagrams.com/ or https://erdplus.com/#/ might help
you. You can use applications such as Lucichart or gliffy too. Just open the Entity-
Relationship panel in these applications and find all the required tools to create the
diagrams you need.

I prefer the Reverse Engineering tool in MySQL Workbench because it helps me
keep everything organized in one place, and after generating a diagram, I can use it
internally to generate tables and vice versa! You can create your tables first and then
generate diagrams from them. That's why it is called the Reverse Engineering tool.

There are two strategies to design a software. In the Bottom-
Up approach, we start with the detailed specifications of small
components first and glue them together later to build the whole
software. This requires precise information about basic building
blocks before starting.
In the Top-Down approach, we see the software as a whole
concept. We start with a general idea, not knowing the details of
each component, and polish it as we go.
The MVP approach in this book, plus the idea of Behavior-
Driven Development, strongly suggests that we have to proceed
with the Top-Down design.

You can get the latest version of MySQL Workbench at http://dev.mysql.com/
downloads/workbench.

Creating ERDs using MySQL Workbench
Assuming that you have installed and logged in to your MySQL Workbench,
perform the following steps:

1. Choose Database | Reverse Engineer (Ctrl + R) and connect to your local
database server.

http://erdiagrams.com/
https://erdplus.com/#/
http://dev.mysql.com/downloads/workbench
http://dev.mysql.com/downloads/workbench

Business Logic

[108]

2. Choose mava when it asks for schema:

3. Accept all the default settings and click on the Next button all the way down
to the final step. At the end, you will see that an EER Diagram has been
generated, EER stands for Enhanced Entity-Relation Diagram:

Chapter 5

[109]

4. If you open the diagram, the only table (User) in our project will be
displayed. We created this in Chapter 2, The Request and Response Life Cycle,
for testing purposes.

Adding a new entity
As I mentioned before, each table that we create here will represent an entity in our
Symfony project. To build one, let's start with the workcpace table:

1. Press T, click on any empty space on the canvas, and double-click on the
newly created entity (table) to change its name to workcpace, as follows:

Business Logic

[110]

2. Click on the Columns tab, and first create an id column and set the PK
(Primary Key), NN (Not Null), and AI (Auto-increment) options for it. Then,
add the rest of the properties as follows (You can add columns by double-
clicking on the empty line beneath the last added column.):

You might expect more columns in the task table. For the sake of simplicity,
let's start small and add a more complex structure if it is needed later.

You can change the name and datatype for each column by
double-clicking on it.
The navigation area in the top left-hand side of the window
helps you zoom and drag the preview area wherever you like.

Use the facts from the previous chapter and repeat the same process for other
entities. At the end, you should have a structure as follows:

Chapter 5

[111]

Adding a new relationship
In terms of relationships, we had three rules:

• Each project can be defined in one workspace only but each workspace can
have multiple projects. This means that there is a one-to-many relationship
between workspace and project.

• Each task belongs to one project only but each project may contain multiple
tasks. Here is another one-to-many relationship, this time, between project
and task.

• Each task can be assigned to one user only but each user can have multiple
tasks. Again, we have a one-to-many relationship between user and task.

It looks like we have a couple of one-to-many relationships between entities. To
implement any of these relationships, we need to create a column for the foreign key
first, then connect it to the referenced column of the other table. For the Workspace-
Project relationship, for example, do the following:

1. Click on the project entity and add a new column called workspace_id to it.
For datatype, consider INT.

2. Now click on the Foreign Keys tab and add a new key named fk_project.
Under the Referenced Table, add `mava`.`workcpace`. Then, in the
Foreign Key Columns section, connect workspace_id to id by checking the
box. By doing this, you will see that a dashed line connects these two entities
in the preview pane:

Business Logic

[112]

The rest of the relationships are one-to-many as well, so after repeating the same
process, you should have an ERD as follows:

This is far from complete, but for MVP purposes, it does the job. We just created a
visual concept of our entities, their properties, and relationships with each other.
Seeing how the business logic looks like—at any stage of development—helps
understand it better and prevent some ordinary mistakes. Let's see how to use it to
create actual tables in the database and real entities in Symfony.

Creating actual tables from a diagram
Creating tables from an ERD is called Forward Engineering and includes the
following steps:

1. Select Database | Forward Engineer (Ctrl + G) and connect to the host where
you set up the mava database then press Next:

Chapter 5

[113]

2. In the Options step, make sure that you drop any current tables before
creating new ones. Accept the default state of other options (leave them
unchecked) and press Next:

3. This step might ask for your password. After authorization, make sure that
only Table objects are selected:

Business Logic

[114]

4. This step shows you a preview of a SQL query containing all four table
creations and their related configurations. It is not necessary, but if you wish,
you can copy this script to the clipboard in case you need it somewhere:

5. By pressing Next, all steps are processed and the tables are created:

You can confirm that new tables were created by going to your host, choosing the
mava database, and refreshing the list of tables.

Chapter 5

[115]

Generating entities
Now, let's ask Symfony to do the last step and generate entities. The following
command investigates the database and creates a group of configuration files (in the
.yml format):

$ bin/console doctrine:mapping:import --force AppBundle yml

If everything is okay, you should see this output:

Open any of these .orm.yml files and you will find all columns, keys, and
relationships defined here. Now we can use these files to create entities. First, you
need to get rid of the already defined /Entity/User.php entity. It conflicts with the
definitions in config files. After deleting this file, turn the YML file into an annotation
by running the following:

$ bin/console doctrine:mapping:convert annotation ./src

The output says that every config file has been processed and an annotated entity has
been generated for them:

Now, it is safe to completely remove the /AppBundle/Resources/config/doctrine
folder and all .orm.yml files in it.

Check your /Entity folder and there you have all the entity files created. However,
something is missing. Look in any of them and you will find that there are no set()
or get() methods. Besides, there are no repositories. To fix this, first open each file
and edit the @ORM\Entity annotation as follows (This line is normally located at the
top of the page, line 11.):

@ORM\Entity(repositoryClass="AppBundle\Entity\UserRepository")

Business Logic

[116]

Repeat this process for each entity and then run this command:

$ bin/console doctrine:generate:entities AppBundle

This will add all the missing pieces to our entities and generate their repositories.

Data fixtures
To play with these newly created entities, we need to add some data fixtures. Let's
say we need one workspace, one project, and three tasks, one of them assigned
to John and the other two assigned to Jack. (Remember these two guys from the
previous data fixtures? Just open src/AppBundle/DataFixtures/ORM/LoadUsers.
php to remind yourself about a little bit of history from Chapter 2, The Request and
Response Life Cycle.)

Create a new data fixture for workspace and add the following contents to it:

<?php
// src/AppBundle/DataFixtures/ORM/LoadWorkspaces.php
namespace AppBundle\DataFixtures\ORM;
use Doctrine\Common\Persistence\ObjectManager;
use Doctrine\Common\DataFixtures\AbstractFixture;
use Doctrine\Common\DataFixtures\OrderedFixtureInterface;
use AppBundle\Entity\Workspace;

class LoadWorkspaces extends AbstractFixture implements
 OrderedFixtureInterface
{
 public function load(ObjectManager $manager)
 {
 $workspace1 = new Workspace();
 $workspace1->setName('Writing');
 $workspace1->setDescription('info for writing Workspace');
 $manager->persist($workspace1);
 $manager->flush();
 $this->addReference('workspace-writing', $workspace1);
 }

 public function getOrder()
 {
 return 10; // the order in which fixtures will be loaded
 }
}

Chapter 5

[117]

In this code, there are two major things that we need to focus on. First, the
addReference() method, which basically creates a reference that we will use to
make a connection between a workspace and its projects. We can use this method
because our class has implemented OrderedFixtureInterface.

The other important method is getOrder(). Basically, you define the order of
loading fixtures and it comes in handy in a situation where the contents of one entity
somehow depend on the contents of the other one.

Use getOrder() with a return value of 20, 30, and 40 for
LoadProjects, LoadUsers, and LoadTasks respectively. It
is a good practice to have a gap of 10 units, in case later on we
need to add another file in between.

So let's see how we can use the workspace reference in the LoadProjects fixture:

<?php
// src/AppBundle/DataFixtures/ORM/LoadProjects.php
// ...
use AppBundle\Entity\Project;

class LoadProjects extends AbstractFixture implements
 OrderedFixtureInterface
{
 public function load(ObjectManager $manager)
 {
 $project1 = new Project();
 $project1->setTitle('Symfony book');
 $project1->setDescription('Some descriptions for Symfony book
 project');
 $project1->setDueDate(new \DateTime('2014-10-20'));
 $project1->setWorkspace($manager->merge($this-
 >getReference('workspace-writing')));
 $manager->persist($project1);
 $manager->flush();
 $this->addReference('project-symfony', $project1);
 }
// getOrder() method
}

Pay close attention to the setWorkspace() method. It gets ObjectManager to fetch
the reference to the workspace and assign it to the workspace_id field in the current
project entity.

Business Logic

[118]

Moreover, there is a call to the addReference() method for the project entity because
we need to use it for tasks. Speaking about tasks, this is how the fixture would look:

<?php
// src/AppBundle/DataFixtures/ORM/LoadTasks.php
// ...
use AppBundle\Entity\Task;

class LoadTasks extends AbstractFixture implements
 OrderedFixtureInterface
{
 public function load(ObjectManager $manager)
 {
 $task1 = new Task();
 $task1->setTitle('writing chapter 1');
 $task1->setDescription('descriptions for writing ch1');
 $task1->setDueDate(new \DateTime('2014-10-14'));
 $task1->setProject($manager->merge($this-
 >getReference('project-symfony')));
 $task1->setUser($manager->merge($this->getReference('user-
 john')));

 $task2 = new Task();
 $task2->setTitle('reviewing chapter 1');
 $task2->setDescription('descriptions for reviewing ch1');
 $task2->setDueDate(new \DateTime('2014-10-16'));
 $task2->setProject($manager->merge($this-
 >getReference('project-symfony')));
 $task2->setUser($manager->merge($this->getReference('user-
 jack')));

 $task3 = new Task();
 $task3->setTitle('editing chapter 1');
 $task3->setDescription('descriptions for editing ch1');
 $task3->setDueDate(new \DateTime('2014-10-18'));
 $task3->setProject($manager->merge($this-
 >getReference('project-symfony')));
 $task3->setUser($manager->merge($this->getReference('user-
 jack')));

 $manager->persist($task1);
 $manager->persist($task2);
 $manager->persist($task3);
 $manager->flush();
 }
 // getOrder() method
}

Chapter 5

[119]

There are two reference calls in any task entity. First, there is a call to the project that
the current task belongs to and then there is a call to the user to whom this task has
been assigned. The last fixture that we need to load (or basically edit) is user. Open
the file and update the contents as follows:

<?php
// src/AppBundle/DataFixtures/ORM/LoadUsers.php
// ...
use AppeBundle\Entity\User;

class LoadUsers extends AbstractFixture implements
 OrderedFixtureInterface
{
 public function load(ObjectManager $manager)
 {
 // previous code
 $this->addReference('user-john', $user1);
 $this->addReference('user-jack', $user2);
 }

 // getOrder() method
}

Okay, all data fixtures are in place, and now it is time to load them to tables:

$ bin/console doctrine:fixtures:load

Answer Y to the purging database question and, after that, check any table (task
table, for example) to see how data is loaded and related to each other:

Business Logic

[120]

With the entities created and fixtures loaded, I think this is a good time to add all of
these files to our GitHub repository:

$ git commit -am "chapter 5 – entities and datafixtures added"

$ git push

As Jenkins picks up new changes from GitHub automatically,
you might receive a notification regarding a failed or successful
build. Ignore the e-mail either way. We will deal with it later.

Now we are all set and ready to create some scenarios around the business logic and
implement each feature.

Some business logic features and
scenarios
Generally speaking, we expect four main actions (CRUD: Create Read Update
Delete) for each entity. Although they can be generated by Doctrine automatically
(via Symfony's bin/console doctrine:generate:crud command), we will see in
Chapter 6, Dashboard and Security, how to use the Sonata project (https://sonata-
project.org/) to do the job for us. So there won't be any features for them at the
moment. Instead, let's focus on a search feature and various scenarios around it.

As this is a task management application, all searches will be built around the task
entity. Yes, we will have features to list, sort, and quick-search users, projects, and
workspaces on their own page. However, the search box on the main page should be
focused mainly on tasks. Let's see what search possibilities we can imagine for it.

Basically, we need a search box that accepts search keywords and then performs
searches on various entities. It is easy to look for the title and description of a task,
but we need a more robust search mechanism.

For example, if the keyword is a date, it should be able to look in the due_date field
for each task and return them in case there is a match.

If it is a username, then it should be able to find all tasks assigned to a specific
username. This means that the search criteria should be expanded to the user entity
via the relationship between the task and user.

https://sonata-project.org/
https://sonata-project.org/

Chapter 5

[121]

How about a project name? If we mention a project title as a search keyword, it
should be able to find all tasks belonging to that project.

So technically the task search mechanism should be smart enough to perform
the following:

1. First, analyze the search keyword and decide an appropriate data type for it.
2. Then, decide the searching criteria for it (whether it is in the task entity or

outside it, considering the task entity has the highest priority).
3. Finally, perform the search query and return the results.

Searching tasks is one of the most important pieces of business logic in this project
and, as you will see, more assumptions (search filters and parameters) will be
added to it.

TDD and BDD with Codeception
Now is a good opportunity to see Codeception and our understanding of TDD
and BDD in action. To implement a maintainable code, we are going to follow these
three steps:

1. First, we create a failing functional test (a scenario) that summarizes our
expectations of the application. This means that according to the business
logic, we need to see an overall function related to each entity. So we will
create actions that, without worrying about what they will have inside,
simply return a desired response.

2. Next, we create a failing unit test and assess the legitimacy of the response
created from step one. In other words, we test the logic in each action to
make sure that the generated response is accurate.

3. Finally, we create acceptance tests to see if the tests created from the first
two steps satisfy the application performance from the end user's point of
view. In this step, we see the results in a browser, and we can see how our
application interacts with JavaScript codes or Ajax calls.

Business Logic

[122]

Step one – creating a functional test
Earlier in this chapter, we created data fixtures for all four entities of our project. To
be specific, we have at least one workspace called Writing that has a project named
Symfony book with three tasks that are assigned to two users. The general picture of
this scenario is as follows:

Let's start with the workspace and ask Codeception to create a functional test for it:

$ vendor/bin/codecept generate:cest functional WorkspaceController

Great, we just created a class-based functional test (cest) for our
WorkspaceController (which does not exist yet):

Test was created in /var/www/packt/mava/tests/functional/
WorkspaceControllerCest.php

Now, let's open the new test file and add the following scenario to it:

// mava/tests/functional/WorkspaceControllerCest.php
<?php
class WorkspaceControllerCest
{
 // ...
 public function testShowAction(FunctionalTester $I)
 {
 $I->wantTo('too see inside the \"Writing\" workspace');
 $I->amOnPage('/workspace/writing');
 $I->see('Symfony book');
 }
}

Chapter 5

[123]

We know it is a failing test, and to prove it, we can run it and check the output:

$ vendor/bin/codecept run functional WorkspaceControlerCest

We can spot a few facts from this scenario:

• We need a controller called: WorkspaceController
• We need a showAction() method there
• This method receives a workspace name as input and renders a template

where a list of available projects for this workspace is displayed

Developing the missing code
Starting from the missing controller and its showAction(), go to AppBundle and add
the following class to it:

// mava/src/AppBundle/Controller/WorkspaceController.php
<?php
namespace AppBundle\Controller;
use Sensio\Bundle\FrameworkExtraBundle\Configuration\Route;
use Symfony\Bundle\FrameworkBundle\Controller\Controller;
use Symfony\Component\HttpFoundation\Response;

class WorkspaceController extends Controller
{
 /**
 * @Route("/workspace/{name}", name="workspace_show")
 * @param $name
 * @return Response
 */
 public function showAction($name)
 {
 // ToDo:find available projects in the given workspace
 return $this->render('workspace/show.html.twig',
 array('project' => 'Symfony book'));
 }
}

The key points in the new controller are: we have a new route (/workspace/{name})
and a new template, which lives in the app/Resources/views folder and is called
show.html.twig.

Business Logic

[124]

As you can see, this template gets a project object and will show the name of the
project later. From a functional test point of view, what matters is getting a response
and rendering it. So for now, it doesn't matter how this project object was obtained.
We will deal with it shortly. Just put the project name Symfony book in it and pass it
on to the template.

Now we need to create the template. Go to the app/Resources/views folder and
create the missing workspace subdirectory and its template as follows:

mava/app/Resources/views/workspace/show.twig.html
{{ project }}

Nothing fancy here. We just display what we get from the showAction() controller.
Now it is time to run the test:

$ vendor/bin/codecept generate:cest functional WorkspaceController

The test now passes beautifully:

Functional Tests (1) --

Too see inside the "writing" workspace (WorkspaceControllerCest::testShow
Action) Ok

--

Time: 523 ms, Memory: 29.00Mb

OK (1 test, 1 assertion)

Step two – creating the unit tests
With the initial functional test in place, let's deal with the unit tests and get rid
of comments and fake responses in the showAction() method. First, let's ask
Codeception to generate the unit test file for us:

$ vendor/bin/codecept generate:test unit WorkspaceController

Test was created in /var/www/packt/mava/tests/unit/
WorkspaceControllerTest.php

This was easy, but here comes the tricky part. The nature of the showAction()
method suggests some interaction with the database. In other words, we have to
interact with two entities. We have a name property for a workspace entity, with this
workspace name we need to check the project entity and find all projects that belong
to the given workspace.

Chapter 5

[125]

Setting up the database for a test environment
in the right way
The first thing that we need to do is isolate the development (or production) database
from our test code. So, let's modify parameters and configuration files for the test
environment to implement this isolation.

Open the parameters.yml file and add the following lines to it:

mava/app/config/parameters.yml
parameters:
 database_name_test: mava_test
 #...

Now open the config_test.yml file and add the following lines to it:

mava/app/config/config_test.yml
doctrine:
 dbal:
 dbname: "%database_name_test%"

Now we use Doctrine to create the new test database, add tables to it, and populate
the tables with sample data:

$ bin/console doctrine:database:create --env=test

Created database `mava_test` for connection named default

$ bin/console doctrine:schema:update --env=test --force

Updating database schema...

Database schema updated successfully! "7" queries were executed

$ bin/console doctrine:fixtures:load --env=test

Careful, database will be purged. Do you want to continue y/N ?y

 > purging database

 > loading [10] AppBundle\DataFixtures\ORM\LoadWorkspaces

 > loading [20] AppBundle\DataFixtures\ORM\LoadProjects

 > loading [30] AppBundle\DataFixtures\ORM\LoadUsers

 > loading [40] AppBundle\DataFixtures\ORM\LoadTasks

Business Logic

[126]

Notice the --env=test option in the preceding commands.
If you forget it, the main database and its tables will be
affected. With the --env=test option, we tell Doctrine which
environment we want to work on.

Dropping and recreating the database for
each test
In a proper test procedure, we should be able to drop the tables, recreate them, and
populate them with fresh data in each test. Codeception can handle this masterfully.
Look at the tests/_data/ folder and you will find an empty file called dump.sql.
All we need to do is add some SQL commands to create and populate tables here. In
MySQL Workbench, it is in the Management tab under the Data Export option.

In PhpMyAdmin, you can select the mava_test database and
then choose Export.

Either way, save the file with the dump.sql name and move it to mava/tests/_
data/dump.sql.

Next, go to the codeception.yml file at the root of your project and modify the Db
settings as follows:

mava/codeception.yml
modules:
 config:
 Db:
 dsn: 'mysql:host=localhost; dbname=mava_test'
 user: 'root'
 password: 'illuminati'
 dump: tests/_data/dump.sql
 populate: true # dump will be loaded before the test
 cleanup: false # dump will be loaded after each test

Then, enable the Db module in the unit test suit as follows:

mava/tests/unit.suit.yml
class_name: UnitTester
modules:
 enabled:
 - Asserts
 - \Helper\Unit
 - Db

Chapter 5

[127]

To see if the tables are created and populated in each test, drop the database, run the
empty test (it will pass because there is nothing to test yet), and check the tables:

$ vendor/bin/codecept run unit WorkspaceControllerTest

Unit Tests (1) --

Test show action (WorkspaceControllerTest::testShowAction) Ok

Time: 569 ms, Memory: 10.00Mb

OK (1 test, 0 assertions)

You will see that the database, tables, and their records are all there.

Now, let's add the Doctrine2 module to unit.suite.yml and get ready to write the
first unit test:

mava/tests/unit.suite.yml
class_name: UnitTester
modules:
 enabled:
 - Asserts
 - \Helper\Unit
 - Db
 - Symfony2:
 app_path: 'app'
 var_path: 'var'
 environment: 'test'
 - Doctrine2:
 depends: Symfony2

In the preceding settings, we declare that the Doctrine2 module should use the
default Entity Manager available in the Symfony2 module.

Creating unit tests
Now that we have all the Db settings in order, let's write the first test. We can do
this by checking the name of the project. In other words, let's see if a project named
Symfony book is available in the Writing workspace. Basically, we are going to test
the repository first. So open the recently created unit test file and modify it as follows:

// mava/tests/unit/WorkspaceControllerTest.php
<?php
class WorkspaceControllerTest extends \Codeception\TestCase\Test
{
 /**

Business Logic

[128]

 * @var \UnitTester
 */
 protected $tester;
 // ...
 public function testShowAction()
 {
 $workspaceId = $this->tester->grabFromRepository(
 'AppBundle:Workspace', 'id',
 array('name'=>'Writing')
);
 $projectTitle = $this->tester->grabFromRepository(
 'AppBundle:Project', 'title',
 array('workspace'=>$workspaceId)
);
 $this->assertEquals('Symfony book', $projectTitle, 'no match
 found');
 }
}

Run the test and you will see that it passes successfully. However, this test is not
good enough. We didn't actually test our controller. We just checked the repositories.
To test the controller, we first need to get rid of the hardcoded value in the
showAction() method that we passed to the template. This value is supposed to be
generated by controller. So replace it with a variable as follows:

// mava/src/AppBundle/Controller/WorkspaceController.php
<?php
// ...
class WorkspaceController extends Controller
{
 // ...
 public function showAction($name)
 {
 // ToDO: find workspace projects via given workspace name
 return $this->render('workspace/show.html.twig',
 array('projects' => $projects));
 }
}

Now open the helper class for unit tests and add a new method to it:

// mava/tests/_support/helper/Unit.php
<?php
namespace Helper;
class Unit extends \Codeception\Module
{

Chapter 5

[129]

 public function seeResponseContains($text)
 {
 $this->assertContains(
 $text,
 $this->getModule('Symfony2')->_getResponseContent(),
 "response contains"
);
 }
}

This method simply checks to see whether a given text is available in Symfony's
response object.

We could define the new helper method directly in our unit
test class. However, keeping helpers organized in the Helper
class keeps our code clean and maintainable.

Now add the following lines at the end of the test file:

// mava/tests/unit/WorkspaceControllerTest.php
<?php
class WorkspaceControllerTest extends \Codeception\TestCase\Test
{
 /**
 * @var \UnitTester
 */
 protected $tester;
// ...
 public function testShowAction()
 {
 // ...
 $this->tester->amOnRoute('workspace_show', array('name' =>
 'Writing'));
 $this->tester->seeResponseContains('Symfony book');
 }
}

The amOnRoute() method gets the route name to showAction() and passes Writing
as the workspace name. Then, using the new helper seeResponseContains()
method, we look for our project name, Symfony book.

Business Logic

[130]

Now we have a unit test that actually tests the repository plus our controller.
Run the test:

Unit Tests (1)---

Test show action (WorkspaceControllerTest::testShowAction) Fail

Time: 739 ms, Memory: 31.75Mb

There was 1 failure:

1) Test show action (WorkspaceControllerTest::testShowAction)

response contains

Failed asserting that '$project' contains "Symfony book".

FAILURES!

Tests: 1, Assertions: 2, Failures: 1.

This is great. This means that our mission is to write a code to pass the test. Luckily,
we know the cause for failing as well. The output clearly says that it couldn't find the
Symfony book string in the $project variable. This makes our job really easy.

Writing the code to pass the test
The showAction() method will find projects based on a given workspace name. To
do so, we first have to find out the workspace ID and use it to find available projects:

// mava/src/AppBundle/Controller/WorkspaceController.php
<?php
// ...
class WorkspaceController extends Controller
{
 /...
 public function showAction($name)
 {
 // find the workspace id from the given name
 $repo = $this->getDoctrine()
 ->getRepository('AppBundle:Workspace');
 $workspace = $repo->findOneBy(array('name' => $name));
 $workspaceId = $workspace->getId();

 // find all projects which have the given workspace id
 $repo = $this->getDoctrine()
 ->getRepository('AppBundle:Project');
 $projects = $repo->findBy(
 array('workspace' => $workspaceId)

Chapter 5

[131]

);

 if ($projects == null) {
 throw $this->createNotFoundException('Not found!');
 }
 else
 return $this->render(
 'workspace/show.html.twig',
 array('projects' => $projects)
);
 }
}

You might have noticed that we are not sending a simple string to the template,
rather we are sending an array of objects ($projects). This means that we have to
modify our template accordingly to handle this change:

mava/app/Resources/views/workspace/show.twig.html
{% for project in projects %}
 {{ project.title }}
{% endfor %}

In the preceding template, we simply loop through all the available projects, fetch
the project title, and print it on the screen. The {{ }} and {% %} symbols belong to
TWIG and we will talk about this in detail in Chapter 7, The Presentation Layer.

Running functional and unit tests
Now let's run all the tests that we have created so far and check the results:

$ vendor/bin/codecept run

Unit Tests (1) --

Test show action (WorkspaceControllerTest::testShowAction) Ok

Functional Tests (1) --

Too see inside the "writing" workspace (WorkspaceControllerCest::testShow
Action) Ok

Acceptance Tests (0) ------------------------

Time: 805 ms, Memory: 35.25Mb

OK (2 tests, 3 assertions)

Business Logic

[132]

As the output suggests, we have two passing (unit and functional) tests with a total
of three assertions. Now we have one more test to do and that is the acceptance test.

Step three – creating an acceptance test
No testing procedure is complete without an acceptance test. As developers, we tend
to focus on the codes and dark screens to the extent that we sometimes forget the
user experience. How do you know that the code you have created is good enough to
solve a problem if you can't get feedback from the user's point of view?

With an acceptance test (that is, User Acceptance Test (UAT)), we can see how our
application performs in the real world.

Head to your terminal and create a new classified acceptance test:

$ vendor/bin/codecept g:cest acceptance WorkspaceControllerAccept

Test was created in var/www/packt/mava/tests/acceptance/
WorkspaceControllerAcceptCest.php

Now, run Selenium2, which you installed in Chapter 4, Using Behavior-Driven
Development in Symfony, and get ready to see it taking control of the automated test:

$ java -jar path/to/selenium-server.jar

To see the result on the screen, we need to configure acceptance.suite.yml to
open a real browser while testing:

mava/tests/acceptance.suite.yml
class_name: AcceptanceTester
modules:
 enabled:
 - WebDriver:
 url: http://localhost:8000
 browser: firefox
- PhpBrowser:
url: http://localhost:8000
 - \Helper\Acceptance

Keep PhpBrowser commented out in the acceptance.suite.yml
file. You might need it later for a faster acceptance test.

Chapter 5

[133]

Next, open the new acceptance test file and add the following commands to it:

// mava/tests/acceptance/WorkspaceControllerAcceptCest.php
<?php
class WorkspaceControllerAcceptCest
{
 // ...
 public function testShowAction(AcceptanceTester $I)
 {
 $I->wantTo('too see inside the "Writing" workspace');
 $I->amOnPage('/workspace/writing');
 $I->see('Symfony book');
 $I->wait(3);
 }
}

Hang on a minute! This is almost the same test that we created for the functional test,
isn't it? That's correct. The fact is acceptance and functional tests are mostly identical
and the only differences are as follows:

• Acceptance tests can be run in a browser
• They can cover JavaScript calls as well

The $I->wait(3); method delays the closing of the
Firefox browser for three seconds so that we get a chance
to see the output.

Now let's run all the tests and see how it looks:

$ vendor/bin/codecept run

Codeception PHP Testing Framework v2.1.5

Powered by PHPUnit 4.8.22 by Sebastian Bergmann and contributors.

Unit Tests (1) --

Test show action (WorkspaceControllerTest::testShowAction) Ok

Functional Tests (1) --

Too see inside the "writing" workspace (WorkspaceControllerCest::testShow
Action) Ok

Business Logic

[134]

Acceptance Tests (1) --
Too see inside the "writing" workspace (WorkspaceControllerAcceptCest::te
stShowAction) Ok

Time: 6.21 seconds, Memory: 35.25Mb

OK (3 tests, 4 assertions)

Congratulations. There are three tests and four assertions and they are all green. As
you saw in the UAT step, a Firefox browser opened and browsed to the Writing
workspace, the Symfony book contents were displayed, and the browser was closed
after three seconds.

In case your internal PHP server was terminated since
the last time, make sure that it is up and running before
executing the tests:
$ bin/console server:run

On the CI side of the story
Last time, as you pushed the changes to your GitHub repository, you probably
received a couple of e-mails informing you about the success or failure of the new
build. You can celebrate if your build is successful. However, if it is not, don't panic
and just follow this two-step process.

First, make sure that all unit tests and functional tests in your local machine pass
successfully. If there is something wrong here, you should not expect a successful
build from your Jenkins instance on EC2. For those who created or modified the tests
and codes themselves, it could be a simple misspelling error or some serious logical
issue. Spot the problem using log messages and fix it. Then try again.

For those who cloned the code from my GitHub repository, it could be a local
configuration issue. If you branched out your working Git repository, make sure that
you are on the right branch. If something needed to be merged, check out to your
Dev branch first and then do it. Check that the phpunit.xml file is in the right place.
Make sure that you have set permissions correctly.

Chapter 5

[135]

If locally everything is okay, then the problem is in your Jenkins server. Before doing
anything, read the log files. They are very direct and lead you exactly to the root of
the problem.

Sometimes, upgrading the installed plugins in Jenkins fixes
the problems automatically.

Summary
In this chapter, we built a tiny business logic around four entities provided so far and
created unit, functional, and acceptance tests for their controllers and repositories.

Don't worry if it looks very simple at the moment. Remember that we are still
dealing with an MVP. We are waiting for two more players in this project. In other
words, in the next chapter, the security and administrative areas will be added to
the project, and in Chapter 7, The Presentation Layer, the main focus will be on the
frontend and making the project look pretty. Then, in Chapter 8, Project Review, we
will go completely crazy and make all the mechanisms used so far five times bigger
and more complex. That's where all the features expected from a big project will be
applied to the mava project.

[137]

Dashboard and Security
It is nice to have entities and business logic in place. What would be nicer is having
a control panel where we can Create,Read,Update, and Delete (CRUD) them and
make sure that only specific users with the right privileges can have access to it. This
sounds like a firewalled and secured area of the project.

In this chapter, we will see how to set up security and firewalls in Symfony, and
then create a user management system using FOSUserBundle. After knowing the
basics, we step into one of the biggest Symfony projects, Sonata, and use some of its
bundles. We will see how to use SonataAdminBundle to manage entities from the
backend. However, as an account owner (not administrator), we need to be able to
manage our workspaces, projects, tasks, and members from the frontend as well.
This means that we need to set up at least two firewalls for this project. One will be
built in the frontend where every member keeps his own stuff, and one will be set for
the backend where only the website administrators have access.

Dashboard and Security

[138]

The main topics in this chapter are as follows:

• Setting up a firewall and defining authentication and authorization steps
• Using FOSUserBundle for better user management on the frontend
• Using SonataAdminBundle for better content management on the backend:

Using SonataUserBundle to integrate the user entity into the backend

How security is organized in Symfony?
Security is all about defining an agreement between users and the application on
how to use the website. Like other Symfony configuration files, security has its own
settings, which basically define what type of user is allowed to visit which part of
the application and types of operations that he is authorized to do. If you look at
app/config/security.yml contents, it is quite empty and security is deactivated
by default. This is the reason that you can see almost any part of your application
without providing any credentials. Let's change this and build some firewalls in front
of locations such as /admin.

Creating a firewall is as simple as adding the following lines to the security.yml
contents:

app/config/security.yml
security:
 firewalls:

Chapter 6

[139]

 secured_area:
 pattern: ^/
 anonymous: ~

 access_control:
 - { path: ^/admin/, roles: ROLE_ADMIN }

This URL is now secured from unauthorized access. However, it is not going to be
isolated forever. In other words, we need to find a way to let the genuine users come
in. This happens through a mechanism called authentication.

Authentication
Authentication is the process that determines who the user is. During this process, a
key (called token) is given to the user, which lets them pass through the first security
barrier. The detailed process is something like this.

First, the firewall looks inside the request and fetches the credentials (that is, the
username and password) and creates an unauthenticated token. There is a class
inside Symfony's Security component called UsernamePasswordToken that is in
charge of doing this:

use Symfony\Component\Security\Core\Authentication\Token\
UsernamePasswordToken;
// . . .
$unauthenticatedToken = new UsernamePasswordToken(
 $username,
 $password,
 $this->providerKey
);

The providerKey here can come from a third-party application or it could be
generated by Symfony itself. As you can see, it simply says: Yes, I got the request,
and yes, there are some credentials in it. So, here is your unauthenticated token, but I
still don't know you, dude."

The next step would be checking the credentials to see whether they are correct. If so,
then another method will convert the current token to an authenticated one:

use Symfony\Component\Security\Core\Authentication\
AuthenticationManagerInterface;
$authenticatedToken = $this
 ->authenticationManager
 ->authenticate($unauthenticatedToken);

Dashboard and Security

[140]

So, at this stage, we got the authenticated token and passed through the firewall
safely. To have this token handy at all times, it should be saved in a concept called
security context:

/**
 * @var SecurityContextInterface
 */
private $securityContext;

$this->container->get('security.token_storage')->setToken($token);

This way, we can retrieve the token whenever it is needed.

Authorization
The first security barrier is passed and imagine that we are in /admin/workspace
now. What happens if we decided to remove a workspace?

In general, there are many parameters involved in authorization but technically
everything comes down to one important question. The Security component will ask:
"Are you authorized to do that?" This authorization decision is usually made based
on the current token in the security context:

if (!$securityContext->isGranted('ROLE_ADMIN')) {
 throw new AccessDeniedException();
}

This sounds like a lot of effort is involved in implementing a good security system
for Symfony projects. Taking care of all of those firewalls and authentication and
authorization steps is definitely a delicate and important task. However, the good
news is that there are some bundles out there that have already implemented the
security requirements. Let's see how to benefit from them in this chapter.

Handling users with FOSUserBundle
This is the best user management bundle so far. It comes with many user
management features (such as user registration, edit profile, forgotten password,
and others) out of the box. All you need to do is install and activate the bundle and
extend your own User entity from it. Let's start with the installation:

$ composer require friendsofsymfony/user-bundle '~dev-master'

Chapter 6

[141]

At the time of writing this chapter, there are some
unresolved issues between Symfony 3 and stable releases of
FOSUserBundle that are being fixed on a daily basis. So, if
you don't see any stable version greater than or equal to v2.0,
make sure that you are using the master branch.

Of course, then we need to activate it:

<?php
// app/AppKernel.php
public function registerBundles()
{
 $bundles = array(
 // ...
 new FOS\UserBundle\FOSUserBundle(),
);
}

Now we need to modify the current User entity and extend it from this bundle. Get
rid of the e-mail, name, and bio and their setters and getters as we don't need them
anymore and there are more robust fields already created in FOSUserBundle entities:

<?php
// src/AppBundle/Entity/User.php
namespace AppBundle\Entity;
use FOS\UserBundle\Model\User as BaseUser;
use Doctrine\ORM\Mapping as ORM;

class User extends BaseUser
{
protected $id;
 public function __construct()
 {
 parent::__construct();
 // your own logic
 }
}

Dashboard and Security

[142]

Note that $id is defined as protected and a constructor has
been initiated from the parent class because there are lots of
features that we can use this way.
Additionally, look at the FOS's User class. It is inside the Model
folder that we talked about in the previous chapter. This means
that it is equipped with extra methods that we can benefit from,
without adding them directly to our own User entity. All we
need to do is just call them.

Security settings
With the bundle installed and the User entity extended from it, we can now define
our security rules. Open app/config/security.yml and add the following contents
to it:

app/config/security.yml
security:
 providers:
 fos_userbundle:
 id: fos_user.user_provider.username
 encoders:

 FOS\UserBundle\Model\UserInterface: bcrypt
 role_hierarchy:
 ROLE_ADMIN: ROLE_USER
 ROLE_SUPER_ADMIN: ROLE_ADMIN
 firewalls:
 main:
 pattern: ^/
 form_login:
 provider: fos_userbundle

 csrf_token_generator: security.csrf.token_manager
 logout: true
 anonymous: true
 access_control:
 - { path: ^/login$, role: IS_AUTHENTICATED_ANONYMOUSLY }
 - { path: ^/register, role: IS_AUTHENTICATED_ANONYMOUSLY }
 - { path: ^/resetting, role: IS_AUTHENTICATED_ANONYMOUSLY}
 - { path: ^/admin/, role: ROLE_ADMIN }

Here is a description of each entry:

• With encoders, you can set the User entity and encryption algorithm that is
used for passwords. As you can see, we have bcrypt here.

Chapter 6

[143]

• The role_hierarchy entry defines who controls who. So ROLE_ADMIN:
ROLE_USER basically means that whichever permission is granted to a user is
contained in admin as well.

• With the provider, you can define an alias for the service provider and
access this alias conveniently whenever it is needed. Basically, a provider is
responsible for retrieving the user details. If you look at the default security
settings—before replacing them with the preceding configurations—you
can see that the 'provider' key was set to the 'in-memory' value. This means
that no matter how the user has been stored, whether it is hardcoded into a
file (that is, in-memory) or provided by a database (that is, FOSUserBundle's
User model), the provider's job is providing the user's details.

• The most important part is the firewall, where you define areas of your
application that need to be secured. In this example, we set that an
anonymous user can visit anywhere, but don't be confused, because of the
access_control entry, they can only log in, register, and password reset
pages, which makes sense. We will make some changes to the security.yml
file as we continue.

Adding the required configurations to
FOSUserBundle
The next step is defining the settings for the config.yml file, such as defining
registration and profile forms, available services, and user and group class names. For
now, let's just keep it simple and define settings for the database driver, firewall name,
and user class. Open the config file and append the following entries at the end of it:

app/config/config.yml
fos_user:
 db_driver: orm
 firewall_name: main
 user_class: AppBundle\Entity\User

Adding routes
Now we need to tell Symfony where to find routes by adding the following entries to
the routing.yml file:

app/config/routing.yml
app/config/routing.yml
fos_user:
 resource: "@FOSUserBundle/Resources/config/routing/all.xml"

Dashboard and Security

[144]

Have a look at the contents of all.xml. As you can see, it contains routes for login,
logout, register, password reset, edit profile, and manage groups. I will go through
all of them soon.

Updating the tables
There are two main entities in FOSUserBundle, User and Group, and they are
really rich and full of various features. To make them available to our User entity
(remember that we extended ours from FOSUserBundle), the database schema needs
to be updated. So first, drop the current tables and then create a new schema:

$ bin/console doctrine:schema:update --force

$ bin/console doctrine:schema:create

Now check the user table. As you can see in the following image, there are some
extended fields in our user entity:

Chapter 6

[145]

A simple road test
Visit http://localhost:8000/login and you will see the ugliest yet fully
functional login form ever:

Let's deal with the labels and messages first. As you can see, the labels for input
fields here look like a yml key defined somewhere in the bundle.

That's correct and if you open the FOSUserBundle.en.yml file inside that bundle,
you will find the following snippet in it:

mava/vendor/friendsofsymfony/UserBundle/Resources/translations/
FOSUserBundle.en.yml
...
security:
 login:
 username: Username
 password: Password
...

This means that whenever we hit this nested key structure, security.login.
username, the value of the key that is Username will be shown. Why it did not show?

This is because the translator in Symfony is deactivated by default. To activate it,
open the config.yml file and uncomment the following line:

#mava/app/config/config.yml
#...
framework:
 #esi: ~
 translator: { fallbacks: ["%locale%"] }
#...

Now if you refresh the page, you will see the values instead of keys.

As we dropped the tables in the previous topic, there is no user available to test this
bundle. Loading data fixtures won't be helpful either because there is no bio field
anymore and running the load fixtures command will give you an error.

Dashboard and Security

[146]

Fortunately, FOSUserBundle comes with a set of commands providing all user
management functionality. Run the following command to list all of them:

$ bin/console list fos

These are the available commands for the fos namespace:

 fos:user:activate Activate a user

 fos:user:change-password Change the password of a user.

 fos:user:create Create a user.

 fos:user:deactivate Deactivate a user

 fos:user:demote Demote a user by removing a role

 fos:user:promote Promotes a user by adding a role

Let's create a new user:

$ bin/console fos:user:create Mava info@mava.info pass --super-admin

I could run the command without any parameters and go through questions to set
the username, e-mail, and password. Then, use the fos:user:promote command to
set the role for the created user. However, as you can see, the preceding command
does the job in one shot.

Try to log in again. It will log in but because it is redirected to the root of the website
and currently no controller is defined for the home page, it throws a 404 error. I will
set up login redirect later; for now, visit /login again and check the status bar. As
you can see, it shows you as an authenticated user and if you click on the username,
it shows your role as an admin:

The next chapter is all about making our application look stunning. For now, let's
focus on the mechanics of the project.

Chapter 6

[147]

There is one thing that we need to take care of though. You see, after a successful
login, the user will be redirected to the root of the website that is the default welcome
page. What would be more appropriate is redirecting to a dashboard page. Let's see
how we can fix this. Before this, we need to address broken data fixtures.

Generating automated data fixtures
So far, we had only four entities and only one of them changed in structure.
However, we spent some effort creating data fixtures for them.

Besides, defining the relationship in each data fixture is a delicate job. Imagine
how complex it becomes as the number of entities and their relationship grows in a
project. There should be a better way to create data fixtures.

Introducing AliceBundle
AliceBundle wraps around the Alice library that is created to handle data fixtures.
With AliceBundle, we can create and modify data fixtures and their relationship in a
clean and dynamic way. In other words, we don't need to create bulky PHP classes
for data fixtures. A simple yml file will do a way better job with Alice. The good
news is that doctrine/data fixture commands are still useful, so we can use the same
load command without changing anything.

1. Start by installing and configuring AliceBundle:
$ composer require --dev hautelook/alice-bundle doctrine/data-
fixtures

2. Add it to AppKernel.php:
// mava/app/AppKernel.php
<?php
public function registerBundles()
{
 //...
 if (in_array($this->getEnvironment(), ['dev', 'test'])) {
 //...
 $bundles[] =
 new Hautelook\AliceBundle\HautelookAliceBundle();
 }
 //...
}

Dashboard and Security

[148]

You may notice the dev option in the installation command that we used. This is
because we need the data fixtures only in dev and test environments. This is why
we activate it only in these environments in AppKernel.php.

Now, add the following configurations for Alice (notice that we are using config_
dev.yml):

app/config/config_dev.yml
hautelook_alice:
 db_drivers:
 orm: ~ # Enable Doctrine ORM if is registered
 locale: en_US # Locale to used for faker
 seed: 1 # A seed to make sure faker generates data consistently
 persist_once: false # Only persist objects once
 loading_limit: 5 # Max times the loader try to load the files

Creating data fixtures with Alice
Before defining new fixtures, go to the AppBundle/DataFixture/ORM subfolder and
remove all the previous data fixtures. Now, you can start afresh and add a new data
fixture for the user entity with the following contents:

src/AppBundle/DataFixtures/ORM/app.yml
AppBundle\Entity\User:
 user{1..10}:
 username: <userName()>
 email: <email()>
 password: <password()>

Compare these few lines with the long php class that we used to have for
datafixtures and you will appreciate the power of Alice. Now load this fixture
as follows:

$ bin/console hautelook_alice:doctrine:fixtures:load

You can call a shorter version as follows:

$ bin/console h:d:f:l

Chapter 6

[149]

Check your user table in the database and you will see that there are 10 new records
with random contents sitting here:

The contents of the data-fixture file should be self-explanatory. User{1..10} creates
a loop for user generation and repeats it 10 times. Of course, you can change the
number to whatever you like. For the user entity that extends FOSUserBundle, we
have three mandatory fields: username, e-mail, and password. As you can see, there
is a fake content generator for each field and luckily it uses the same field name.
For example, username: <userName()> means that we want to generate a random
username with the userName() function.

Where do these functions come from? Behind the scenes, AliceBundle uses a library
called Faker that generates all of these fake fields. To see a complete list of available
fields, check the following link:

https://github.com/fzaninotto/Faker

Relationship with Alice
Creating dynamic data fixtures with Alice is really helpful but not good enough. For
example, Workspace to Project has a one-to-many relationship. How can we define
this relationship in the generated data fixtures?

Defining relationships in Alice is as simple as adding an @ symbol in front of the field
name. Open the previous app.yml data-fixtures file and modify it as follows:

src/AppBundle/DataFixtures/ORM/app.yml
AppBundle\Entity\User:
 user{1..10}:
 username: <userName()>
 email: <email()>
 password: <password()>
AppBundle\Entity\Workspace:

https://github.com/fzaninotto/Faker

Dashboard and Security

[150]

 workspace{1..3}:
 name: <word()>
 description: <text()>
AppBundle\Entity\Project:
 project{1..7}:
 title: <word()>
 description: <text()>
 dueDate: <dateTimeBetween($startDate = 'now', $endDate = '+9
days')>
 workspace: "@workspace*"
AppBundle\Entity\Task:
 task{1..15}:
 title: <word()>
 description: <text()>
 dueDate: <dateTimeBetween($startDate = 'now', $endDate = '+3
months')>
 attachment: <boolean($chanceOfGettingTrue = 50)>
 project: "@project*"
 user: "@user*"

Load the new data-fixture:

$ bin/console h:d:f:l

Careful, database will be purged. Do you want to continue y/N ?y

 > fixtures found:

 - /var/www/packt/mava/src/AppBundle/DataFixtures/ORM/app.yml

 > purging database

 > fixtures loaded

Now check the tables and you will find that tons of records are generated and they
have a relationship with records from other tables as well.

What would be ideal is to replace contents of the test database and update the dump.
sql file in the tests/_data folder. This way, the test environment will benefit from
our new data fixtures as well. To see how to do this, refer to the previous chapter.

Setting up the login redirection
With the new data fixtures in place, let's go back to the login functionality and
deal with its required features. What a user normally wants to see after login is his
personal dashboard area. So let's make a simple Dashboard controller for it. Before
writing any code, we need to act like a professional and create the tests first.

Chapter 6

[151]

Creating tests for the new controller
What we need here is a new controller for the dashboard with a simple indexAction
method that simply renders a basic template containing a placeholder message.

So create an outline for a unit test:

$ vendor/bin/codecept g:test unit DashboardController

Test was created in mava/tests/unit/DashboardControllerTest.php

Edit the file as follows:

// mava/tests/unit/ DashboardControllerTest.php
<?php
class DashboardControllerTest extends \Codeception\TestCase\Test
{
 /**
 * @var \UnitTester
 */
 protected $tester;
 public function testShowAction()
 {
 $this->tester->amOnRoute('dashboard_index');
 $this->tester->seeResponseContains(
 'This is a placeholder for dashboard area.');
 }
}

Now create the functional test:

$ vendor/bin/codecept generate:cest functional DashboardController

Test was created in mava/tests/functional/DashboardControllerCest.php

Add the following contents to it:

// mava/tests/functional/DashboardControllerCest.php
<?php
class DashboardControllerCest
{
 public function testShowAction(FunctionalTester $I)
 {
 $I->wantTo('too see inside the dashboard area');
 $I->amOnPage('/dashboard');
 $I->see('a placeholder for dashboard');
 }
}

Dashboard and Security

[152]

Finally, create the acceptance test:

$ vendor/bin/codecept g:cest acceptance DashboardController

Test was created in mava/tests/acceptance/DashboardControllerCest.php

Edit it as follows:

mava/tests/acceptance/DashboardControllerCest.php
<?php
class DashboardControllerCest
{
 public function testShowAction(AcceptanceTester $I)
 {
 $I->wantTo('too see inside the dashboard area');
 $I->amOnPage('/dashboard');
 $I->see('a placeholder for dashboard');
 $I->wait(3);
 }
}

The functional and acceptance tests are almost identical. The only difference between
them is that the acceptance test runs in a browser. The unit test looks similar to the
other two as well, except that it checks the response contents and not the template.
It will be a stepping stone to create more robust tests later when we add more
functionality to it.

If we run the tests, they will fail. This is great because now we have a direction
to go in.

Note that we altered the user table. This means that the
data fixtures that we created before are not valid anymore
and the SQL code to create schema in the test environment
should be updated again. Refer to the previous chapter to
see how to create a new dump.sql file.

Creating the Dashboard Controller
Add a new controller and edit its contents as follows:

// mava/src/AppBundle/Controller/DashboardController.php
<?php
namespace AppBundle\Controller;
use Sensio\Bundle\FrameworkExtraBundle\Configuration\Route;
use Symfony\Bundle\FrameworkBundle\Controller\Controller;
use Symfony\Component\HttpFoundation\Response;

Chapter 6

[153]

class DashboardController extends Controller
{
 /**
 * @Route("/dashboard", name="dashboard_index")
 * @return Response
 */
 public function indexAction()
 {
 return $this->render('dashboard/index.html.twig');
 }
}

The twig file that it needs to render could be a placeholder as follows:

{# mava/app/Resources/views/dashboard/index.html.twig #}
<p>This is a placeholder for dashboard area.</p>

Finally, we need to tell the security system that we are willing to be redirected to the
dashboard after login:

app/config/security.yml
security:
...
 firewalls:
 # ...
 main:
 form_login:
 # ...
 # change the default page to monitor page
 default_target_path: dashboard_index

Now execute the selenium first:

$ java -jar path/to/selenium-server-standalone.jar

Then, run all three tests again:

$ vendor/bin/codecept run unit DashboardControllerTest

$ vendor/bin/codecept run functional DashboardControllerCest

$ vendor/bin/codecept run acceptance DashboardControllerCest

They all pass, but we have two problems here. First, the dashboard route is not
firewalled so everyone can see it without logging in to the system. Besides, the
entities that we have created so far should be organized inside the dashboard. This
means that the route to access a workspace should be something like /dashboard/
workspace/{id}.

Dashboard and Security

[154]

Securing the dashboard
We can update the current controller's routes and add a /dashboard prefix to them to
fix the organizing problem. After updating the routes, all we need to do is secure the
dashboard itself. As a result, the routes in other controllers will be firewalled as well.

Fix the access control for the dashboard first. Open security.yml and add a single
line at the end of it:

app/config/security.yml
security:
 # ...
 access_control:
 # ...
 - { path: ^/dashboard/, role: IS_AUTHENTICATED_FULLY }

This means that only logged in users can access the dashboard and beyond. Now
modify annotation routes in WorkspaceController as follows:

<?php
// ...
/**
 * @Route("/dashboard/workspace")
 */
class WorkspaceController extends Controller
{
 /**
 * @Route("/{name}", name="workspace_show")
 */
 public function showAction($name)
 {
 //....
 }
}

By adding a global route for the class itself, this route will be applied to every method
inside it. This way, we secure any controller that hits the /dashboard/* pattern.

The Sonata project
The frontend security is partially in place. So let's see how we can manage the user
and other contents from the admin area. To do so, we need an admin dashboard with
CRUD functionality, not only for users, but also for other entities created so far.

Chapter 6

[155]

According to packagist.org, after FOSUserBundle, the most popular Symfony
bundle is SonataAdminBundle. You can find more about the Sonata project at
https://sonata-project.org.

The Sonata project was originally founded by Thomas Rabiax and its main aim was
creating an e-commerce solution. Today, it consists of a couple of bundles that help
create blogs, handle media files, backend administration, and much more. In this
chapter, we will look at SonataAdminBundle and then use SonataUserBundle to
integrate FOSUserBundle into the admin area.

Installing and configuring Sonata bundle
As usual, install the bundle and its dependencies and activate them all in the kernel:
$ composer require sonata-project/admin-bundle "dev-master"

When you run this command, there are other bundles such as SonataCoreBundle,
KnpMenuBundle, BlockBundle, and others that will be downloaded and installed
automatically.

As we are using doctrine, we need to install the following bundle for
database interaction:
$ composer require sonata-project/doctrine-orm-admin-bundle

We need to install dev-master branch.

If you are wondering why we used dev-master here, that's
because, at the time of writing this chapter, there are many
works in progress in the Sonata project to make it compatible
with Symfony 3. At this time, only the dev-master branch
works with Symfony 3.0.

Now, open the AppKernel.php file and add the new bundles as follows:
// app/AppKernel.php
public function registerBundles()
{
 return array(
 // ...
 new Sonata\CoreBundle\SonataCoreBundle(),
 new Sonata\BlockBundle\SonataBlockBundle(),

 new Knp\Bundle\MenuBundle\KnpMenuBundle(),
 new Sonata\DoctrineORMAdminBundle\SonataDoctrineORMAdminBundle(),
 new Sonata\AdminBundle\SonataAdminBundle(),
);
}

https://sonata-project.org

Dashboard and Security

[156]

In Sonata, almost everything is represented as a block. All required blocks should be
defined under the sonata_block key in the config.yml file:

app/config/config.yml
sonata_block:
 default_contexts: [cms]
 blocks:
 # Enable the SonataAdminBundle block
 sonata.admin.block.admin_list:
 contexts: [admin]

Now install all the new assets and then clear the cache:

$ bin/console assets:install web

$ bin/console cache:clear

We will deal with security later; for now, let's add the routes and check the admin
URL. Open the routing.yml file and add the following contents to it:

app/config/routing.yml
...
admin_area:
 resource: '@SonataAdminBundle/Resources/config/routing/sonata_
admin.xml'
 prefix: /admin

Let's see if it works by visiting http://localhost:8000/admin:

It works! I agree that it is very quiet at the moment and nothing is there, but it is a
real admin dashboard. In the next topic, I will show you how to flesh it out and make
it do something.

Adding contents to the dashboard
In the simplest form, creating manageable contents in the dashboard is a three-step
process. I will do that for workspace and project entities and you can follow the same
process for the rest of the entities that we have so far. (The same process applies to
the entities that will be introduced in the following chapters.)

Chapter 6

[157]

You can check the completed code for this chapter on the
GitHub repository. Each chapter is tagged with 0.1.[chapter
number] format. For example, the tag for Chapter 6 is 0.1.6.

1. All admin contents for each bundle are kept inside the Admin folder, so create
this folder and add a new class for workspaces as follows:
<?php
// src/AppBundle/Admin/WorkspaceAdmin.php
namespace AppBundle\Admin;

use Sonata\AdminBundle\Admin\Admin;
use Sonata\AdminBundle\Datagrid\ListMapper;
use Sonata\AdminBundle\Datagrid\DatagridMapper;
use Sonata\AdminBundle\Form\FormMapper;

class WorkspaceAdmin extends Admin
{
 // Fields to be shown on create/edit forms
 protected function configureFormFields(FormMapper $formMapper)
 {
 $formMapper
 ->add('name', 'text')
 ->add('description','textarea');
 }

 // Fields to be shown on filter forms
 protected function configureDatagridFilters(
 DatagridMapper $datagridMapper)
 {
 $datagridMapper
 ->add('name')
 ->add('description');
 }

 // Fields to be shown on lists
 protected function configureListFields(
 ListMapper $listMapper)
 {
 $listMapper
 ->addIdentifier('name')
 ->add('description');
 }
}

I will cover the forms in Chapter 8, Deployment process Project Review. Here,
you can see how Sonata benefits from it by mapping entity properties to a
form or list.

Dashboard and Security

[158]

2. An important thing about the admin area is that it should be called a
service. Like I mentioned before, I have a whole chapter about services and
dependency injection. For now, just create this service by adding a new file to
your application's config folder:
app/config/services.yml
#...
services:
 admin.workspace:
 class: AppBundle\Admin\WorkspaceAdmin
 arguments: [~, AppBundle\Entity\Workspace, ~]
 tags:
 - { name: sonata.admin, manager_type: orm, label:
Workspace }

3. SonataAdminBundle generates routes for each entity that we add to the admin
area. So we only need to add one general route for all the entities as follows:
mava/app/config/routing.yml
_sonata_admin:
 resource: .
 type: sonata_admin
 prefix: /admin
#...

4. That's it! Visit the admin area again and you will see the workspace entity
there and you can CRUD it:

Chapter 6

[159]

Creating admin feature for entities with
relations
The workspace entity was easy because it didn't have any dependency on other
entities. What about entities such as project that has a column, workspace_id, that
defines its many-to-one relations with workspace?

For these kinds of entities, you just need to modify the form mapper; the rest of the
admin definition process is the same:

<?php
// mava/src/AppBundle/Admin/ProjectAdmin.php
// ...

class ProjectAdmin extends Admin
{
 // Fields to be shown on create/edit forms
 protected function configureFormFields(FormMapper $formMapper)
 {
 $formMapper
 ->add('title' , 'text')
 ->add('description', 'textarea')
 ->add('workspace','entity',
 array(
 'class' => 'AppBundle\Entity\Workspace',
 'property' => 'name'
))
 ->add('dueDate', 'date',
 array(
 'input' => 'datetime',
 'widget' => 'single_text',
 'format' => 'yyyy-MM-dd',
));
 }
 // ...
}

Pay attention to the workspace field. It is defined as an entity and points to the
workspace entity class. However, mentioning the class is not enough because HTML
forms cannot understand entities and show the whole entity in a form field. So by
setting property to name, we tell the form builder that we don't need the whole
entity, just show workspace.name.

Dashboard and Security

[160]

Integrating FOSUserBundle into the
admin area
So far, we created a login system using FOSUserBundle and an entity manager area
via SonataAdminBundle. So, the application has an admin area that has its access
limits set to ROLE_ADMIN people only. Before creating a dashboard for users so that
they can manage their workspaces, projects, tasks, and team members, there is one
last important thing that needs to be done. An admin should be able to manage all
users from the backend.

The Sonata project comes with a bundle that integrates FOSUserBundle into the
admin area. It is called SonataUserBundle that basically adds some features to
FOSUserBundle and makes it part of the backend.

Installing SonataUserBundle
Start by downloading and installing it:

$ composer require sonata-project/user-bundle 'dev-master'

The installation might fail because of datagrid-bundle. If you
are prompted for this issue, install datagrid-bundle first then
continue with user-bundle:
composer require sonata-project/datagrid-bundle
'dev-master'

Activating this bundle in AppKernel.php is a little different from what we have done
so far. As we are going to extend FOSUserBundle, the code should look as follows:

<?php
// app/AppKernel.php
public function registerbundles()
{
 return array(
 // ...
 new Sonata\UserBundle\SonataUserBundle('FOSUserBundle'),
 // ...
);
}

Yes, it should have FOSUserBundle as its parameter.

Chapter 6

[161]

SonataUserBundle configuration
One of the SonataUserBundle features is providing user groups and ACLs. Access
Control List (ACL) and this is where you define which group of users can have access
to what types of resources and what kind of access (CRUD) they can have.

In the following lines, the basic configuration setup for user groups is provided:

app/config/config.yml
fos_user:
 #...
 user_class: AppBundle\Entity\User

 group:
 group_class: AppBundle\Entity\Group
 group_manager: sonata.user.orm.group_manager

 service:
 user_manager: sonata.user.orm.user_manager

As you can see, they are defined under the fos_user key. Remember that
SonataUserBundle is a wrapper for FOSUserBundle. That's why all definitions
should go here.

It is not all about FOS. In the same configuration file, we need to add some Sonata
settings as well. First, add some blocks to add the menu and login options to user
profiles in the dashboard:

app/config/config.yml
sonata_block:
 blocks:
 # ...
 sonata.user.block.menu: # shows menu in profile page
 sonata.user.block.account: # shows login option in the menu

The last configuration is to activate ACLs:

#app/config/config.yml
sonata_user:
 security_acl: true
 manager_type: orm

ACL is related to security, so add the acl key to app/config/security.yml
as follows:

app/config/security.yml
security:

Dashboard and Security

[162]

 # ...
 acl:
 connection: default

One of the most important parts of configuration is letting doctrine know about the
entity mappings for your bundle and SonataUserBundle:

#app/config/config.yml
doctrine:
 dbal:
 types:
 json: Sonata\Doctrine\Types\JsonType

 orm:
 entity_managers:
 default:
 auto_mapping: true

Updating the routes
By installing SonataUserBundle, we don't need FOS routes anymore because Sonata
will take over from here. So, to prevent any conflicts, replace the following lines.

The file to be edited: app/config/routing.yml

• fos_user_security:
 resource: "@FOSUserBundle/Resources/config/routing/security.
xml"

• fos_user_profile:
 resource: "@FOSUserBundle/Resources/config/routing/profile.
xml"
 prefix: /profile

• fos_user_register:
 resource: "@FOSUserBundle/Resources/config/routing/
registration.xml"
 prefix: /register

• fos_user_resetting:
 resource: "@FOSUserBundle/Resources/config/routing/resetting.
xml"
 prefix: /resetting

Chapter 6

[163]

• fos_user_change_password:

 resource: "@FOSUserBundle/Resources/config/routing/change_
password.xml"
 prefix: /profile

Replace the preceding lines with these routes.

The file to be edited: app/config/routing.yml

• sonata_user_security:
 resource: "@SonataUserBundle/Resources/config/routing/sonata_
security_1.xml"

• sonata_user_resetting:
 resource: "@SonataUserBundle/Resources/config/routing/ sonata_
resetting_1.xml"
 prefix: /resetting

• sonata_user_profile:
 resource: "@SonataUserBundle/Resources/config/routing/sonata_
profile_1.xml"
 prefix: /profile

• sonata_user_register:
 resource: "@SonataUserBundle/Resources/config/routing/sonata_
registration_1.xml"
 prefix: /register

• sonata_user_change_password:

 resource: "@SonataUserBundle/Resources/config/routing/sonata_
change_password_1.xml"
 prefix: /profile

It is important to integrate SonataUserBundle into the admin area. Create another
route to do this:

sonata_user:

 resource: '@SonataUserBundle/Resources/config/routing/admin_
security.xml'
 prefix: /admin

Dashboard and Security

[164]

Setting the security
Now we have two ways to log in:

• Log in to the frontend that our customers will use to access their accounts,
define workspaces, projects, and so on

• Log in to the backend that only admins can access

This means that a firewall for the backend is necessary. Besides, with
SonataUserBundle on board, the role hierarchy should change accordingly.

Open app/config/security.yml and modify roles as follows:

app/config/security.yml
security:
 #...
 role_hierarchy:
 ROLE_ADMIN: [ROLE_USER, ROLE_SONATA_ADMIN]
 ROLE_SUPER_ADMIN: [ROLE_ADMIN, ROLE_ALLOWED_TO_SWITCH]

Under firewalls, create a new key and call it admin. This is where login/logout
settings for the admin area are defined:

app/config/security.yml
 firewalls:
 #...
 admin:
 pattern: ^/admin/
 context: user
 form_login:
 provider: fos_userbundle
 login_path: /admin/login
 use_forward: false
 check_path: /admin/login_check
 failure_path: null
 logout:
 path: /admin/logout
 anonymous: true

The last task here is setting the access control for the backend. Find the access_
control key and replace its contents as follows:

app/config/security.yml
security:
 access_control:

Chapter 6

[165]

 # URL of FOSUserBundle which need to be available to anonymous
users
 - { path: ^/login$, role: IS_AUTHENTICATED_ANONYMOUSLY }
 - { path: ^/register, role: IS_AUTHENTICATED_ANONYMOUSLY }
 - { path: ^/resetting, role: IS_AUTHENTICATED_ANONYMOUSLY }

 # Admin login page needs to be access without credential
 - { path: ^/admin/login$, role: IS_AUTHENTICATED_ANONYMOUSLY }
 - { path: ^/admin/logout$, role: IS_AUTHENTICATED_ANONYMOUSLY
}
 - { path: ^/admin/login_check$, role: IS_AUTHENTICATED_
ANONYMOUSLY }

 # Secured part of the site
 # This config requires being logged for the whole site and
having the admin role for the admin part.
 # Change these rules to adapt them to your needs
 - { path: ^/admin/, role: [ROLE_ADMIN, ROLE_SONATA_ADMIN] }
 - { path: ^/.*, role: IS_AUTHENTICATED_ANONYMOUSLY }

Checking the installation
Try to access the admin area by visiting http://localhost:8000/admin/
dashboard. This time, it will show a totally different login form.

Fill in the form with credentials and, if your user has an admin role, you will see the
following screen:

Dashboard and Security

[166]

Putting SonataUserBundle in charge
We have two bundles at the moment that can manage users. What we need to do is
transfer user management from FOS to Sonata.

1. First of all, the User entity needs to be updated. This means that it should not
extend from the FOS User entity anymore. Instead, it should extend from the
Sonata User entity:
<?php
// mava/src/AppBundle/Entity/User.php

namespace AppBundle\Entity;

use Doctrine\ORM\Mapping as ORM;
use Sonata\UserBundle\Entity\BaseUser

/**
 * User
 * @ORM\Table(name="mava_user")
 * @ORM\Entity(repositoryClass="AppBundle\Entity\UserRepository")
 */
class User extends BaseUser
{
 /**
 * @var integer
 * @ORM\Column(name="id", type="integer")
 * @ORM\Id
 * @ORM\GeneratedValue(strategy="AUTO")
 */
 protected $id;

 public function __construct()
 {
 parent::__construct();
 }

}

Chapter 6

[167]

2. Groups are already defined in app/config.yml so we need to create an
entity for them:
<?php
// mava/src/AppBundle/Entity/Group.php
namespace AppBundle\Entity;
use Doctrine\ORM\Mapping as ORM;
use Sonata\UserBundle\Entity\BaseGroup;

/**
 * Group
 * @ORM\Table(name="group")
 * @ORM\Entity
 */
class Group extends BaseGroup
{
 /**
 * @var integer
 * @ORM\Column(type="integer")
 * @ORM\Id
 * @ORM\GeneratedValue(strategy="AUTO")
 */
 protected $id;

 /**
 * Get id
 * @return integer
 */
 public function getId()
 {
 return $this->id;
 }
}

3. Before continuing, let's update the tables and see what the User table looks
when it is extended from SonataUserBundle:
$ bin/console doctrine:schema:update –force

Dashboard and Security

[168]

Check the user table now and you will see that a huge amount of columns, 39
columns to be specific, have been added to it:

We just need some of them, so in the next topic, we will see how to configure the
admin area for the User entity.

There is a lot to say about User and Group management. However, let's finish the
basic functionality of the task management itself. In Chapter 8, Project Review we will
come back to User management again and see how to define ACLs and benefit from
it in User and Groups. Moreover, it is critical to be able to edit user profiles, set up
registration and forgotten password functionality, and send confirmation e-mails
from the website. These topics will be covered too.

Chapter 6

[169]

User dashboard
A good web application for task management is not complete with an admin area
for only the backend. Every individual member needs his own dashboard too. This
means that a member should be able to manage his own projects and tasks in his
own workspaces without having access to the backend.

Let's say that all frontend activities should be kept inside the /dashboard URL.
The good news is that we already set up the firewall for the dashboard. As you
remember, these settings are done in security.yml:

 firewalls:
 # ...
 main:
 pattern: .*
 context: user
 form_login:
 provider: fos_userbundle
 login_path: /login
 use_forward: false
 check_path: /login_check
 failure_path: null
 logout: true
 anonymous: true
 access_control:
 # ...
 # Secured part of the site
 - { path: ^/, role: IS_AUTHENTICATED_FULLY }

All we need to do is create Controllers and related actions to deal with workspace,
project, task, and member requests.

Generating CRUD
Without getting into much trouble, generate CRUD for all four entities so far. This
will be the basic structure of what we need. We will build the rest of our controllers
on top of it. I will show you the settings for Workspace and you can do the same
for the rest of entities (or get the finished codes from the 0.1.6 tag in the GitHub
repository):

$ bin/console doctrine:generate:crud

The Entity shortcut name: AppBundle:Workspace

Do you want to generate the "write" actions [no]? yes

Configuration format (yml,xml,php or annotation) [annotation]: yml

Dashboard and Security

[170]

Routes prefix [/workspace]:

Confirm automatic update of the Routing [yes]?

Importing the CRUD routes: OK

As you can see, I chose yml for the configuration file to keep everything consistent.

This command added a new resource to the bundle's routing.yml file:

src/Mava/CoreBundle/Resources/config/routing.yml
#...
core_workspace:
 resource: "@AppBundle/Resources/config/routing/workspace.yml"
 prefix: /workspace
#...

This resource contains all the required routes to list, create, update, and delete
workspaces:

mava/src/AppBundle/Resources/config/routing/workspace.yml

• workspace:
 path: /
 defaults: { _controller: "AppBundle:Workspace:index" }

• workspace_show:
 path: /{id}/show
 defaults: { _controller: "AppBundle:Workspace:show" }

• workspace_new:
 path: /new
 defaults: { _controller: "AppBundle:Workspace:new" }

• workspace_create:
 path: /create
 defaults: { _controller: "AppBundle:Workspace:create" }
 requirements: { _method: post }

• workspace_edit:
 path: /{id}/edit
 defaults: { _controller: "AppBundle:Workspace:edit" }

• workspace_update:
 path: /{id}/update
 defaults: { _controller: "AppBundle:Workspace:update" }
 requirements: { _method: post|put }

Chapter 6

[171]

• workspace_delete:

 path: /{id}/delete
 defaults: { _controller: "AppBundle:Workspace:delete" }
 requirements: { _method: post|delete }

It is good to organize entity-related routes in separate
resources and import them as they are required. Imagine
how messy the bundle's main routing.yml file will look if
we save all the routes here.

Apart from new routes, there is a new controller, form, and a couple of templates
generated by the previous command. By default, the controller will be in charge of
database commands and the form will show the required forms to show, create, and
edit each entity. How they will be shown is decided in the templates for each entity.

This is not ideal. As you may remember, a good controller is a lean
one. So putting business logic in a controller is very bad practice.
They are supposed to be kept inside repository files (that is,
WorkspaceRepository.php) or ideally, they should be defined
as a service, which I will show you how to do in Chapter 9, Services
and Service Containers. For now, just accept the default settings. We
will have a lot to do in the coming chapters.

Modifying the forms
Assuming that you have generated CRUDs for all the available entities, you may
notice that some of them don't work the way you expected. For example, if you visit
/project/new, an exception will be thrown:

In case you generated CRUD for the User entity as well, only the id property will be
shown if you visit any of the /user routes, and none of those impressive columns in
as shown in the image of the Checking the installation section are available here.

Dashboard and Security

[172]

Fixing the project form is easy. Actually, we did that at the beginning of this chapter
already. The problem is that an HTML form does not understand and cannot accept
the who entity as a value for an element. So we need to choose one property from an
entity and pass it to the form element. Open the ProjectType.php file and modify
the Workspace field as follows:

<?php
// mava/src/AppBunlde/Form/ProjectType.php
class ProjectType extends AbstractType
{
 public function buildForm(FormBuilderInterface $builder,
 array $options)
 {
 $builder
 //...
 ->add('workspace','entity',
 array(
 'class' => 'AppBundle/Entity/Workspace',
 'property' => 'name'
));
 }
//...

Do we need to fix User forms? The more important question is did you need
to generate CRUD for it? As you know, the User entity was extended from
SonataUserBundle. This means that it has its own controllers, forms, and templates
to edit the user profile, change the password, and and so on.

So, technically, we didn't have to generate CRUD for this entity in the first place.
However, if, for any reason, you needed to generate CRUD for it, then you have to
create the required forms, controllers, and templates yourself.

Summary
In this chapter, we saw the very basics of security in Symfony. You learned that
security is a two-step process where authentication verifies that a user is genuine and
authorization decides that parts of a website can be accessed by an authenticated user.

We used FOSUserBundle to implement a frontend user management system.
Then, we installed SonataAdminBundle and its dependencies to create a
backend dashboard and admin services for our entities. Finally, we integrated
FOSUserBundle into the backend through SonataUserBundle.

The next chapter is all about making the project look pretty. With a functional
template, we can tackle some functional tests as well and see the continuous
integration progress while carrying on with development.

[173]

The Presentation Layer
This chapter explains how templates are created, extended, included, and displayed
in Symfony. We will start with base templates and then add layers and layers of other
components on top of it. The other important subject that we will discuss in this chapter
is the popular frontend framework called Bootstrap. The Bootstrap framework is a slick
and modern frontend package, which almost every new web application benefits from.
We will see how to integrate and use this framework in Symfony.

We will also see how to use Symfony's amazing asset management component,
Assetic, to organize images, .css, and .js files and, at the same time, optimize the
project performance.

After the basic appearance of the project has been created in this chapter, we will be
ready to modify or add new functionality to each page in the following chapters.

How assets are organized
When you look at bundles in Symfony, you might think this is one big mess. How
can you possibly get things working while there are so many Resources/ folders all
over the place and each of them contains a set of templates, .css, and .js files?

Here is the situation: there are some assets that belong to the bundles created by
us. There are other assets that came with a vendor when we installed a third-party
bundle, and finally there are some assets that belong to the project globally and
cannot be saved in any specific bundle. The question is how to organize them.

The Presentation Layer

[174]

Have a look in the web/ directory and you will find the answer. As you can see, all
resources that have been used so far in this project are sitting there. So, technically,
Symfony does not need to look in each bundle individually to find an image, for
example. Actually, this is the best way to do it. If you decide to use a bundle somewhere
else, you just install it there and you don't need to look for its resources in your project.
After installation, you simply copy its assets to the web/ folder via assets:install (or
create a symbolic link to them: assets:install –symlink). However, in this project,
I am going to follow best practices offered by official Symfony documents. For each
bundle that I create myself, I am going to move all its assets (templates, css, and js files)
to the app/Resources directory. Then, I will use Assetic to manage everything for me.

Asset management
Getting a better performance from a framework is not all about the backend. The
frontend is as important, if not more. It is critical to optimize images, reduce file I/O,
and cache the contents to speed up the loading time.

As you know, there are many frontend tools such as LESS that help optimize the
frontend performance. How do we do it in Symfony? AsseticBundle is designed to
manage assets and optimize the speed for us. It uses various techniques to do this.
For example, a large JavaScript file might have hundreds of lines of mutable code
that we don't need to load for a specific task. So, we can filter out unwanted code
and reduce the load time. The other scenario could be a group of JavaScript functions
that are saved in various .js files. If we could combine all of them into one file and
filter only what we need, then we can improve the performance radically. Well, that's
what Assetic does.

In the older versions of Symfony, this bundle was shipped with it by default, but
from Symfony 2.8 onward, we need to install it.

Note that in case the Assetic bundle is deprecated in the future
or if you prefer to use your favorite asset manager such as Bower
instead of Assetic, you can follow this guide and integrate the asset
manager of your choice with your Symfony project:
http://symfony.com/doc/current/cookbook/frontend/
bower.html

As usual, use the composer to install and register it in AppKernel.php:

$ composer require symfony/assetic-bundle

// app/AppKernel.php
// ...

http://symfony.com/doc/current/cookbook/frontend/bower.html
http://symfony.com/doc/current/cookbook/frontend/bower.html

Chapter 7

[175]

class AppKernel extends Kernel
{
 // ...
 public function registerBundles()
 {
 $bundles = array(
 // ...
 new Symfony\Bundle\AsseticBundle\AsseticBundle(),
);
 // ...
 }
}

Now configure it as follows:

app/config/config.yml
assetic:
 debug: '%kernel.debug%'
 use_controller: '%kernel.debug%'
 filters:
 cssrewrite: ~
 less:
 node: /usr/bin/node
 node_paths: [/usr/lib/node_modules]
 apply_to: "\.less$"
...

As you can see, we activated two filters at the moment. We will see how to use
assetic filters and apply them to a group of resources as we continue.

How templates are organized
The strategy that you choose for template hierarchy depends on your project. In
this project, we will place the base template on the base of the pyramid. This is
where you define the main HTML structure of your project. It contains the building
blocks of your main template. This means placeholders for blocks such as headers,
navigation, body, and footer are defined here.

So, we cannot define an important template like this in our bundles. It should be
somewhere safe where it can be easily accessible from every corner of the project.

The app/Resources/views folder seems to be the perfect place for it. Define your
desired skeleton for projects here, then extend it in your bundles and add content
the way you like. This way, if you need to modify the page structure in the future,
you don't need to go through every single bundle individually. As they are extended
from the base template, changing the base will affect the rest of the templates.

The Presentation Layer

[176]

How about vendors? You can easily extend the base template in your own bundle
and do whatever you like with them. However, to modify anything in the vendors/
directory is evil. As an example, imagine that you need to modify the profile edit
template that is available in SonataUserBundle and make some changes. How
would you do this without touching it in the vendors/ directory? The answer is
in the app/Resources folder again. Just create a new folder and name it after your
desired bundle. Any change that you make here will be used by Symfony to override
the original template. In this chapter, I will show you how to override templates in
third party bundles.

Let's mold the clay
A good base template shouldn't have anything other than blocks. This means that if
you have a class name or ID name defined in your base template, then you need to
reconsider your structure. Yes, your code still works but it does not follow the best
practices. Remember, a base template is supposed to define the structure only. So, all
styling or functional-related contents should be kept in the children templates that
extend the base.

Keeping this in mind, let's modify the default base template a little:

{# app/Resources/views/base.html.twig #}
<!DOCTYPE html>
<html>
 <head>
 <meta charset="UTF-8"/>
 <title>{% block title %}{% endblock %}</title>
 {% block head %}{% endblock %}
 </head>
 <body>
 {% block navigation %}{% endblock %}
 {% block body %}{% endblock %}
 {% block footer %}{% endblock %}
 {% block javascripts %}{% endblock %}
 </body>
</html>

It does not have any reference to assets, so let's add another template for them.
Name this file mavaBase.html.twig and save it in the same place where the base
template lives:

{# app/Resources/views/mava_base.html.twig #}
{% extends "base.html.twig" %}
{% block title 'MAVA' %}

Chapter 7

[177]

{% block head %}
 <link rel="icon" sizes="16x16" href="{{ asset('favicon.ico') }}"
/>
 {% if app.environment == 'prod' %}
 {# Compile all CSS into 1 file #}
 {% stylesheets
 '@bootstrap_css'
 '@mava_css'
 output='css/compiled/main.css' %}
 <link rel="stylesheet" href="{{ asset_url }}" />
 {% endstylesheets %}
 {% else %}
 {# Ask Assetic to generate the files individually #}
 {% stylesheets '@bootstrap_css'
 output='css/bootstrap.css' %}
 <link rel="stylesheet" href="{{ asset_url }}" />
 {% endstylesheets %}
 {% stylesheets '@mava_css' output='css/mava.css' %}
 <link rel="stylesheet" href="{{ asset_url }}" />
 {% endstylesheets %}
 {% endif %}
{% endblock %}
{% block javascripts %}
 {% if app.environment == 'prod' %}
 {# Compile all JS into 1 file #}
 {% javascripts
 '@jquery'
 '@bootstrap_js'
 output='js/compiled/main.js' %}
 <script src="{{ asset_url }}"></script>
 {% endjavascripts %}
 {% else %}
 {# Ask Assetic to generate the files individually #}
 {% javascripts '@jquery' output='js/jquery.js' %}
 {% endjavascripts %}
 {% javascripts '@bootstrap_js' output='js/bootstrap.js' %}
 {% endjavascripts %}
 {# Reference the generated files #}
 <script src="{{ asset('js/jquery.js') }}"></script>
 <script src="{{ asset('js/bootstrap.js') }}"></script>
 {% endif %}
{% endblock %}

The Presentation Layer

[178]

Imagine how big and ugly the base.html.twig template would look like if we put
all of these codes in it. So, another reason to keep the base template short and tidy is
increasing readability. As you will see in the final code, some of these blocks will be
moved to separate files and included where they are needed. This way, they will be
even more organized.

As you may have noticed, the previous template is optimized for each environment.
If we are in the development environment, then we need to be able to deal with each
asset individually. For example, we might need to update a class in a css file or add a
new function to a js file. However, when we are in the production environment, then
performance is critical. So, compiling ten assets into one file and loading it once is
way faster than loading ten individual files. This is one of the assetic features:

{% if app.environment == 'prod' %}
 {# Compile all JS into 1 file #}
 {% javascripts
 '@jquery'
 '@bootstrap_js'
 output='js/compiled/main.js' %}
 <script src="{{ asset_url }}"></script>
 {% endjavascripts %}

Is there any way to get rid of those conditional blocks and define the environment-
related conditions somewhere else? Yes, there is. Open the config.yml file and
notice the following lines in it:

mava/app/config/config.yml
assetic:
 debug: '%kernel.debug%'
 use_controller: '%kernel.debug%'

The debug option here gets the environment and, based on the current environment,
decides to combine or not to combine assets. In other words, we don't need to add a
conditional block to our templates. So the template can be refactored as follows:

{% extends "base.html.twig" %}
{% block title 'MAVA' %}
{% block head %}
 <link rel="icon" sizes="16x16" href="{{ asset('favicon.ico') }}"
/>
 {% stylesheets
 '@bootstrap_css'
 '@mava_css'
 output='css/compiled/main.css' %}

Chapter 7

[179]

 <link rel="stylesheet" href="{{ asset_url }}" />
 {% endstylesheets %}
{% endblock %}
{% block javascripts %}
 {% javascripts
 '@jquery'
 '@bootstrap_js'
 output='js/compiled/main.js' %}
 <script src="{{ asset_url }}"></script>
 {% endjavascripts %}
{% endblock %}

You might ask what bootstrap_js and bootstrap_css is. I will answer this
question soon. For now, be aware that they belong to the frontend framework that
we will use in this project.

To navigate or not to navigate
Before the JavaScript block, there are other three blocks in the base template that are
not defined in mava_base.html.twig; why?

Well, this is part of our templating strategy. Mava is a web application and not
a website. This means that we might have some pages that follow a completely
different structure and contain different types of elements. For example, in the login
page, I don't want to show the navigation bar. This becomes very handy when our
visitors are using a mobile device. Removing the navigation and footer from the
login page makes it look more like a mobile app.

This means that we can extend mava_base.html.twig for special pages, yet we need
another template (containing navigation, footer, and so on) for pages with a default
structure. So, create another template in the same place as the other two and add the
following content to it:

{# app/Resources/views/default.html.twig #}
{% extends "mava_base.html.twig" %}
{% block navigation %}
 {% include "navigations.html.twig" %}
{% endblock %}

The Presentation Layer

[180]

There you have it. As you can see, a lot of clutter has been removed simply by
organizing blocks in their own files. Now we can extend mava_base.html.twig
for special pages and default.html.twig for normal pages and, thanks to the
include tag, it will include the navigation blocks automatically. Here is a visual
representation of what we have created so far (each color represents a twig file):

According to this structure, we need to create one more file that contains all the
navigation. We will come back to that after creating the code for the first menu.

What is Bootstrap?
Look at the mava_base.html.twig file and you will notice that we mentioned
bootstrap twice. Once it was mentioned in the head block and the other time, it
was referenced in the JavaScript block. Bootstrap is a frontend framework that
was created by Mark Otto and Jacob Thornton on Twitter. It contains a set of tools
that makes responsive design and development a breeze. In August 2011, Twitter
released Bootstrap as an open source project and since then, it has been one of
the most popular repositories on GitHub. Any good web application needs to
be accessible on mobile devices as well. So we are going to utilize the Bootstrap
framework and make the mava project mobile-friendly.

MopaBootstrapBundle
There are a couple bundles that integrate Bootstrap into Symfony projects.
MopaBootstrapBundle is one of the popular and stable bundles available. In this
section, we will see how to install and configure this bundle in our project.

Chapter 7

[181]

To process styles, I'm going to use Less. It is a CSS preprocessor that adds loads of
functionality to styles. So, before installing MopaBootstrapBundle, make sure that
you have familiarized yourself with Less and installed the latest version of it already:

$ npm install -g less

Check your installation via the following command:

$ lessc -v

lessc 2.6.1 (Less Compiler) [JavaScript]

Now install the bootstrap bundle and its dependencies via composer:

//composer.json
{
 "require": {
 "mopa/bootstrap-bundle": "dev-master",
 "twbs/bootstrap": "dev-master",

 "knplabs/knp-paginator-bundle": "dev-master"

 }
}

$ sudo
 composer install

At the time of writing this chapter, the dev-master version
of the preceding packages are the only branches that work fine
with Symfony 3 and have no conflicts with other packages. If you
received an error during installation, you might want to use the
latest stable version of some packages instead.
Of course, using dev-master is not recommended if you are
not a seasoned developer looking for cutting-edge features.
However, for the time being, it is the only option.

Activate these bundles in the kernel:

// app/AppKernel.php
public function registerBundles()
{
 return array(
 // ...
 new Mopa\Bundle\BootstrapBundle\MopaBootstrapBundle(),
 new Knp\Bundle\PaginatorBundle\KnpPaginatorBundle(),

The Presentation Layer

[182]

 // ...
);
}

Bootstrap configuration
There are two important steps in configuration. First, we need to create symbolic
links for Less:

$ bin/console mopa:bootstrap:symlink:less
Initializing composer ... done.
Checking symlink ... not existing
Creating symlink: /var/www/packt/mava/vendor/mopa/bootstrap-bundle/
Mopa/Bundle/BootstrapBundle/Resources/public/bootstrap
for target: ../../../../../../../twbs/bootstrap ... OK

The output of the previous command says that a new symbolic link to all bootstrap
resources (fonts, styles, js, and others) was created in a subdirectory structure ending
with ^/twbs/bootstrap.

But where is this folder?

Secondly, symbolic fonts and web icons play a critical role in any bootstrap
framework. As you may know, Glyphicons and FontAwesome are two famous font
packages with all of those cool icons in them. I have included the latest version of
FontAwesome (4.x) in this project. You can install this and the default Glyphicons by
running the following commands:

$ bin/console assets:install

$ bin/console mopa:bootstrap:install:font

Note that running the preceding command installs the
default fonts that come with the Mopa bundle, which is the
FontAwesome series. If you have other font requirements for
your projects, you can easily install them as normal assets. In
other words, just create a /font folder in the app/Resources
directory and copy the font files over there. The next time you
run the assets:install command, they will be installed in
the /web directory and will be available to your project.

In the end, dump all assets to make sure that everything is up to date:

$ bin/console assetic:dump

Chapter 7

[183]

Now you can benefit from all these new resources in your template simply by adding
the following lines to config.yml:

#app/config/config.yml
#...
mopa_bootstrap:
 form: ~ # Adds twig form theme support
 menu: ~ # enables twig helpers for menu

Before moving on, make sure that there is no broken link to
bootstrap references. If you go to web/bundles/mopabootstrap,
you will find a file with symbolic links to the real bootstrap folder.
It is critical to make sure that they are pointing to the right folder;
otherwise, your template won't show properly:
bootstrap -> ../../../vendor/twbs/bootstrap/.

While we are in the config.yml file, let's have a look at the assetic section. As I
mentioned before, AsseticBundle works with two concepts, filters and assets:

Assetic Configuration
assetic:
 debug: "%kernel.debug%"
 use_controller: false
 bundles: []
 filters:
 cssrewrite: ~
 less:
 node: /usr/bin/node
 node_paths: [/usr/local/lib/node_modules]
 apply_to: "\.less$"
 assets:
 mava_css:
 inputs:
 - %kernel.root_dir%/Resources/public/css/mava.css
 filters:
 - less
 - cssrewrite
 output: css/mava.css

This is not the full configuration for our project and you can find it in the repository,
but here we can see filters and assets entries. Under filters, there are two filters:
cssrewrite and less.

The Presentation Layer

[184]

Less is very well-documented, but rewriting css is a little tricky.
There is not much information about it out there. What it does is
basically create a better css file by rewriting parts of your original
file. Why do we need this? Assetic generates new URLs for your
assets and breaks all relative paths in the original CSS files. To fix
this problem, we use the cssrewrite filter, which parses the CSS
files and modifies the paths to reflect the new location.

Look at the mava_css entry under the assets section. It gets app/Resources/
public/mava.css as input, applies less and cssrewrite filters to it, and saves
it as web/css/mava.css. As we gave it a name in config.yml, it is very easy to
access this asset just by calling its name. For example, in mava_base.html.twig, we
accessed it by calling @mava_css.

Creating your first menu
Let's see how to create a bootstrap style menu. The menu feature of
MopaBootstrapBundle is totally handled by KnpMenuBundle. Here are the required
steps to create a menu:

1. Go to your AppBundle and create a new folder called Menu.
2. Add a new class and name it Builder.php; the contents of this class should

be as follows:
<?php
// mava/src/AppBundle/Menu/Builder.php
namespace Mava\CoreBundle\Menu;
use Knp\Menu\FactoryInterface;
use Symfony\Component\DependencyInjection\ContainerBuilder;

class Builder extends ContainerBuilder
{
 public function topMenu(FactoryInterface $factory, array
$options)
 {
 $menu = $factory->createItem('root');
 $menu->setChildrenAttribute('class', 'nav navbar-top-links
navbar-right');

 $dropdown2 = $menu->addChild(' ', array(
 'icon' => 'bell',
 'dropdown' => true,
 'caret' => true,

Chapter 7

[185]

));

 // Create a dropdown header
 $dropdown2->addChild('notifications', array('dropdown-
header' => true))
 ->setAttribute('divider_append', true);

 // Create a dropdown with a caret
 $dropdown = $menu->addChild('', array(
 'icon' => 'user',
 'dropdown' => true,
 'caret' => true,
));

 // Create a dropdown header
 $dropdown->addChild('Edit Profile', array('route' =>
'sonata_user_profile_edit'));
 $dropdown->addChild('Change Password', array('route' =>
'sonata_user_change_password'));
 $dropdown->addChild('Logout', array('route' => 'sonata_
user_security_logout'));
 return $menu;
 }

Each public method that you add to this class represents a menu that you can call in
your templates. Here, for example, I started a menu that I am going to show on top
of the topMenu() page.

There are two ways that you can define attributes for each menu item. You can
define them by calling a separate method:

$menu->setChildrenAttribute(
 'class',
 'nav navbar-top-links navbar-right'
);

In this example, we defined three classes for the element of the menu.

The other way is to define everything we need in an array where we add a
menu item:

// Create a dropdown with a caret
$dropdown = $menu->addChild('', array(
 'icon' => 'user',
 'dropdown' => true,
 'caret' => true,
));

The Presentation Layer

[186]

In the preceding example, we defined the menu option as a drop-down menu with
a user icon and a little caret as a helper. This means that we can create submenus
simply by defining a new child for a current child as follows:

// Create a dropdown header
$dropdown->addChild('Edit Profile', array('route' => 'sonata_user_
profile_edit'));

This menu option points to the route to edit a profile. You can find
the real URI by running the following command:
$ app/console router:debug sonata_user_profile_edit

Rendering the menu in a template
Now it is time to create navigations.html.twig and render our menu in it. Go to
app/Resources/views and create this file with the following content:

<!-- /.navbar-header -->
{{ mopa_bootstrap_menu('AppBundle:Builder:topMenu') }}
<div class="navbar-default sidebar" role="navigation">
{# a place holder for future side menu
 <div class="sidebar-nav navbar-collapse">
 {{ mopa_bootstrap_menu('AppBundle:Builder:sideMenu') }}
 </div>
#}
</div>

The mopa_bootstrap_menu() command drills down to the AppBundle/Menu/
Builder.php class and calls the topMenu() method. Based on the contents available
in this method, it will render the menu and its options.

As you can see, I have added a sideMenu to this template
too. The logic is the same and you can check out the GitHub
repository for the sideMenu() method in Builder.php and
the complete source for the navigation template.

The Dashboard template
With all important pieces in place, it is now time to use the Bootstrap framework and
make our project look pretty. To make your life easier, you can start with the base
template that comes with MopaBootstrapBundle and modify it the way you like.

Chapter 7

[187]

However, if you are after that professional slick look for your dashboard, you
can use a free template and build your website on top of that. There are so many
resources that offer professional templates. Some good places to start are www.
startbootstrap.com and html5up.net. This becomes very handy specially when
you don't have many creative or design skills.

To start, let's see how to use the default template (the one with navigations) in our
pages. Go to app/Resources/views/dashboard/index.html.twig and replace the
content with the following:

{% extends "AppBunlde:Dashboard:default.html.twig" %}
{% block mavaBody %}
 <div id="page-wrapper">
 <div class="row">
 place holder
 </div>
 <!-- /.row -->
 </div>
{% endblock %}

Now visit the /dashboard page and you will see that it works. There are two
menus, top and side, and a placeholder for the dashboard contents. What happened
is simple; we just inherited what has been defined in default.html.twig and
displayed its contents on the dashboard page:

The good news is that this template is fully responsive. Resize your browser window
and see it yourself.

As you can see, the user menu has three options. Implementing the Logout
option is simple; we just need to point the URI element of this option to the
logout path. However, Edit Profile and Change Password options are engaged to
SonataUserBundle templates. The question is how to integrate our own template
into a third-party bundle.

startbootstrap.com

The Presentation Layer

[188]

Overriding templates
In order to override a template that ships with a third-party bundle (such as
SonataUserBundle), we have to create a duplicate of it in the app/Resources folder
and modify it here.

To see how it works, let's start with the login page. At the moment, it looks ugly and
empty and covered with some unnecessary elements.

Copy a few folders from sonata-project to your app/Resources folder as follows:

$ mkdir app/Resources/SonataUserBundle

$ cp -r vendors/sonata-project/user-bundle/Resources/views/
app/Resources/SonataUserBundle/

Now edit Security/base_login.html.twig as follows:

{# app/Resources/SonataUserBundle/views/Security/base_login.html.twig
#}
{% extends '::mavaBase.html.twig' %}
{% block mavaBody %}
 {% block fos_user_content %}
 {# rest of the template #}
 {% endblock %}
{% endblock %}

Here, you can see the benefit of saving blocks in separate files. As it is extended from
the mava_base template, no menu will be shown, which is what we want. Visit the
login page and you will see that the template matches the rest of the project.

Profile-related templates
I agree. Chasing every single template and extending them from what we want is
not a pleasant thing to do. Luckily, we don't need to do this. Instead, just extend the
layout in the root of the views/ folder and, because everything in views/ depends
on it, the rest of the tribe will adapt the change:

{# app/Resources/SonataUserBundle/views/layout.html.twig #}
{% extends '::default.html.twig' %}

Chapter 7

[189]

There are still a few things that you need to do in order to fully customize the
profile-related templates. For example, select the User | Edit Profile option from the
dashboard and look at the resulting page:

First of all, the title Sonata user profile form doesn't look very nice in our form. So,
we need to get rid of it or replace it with our choice. Secondly, we might want to
override the form field and modify (add, edit, or delete) the way that suits us best.
More importantly, we need to add additional fields such as a photo for each user.

It sounds like a handful of changes and definitely needs some unit and acceptance
tests. The completed test files are included in the GitHub repository:

https://github.com/Soolan/mava-project.git

Overriding forms is a three-step process. First, we have to create the forms that we
want in our bundle. Then, we have to define them as a service. When this is done,
we have to tell Sonata which form it should use. The same approach applies to any
form (registration, profile edit, password change, and so on). To save some space, we
are not going to add codes for all forms here and you can see some of the overridden
forms in the mava project by referring to this project's GitHub repository:

git@github.com:Soolan/mava-project.git

https://github.com/Soolan/mava-project.git

The Presentation Layer

[190]

To give you an example, imagine that we want to edit biography, first name, and last
name in the edit profile form. Here is the process for this:

1. Go to mava/src/AppBundle/Form and create a new form as follows:
<?php

namespace AppBundle\Form;

use Symfony\Component\Form\AbstractType;
use Symfony\Component\Form\FormBuilderInterface;
use Symfony\Component\OptionsResolver\OptionsResolver;

class ProfileType extends AbstractType
{
 public function buildForm(FormBuilderInterface $builder, array
$options)
 {
 $builder
 ->add('firstname', null, array(
 'label' => 'form.label_firstname',
 'required' => true
))
 ->add('lastname', null, array(
 'label' => 'form.label_lastname',
 'required' => true
))
 ->add('biography', 'textarea', array(
 'label' => 'form.label_biography',
 'required' => true
));
 }

 public function configureOptions(OptionsResolver $resolver)
 {
 $resolver->setDefaults(array(
 'data_class' => 'AppBundle\Entity\User',
 'intention' => 'profile',
 'label' => 'Edit Profile'
));
 }

 public function getName()
 {
 return 'mava_user_profile';
 }
}

Chapter 7

[191]

2. As you can see, the form legend can be edited in the configureOptions()
method. Now define a service for it:
mava/app/config/services.yml
services:
 mava_user.profile.form.type:
 class:
 AppBundle\Form\ProfileType
 tags:
 - { name: form.type, alias: mava_user_profile }

3. Now, let Symfony know about this new service by modifying config.yml
as follows:
mava/app/config/config.yml
sonata_user:
 # ...
 profile:
 form:
 type: mava_user_profile
 #...

That's it. If you select the Edit Profile option again, you will see the modified version
of this form.

Adding a profile photo is a little tricky and requires installing another Sonata bundle
called SonataMediaBundle. I will show you how to do this in the next chapter.

Changing the backend logo
You probably want to put your own project's name and logo on the backend as well.
Currently, it shows the Sonata project logo and the title Sonata Admin in front of it.

To do so, copy your logo file in app/Resources/public/img/mava_logo.png.

Then, install your assets:

$ bin/console assets:install

Now you can change your project's logo by adding the following lines to the
config.yml file:

app/config/config.yml
sonata_admin:
 title: MAVA v1.0
 title_logo: img/mava_logo.png

The Presentation Layer

[192]

Log in to the administrator area and you will notice the new logo here:

Summary
In this chapter, we installed MopaBootstrapBundle to integrate the Bootstrap
features into our Symfony project and created menus and rendered them in our
template. We saw how to use assetic to manage assets and apply filters to them.
You also learned how to override templates shipped with other vendors.

Bootstrap still has a lot to offer, and we will see how to use forms and collections to
decorate each part of the dashboard in the next chapter. We will also see how to use
JavaScript libraries (for example, morris.js) to create graphs.

[193]

Project Review
Let's improve the project a little. In this chapter, we are going to review what we
have created so far and modify or add some more features to it. Our focus will be on
the dashboard page where you can get a glimpse of what's going on in your current
workspace. There will be reports for tasks and people whom tasks are assigned to. A
notification system is a new feature that we will build in this chapter. It will alert us
about the changes and overall progress of the project.

We will implement a commenting system as well. This is where team members add
comments and reply to them for each task. This means that we need another entity
with some one-to-many relationships to tasks and members.

In the real world, we should be able to upload files for each task. So, attachments will
be another feature in this chapter and we will see how to use SonataMediaBundle to
achieve this goal.

The dashboard's contents
The dashboard is a critical page. This is where we get an idea about the interaction
between projects, members, and tasks in the current workspace. It should carry
enough elements to provide a quick report about the activities that are happening in
the application and, at the same time, it should be light enough to keep the loading
time reasonably short.

For our MVP purposes, I would say that the following items should be enough:

• A block showing the number of new comments on tasks
• A block showing the number of due tasks
• A block showing the number of recently created tasks
• A block showing the number of completed tasks

Project Review

[194]

• A notification panel showing the last seven events (notifications)
• A graph representing the visual progress of the current project

According to these blocks, the finished dashboard page will look like the
following image:

Visual blocks that provide statistics about
tasks
Looking at the top blocks, three of them are dealing with tasks. What we are going
to do is create one feature file for one of these blocks and ask Behat to generate the
blueprints for the implementation. After having a clear direction to go in, we will
create the unit tests. Finally, with all the functional and unit tests in place, we will
start development.

This will be the strategy for every single development challenge in this chapter.
However, to save some space, I will not copy every single bit of code here. You
can find the finished code in the v0.1.8 release tag in the main GitHub repository.
Instead, we are going to talk about concepts and strategies.

Chapter 8

[195]

A feature file for the finished tasks block
Let's start by implementing the finished tasks block. This block represents the
number of completed tasks. So, we can see where we are standing in the current
project's progress by looking at the statistics provided in this block. Create a new
feature file named dashboard.feature in your /features folder and add the
following content to it:

/features/dashboard.feature
@userDashboard
Feature: dashboard blocks
 In order to see my finished tasks
 As a user
 I am able to see finished task block in the dashboard

 @javascript
 Scenario: showing the finished task block in the dashboard
 Given I log in as Jack
 And I visit "/dashboard"
 Then the response status code should be 200
 And I should see "Finished Tasks!"

Who is Jack? He is simply a test user that can be generated via fixtures (refer to
Chapter 2, Request/Response life cycle) or the following command (where we define the
username, e-mail, and plain password for our new user):

$ bin/console fos:user:create Jack jack@mava.info jackpass --env=test

The next question would be how can we check whether a user has been logged in?
Let's run Behat and generate the code snippet to answer this question:

bin/behat --tags="userDashboard" --append-snippets

Yes, you can add a name annotation at the beginning of your
feature file (that is, @userDashboard) and later use it as a tag
in the command line (that is, --tag="userDashboard"). Only
features or scenarios with the matching tag will be executed.

As you can see, we have an undefined scenario in the output with four steps:

1 scenario (1 undefined)
4 steps (2 undefined, 2 skipped)

Project Review

[196]

All you need to do is open the /features/bootstrap/FeaturesContext.php file
and modify the Given steps as follows:

 /**
 * @Given I log in as Jack
 */
 public function iLogInAsJack()
 {
 $this->visit('/login');
 $this->fillField('username', 'Jack');
 $this->fillField('password', 'jackpass');
 $this->pressButton('_submit');
 }

 /**
 * @Given I visit :arg1
 */
 public function iVisit($arg1)
 {
 $this->visit($arg1);
 }

Run the test and normally, it should fail. This means that we need to implement the
template for the pages we are interested in.

If you have installed the template from the previous chapter (or you have checked
out the chapter08 branch from the original GitHub repository), rerun the test and it
should be all green:

Feature: dashboard blocks
 In order to see my finished tasks
 As a user
 I am able to see finished task block in the dashboard

 Scenario: showing the finished task block in the dashboard #
features/dashboard.feature:7
 Given I am logged in as Jack # Feature
Context::iAmLoggedInAsJack()
 And I visit "/dashboard" #
FeatureContext::iVisit()
 Then the response status code should be 200 # Feature
Context::assertResponseStatus()
 And I should see "Finished Tasks!" # Feature
Context::assertPageContainsText()

1 scenario (1 passed)
4 steps (4 passed)
0m1.41s (21.29Mb)

Chapter 8

[197]

You might ask that we didn't implement the Then step, then how do our tests check
for status code 200? If you look at steps three and four in the test results, you will see
that there are two assert methods called. The first one checks the status code and
the second one checks to see whether our desired text (in this scenario, "Finished
Tasks!") is available on this page.

As we are extending MinkContext, a lot of features (including checking for the Then
step) come out of the box and we don't need to worry about them.

A word of caution to readers who use the @javascript tag and
want to see their browsers open the login page automatically, fill
in the user and password fields, and press the submit button. Well,
it does all of this without any problems, but when it opens the
dashboard page—in case you are using the selenium2 driver—it
cannot check for status code. So it fails that step and consequently
skips the last step. Here is the error:
Status code is not available from Behat\Mink\Driver\
Selenium2Driver (Behat\Mink\Exception\
UnsupportedDriverActionException)

Implementing the finished tasks block
So far, we have an empty shell for the functionality that we are interested in. Now,
it is time to create some (failing) unit tests to find "Finished Tasks". Let's say that
we have a workspace with two projects in it and there are three finished tasks in both
the projects combined. So what we need to do is assert the finished tasks and make
sure that the total number is three. The finished tasks are shown in the dashboard
area so, presumably, our unit test should be created for the dashboard controller:

// place holder for unit test codes

In order to define various statuses for tasks, we can add a new property to the task
entity and name it status:

 // src/AppBundle/Entity/Task.php
 /**
 * @var string
 *
 * @ORM\Column(name="status", type="string", nullable=false)
 */
 private $status;

Make sure that the database gets updated after every change:

$ bin/console doctrine:schema:update --force

Project Review

[198]

After this, define three possible values to it: new, in progress and completed:

// src/AppBundle/Form/TaskType.php
public function buildForm(FormBuilderInterface $builder, array
$options)
 {
 $builder
 // … rest of task form
 ->add('status', ChoiceType::class, array(
 'choices' => array('new' => 'new',
 'in progress' => 'in progress',
 'completed' => 'completed'),
));
 }

Now with the new setup in place, simply create a new method in the task repository
that is in charge of finding tasks with a completed status:

// src/AppBundle/Entity/TaskRepository
 public function finishedTasks($projectId){
 $q = $this->createQueryBuilder('t')
 ->where('t.project = :projectId')
 ->andWhere('t.status = :completed')
 ->setParameter('projectId', $projectId)
 ->setParameter('completed', 'completed')
 ->getQuery();
 return $q->getResult();
 }

Looks simple but something is missing here. It finds all the finished tasks in a
particular project. This means that we have to choose a project first and then use this
method for that particular project only.

What if we needed to see all the finished tasks in the current workspace? In other
words, if we have defined four different projects in the current workspace and each
project has a couple of finished tasks, then we need to find them all and show them
in the finished task block.

The question is should we find them via the Project repository or is it better to query
them via the Task repository? The answer is both. We need two methods here. From
the Project side of the story—given that the workspace ID is provided—we need to
find all the projects that share the same workspace:

// src/AppBundle/Entity/ProjectRepository
 public function getAllProjects($workSpaceId){
 $q = $this->createQueryBuilder('p')

Chapter 8

[199]

 ->where('p.workspace = :workSpaceId')
 ->setParameter('workSpace_id', $workSpaceId)
 ->getQuery();
 return $q->getResult();
 }

Now that we have got the projects, we can look into each of them via the task
repository and find all the finished tasks.

This is what the getFinishedTasks() method does for us:

 public function getFinishedTasks($projectId){
 $q = $this->createQueryBuilder('t')
 ->where('t.project = :projectId')
 ->andWhere('t.status = :completed')
 ->setParameter('projectID', $projectId)
 ->setParameter('completed', 'completed')
 ->getQuery();
 return $q->getResult();
 }

All we need now is a mechanism to count all the finished tasks and add up all of
them. We can create a utility method for this. In AppBundle, create a new folder,
call it Util, and add the following class to it:

<?php
namespace AppBundle\Util;
use Doctrine\ORM\EntityManagerInterface;
class Mava {
 private $em;
 public function __construct(EntityManagerInterface $em)
 {
 $this->em = $em;
 }
}

The Mava utility class is going to manage a couple of entity requests. That's why we
have to initialize an EntityManagerInterface object in the constructor. Now let's
create a new method to find all the finished tasks in the current workspace:

public function finishedTasks($wsId)
{
 $projects = $this->getAllProjects($wsId);
 $taskRepo = $this->em->getRepository('CoreBundle:Task');
 $total = 0;
 foreach ($projects as $project){

Project Review

[200]

 $total += count($taskRepo->
 getFinishedTasks($project->getId()));
 }
 return $total;
}
public function wsAllProjects($wsID){
 return $this->em
 ->getRepository('CoreBundle:Project')
 ->getAllProjects($wsID);
}

As you can see, we refer to the Project repository to find all the projects in the current
workspace first. Then, for each project, we refer to the Task repository to find all the
tasks with a completed status.

Implementing the dashboard controller
It is good to have a utility class full of helper methods to do what we need to be
done. This way, we take the functionality out of the controllers and keep them lean
and clean.

To use the utility methods though, the best practice is to define them as a service.
Don't worry about the details of how it is done and what happens behind the scene.
I will explain the service mechanism with details in the next chapter. For now, add
the following service definition to your CoreBundle:

{# /src/AppBundle/Resources/config/services.yml #}
services:
 mava_util:
 class: AppBundle\Util\Mava
 arguments: ['@doctrine.orm.entity_manager']

Now we can access this service in the controller just by getting its name:

<?php
namespace AppBundle\Controller;
use Symfony\Bundle\FrameworkBundle\Controller\Controller;
class DashboardController extends Controller
{
 public function indexAction($ws=null)
 {
 // ...
 $util = $this->get('mava_util');
 $finishedTasks = $util->FinishedTasks($ws);

Chapter 8

[201]

 // ...
 return $this->render(
 'CoreBundle:Dashboard:index.html.twig', array(
 'finishedTasks' => $finishedTasks,
));
 }
}

We have access to all methods in our utility class simply by calling $this-
>get('mava_util'), so we can call FinishedTasks() and pass the total number of
finished tasks in the current workspace to the template for the rendering.

In the template, all we need to do is receive this parameter and print it out in the
proper bock:

{# src/AppBundle/Resources/views/Dashboard/index.html.twig #}
 {# … #}
 <div class="row">
 <div class="col-xs-3">
 <i class="fa fa-th-list fa-5x"></i>
 </div>
 <div class="col-xs-9 text-right">
 <div class="huge">{{ finishedTasks }}</div>
 <div>Finished Tasks!</div>
 </div>
 </div>
 {# … #}

The same workflow applies to other task blocks (that is, New Tasks and Due Tasks).
You can find the completed utility code, Dashboard controller, and Dashboard
template in the repository.

Uploading files with SonataMediaBundle
There are a couple of places where we need to upload files or images in our project.
For example, some tasks have attachments (documents).

To deal with this requirement, I am going to introduce one of Sonata project's handy
bundles, SonataMediaBundle, and embed its functionality into the mava project.
To begin with, install, register, and do the required configurations in the same way
explained on the www.sonata-project.org website.

www.sonata-project.org

Project Review

[202]

Note that you need to install SonataEasyExtendsBundle as
well to configure the entities properly. Depending on your current
admin bundle version, this bundle may or may not be installed
already. Check your AppKernell.php, and if you don't see the
Easy Extends bundle here, this means that you have to install it
before proceeding to generate Media entities.

After installation and, if by any chance, you get an error
regarding a dependency to jms/serializer-bundle, make
sure that you install and register this bundle as well.

Here, you can find complete instructions on how to install and configure
SonataMediaBundle:

https://sonata-project.org/bundles/media/2-2/doc/index.html.

Adding an attachment feature to the Task
entity
With SonataMediaBundle in place, let's see how we can use it to attach files to tasks.
First, modify the Task entity and change the attachment property as follows (to keep
it simple, let's say that we need only one attachment per task for now):

// src/AppBundle/Entity/Task.php
// …

/**
 * @ORM\OneToOne(targetEntity= "Application\Sonata\MediaBundle\Entity\
Media",cascade={"persist"})
 * @ORM\JoinColumn(name="attachment_id",referencedColumnName="id")
 **/
 protected $attachment;

As you can see, this property is pointing to another entity and will be saved as a
column named attachment_id. That's how Doctrine handles the attachment for
each Task.

Don't forget to update the database with the new changes:

$ bin/console doctrine:schema:update --force

https://sonata-project.org/bundles/media/2-2/doc/index.html

Chapter 8

[203]

Next, we need to update the Task form. Open TaskType.php and modify the
attachment field as follows:

// src/AppBundle/Form/TaskType.php
<?php
// ...
class TaskType extends AbstractType
{
 /**
 * @param FormBuilderInterface $builder
 * @param array $options
 */
 public function buildForm(FormBuilderInterface $builder, array
$options)
 {
 $builder
 // ...
 ->add('attachment', 'sonata_media_type', array(
 'provider' => 'sonata.media.provider.file',
 'context' => 'default'
))
 // ...
));
 }
}

Now, if you visit /admin/task/new, you will see a fully functioning file upload field
for attachments and you can check that files are uploaded under the web/uploads/
media folder.

Team and team members
Usually, projects consist of several tasks and cannot be done by a single person. So,
we need to introduce the concept of team and define relationships between Team,
User, and Project entities in our application. The simplest definition for the Team
entity could be: all the people who work on the same project. This means that we
need to modify our current User entity and add a new property that defines the
relationship between Team and User.

Project Review

[204]

The Team entity
The following image shows the relationship between Team, Project, and User
entities. To keep it simple, let's say that each User can be a member of one Team only
and there is only one team for each project:

With the MVP approach in mind and considering the preceding image, the Team
entity can be defined as follows:

<?php
class Team
{
 /**
 * @var integer
 * @ORM\Column(name="id", type="integer")
 * @ORM\Id
 * @ORM\GeneratedValue(strategy="AUTO")
 */
 private $id;

 /**
 * @var string
 * @ORM\Column(name="Title", type="string", length=255)
 */
 private $title;

 /**
 * @var string
 * @ORM\Column(name="Description", type="text")
 */
 private $description;

 /**
 * @ORM\OneToOne(targetEntity="AppBundle\Entity\Project")
 * @ORM\JoinColumn(name="project_id", referencedColumnName="id")
 */
 protected $project;
//...
}

Chapter 8

[205]

Now we need to update the User entity accordingly. So open it and add the team
property and its getter and setter as follows:

<?php
//...
class User extends BaseUser
{
 /**
 * @ORM\OneToOne(targetEntity="AppBundle\Entity\Team")
 * @ORM\JoinColumn(name="team_id", referencedColumnName="id")
 */
 protected $team;

 /**
 * Set team
 * @param \AppBundle\Entity\Team $team
 * @return Team
 */
 public function setTeam(\AppBundle\Entity\Team $team = null)
 {
 $this->team = $team;
 return $this;
 }

 /**
 * Get team
 * @return \AppBundle\Entity\Team
 */
 public function getTeam()
 {
 return $this->team;
 }
//...

Note that the value of team for newly created users is null by
default. This way, we don't get errors for new users or users
who are not a member of any team.

This new property in the User entity is more than just a new bridge between entities.
We will see how to use it to manage notifications and e-mails.

Project Review

[206]

Adding the admin feature for the Team entity is the same as previous entities. Define
the required admin class (that is, /src/AppBundle/Admin/TeamAdmin.php) and
required forms and fields:

<?php
namespace AppBundle\Admin;
use Sonata\AdminBundle\Admin\Admin;
use Sonata\AdminBundle\Datagrid\ListMapper;
use Sonata\AdminBundle\Datagrid\DatagridMapper;
use Sonata\AdminBundle\Form\FormMapper;
class TeamAdmin extends Admin
{
 // Fields to be shown on create/edit forms
 protected function configureFormFields(FormMapper $formMapper)
 {
 $formMapper
 ->add('title' , 'text')
 ->add('description', 'textarea')
 ->add('project','entity',
 array(
 'class' => 'CoreBundle:Project',
 'property' => 'title'
));
 }

 // Fields to be shown on filter forms
 protected function configureDatagridFilters(
 DatagridMapper $datagridMapper)
 {
 $datagridMapper
 ->add('title')
 ->add('description');
 }

 // Fields to be shown on lists
 protected function configureListFields(ListMapper $listMapper)
 {
 $listMapper
 ->addIdentifier('title')
 ->add('description');
 }
}

Chapter 8

[207]

Then, add it as a service to your admin.yml file:

src/AppBundle/Resources/config/admin.yml
services:
 # ...
 sonata.admin.team:
 class: CoreBundle\Admin\TeamAdmin
 tags:
{ name: sonata.admin, manager_type: orm,
group: "Content", label: "Team" }
 arguments:
 - ~
 - CoreBundle\Entity\Team
 - ~
 calls:
 [setTranslationDomain, [CoreBundle]]

This way, we tell SonataAdminBundle that we need a new item under the Content
group in order to manage our Team entities.

Adding a notification system
A notification system is a critical part in every task management application.
We need to be informed about events that happen in the system. Here are a few
examples of task notifications. Similar rules apply to projects, workspaces, teams,
and users:

• When a new task is assigned
• When a new task is created
• When there is a new attachment for a task
• When there are some changes in a task
• When a task is completed

According to this business logic, all entities created so far are missing a crucial part.
They all need a mechanism to keep track of two times: the first, the moment they
have been created and second is the last time they have been updated.

In the following section, I will show you how to implement this mechanism for the
Task entity. You can do the same for the rest of the entities or fetch the updated code
from the Chapter08 branch.

Project Review

[208]

Adding time tracking properties
It would be very helpful if we could track the activities that happen in a Task entity.
For example, sometimes we need to get the access time to a specific task in order to
accomplish an other functionality in the dashboard area.

To find out when a new task has been created and the last time it was updated, we
need to define new properties as follows:

<?php
// src/AppBundle/Entity/Task.php
//...
/**
 * Task
 * …
 * @ORM\HasLifecycleCallbacks()
 */
class Task
{
 //...
 /**
 * @var \DateTime
 * @ORM\Column(name="created_at", type="datetime")
 */
 protected $createdAt;

 /**
 * @var \DateTime
 * @ORM\Column(name="updated_at", type="datetime")
 */
 protected $updatedAt;
 /**
 * Sets the creation date
 * @ORM\PrePersist
 */
 public function setCreatedAt()
 {
 $this->createdAt = new \DateTime();
 $this->updatedAt = new \DateTime();
 }

 /**
 * Returns the creation date
 * @return \DateTime
 */

Chapter 8

[209]

 public function getCreatedAt()
 {
 return $this->createdAt;
 }

 /**
 * Sets the last update date
 * @ORM\PreUpdate
 */
 public function setUpdatedAt()
 {
 $this->updatedAt = new \DateTime();
 }

 /**
 * Returns the last update date
 * @return \DateTime
 */
 public function getUpdatedAt()
 {
 return $this->updatedAt;
 }

As you can see, there is nothing special about it. Just new properties with slightly
different getters and setters. However, you may have noticed that they are defined as
protected and there are some new annotations as well.

Let's start with the annotations: @ORM\HasLifeCycleCallbacks(), @ORM\PreUpdate,
and @ORM\PrePersist are telling Doctrine that we want to use your internal
event system.

Yes, Doctrine comes with a fast event system that can handle some common tasks
for us. For example, @ORM\PrePersist means run the methods mentioned by this
annotation before flushing the queries and inserting new records into the table.
However, @ORM\PreUpdate fires an event to update the current records only.

In our case, when we create a new Task, the CreatedAt and UpdatedAt properties
are set to the current time, and when an available record is modified, only the
UpdatedAt property will get a new value.

Using Doctrine's event system keeps our controllers a little cleaner. Imagine if you
wanted to take care of the creation and update times yourself. You have to create a
few extra methods for them and call them every time they are needed.

Project Review

[210]

You can find more details about Doctrine's events at the following link:

http://doctrine-orm.readthedocs.org/en/latest/reference/events.html

If you are looking to add more advanced behaviors to your
entities, then using Doctrine extensions is the answer:
http://symfony.com/doc/current/cookbook/doctrine/
common_extensions.html.

Before proceeding to the next topic, don't forget to update your tables:

bin/console doctrine:schema:update --force

The notification business logic
The whole idea for notifications is for them to be generated automatically by the
system. This means that for most of db queries, the system should generate a
notification automatically and alert the user(s) who are involved to that event.

The Notifications class concerns users only, so the basic properties for the
Notification entity would be as follows:

<?php
namespace AppBundle\Entity;
use Doctrine\ORM\Mapping as ORM;

/**
 * Notification
 * @ORM\Table(name="notification")
 * @ORM\Entity(repositoryClass= "AppBundle\Entity\
NotificatioRepository")
 */
class Notification
{
 /**
 * @var integer
 * @ORM\Column(name="id", type="integer")
 * @ORM\Id
 * @ORM\GeneratedValue(strategy="AUTO")
 */
 private $id;

 /**
 * @var string

http://doctrine-orm.readthedocs.org/en/latest/reference/events.html
http://symfony.com/doc/current/cookbook/doctrine/common_extensions.html
http://symfony.com/doc/current/cookbook/doctrine/common_extensions.html

Chapter 8

[211]

 * @ORM\Column(name="subject", type="string", length=45)
 */
 private $subject;

 /**
 * @var string
 * @ORM\Column(name="body", type="text", nullable=true)
 */
 private $body;

 /**
 * @var \AppBundle\Entity\User
 * @ORM\ManyToOne(targetEntity="AppBundle\Entity\User")
 * @ORM\JoinColumn(name="user_id", referencedColumnName="id")
 */
 private $user;

 /**
 * @var \DateTime
 * @ORM\Column(name="created_at", type="datetime")
 */
 protected $createdAt;

 /**
 * @var \DateTime
 * @ORM\Column(name="updated_at", type="datetime")
 */
 protected $updatedAt;

 //... and related setters and getters
}

As we want this entity to be generated automatically, the usual controllers won't be
very helpful here. We need something more extensible. A mechanism that automates
the process without our intervention. We still can do it in the controller way but let's
develop a service to deal with the heavy lifting for us.

If you recall from the previous topic, Doctrine's event system was in charge of
creating and updating times for the Task entity. So we can benefit from the same
mechanism for our personal matters. This means that if we create some services and
hook them to Doctrine events (that is, PrePersist, PostUpdate, and so on), then we
can save tons of code.

Project Review

[212]

So here is the plan. We have a couple of entities in our application. We will have
an entity for notifications. We want to notify specific users about any change in our
entities. The following image summarizes this business logic:

Events, event dispatchers, and event listeners
An event is simply a PHP object that carries some information. An event dispatcher
is a mechanism that fires events. In our example, Doctrine has its own event system
containing all predefined events and dispatchers, and an event listener is another
class that is in charge of receiving events and reacting to them accordingly.

In our case, all we need to do is create a service to listen to these events. Let's start by
defining a new service in AppBundle:

src/AppBundle/Resources/config/services.yml
services:
 #...
 notification.listener:
 class: CoreBundle\EventListener\Notifier
 tags:
 { name: doctrine.event_listener, event: postPersist }

There are a couple of things to notice. First, we need to create a folder called
EventListener and add a new class named Notifier to it. This class will be our
event listener and, as you can see, we are interested in events called postPersist in
the service settings.

So, we have to create a method in our EventListener class and name it after that
event. This way, every time a postPersist event is fired by Doctrine, our method is
ready to catch it and do something about it.

Chapter 8

[213]

The Notifier event listener
The important thing about an event listener is that it will listen to all entities and
cannot distinguish, say, the Task entity from the Project entity. It will be our job to deal
with each event source separately. So add the following contents to Notifier.php:

<?php
// src/AppBundle/EventListener/Notifier.php
namespace AppBundle\EventListener;
use Doctrine\ORM\Event\LifecycleEventArgs;
use Symfony\Component\HttpFoundation\Response;
use CoreBundle\Entity\Workspace;
use CoreBundle\Entity\Task;
use CoreBundle\Entity\Team;
use CoreBundle\Entity\Project;

class Notifier {
 private $subject;
 private $body;
 private $user;
 private $em;
 public function postPersist(LifecycleEventArgs $args)
 {
 $entity = $args->getEntity();
 $this->em = $args->getEntityManager();
 $this->notifyRelatedUsers($entity);
 }
 // ToDo: add methods for storing notifications
}

We used the LifeCycleEventArgs class here. The objects of that type provide
methods to access an entity and entity manager. With the entity in our sight, the next
step will be to recognize its type. So create another method in this class and add the
following contents to it:

<?php
// src/AppBundle/EventListener/Notifier.php
//...
class Notifier {
 //...
 public function notifyRelatedUsers($entity, $em)
 {
 if ($entity instanceof Task){
 $this->subject = $entity->getTitle();

Project Review

[214]

 $this->body ="updates for task: ".$entity->getTitle();
 $this->user = $entity->getUser();
 }
 $this->addNewNotification();
 }
}

Here, we only checked for the easiest entity. Task is the easiest entity to deal with
because it has a user property defined already.

If you look at other entities such as Workspace or Project, you will see that there is
no user access in them. So what should we do? We have to cover every entity. For
example, if there is a change in a project title or project due date, we need to notify
people who are working on it, right?

To deal with this challenge, we can create methods to find users who are involved in
a particular project or workspace and return the user ID. These methods can live in
the entity repositories. They can also be defined in /src/AppBundle/Util/Mava.php
and be accessed like a service. You can find the complete code for every single entity
in this chapter's branch.

After finding the users who are involved in the current entity updates, the last step
will be to add a new record to the notifications table:

<?php
// src/AppBundle/EventListener/Notifier.php
//...
class Notifier {
 //...
 public function addNewNotification()
 {
 $manager = $this->em;
 $notification = new Notification();
 $notification->setSubject($this->subject);
 $notification->setBody($this->body);
 $notification->setUser($this->user);
 $manager->persist($notification);
 $manager->flush();
 return new Response('notification id '.$notification-
>getId().' successfully created');
 }
}

Chapter 8

[215]

With all the notifications persisted in the database, when a user logs in to his account,
we can fetch the notifications that match his user ID and show them to him. As you
saw before, finding notifications by the user ID is a very simple thing to do and can
be done through a method in the notification controller.

Summary
In this chapter, we reviewed the code developed in the past chapters and applied
best Symfony practices to it. We saw how to turn ordinary code into services, do the
required configurations for them, and call them whenever they are needed.

We introduced a few more entities for the project and created controllers and
views for each of them using the BDD/TDD approach. We saw how to create event
listeners as a service and how to benefit from Doctrine's event system in our project.
The whole time, we let Jenkins orchestrate the development /test/ build life cycle
for us.

In the next few chapters, our focus will be on Symfony services in detail and we will
examine different techniques and use cases for them.

[217]

Services and Service
Containers

Imagine that you are in charge of maintaining a legacy code and you find a couple
of classes, with over 1,000 lines of code each, which have a long list of variables,
constants, methods, and so on. What a mess; even reading that code takes ages, let
alone understanding and maintaining it.

You might think, okay, I can break down those big classes into, say, 10 smaller ones
and instantiate them in the main class. This helps a little, but it still wastes a lot of
memory and, more importantly, it is hard to test and maintain them because they are
tightly coupled to each other.

So what is the solution? The best way to deal with situations like this (or
implementing a big project from scratch) is to read and understand the business
requirements first and assemble a list of functionality for that application. Then,
create one class for each functionality. It is totally fine if a feature consists of multiple
functionality but before implementing that feature, create one single class for each
simple functionality first. In other words, break down the logic to a point that it
cannot be more simplified. This is essential and those classes can be considered
as the building blocks of Service-Oriented Architecture (SOA) later. In the SOA
architecture pattern, if you decide to modify or replace one of those building blocks
with something else, it shouldn't interfere with the flow of the application or prevent
the rest of the application from functioning.

Services and Service Containers

[218]

This chapter is mainly about answering the following two questions:

1. How can we turn these classes into services?
2. How can we manage these services (that is, instantiate them and call

their methods)?

How to create a service
You don't create services. You create classes and they are already SERVICES if they
DO something.

So, the answer to the first question is simple: in reality, you don't need to do anything
special to turn an object into a service. It needs only one aspect to be qualified as a
service. It simply needs to do something. In other words, if a class contains methods
that actually perform a task, you can call the object instantiated from that class a
service. For example, Symfony entities are not services because they normally consist
of a bunch of property definitions. However, any PHP object that takes these entities
and performs some action on them can be called a service.

So, whenever you create a new class, you are potentially creating a new service.
Service is just a fancy new name. That's all.

How are services beneficial to our
projects?
If we are creating services in our professional lives (without realizing it), then why
don't we feel any difference in our codes?

This is because classes are the body of a service. Without their souls, they are simply
another PHP object. Their soul is the concept that gives them birth by instantiating
them only if they are needed.

The Dependency Injection Container (or Service Container) is such a concept.
It manages the instantiation of services on demand. This means that the service
container constructs and returns them once if they are requested. This utilizes
memory and application performance in two ways:

• If you create a service but never use it, no memory will be wasted for
instantiation

• If you create a service and use it multiple times, memory will be allocated for
the size of one instance only and will be shared across all the instances

Chapter 9

[219]

This is powerful. Imagine the memory saved in this way.

What if we needed a unique instance of a service? In that case, we have to set the
shared settings to false in the service definition:

services:
 some_service:
 class: some_class
 Shared: false

How to call a service
We have called a service in our project before. To know the answer, open mava/src/
AppBundle/Controller/DashboardController.php and note two things:

<?php
namespace AppBundle\Controller;
use Symfony\Bundle\FrameworkBundle\Controller\Controller;
class DashboardController extends Controller
{
 public function indexAction()
 {
 $uId = $this->getUser()->getId();
 $util = $this->get('mava_util');
 //...
 }
}

First, this class extends Symfony's Controller class. Secondly, spot the get(mava_
util) method at line 9. This method is in charge of calling services and is defined in
the Controller.php class as follows:

 /**
 * Gets a container service by its id.
 * @param string $id The service id
 * @return object The service
 */
 public function get($id)
 {
 //...
 return $this->container->get($id);
 }

Services and Service Containers

[220]

In this example, it calls the mava_util service and benefits from its methods. Moving
the query logic into mava_util gives us the flexibility of accessing them anywhere
in the project via a simple get() method. Besides, no matter how many times we
call this service, it will occupy memory for one instantiation only and leave us with
better utilized resources.

How to configure a service
In the previous topic, we got the mava_util service and used its methods to fetch
user projects and tasks with various statuses. How does a service container construct
a service? In other words, where are the configurations defined?

As developers, we give instructions on how to construct and return a service via
the config.yml file. We can put the instructions directly in the config.yml file or
somewhere else (that is, services.yml) and import them to config.yml.

Keep in mind that if you defined your services in a bundle, no further configuration
is required and they will be loaded automatically. We will read more about this soon.

Open the mava/src/AppBundle/resources/config/services.yml file and note
the definition for mava_util:

services:
 # ...
 mava_util:
 class: AppBundle\Util\Mava
 arguments: ['@doctrine.orm.entity_manager']

In this configuration, the class entry defines where the body of a service is located
and arguments are a list of parameters that can be passed to that class while the
service is being constructed. These parameters could be a simple string (or any other
scalar value) or another service.

Why is it called a Dependency Injection
Container?
You may have noticed that I used Service Container and Dependency Injection
Container interchangeably. Based on what we have seen so far, the term Service
Container makes sense: we have a couple of services and there is a container that
manages them. Right?

However, what does it mean when we say Dependency Injection Container? Who
injects what in this definition?

Chapter 9

[221]

Look at the constructor in the Mava.php class again:

class Mava
{
 private $em;
 public function __construct(EntityManager $em)
 {
 $this->em = $em;
 }
 // ...
}

As you can see, we defined and initialized an EntityManager variable in its
constructor and, if you look at the arguments for mava_util in services.yml,
you will notice that it is actually a doctrine service called entity_manager:

 mava_util:
 class: AppBundle\Util\Mava
 arguments: ['@doctrine.orm.entity_manager']

So basically, we have injected an entity_manager dependency into our mava_util
service to benefit from its features. This is why it is sometimes called Dependency
Injection Container.

This type of injection is called a constructor injection. Other types of injections are
setter injection and property injection. You can read about these types and their pros
and cons at the following link:

http://symfony.com/doc/current/components/dependency_injection/types.
html.

Injecting services into other services is a very powerful idea. This means that you can
use the power of other services in your services without worrying about memory
usage, maintainability, and testability or being concerned about unreadable bulky
code. You get the service(s) from the container whenever you want and however you
want and, at the end, your Controllers stay lean and clean.

To recap, we need to do only two things to have a service up and running:

• A class that does something globally in our application
• A configuration file that tells the Service Container (Dependency Injection

Container) how that service should be constructed

http://symfony.com/doc/current/components/dependency_injection/types.html
http://symfony.com/doc/current/components/dependency_injection/types.html

Services and Service Containers

[222]

Of course, this configuration file has a lot of details and we can talk about it forever.
Instead of repeating what has been explained in the official Symfony documentation,
I'm going to expand on two more service examples that we have created for this
application already. Before doing this, I would like to talk about another approach to
load service configurations.

Why didn't we import services inside
the bundle?
You may have noticed that we have a service.yml file in our AppBundle that is not
imported to config.yml:

app/config/config.yml
imports:
 - { resource: parameters.yml }
 - { resource: security.yml }
 - { resource: services.yml } #app/config/services.yml
 - { resource: @AppBundle/Resources/config/admin.yml }
 { resource: sonata_classification.yml }

How come our mava_util service (which has been configured in src/AppBundle/
Resources/config/services.yml) works?

Please bear in mind that there is nothing wrong with adding another resource line
as follows:

 - { resource: @AppBundle/Resources/config/services.yml }

We are about to see another Symfony feature that makes bundles more decoupled.

When we generate a bundle with the Symfony console, a folder named
DependencyInjection with the following classes is created:

AppBundle
 |- …
 |_ DependencyInjection
 |- Configuration.php
 |_ AppExtension.php

The AppExtension class is the one that we are interested in. With this class, you
can define all of your bundle configurations in the bundle itself and enable it to be
loaded automatically wherever the bundle is used.

In other words, if you want to use this bundle in another project, simply copy the
bundle in the /src folder and off you go. You don't need to worry about importing
the service (or other) settings to config.yml.

Chapter 9

[223]

Let's have a look in the AppExtension class and see how it works:

<?php
namespace AppBundle\DependencyInjection;
//...
class AppExtension extends Extension
{
 public function load(array $configs,
 ContainerBuilder $container)
 {
 $configuration = new Configuration();
 $config = $this->processConfiguration(
 $configuration,
 $configs
);
 $loader = new Loader\YamlFileLoader($container, new
FileLocator(__DIR__.'/../Resources/config'));
 $loader->load('services.yml');
 $loader->load('admin.yml');
 }
}

As you can see, the loader() method does the trick. It simply loads all the .yml files
available in the Resources/config folder of the bundle. This is why we don't need
to import them to app/config.yml.

How to create and load services via
autowiring
There are times when we only care about quick and dirty prototyping for a service.
We don't know the service details and it is an ongoing job, which means that the
service parameters might change over and over again.

It makes the service definition a little tricky. Imagine how many times we would
have to refactor the service until we reach the final structure. Luckily, we can create
a service with minimal configuration. Introduced in Symfony 2.8, with autowiring,
we can ignore details of the service definition and let Symfony find and handle any
dependency for us:

services:
 som_service:
 class: some_class
 autowire:true

Services and Service Containers

[224]

You can read more about it here:

https://symfony.com/doc/current/components/dependency_injection/
autowiring.html.

Organizing services with tags
One useful configuration feature that can be used in the service settings is a tag. It
does not alter a service in any way, rather it provides properties that can be used in
services for better organization.

For example, open the services.yml file in AppBundle and look at the
configuration that SonataUserBundle creates to address the user profile edit form:

services:
 mava_user.profile.form.type:
 class: AppBundle\Form\ProfileType
 tags:
 - { name: form.type, alias: mava_user_profile }

Now open the config.yml file and scroll down to sonata_user:

sonata_user:
 security_acl: true
 manager_type: orm
 profile:
 form:
 type: mava_user_profile

As you can see, Sonata uses tags to address the Profile Edit form for users. In other
words, the alias in the tags parameter defines the name for the form type that is used
to edit profile information for users. The same alias value is used in the ProfileType
class in the form folder:

<?php
namespace AppBundle\Form;
class ProfileType extends AbstractType
{
 // ...
 public function getBlockPrefix()
 {
 return 'mava_user_profile';
 }
}

https://symfony.com/doc/current/components/dependency_injection/autowiring.html
https://symfony.com/doc/current/components/dependency_injection/autowiring.html

Chapter 9

[225]

You can see that the tags keyword doesn't do anything here. Basically, it just
provides a name that is used everywhere to address the same concept.

With this concept in mind, it should be obvious how tags organize the other services
that we have in services.yml:

 my.listener:
 class: AppBundle\EventListener\Notifier
 tags:
 - { name: doctrine.event_listener, event: postPersist }

This one tells another story, something like: hey I am a doctrine event_listener
service that triggers the postPersist method in the Notifier class.

Open the Notifier class and you will see this method here:

<?php
namespace AppBundle\EventListener;
class Notifier {
// ...
 public function postPersist(LifecycleEventArgs $args)
 {
 $entity = $args->getEntity();
 $this->em = $args->getEntityManager();
 $this->notifyRelatedUsers($entity);
 }
}

Summary
This chapter was about understanding that services are nothing more than usual
PHP objects that are constructed on demand. We saw that their real power comes
from the fact that no memory is allocated to them until they are called and, more
importantly, no matter how many instances of them are created, the allocated
memory never grows over one instance.

You learned where and how to create the required configurations that a Service
Container needs in order to instantiate the services. Decoupling bundles by putting
their configurations in the DependencyInjection folder was another subject that
we studied. Lastly, we saw how to use tags in the service configuration in order to
organize them better.

So far, we have used default Symfony commands or commands that come with
third-party bundles. In the next chapter, we will see how to create our own commands.

[227]

Custom User Commands
Have you ever wondered where Symfony's console commands come from? For
example, when we install FOSUserBundle, we can use the following command to
create a new admin:

$bin/console fos:create:user <name> <email> <password> --super-admin

To see a complete list of available commands, try this command:

$ bin/console list

It is really handy because we don't need to log in as an admin to create a new admin;
we can proceed to the user admin area, fill in the forms, and set the access level for the
newly created user. How is this possible and how can we create more commands?

There are many usages for console commands; we can generate quick reports from
the command line and e-mail the result to a specific person (that is, completed
projects in the past season or a list of users working in a specific workspace).

In this chapter, you will learn how to create custom commands in order to create
tasks, assign them to a specific person, and define the project where the task belongs
to, all from the command line.

Creating and registering commands
Technically, a custom command is nothing more than a PHP class defined in the
Command folder of your bundle. Like other Symfony naming conventions, the
filename for this class should end with Command. So, defining new console commands
requires two main steps:

1. Create a command class in the bundle
2. Register this command to let Symfony know about it

Custom User Commands

[228]

As long as we create the command class in the Command folder and follow the required
naming conventions, registering happens automatically and we don't need to do
anything for this. Let's see how to create the command class itself.

Creating commands for tasks
One way to create tasks in our project is to log in, push the add new task button,
and fill in the entries here. Wouldn't it be nice if we could do the same from the
command line? If we are allowed to see the command line for a live project, this
means that we don't need to deal with the hassle of authentication and authorization.
So we can get to the point quickly.

To begin with, create a new Command folder in AppBundle and add the following
class to it:

File source: // src/AppBundle/Command/TaskCommand.php

namespace CoreBundle\Command;
use Symfony\Component\Console\Input\InputOption;
use Symfony\Component\Console\Input\InputArgument;
use Symfony\Component\Console\Input\InputInterface;
use Symfony\Component\Console\Output\OutputInterface;
use Symfony\Bundle\FrameworkBundle\Command\ContainerAwareCommand;

class TaskCommand extends ContainerAwareCommand
{
 protected function configure() { }
 protected function execute(
 InputInterface $input,
 OutputInterface $output) {
 }
}

There are only two methods in this class. As you may have guessed, the
configure() method is the place to define the required settings and input
parameters for our command. Let's study this method first.

Chapter 10

[229]

The configuration part
In our example for the task creation command, the configuration part can be defined
as follows:

File source: // src/AppBundle/Command/TaskCommand.php

// ...
class TaskCommand extends ContainerAwareCommand
{
 protected function configure()
 {
 $this
 ->setName('mava:task:create')
 ->setDescription('Create and assign a new task')
 ->addArgument(
 'taskName', InputArgument::REQUIRED,
 'The task name'
)
 ->addArgument(
 'taskDesc', InputArgument::REQUIRED,
 'The task description'
)
 ->addArgument(
 'taskDueDate', InputArgument::REQUIRED,
 'The task due date'
)
 ->addArgument(
 'taskStatus', InputArgument::REQUIRED,
 'The task status'
)
 ->addOption(
 'user', null, InputOption::VALUE_REQUIRED,
 'If set, the task will be assigned to the user'
)
 ->addOption(
 'project', null, InputOption::VALUE_REQUIRED,
 'Defines which project this task is belonged to'
);
 }
}

The setName() and setDescription() methods should be obvious. Whatever
parameter we define in setName() will be used in the console to call the command.
What this command does is defined in setDescription().

Custom User Commands

[230]

Basically, we have the following naming convention for commands:

bundlename:task:action

We have two types of input for console commands. The actual arguments are the
ones that create the core inputs of the command (that is, <task name>):

->addArgument(
 'taskName', InputArgument::REQUIRED,
 'The task name?'
)

Note that the order of arguments in a command matters, but you can use options in
the order that you like.

The options that add more power by providing some command-line options (that is,
--user:<user id>) are as follows:

->addOption(
 'user', null, InputOption::VALUE_REQUIRED,
 'If set, the task will be assigned to the user'
)

The execution part
Now that we have input arguments and options in place, we need to execute
them on demand. The purpose of this command is to create a new task and assign
it to someone. This sounds like a SQL query. We can add the query logic to the
execute() method or we can create a service for this and call this service in our
command, which is a better way.

Luckily, we have already set up a service in Chapter 8, Project Review. So, let's go to
our Util folder and create a new method in Mava.php for our task creation logic:

File source: // src/AppBundle/Util/Mava.php

namespace AppBundle\Util;
use Doctrine\ORM\EntityManager;
use AppBundle\Entity\Task;
class Mava
{
//...
 public function createTask(
 $taskName,
 $taskDesc,

Chapter 10

[231]

 $taskDueDate,
 $taskStatus,
 $userId = null,
 $projectId = null
){
 $task = new Task();
 $task->setTitle($taskName);
 $task->setDescription($taskDesc);
 $task->setDueDate(new \DateTime($taskDueDate));
 $task->setStatus($taskStatus);
 if($projectId) {
 $project =
 $this->em->getRepository('AppBundle:Project');
 $task->setProject($project->find($project_id));
 }
 if($userId) {
 $user = $this->em->getRepository('AppBundle:User');
 $task->setUser($user->find($useId));
 }
 try {
 $this->em->persist($task);
 $this->em->flush();
 return true;
 } catch (\Exception $e) {
 throw $e;
 }
 }
}

Now we can call this service in our command and benefit from its createTask()
method:

File source: // src/AppBundle/Command/TaskCommand.php

class TaskCommand extends ContainerAwareCommand
{
// …
protected function execute(
 InputInterface $input,
 OutputInterface $output)
 {
 $util = $this->getContainer()->get('mava_util');
 $result = $util->createTask(
 $input->getArgument('taskName'),
 $input->getArgument('taskDesc'),

Custom User Commands

[232]

 $input->getArgument('taskDueDate'),
 $input->getArgument('taskStatus'),
 $input->getOption('user'),
 $input->getOption('project')
);
 if ($result){
 $output->writeln("Task created successfully.");
 }

 }
}

As I mentioned earlier, we don't need to worry about defining the service because
mava_util has been defined as a service in Chapter 8, Project Review already. So, simply
by getting the service container, we can call any service available to our project:

util = $this->getContainer()->get('mava_util');

At this stage, our command is fully functional and we can run it or see the help
information about it simply using the following command:

$ bin/console mava:task:create --help

The usage of the preceding command is shown as follows:

mava:task:create [options] [--] <taskName> <taskDesc> <taskDueDate>
<taskStatus>

The argument that should be given is shown as follows:

 taskName The task name

 taskDesc The task description

 taskDueDate The task due date

 taskStatus The task status

Lets see the options for the command:

 --user=USER If set, the task will be assigned to the

 nominated user

 --project=PROJECT If set, defines which project this task is

 belonged to

So far so good, but this command is not user-friendly yet. In other words, it is okay
for someone who knows about its arguments or can call the - -help option to find
out about the available inputs. Let's make it a little easier to use.

Chapter 10

[233]

Adding interactivity to commands
If we run our command without any input, we will get a RuntimeException error:

$ bin/console mava:task:create

 [RuntimeException]

 Not enough arguments.

However, we have already seen commands that don't need initial inputs to fulfill
their purpose. In Chapter 1, Installing and Configuring Symfony, for example, we
simply called the following command to generate a whole bundle structure:

$ bin/console generate:bundle

It wasn't necessary to provide any inputs and yet, along the way, it communicated
with us and told us what is needed for the next step to generate the bundle. This is
a really nice feature. Let's add it to our command.

Console helpers
Console helpers are services that we can use to add interactivity to our commands.
We are going to use the Question helper here. First, we need to add the required
classes for different types of questions. So open your command class and add the
following lines to it:

File source: // AppBundle/Command/TaskCommand.php

//...
use Symfony\Component\Console\Question\Question;
use Symfony\Component\Console\Question\ChoiceQuestion;
use Symfony\Component\Console\Question\ConfirmationQuestion;

class TaskCommand extends ContainerAwareCommand
{
 //...
}

Adding interactivity means that the input parameters should be optional. In the
configure() method, note InputArgument:

InputArgument::REQUIRED

Change it to the following:

InputArgument::OPTIONAL

Custom User Commands

[234]

These questions will be asked in the execute() method and, based on the answers,
we will decide the flow of execution. However, the problem is that if we ask
everything in this method, it will get bulky and messy. So let's group the questions
into three categories:

• Questions related to input arguments: task, description, due date, and status
• Questions related to input options: user and project
• Confirmation question at the end

All we need to do is define a couple of private variables and methods to deal
with each group separately. So the basic structure of our command class would
be as follows:

File source: // AppBundle/Command/TaskCommand.php

//...
class TaskCommand extends ContainerAwareCommand
{
 //...
 private $helper;
 private $aTask, $aDesc, $aDate, $aStat;
 private $aUser, $aProject;
 private $aConfirm;
 //...
 protected function execute(InputInterface $input, OutputInterface
$output)
 {
 $this->helper = $this->getHelper('question');
 $this->argQs($input, $output);
 $this->optQs($input, $output);
 $this->confirmQ($input, $output);

 if ($this->aConfirm) {
 $this->createTask()?
 $output->writeln("Task created successfully."):
 $output->writeln("Something went wrong!");
 } else {
 return;
 }
 }

Chapter 10

[235]

The process for each method is simple:

1. Get a question helper from the service container.
2. Create a new Question instance.
3. Ask the question and proceed to the next action based on the answer.

For input arguments, we will have the following questions:

File source: // AppBundle/Command/TaskCommand.php

//...
class TaskCommand extends ContainerAwareCommand
{
 //...
 private function argQs(
 InputInterface $input, OutputInterface $output)
 {
 $helper = $this->helper;
 $qTask = new Question("What is the task name?\n", 'task');
 $this->aTask = $helper->ask($input, $output, $qTask);

 $qDesc = new Question(
 "Please provide a short description:\n",
 'description');
 $this->aDesc = $helper->ask($input, $output, $qDesc);

 $qDate = new Question(
 "What is the due date?\n", '31/12/2017');
 $this->aDate = $helper->ask($input, $output, $qDate);

 $qStat = new ChoiceQuestion(
 "What is the task status?\n",
 ['new', 'in progress', 're opened'],
 0);
 $this->aStat = $helper->ask($input, $output, $qStat);
 }
}

Note that for the task status, we have a multiple choice question and the default
answer is set to the first option.

Custom User Commands

[236]

This method basically collects user answers and saves them in the private variables
for future use. The next method deals with the optional inputs:

// AppBundle/Command/TaskCommand.php
//...
class TaskCommand extends ContainerAwareCommand
{
 //...
 private function optQs(InputInterface $input,
 OutputInterface $output)
 {
 $helper = $this->helper;
 $qUser = new ConfirmationQuestion(
 "Would you like to assign this task to a user?
 (yes/[no]) ", false);
 if($helper->ask($input, $output, $qUser)) {
 $qUserID = new Question("User ID: \n", '1');
 $this->aUser= $helper->ask($input, $output, $qUserID);
 }
 $qProject = new ConfirmationQuestion(
 "Would you like to set the project for this task?
 (yes/[no]) ", false);
 if($helper->ask($input, $output, $qProject)) {
 $qProjectID = new Question("Project ID: \n", '1');
 $this->aProject=$helper->ask($input,$output,$qProjectID);
 }
 }
}

The reason that we wrapped the optional input questions in a confirmation question
is to give them a nationality feature. In other words, they will be asked only if the
user says yes to them.

The last step summarizes the provided answers and asks for task creation
confirmation as follows:

File source: // CoreBundle/Command/TaskCommand.php

//...
class TaskCommand extends ContainerAwareCommand
{
 //...
 private function confirmQ(
 InputInterface $input, OutputInterface $output)
 {

Chapter 10

[237]

 $helper = $this->helper;
 $output->writeln(
 "======[SUMMARY]======\n".
 " Task name: ".$this->aTask."\n".
 " Description: ".$this->aDesc."\n".
 " Due on: ".$this->aDate."\n".
 " Status: ".$this->aStat."\n".
 " User id: ".$this->aUser."\n".
 " project id: ".$this->aProject
);
 $qConfirm = new ConfirmationQuestion(
 "\n\n\tDo you confirm the task creation? ([yes]/no) ",
 true);
 $this->aConfirm= $helper->ask($input, $output, $qConfirm);
 }
}

Now that we have all the questions asked and answers have been collected, we can
call the createTask() method and show a success or failure message based on the
returned value:

File source: // AppBundle/Command/TaskCommand.php

//...
class TaskCommand extends ContainerAwareCommand
{
 //...
 private function createTask()
 {
 $util = $this->getContainer()->get('mava_util');
 $result = $util->createTask(
 $this->aTask, $this->aDesc, $this->aDate,
 $this->aStat, $this->aUser, $this->aProject
);
 return $result;
 }

Custom User Commands

[238]

Summary
In this chapter, you learned about console commands and how to configure and
execute them. You learned about the question helper and saw how to use different
question classes to add interactivity features to our custom commands. Finally, we
saw how to get a custom service (that is, mava_util) and benefit from its methods in
our custom commands.

There is a lot that we can do to decorate a custom command. Fortunately, Symfony
comes with a complete documentation about how to do this, which you can find here:

http://symfony.com/doc/current/components/console/helpers/index.html.

http://symfony.com/doc/current/components/console/helpers/index.html

[239]

More about Dev, Test and
Prod Environments

This is a short chapter about Symfony environments. We will see how they
are different from each other, how we can customize them based on project
requirements, and how to create our own environment with its own front controller
(that is, app.php, app_dev.php, and app_[your env name].php).

Why do we need different environments?
An environment basically provides running instructions for the same code base. It
does not change anything in the code itself. It simply tells Symfony when the code
is running, which tools and components should accompany it, and what set of
parameters should be used.

The default Symfony environments are Dev, Test, and Prod. As their names suggest,
they utilize Symfony tools for our code to run in development, test, and production
environments respectively.

So what do they mean and how are they different from each other? For example,
when we are developing and testing a web application, we need to get as much
debug information as possible to hunt down a thrown exception. Running Symfony's
Profiler, Logger, and other tools slows down the overall application performance,
but in return provides valuable information that helps us spot and fix the problem.

On the other hand, when the application is fully developed and tested, all we need to
do is maximize the performance. So we need to switch to the Prod environment and
use its configurations, which are basically to optimize the speed.

More about Dev, Test and Prod Environments

[240]

The environment configuration file
If we are still using the same code base in different environments, this means that a
large part of configurations should be the same in all of them. That's correct. Go to
the app/config folder and open any of the config_dev.yml, config_test.yml, or
config_prod.yml files.

You will see that the main config file is imported as a resource before any settings:

app/config/config_dev.yml
 imports:
 - { resource: config.yml }
#...

After this, environment-specific settings follow. This means that we are using the
main config.yml settings as the essential configurations for our project and only if
there is a new definition for any aspect in the current environment, that definition
will override the main config file:

app/config/config.yml
#...
framework:
 router:
 resource: "%kernel.root_dir%/config/routing.yml"
 strict_requirements: ~

app/config/config_dev.yml
imports:
 - { resource: config.yml }

framework:
 router:
 resource: "%kernel.root_dir%/config/routing_dev.yml"
 strict_requirements: true
 profiler: { only_exceptions: false }

Processing configuration files
Okay, so we defined the configuration files based on our needs, but how are they
actually accessed? Open app/AppKernel.php and scroll down to the following lines:

// app/AppKernel.php
// ...
class AppKernel extends Kernel

Chapter 11

[241]

{
 public function registerBundles()
 {
 //...
 if (in_array($this->getEnvironment(),
 array('dev', 'test'))) {
 $bundles[] = new Symfony\Bundle\DebugBundle\DebugBundle();
 $bundles[] = new Symfony\Bundle\WebProfilerBundle\
 WebProfilerBundle();
 $bundles[] = new Sensio\Bundle\DistributionBundle\
 SensioDistributionBundle();
 $bundles[] = new Sensio\Bundle\GeneratorBundle\
 SensioGeneratorBundle();
 }
 //...
 }

 public function registerContainerConfiguration(
 LoaderInterface $loader) {
 $loader->load(
 $this->getRootDir().
 '/config/config_'.
 $this->getEnvironment().
 '.yml');
 }
}

As you can see, based on the specific environments ('dev' and 'test'), we first
register additional bundles to log and profile the execution flow.

Later, in the registerContainerConfiguration() method, we load the related
configuration file based on the current environment.

The next question would be, how do we decide the environment we want to be in?
The answer is via front controllers. Open web/app_dev.php, for example, and find
the following line in it:

// web/app_dev.php
// ...
 $kernel = new AppKernel('dev', true);

When we instantiate a new application kernel, we set the environment for it as well.

More about Dev, Test and Prod Environments

[242]

Creating a new environment
Based on what we have seen so far, in order to create a new environment, all we
need to do is the following:

1. Define a new configuration file.
2. Create a new front controller for it (in case we need to call it explicitly).

To put it in practice, let's imagine that your web application was successful enough
to receive sign ups from all around the world. This means that it is wise to use
regional servers for each country instead of serving everyone in the world with the
same server.

One way to do this is to define different domains for different regions. Again, the
code base stays the same, but configurations for the database, caching, and so on
should be different. However, because we (as developers) are working from one
specific address and need to find a way to Dev/Test the code from our own location,
we can have a front controller for that specific region to see how it works.

Let's create the new config file and save it under the name, config_region2.yml,
and create a new front controller for it and call it app_region2.php.

The config file
The new configuration still uses a lot of settings that have already been defined in
config.yml, so we import them as a resource:

app/config/config_region2.yml
imports:
 - { resource: config.yml }
 - { resource: parameters_region2.php }

However, we need a new set of parameters for our new database. Assuming that we
still want to use RDS (the relational database in Amazon Web Services), then we can
define them in a .php file and access them as follows:

<?php
// app/config/parameters_region2.php
if(@$_ENV['SYMFONY__RDS__HOSTNAME']) {
 $container->setParameter(
 'database_host', $_ENV['SYMFONY__RDS__HOSTNAME']);
 $container->setParameter(
 'database_port', $_ENV['SYMFONY__RDS__PORT']);
 $container->setParameter(
 'database_name', $_ENV['SYMFONY__RDS__DBNAME']);

Chapter 11

[243]

 $container->setParameter(
 'database_user', $_ENV['SYMFONY__RDS__USER']);
 $container->setParameter(
 'database_password', $_ENV['SYMFONY__RDS__PASSWORD']);
}

These parameters are accessed via environment variables, so we can define them in
Apache config files:

<VirtualHost *:80>
 # …
 SetEnv SYMFONY__RDS__HOSTNAME region2_host
 SetEnv SYMFONY__RDS__USER user
 SetEnv SYMFONY__RDS__PASSWORD password
 SetEnv SYMFONY__RDS__DBNAME database
 SetEnv SYMFONY__RDS__PORT port
 #...
</VirtualHost>

Note that when these environment variables are parsed inside
Symfony, they are converted from SYMFONY__RDS__HOSTNAME
to rds.hostname.

Now we need to modify AppKernel.php to load this configuration file if it is in the
right server. We can do this by checking the environment variables:

// app/AppKernel.php
 public function registerContainerConfiguration(LoaderInterface
 $loader)
 {
 $envParameters = $this->getEnvParameters();
 if (@$envParameters['rds.hostname'] == 'region2_host') {
 $loader->load(__DIR__.'/config/config_region2.yml');
 } else {
 $loader->load(__DIR__.'/config/config_'.$this-
 >getEnvironment().'.yml');
 }
 }

Now we have a new environment for our new region, which has its own settings.

More about Dev, Test and Prod Environments

[244]

The front controller
We could ignore AppKernel.php modifications if we define an explicit front
controller for our new environment. This is good when you want to debug and test
the application during development.

Simply take a copy of web/app_dev.php and name it app_region2.php, and then
modify the kernel instantiation line as follows:

// web/app_region2.php
 //...
 $kernel = new AppKernel('region2', true);
 //...

In AppKernel(), the second parameter is a flag that indicates whether we want to see
debug features (debug toolbar, profiler, and so on) in the new environment or not.

Having an explicit front controller gives us the possibility of defining and adding
extra features to our controller without disturbing the Prod environment.

Summary
In this chapter, you learned about the Symfony environments and how they interact
with their own configuration files. We saw how to define a new environment by
setting the variable values via the Linux environment variables. At the end, we
created a new front controller to call our newly created environment explicitly.

In the next chapter, we will discuss caching concepts and how they are beneficial to
our project.

[245]

Caching in Symfony
In this chapter, you are going to learn about performance improvement using cache.
Caching is a vast subject and needs its own book to be covered properly. However,
in our Symfony project, we are interested in two types of caches only:

• Application cache
• Database cache

We will see what caching facilities are provided in Symfony by default and how we
can use them. Then, we will proceed to what is not in Symfony and what options do
we have in order to benefit from caching.

We are going to apply the caching techniques on some methods in our projects and
watch the performance improvement.

By the end of this chapter, you will have a firm understanding about the usage of
HTTP cache headers in the application layer and how to use in-memory caching
libraries and technologies such as Memcached, APC, Redis, and others while caching
dynamic contents.

Definition of a cache
A cache is a temporary place that stores contents in order to be served faster when
they are needed. Considering that we already have a permanent place on disk to
store our web contents (templates, codes, and database tables), a cache sounds like a
duplicate storage.

That is exactly what they are. They are duplicates and we need them because, in
return for consuming extra space to store the same data, they provide a very fast
response to some requests. So this is a very good trade-off between storage and
performance.

Caching in Symfony

[246]

To give you an example of how good this deal can be, consider the following image.
On the left-hand side, we have a usual client/server request/response model, and
let's say that the response latency is two seconds and there are only 100 users who hit
the same content per hour.

On the right-hand side, however, we have a cache layer that sits between the client
and server. What it basically does is it receives the same request and passes it to the
server. The server sends a response to the cache and, because this response is new to
the cache, it will save a copy (duplicate) of the response and then pass it back to the
client. The latency is 2 + 0.2 seconds.

However, it doesn't add up, does it? The purpose of using a cache was to improve
the overall performance and reduce the latency. It has already added more delays to
the cycle. With this result, how could it possibly be beneficial? The answer is in the
next image:

Now, with the response being cached, imagine the same request comes through. (We
have about 100 requests/hour for the same content, remember?) This time, the cache
layer looks into its space, finds the response, and sends it back to the client without
bothering the server. The latency is 0.2 seconds.

Chapter 12

[247]

Of course, these are only imaginary numbers and situations. However, in the
simplest form, this is how a cache works. It might not be very helpful on a low traffic
website; however, when we are dealing with thousands of concurrent users on a
high traffic website, then we can appreciate the value of caching.

So, according to the preceding images, we can define some terminology and use it
in this chapter as we continue. In the first image, when a client asked for that page,
it wasn't exited and the cache layer had to store a copy of its contents for future
references. This is called cache miss. However, in the second image, we already
had a copy of the contents stored in the cache and we benefited from it. This is called
cache hit.

Characteristics of a good cache
If you do a quick search, you will find that a good cache is defined as the one that
misses only once. In other words, a cache miss happens only if the content has not
been requested before. This feature is necessary but not sufficient. To clarify the
situation a little more, let's add two more terms here. A cache can be in one of the
following states: fresh (has the same contents as the original response) and stale (has
the old response's contents that have now changed on the server).

The important question here is how long should a cache be kept for? We have the
power to define the freshness of a cache via setting an expiration period. We will
see how to do this in the coming sections. However, just because we have this
power doesn't mean that we are right about the content's freshness. Consider the
following situation:

If we cache content for a long time, a cache miss won't happen again (which satisfies
the previous definition), but the contents might lose their freshness according to the
dynamic resources that might change on the server. To give you an example, nobody
likes to read the news from three months ago when they open the BBC website.

Caching in Symfony

[248]

Now, we can modify the definition of a good cache as follows:

A cache strategy is considered to be good if a cache miss for the same content
happens only once while the cached contents are still fresh.

This means that defining the cache expiry time won't be enough and we need
another strategy to keep an eye on cache freshness. This happens via a cache
validation strategy. When the server sends a response, we can set the validation rules
on the basis of what really matters on the server side, and this way, we can keep the
contents stored in cache fresh. We will see how to do this in Symfony soon.

Caches in a Symfony project
In this book, we will focus on two types of caches: the gateway cache (which is called
a reverse proxy cache as well) and the doctrine cache. As you may have guessed, the
gateway cache deals with all of those HTTP cache headers mentioned in the previous
topics. Symfony comes with a very strong gateway cache out of the box. All you
need to do is activate it in your front controller, and then start defining your cache
expiration and validation strategies in your controllers.

That said, it does not mean that you are forced to use the Symfony cache only. If
you prefer other reverse proxy cache libraries (that is, Varnish or Django), you are
welcome to use them. The caching configurations in Symfony are transparent so you
don't need to change a single line in your controllers when you change your caching
libraries. Just modify your config.yml file and you will be good to go.

However, we all know that caching is not for the application layer and views only.
Sometimes, we need to cache any database-related contents as well. For our Doctrine
ORM, this includes metadata cache, query cache, and result cache.

Chapter 12

[249]

Doctrine comes with its own bundle to handle these types of caches and uses a wide
range of libraries (APC, Memcached, Redis, and others) to do the job. Again, we
don't need to install anything to use this cache bundle. If we have Doctrine installed
already, all we need to do is configure something and then all the Doctrine caching
power will be at our disposal.

Putting these two caching types together, we will have a big picture to cache our
Symfony project:

As you can see in this image, we might have a problem with the final cached page.
Imagine that we have a static page that might change once a week, and in this page,
there are some blocks that might change on a daily or even hourly basis. The user
dashboard in our project is a good example.

Thus, if we set the expiration on the gateway cache to one week, we cannot reflect all
of those rapid updates in our project and task controllers:

Caching in Symfony

[250]

To solve this problem, we can leverage from ESI (Edge Side Includes) in Symfony.
Basically, any part of the page that has been defined in an ESI tag can tell its own
cache story to the gateway cache. Thus, we can have multiple cache strategies living
side by side in a single page. We will see how to use ESI in the coming sections. With
this solution, our big picture will look as follows:

Thus, what we are going to do in this chapter is use the default Symfony and
Doctrine caching features for application and model layers, and later I will introduce
some popular third-party bundles that you can use for more advanced settings.
If you completely understand the principles of caching, moving to other caching
bundles will be a breeze.

Key players in the HTTP cache header
Before diving into the Symfony application cache, let's familiarize ourselves
with the elements that we need to handle in our cache strategies. To do so, open
www.wikipedia.org in your browser, inspect any resource with 304 response code,
and ponder on request/response headers in the Network tab:

www.wikipedia.org

Chapter 12

[251]

Among the response elements, there are four cache headers that we are interested in
the most, Expires and Cache-Control, which will be used for the expiration model,
and Etag and Last-Modified, which will be used for the validation model.

Apart from these cache headers, we can have variations of the same cache
(compressed/uncompressed) via the Vary header, and we can define a cache as
private (accessible by a specific user) or public (accessible by everyone).

Using the Symfony reverse proxy cache
There is no complicated or lengthy procedure required to activate Symfony's
gateway cache. Just open the front controller and uncomment the following lines:

// web/app.php
<?php
//...
require_once __DIR__.'/../app/AppKernel.php';
//un comment this line
require_once __DIR__.'/../app/AppCache.php';
$kernel = new AppKernel('prod', false);
$kernel->loadClassCache();
// and this line
$kernel = new AppCache($kernel);
// ...
?>

Caching in Symfony

[252]

Now, the kernel is wrapped around the Application Cache layer, which means that
any request coming from the client will pass through this layer first.

Set expiration for dashboard page
Log in to your project, and in the debug toolbar, click on the request section. Then,
scroll down to the Response header and check the contents:

As you can see, only Cache-Control is sitting here with some default values among
the cache headers that we are interested in.

When you don't set any value for Cache-Control, Symfony considers the page
contents as private in order to keep them safe.

Now, let's go to the DashboardController and add some gateway cache settings to
indexAction:

// src/AppBundle/Controller/DashboardController.php
<?php
namespace AppBundle\Controller;
use Symfony\Bundle\FrameworkBundle\Controller\Controller;
use Symfony\Component\HttpFoundation\Response;

class DashboardController extends Controller
{
 public function indexAction()

Chapter 12

[253]

 {
 $uId = $this->getUser()->getId();
 $util = $this->get('mava_util');
 $userProjects = $util->getUserProjects($uId);
 $currentTasks= $util->getUserTasks($uId, 'in progress');

 $response = new Response();
 $date = new \DateTime('+2 days');
 $response->setExpires($date);

 return $this->render(
 'CoreBundle:Dashboard:index.html.twig',
 array(
 'currentTasks' => $currentTasks,
 'userProjects' => $userProjects
),
 $response
);
 }
}

You might have noticed that we didn't change the render method. Instead, we added
the response settings as the third parameter of this method. This is a good solution
because now we can keep the current template structure and adding new settings
won't require any other changes in the code.

However, you might wonder what other options do we have? We can save the whole
$this->render() method in a variable and assign a response setting to that as follows:

// src/AppBundle/Controller/DashboardController.php
<?php
// ...
 $res = $this->render(
 'AppBundle:Dashboard:index.html.twig',
 array(
 'currentTasks' => $currentTasks,
 'userProjects' => $userProjects
)
);
 $res->setExpires($date);
 return $res;
?>

Caching in Symfony

[254]

Still looks like a lot of hard work for a simple response header setting. So, let me
introduce a better option. We can use the @Cache annotation as follows:

// src/AppBundle/Controller/DashboardController.php
<?php
namespace AppBundle\Controller;
use Symfony\Bundle\FrameworkBundle\Controller\Controller;
use Sensio\Bundle\FrameworkExtraBundle\Configuration\Cache;

class DashboardController extends Controller
{
 /**
 * @Cache(expires="next Friday")
 */
 public function indexAction()
 {
 $uId = $this->getUser()->getId();
 $util = $this->get('mava_util');
 $userProjects = $util->getUserProjects($uId);
 $currentTasks= $util->getUserTasks($uId, 'in progress');

 return $this->render(
 'AppBundle:Dashboard:index.html.twig', array(
 'currentTasks' => $currentTasks,
 'userProjects' => $userProjects
));
 }
}

Have you noticed that the Response object is completely removed from the code?
With the annotation, all the response headers are sent internally, which helps keep
the original code clean. Now that's what I call zero-fee maintenance. Let's check our
response headers in the Symfony's debug toolbar and see what they look like:

Chapter 12

[255]

The good thing about the @Cache annotation is it can be nested. Imagine that you
have a controller full of actions. You want all of them to have a shared maximum
age of half an hour, except one that is supposed to be private and should expire in
five minutes. That sounds like a lot of code if you are going to use Response objects
directly. However, with an annotation, it will be as simple as this:

<?php
//...
/**
 * @Cache(smaxage="1800", public="true")
 */
class DashboardController extends Controller
{
 public function firstAction() { //... }
 public function secondAction() { //... }

 /**
 * @Cache(expires="300", public="false")
 */
 public function lastAction() { //... }
}

The annotation defined before the Controller class will apply to every single action,
unless we explicitly add a new annotation for an action.

Caching in Symfony

[256]

Validation strategy
In the previous example, we set the expiry period for very long. This means that if
a new task is assigned to the user, it won't show up in his dashboard because of the
wrong caching strategy. To fix this issue, we can validate the cache before using it.

There are two ways for validation:

• We can check the content's date via the Last-Modified header: In this
technique, we certify the freshness of contents via the time it has been
modified. In other words, if we keep track of the dates and times of each
change on a resource, then we can simply compare that date with the cache's
date and find out if it is still fresh.

• We can use the Etag header as a unique content signature: The other solution
is to generate a unique string based on the contents and evaluate the cache's
freshness based on its signature.

We are going to try both of them in the dashboard controller and see them in action.

Using the right validation header is totally dependent on the current code. In some
actions, calculating modified dates is way easier than creating a digital footprint,
while in others, going through the date and time function might look costly. Of
course, there are situation where generating both headers are critical. So creating it is
totally dependent on the code base and what you are going to achieve.

As you can see, we have two entities in the index action and considering the current
code, generating the Etag looks practical. So the validation header will look as follows:

// src/AppBundle/Controller/DashboardController.php
<?php

//...
class DashboardController extends Controller
{
 /**
 * @Cache(ETag="userProjects ~ finishedTasks")
 */
 public function indexAction() { //... }
}

The next time a request arrives, the cache layer looks into the Etag value in the
controller, compares it with its own Etag, and calls the indexAction(). Only there
is a difference between these two.

Chapter 12

[257]

How to mix expiration and validation
strategies
Imagine that we want to keep the cache fresh for ten minutes and simultaneously
keep an eye on any changes over user projects or finished tasks. It is obvious that
tasks won't finish every ten minutes and it is far beyond reality to expect changes in
the project status during that period.

So what we can do to make our caching strategy efficient is combine expiration and
validation and apply them to the dashboard controller as follows:

// src/CoreBundle/Controller/DashboardController.php
<?php
//...
/**
 * @Cache(expires="600")
 */
class DashboardController extends Controller
{
 /**
 * @Cache(ETag="userProjects ~ finishedTasks")
 */
 public function indexAction() { //... }
}

Keep in mind that expiration has a higher priority over validation. In other words,
the cache is fresh for 10 minutes, regardless of the validation status. So when
you visit your dashboard for the first time, a new cache plus a 302 response (not
modified) is generated automatically and you will hit the cache for the next 10
minutes.

However, what happens after 10 minutes is a little different. Now, the expiration
status is not satisfying; thus, the HTTP flow falls into the validation phase and in
case nothing happened to the finished tasks status or your project status, then a new
expiration period is generated and you hit the cache again.

However, if there is any change in your tasks or project status, then you will hit
the server to get the real response, and a new cache from the response's contents,
expiration period, and Etag are generated and stored in the cache layer for future
references.

Caching in Symfony

[258]

Doctrine cache
Using a cache on the model layer is a different story. It does not do this with Symfony
out of the box and needs a little bit of effort to install, configure, and use it in our code.

I'm going to explain how to use Doctrine cache in our project because it covers all the
basic needs for the caching. Later, I will introduce a more sophisticated bundle that
comes with a complete documentation for more advanced caching needs.

First, ensure that you have DoctrineCacheBundle installed and added to your kernel
as usual:

composer require doctrine/doctrine-cache-bundle

// app/AppKernel.php
public function registerBundles()
{
 // ...
 $bundles[] =
 // ...
new Doctrine\Bundle\DoctrineCacheBundle\DoctrineCacheBundle();
 return $bundles;
}

Now, we need to set the right configuration for this bundle. DoctrineCacheBundle
has a very useful interface to benefit from all major caching libraries.

The following cache libraries are supported in the current version of
DoctrineCacheBundle:

• ApcCache (requires ext/apc)
• ArrayCache (in memory, lifetime of the request)
• FilesystemCache (not optimal for high concurrency)
• MemcacheCache (requires ext/memcache)
• MemcachedCache (requires ext/memcached)
• PhpFileCache (not optimal for high concurrency)
• RedisCache.php (requires ext/phpredis)
• WinCacheCache.php (requires ext/wincache)
• XcacheCache.php (requires ext/xcache)
• ZendDataCache.php (requires Zend Server Platform)

Chapter 12

[259]

In this project, we are going to use APC to cache the metadata and queries, and we
are going to use Memcached to cache the results.

Ensure that you have installed the APC (php.net) and Memcached (memcached.org)
extensions already.

Open the config.yml file and add the following configurations to it:

app/config/config.yml
doctrine:
 # ...
 orm:
 entity_managers:
 default:
 metadata_cache_driver: apc
 query_cache_driver: apc
 result_cache_driver:
 type: memcached
 host: localhost
 port: 11211
 instance_class: Memcached

As you can see, we have three types of caches when it is about the model layer. The
metadata information can be in any form. As you saw, all the entities in this project
use the annotation format. As we don't want to pass this information with every
single request, we can cache them and speed up the process. The metadata cache is in
charge of doing this.

Queries are another time-consuming part in each request. As we are using DQL,
it takes a little bit of effort to convert each query to a proper SQL equivalent. They
don't change very often; thus, we can cache them using a query cache and improve
the performance noticeably.

Perhaps the most efficient cache in the database is the result cache. This is when we
can feel the real benefits of caching because all the required steps to search, fetch,
and hydrate records will be summarized in one prepared piece of data and fed to the
client as soon as a request for it arrives.

Consider the Project repository. With the preceding configuration in place, we can
apply the required caching as follows:

// src/CoreBundle/Entity/ProjectRepositiry.php
<?php
// ...
class ProjectRepository extends EntityRepository
{

Caching in Symfony

[260]

 public function getAllProjects($workSpace_id){
 $q = $this->createQueryBuilder('p')
 ->where('p.workspace = :workSpace_id')
 ->setParameter('workSpace_id', $workSpace_id)
 ->getQuery();

 // this is where above DQL coverted to a SQL and cached
 $q->useQueryCache();

 // this is where result will be cached and ready to be
 // provided for the coming queries in the next 30 minutes
 $q->useResultCache (true, 1800);
 return $q->getResult();
 }
}

Putting it all together
So now we have the required setup for gateway cache (or reverse proxy cache) and
Doctrine cache. Let's see how we can apply both of them to a specific page.

Let's say we are inside the project page; some parts of it rarely change, such as the
project title and descriptions, and some parts of it change a lot, such as new tasks,
finished tasks, and current tasks.

Let Doctrine take care of the required metadata, query, and result caches on the
database side and feed them to the template. We can define a relatively long expiry
period for the page itself and feed it to the gateway cache. However, there is a
problem here.

As the dynamic parts of the page change faster than other parts, we won't be able to
see the real updates to that page.

If we try to fix the problem by making the expiry time shorter and adding a validation
strategy, we will have another problem. As the page will be modified more often, the
gateway cache states will turn stale more than they should and add overhead to the
page. In other words, caching under these circumstances won't speed up the page
load, rather it will slow down the whole request/response life cycle.

So what is the solution here? The answer is Edge Side Includes (ESI).

Chapter 12

[261]

ESI for selective caching
Here is the definition of ESI according to Wikipedia:

"Edge Side Includes or ESI is a small markup language for edge level dynamic web
content assembly. The purpose of ESI is to tackle the problem of web infrastructure
scaling. Dynamic content creates a problem for caching systems. To overcome this
problem a group of companies developed the ESI specification and submitted it to
the W3C for approval."

 - Wikipedia

In simple words, we can use ESI to define independent caching rules for any section
of each page. Again, Symfony comes with out-of-the-box support for the ESI feature.
We don't need to install anything to use ESI in our project. All we need to do is
uncomment the following line in config.yml:

app/config/config.yml
...
framework:
 esi:

Then, we need to wrap the part of the template that we want to have a different caching
strategy for in an ESI renderer. Thanks to Twig, we can easily do this as follows:

src/Resources/views/Dashboard/index.html.twig
...
{{ render_esi(controller('CoreBundle:Task:index')) }}

Now, all we need to do is go to indexAction in the TaskController and set a
desired caching rule for it:

// src/CoreBundle/Controller/TaskController.php
<?php
//...
class TaskController extends Controller
{
 /**
 * @Cache(smaxage="120")
 */
 public function indexAction() { //... }
}

Caching in Symfony

[262]

Sophisticated bundles
What was offered in this chapter was a basic understanding and usage of caching
strategies. There are far more advanced bundles, which are built on top of principles
and offer way more sophisticated solutions for caching strategies.

If you mastered the basics and feel confident proceeding to the next level, I
recommend FOSHttpCacheBundle for gateway caching and LswMemcacheBundle
for doctrine caching.

Summary
In this chapter, you learned about the basics of gateway and Doctrine caching. We saw
how to set expiration and validation strategies using HTTP headers such as cache-
control, expires, last-modified, and Etag. You learned how to set public and private
access levels for a cache and use an annotation to define cache rules in the controller.

On the model layer, we studied metadata, query, and result caches and saw how to
configure our project using DoctrineCacheBundle to cache database-related contents.

At the end, we saw how we can have different caching rules for the mostly static and
mostly dynamic parts of any HTML page.

[263]

Index
A
about page

Behavior Driven Development (BDD),
implementing 85

Given step 86
headless browser, versus zombie

browser 83
scenario, executing 81, 82
scenario, writing 81
Selenium2 controller, using for

automated tests 83, 84
Then step 86
user's details, displaying 85-87
user's details scenario, implementing 88
user's details scenario, testing 89, 90
When step 86

acceptance tests
creating 132

AliceBundle 147, 148
Amazon Web Services (AWS) 38-40
Apache

installing 45
Apache Ant

using 58
AppBundle

versus custom bundles 22, 23
assets

managing 174, 175
organizing 173, 174

attachment feature
adding, to Task entity 202, 203

authentication 139, 140
authorization 140

autowiring
service, creating 223
service, loading 223
URL 223

B
backend logo

modifying 191
base template

modifying 176-178
Behat

about 76, 77
configuring 77, 78
Gherkin 80
installing 77, 78

Behavior Driven Development (BDD)
about 76
comparing, with Test Driven

Development (TDD) 76
implementing, for about page 85
implementing, with Codeception 121

Bootstrap 180
build process

executing 69, 70
GitHub, used for alerting Jenkins 70
orchestrating 58-62
reference link 58

bundle
anatomy 16-18
best practices 21
generating 18-21
installing 29, 30

[264]

business logic
about 103
features 120, 121
location 106
scenarios 120, 121

C
cache

about 245-247
characteristics 247
doctrine cache 248
gateway cache 248
in Symfony project 248-250

Cache Hit 247
Cache Miss 247
Codeception

about 76, 92, 93
acceptance test, creating 132, 133
Behavior Driven Development (BDD),

implementing 121
bootstrapping 93, 94
database, dropping 126, 127
database, recreating 126, 127
database, setting up for test

environment 125
error handling 134
functional test, creating 122, 123
functional test, executing 131
installing 93
missing code, developing 123, 124
showAction() method,

implementing 130, 131
Test Driven Development (TDD),

implementing 121
testers 97, 98
tests, adding 98, 99
tests, executing 99, 100
test suits 95-97
unit tests, creating 124-130
unit tests, executing 131

CodeSniffer
using 58

commands
configuration 229, 230
console helpers 233-237
creating 227

creating, for tasks 228
execution 230-232
interactivity, adding 233
registering 227

commenting system
dashboard page, creating 193, 194

Composer
about 6, 7
commands 8
downloading 7
used, for installing Symfony 9, 10

conditional templates
creating 25, 26

configuration files
processing 240, 241

console helpers
about 233
using 233-237

Content Management Systems (CMS) 2
Continuous Integration (CI)

about 37
importance 38
need for 72

controllers
using, with dynamic templates 32, 33

Controller/View interaction 24, 25
Create, Read, Update, and Delete

(CRUD)
about 26
generating 169-171

curl 7
custom bundles

versus AppBundle 22, 23
custom environment

config file, defining 242, 243
creating 242
front controller, defining 244

D
dashboard page

creating 193, 194
Dashboard controller,

implementing 200, 201
expiration, setting 252-255
feature file, creating for finished

tasks block 195-197

[265]

finished tasks block, implementing 197-200
statistics about tasks, displaying 194
template, using 186, 187

database
configurations, checking 26, 27
dropping 126, 127
recreating 126, 127
setting up, for test environment 125

data fixtures
AliceBundle 147
Alice, relationship with 149, 150
creating 30, 31, 116-120
creating, Alice used 148, 149
generating 147
loading 31, 32
login redirection, setting up 150

Dependency Injection Container
about 220, 221
URL 221

Dev environment 239
Doctrine annotation

URL 29
doctrine cache

about 248, 258, 259
implementing 260

Doctrine extensions
URL 210

Doctrine's events
URL 210

dynamic templates
controllers, using 32, 33
creating 26

E
Edge Side Includes (ESI)

about 261
for selective caching 261

Elastic Compute Cloud (EC2)
about 40
instance, creating 41-45

Enhanced Entity-Relation Diagram 108
entity

adding 109, 110
generating 27-29, 115
or Model creation, selecting

between 104, 105

Entity Relationship Diagrams (ERDs)
about 107
creating, MySQL Workbench used 107-109
tables, creating 112-114
URL 107

entity relationships
building 106, 107

environment configuration file 240
environments

Dev 239
need for 239
Prod 239
Test 239

event dispatchers 212
event listeners 212
events 212

F
Faker

URL 149
feature files

defining 91, 92
prioritizing 91, 92

files
uploading, with

SonataMediaBundle 201, 202
forms

modifying 171, 172
Forward Engineering 112
FOSUserBundle

configurations, adding 143
installation, checking 165
integrating, to admin area 160
routes, adding 143
routes, updating 162, 163
security, setting 142, 143, 164
simple road test 145-147
SonataUserBundle, configuring 161
SonataUserBundle in charge,

putting 166-168
SonataUserBundle, installing 160
tables, adding 144
users, handling with 140, 141

front controller
defining, for custom environment 244

[266]

functional test
creating 122, 123, 132

G
gateway cache

about 248
expiration and validation strategies,

implementing together 257
expiration, setting for dashboard

page 252-255
implementing 260
using 251
validation strategy 256

Gherkin 80
GitHub

used, for alerting Jenkins 70, 71
Goutte 82

H
headless browser

versus zombie browser 83
HTTP cache header 250

J
JavaScript Object Notation (JSON) 14
Jenkins

configuring 55, 56
installing 46, 47
job, creating 64-68
plugins, installing 48-52
security, setting up 48-52
URL 58

L
login redirection, data fixtures

Dashboard Controller, creating 152, 153
dashboard, securing 154
tests, creating for new controller 151

M
mava project

about 79, 80
facts, reviewing 106, 107
features 78, 79

menu
configuring 184-186
rendering, in template 186

Minimum Viable Product (MVP) 79, 104
Mink

about 76
acceptance test flow 90

Mink objects
DocumentElement 91
Driver class 90
NodeElement 91
Session object 90

Model creation
or entity creation, selecting

between 104, 105
Model-View-Controller (MVC) 2, 34, 103
MopaBootstrapBundle

about 180, 181
Bootstrap, configuring 182-184

MySQL
installing 45

MySQL Workbench
about 107
URL 107
used, for creating Entity Relationship

Diagrams (ERDs) 107-109

N
navigation 179
notification business logic

about 210, 211
event dispatchers, implementing 212
event listeners, implementing 212
events, implementing 212

notification system
adding 207
time tracking properties, adding 208, 209

Notifier event listener
adding 213-215

O
Object Relational Mapper (ORM) 26

[267]

P
Packagist

about 7
URL 8, 58

PHP
installing 45

PhpMyAdmin 126
PHP tools

installing 56-58
reference link 57
Symfony, using 58

PHPUnit 76
Prod environment 239
Project entity

relationship between, Team and
User entity 204-207

R
relationship

adding 111, 112
request/response life cycle 13-16
reverse proxy cache. See gateway cache

S
selective caching

with Edge Side Includes (ESI) 261
Selenium2

about 83
URL 83, 84
using, for automated tests 83, 84

separation of concerns (SoC) 104
service

avoiding, inside bundle 222, 223
benefits 218
calling 219, 220
configuring 220
creating 218
creating, via autowiring 223
loading, via autowiring 223
organizing, with tags 224, 225

Service-Oriented Architecture
(SOA) 103, 217

Simple Email Service (SES)
about 53
Jenkins, configuring 55, 56
setting up 53-55

Software as a Service (SaaS) 38
software designing

Bottom-UP approach 107
Top-Down approach 107

Sonata
admin feature for entities with relations,

creating 159
bundle, configuring 155, 156
bundle, installing 155, 156
contents, adding to dashboard 156-158
project 154, 155

SonataMediaBundle
attachment feature, adding to

Task entity 202, 203
files, uploading 201, 202
URL 202

Sonata Project
URL 120

SonataUserBundle
configuring 161
installing 160

sophisticated bundles 262
Symfony

authentication 139
authorization 140
future 3
influence 2, 3
installation, checking 12
installation methods 4
installing, via Composer 9, 10
need for 1, 2
road map 11
security, organizing 138, 139
URL 2
using 58

T
tables

creating, from Entity Relationship
Diagrams (ERDs) 112-114

[268]

tags
used, for organizing service 224, 225

Task entity
attachment feature, adding 202, 203

tasks
commands, creating 228

Team entity
creating 203
relationship between, Project and User

entity 204-207
templates

bundles, installing 29, 30
conditional templates, creating 25, 26
Controller/View interaction 24, 25
database configurations, checking 26, 27
dynamic templates, creating 26
entity, generating 27-29
organizing 175
overriding 188
profile-related templates 188-191

Test Driven Development (TDD)
about 76
comparing, with BDD 76
implementing, with Codeception 121

Test environment 239
TWIG

about 23
used, for creating templates 23, 24

U
unit tests

creating 124-132
User Acceptance Test (UAT) 132
user dashboard 169
User entity

relationship between, Team and Project
entity 204-207

V
VirtualBox

URL 3

Z
zombie browser

versus headless browser 83

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Installing and Configuring Symfony
	Why Symfony?
	Influenced by Symfony
	How bright is the future?

	Installation
	Composer and Packagist
	Installing Symfony via Composer
	The road map
	Checking the installation

	Summary

	Chapter 2: The Request and Response
Life Cycle
	The big picture
	Anatomy of a bundle
	Generating a new bundle
	Best practices

	Custom bundles versus AppBundle
	Creating templates with TWIG
	Controller/View interaction
	Conditional templates
	Make it dynamic
	Database configurations
	Generating an entity
	Installing bundles created by others

	Creating data fixtures
	Loading data fixtures

	Dynamic templates and controllers
	The big picture with MVC
	Summary

	Chapter 3: Setting Up the Environment
	The importance of Continuous Integration
	Amazon Web Services
	Elastic Compute Cloud
	Creating a new instance

	Setting up the server
	Installing Apache
	Installing MySQL and PHP
	Installing Jenkins
	Setting up security and installing plugins
in Jenkins

	Simple Email Service
	Configuring Jenkins

	Installing PHP tools
	Sniff Symfony codes

	Orchestrating the build process
	Creating a new job in Jenkins
	Running the first build
	How does GitHub alert Jenkins about new pushes?

	Do I need CI?
	Summary

	Chapter 4: Using Behavior-Driven Development in Symfony
	Getting started with BDD
	Is BDD a replacement for TDD?

	What is Behat?
	Installing and configuring Behat
	The features we need for this project
	More information about the project

	Gherkin – the common language

	Writing a scenario for the about page
	Seeing it in action
	Headless versus zombie
	Using the Selenium2 controller for automated tests

	The about page does not follow BDD
	A scenario to show the user's details
	Implementing the user's details scenario
	Testing the scenario

	More about the acceptance test flow
in Mink
	Defining and prioritizing features
	Codeception – the BDD style testing framework
	Installing the Codeception framework
	Bootstrapping Codeception
	Test suits
	The testers
	Adding sample tests
	Running the tests

	Summary

	Chapter 5: Business Logic
	Choosing between creating a Model
or entity
	So where does the business logic live?
	Reviewing the facts and building entity relationships
	Creating ERDs using MySQL Workbench
	Adding a new entity
	Adding a new relationship
	Creating actual tables from a diagram
	Generating entities
	Data fixtures

	Some business logic features and scenarios
	TDD and BDD with Codeception
	Step one – creating a functional test
	Developing the missing code
	Step two – creating the unit tests
	Setting up the database for a test environment in the right way
	Dropping and recreating the database for each test
	Creating unit tests
	Writing the code to pass the test
	Running functional and unit tests
	Step three – creating an acceptance test

	On the CI side of the story
	Summary

	Chapter 6: Dashboard and Security
	How security is organized in Symfony?
	Authentication
	Authorization

	Handling users with FOSUserBundle
	Security settings
	Adding the required configurations to FOSUserBundle
	Adding routes
	Updating the tables
	A simple road test

	Generating automated data-fixtures
	Introducing AliceBundle
	Creating data-fixtures with Alice
	Relationship with Alice
	Setting up the login redirection
	Creating tests for the new controller
	Creating the Dashboard Controller
	Securing the dashboard

	The Sonata project
	Installing and configuring Sonata bundle
	Adding contents to the dashboard
	Creating admin feature for entities with relations

	Integrating FOSUserBundle into the admin area
	Installing SonataUserBundle
	SonatUserBundle configuration
	Updating the routes
	Setting the security
	Checking the installation
	Putting SonataUserBundle in charge

	User dashboard
	Generating CRUD
	Modifying the forms

	Summary

	Chapter 7: The Presentation Layer
	How assets are organized
	Asset management
	How templates are organized
	Let's mold the clay
	To navigate or not to navigate
	What is Bootstrap?
	MopaBootstrapBundle
	Bootstrap configuration

	Creating your first menu
	Rendering the menu in a template

	The Dashboard template
	Overriding templates
	Profile-related templates

	Changing the backend logo
	Summary

	Chapter 8: Project Review
	The dashboard's contents
	Visual blocks that provide statistics about tasks
	A feature file for the finished tasks block
	Implementing the finished tasks block
	Implementing the dashboard controller

	Uploading files with SonataMediaBundle
	Adding an attachment feature to the Task entity

	Team and team members
	The Team entity

	Adding a notification system
	Adding time tracking properties

	The notification business logic
	Events, event dispatchers, and event listeners
	The Notifier event listener

	Summary

	Chapter 9: Services and Service Containers
	How to create a service
	How are services beneficial to our projects?
	How to call a service
	How to configure a service
	Why is it called a Dependency Injection Container?
	Why didn't we import services inside
the bundle?
	How to create and load services via autowiring
	Organizing services with tags
	Summary

	Chapter 10: Custom User Commands
	Creating and registering commands
	Creating commands for tasks
	The configuration part
	The execution part

	Adding interactivity to commands
	Console helpers

	Summary

	Chapter 11: More about Dev, Test and Prod Environments
	Why do we need different environments?
	The environment configuration file

	Processing configuration files
	Creating a new environment
	The config file
	The front controller

	Summary

	Chapter 12: Caching in Symfony
	Definition of a cache
	Characteristics of a good cache

	Caches in a Symfony project
	Key players in the HTTP cache header
	Using the Symfony reverse proxy cache
	Set expiration for dashboard page
	Validation strategy

	How to mix expiration and validation strategies
	Doctrine cache

	Putting it all together
	ESI for selective caching
	Sophisticated bundles
	Summary

	Index

