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Preface
Mathematica Data Visualization was written with one goal in mind—teaching 
the reader how to write interactive visualization programs seamlessly using 
Mathematica. Mathematica is the programming language of choice for many  
data analysts, mathematicians, scientists, engineers, and business analysts.  
It offers a powerful suite of data analysis and data mining packages, along  
with a very rich data visualization framework for its users.

After reading this book and working with the code examples provided, you  
will be proficient in building your own interactive data visualizations. You will  
have a good understanding of the different kinds of data that you may encounter 
as a data visualization expert, along with a solid foundation on the techniques of 
visualizing such data using Mathematica.

Whenever needed, this book teaches the essential theory behind any advanced 
concept, so a beginner in data visualization will not feel uncomfortable tackling 
the material. Other than traditional plots, this book teaches how to build advanced 
visualizations from scratch, such as chord diagrams, maps, protein molecule 
visualizations, and so on.

What this book covers
Chapter 1, Visualization as a Tool to Understand Data, introduces the reader to  
the world of data visualization. The importance of visualization is discussed,  
along with the description of different datasets that will be covered. 

Chapter 2, Dissecting Data Using Mathematica, gives a short introduction to 
Mathematica programming in the context of data analysis and operations.  
It also introduces the readers to basic plots.



Preface

[ 2 ]

Chapter 3, Time Series and Scientific Visualization, deals with time series and scalar 
fields, detailing some methods of visualizing these types of data in Mathematica.

Chapter 4, Statistical and Information Visualization, teaches some methods of statistical 
and information visualization using several mini projects.

Chapter 5, Maps and Aesthetics, develops a map visualization using a geographic 
shape file. Some essential data visualization aesthetics are also discussed.

What you need for this book
You will require a computer with an installation of the latest version (10) of 
Mathematica. The notebooks were tested only with Versions 9 and 10. There are a 
small number of functions that are only present in Version 10, but almost all of the code 
listings will work in Versions 8 and 9 otherwise. The codes will work with both the 
student and Pro versions. If you do not have access to Mathematica, you can still view 
the code and interact with the visualizations using the freely downloadable CDF player 
from the Wolfram Mathematica website (http://www.wolfram.com/cdf-player/).

Who this book is for
This book is aimed at people who are familiar with basic programming and high 
school mathematics, and are enthusiastic to learn about data visualization and 
Mathematica. It does not assume any prior knowledge of advanced data analysis 
or statistical techniques. Familiarity with a programming language may prove to 
be useful, but it is not essential. For beginners in Mathematica, Chapter 2, Dissecting 
Data Using Mathematica, provides a short primer on the essentials of Mathematica 
programming. Readers who are already familiar with Mathematica may skip the  
first half of Chapter 2, Dissecting Data Using Mathematica.

Conventions
In this book, you will find a number of styles of text that distinguish between 
different kinds of information. Here are some examples of these styles, and an 
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions, 
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:  
"The EdgeForm[None] function is used to ask Graphics to not render the  
polygon boundaries."
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A block of code is set as follows:

SetDirectory[ NotebookDirectory[] ]
shpdat = Import["data/usa_state_shapefile.shp", "Data"]
names = shpdat[[1, 4, 2, 2, 2]];
polys = "Geometry" /. shpdat[[1]]
filenames = Table["data/usgs_state_" <> ToString[i] <> ".csv", {i, 
2001, 2010}]

When we wish to draw your attention to a particular part of a code block, the relevant 
lines or items are set in bold:

SectorChart[{data1, data2, …}, options]

New terms and important words are shown in bold. Words that you see on the screen, 
in menus or dialog boxes for example, appear in the text like this: "The surface will 
represent the points in 3D space that has the same potential, the potential value of 
interest being selectable from the drop-down menu named Contour."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about 
this book—what you liked or may have disliked. Reader feedback is important for  
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, 
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing 
or contributing to a book, see our author guide on www.packtpub.com/authors.
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Customer support
Now that you are the proud owner of a Packt book, we have a number of things to 
help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased 
from your account at http://www.packtpub.com. If you purchased this book 
elsewhere, you can visit http://www.packtpub.com/support and register to  
have the files e-mailed directly to you.

Downloading the color images of this book
We also provide you a PDF file that has color images of the screenshots/diagrams 
used in this book. The color images will help you better understand the changes in 
the output. You can download this file from: http://www.packtpub.com/sites/
default/files/downloads/2999OT_coloredimages.pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes 
do happen. If you find a mistake in one of our books—maybe a mistake in the text or 
the code—we would be grateful if you would report this to us. By doing so, you can 
save other readers from frustration and help us improve subsequent versions of this 
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link, 
and entering the details of your errata. Once your errata are verified, your submission 
will be accepted and the errata will be uploaded on our website, or added to any list of 
existing errata, under the Errata section of that title. Any existing errata can be viewed 
by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. 
At Packt, we take the protection of our copyright and licenses very seriously. If you 
come across any illegal copies of our works, in any form, on the Internet, please 
provide us with the location address or website name immediately so that we can 
pursue a remedy.
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Please contact us at copyright@packtpub.com with a link to the suspected  
pirated material.

We appreciate your help in protecting our authors, and our ability to bring  
you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem  
with any aspect of the book, and we will do our best to address it.





Visualization as a Tool to 
Understand Data

In the last few decades, the quick growth in the volume of information we produce 
and the capacity of digital information storage have opened a new door for data 
analytics. We have moved on from the age of terabytes to that of petabytes and 
exabytes. Traditional data analysis is now augmented with the term big data analysis, 
and computer scientists are pushing the bounds for analyzing this huge sea of data 
using statistical, computational, and algorithmic techniques.

Along with the size, the types and categories of data have also evolved. Along with 
the typical and popular data domain in Computer Science (text, image, and video), 
graphs and various categorical data that arise from Internet interactions have become 
increasingly interesting to analyze. With the advances in computational methods and 
computing speed, scientists nowadays produce an enormous amount of numerical 
simulation data that has opened up new challenges in the field of Computer Science.

Simulation data tends to be structured and clean, whereas data collected or scraped 
from websites can be quite unstructured and hard to make sense of. For example, let's 
say we want to analyze some blog entries in order to find out which blogger gets more 
follows and referrals from other bloggers. This is not as straightforward as getting 
some friends' information from social networking sites. Blog entries consist of text  
and HTML tags; thus, a combination of text analytics and tag parsing, coupled with  
a careful observation of the results would give us our desired outcome.
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Regardless of whether the data is simulated or empirical, the key word here is 
observation. In order to make intelligent observations, data scientists tend to follow 
a certain pipeline. The data needs to be acquired and cleaned to make sure that it is 
ready to be analyzed using existing tools. Analysis may take the route of visualization, 
statistics, and algorithms, or a combination of any of the three. Inference and refining 
the analysis methods based on the inference is an iterative process that needs to be 
carried out several times until we think that a set of hypotheses is formed, or a clear 
question is asked for further analysis, or a question is answered with enough evidence.

Visualization is a very effective and perceptive method to make sense of our data. 
While statistics and algorithmic techniques provide good insights about data, an 
effective visualization makes it easy for anyone with little training to gain beautiful 
insights about their datasets. The power of visualization resides not only in the ease 
of interpretation, but it also reveals visual trends and patterns in data, which are often 
hard to find using statistical or algorithmic techniques. It can be used during any step 
of the data analysis pipeline—validation, verification, analysis, and inference—to aid 
the data scientist.

How have you visualized your data recently? If you still have not, it is okay, as this 
book will teach you exactly that. However, if you had the opportunity to play with  
any kind of data already, I want you to take a moment and think about the techniques 
you used to visualize your data so far. Make a list of them.

Done? Do you have 2D and 3D plots, histograms, bar charts, and pie charts in the 
list? If yes, excellent! We will learn how to style your plots and make them more 
interactive using Mathematica. Do you have chord diagrams, graph layouts, word 
cloud, parallel coordinates, isosurfaces, and maps somewhere in that list? If yes, then 
you are already familiar with some modern visualization techniques, but if you have 
not had the chance to use Mathematica as a data visualization language before, we 
will explore how visualization prototypes can be built seamlessly in this software 
using very little code.

The aim of this book is to teach a Mathematica beginner the data-analysis  
and visualization powerhouse built into Mathematica, and at the same time, 
familiarize the reader with some of the modern visualization techniques that can 
be easily built with Mathematica. We will learn how to load, clean, and dissect 
different types of data, visualize the data using Mathematica's built-in tools, and 
then use the Mathematica graphics language and interactivity functions to build 
prototypes of a modern visualization.

In this chapter, we will look at a few simple examples that demonstrate the 
importance of data visualization. We will then discuss the types of datasets that 
we will encounter over the course of this book, and learn about the Mathematica 
interface to get ourselves warmed up for coding.
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The importance of visualization
Visualization has a broad definition, and so does data. The cave paintings drawn by 
our ancestors can be argued as visualizations as they convey historical data through 
a visual medium. Map visualizations were commonly used in wars since ancient 
times to discuss the past, present, and future states of a war, and to come up with 
new strategies. Astronomers in the 17th century were believed to have built the first 
visualization of their statistical data. In the 18th century, William Playfair invented 
many of the popular graphs we use today (line, bar, circle, and pie charts). Therefore, 
it appears as if many, since ancient times, have recognized the importance of 
visualization in giving some meaning to data.

To demonstrate the importance of visualization in a simple mathematical setting, 
consider fitting a line to a given set of points. Without looking at the data points,  
it would be unwise to try to fit them with a model that seemingly lowers the error 
bound. It should also be noted that sometimes, the data needs to be changed or 
transformed to the correct form that allows us to use a particular tool. Visualizing  
the data points ensures that we do not fall into any trap. The following screenshot  
shows the visualization of a polynomial as a circle:

Figure 1.1 Fitting a polynomial
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In figure 1.1, the points are distributed around a circle. Imagine we are given these 
points in a Cartesian space (orthogonal x and y coordinates), and we are asked to fit 
a simple linear model. There is not much benefit if we try to fit these points to any 
polynomial in a Cartesian space; what we really need to do is change the parameter 
space to polar coordinates. A 1-degree polynomial in polar coordinate space 
(essentially a circle) would nicely fit these points when they are converted to polar 
coordinates, as shown in figure 1.1. Visualizing the data points in more complicated 
but similar situations can save us a lot of trouble. The following is a screenshot of 
Anscombe's quartet:

Figure 1.2 Anscombe's quartet, generated using Mathematica

Downloading the color images of this book
We also provide you a PDF file that has color images of the 
screenshots/diagrams used in this book. The color images will 
help you better understand the changes in the output. You can 
download this file from: https://www.packtpub.com/sites/
default/files/downloads/2999OT_coloredimages.PDF.
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Anscombe's quartet (figure 1.2), named after the statistician Francis Anscombe, is 
a classic example of how simple data visualization like plotting can save us from 
making wrong statistical inferences. The quartet consists of four datasets that have 
nearly identical statistical properties (such as mean, variance, and correlation), 
and gives rise to the same linear model when a regression routine is run on these 
datasets. However, the second dataset does not really constitute a linear relationship; 
a spline would fit the points better. The third dataset (at the bottom-left corner of 
figure 1.2) actually has a different regression line, but the outlier exerts enough 
influence to force the same regression line on the data. The fourth dataset is not  
even a linear relationship, but the outlier enforces the same regression line again.

These two examples demonstrate the importance of "seeing" our data before we 
blindly run algorithms and statistics. Fortunately, for visualization scientists like 
us, the world of data types is quite vast. Every now and then, this gives us the 
opportunity to create new visual tools other than the traditional graphs, plots,  
and histograms. These visual signatures and tools serve the same purpose that 
the graph plotting examples previously just did—spy and investigate data to infer 
valuable insights—but on different types of datasets other than just point clouds.

Another important use of visualization is to enable the data scientist to interactively 
explore the data. Two features make today's visualization tools very attractive—the 
ability to view data from different perspectives (viewing angles) and at different 
resolutions. These features facilitate the investigator in understanding both the 
micro- and macro-level behavior of their dataset.

Types of datasets
There are many different types of datasets that a visualization scientist encounters  
in their work. This book's aim is to prepare an enthusiastic beginner to delve into  
the world of data visualization. Certainly, we will not comprehensively cover each 
and every visualization technique out there. Our aim is to learn to use Mathematica 
as a tool to create interactive visualizations. To achieve that, we will focus on a 
general classification of datasets that will determine which Mathematica functions  
and programming constructs we should learn in order to visualize the broad class  
of data covered in this book.
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Tables
The table is one of the most common data structures in Computer Science.  
You might have already encountered this in a computer science, database,  
or even statistics course, but for the sake of completeness, we will describe  
the ways in which one could use this structure to represent different kinds  
of data. Consider the following table as an example:

Attribute 1 Attribute 2 …
Item 1
Item 2
Item 3

When storing datasets in tables, each row in the table represents an instance of the 
dataset, and each column represents an attribute of that data point. For example, 
a set of two-dimensional Cartesian vectors can be represented as a table with two 
attributes, where each row represents a vector, and the attributes are the x and y 
coordinates relative to an origin. For three-dimensional vectors or more, we could 
just increase the number of attributes accordingly.

Tables can be used to store more advanced forms of scientific, time series, and graph 
data. We will cover some of these datasets over the course of this book, so it is a good 
idea for us to get introduced to them now. Although we will describe them in depth 
in the upcoming chapters, here we explain the general concepts.

Scalar fields
There are many kinds of scientific dataset out there. In order to aid their investigations, 
scientists have created their own data formats and mathematical tools to analyze the 
data. Engineers have also developed their own visualization language in order to 
convey ideas in their community. In this book, we will cover a few typical datasets  
that are widely used by scientists and engineers. We will eventually learn how to 
create molecular visualizations and biomedical dataset exploration tools when we  
feel comfortable manipulating these datasets.

In practice, multidimensional data (just like vectors in the previous example) is usually 
augmented with one or more characteristic variable values. As an example, let's think 
about how a physicist or an engineer would keep track of the temperature of a room. 
In order to tackle the problem, they would begin by measuring the geometry and 
the shape of the room, and put temperature sensors at certain places to measure the 
temperature. They will note the exact positions of those sensors relative to the room's 
coordinate system, and then, they will be all set to start measuring the temperature.
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Thus, the temperature of a room can be represented, in a discrete sense, by 
using a set of points that represent the temperature sensor locations and the 
actual temperature at those points. We immediately notice that the data is 
multidimensional in nature (the location of a sensor can be considered as a  
vector), and each data point has a scalar value associated with it (temperature). 
Such a discrete representation of multidimensional data is quite widely used  
in the scientific community. It is called a scalar field. The following screenshot 
shows the representation of a scalar field in 2D and 3D:

Figure 1.3 In practice, scalar fields are discrete and ordered

Figure 1.3 depicts how one would represent an ordered scalar field in 2D or 3D.  
Each point in the 2D field has a well-defined x and y location, and a single temperature 
value gets associated with it. To represent a 3D scalar field, we can think of it as a set of 
2D scalar field slices placed at a regular interval along the third dimension. Each point 
in the 3D field is a point that has {x, y, z} values, along with a temperature value.

A scalar field can be represented using a table. We will denote each {x, y} point (for 
2D) or {x, y, z} point values (for 3D) as a row, but this time, an additional attribute  
for the scalar value will be created in the table. Thus, a row will have the attributes 
{x, y, z, T}, where T is the temperature associated with the point defined by the x, y, 
and z coordinates. This is the most common representation of scalar fields.

A widely used visualization technique to analyze scalar fields is to find out the 
isocontours or isosurfaces of interest. We will cover this in detail in Chapter 3, Time 
Series and Scientific Visualization. However, for now, let's take a look at the kind of 
application areas such analysis will enable one to pursue. Instead of temperature, 
one could think of associating regularly spaced points with any relevant scalar  
value to form problem-specific scalar fields. In an electrochemical simulation,  
it is important to keep track of the charge density in the simulation space. Thus,  
the chemist would create a scalar field with charge values at specific points.
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For an aerospace engineer, it is quite important to understand how air pressure 
varies across airplane wings; they would keep track of the pressure by forming a 
scalar field of pressure values. Scalar field visualization is very important in many 
other significant areas, ranging from from biomedical analysis to particle physics.  
In this book, we will cover how to visualize this type of data using Mathematica.

Time series
Another widely used data type is the time series. A time series is a sequence of data 
points that are measured usually over a uniform interval of time. Time series arise 
in many fields, but in today's world, they are mostly known for their applications 
in Economics and Finance. Other than these, they are frequently used in statistics, 
weather prediction, signal processing, astronomy, and so on. It is not the purpose  
of this book to describe the theory and mathematics of time series data. However,  
we will cover some of Mathematica's excellent capabilities for visualizing time series,  
and in the course of this book, we will construct our own visualization tool to view 
time series data.

Time series can be easily represented using tables. Each row of the time series  
table will represent one point in the series, with one attribute denoting the time 
stamp—the time at which the data point was recorded, and the other attribute 
storing the actual data value. If the starting time and the time interval are known, 
then we can get rid of the time attribute and simply store the data value in each  
row. The actual timestamp of each value can be calculated using the initial time  
and time interval.

Images and videos can be represented as tables too, with 
pixel-intensity values occupying each entry of the table. 
As we focus on visualization and not image processing, 
we will skip those types of data.

Graphs
Nowadays, graphs arise in all contexts of computer science and social science.  
This particular data structure provides a way to convert real-world problems into 
a set of entities and relationships. Once we have a graph, we can use a plethora of 
graph algorithms to find beautiful insights about the dataset. Technically, a graph 
can be stored as a table. However, Mathematica has its own graph data structure,  
so we will stick to its norm.
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Sometimes, visualizing the graph structure reveals quite a lot of hidden 
information. As we will see in Chapter 4, Statistical and Information Visualization, 
graph visualization itself is a challenging problem, and is an active research area 
in computer science. A proper visualization layout, along with proper color maps 
and size distribution, can produce very useful outputs. In Chapter 4, Statistical and 
Information Visualization, we will demonstrate how to convert a dataset into a graph 
structure, how to create the graph in Mathematica, and how to visualize it with 
different layouts interactively.

Text
The most common form of data that we encounter everywhere is text.  
Mathematica does not provide any specific visualization package for state-of-the-art 
text visualization methods, but we will create a small and effective tool in Chapter 4, 
Statistical and Information Visualization, which shows the evolution and frequency of 
words in a document.

Cartographic data
As mentioned before, map visualization is one of the ancient forms of visualization 
known to us. Nowadays, with the advent of GPS, smartphones, and publicly available 
country-based data repositories, maps are providing an excellent way to contrast and 
compare different countries, cities, or even communities.

Cartographic data comes in various forms. A common form of a single data item is one 
that includes latitude, longitude, location name, and an attribute (usually numerical) 
that records a relevant quantity. However, instead of a latitude and longitude 
coordinate, we may be given a set of polygons that describe the geographical shape 
of the place. The attributable quantity may not be numerical, but rather something 
qualitative, like text. Thus, there is really no standard form that one can expect when 
dealing with cartographic data. Fortunately, Mathematica provides us with excellent 
data-mining and dissecting capabilities to build custom formats out of the data 
available to us. We will cover maps in Chapter 5, Maps and Aesthetics.

Mathematica as a tool for visualization
At this point, you might be wondering why Mathematica is suited for visualizing all 
the kinds of datasets that we have mentioned in the preceding examples. There are 
many excellent tools and packages out there to visualize data. Mathematica is quite 
different from other languages and packages because of the unique set of capabilities 
it presents to its user.
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Mathematica has its own graphics language, with which graphics primitives can be 
interactively rendered inside the worksheet. This makes Mathematica's capability 
similar to many widely used visualization languages. Mathematica provides a 
plethora of functions to combine these primitives and make them interactive.

Speaking of interactivity, Mathematica provides a suite of functions to interactively 
display any of its process. Not only visualization, but any function or code evaluation 
can be interactively visualized. This is particularly helpful when managing and 
visualizing big datasets.

Mathematica provides many packages and functions to visualize the kinds of 
datasets we have mentioned so far. We will learn to use the built-in functions to 
visualize structured and unstructured data. These functions include point, line, and 
surface plots; histograms; standard statistical charts; and so on. Other than these, we 
will learn to use the advanced functions that will let us build our own visualization 
tools. Another interesting feature is the built-in datasets that this software provides 
to its users. This feature provides a nice playground for the user to experiment with 
different datasets and visualization functions.

From our discussion so far, we have learned that visualization tools are used to 
analyze very large datasets. While Mathematica is not really suited for dealing with 
petabytes or exabytes of data (and many other popularly used visualization tools 
are not suited for that either), often, one needs to build quick prototypes of such 
visualization tools using smaller sample datasets. Mathematica is very well suited to 
prototype such tools because of its efficient and fast data-handling capabilities, along 
with its loads of convenient functions and user-friendly interface. It also supports 
GPU and other high-performance computing platforms. Although it is not within 
the scope of this book, a user who knows how to harness the computing power 
of Mathematica can couple that knowledge with visualization techniques to build 
custom big data visualization solutions.

Another feature that Mathematica presents to a data scientist is the ability to keep 
the workflow within one worksheet. In practice, many data scientists tend to do their 
data analysis with one package, visualize their data with another, and export and 
present their findings using something else. Mathematica provides a complete suite 
of a core language, mathematical and statistical functions, a visualization platform, 
and versatile data import and export features inside a single worksheet. This helps 
the user focus on the data instead of irrelevant details.

By now, I hope you are convinced that Mathematica is worth learning for your  
data-visualization needs. If you still do not believe me, I hope I will be able to 
convince you again at the end of the book, when we will be done developing  
several visualization prototypes, each requiring only few lines of code!
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Getting started with Mathematica
We will need to know a few basic Mathematica notebook essentials. Assuming you 
already have Mathematica installed on your computer, let's open a new notebook by 
navigating to File | New | Notebook, and do the following experiments.

Creating and selecting cells
In Mathematica, a chunk of code or any number of mathematical expressions  
can be written within a cell. Each cell in the notebook can be evaluated to see  
the output immediately below it. To start a new cell, simply start typing at 
the position of the blinking cursor. Each cell can be selected by clicking on the 
respective rightmost bracket. To select multiple cells, press Ctrl + right-mouse 
button in Windows or Linux (or cmd + right-mouse button on a Mac) on each  
of the cells. The following screenshot shows several cells selected together,  
along with the output from each cell:

Figure 1.4 Selecting and evaluating cells in Mathematica
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We can place a new cell in between any set of cells in order to change the sequence of 
instruction execution. Use the mouse to place the cursor in between two cells, and start 
typing your commands to create a new cell. We can also cut, copy, and paste cells by 
selecting them and applying the usual shortcuts (for example, Ctrl + C, Ctrl + X, and 
Ctrl + V in Windows/Linux, or cmd + C, cmd + X, and cmd + V in Mac) or using the 
Edit menu bar. In order to delete cell(s), select the cell(s) and press the Delete key.

Evaluating a cell
A cell can be evaluated by pressing Shift + Enter. Multiple cells can be selected and 
evaluated in the same way. To evaluate the full notebook, press Ctrl + A (to select all 
the cells) and then press Shift + Enter. In this case, the cells will be evaluated one after 
the other in the sequence in which they appear in the notebook. To see examples of 
notebooks filled with commands, code, and mathematical expressions, you can open 
the notebooks supplied with this chapter, which are the polar coordinates fitting and 
Anscombe's quartet examples, and select each cell (or all of them) and evaluate them.

If we evaluate a cell that uses variables declared in a previous cell, and the previous 
cell was not already evaluated, then we may get errors. It is possible that Mathematica 
will treat the unevaluated variables as a symbolic expression; in that case, no error will 
be displayed, but the results will not be numeric anymore.

Suppressing output from a cell
If we don't wish to see the intermediate output as we load data or assign values to 
variables, we can add a semicolon (;) at the end of each line that we want to leave 
out from the output.

Cell formatting
Mathematica input cells treat everything inside them as mathematical and/
or symbolic expressions. By default, every new cell you create by typing at the 
horizontal cursor will be an input expression cell. However, you can convert the  
cell to other formats for convenient typesetting. In order to change the format of 
cell(s), select the cell(s) and navigate to Format | Style from the menu bar, and 
choose a text format style from the available options. You can add mathematical 
symbols to your text by selecting Palettes | Basic Math Assistant. Note that 
evaluating a text cell will have no effect/output.
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Commenting
We can write any comment in a text cell as it will be ignored during the evaluation of 
our code. However, if we would like to write a comment inside an input cell, we use 
the (* operator to open a comment and the *) operator to close it, as shown in the 
following code snippet:

(* This is a comment *)

The shortcut Ctrl + / (cmd + / in Mac) is used to comment/uncomment a chunk of code 
too. This operation is also available in the menu bar.

Downloading the example code
You can download the example code files for all Packt books you have 
purchased from your account at http://www.packtpub.com. If you 
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

Aborting evaluation
We can abort the currently running evaluation of a cell by navigating to Evaluation 
| Abort Evaluation in the menu bar, or simply by pressing Alt + . (period). This is 
useful when you want to end a time-consuming process that you suddenly realize 
will not give you the correct results at the end of the evaluation, or end a process  
that might use up the available memory and shut down the Mathematica kernel.

Upcoming chapters
The next few chapters are divided according to the kinds of dataset we will tackle in 
each of them. Chapter 2, Dissecting Data Using Mathematica, will introduce us to data 
manipulation, cleaning, and fast-accessing techniques in Mathematica. We will also 
learn how to use some built-in plotting and styling functions in Mathematica. Chapter 
3, Time Series and Scientific Visualization, will deal with scalar field visualization, along 
with some time-series visualization techniques. We will learn how to create a small 
molecular visualization tool and a time-series explorer. In Chapter 4, Statistical and 
Information Visualization, we will delve into the world of information visualization. 
While the types of information and their visualizations are quite varied in nature,  
we will focus on graph and text visualization in Mathematica. We will also learn 
some essential statistical visualization techniques.

www.allitebooks.com

http://www.allitebooks.org
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This chapter will teach us how to build visualization tools such as the graph layout 
explorer, word frequency visualizer, and interactive chord charts. Chapter 5, Maps 
and Aesthetics, will focus on using cartographic data to build an interactive map 
visualization. We will end with a brief discussion on color maps and aesthetics in 
visualization. My suggestion would be to read each chapter without skipping any, 
because techniques introduced in each chapter will be used in subsequent chapters.

Further reading
The history of visualization deserves a separate book, as it is really fascinating  
how the field has matured over the centuries, and it is still growing very strongly. 
Michael Friendly, from York University, published a historical development paper 
that is freely available online, titled Milestones in History of Data Visualization: A Case 
Study in Statistical Historiography. This is an entertaining compilation of the history  
of visualization methods.

The book The Visual Display of Quantitative Information by Edward R. Tufte published 
by Graphics Press USA, is an excellent resource and a must-read for every data 
visualization practitioner. This is a classic book on the theory and practice of data 
graphics and visualization. Since we will not have the space to discuss the theory of 
visualization, the interested reader can consider reading this book for deeper insights.

Summary
In this chapter, we discussed the importance of data visualization in different 
contexts. We also introduced the types of dataset that will be visualized over the 
course of this book. The flexibility and power of Mathematica as a visualization 
package was discussed, and we will see the demonstration of these properties 
throughout the book with beautiful visualizations. Finally, we have taken the  
first step to writing code in Mathematica. Now we are ready to move onto the  
next chapter, where we will start writing some actual code to visualize data.



Dissecting Data Using 
Mathematica

We will go through a series of lessons in this chapter that will teach us the 
programming essentials to load, manipulate, and analyze different kinds of data. 
This will pave the way for the next few chapters on more advanced visualization 
techniques and tools. It is highly recommended that you try out and play with  
the code provided in the support section of the book's web page to understand the 
underlying concepts introduced in this chapter. Mathematica is a rich programming 
language that provides many functions to achieve miscellaneous tasks. We will only 
focus on the concepts and functions that are useful for our purpose. These lessons 
can be considered as a crash course on data manipulation and basic visualization 
using Mathematica, so buckle up and enjoy the ride!

Data structures and core languages
In the language of computer science, in order to handle any type of data, we need  
to load it in a convenient fashion in the memory. The constructs used to store data in 
the memory are called data structures. For most traditional programming languages, 
a programmer has to think and decide the right data structure to load and store the 
data, but Mathematica makes the work easy for us by providing a powerful core data 
structure that can be used in many different ways.

Lists are the fundamental and most useful data structure to load, manipulate, and store 
data in Mathematica. They provide a lot of flexibility for handling and representing 
different kinds of datasets. At the same time, they are simple enough that one can 
focus on the analysis instead of spending a lot of time coding or figuring out the right 
data structure to use.
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Introducing lists
In order to create a new list and assign it to a list object, we simply use the expression 
{} (which means an empty list), or the command List[]. The following examples 
will create a list named lst:

lst = {}

or

lst = List[]

Each list can be treated as a mathematical object, and it can interact with constants 
and/or other list objects. A list may contain different data types as its elements, so it 
can be treated as a set or collection of objects. However, when the elements of a list 
are just numbers, it can then be treated as a tuple or an n-dimensional vector (where 
n is the number of elements in the list). The following code illustrates these points:

lst = {}
lst1 = {1,2,3}
lst2 = {2,3,4}
lst1 / 3
lst1 * lst2
lst={1,2,3,x,y,z,"This is a string"}

Here, we create an empty list lst by setting lst = {}. We really do not need to 
start by declaring every list empty; we might as well start with some elements 
in it. So we declare lst1 = {1, 2, 3} and lst2 = {2, 3, 4} to create two 
lists of length 3. Since lst1 and lst2 are now lists of numbers, evaluating lst1 
/ 3 or lst2 / 3 will divide each number in the list by 3. Moreover, we can do 
an element-wise multiplication between the two triplets (or three-dimensional 
vectors) simply by evaluating lst1 * lst2, which will return another list {2,  
6, 12}. Finally, re-declare that lst with a mix of numbers (1, 2, and 3), symbols  
(x, y, and z), and a string. This type of mixing between different data types inside 
the same list is both allowed and perfectly plausible in Mathematica.

A tuple is a representation of a set of numbers or objects. 
For example, {1, 2, 1} is a tuple of three elements. This 
can be used to represent a three-dimensional vector.  
In Mathematica, tuples are essentially lists that can be 
used to hold vectors of any dimension.



Chapter 2

[ 23 ]

Nested lists
Lists may contain other lists. They are called list of lists, or simply a nested list.  
In order to demonstrate this concept, we can declare another list, lst3, as follows:

lst3 = {lst1,lst2}

Here, lst3 will then consist of {{1,2,3},{2,3,4}}. In this way, we can build 
even higher levels of nested lists. This provides a flexible way to build or store 
multidimensional datasets.

Matrices
We can use the concept of nested lists to build matrices. In order to build an m by n 
matrix of values (where m is the number of rows and n is the number of columns), 
we can treat each row of the matrix as a vector, or simply a list of length n, and we 
can have m such lists under a unified list, which will be our desired matrix. Let's 
enter the following code in our Mathematica notebook to create a 3 by 4 matrix:

(* building a 3 x 4 matrix *)
row1 = {1,2,3,4};
row2 = {2,3,4,5};
row3 = {3,4,5,6};
mat1 = {row1,row2,row3}
MatrixForm[mat1]

Note that we suppress the output of the first few lines by inserting a semicolon  
at the end of each line, and only outputting the final matrix, mat1, using a function 
MatrixForm (more on Mathematica functions later).Here, MatrixForm is a convenient 
function to display a list as a matrix. mat1 is a list of lists, where each sublist is a row 
of the matrix. The following figure 2.1 shows the list output and the matrix form after 
evaluating the cells:

Figure 2.1 Creating matrices in Mathematica
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Many datasets can be represented as matrices, and each entry of the matrix need not 
be a number in the case of different datasets. For example, a numerical dataset that 
contains text headers that provide the description of each column will have string 
elements in the first row.

Constructing lists programmatically
Often, we need to generate lists programmatically, or load our datasets into list 
structures by using a few commands. The preceding examples were used as a 
demonstration to explain the concept of lists in Mathematica. Now, we will take  
a deeper look at how lists can be constructed programmatically to build synthetic 
data, or load actual datasets into Mathematica. There are several functions that 
we can use to create lists of different kinds. From a generic data analysis and 
visualization perspective, the one that is mostly used is Table. It can be used  
to create vectors, arrays, matrix, and any other n-dimensional array.

Here is the basic syntax for calling the Table function:

Table[expr, {(i), (imin), imax, (di)}]

This syntax will return a list that contains the result of evaluation of the expression 
expr. expr may use i as an argument, where the iterator i takes on the values 
between imin and imax (inclusive), changing in steps of di. All arguments within  
the curly braces {..} are optional (and hence are put inside parentheses), except imax. 
If only imax is provided, the table will iterate from 1 to imax. To explain the syntax, 
let's take a simple expression that uses i, which is i itself:

Table[ i, {i, 1, 10, 2} ]

The code will generate a list shown as follows:

{1, 3, 5, 7, 9}

Here, i takes on values from 1 to 10, in steps of 2. Next, let's make the expression 
a little bit more interesting. We multiply a constant with i in expr in the following 
code snippet:

Table[ 10 * i, {i, 1, 10, 2} ]

The code will return the following list:

{10, 30, 50, 70, 90}
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In fact, the function Table can be used to loop through different iterator variables. 
The following is a nested loop, which creates a nested list:

Table[ 10 * i + j, {i,1,10,2}, {j,1,10,4}]

The output will be as follows:

{{11,15,19},{31,35,39},{51,55,59},{71,75,79},{91,95,99}}

What is happening here? In our expression argument, we have 10 * i + j.  
The variable i iterates from 1 to 10 in steps of 2 (that is, {1, 3, 5, 7, 9}),  
and the inner iterator j iterates from 1 to 10 in steps of 4 (that is, {1, 5, 9}).  
i is our outer loop, and j is the inner loop. When we evaluate the expression  
10 * i + j for each value of i, j iterates over the values 1, 5, and 9.  
For example, when i is 1, 10 * i + j will give the following result:

{10 * 1 + 1, 10 * 1 + 5, 10 * 1 + 9}

Each inner loop returns a list, thus {11, 15, 19} is the first list appended  
to the nested list. This continues for each value i takes on.

This nested list generation can be seen from the point of view of a matrix.  
Essentially, we have produced a 5 x 3 matrix, where the i loop goes through  
the rows, and the j loop goes through the columns. Each entry of the matrix  
is filled from the expression 10 * i + j.

Table entries with multiple elements
Table will evaluate any number of expressions given in the place of expr in the 
syntax for Table. This provides us with more control over the values of the entries  
in our array or matrix. Let's start off by giving a list as our expr. Use the following 
code snippet to create Table:

Table[
  {10 * i, 2 * j},
  {i,1,10,2},{j,1,10,4}
]

This produces a three-dimensional list:

{ {{10,2},{10,10},{10,18}}, {{30,2},{30,10},{30,18}}, 
{{50,2},{50,10},{50,18}}, {{70,2},{70,10},{70,18}}, 
{{90,2},{90,10},{90,18}} }
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Figure 2.2 displays this as a matrix using the MatrixForm[] function as before:

Figure 2.2 Using MatrixForm to visualize a matrix

Here, the MatrixForm function uses a % character as its argument. This merely asks 
the function to use the output in the last evaluation as its input argument.

In the expression for the Table function, we generate the two-element tuple  
{10 * i, 2 * j}, and each tuple is generated as one element in the 5 x 3 matrix. 
This is essentially the same as our previous example, but this time, we put a list  
(of length 2) in each entry instead of a single value.

In Mathematica, a line break does not affect the code as long as the 
brackets and parentheses match. In the previous piece of code, we have 
broken down the Table function into several lines. This is perfectly 
alright. When we type a function over several lines, Mathematica IDE 
automatically takes care of the tabs and spacing.
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Let's look at how we can use multiple expressions inside the Table function.  
Often, it might be necessary to calculate some intermediate values that will be  
used by expr. We can simply use the semicolon character to suppress any 
intermediate calculation from getting into the final table:

Table[
  a = i+j;
  b = i*j;
  a + b,
  {i,1,10,2},{j,1,10,4}
]

The code produces the following nested list:

{{3,11,19}, {7,23,39}, {11,35,59}, {15,47,79}, {19,59,99}}

We again have a 5 x 3 matrix, but the elements in the matrix are the addition of  
a + b, where a and b are variables declared inside the Table function, and they  
take on the values i + j and i * j respectively as i and j change their values  
in each iteration.

We will learn more about Tables as we will be using the Table construct extensively in 
the book to create and combine different datasets. Mathematica provides many other 
useful functions to create lists, but the Table function is a generic and easy way to 
handle datasets, so we will mostly stick to it throughout the book. The Table function 
has a parallel version called ParallelTable, which can be used to do calculations in 
parallel. This is out of the scope of this book, but readers are encouraged to try it out 
once they are comfortable with the Table function.

Accessing elements from a list
There are many functions that Mathematica provides to access elements from a list. 
For data analysis and cleaning purposes, we will learn about the fastest and most 
elegant method to access a set of rows or columns from a matrix of values. The 
expression used to access the element of a list is [[  ]], where we define the desired 
range indices within the brackets. Let's look at the following few examples:

lst = Table[i*10,{i,50}] (* returns {10,20,30, .. ,480,490,500} *)
lst[[1]] (* returns 10 *)
lst[[10]] (* returns 100 *)
lst[[1;;10]] (* returns {10,20,30,40,50,60,70,80,90,100} *)
lst[[20;;30]] (* returns {200,210,220,..,280,290,300} *)
lst[[30;;]] (* returns {300,310,320,330,340,..,470,480,490,500} *)
lst[[;;]] (* gives the full list *)
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At first, we create a list of numbers lst, which run from 10 to 500 in steps of 10, as 
{10, 20, 30, .., 500}, with a total of 50 elements in the list. Then, we access 
the elements of this list in different ways. Note that the index count starts from 1 in 
Mathematica, unlike in languages such as C or Java, where it starts from 0. lst[[1]] 
would return the first element in the list, which is 10. lst[[10]] would return 100, 
and so on. A powerful array access feature in Mathematica is demonstrated next.  
The double semicolon operator inside the array brackets [[ ]] represents a range. 
Writing the indices as 1;;10 is a shortcut to tell Mathematica that we want the 
elements ranging from the first index to the tenth index. Similarly, lst[[20;;30]] 
would return the 20th to the 30th elements (inclusive), as a list. When ;; is used  
after an initial index number, it returns the rest of the list elements starting from  
that initial index (that is, lst[[30;;]] would return the 30th to 50th elements in  
the list). Providing the ;; operator without any other index indicator will return  
the whole array.

Throughout the book, we will use the words list, matrix, and array 
to denote the same data structure. In fact, we will only use a single 
Mathematica data structure (list) to work with matrices and arrays.

The ;; operator works in the same way on any matrix of any dimensions. Next, we 
demonstrate the ;; operator on a 2D matrix. We will use the following 6 x 6 matrix 
as our example:

2 3 4 5 6 7
4 6 8 10 12 14
6 9 12 15 18 21
8 12 16 20 24 28
10 15 20 25 30 35
12 18 24 30 36 42

Let's do the following operations on this matrix (or list of lists):

lst[[2,5]] (* returns 12 *)
lst[[1;;3]] (* returns {{2,3,4,5,6,7} 
  ,{4,6,8,10,12,14},{6,9,12,15,18,21}} *)
lst[[1;;5,2]] (* returns {3,6,9,12,15} *)
lst[[1;;4, 2;;4]] (* returns {{3,4,5},{6,8,10} 
  ,{9,12,15},{12,16,20}} *)
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The matrix here is represented by a list that contains six sublists, each of which is a 
row of the matrix. Here, lst[[2, 5]] asks Mathematica to extract the second list's 
fifth element. The first index before the comma denotes which row we would like 
to access (in this case, the second row), and the second index defines the column 
number (in this case, the fifth column). Note that in the world of lists, we are  
merely asking Mathematica to return the second list's fifth element.

Next, we use the ;; range operator to extract the first three rows. lst[[1;;3]]  
returns the first three sublists of lst. Then, to access the elements from the column 
of the matrix, we use the ;; operator as lst[[1;;5, 2]]. This command asks 
Mathematica to parse through the rows 1 to 5, and extract elements from the second 
column. In order to extract the full column, we would use the following code snippet:

lst[[;;,2]]

Finally, we extract a submatrix from the matrix by parsing through some rows and 
some columns. lst[[1;;4, 2;;4]] goes through the rows 1 to 4 and the columns  
2 to 4.

Applying set operations on lists
The [[ ]] operation is a shortcut for the command Part. There are several other useful 
set operations in Mathematica that we may need to learn in order to manipulate 
datasets. They are listed as follows with their syntaxes. We will eventually see some 
of them in action in the next few chapters:

• Length: This function simply returns the length of a list as a number.  
The syntax is as follows:
Length[list]

If the list is multidimensional, meaning it has sublists, then, to get the length of 
a sublist, we have to provide the sublist index too. For example, with a list like 
lst = {{a,b,c}, {b,c,d,a}, {a,b}}, if we want to get the length of the 
second sublist, we could use Length[ lst[[2]] ], which will return 4.

• Append: The syntax for this is as follows:
Append[list, elem]

This returns a new list with the element elem appended to the end of list.  
A similar command is AppendTo[list, elem], which appends elem at the 
end of list and resets list to the new list.
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• Flatten: This is a very useful function that is used when we would like to 
flatten a list that contains many levels of sublists. This is often useful when 
we load data of some particular formats into one big list, and would want  
to redistribute the levels of each sublist.
Flatten[list] would give us a new list with all levels flattened. For 
example, Flatten[{a, b},{c,{d}}] would return {a, b, c, d}.
Flatten[list, n] returns a list with only the nth level of lists being 
flattened. Thus, Flatten[{a,b},{c,{d}}, 1] would collapse the first  
level only and will return {a, b, c, {d}}.

• Union: This is yet another very useful function that determines the union  
of a list. From the data manipulation perspective, this is quite useful for 
removing duplicates from a list.
Union[list1, list2, …] would return the union of the lists given as 
its argument. Note that the argument can be a single list too. The result is 
always sorted.

• Partition: This function is used to reshape an array or a matrix. There are 
several ways it takes its arguments. The commonly used form is as follows:
Partition[list, n], which divides a list into non-overlapping sublists that 
have length n. Thus, Partition[{a, b, c, d, e, f}, 2] will return {{a, 
b}, {c, d}, {e, f}}. Note that in this case, we reshaped a 1D array or a 
row of data into a matrix with three rows and two columns.

• Tally: This counts the number of times each element occurs in a list, and 
returns a new list that contains sublists of counts. The syntax is as follows:
Tally[list]

Tally[{a,a,b,a,c,a,b,a}] will return {{a, 5},{b, 2},{c, 1}}.

• Select: This function can be used to filter a list in many different ways.  
The syntax is as follows:
Select[list, crit]

Here, crit is a criterion expression that Mathematica applies on each 
element of the list. If the expression is evaluated as true, then the element 
passes. Otherwise, the element is discarded. For example, the following  
code snippet would return {2, 6, 12}:
Select[{1,2,6,12,13},EvenQ]
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EvenQ is a Mathematica function that decides whether a number is even.  
In this case, EvenQ is applied to each element of the list, and the ones that  
are evaluated as true are returned. A more advanced example where we  
filter numbers that are greater than 3 is as follows:
Select[{1,2,3,4,5,-1,7}, # > 3 &]

This snippet will return {4, 5, 7}. We have two new expressions to  
learn from this example, so let's tackle them one by one. We can declare a 
function that takes each element of the list and tests whether the element is 
greater than 3. The expression # > 3 is a function expression that is applied 
to each element of the list. The # sign is used to denote the argument in this 
function expression. Each list element is treated as an argument passed 
to this function as Select goes through each of them. Now, we would 
like to declare the expression as a function. This is done by the & sign in 
Mathematica. It denotes that the expression is a pure function.

• Position: In order to find a certain element within a list, we can use this 
function. The syntax for this function is as follows:
Position[list, pattern]

This will search within the list and return the indices of the elements that 
match the pattern. For example, the following code snippet will return  
{{2}, {5}, {7}}:
Position[{a,b,a,a,b,c,b,c,d},b]

If we have lists of a higher dimension, the indices will be of a higher length. 
The following code snippet will return {{1,3}, {2,1}, {3,2}}:
Position[{{a,a,b},{b,a,a},{a,b,a}},b]

Here, we would like to search for b. b occurs in the first sublist at the third 
position. Thus, {1,3} is our desired index, and so on.

There are many other useful Mathematica functions that can be applied on lists. 
These functions will be used in the next few chapters, so refer to this list if you  
would like to review what each function does.
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Functions and conditionals
Just like other programming languages, Mathematica lets us define our own functions. 
Other procedural programming constructs such as loops and conditionals are also 
there. However, it is better that we try to stick to the functional programming style 
instead of using For, Do, While, and other loops. This is mostly because some of  
these procedural programming constructs are known to be slow in Mathematica.  
It is almost always possible to use Table and similar functions to loop through and 
modify datasets. In this section, we will learn about writing our own functions and 
conditional expressions in Mathematica.

Declaring and using functions
For the purpose of data analysis and visualization, it is always useful to separate our 
code into different function calls. In this section, we will describe how to define our 
own custom functions in conjunction with variables and lists.

The basic function syntax is very simple. Here's an example of a simple function and 
its usage:

f[x_]:= x^2

This function f takes a variable x and simply squares it. Each argument variable is 
declared by an underscore sign after it. x_ declares x as a variable inside the function. 
The colon followed by the equal operator := distinguishes between the function 
body code and the function name. Evaluating the function as f[2] will return 4.  
We can provide multiple arguments to a function in the same way, as shown here:

f[x_,y_]:= Table[i^2+j,{i,1,x},{j,1,y}]

This function takes in two argument variables x and y, and uses them as bounds in a 
Table function. Note that this function returns a list. Evaluating f[2, 3] will return 
the list {{2,3,4}, {5,6,7}}.

If you are wondering whether Mathematica has a proper function declaration that has 
initialization, body, and return calls, similar to other popular languages like C or Java, 
here is an example of how to use these concepts in a Mathematica function:

scaleBySum[lst_,ind1_,ind2_]:= Module[
{sum = 0, toReturn = {}},
sum = Total[ lst[[ ind1;;ind2 ]] ];
toReturn = lst[[ ind1;;ind2 ]] / sum;
Return[ toReturn ]
]
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In this function, we take in a list and two numbers that are essentially start and end 
indices. Then, we divide the list elements that range from the start to end indices by 
the sum of the numbers within that range. There are several things going on here, 
but with Mathematica's syntax, we don't need to write a lot of code.

The function is called scaleBySum. It takes in the arguments lst (a list), ind1 (the start 
index), and ind2 (the end index). Next, we declare a Module, which is a nice way to 
structure our code. A Module has two sections. In the initialization section denoted 
within the curly braces, we initialize the variables that we will use within the function 
body. We initialize a variable called sum and set it to 0. We also declare an empty list, 
toReturn, which will be populated with the results later. Next, we enter the function 
body, which is separated from the initialization section by a comma, and calculate  
the sum of the elements that range from the indices ind1 to ind2 using the function 
Total. Total is a built-in Mathematica function that returns the sum of a list. Next,  
we set toReturn to the sublist of interest that is divided by the sum. The built-in 
function Return returns the argument provided.

In practice, we will use the function as follows:

scaleBySum[{1,2,3,4,5},2,4]

This function will return the list {2/9, 1/3, 4/9}. The numbers 2, 3, and 4 are within 
the range defined by the index arguments, so they are divided by their sum, 9.

For now, this is all that we need to know about functions and using functions in  
our code.

Conditionals
In Mathematica, there are several conditional expressions that we can use. One that 
is commonly used is is the If condition. The syntax is as follows:

If[condition, texpr, fexpr, u]

If the condition evaluates to true, then texpr is evaluated. If condition evaluates 
to false, then fexpr is evaluated. If neither true nor false, then u is evaluated instead. 
Note that the fourth argument is optional. Here's an example of using the If 
conditional expression:

If[x > 0,
x = x/2; x++; x = x/3,
0]
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The expression evaluates the condition to check whether x is greater than 0. If true, 
it executes the second line, which has a series of expressions that change x in certain 
ways. Intermediate outputs are suppressed by using semicolons. If x is not greater 
than 0, then the third line is executed instead. All of this could be written within one 
line; Mathematica does not really care about line breaks. However, it is advisable to 
break your code into different lines for clarity of reading.

Other conditional expressions are also there. If one does not want to write a series of 
If conditionals for a long list of conditional cases, the function Which can be useful. 
The syntax for the Which function is as follows:

Which[test1, value1, test2, value2, …]

Every test expression is followed by a series of expressions that is evaluated if the 
test expression is true. Take the following snippet as an example:

a = 1; Which[a == 1, x, a == 2, b]

This will return x.

Further core language
So far, what we have seen is a glimpse of what Mathematica's core programming 
language offers. These are the bare essentials you need to know if you are unfamiliar 
with Mathematica programming. For the purpose of data visualization coding, we 
will not need more than what is covered here. There are other utility functions that 
we will pick up along the way when necessary. If you would like to learn more on 
the Mathematica programming language, then you may look into the resources 
mentioned in the Further Reading section.

Data importing and basic plots
Equipped with a crash course on the Mathematica programming language, we can 
really start having some fun with data. The rest of the chapter will teach us how to 
load simple datasets and plot some values. We will learn about a few different kinds 
of plots and the methods of styling and customizing them.

Importing data into Mathematica
Mathematica provides a very rich data importing and exporting suite. The two 
commonly used functions to load data into a worksheet are Import and ReadList.  
In this section, we will use Import to load a dataset into Mathematica and plot it.  
We will style our plot, and explore some features of plotting functions that are useful.
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SetDirectory[] and NotebookDirectory[]
To load our dataset, we need to tell Mathematica where to look for it. The structure 
of the code and data provided in the accompanying book's website follow the same 
pattern for every chapter. Under each chapter folder, there is a folder called data.  
The folder chapter2 contains our code notebooks for the preceding examples. We will 
start by setting the current path to our folder, as shown in the following code snippet:

SetDirectory[ NotebookDirectory[] ]

The SetDirectory function sets the current path to the file location string provided 
as its argument. The function NotebookDirectory[] returns the current notebook 
directory path as a string. Please note that we have to save our notebook at first for  
this to work.

Loading the dataset
The Import function takes in a file path string as its argument and returns the 
content of the file. Our dataset is a CSV (comma-separated values) time series file  
that has three columns. The column attributes are separated by commas. The first 
column holds the time values. The second and third columns represent two different 
time series that change over time. One is an exponential growth curve; the other is  
a sinusoidal function that exponentially amplifies over time. The interested reader 
may look into the DataGeneration.nb file (provided in the same folder) to see how 
the dataset is generated.

We load and organize the two time series using the following code.

dataset1 = Import["data/points_dataset1.csv"];
pointset1 = dataset1[[ ;;, 1;;2 ]];
pointset2 = dataset1[[ ;;, {1,3} ]];

The Import function looks under the data folder (we don't need to provide the 
full path, since we already set the file operation path to the current folder using 
SetDirectory) and loads the file named points_dataset1.csv. The file contents are 
stored inside the list dataset1. Here is a glimpse of the current content of dataset1:

{{0.,1.,0.},{0.2,1.04081,0.413554},{0.4,1.08329,0.843704},...}
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Each row in the dataset contains three elements: time, y1, and y2, where y1 and  
y2 are two separate sets of data that evolve with time. Our next job is to put these 
two different series into two lists. The list for y1 should look like {{t1, y11},  
{t2, y12}, {t3, y13}, …}, where the subscripts denote the index of each row. 
We achieve this by declaring a new list called pointset1 and use our trusted friend, 
the part operator [[ ]], to extract data from all rows and include the first and second 
columns only. We do the same for the second series, but pick the first and third 
columns instead, and store the extracted list in pointset2. You can take out the 
semicolons at the end of each line and evaluate the cell(s) again to see the contents  
of each list at this point.

In the older Windows version of Mathematica, we may use 
two backslash characters (\\) as our file separator. In a Unix 
OS, this will be just a slash (/). The code provided with this 
book was written in Windows. However, if you have the 
latest version of Mathematica, you can simply use / as the 
file separator, regardless of the OS you are using.

Basic plotting functions
We have loaded the datasets; now it's time to visualize them. We will use the 
function ListPlot to plot the data and demonstrate some generic features  
applicable to many other plotting functions.

ListPlot
If we want to plot a single dataset that contains x and y values for 2D points,  
the syntax for ListPlot is as follows:

ListPlot[[{{x1,y1}, {x2,y2}, {x3,y3}, … }, options]

We have already put our dataset into this list form in the previous section, so we can 
go ahead and plot the datasets. The options are features embedded into the plot that 
we can change according to our needs. They are optional arguments. A few of these 
arguments are given as follows:

ListPlot[pointset1]
ListPlot[pointset2, AxesOrigin -> {0,0}, PlotRange -> All, Filling -> 
Axis]
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We can simply ask Mathematica to plot the data as points, or we could stylize our 
plot by adding some nifty features. pointset1 is plotted with default arguments, 
and pointset2 is plotted with several options. The following screenshot shows  
the plots:

Figure 2.3 (left) pointset1 with the default options, and (right) pointset2 with the  
filling option enabled

The plot on the left is pointset1, and the plot on the right is from the list pointset2. 
With the default options, we get a point set representation on the axes. In order to 
customize the options, we will have to mention the name of the option argument, 
followed by the characters – and >, which represent the operator responsible for 
assigning some value to a property. We can add as many options as we want,  
each separated by a comma.

For the second plot, we have added the following options:

• AxesOrigin: This property is set to a pair of numbers that denote  
the origin of the graph in x and y coordinates. In the plot, we set  
them to (0, 0).

• PlotRange: This is used to define the plotting range. The value "All"  
asks Mathematica to stretch the graph to the maximum and minimum 
bounds of the graph. We could manually put a pair of numbers  
{ymin, ymax} instead of defining the vertical boundary.

• Filling: This property is used to fill the area within a defined region  
of the curve. We set a value to the x axis so that the area between the 
horizontal axis and the curve is filled.
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Let's improve our plots further. The following points will help you add more 
features to your plots:

• We can also join the points in the plots. Mathematica interpolates between 
the points to create a smooth curve if we set the property Joined to True,  
as shown in the following code:
ListPlot[pointset1,AxesOrigin->{0,0},PlotRange->All,Joined->True]

• The points and the joined curve can be made visible together using the Mesh 
property. Setting Mesh to All plots all the points too.

• We can combine the two plots into one plot. The ListPlot syntax for 
combining multiple plots is as follows:
ListPlot[{list1, list2, …}, options]

This way, we can plot both the lists within one figure.

• We can add a title to our plot by setting the PlotLabel option to the  
desired text.

• We can add axes labels to the plot using the AxesLabel option. It is set  
to a pair of strings that are the labels of the horizontal and vertical axes.

The code to accomplish these steps is as follows:

ListPlot[{pointset1,pointset2}, AxesOrigin->{0,0}, PlotRange->All, 
Joined->True, Mesh->All, AxesLabel->{"time","y"}, PlotLabel->"y(t)"]

The following screenshot, figure 2.4, shows a plot (left) with the Joined property set 
to True, and the other part (right) shows the output from the given code:

Figure 2.4 (left) The Joined option is set to True, and (right) points are joined and all meshes are rendered

Note that Mathematica automatically colors the lines differently. We can customize 
the line colors too, which will be discussed next.
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Styling our plots
Let's experiment with more plotting features of Mathematica. Often, it is necessary  
to distinguish between curves when there are several plots combined into one plot. 
The Filling and PlotStyle features can be useful for this purpose.

We have seen how setting the Filling property to Axis fills the area between  
the curve and the axes. If we have several curves, it may be harder to distinguish 
them in this way. Mathematica automatically chooses different colors for filling  
as we increase the number of curves, but it may not be wise to use such a filling  
to begin with.

In the case of several curves on the same plot, we can leave them without specifying 
the filling property. Another interesting way is to fill the area between the curve 
intersections. This emphasizes the difference between the curves. To do this, we set 
Filling to {1->{2}}; this syntax asks Mathematica to fill the area from the first 
curve to the second curve, as shown in the following screenshot:

Figure 2.5 Different filling options: (left) fill to axis, and (right) fill between each other

The plot on the left shows how it would look if we filled the area towards the axis. 
Using our new Filling feature, we obtain the plot on the right, which emphasizes 
the difference between the curves.

We can change the color of our curves, and also the filling color, using PlotStyle 
and FillingStyle. Next, let's set the PlotStyle feature to a pair of colors (for two 
plots), and FillingStyle to another pair of colors:

ListPlot[{pointset1,pointset2}, AxesOrigin->{0,0}, PlotRange->All, 
Joined->True, Mesh->All, AxesLabel->{"time","y"}, PlotLabel->"y(t)", 
Filling->{1->{2}}, PlotStyle->{Brown,LightBrown}, FillingStyle-
>{Gray,LightGray}]

www.allitebooks.com

http://www.allitebooks.org
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Mathematica has a set of predefined color names. We will be using 
these color names throughout the book. To see the list of colors, 
you can open the Color Palette from the Palettes menu on the menu 
bar. There are other ways to define a color, for example, using RGB 
values. We will demonstrate this shortly.

Figure 2.6 (left) More styling, and (right) aspect ratio

The preceding plots, figure 2.6, show the results. The curves are now colored  
brown and light brown respectively. The intersection area above the first curve 
(exponential growth) is colored gray, and the area below it is colored lighter gray.

Another notable feature of Mathematica plots is AspectRatio. This sets the ratio 
of the height and width of the plot. The default value is Automatic, in which case 
Mathematica calculates the ratio from the given datasets. The plot on the right is 
produced by changing the AspectRatio property to 0.4 (AspectRatio->0.4),  
and we can see that the plot height is squashed compared to the plot on the left.

The latest version of Mathematica, 10 as of this writing, allows us to style our plots 
with some quick themes and legends. In the suggestion bar that shows up below the 
latest output cell, there are options to set certain themes. The available themes range 
from Classic and Web to Business and Marketing. Instead of choosing these plot 
themes manually from the suggestion bar, we can insert the option PlotTheme inside 
our plotting functions to define these themes. For example, the following code will 
produce a plot that is automatically styled for presentation:

ListPlot[{pointset1,pointset2}, PlotTheme->"Marketing", 
AxesOrigin->{0,0}, PlotRange->All, Joined->True, Mesh->All, AxesLabel-
>{"time","y"}, PlotLabel->"y(t)", Filling->{1->{2}}]
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The following figure 2.7 shows the same plots displayed in figure 2.5, but with 
Marketing and Monochrome plot themes:

Figure 2.7 (left) The marketing theme, and (right) The monochrome theme

Plot legends
We can also include legends in our plots to distinguish between different datasets. 
The PlotLegends option allows us to insert different legends in our plots, depending 
on the type of plot. These are the following four types of legends available:

• LineLegend: This is used for function expression plots
• PointLegend: This is used for point list plots, as used in the examples  

of this chapter
• SwatchLegend: This is used for list plots, but with a different styling
• BarLegend: This is used for bar plots

The following code uses SwatchLegend to distinguish between the two list plots:

ListPlot[{pointset1,pointset2}, AxesOrigin->{0,0}, PlotRange->All, 
Joined->True, Mesh->All, AxesLabel->{"time","y"}, PlotLabel->"y(t)", 
Filling->{1->{2}}, PlotLegends -> SwatchLegend[{"data1","data2"}] ]

For our current datasets, we may also use the PointLegend feature. The following 
code incorporates the PointLegend feature and decorates the legend bar with a frame:

ListPlot[{pointset1,pointset2}, AxesOrigin->{0,0}, PlotRange->All, 
Joined->True, Mesh->All, AxesLabel->{"time","y"}, PlotLabel->"y(t)", 
Filling->{1->{2}}, PlotLegends-> PointLegend[Automatic,{"data1","da
ta2"}, LegendFunction->"Frame", LegendLabel->"datasets"] ]
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Inside the PointLegend option, we have defined two additional legend functions. 
LegendFunction defines a styling option for the legend bar (a bounding frame in 
this case), and LegendLabel gives a title to the legend bar. The following figures 2.8 
and 2.9 show the results of the preceding code:

Figure 2.8 List plots with swatch legends

Note that the default styling in Mathematica 10 is slightly different from the versions  
9 and 8; hence, the lines have different colors compared to the previous plots. The plots 
in this book are based on the classic styling option, so that Mathematica 8 and 9 users 
feel comfortable with the diagrams:

Figure 2.9 List plots with point legend and legend decoration
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The accompanying notebooks and codes are carefully written so 
that they will work in all available versions (8, 9, and 10). However, 
a few functions and options in the book's code listings will not work 
in versions 8 and 9. They will be mentioned in the text clearly.

3D point plots
What if we want to see the evolution of both point sets in 3D? We have a time axis, and 
we have two series of data to go with it. This is the right time to demonstrate how we 
can plot a three-dimensional point cloud using a 3D scatter plot. The following syntax 
is similar to ListPlot:

ListPointPlot3D[{{x
1
,y

1
,z

1
}, {x

2
,y

2
,z

2
}, {x

3
,y

3
,z

3
}, …}, options]

It takes in a list of {x, y, z} values. Remember that our original dataset list is in the 
correct format to be fed into this function. So, let's do that right away, as shown in  
the following code snippet:

ListPointPlot3D[dataset1, AxesLabel->{"time","y1","y2"}, PlotLabel-
>"y(t)", Filling->Bottom]

The plot on the left of figure 2.10 shows the output. We can see both the exponential 
growth and the sinusoidal behavior as time progresses. The Filling property allows 
us to track the exponential growth easily. In order to make it more apparent, we 
can color the points and the filling lines using the ColorFunction property. This is 
demonstrated in the plot on the right of the following screenshot:

Figure 2.10 3D point plots with (left) axis filling, and (right) custom color function
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The ColorFunction property is usually set to a function definition that takes in  
some values of the dataset and manipulates them to produce a color. To produce  
the preceding plot given in figure 2.10, let's write the following code:

ListPointPlot3D[dataset1, AxesLabel->{"time","y1","y2"}, PlotLabel-
>"y(t)", Filling->Bottom, Boxed->False, ColorFunction -> 
Function[{x,y,z},RGBColor[x, y*0.5, 0]] ]

We declare the function using yet another Mathematica syntax. In this form of a 
function, the first argument is the list of variables used in the body. After the comma, 
the function definition follows. In this case, the function declares that the variables 
to be used are x, y, and z, which are placeholders for each row of data passed to this 
function. In the function definition, we produce a color value by using the RGBColor 
function. This has three arguments, which denote the values of red, green, and blue. 
Mathematica automatically scales the RGB values to stay between 0 and 1. Note 
that we left the third argument as 0, so the blue component is always absent in this 
custom color map.

We have also set the Boxed feature to False; this takes away the bounding box of  
the 3D plot.

Log plots
So far, we have been playing with nicely-behaving datasets. Let's get into some mess 
deliberately, because real world data is always messy. As a data visualization expert, 
you will often tackle datasets that have entries with very large values. Think about 
working with financial or economic data that have billions of dollars coexisting 
peacefully with only hundreds of dollars in the same dataset. Now, let's make the 
situation worse. Sometimes, we have data that can have unexpected big jumps in  
the values.

Figure 2.8 has a set of plots that show our effort to understand the large scale 
characteristics of a new dataset, shown as follows:

Figure 2.11 (left) Plotting on the normal scale, and (right) zooming on a shorter range of data
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The following code was written in a new notebook to produce these plots:

SetDirectory[NotebookDirectory[]]
logdata = Import["data\\points_dataset2.csv"];
ListPlot[logdata, AxesOrigin->{0,0}, PlotRange->All, Joined->True, 
Mesh->All, AxesLabel->{"time","y"}, PlotLabel->"y(t)", Filling->Axis]
ListPlot[logdata, AxesOrigin->{0,0}, Joined->True, Mesh->All, 
AxesLabel->{"time","y"}, PlotLabel->"y(t)", Filling->Axis, 
PlotRange->{0,50000}]

The dataset is loaded in a similar manner using the Import function. Using ListPlot, 
we plot the data to initiate our investigation. Since the values on the vertical axis are 
quite large, we change the PlotRange option to focus on a smaller range of values in 
the next plot. Now, the range is set between 0 and 50,000. The bigger values swamped 
the initial nature of the curves, as we can see that the initial plot shows a flattened 
curve in the beginning. However, there really is an exponential growth.

We can keep playing around with the plotting range to discover features like this,  
or we can use log plots. Log plots are often used to observe the characteristic changes 
in the larger range without collapsing the features of the smaller range of the graph. 
In case of an exponential growth (for example, bacterial culture growth or investment 
with interest), a vertical logarithmic scale will reveal constant growth rates (if present), 
which is often useful for predicting long-term behavior.

In the following code the functions ListLogPlot and ListLogLogPlot have the same 
syntax as ListPlot, but change the axes to log scale. ListLogPlot has a vertical log 
scale, and ListLogLogPlot has both a vertical and horizontal log scale:

ListLogPlot[logdata, AxesOrigin->{0,0}, PlotRange->All, Joined->True, 
Mesh->All, AxesLabel->{"time","y"}, PlotLabel->"y(t)", Filling->Axis]
ListLogLogPlot[logdata, PlotRange->All, Joined->True, Mesh->None, 
AxesLabel->{"time","y"}, PlotLabel->"y(t)", Filling->Axis]
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The output of this code is shown in the following screenshot:

Figure 2.12 (left) Log scale, and (right) log-log scale plots for the same dataset

In the case of a vertical log scale, we discover features in the dataset that could  
not be seen with ListPlot. There are two exponential growth regions in the data. 
We possibly have a straight line with a positive slope between t = 5.0 and t = 8.0, 
and then there is a large jump in value at around t = 8.0. The log-log plot somewhat 
retains the macro-level shapes of the piecewise curves.

Further reading
The Mathematica Journal is a free journal with a wonderful community where 
experts and intermediate users share their thoughts and tips on programming  
with Mathematica. Interested readers can access the current and previous  
volumes in the following link: http://www.mathematica-journal.com/.

Mathematica has loads of functions that are used to manipulate lists. The same  
goes for the amazing number of options it offers to customize our plots. We will 
cover some more plots in the upcoming chapters, but we cannot possibly list 
every feature and function. Our goal is to learn visualization by developing some 
small projects. An introductory book that introduces Mathematica programming 
to beginners is Programming with Mathematica by Paul Wellin. The Mathematica 
documentation is a very good resource to find all the plotting options and their 
usage. Other useful list-manipulation techniques are also described in several 
tutorials in the documentation. When in doubt, or if you simply cannot remember  
a function or a feature, press F1!
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Summary
In this chapter, we have learned the basics of Mathematica programming that are 
essential for data loading and manipulation. Some frequently used list operations  
are described, along with the basics of functions and conditionals. We encounter 
numerical datasets for the first time in the book, using Import to load the datasets  
into Mathematica. The datasets are visualized using the ListPlot, ListPointPlot3D, 
and ListLogPlot commands. We have also learned about some basic styling of our 
plots. In the next chapter, we will look at more ways to visualize time series data,  
and get a taste of visualizing some commonly used scientific data formats.





Time Series and Scientific 
Visualization

We finished the last chapter with some basic plots to explore time series data.  
Time series visualization is an important tool that is used in many fields, including 
finance, economics, digital signal processing, and so on. Understanding how asset 
values evolve over time is an integral part of modeling and predicting fluctuations. 
Visualizing the wave properties of electrical signals over time helps us understand  
the underlying physics. Regardless of what signal we choose to analyze, seeing its 
micro and macro behavior at different resolutions over different durations reveals 
valuable information about it.

Any time series can be essentially interpreted and/or modeled as a signal.  
A quantitative analyst in Wall Street treats a series of daily stock price data as  
a stochastic signal with certain mathematical properties that can be measured  
and calculated from the signal. In the realm of mathematics, any time series  
data interpreted as signals can be given some meaning in this way, which can be 
someone's daily activity, monthly electricity usage, a country's GDP over decades, 
and so on. Visualization plays an important part in seeing trends in time series,  
and it also helps in deciding what kind of mathematical tools can be applied to  
the dataset.

Time series visualization overlaps with scientific visualization. Scientific data comes in 
many forms. Time series is one of the most widely used data types. Among other types 
of dataset, scalar fields (as discussed in Chapter 1, Visualization as a Tool to Understand 
Data) are commonly used by scientists and engineers to understand the characteristics 
of a quantity measured in a well-defined volume of space. In this chapter, we will learn 
some more visualization techniques for time series data, along with the methods to 
visualize scalar field data.
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The emphasis will be on mastering Mathematica's interactive graphics programming 
language to visualize some real-world data. Mathematica provides many plotting 
functions to plot different forms of time series and scalar field datasets. Instead 
of listing all of the function names with examples, we will dig a little deeper and 
explore how we can create custom visualization tools to solve different scenarios.

Periodic patterns in time series
Often, there are recurring trends in the data that suggest a periodic pattern, and 
simple plotting of the time series (like what we did in Chapter 2, Dissecting Data Using 
Mathematica) might not reveal such patterns. Besides, some datasets are inherently 
periodic. The daily Internet usage of a community can be represented as the hourly 
percentage of people using the Internet over a span of 24 hours. We can collect such 
data for a month and visualize any visible trend present in the data. So, what we will 
have is a percentage number between 0 and 1, recorded for each hour over 30 days.  
If we are given such a structured dataset, it might not be wise to simply plot the 
points over time. We would like to compare hourly activity side by side so that  
we can compare any difference on an hourly basis.

There is an easy solution if we want to stick to point plotting. We can use the Table 
function and the ;; operator to divide the data into 30 sets of equal length; this 
way we will divide the dataset into daily Internet activities. We can also use the 
Partition function (introduced in Chapter 2, Dissecting Data Using Mathematica) to 
achieve this. Some of these datasets can be graphed in the same plot to compare the 
hourly values. This is all good, except if we want to compare several days and the 
plots start to get cluttered with many lines. If the percentage values are nearer to  
one another, it will be hard to compare the different values at the same hour.

In such cases, a common practice among visualization scientists is to use a visual 
representation that is inherently periodic. This is the whole idea behind spiral  
charts and sector charts. Before we move on to how we can create a sector chart 
using Mathematica, let's take a look at some examples. The example data for the 
charts are simulated by the author using a simple observation—we tend to use the 
Internet in the weekend evenings more than in the weekend mornings. On the other 
hand, due to office activities, we expect more people to use the Internet during the 
daytime, with a peak around the afternoon hours.
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The following figure shows two sector charts, where an angular section represents a 
duration of one hour, and the radial length of the bar in each of the sections represents 
the percentage Internet activity for that hour. Therefore, each ring represents a day 
(with 24-hour ticks), and we essentially have a radial bar chart for every day, where 
hourly activities can be compared very easily over a number of days. One figure shows 
the activity for two weekdays, and the other shows a weekday going onto a weekend 
day. Can you guess which one is which?

Figure 3.1 Two sector charts showing daily Internet usage, each for a period of two days

The chart on the left shows that both days (that is, both rings) have a peak activity 
at around noon, so we conclude that this represents the two weekdays. The chart on 
the right has the inner ring peaking at around noon; the outer ring has a peak during 
the evening time. So, we conclude (based on our simple model) that the figure on the 
right shows one weekday and a weekend day.

Sector charts
Sector charts can easily be created using Mathematica as it provides a built-in function 
to do so. The syntax is:

SectorChart[data, options]
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Here, data needs to be in the form {{x1, y1}, {x2, y2}, …}. Here, xi represents the sector 
angle of a particular bar, and yi represents the radial length of the bar. Mathematica 
will scale the values appropriately to take account of the maximum and minimum 
values present in the dataset. If we want to plot several charts together (like in the 
previous figure, where we visualized two different datasets representing the activity 
over two days), the syntax is simple enough:

SectorChart[{data1, data2, …}, options]

Here, each of the datasets needs to have the same structure as the preceding  
code snippet.

Simulating Internet activity
Let's generate some simulated Internet activities of a community based on our simple 
weekday-weekend activity model. The following code models the Internet usage:

(* a simple weight function that models internet usage over 24 hours 
in a working day. The community reaches the peak of usage in the noon, 
and most go to sleep at 12 am, except the coders! *)
wf = Table[ Sin[x], {x, 0, Pi, Pi/24.0} ] [[1;;24]];

(* a model for the weekend, when people use more internet in the 
evening *)
wf2 = Table[ Sin[x] * Exp[x], {x, 0, Pi, Pi/24.0} ] [[1;;24]];
wf2 = wf2 / Max[wf2];

Before we explain this piece of code, let's look at the graphs of wf and wf2 in the 
following figure:

Figure 3.2 Weight functions for (left) weekdays and (right) weekends
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Here, we declare two weight arrays. Each has 24 elements. The wf array (on the left) 
is sampled from a sinusoidal function over 0 to Pi, so we have the upper half of a 
sine curve and get a peak value at the middle of the curve. The values are between  
0 and 1. This represents a weekday's hourly activity. The wf2 array is sampled in the 
same way, but this time the function is chosen in such a way that the activity rises as 
we reach 9 and 10 p.m., and falls off quickly as we go to sleep by 12 a.m. (assuming 
no one goes to late-night hangouts and parties). Each value is scaled to lie within 0 
and 1 by dividing it with the maximum value present in the set.

You might be wondering why we are calling these weight arrays. This is because  
of what we are going to do next. If we simply take these values as the percentage of 
active people, then there is no random element involved here. Next, we will choose 
a set of random numbers (between 0.5 and 1) for each hour, and multiply each set of 
daily activity model (wf or wf2) with these numbers, to get a randomly distributed 
hourly activity set that roughly follows our model:

(* simulate two weekdays with some randomness *)
data1 = Partition[
 Riffle[ ConstantArray[1,24], RandomReal[{0.5,1}, 24] * wf ]
 , 2 ];
data2 = Partition[
 Riffle[ ConstantArray[1,24], RandomReal[{0.5,1}, 24] * wf ]
 , 2 ];

(* simulate a weekend *)
data3 = Partition[ 
 Riffle[ ConstantArray[1,24], RandomReal[{0.5,1}, 24 ] * wf2 ]
 , 2];
data4 = Partition[ 
 Riffle[ ConstantArray[1,24], RandomReal[{0.5,1}, 24 ] * wf2 ]
 , 2];

There are several function calls here to prepare our dataset in the format required 
by the SectorChart function. Let's deconstruct the code for one dataset from 
the bottom of the function calls. We create an array of random values using the 
RandomReal function. The function syntax in our case looks like RandomReal[{min, 
max}, num], which returns a list of length num containing uniformly distributed 
values drawn from the range defined by min and max. This randomly generated 
array is multiplied with wf or wf2 to create our desired 24-hour activity list.
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The SectorChart function requires a dataset in the format {{x1, y1}, {x2, y2}, …}. In our 
case, since we are looking at the hourly activity, all the xi values will be 1. So, we next 
create an array of ones with the ConstantArray function. ConstantArray[value, 
num] returns an array of length num, with the array elements filled with value.

Now we have two lists that have our xi and yi values. The Riffle function takes  
in two lists, and returns a combined list where the elements are taken from each 
array in an alternating fashion. For example, Riffle[{a, b, c}, {d, e, f}]  
will return the list {a, d, b, e, c, f}. Using Riffle with our x and y lists, we 
now have a list of the form {x1, y1, x2, y2, …}. Finally, we use Partition to divide  
this list into a set of non-overlapping sublists, each of length 2. This gives us our 
desired {{x1, y1}, {x2, y2}, …} format.

SectorChart and its options
The same code structure is used to generate four datasets. Let's visualize some of  
the datasets using the SectorChart command with no options:

SectorChart[data1]
SectorChart[{data1,data2}]

The following figure (left: data1 and right: data1 and data2 combined) shows the 
sector charts:

Figure 3.3 Sector charts for (left) data1 and (right) data1 and data2 combined
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The default SectorChart options color the bars according to the angular distance 
covered, so the bars are colored as the day progresses. However, since we are more 
interested in the hourly difference between the days, we will like our color map to 
color the bars according to the height of the bars. Also, note that the inner ring starts 
from the origin (0, 0). For visual consistency with the other outer rings, we will make 
the origin start at (0, 1) in polar coordinates. Most importantly, we do not have grids 
and labels on the chart, so let's stylize our charts using the following code:

(* draw the sector chart of internet usage in the working days *)
SectorChart[ {data1,data2}, SectorOrigin->{Automatic,1}, PolarAxes-
>{True, False}, PolarGridLines->{Automatic,None}, PolarTicks-
>{Automatic,None}, ColorFunction-> Function[ {x,y}, Hue[x, y*0.5, 0.5, 
0.5] ]
]

The options are listed in the following points:

• SectorOrigin: This decides where to start the polar coordinate origin  
of the sector chart. The {Automatic, 1} parameters tells it to find the 
optimal angular coordinate and set the radial coordinate to 1. It leaves  
an empty circular space in the origin.

• PolarAxes: This determines whether to display axes in the angular and 
radial directions. We choose to have only the hour ticks, so we set angular 
ticks to True and radial ticks to False.

• PolarGridLines: This determines whether to display grids in the angular 
and radial directions. We will like to emphasize each hour so that we 
can compare between the hourly activities seamlessly. The angular grids 
(representing the hours) are set to Automatic and radial grids are set to  
none to reduce the clutter in the visual information.

• PolarTicks: This determines what labels to put as the tick values along the 
axes. We label each hour by setting the angular component to Automatic, 
and the radial component to none.

Finally, we create a custom color map to suit our needs. Similar to the plot in  
Chapter 2, Dissecting Data Using Mathematica, we define our own ColorFunction 
by a function that takes in a pair of values, {x, y}, as its argument. Each pair of 
values in the dataset is passed to this function, and it calculates a color value using 
the Hue function. The Hue function represents a color in the HSB (Hue, Saturation, 
and Brightness) color space, which is a different color space compared to our known 
RGB colors. It takes in three values for the H, S, and B components, and another 
additional value that determines the opacity of the bars. We create semi-transparent 
bars by providing an opacity value of 0.5.
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Let's look at the result of changing these options in the following screenshot:

Figure 3.4 Styled sector chart

We now have grids, hour ticks, an appropriate color map (based on the radial height, 
not angular distance), and a proper sector origin. This makes it quite easy to track the 
changes along a particular hour across several days.

The figure becomes a little bit cluttered if we try to visualize all the days together. 
You can try and plot the four datasets to see how they look. The grid lines guide us 
to distinguish between hours; however, an experienced user of this chart might not 
need any guidance to see the global trends. Next, we plot all 4 days of data in the 
same plot, and take out the grids just so the global trends are emphasized, using  
the following code:

(* move from weekdays to weekends *)
SectorChart[ {data1,data2,data3,data4}, SectorOrigin->{Automatic,1}, 
PolarAxes->{True,False}, PolarGridLines->{True,None}, PolarTicks-
>{None,None}, ColorFunction-> Function[ {x,y}, Hue[x, y*0.5, 0.5, 0.5] 
]
]
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The result is demonstrated as follows:

Figure 3.5 Visualizing several days' activity together

The trends and peaks are clearly visible in this visualization, and adding some more 
days will still maintain the simplicity, revealing the general trends over days.

Note that we can use SectorChart in other scenarios where both the angular and 
radial component vary. For the purpose of periodic time series visualization, we 
should stick to the repetitive component (angular direction) as time and set the 
observed value at each time point as the radial component.

The SectorChart function has a 3D version, called SectorChart3D, 
with the additional dimension of height. This can be useful to monitor 
another dimension of data associated with the time series.

Interactive visualization of financial data
Financial time series data is random in nature, and any visible patterns in such  
data depend on many market factors. From the perspective of visualization, it is  
best to build customized tools to monitor the variables of interest, instead of using 
the general plotting tools that are available to us. Mathematica provides a set of 
financial data-plotting tools that are suitable for quantitative analysts and market 
researchers. These tools require specific knowledge of advanced financial analysis. 
Instead of covering these in detail, we will focus on solving data visualization case 
studies according to our needs.
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Keeping up with the spirit of the book, which is to learn how to create custom 
visualization tools in different scenarios, we will now build an interactive visualization 
tool to monitor a financial time series at different resolutions interactively. The code 
can be changed very easily to calculate and monitor different variables of interest 
over time. In the process, we will start to get deeper into the graphics programming 
language that Mathematica provides to its programmers.

The DateListPlot function
A common form of financial time series that we encounter is as a date stamp with 
the stock price for that day. Mathematica has a rich collection of example datasets 
that include some financial time series data too. Let's start by loading the stock price 
values for IBM, using the following code:

data = FinancialData["IBM", All];

The FinancialData function is a custom function that takes in an entity name as  
its first argument and returns a range of data from the pool of data available for  
that particular entity. In this case, we loaded the stock price values of IBM, and  
we asked Mathematica to provide us the full range of data in the second argument.  
The data format is { {{2011, 9, 20}, 166.97}, {{2011, 9, 21}, 165.34}, 
… }, where every element in the list contains a date list in the {year, month, day} 
format, followed by the stock price value. We can use the DateListPlot function  
to visualize this data, as shown in the following code snippet:

DateListPlot[data, Joined->True, Filling->Bottom]

The output of this code snippet is shown in the following screenshot:

Figure 3.6 DateListPlot of IBM stock prices
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The DateListPlot function is a special variant of ListPlot that shares the same 
syntax and many options. As we can see, the available data range is from around 
1960 to 2014. We can also see the global trend from this plot. What is not present 
is a custom zoom tool that lets us dynamically select a data range and see the 
fluctuations and actual data points, which we will build. The following screenshot 
shows what the end product will look like:

Figure 3.7 DateListPlot interactive zooming tool

We have two plots in this visualization. The bottom plot shows the overall dataset, 
and the top plot works as an inset; moving the mouse pointer over the bottom  
plot will move the vertical gray line horizontally along with the pointer, and the  
inset window will show a range of dates and the raw values of the stock price 
(without interpolation) around that line, centering the inset plot at the position  
of the gray line.
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Adding interactivity – preliminaries
We will work with a much smaller range of data to demonstrate our code.  
To be precise, let's work with the latest 600 records. Let's calculate some other 
essential quantities too. This is achieved by using the following lines of code:

data = data[[-600;;]];
yearmin = Min[ data[[;;,1,1]] ]
yearmax = Max[ data[[;;,1,1]] ]
datamin = Min[ data[[;;,2]] ]
datamax = Max[ data[[;;,2]] ]

With the negative indexing, we ask Mathematica to set the data to the last  
600 records. Then, we calculate the minimum and maximum years present in  
this reduced dataset. The data[[;;, 1, 1]] function provides a list of years 
(selecting all records, choosing the first element that is a date, and then getting  
the first element of the date, which is the year number). Here, Min and Max give  
the minimum and maximum values in this list. Next, we calculate the minimum  
and maximum stock price values similarly.

We then write the following function that will convert a pair of coordinate  
values on the plot image to the actual dataset range indices it will represent.  
The coordinate values are assumed to be normalized to a [0, 1] scale:

mapCoordToInd[coord_, range_]:=
 (* =!= is the symbol for the UnsameQ function *)
 Which[coord =!= None,
  tmin = coord[[1]] - 0.1;
  tmax = coord[[1]] + 0.1;
  If[ tmin < 0, tmin = 0];
  If[ tmax > 1, tmax = 1];
  ind1 = Ceiling[ range * tmin ];
  ind2 = Ceiling[ range * tmax ];
  If[ ind1 < 1, ind1 = 1];
  {ind1, ind2}
 ,
  coord == None,
  ind1 = 1;
  ind2 = range;
  {ind1, ind2}
]
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The function takes in coord, which is a pair of coordinate values, and the length 
of the dataset list as the range variable. Using a Which conditional statement, we 
decide whether the value of coord is not None (the =!= operator is similar to the not 
equals operator). If this is so, we calculate tmin and tmax to get a range centering the 
coord value. Then, we constrain tmin and tmax so that they do not go beyond the 
[0, 1] range. Next, range is multiplied with tmin and tmax to get the desired lower 
and upper indices that we will use to extract a smaller range of data from the actual 
dataset. We return these indices as a pair. If the value of coord is None, which is the 
case when the mouse pointer is not on top of the main plot, we simply set the indices 
to include the full range of data.

We write the function in a separate cell and evaluate the cell to compile the function.  
This function will be called every time there is a mouse movement over the main plot. 
We will extract the normalized mouse coordinate position within the plot image using 
the MousePosition function, and pass it on to the above function to get back a range 
of index values, in order to plot a reduced dataset. The MousePosition function will 
need to be updated dynamically, which is where the actual interactivity functions of 
Mathematica enter the scene. Before we talk about dynamic interactivity, let's pause  
for a while to familiarize ourselves with the graphics package of Mathematica.

Intermission – Graphics and Show
We will use the graphics package quite a lot throughout the rest of the book to 
create visualizations. Graphics is a powerful package to draw graphic primitives in 
a canvas. Starting from circles, lines, and rectangles, we can render text and other 
shapes on the canvas. We can combine different graphic elements and canvases  
to create custom plots and visualization. Every plot we create in Mathematica is  
a graphics element, so they can be combined with other primitive shapes too.

The graphics package is quite simple to use. Let's start by creating a circle, using the 
following line of code:

Graphics[ Circle[ ] ]

This code will create a canvas with a circle of unit radius. The real syntax of graphics 
is as follows:

Graphics[{properties1, element1, properties2, element2, …}]
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Each drawing element's property needs to be described before we issue the command 
to draw the element. The property arguments are optional, or can be more than one,  
as demonstrated in the following code:

g1 = Graphics[{ Thick, Black, Circle[{0,0}], Thin, Blue, 
Circle[{3,3}], Gray, Text["Example Text",{2,2}] }]

This creates a canvas with a circle centered at (0, 0), another circle centered at (3, 3), 
and a text starting at the coordinates (2, 2). By default, the circle has a radius of 1, 
unless we ask Mathematica to use a specific radius. Study the following figure 3.8  
to see what the canvas looks like.

Let's create another line, and combine the two different graphic elements into  
one canvas:

g2 = Graphics[{ Thick, Black, Dashed, Line[{{0,3}, {3,0}}] }]
Show[g1, g2]

Here, we create a thick and dashed line using the Line function, which takes in a set of 
points to draw lines between them. In this case, the line is rendered from (0, 3) to (3, 0). 
We store this graphic element in a variable named g2, and we show g1 and g2 together 
using the Show command. This command is used to combine a variety of graphic 
elements. In the following screenshot, the left half of the image shows g1, while the 
right half of the image shows g1 and g2 combined using the Show command:

Figure 3.8 Basic primitives rendered using the Graphics function

The canvas adjusts its range to automatically include all the drawing elements,  
so we do not need to manually define the canvas area.
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Adding interactivity – Dynamic and Refresh
As mentioned before, we will need to send the dynamically updating mouse 
coordinate positions to the mapCoordToInd function, and plot the zoom inset 
dynamically. In order to achieve this, we will write the rest of the code within a 
function called Dynamic. This is one possible way to achieve dynamic interactivity  
in Mathematica. The function updates the code or objects inside it dynamically,  
the refresh rate of which can be controlled using the Refresh function. Here is  
the rest of the code:

Dynamic[
 coords = MousePosition["GraphicsScaled"];
 coords2 = MousePosition["Graphics"];
 If[coords2 == None, coords2 = {0, 0}];
 Refresh[
  (* find date range *)
  inds = mapCoordToInd[ coords, Length[data] ];
  insetg = DateListPlot[ data[[ inds[[1]];;inds[[2]] ]], 
AspectRatio->1/6, ImageSize->{500, 100} ];
  dlp = DateListPlot[ data, ImageSize->500, Filling->Bottom, Joined-
>True];

  Grid[{
   {insetg},
   {Show[ dlp,
Graphics[{Gray,Thick,Line[{{coords2[[1]],datamin},{coords2[[1]],datam
ax}}] }]
   ]} (* end of Show *)
  }], (* end of Grid *)
  UpdateInterval->1
 ] (* end of Refresh *)
] (* end of Dynamic *)

Inside the Dynamic function, we call the MousePosition function with two different 
arguments. The coords function stores the scaled value (between 0 and 1) of the 
mouse position in the graphics canvas, and coords2 store the unscaled mouse 
position. The coords2 function is validated with an If condition, in case the 
mouse pointer is not over the graphics canvas, and set to (0, 0). Next, we enter the 
Refresh function. The syntax for the Refresh function is Refresh[expr, opt], 
where expr is the expression that will be updated by the Dynamic function, and opt 
can be various options that set the nature of updating. In this case, we set opt to 
UpdateInterval -> 1, which updates expr every 1 second.
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With the scaled mouse pointer coordinates in our hand, we use our mapCoordToInd 
function to obtain a range of indices for the zoom plot, and create and store the plot 
in the insetg variable. The AspectRatio is set to 1/6 so that the plot is somewhat 
flattened, and the plot size is set manually using the ImageSize option. Then, the 
main plot with the full range of data is created and stored in dlp.

Finally, we use the Grid function that takes in a 2D list to arrange our plots nicely. 
In the first row of the grid, we place insetg. In the second row, we use the Show 
function to combine the main plot, dlp, with the gray indicator line. The line object 
is rendered using the graphics package, it uses the plot boundaries we calculated 
initially, and the updating mouse coordinates to draw a vertical line on the main 
plot. As a result, the line moves with the mouse pointer. That's it!

Evaluate the cell containing this code and you will see the interactive tool in  
action. With this small tool, it is much easier to interactively zoom into different 
datasets. We can tweak the code to do the same thing with ListPlot and other  
similar plots. Just replace the DateListPlot command with a plot command 
of your choice, as long as the dataset is correctly formatted to comply with our 
mapCoordToInd function.

With very little code, we created our first interactive visualization tool. So far, we 
covered the basic essentials of time series visualization. It is time to look into other 
types of scientific datasets too. What comes naturally after time is space. The rest  
of the chapter will be devoted to the visualization of spatial scientific data.

Isocontour and molecular visualization
In Chapter 1, Visualization as a Tool to Understand Data, we introduced the concept  
of scalar field, which is just a mathematical term used to describe the position-based 
values of a scalar quantity. Let's recap the example given in Chapter 1, Visualization as 
a Tool to Understand Data. Pressure, temperature, potential, and other physical values 
are often associated with coordinates to quantify the spatial variation of the physical 
parameter. To measure the temperature of a big space, instead of taking a single 
reading at a certain position, it makes better sense to measure the temperature at 
different locations and present them in a sorted manner.

A discrete scalar field is a set of such coordinates—scalar tuples. In this section,  
we will demonstrate how to visualize contours from these datasets (and why they 
are useful). In an effort to maximize our exposure to scientific datasets, we will  
work with a protein molecule to build a molecular visualization tool—a prototype  
of professional tools that are used by scientists. The visualization will render the 
atoms present in the protein along with layers of electrostatic potential isocontours.
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If you are not familiar with the physics of electrostatic fields, don't worry, as you 
really don't need to know. After all, our focus is to create isocontour visualization, 
not theoretical physics!

Introduction to isocontours
Let's start with a 2D scalar field for the sake of simplicity. We will create a mock scalar 
field in Mathematica, and visualize the isocontours with the field to understand what 
an isocontour really means. The code for the 2D scalar field is as follows:

(* 2d scalar field visualization *)
(* create a scalar field of the form {x, y, x^2+y^2}, the scalar value 
at each coordinate is x^2+y^2. *)
sc2d = Flatten[ Table[{x, y, x^2+y^2}, {x,1,8},{y,1,5,0.5} ], 1 ];

(* divide by the maximum value of the scalar quantity to scale the 
other scalar values to [0, 1] *)
sc2d[[ ;;, 3 ]] = sc2d[[ ;;, 3 ]] / Max[ sc2d[[ ;;, 3 ]] ];

(* visualize the scalar field, grayscale intensity of each point is 
set according to the scalar value at that point *)
Scg = Graphics[ Table[{
GrayLevel[ sc2d[[i,3]] ], Disk[{sc2d[[i,1]], sc2d[[i,2]]}, 0.1]}, {i, 
1, Length[sc2d] }] (* end of Table *)
] (* end of Graphics *)

Here, sc2d is a list that contains a 2D scalar field. Using the Table function, we created 
a list that has the form {{ {x1, y1, S11}, {x1, y2, S12}, …}, { {x2, y1, S21}, {x2, y2, S22}, …}, …}. 
Essentially, it is a 2D matrix of x and y values, with a scalar value S associated with 
each coordinate. Here, S is calculated using a simple formula, S = x^2 + y^2.

Next, we flatten the list to its first level, so we have a list that now looks like  
{ {x1, y1, S11}, {x1, y2, S12}, …, {x2, y1, S21}, {x2, y2, S22}, …}. Note that an extra level  
of curly brackets is now gone. This is done because the isocontour plot function 
requires the data in this format. The data here maintains a nice sequence in terms  
of x and y axes progression, but Mathematica's isocontour plot functions can also 
handle irregular point sets.
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Then, we divide the scalar values by the maximum scalar value present in the data 
to scale all the values between 0 and 1. This is done to visualize the scalar value—we 
call the Graphics function to render a set of disks of radius 0.1, placed at the x and y 
positions mentioned in the scalar field, and set their color to a grayscale value (between 
0 and 1). Once we have this graphic element stored in scg, we can plot the isocontours 
using the ListContourPlot function and show them together, as follows:

lcp = ListContourPlot[sc2d, AspectRatio->0.6, ColorFunction-> 
ColorData["Aquamarine"], Contours-> 4]
Show[lcp, scg]

The following screenshot shows what the outputs look like (left: scg and right:  
lcp and scg combined):

Figure 3.9 (left) Points are shaded according to their scalar values, and (right) contour plot  
and points are rendered together

The ListContourPlot function plots the isocontours of a scalar field. The syntax for 
this function is:

ListContourPlot[data, opts (Contours, …)],

Here, an essential option is Contours. It can be set either to the number of desired 
contours, or to specific contour values. Next, scg and lcp (the contour plot) are 
combined on the same plot using Show.

Let's take a moment to understand what is going on here. Our scalar field is 
represented visually in scg, where a higher grayscale value indicates a higher  
scalar value. Hence, we can infer from the figure that as we move from the lower  
left corner to the upper right corner, the scalar values associated with the points 
increase. The contour plot overlaid with scg shows the contours for this scalar  
field. Contours define the approximate areas where the scalar quantity remains  
the same. Notice the approximately similar grayscale values of any set of points  
that belong to the same shaded area.
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Contours provide a quick way to figure out the spatial distribution of scalar values 
in a scalar field. Since they reveal groups of equal (iso) values, they are also called 
isocontours. It is harder to distinguish between values just by coloring the points 
according to the associated scalar value (as done in the case of scg). The isocontour 
plot shown in the preceding figure provides us a better way to judge the overall 
structure of the scalar field, without examining the points individually.

Example project – protein molecule 
visualization
Scientists who work in the fields of structural biology, drug design, or biophysics 
often use molecular dynamics simulations to understand the structure of proteins. 
In these simulations, an essential physical quantity of interest is the electrostatic 
potential field in and around the protein structure. This is essentially a scalar field, 
with electric potential values calculated at regularly spaced intervals within the 
volume, confined by the protein molecule.

In this project, we will pull together some of the concepts and functions discussed  
so far in this chapter, along with another new function, Manipulate, that replaces  
the Dynamic function to bring in a whole new level of interactivity. The scalar field 
data for the project is generated in the notebook ScalarFieldGeneration.nb.

The actual calculation of the field requires sophisticated mathematics, so the author, 
in an attempt to keep things simple, used a dummy mathematical model to generate 
the field. Interested readers are encouraged to read the code. It demonstrates the use 
of compiled functions and ParallelTable to speed up the calculations by several 
orders of magnitude. This is a good lesson for those who are also interested in big 
data and high performance computing with Mathematica.

For our project, we created three scalar field files using the code in 
ScalarFieldGeneration.nb, and saved them in the data folder of the  
Chapter3 code folder. Other than the scalar field data, we have a protein  
data file that is called 1CLL.pdb.
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Our final prototype will look like the following screenshot:

Figure 3.10 Protein molecule visualization tool

We will visualize the atoms present in the protein molecule as small transparent 
spheres. There will be two layers of 2D isocontours. These will show the overall 
structure of contours when the electrostatic potential field is projected on the x-y  
and y-z axes. Finally, we will render an isosurface, which is the three-dimensional 
version of isocontours. The surface will represent the points in 3D space that has the 
same potential, the potential value of interest being selectable from the drop-down 
menu named Contour. We will provide checkboxes to enable or disable rendering 
each of these elements in the visualization project.

Let's get started with the project.
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Loading and visualizing the protein molecule
The protein structure we will investigate is called 1CLL in the protein database.  
A standard file format used in the scientific community to exchange protein 
information is .pdb. Mathematica provides native support to import this file  
format, so we will take advantage of this, instead of writing our own file format 
reader. As always, let's set our working directory first, using the following code:

SetDirectory[NotebookDirectory[]]

Next, we will import the pdb file using the following lines of code:

dat1 = Import["data/1CLL.pdb", "ResidueAtoms"];
dat2 = Import["data/1CLL.pdb", "ResidueCoordinates"];

This is a new form of Import, with an additional argument to define the fields  
we are interested in. If we write the following piece of code in a different cell,  
then Mathematica will list the table headers present in the data file:

Import[["data/1CLL.pdb", "Elements"];

We will see that the 1CLL.pdb file has several data header elements. Basically, 
these list the different tables of data that are integrated in the same file. As a second 
argument in the Import function, we can provide the name of the header to import 
the relevant table.

In this case, we will import the tables ResidueAtoms and ResidueCoordinates. 
These tables complement each other. ResidueAtoms has the list of atoms that make 
up the protein molecule, and for each row in this table, the corresponding row in 
ResidueCoordinates lists the {x, y, z} position of the atom in the protein structure.

Let's also import the scalar field file at this point, using the following lines of code. 
One file is a 3D scalar field, which means that the ith row in the file has the format  
{xi, yi, zi, Ei}, where E is the electrostatic potential value at the coordinate {xi, yi, zi}. 
The other two files contain 2D scalar fields, similar to the structure we just dealt  
with for the 2D isocontour plot:

(* import the pre-calculated scalar field data *)
scfield = Import["data/sc3d_res100.csv"];
scxy = Import["data/scxy_res100.csv"];
scyz = Import["data/scyz_res100.csv"];
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At this point, if we want to see the total number of atoms that we will be working 
with, we can do the following:

(* how many residue atoms in total? *)
Tally[ Flatten[dat1] ]

The output will be {{N,182}, {C,694}, {O,247}, {S,9}, {Ca,4}, {H,1}}. 
These are the counts for each type of residue atom that is present in the molecule. 
Next, using the following lines of code, let's clean up the dat1 and dat2 variables, 
getting rid of extra levels of brackets:

(* fldat2 will contain the 3D coordinates of each atom, fldat1 will 
contain the element symbol of the corresponding atoms *)
fldat2 = Flatten[dat2, 2];
fldat1 = Flatten[dat1];

Now that we have the coordinates of each atom, and the atom names, let's visualize 
the position of these atoms using Graphics3D with the following code, which is just 
the 3D version of Graphics and is used for drawing 3D graphic primitives:

(* Create a table of graphics elements for all atoms *)
verttable = Table[
 { Opacity[0.2],
  Switch[ fldat1[[i]],
   "N", ColorData["Atoms"]["N"],
   "C", ColorData["Atoms"]["C"],
   "O", ColorData["Atoms"]["O"],
   "S", ColorData["Atoms"]["S"],
   "Ca", ColorData["Atoms"]["Ca"],
   "H", ColorData["Atoms"]["H"] ], (* end of Switch *)
  Sphere[ fldat2[[i]], 50 ] },
{i, 1, Length[fldat2]} ]; (* end of Table *)

(* visualize the atom positions *)
Graphics3D[verttable,Axes->True,AxesLabel->{X,Y,Z}]

Here, we create a list using the Table function, which will be passed on to Graphics3D, 
to draw spheres in the position of the atoms. Remember that Graphics or Graphics3D 
works using some primitive shape commands, but before placing the commands, we 
will need to define the style (color, size, and so on) for the graphic element.



Chapter 3

[ 71 ]

In this case, a sample list will look like the parameter {Opacity[0.2], Red, 
Sphere[{x

1
, y

1
, z

1
}, 50], Opacity[0.2], Blue, Sphere[{x

2
, y

2
, z

2
},  

50]}. When this list is passed to Graphics3D, we will see two red and blue spheres 
of radius 50 units placed at {x1, y1, z1} and {x2, y2, z2}, almost transparent because of  
the stated opacity value. We want to do the same for all the atoms.

The functions fldat2 and fldat1 have the same number of members. So, we parse 
through both using the same Table function. The fldat1 function contains the name 
of the elements. For the ith element of this list, we use a Switch statement to determine 
the color of the graphic primitive, based on the name of the atom. The syntax 
Switch[expr, form1, value1, form2, value2, …] takes in the test expression 
expr, and based on the possible values form

i
 of this expression, evaluates and returns 

value
i
. So, for each atom name, we return a particular color name. The color scheme 

presented here is based on Mathematica's own color scheme for atom names.

After we are done with the Switch statement, we include the sphere command 
and set the ith element of fldat2 as the sphere's coordinates. Thus, one element 
of the resulting list from this Table command will be {Opacity[0.2], (Color Name 
for Atom1), Sphere[{x1, y1, z1}, 50]}. This Table function will return a list containing 
similar sublists for each atom, which is then passed to the Graphics3D command. 
The following figure shows the output from the code:

Figure 3.11 Rendering the protein molecule with semitransparent spheres
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This is the physical structure of the residue atoms in the protein 1CLL. For later 
visualization purposes, let's store this graphic element in a variable in the following 
code, without the box and axes:

coordvis = Graphics3D[verttable, Axes-> False, Boxed-> False];

Here is what we will do next. At regular-spaced intervals inside the preceding 
bounding box, we already calculated the combined potential due to the whole group 
of atoms. This is saved in the 3D scalar field, scfield. The other two scalar fields, 
scxy and scyz, contain the 2D scalar fields that are the potential fields for the x-y 
and y-z planes (refer to the screenshot of the visualization, figure 3.10, for details). 
We will generate the contour plots (both 3D and 2D), and combine them using the 
Show command. To combine the 2D plots in a 3D space, we need to embed them as 
textures in polygons.

Preparing the isocontour plots
We need to know the bounding box of the atoms that we visualized previously.  
This is done by parsing through fldat2 for each axis and finding the minimum  
and maximum values, as done in the following lines of code:

minx = Min[fldat2[[;;,1]]]
miny = Min[fldat2[[;;,2]]]
minz = Min[fldat2[[;;,3]]]
maxx = Max[fldat2[[;;,1]]]
maxy = Max[fldat2[[;;,2]]]
maxz = Max[fldat2[[;;,3]]]

Next, we will plot the 2D isocontours and store them as graphics:

lpxy = ListContourPlot[scxy, ContourShading->Automatic, ColorFunction-
>ColorData["CoffeeTones"], ContourStyle->None, Frame->False]
lpyz = ListContourPlot[scyz, ContourShading->Automatic, ColorFunction-
>"BlueGreenYellow", ContourStyle->None, Frame->False]

In order to embed these plots as textures in a polygon, we create a polygon  
with four points in the 3D space, using the appropriate minimum and maximum 
bounds as the coordinates of the polygons to ensure that they are big enough in  
the final visualization:

glpxy = Graphics3D[ {White, Texture[lpxy], Polygon[{{minx,miny,minz}, 
{maxx,miny,minz}, {maxx,maxy,minz}, {minx,maxy,minz}}, 
VertexTextureCoordinates-> {{0,0,0},{1,0,0},{1,1,0},{0,1,0}}]}, Boxed-
>False, Lighting->"Neutral"]
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We set the Texture property of the Polygon shape (defined within Graphics3D) to 
the plot image we just created, which is lpxy. Then, for the x-y plane, the appropriate 
axes bounds are chosen as the polygon coordinates. The VertexTextureCoordinates 
function ensures that we map the corners of the image to the correct corners of the 
polygon. The 3D lighting property of Graphics3D is set to neutral so that no shadows 
are created. The same code is written for the y-z axes isocontour visualization, except 
with different bounds, shown as follows:

glpyz = Graphics3D[ {Texture[lpyz], Polygon[{{minx,miny,m
inz},{minx,maxy,minz},{minx,maxy,maxz},{minx,miny,maxz}}, 
VertexTextureCoordinates->{{0,0,0},{1,0,0},{1,1,0},{0,1,0}}]},  
Boxed->False, Lighting->"Neutral"]

The following figure shows the polygons generated using the preceding code:

Figure 3.12 2D isocontour plots of the potential field

Adding interactivity – manipulate
In the rest of the code, we will gather all of the above graphic variables under one 
construct using Show. However, instead of Dynamic, we will use Manipulate.

The Manipulate function is a wonderful Mathematica function to integrate 
interactivity with our visualizations. The basic syntax is:

Manipulate[ expr,{u, umin, umax }]
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Here, u is a variable that can be used inside expr. Based on the minimum and 
maximum values of u, Mathematica will present us with an interactive panel to 
interact with whatever expression we put as expr. For example, take the following 
code snippet:

Manipulate[x,{x,1,10}]
Manipulate[ Graphics[{GrayLevel[x],Disk[]}], {{x,0.1,"Grayscale"}, 
{0.1,0.5,0.7}} ]

This code will produce interactive panels as shown in the following screenshot:

Figure 3.13 (left) simple Manipulate example, and (right) controlling the fill of a circle in Manipulate

For the first panel (left), we only defined the minimum and maximum values of x. 
After evaluation, Manipulate provided us with a drag panel to change the value 
of x. Instead of defining a range, if we define a set of values (along with an initial 
value and label for the variable, for example, {x, 0.1, "Grayscale"}, it sets the 
x value to 0.1 initially, and labels the variable with the string "Grayscale"), then 
Manipulate will provide us with list of values to choose from (right).

We will use Manipulate in a similar way to create the final visualization.

Isosurface and styling
The rest of the code using Manipulate is as follows:

Manipulate[
 Show[
  If[layer1,glpxy,{}],
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  If[layer2,glpyz,{}],
  If[isosurface, ListContourPlot3D[scfield, Contours->{conts}, Mesh-
>None, ContourStyle->{Opacity[0.8]}, PlotRange->All, ColorFunction-
>"Aquamarine", Boxed->False, MaxPlotPoints->40], {}],
  If[molecules,coordvis,{}],
  Lighting->"Neutral",
  Boxed->False,
  Axes->False
 ], (* end of Show function *)
 {{conts,-4.2,"Contour"},Table[i,{i,-4.6,-3,0.2}]},
 Row[{Control[{{layer1,True,"XY Layer"},{True,False}}], 
Control[{{layer2,True,"YZ Layer"},{True,False}}],
Control[{{molecules,True,"Molecules"},{True,False}}],
Control[{{isosurface,True,"Isosurface"},{True,False}}]},
Spacer[20], Frame->True] (* end of Row *)
] (* end of Manipulate *)

The brackets can be a little difficult to trace, so I recommend taking a look at the code 
inside Mathematica, since it offers bracket highlighting. There can be multiple panel 
variables in Manipulate (unlike a single variable x, such as the basic examples given 
in the previous code). In our case, we only need checkboxes for four Boolean variables 
and a combo box to select the desired isovalue for the isosurface. If the Boolean value 
for the checkbox variable is True, then we decide to show the respective graphic 
element. This is done within the Show with If conditionals. The four Booleans are 
isosurface, layer1, layer2, and molecules. Inside Show, we check each of them  
in turn, and return the previously calculated graphic elements if they are checked.

The isosurface plot is created on the go using the ListContourPlot3D function.  
It has the same syntax as ListContourPlot, except that it has {x, y, z, E} as the input 
list format, instead of {x, y, E}. The contour to render is selected from the variable 
conts (Contours -> {conts}), which is just another control/panel variable under 
Manipulate. We defined the values explicitly for this variable (using a list of values 
generated using Table), so Manipulate will create a combobox for this variable. The 
other option worth mentioning is MaxPlotPoints. Setting MaxPlotPoints to a finite 
number (lower than the total number of points in the calculated isosurface mesh) will 
increase the speed of rendering the scene. However, the shape of the isosurface will 
not be very accurate if a very low number is chosen.

The checkboxes governing the Boolean values are declared using the Control 
function. The syntax is Control[u, dom], where dom is the domain for the control. In 
this case, our domain is only True and False, which helps Mathematica understand 
that these are checkboxes. They are organized inside a function named Row, which 
keeps them separated. The separation value is set using the Spacer option.
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Evaluate the cell to see the visualization in action (the figure shown at the beginning 
of the project). The 3D scene can be rotated to view from different angles.

Thinking like a visualization scientist – isovalue 
analysis
Using this tool, we can view different isosurfaces for different isovalues. Usually,  
it is not obvious what isovalues we should choose to see the different properties  
of scalar fields. In such cases, the histogram of all possible isovalues present in  
the scalar fields can be used as a guide, as shown in the following screenshot:

Figure 3.14 Histogram of isovalues present in the scalar field

In the histogram in figure 3.14 (generated using the Histogram[] function, to be 
introduced in the next chapter), there is a peak at around -2.5. This means that a lot 
of points in the scalar field volume have an isovalue of -2.5. Scientists are mostly 
interested to see the isosurface shape within and near the molecule. An isovalue 
closer to the peak will only yield the isosurfaces that occupy a larger area in the 
bounding box; for an electrostatic potential field, it is likely that such isosurfaces  
will enclose unnecessarily bigger volumes around the protein.
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Figure 3.15 Isosurface is (left) inside the molecule and (right) too big to fit in the domain

The isovalue -4.2 yields an isosurface that occupies less volume and is within the 
protein molecule region (left). However, an isovalue of -3.2 (closer to the peak) 
encloses a bigger volume and is not very interesting. The holes are created because 
the scalar field was not calculated beyond the bounding box of the molecule.

This example demonstrates that along with the visualization tool we create,  
some data hacking and trial-and-error is required to turn our tool into an  
effective visualization tool.

Further reading
The research literature in time series visualization and scientific visualization is vast. 
We only learned about the main techniques that Mathematica offers to visualize 
our data, but the design and aesthetics issues are equally (or more) important. The 
Visualization Handbook, Charles D. Hansen and Chris R. Johnson, Academic Press, lists 
detailed methods of isosurface and other scientific visualization algorithms. Time 
series visualization designs are discussed in many books. A survey of different 
designs can be found at the link http://survey.timeviz.net/.
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Summary
In this chapter, we actually covered a lot of ground to create interactive visualizations. 
Starting with periodic time series visualization, we built a small zoom tool to aid 
the exploration of time series. In the process, we made ourselves familiar with the 
Dynamic and Refresh functions—our first step in Mathematica interactivity. We then 
concentrated on spatial data visualization, specifically isocontours in 2D and 3D. The 
molecular visualization tool demonstrates the practical use of isocontours in the real 
world. We also introduced ourselves to Manipulate, the widely used function that 
helps Mathematica programmers create interactive applications. Our encounter with 
Manipulate was brief, but we will cover it in more detail in the next chapter so that 
you can gain a better understanding of this package.

It is important to realize that Mathematica provides the necessary plotting tools and 
functions to visualize our data, but instead of sticking to traditional plots and charts, 
we can do much more using this powerful language if we are willing to employ 
custom designs in our visualizations. The goal of the book is to teach you to do this. 
Hence, in the next chapter, we will focus on a few mini projects that deal with some 
other kinds of information. Through the development of these projects, we will learn 
more advanced techniques to create custom and interactive tools.



Statistical and Information 
Visualization

The word information can be used to define a broad range of knowledge and 
knowledge-based inference. In the context of our book, information visualization 
refers to the techniques of visualizing different kinds of dataset that we have 
introduced in Chapter 1, Visualization as a Tool to Understand Data. Even though time 
series and scientific data are also information, we have separated the previous chapter 
from the current one in order to respect the current categorization of research in 
the visualization community. Scientific visualization practitioners tend to deal with 
datasets that arise specifically in the context of scientific experiments or simulations, 
whereas information visualization practitioners have traditionally focused their 
research on other kinds of widely used data, such as text, graph networks, statistical 
plots, maps, and so on.

In this chapter, we will play with the capabilities of Mathematica to visualize 
statistical, text, and graph networks data. We will learn about some of the basic 
and essential statistical plot functions. As an example project, we will write some 
code to demonstrate some computational statistics concepts and the corresponding 
visualization in Mathematica. Also, by the end of this chapter, we should be confident 
and comfortable in handling both text and graph networks data, each section leading 
to its own mini project. Through the projects in the chapter, we will touch on some 
essential concepts of visualization theory.



Statistical and Information Visualization

[ 80 ]

Statistical visualization
Mathematica provides us with a wide variety of statistical plotting functions.  
Let's take a look at a few of them:

• Distribution shapes
 ° Histogram
 ° SmoothHistogram
 ° Histogram3D
 ° PairedHistogram
 ° DensityHistogram and so on

• Charting
 ° PieChart
 ° BubbleChart
 ° BarChart
 ° SectorChart
 ° PairedBarChart
 ° 3D versions of some of these charts

• Miscellaneous
 ° Gauges, such as AngularGauge, HorizontalGauge, VerticalGauge, 

BulletGauge, ClockGauge, and so on
 ° Financial charts, such as CandlestickChart, TradingChart, 

FinancialIndicator, KagiChart, RenkoChart, and so on

To visualize the distribution shapes of empirical data, Mathematica provides 
different kinds of histogram-plotting functions. SmoothHistogram provides 
a smooth estimation of the shape, whereas Histogram, Histogram3D, and 
PairedHistogram give a discrete shape (which is often better to understand  
empirical data). DensityHistogram is a plot for visualizing spatial data density.

The most common charting functions are listed next. We have already used 
SectorChart to visualize periodic time series data. PairedBarChart is used to  
display two sets of bar charts together for a side-by-side comparison, much  
like the PairedHistogram.
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Other than the standard plotting and charting, Mathematica has some miscellaneous 
visualization functions. Gauges and meters are useful for creating progress bars 
and similar range-specific information. Coupled with Dynamic or Manipulate, we 
can create various interactive visualizations. Financial charts provide some charting 
functions that are useful for finance analysts and quantitative researchers.

The miscellaneous functions are used less often. So, we will demonstrate some more 
common plotting functions in this section. The readers who are interested in learning 
more about other functions can look up the Mathematica documentation.

The swiss bank notes dataset
For some of the examples in this chapter, we will use the swiss bank notes dataset 
available in the example data repository of Mathematica. This dataset contains the 
margin and diagonal measurements of 200 swiss bank notes, of which 100 are genuine, 
and the other 100 are counterfeit. In the following code, the function ExampleData is 
used to load this dataset:

ExampleData[{"Statistics","SwissBankNotes"},"LongDescription"]
ExampleData[{"Statistics","SwissBankNotes"},"ColumnDescriptions"]
data = ExampleData[{"Statistics","SwissBankNotes"}];

The first line of code specifies the dataset we want to load, and pulls out the 
description given for the dataset. The ExampleData function's first argument 
specifies the dataset, and the second (optional) argument defines any information 
attributable to the dataset. In the third line, we actually load the dataset into the  
list data.

The output from the first two lines of the code is as follows:

Six measurements made on 100 genuine Swiss bank notes and 100 
counterfeit ones.
{Length of bill in mm, Width of left edge in mm, Width of right edge 
in mm, Bottom margin width in mm, Top margin width in mm, Length of 
image diagonal in mm, Genuine 0 or counterfeit 1}

The column descriptions are self-explanatory. An example entry of the dataset is 
shown in the following code:

{214.8, 131, 131.1, 9, 9.7, 141, 0}
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This particular dataset provides a chance to demonstrate the power of data 
visualization applied to a real-world problem—which is to distinguish the  
cluster of genuine notes from the counterfeit cluster, relying entirely on the  
margin measurements without the 0-1 labeling. This will be covered in the  
section on similarity mapping. For now, let's get back to statistical plots.

Histograms and charts
One of the attractive features of Mathematica is its integrity and ease of syntax.  
Most of the plotting functions do not really require any tutorial once the user  
figures out the input data format that the plotting function requires. This is just  
an F1 key-press away, as the comprehensive Mathematica documentation lists  
all the possible syntax and options of the function right away. The rest of the  
styling and beautification are done by defining some of the properties of the  
plots and charts, most of which are commonly shared between the different plot 
functions. Hence, instead of listing an example for each of the previous plots,  
we are going to pick a few examples to give us a feeling of the possible usage 
scenarios of these plots. The saved page space will be devoted to more exciting 
visualization adventures with interesting datasets!

Histogram
The Histogram function draws a histogram, which is the most used plot in statistics, 
from a list of data (or several lists of data, overlaying the different histograms on the 
same plot). The basic syntax is simple, and is as follows:

Histogram[data, bspec, options…]

Here, data is a list of numbers, bspec is the number of bins, and options are the 
styling properties for the histogram. Other than data, the rest of the arguments  
are optional. For plotting multiple datasets, we will use the following syntax:

Histogram[{data
1
, data

2
…}, bspec, options…]

Let's use the bank notes dataset to demonstrate some histograms:

(* histogram of bottom margin widths *)
Histogram[ data[[;;,4]], 20]
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This will result in the following figure:

Figure 4.1 A histogram of bottom margin widths

We have selected all rows that contain the fourth column, which will give us a list of 
numbers that contain the bottom margin widths. We have also specified the number 
of bins as 20. As shown in figure 4.1, the bank notes have a good variety of bottom 
margin widths. Let's compare the bottom margins with the top margins by plotting 
multiple histograms on the same plot using the following lines of code:

(* multiple plots and styling *)
Histogram[{ data[[;;,4]], data[[;;,5]] }, 20, Frame->True, FrameLabel-
>{"Bottom/Top Margin Width (mm)","Frequency"}]

The output of this code is shown in the following screenshot:

Figure 4.2 A histogram of bottom and top margin widths
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Mathematica chooses different colors to distinguish between the histograms 
automatically, unless we define our own colors. In the preceding figure, we have 
included a frame and set the frame labels for the horizontal and vertical axes using 
the FrameLabel option.

PairedHistogram
The two sets of numbers can be compared using PairedHistogram too. The syntax  
for PairedHistogram is as follows:

PairedHistogram[data
1
, data

2
, bspec, options…]

Let's compare sets of numbers that use PairedHistogram using the following  
code snippet:

(* paired histograms *)
PairedHistogram[ data[[;;,4]], data[[;;,5]], 20 ]

The number of bins is set to 20 again. This output can be seen in the  
following screenshot:

Figure 4.3 A PairedHistogram of bottom and top margins

The paired histogram plots both the histograms on two sides for bin-specific 
comparison.
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Histogram3D
This function can be used to visualize the distribution of random variables that  
have two dimensions. The syntax for this function is as follows:

Histogram3D[{ {x
1
,y

1
}, {x

2
,y

2
}, … }, bspec, options…]

Here, each element of the list is now a list of two numbers. Let's demonstrate the 
function using some randomly generated data using the following code:

(* 3d histogram example *)
data1 = RandomVariate[ NormalDistribution[0,1], {1000,2}];
data2 = RandomVariate[ NormalDistribution[3,0.7], {1000,2}];
Histogram3D[{data1,data2}]

Here, RandomVariate is a function that creates a set of random numbers based 
on the distribution entered in its first argument. The second argument seeks the 
dimension of the randomly generated list. For both the data series, we have chosen 
the normal distribution, one with a mean of 0 and standard deviation of 1, the 
other with a mean of 3 and standard deviation of 0.7 (thus, narrower and taller). 
Both datasets are of dimension 1,000 by 2, which means there are 1,000 rows, each 
containing 2 random numbers. Next, we pass both the datasets to Histogram3D. 
Figure 4.4 shows the result as follows:

Figure 4.4 A 3D histogram of two randomly generated datasets

The resulting figure can be tilted and rotated in Mathematica to explore the shape of 
the distributions.
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PieChart
The pie chart is a way to show the percentage occupation of different variables in  
the same space according to their magnitudes. The advantage of plotting a pie chart 
in Mathematica is the interactivity and labeling capabilities this function provides. 
Each slice in the pie chart can be clicked to distinguish it from the rest of the slices. 
The LabelingFunction property also provides several options to manage the slice 
labels, as shown in the following code snippet:

(* pie chart *)
data3 = RandomVariate[ NormalDistribution[1,0.5], 30];
PieChart[ data3, ChartStyle->"CoffeeTones", ChartLabels->Table[i, 
{i,30}], LabelingFunction->"RadialCallout"]

In this case, we have generated a random list that contains 30 numbers. The PieChart 
function is called with several other styling options. The ChartStyle option sets a 
different color map. The ChartLabels option takes in a list of labels to label each slice. 
In this case, we have only provided a list of numbers going from 1 to 30, labeling each 
number in the random list with their respective sequence. The LabelingFunction 
option is set to the value "RadialCallout" to show an extra layer of labels that state 
the actual values at the periphery of the chart, as shown in the following screenshot:

Figure 4.5 (left) The styled pie chart, and (right) clicking on the slices distinguishes them from the rest
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BubbleChart
The bubble chart is a nice way to visualize numerical datasets that have three 
dimensions. We can think of it as an extended version of ListPlot, where we 
plot points at (x, y) coordinates, but instead of drawing equally sized points, we 
draw filled circles, the radii of which represent magnitude values. This is perfect 
for visualizing data that have a magnitude component associated with the (x, y) 
coordinates. Let's look at the syntax and an example:

BubbleChart[{{x
1
,y

1
,z

1
}, {x

2
,y

2
,z

2
}, …}, options…]

The function takes in a dataset whose elements are each a tuple of three numbers. 
The first two numbers define the x and y coordinates of the point in the plotting 
space, and the third number defines a magnitude, and dictates the radius of the  
filled circle at that point:

(* bubble chart *)
data4 = RandomVariate[ NormalDistribution[1,0.5], {30,3}];
BubbleChart[ data4, ChartStyle->"GrayTones"]

We create a randomly generated list of 50 tuples that have three numbers. The 
BubbleChart function simply takes the data and plots them with the ChartStyle 
option set to the GrayTones color map. The following figure 4.6 shows the result:

Figure 4.6 A bubble chart with a randomly generated dataset
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If you have dabbled around the world of visualization for a while, then you must 
have heard of Hans Rosling, and watched his famous lecture on the evolution of 
poverty. In his lectures, he uses an interactive bubble chart to demonstrate how  
life expectancy and income vary for different countries as their population changes. 
This is nothing but a series of bubble charts with life expectancy in the vertical axis, 
GDP/capita in the horizontal axis, and population size of countries (points in the 
graph) acting as the magnitude associated with the 2D coordinates.

As an exercise, you can visit the Gapminder software website at 
http://www.gapminder.org/downloads/ to download the 
data from Hans Rosling's talks, and replicate the same interactive 
animation using BubbleChart and Manipulate in Mathematica.

Choosing appropriate plots
We have demonstrated a few statistical plotting capabilities of Mathematica.  
In the previous chapters, we also saw some other plotting packages in action.  
By now, we should have a better intuition on the types of plots, the input data 
formats, and the styling options that are available to us. At this point, a natural  
and very important question that we should be asking ourselves is the following: 
given a numeric dataset and a computer installed with Mathematica, what plots 
should we be using to investigate and dissect the dataset?

This is a difficult question and the answer varies widely based on the type of data. 
However, here are some tricks that will help us decide our plots:

• It is always a good practice to calculate the standard statistical quantities 
such as mean, median, standard deviation, minimum and maximum range, 
and so on, among other things; this helps us decide between normal and  
log-scale plotting.

• If the data is low-dimensional, that is, it is limited to two or three columns, 
then taking a look at the shape of the distribution using a histogram (or 3D 
histogram) may reveal different modes that are hidden in the data.

• We can narrow down our choice of plots by asking which dimensions 
(columns) of the data are of more importance. In some cases, we can find 
this by calculating correlations between different columns of the data. Then, 
depending on the nature of the data (spatial and time series) and the number 
of important dimensions, we can map each of those dimensions to an attribute 
of a plot, and decide whether the plot will be suitable.
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• For communicating inferences to people from all backgrounds, it is better 
not to use fancy and complicated plots. Pie charts, line graphs, bubble charts, 
stacked charts, and others are good enough in many cases. Fancy plots are 
useful for technical people who are actually investigating and playing around 
with the data.

• Color maps are very important in any plot. We will talk a little bit on how to 
choose a better color map in Chapter 5, Maps and Aesthetics.

A glimpse of high-dimensional data
The traditional statistical plots yield a lot of useful information in general. However, 
as we have seen before, depending on the nature of the investigation, we may want 
to employ custom visualization techniques. Also, other than traditional statistics, we 
might as well touch upon computational statistics and the visualization tools that are 
useful in machine learning and high-dimensional data analysis.

Often, datasets have more than three or four columns, and we don't have the 
spatial or cognitive ability to visualize more dimensions. In these cases, we usually 
project the higher-dimensional data to some lower-dimensional space to compare 
and visualize them. One such visualization is known as similarity mapping. In this 
section, we will discuss the basic concepts of similarity mapping, and demonstrate 
how it can be used to visualize the clusters of counterfeit and genuine notes in the 
swiss bank notes dataset.

Similarity maps
For this exercise, we do not need to have any previous knowledge of complicated 
mathematics or computational statistics techniques. The idea is simple—we want 
to visualize the comparison of high-dimensional vectors. Assume we are given a 
numeric dataset with n columns and m rows. This means that we have n dimensions, 
or n features, and we have m observations that have these features. Each row  
(an observation) can be treated as a vector, where the number of elements in  
each vector is n.

We cannot possibly visualize these vectors. Instead, we can compare them with each 
other, and see how they differ on a global scale. A similarity map represents a matrix 
of size m by m (m rows and m columns), and each (i, j) entry in the matrix contains a 
number that defines a distance between the ith and jth indexed vectors in the dataset. 
The similarity maps are usually symmetric, since we use a distance measure that 
gives the same distance between ith and jth vectors, and jth and ith vectors.

www.allitebooks.com

http://www.allitebooks.org
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The swiss bank notes dataset has six features (excluding the genuine/counterfeit 
labels) in six columns. Each row represents the measurements of an individual note. 
We would like to compare these properties of the bank notes, and plot the similarity 
map of these notes in order to check whether the genuine notes can be distinguished 
from the counterfeit ones.

Projecting information to low dimensions
Our goal is to calculate the distance between each pair of vectors in the dataset.  
There are many distance metrics available to calculate the distance between vectors, 
for example Euclidean, Squared Euclidean, Manhattan, Mahalanobis, Minkowski 
(which is really a generalization of Euclidean and Manhattan distance), and others. 
For our purpose, we will use the good old Euclidean metric to calculate the distance 
between each pair of vectors. In case of n features, the Euclidean distance formula  
for two vectors a and b is as follows:

Sqrt[(a
1
 – b

1
)2 + (a

2
 – b

2
)2 + (a

3
 – b

3
)2 + … + (a

n
 – b

n
)2]

Here, a
1
, …, an and b

1
, …, b

n
 represent the individual features of the vectors.

Note that by calculating the distance (a single number) between two high-dimensional 
vectors, we essentially reduce the amount of information. Now, we have a better 
control on the dimensionality. A set of numbers that represents the scalar distances 
between a set of vectors is easier to handle from a visualization perspective.

Visualizing genuine and counterfeit clusters
We will use the function MatrixPlot to visualize the actual similarity matrix.  
By virtue of Mathematica, the code is really short and simple. Let's get started  
with the following code:

ex = ExampleData[{"Statistics","SwissBankNotes"}];
ex = ex[[ Ordering[ ex[[;;,7]] ] ]] [[;;,1;;6]];
tb = Table[ EuclideanDistance[ ex[[i]], ex[[j]] ], {i,1,Length[ex]}, 
{j,1,Length[ex]} ];

The first line loads the dataset into the list ex. Next, we order the list according to the 
genuine (0) and counterfeit (1) labels. After ordering, we extract all rows, but take the 
first to sixth columns, leaving out the seventh column (genuine or counterfeit labels) 
so that they do not affect the distance between the feature vectors. Next, we simply 
calculate the Euclidean distance (using Mathematica's own function) between every 
possible pair of vectors and store the result in tb. The nested loops in the table run 
from 1 to the length of ex.
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Next, all we need to do is visualize the similarity matrix tb using MatrixPlot,  
as shown in the following code:

MatrixPlot[ tb, ColorFunction->ColorData["GrayTones"]]

The output of this code snippet is shown in the following screenshot:

Figure 4.7 A similarity map between 200 swiss bank notes

The similarity map is a 200 by 200 matrix, where each entry (a pixel in the map) 
represents a distance value (color coded) between the respective ith and jth index. 
Notice the symmetric pattern across the diagonal. The color map GrayTones is a 
grayscale gradient color palette that indicates dark for low numbers and lighter 
for higher numbers. In the preceding map, the diagonal has the darkest color. It 
is because along the diagonal, each feature vector was compared to itself, so the 
distance between the two feature vectors was 0.

Also note the distinct clusters that formed between two different distance groups.  
The first 100 bank notes are genuine, and the Euclidean distances between their feature 
vectors are close to 0 (the dark square at the top left quadrant). This means they have 
similar features. Similarly, the notes between 100 and 200 have similar features too 
(dark square at the bottom right quadrant). However, there is a noticeable dissimilarity 
(bigger distance between feature vectors, hence lighter gray) between the two clusters 
of genuine and counterfeit notes.
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As data visualization detectives, we should certainly dig a little deeper. A histogram 
of all distance values reveals that there is indeed a bimodal-shaped distribution. 
One mode is due to the smaller distances (both genuine and counterfeit notes that 
are similar within their own group), and the other mode is due to longer distances 
(when genuine was compared to counterfeit, or vice versa):

Histogram[ Flatten[tb], 20, FrameLabel->{"Euclidean Distance", 
"Frequency"}, Frame->True]

The output of this code snippet is shown in the following screenshot:

Figure 4.8 The list of distance values has a bimodal distribution

Similarity map for smaller datasets
Often, similarity maps are used to express similarity (or dissimilarity) in a smaller 
group of objects. In the previous example, we used the similarity map to look at the 
macro-level similarity behavior of the bank notes. The same concept can be polished 
to compare a handful of observations concisely. Imagine visualizing the similarity 
between a few countries' GDP, or comparing the yearly expenditure of 10 states.  
A nice way to capture all possible comparisons is to use similarity maps.

Let's write a bit more code to create one such visualization. Assume that we are  
only given 10 different bank notes' measurements, and we would like to compare  
the notes with each other. We are going to build the following visualization:
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Figure 4.9 A similarity map between 10 different bank notes

With a different color map, the table looks more appealing and presentable. In the 
case of this color map, darker blue means a bigger value. The text overlays and 
the row and column headers are added using the Graphics package. Let's start by 
choosing a smaller set of data from the original 200 rows in the following code:

ex2 = Join[ ex[[1;;5]], ex[[-5;;Length[ex]]], 1];
tb2 = Table[ EuclideanDistance[ ex2[[i]], ex2[[j]] ], 
{i,1,Length[ex2]}, {j,1,Length[ex2]}];

Here, we have created a second set of data, joining the first five and the last five 
entries from ex (hence, five genuine and five counterfeit notes). Then, we create the 
similarity/distance matrix just like before and store it in tb2. Next, we combine the 
MatrixPlot with a nice color map and text overlays using the following lines of code:

Show[
MatrixPlot[ tb2, ColorFunction->ColorData["RedBlueTones"], Frame-
>False, Mesh->All, MeshStyle->Thick],
Graphics[ Table[ Text[ NumberForm[tb2[[i,j]], 2], {j-0.5, 10.5-i}], 
{i,1,Length[ex2]}, {j,1,Length[ex2]}] ],
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Graphics[ Table[ Text[11-i, {-0.5, i-0.5}], {i,1,10} ] ],
Graphics[ Table[ Text[i, {i-0.5, 10.5}], {i,1,10}] ]
]

There are three text overlays. The first overlay is the actual distance values on each 
cell. The NumberForm function is used to restrict the calculated values to two digits, 
and the text is placed at the coordinates (j - 0.5, 10.5 – i) to take account of the 
origin that starts at (0, 0), since MatrixPlot plots the cells from the top-left corner. 
The other two Graphics elements are used to place the row and column headers  
in a similar fashion.

Things that can (and will) go wrong
A data visualization ninja is bound to face challenges when investigating a large 
dataset. This is inevitable, especially if they are working with it for the first time. 
There are pitfalls and traps everywhere due to the way we use our available 
tools. The problem is not in the tools; rather, it is in their usage. Let's look at two 
demonstrations using the similarity maps we just built. Keep in mind that these 
problems are not specific to similarity mapping only; these are mistakes that we 
unknowingly make unless we are cautious.

Employing the wrong distance metric
As mentioned before, there are a lot of different distance metrics available to compare 
numeric data in low and high dimensions. Before we pick one, we should experiment 
enough, at least on smaller datasets, to find out whether it meets our needs.

For example, a metric to compare high-dimensional vectors is to find the cosine of 
the angle between the vectors. This can be calculated by taking the dot product of  
the two vectors and dividing it by the product of their magnitudes. Figure 4.10 
shows the resulting similarity map and the distribution of the cosine values:

tb = Table[ Dot[ ex[[i]], ex[[j]] ] / ( Norm[ ex[[i]] ] * Norm[ 
ex[[j]] ] ), {i,1,Length[ex]}, {j,1,Length[ex]}]
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The output of this code is shown in the following screenshot:

Figure 4.10 (left) A similarity map using the cosine metric, (right) and the distribution of cosine values

Notice that the clusters are not as distinct as the previous map; the darker values  
are less pronounced. This is mostly because the similarity values are now jammed 
close to 1, so the GrayTones color map puts most of the values on the lighter side  
of the scale. Looking at the distribution, we realize that it is not quite bimodal,  
which defeats the purpose of clustering the two different labels.

Choosing a misleading color map
A widely used color map, since the early days of visualization, is the rainbow color 
map. It is present in Mathematica as one of the gradient color palettes. The problem 
of choosing such a widely varying color map will be discussed in Chapter 5, Maps and 
Aesthetics. Just to provide some context here, let's examine figure 4.11 that shows our 
original similarity map rendered with a rainbow color map. There are three distinct 
colors that one can notice here—shades of green, yellow, and red. Without a specific 
guideline for color variation, it is hard to compare the nature of intermediate  
distance values.
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A grayscale color map has a uniform evolution from darker to lighter shades, so it is 
easier to understand the transitions.

Figure 4.11 A rainbow color map can be misleading due to multiple colors used to  
represent a single dimension

Text visualization
So far, we have been dealing only with numeric datasets. There is a vast world of other 
kinds of information that visualization experts are interested in. A vast amount of 
text data is present in websites, books, logs, and different documents. They tend to be 
unstructured and not as nice-behaving as numeric datasets. Text visualization has been 
gaining momentum in recent days, and there are interesting and insightful techniques 
being developed in the visualization community. In this section, to demonstrate 
Mathematica's capability to handle text data, we will build a small tool from scratch  
to visualize the evolution of frequent words over the length of a text document.
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A modified word cloud
We have all seen the word cloud. The word cloud is a simple concept that points 
out the underlying theme words in a document just by counting the frequency of 
occurrence for each particular word and rendering the words in a diagram with 
the font size being proportional to the frequency. Often, this gives a qualitatively 
accurate portrayal of the document's theme and main concepts.

What the word cloud essentially misses out is the time information. It is possible that 
a document has a word occurring very frequently at the beginning of the document, 
and is not present at all in the other sections. Due to its initial frequency, it may be 
rendered with the largest font. However, this may not be the dominant theme of 
the document. A possible way to get around this problem is to divide the document 
into smaller pieces and compute the word count per piece. In this way, we can track 
the words that show up in the word cloud by plotting a graph of their counts in 
each piece. Figure 4.12 shows the visualization we are going to code. The document 
that we will be using for our demo is the United Nations' human rights statement, 
present in the example data repository:

Figure 4.12 The modified word cloud visualization
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In our modified word cloud, the most frequent words are laid out in alphabetical 
order, and are sized according to their total counts. A partition length option decides 
the number of words present in each piece of the document (basically, it decides 
the smoothness of the curves), and there is an option to view more top words by 
selecting the number of top words present in the drop-down list. Note how we can 
easily track the themes over the length of the document in our visualization. For 
example, education (the second word in the cloud) looks like a dominant theme, but 
is only mentioned at the beginning and at the end, whereas everyone and right occur 
throughout the document.

Cleaning the data
Throughout the book, we have concentrated on nicely structured datasets. In reality, 
the first task a data visualizer takes on is cleaning a raw dataset to give it some 
structure. There can be redundant columns and rows, missing values, strange file 
formats, and so on. The first task is usually parsing the dataset to look for anomalies, 
and restructuring it so that it is easier to apply algorithms.

In this project, we will take a stab at such cleaning. This will be done as an exercise  
to make ourselves more confident in using Mathematica to perform data cleaning.  
A text document usually has some frequent words (prepositions, parts of speech, 
and so on) that have nothing to do with the theme of a document. In a standard 
natural language-processing project, the first job is to get rid of these words, which 
are known as "stop words." In the data folder of this chapter, code repository, we 
have provided a text file that contains a list of such stop words. We will load this  
file and remove any word in the UN statement that is found in the stop words list. 
Other than stop words, we have punctuation and other unwanted symbols that  
we do not want to count. We will also remove those from the document.

The basic algorithm
First, we will load the UN human rights document and convert all words to lowercase 
to avoid any disambiguation that may arise from capitalization. Next, we will split the 
document into a list of words based on whitespace, commas, periods, and some other 
punctuation marks. Using the stop words list, we will filter out the stop words from 
this accumulated word list. We will also filter out numbers and empty strings. Next, 
we will count the occurrence of each word in the filtered word list, sort the words 
according to the total count, and choose a number of top words (defined by the user).

Once we have the top words list, we will partition the document by a user-defined 
number, and scan for these top words in each partition. Based on their count in each 
partition, we will visualize the count plot for each word, along with the word itself.
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Although this may seem like a fairly long list of tasks, Mathematica makes our life 
easy, and we will not have to write a lot of code!

Code and explanation
We will divide and explain the code in different chunks based on different tasks. 
Most of the processes are inside the Manipulate function:

(* Interactive word evolution visualization in a text document *)
SetDirectory[ NotebookDirectory[ ] ]
tdat = StringSplit[ ToLowerCase[ ExampleData[ {"Text","UNHumanRightsE
nglish"}] ],
 {","," ",";",".","--",":","]","[","(",")"} ];
stopwords = StringSplit[ Import[ "data/stop-words.txt" ], "\n"];

In the initialization, we load the document using the ExampleData function, pass 
the output to a lower case function, and split the resulting string using the function 
StringSplit. The StringSplit function takes in a string as its first argument 
and splits it using the list of delimiters provided as a list in the second argument. 
At the end of the process, we have tdat that contains a list of words without any 
punctuation. We then load and store the stop words in stopword. Next, let's start 
writing our Manipulate function:

Manipulate[
(* get rid of stop words from tdat *)
(* divide the document into chunks of words *)
tdat2 = Select[ tdat, !MemberQ[stopwords, #] &];
tdat2 = Select[ tdat2, # !="" &];
tdat2 = Select[ tdat2, !NumberQ[ ToExpression[#] ] &];
tdat2 = Partition[ tdat2, partitionlength];
wordscore = SortBy[ Tally[ Flatten[ tdat2 ] ], #[[2]] &];
(* scale wordscore to [0, 1] *)
maxcount = Max[ wordscore[[;;, 2]] ];
wordscore = Table[ { wordscore[[i,1]],
 wordscore[[i,2]]*(1.0/maxcount) }, {i,1,Length[wordscore]} ];

We start with a fresh list tdat2, and pass it through several filters using the Select 
function. First, all the elements of tdat that are not members of the stopwords list 
are filtered and returned to tdat2. The MemberQ function checks whether the second 
argument occurs in the list passed as the first argument.
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Next, we check whether there are any empty strings ("") in tdat2, and select only 
the elements that are not. Then, using the NumberQ function, we throw away any 
number that is present in the list. This is all there is to data cleaning, really. At this 
stage, we have a list of words that are stored in tdat2 in the same sequence they 
occur in the document, with only the stop words and punctuation removed. Now, 
using the Partition function, we divide this words list into sublists of words. The 
variable partitionlength is the Manipulate function's own control variable.

Now, we need to find the count for each of the words throughout the document, and 
sort them so we can pick the top words. First, we use Tally to find the word count in 
tdat2, and sort the results according to the second column of the result from Tally. 
Remember that the elements from the output of Tally looks like: {{rights, 29}, 
{everyone, 23}, …} and a bit more. The SortBy function sorts a list according to 
a given ordering. In this case, we simply ask SortBy to use the second column (the 
counts) from the output of Tally as a guide for sorting.

For convenience, we scale all the word scores in the wordscore list by dividing  
every count number by the maximum count. Using the Max function, we find the 
maximum word count in wordscore, and modify the wordscore list using Table, 
putting the word as the first element and scaled score as the second element in each 
sublist. The following piece of code takes the top words and counts them in each 
individual partition:

(* Choose the top ranked words and find their evolution *)
topwords = wordscore[[ Length[wordscore] – numwords - 1 ;; 
Length[wordscore]] ];
topwords = SortBy[ topwords, #[[1]] &];
score = Table[
 currword = topwords[[i, 1]];
 Count[ tdat2[[j]], currword ],
{i,1,Length[topwords]}, {j,1,Length[tdat2]} ];
peakcount = Max[ Flatten[ score ] ];

Here, numwords is a control variable in Manipulate, so the user can select its value 
(we will see the declaration of the control variables at the end of the Manipulate 
section). Since wordscore is sorted in ascending order, we choose the last numwords 
number of elements from the list wordscore, and put them in the list topwords. 
Next, using a Table and a Count function (which simply counts the number of times 
a given element occurs in a list), we find the individual count for each word in each 
partition. The Table loops through topwords and tdat2 in a nested fashion, and 
counts the number of times currword occurs in tdat2[[j]].
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Now, we have the count per segment of the document for all the top words, so we 
can now proceed to build our visualization using the following code:

(* build a table of listplot graphics elements *)
ncols = 5;
nrows = numwords / ncols;
visgrid = Table[
 currelement = ncols * (i - 1) + j;
 lstplot = ListPlot[ score[[ currelement ]], Joined->True, Mesh-
>None, PlotRange->{0, peakcount}, Filling->Bottom, Axes->False, 
ImageSize->50];
 GraphicsColumn[ { Text[ Style[ topwords[[ currelement, 1 ]], FontSize 
-> topwords[[ currelement, 2 ]] * 10 + 5]], lstplot }],
 {i, 1, nrows},{j, 1, ncols}
]; (* end of Table *)
GraphicsGrid[ visgrid ],
{ {partitionlength, 50, "Partition Length"}, {50,100,150,200} },
{ {numwords, 20, "Number of Top Words"}, {20,30,40,50,60,70,80,90,100} 
}
] (* end of Manipulate *)

In this piece of code, we have drawn a table of ListPlot elements. First, we decide 
the number of desired columns and rows to show. Then, we build a table of plots 
and store it in the visgrid list. To find the correct index of the plot data in score, we 
calculate ncols * (i - 1) + j, which basically recomputes the two-dimensional 
table index (i, j) into a single-dimensional index so that the elements of score can be 
accessed. Then, the list plot is generated and stored in lstplot as a graphics object. 
Using the GraphicsColumn function, we define a column of the Graphics objects 
where the first row is the word (rendered using the function Text[ Style [ … ] ], 
and the font size is set according to the scaled score for the particular word), and the 
second row is lstplot.

So, each element of the table is essentially a graphics column that consists of two 
graphics elements—the word text and the list plot. Finally, we render the table 
using the function GraphicsGrid, which expects a table of graphics elements as its 
argument. The control variables (partitionlength and numwords) are defined next, 
along with their possible values. Write the whole Manipulate function in a cell and 
evaluate the cell to render our visualization (figure 4.12). You can play with different 
values of partition length to see how the graph shapes are affected.
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Graphs and networks
We will finish this chapter with the basics of graph and network visualization  
in Mathematica. This is an active area of research, and there are robust and  
powerful software that can render very big graphs using smart data structures  
and graph-rendering algorithms. Mathematica is not the best tool out there for  
a visualization scientist who would like to render very big graphs. However, for 
small- to medium-sized graphs (for example, a few thousand nodes), Mathematica 
provides very nice visualization functions and a lot of network analysis packages.

A graph consists of nodes (often called vertices, plural of vertex) and edges,  
where nodes store information for any particular data type, and edges are the 
relationships between the nodes. An edge connects two nodes. Edges can be  
directed (connect nodes one way) or undirected. Social networks are often  
described with graphs to denote relationship between friends and family.  
More interestingly, many real-world problems can be boiled down to a set  
of relationships between different entities, and then using graph algorithms,  
one can gain new insights into the problems.

A basic graph visualization
We will play with some of the graph visualization capabilities of Mathematica  
to get a feel on the range of possibilities available to us. The dataset used for  
this section is present in the example data repository. It is the somewhat famous  
Les Misérables character coappearance network. In the full dataset, the nodes  
are the novel's character names and the edges are the relationships between  
them. In a shorter version of the network, the character names are replaced  
by their serial numbers.

Representing graphs in Mathematica
To create a graph in Mathematica, we use the following syntax:

Graph[{e
1
, e

2
, …}]

We can also use the following syntax:

Graph[{v
1
, v

2
, …}, {e

1
, e

2
, …}]

Here, ei and vi represent the edges and vertices, respectively. Take the following 
code, for example:

Graph[{1 \[UndirectedEdge] 2, 2 \[UndirectedEdge] 3, 3 \
[UndirectedEdge] 1} ]
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This code will yield a graph with 1 connected to 2, 2 connected to 3, and 3 connected  
to 1. Here, 1, 2, and 3 are numbers that are nodes in the graph. Instead of numbers,  
we could have strings, images, or other Mathematica objects as nodes. In Mathematica, 
the syntax \[UndirectedEdge] converts to a smaller edge symbol automatically when 
writing the code in the notebook. Alternatively, one could use the symbols <-> to 
represent an undirected edge, instead of \[UndirectedEdge].

Visualizing the Les Misérables network
In order to extract the list of vertices of a graph, we may use the function VertexList. 
Similarly, the EdgeList function can be used to return the edges of a graph, as shown 
in the following lines of code:

g = ExampleData[{"NetworkGraph", "LesMiserables"}, "FullGraph"]
v = VertexList[g];
e = EdgeList[g];

Here, we have loaded the full graph data from the example data repository and 
stored it in g. Here, g is represented in the same structure as the previous structure, 
with undirected edges between the nodes. Next, we use VertexList and EdgeList 
to store the vertex and edges of g in v and e. When g is loaded, Mathematica will 
automatically render the graph with a nice layout, and output it if the line output 
was not suppressed with a semicolon. The following screenshot (figure 4.13) shows 
one such default layout:

Figure 4.13 (left) The default layout of the Les Misérable graph, and (right) the vertices  
with the top degrees highlighted.

Highlighting centrality measures
The degree of a node refers to the number of edges that are connected to the 
particular node. This defines a basic measure of connectedness between vertices;  
it is called the DegreeCentrality. We can count the degree of each vertex in the  
graph using the function VertexDegree.
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Figure 4.13 (right) shows the top five vertices in the graph in terms of degree.  
To highlight the vertices in the default layout, we write the following code:

top5degree = v[[ Ordering[ VertexDegree[g] ] ]] [[ -5;; ]];
HighlightGraph[ g, Labeled[ top5degree, "TVD" ], VertexSize-> Table[ 
top5degree[[ i ]] -> 1.2, {i,5} ] ]

The vertices are ordered based on the VertexDegree function, which returns a 
number for each vertex that denotes the degree of the vertex. The last five entries in 
the list are then chosen, which are just the top five vertices. We then use the function 
HighlightGraph to highlight the nodes of our choice. This function takes the graph 
g and a list of vertices to highlight under the Labeled function. We label each vertex 
with the string "TVD". As an optional argument, the size of the highlighted vertices  
is set to 1.2 using the VertexSize option, to make them bigger.

Speaking of centrality measures, another interesting measure is the 
BetweennessCentrality function. For each vertex, it counts how many times  
the vertex is traversed while finding the shortest path between all pairs of nodes  
in the graph. This finds the nodes that act as a bridge between groups of nodes.  
Let's also highlight the top characters in the graph who act as a bridge between  
other characters using the following code:

top5bc = v[[ Ordering[ BetweennessCentrality[g] ] ]] [[ -5;; ]];
HighlightGraph[ g, Labeled[ top5bc, "TBC"], VertexSize-> Table[ 
top5bc[[ i ]] -> 1.2, {i,5} ] ]
(* scale the vertex sizes according to betweenness centrality *)
bc = BetweennessCentrality[g];
HighlightGraph[ g, VertexList[g], VertexSize-> Thread[ VertexList[g] 
-> Rescale[bc] ] ]

The results of the code can be seen in the following screenshot:

Figure 4.14 (left) The top five vertices in terms of betweenness centrality,  
(right) all vertices scaled according to the measure
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Similar to the case of degree centrality, we calculate the top five vertices in terms 
of betweenness centrality and produce a highlighted graph at first. Note how the 
characters that act as a bridge between groups of people are highlighted in the 
graph. Next, we highlight and scale the vertices according to their betweenness 
score. To do this, we store all scores in bc, and call HighlightGraph with 
VertexSize set according to the scores. The Thread function takes each  
element of VertexList[g] and Rescale[bc] and pairs them together.

Other graph layouts
Often, 2D graph layouts are congested. Mathematica provides a suite of layout 
options to arrange the nodes in the diagram in different ways. Figure 4.15 shows  
two other layouts. Radial layout attempts to arrange the vertices hierarchically 
according to their degree, and spring embedding shows how the graph will look  
like if the edges were to act as springs in a mass spring simulation. Right-clicking  
on the current graph layout will show a menu for styling the graph. Under the  
Graph Layout section, we will find the options for other layouts.

Figure 4.15 (left) The radial layout and (right) the spring-embedding layout

Layout algorithms are researched extensively in the 
visualization community. They often involve force-based 
simulations (where nodes exert force on each other) and 
shape-packing algorithms from computational geometry 
and other approaches.
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3D layouts
We can take a step further and render the graph in 3D using the GraphPlot3D 
command. This provides a better way to view the node relationships from  
different angles:

GraphPlot3D[ g, VertexLabeling->True, EdgeRenderingFunction-> ( 
{LightBlue, Cylinder[#1, 0.03]} &), VertexRenderingFunction-> ( 
{EdgeForm[Black], LightGreen, Sphere[#1, 0.2], Black, Text[ #2, #1]} 
&), Lighting->"Neutral"]

The GraphPlot3D function simply takes in g and plots it in 3D. We have provided 
our custom edge-rendering and vertex-rendering functions. The edge-rendering 
function dictates GraphPlot3D to render thin cylinders (0.03 units radius) of light 
blue color, and the vertex-rendering function defines the nodes as small green 
spheres of radius 0.2 units. Figure 4.16 shows the result from different angles:

Figure 4.16 A 3D graph layout

Chord diagrams
Even though the graph layout algorithms are useful, I promised that we would 
employ interactivity in our visualization prototypes whenever there is a need.  
A simple way to arrange our graph is to put the nodes around the perimeter of a 
circle, and show the connections between them using curves. The basic visualization 
behind this notion is known as a chord diagram. We will finish the chapter with an 
interactive chord diagram that gives a whole new dimension to the exploration of 
relationships in a graph.
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The following figure 4.17 shows a chord diagram of the characters of Les Misérables:

Figure 4.17 An interactive chord diagram. Entities and their relations can be highlighted  
when the mouse pointer hovers over them

The chord diagram is useful for visualizing relationships in a macro and micro scale. 
The overall diagram gives a sense of the density and the flow of relationships between 
the nodes by bundling groups of edges together. Putting the mouse pointer over  
each name gives us a particular character's relationships. In figure 4.17, Claquesous  
is highlighted.
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Code and explanation
The code mostly involves playing around with the geometry of the text locations and 
curve placement. We start off by loading the data and defining some parameters:

g = ExampleData[{"NetworkGraph","LesMiserables"},"FullGraph"]
v = VertexList[g]
e = EdgeList[g];
r = 10;
tsep = 1.0;
ang = 2Pi / Length[v] + 0.0;

Here, r is the radius of the circle within which the edges reside. tsep is the separation 
between the text and the perimeter of the circle. ang is the unit angle—it is the 
angle difference between each node. The value 0.0 is added to make sure that the 
Mathematica expression assigns a numeric value to ang.

The next piece of code creates the static curves. Note that the diagram consists of  
two sets of curves. The static and semi-transparent light blue curves represent all  
the relationships, whereas the thick black curves are dynamic, and are rendered  
on top of the static curves when the mouse is over a name.

gelt2 = Table[
 vind1 = Position[ v, e[[i,1]] ] [[1,1]];
 vind2 = Position[ v, e[[i,2]] ] [[1,1]];
 { Opacity[0.5], RGBColor[0.6,0.729,1], BSplineCurve[{ {(r-0.5) * Cos[ 
ang*vind1 ], (r-0.5) * Sin[ ang*vind1 ] }, {0,0}, {(r-0.5) * Cos[ 
ang*vind2 ], (r-0.5) * Sin[ ang*vind2 ]} }]
 },
{i,1,Length[e]}];

Here, we create a table of BSplineCurve graphics objects. Bezier splines (B-splines) 
are smooth curves that can be generated using a set of control points. Our goal is to 
draw a curve for each edge. An edge connects two nodes, so we draw a curve from 
one node's coordinates to the next node's coordinates. To do this, we loop through 
the edge list e and find the positions of the nodes of each edge inside the vertex list v, 
storing the indices in vind1 and vind2. Next, the table element is defined within the 
curly brackets. It is the graphics description for the B-Spline curve. We set the opacity 
to 0.5, and define a custom light blue color for each curve. The BSplineCurve takes 
in a list of control points and returns a graphics object that stores the description of 
the curve.
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The curve is defined by three points. From simple trigonometry, we know that  
given the polar coordinate (r and angle ang*vind1), we can find the corresponding 
(x, y) coordinate from (r * cos(ang*vind1), r * sin(ang*vind1)). Based on  
the formula, we define three control points, two for the positions of the vertices,  
and one at the center (0, 0). The extra center coordinate gives us the bent curves 
shown in figure 4.17. Next, we write the following code for the dynamic curves:

gdyn = Table[
 cv = v[[j]];
 tempe = EdgeList[g, cv \[UndirectedEdge] _];
 rot = (ang*j > Pi/2) && (ang*j < 3*Pi/2);

 Mouseover[
 (* if mouse not on top *)
 (* render the character name *)
 Rotate[ Text[ Style[
  (* Limit the character name to 8 characters only *)
  If[ StringLength[cv]>8, StringTake[cv,8] <> ".", cv], Medium],
  {(r+tsep) * Cos[ang*j], (r+tsep) * Sin[ang*j] }], If[rot, ang*j-Pi, 
ang*j] ],

 { (* if mouse on top *)
 (* render the character name *)
 Rotate[ Text[ Style[ cv, Medium, Blue, Bold], {(r+tsep) * 
Cos[ang*j],(r+tsep) * Sin[ang*j]} ], If[rot, ang*j-Pi, ang*j]
 ],
 (* render thick bsplines curves *)
 Table[
  vind1 = Position[v, tempe[[i,1]] ] [[1,1]];
  vind2 = Position[v, tempe[[i,2]] ] [[1,1]];
  {
   Thick, BSplineCurve[{ {(r-0.5) * Cos[ang*vind1],(r-0.5)* 
Sin[ang*vind1]}, {0,0}, {(r-0.5) * Cos[ang*vind2], (r-0.5)* 
Sin[ang*vind2]} }]
  },
  {i,1,Length[tempe]}] (* end of thick b-spline table *)

 } (* end of Mouseover second argument *)
 ], (* end of Mouseover *)

{j,1,Length[v]}]; (* end of gdyn table *)
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Even though this is quite a bit of code, it is not quite complex. We would like to 
create a table of Mouseover elements that we will eventually pass on to a Graphics 
function. Inside the Mouseover function, we have two arguments. The first argument 
is applicable when the mouse is not on top of the jth character name, in which case 
we simply render the character name. The second argument defines what to draw 
when the mouse is over the jth character name. The loop j goes over the vertex list.

tempe finds the edges that are connected to the current node, cv. The EdgeList 
function, in this case, looks for the pattern cv \[UndirectedEdge] _ in g, where  
_ is a placeholder to denote any vertex. Then, we define a Boolean variable rot,  
which determines whether the current vertex angle falls within a certain range.  
Next, we enter the Mouseover argument.

If the mouse is not on top of the jth vertex, then we only render the character names. 
The text is trimmed using StringTake, and then styled and rotated. It is placed at a 
distance r + tsep from the center. For the rotation, we use the condition If[rot, 
ang*j-Pi, ang*j]. This determines whether to flip the names around if they are 
within a certain range of angles.

If the mouse is on top of the name, we render the name along with all the B-spline 
curves that correspond to the edges in tempe. The character name placement code is 
the same as before, except that the style is changed to bold and blue. For the B-spline 
curves, we essentially use the same code used to create gelt2, but this time, we style 
the curves to be black and thicker, and the table loops through all of tempe.

Finally, in the following code, we use the Graphics function to combine these 
elements along with a circle:

Graphics[{Circle[ {0,0}, r - 0.5], gelt2, gdyn}]

Evaluating the cells (the code is in the Chapter4 code folder) will give us the dynamic 
chord diagram.

Tweaking the visualization
We can order the nodes according to the rank of their degree. This changes the 
structure of the chord diagram. In general, bundles of edges that flow from one 
region within the circle to another region reveal relationship patterns in the graph 
that would otherwise be hard to see using the graph layouts available to us.
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In order to change the vertex ordering, we can store the vertices in v (at the 
beginning of the code) sorted according to the vertex degrees:

v = VertexList[g] [[ Ordering[ VertexDegree[g] ] ]]

The output based on the original ordering of the vertices is shown in the  
following figure:

Figure 4.18 The chord structure based on natural ordering of the vertices in the dataset



Statistical and Information Visualization

[ 112 ]

Figures 4.18 and 4.19 show the comparison between the two vertex-ordering methods:

Figure 4.19 The chord structure after the vertices are ordered based on degree

Further reading
The literature on information visualization is quite broad. A complete reference of 
the statistical plots in Mathematica can be found in the documentation along with 
some tutorials on the plot functions that were not covered here. For those interested 
in an in-depth analysis of graph drawing and layout algorithms, Handbook of Graph 
Drawing and Visualization, by Roberto Tamassia, a computer science professor at  
Brown University, published by CRC Press, can prove to be useful.
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Summary
In this chapter, we have demonstrated some capabilities of Mathematica to create 
interactive information-visualization prototypes. Starting with the statistical 
plot functions, we have eventually moved on to text and graph data. We have 
demonstrated a possible visualization technique to view high-dimensional data. 
Then, we have created our own word cloud tool that reveals the frequency 
evolution of words over the length of a document. Some of Mathematica's graph 
data visualization capabilities are demonstrated in the Graphs and networks section. 
Finally, we have developed an interactive chord diagram tool to view the character 
relationships in the novel Les Misérables. In the next chapter, we will write a map 
visualization tool and discuss some essential aesthetic matters that every data 
visualization scientist should know.





Maps and Aesthetics
In Chapter 3, Time Series and Scientific Visualization and Chapter 4, Statistical 
and Information Visualization, we learned how to use Mathematica to create 
visualization prototypes. We saw how Mathematica's Graphics language and 
interactivity functions—coupled with its plotting packages—allow us to create 
visualization tools of our design and choice. The last chapter of the book will be 
much shorter than the others. We will learn to create map visualizations, and 
briefly discuss how colors, interactivity, and design choices affect maps and  
other visualizations.

Map visualization
In Mathematica 10, Wolfram Research introduced an extended version of the 
Graphics package; it is called the GeoGraphics package. It provides several useful 
functions to visualize maps and cartographic data. However, there is a limitation in 
the usage of this package as of now. Some of the data and map loaders in the new 
geological functions require Internet connectivity and Wolfram|Alpha API calls.  
The number of API calls is usually restricted to a fairly small number per month. 
This can be a limiting factor if you are trying to work on a data-intensive project.

In this chapter, we will see some examples of using the GeoGraphics package.  
Then, just like the other chapters in this book, we will develop our very own 
interactive map visualization code from scratch, using raw (and offline) datasets. 
This gives us the ability to produce similar visualizations such as GeoGraphics,  
but with more interactivity and control over our data.
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The GeoGraphics package
The basic syntax for the package is the as follows:

GeoGraphics[primitives, options]

In the primitives argument, we can enter several new geographic primitives 
introduced in Version 10, along with the standard geometry primitives, such as  
color and polygon forms. Some of these new geographic primitives are as follows:

• GeoPosition[{lat,long}]: This is used to represent a point in latitude  
and longitude

• GeoMarker[]: This represents the current location of the computer
• GeoRange: This is an option argument in GeoGraphics that represents  

a bounding circle radius around a center coordinate
• GeoDisk[location, r]: This represents a disk of radius r around the 

geographic center location
• GeoPath[{loc1, loc2, …}, pathtype]: This represents a list of points 

{loc1, loc2, …} that indicate a path or track in the pathtype geographic 
coordinate system

There are several other geographic primitives, but for our examples, these are 
sufficient. The preceding list will not make much sense until we see them in action. 
Here are some examples that demonstrate the ease of using the GeoGraphics package.

A map of our current location
To start things off, we will create a map of our current location:

GeoGraphics[GeoMarker[], GeoRange -> Quantity[4,"Miles"]]

Using the GeoMarker primitive, we ask for a map of our current location, setting 
the GeoRange option to 4 miles. Quantity[magnitude, unit] is a function that 
represents a scalar value, and it's used here to represent a value for GeoRange.  
Figure 5.1 shows the result.

Note that GeoMarker might take a two-dimensional point as its argument. In this 
case, our code will display a map with a radius of 4 miles centering around the 
point of interest. The preceding code calls the Wolfram|Alpha API, so Internet 
connectivity is required.
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Figure 5.1 A map of the area around the current location of the computer

Plotting a path on the map
The following code plots a path in a specific geographical coordinate system:

locations={ GeoPosition[{-71,42}], GeoPosition[{-83,107}] };
GeoGraphics[{Red, GeoDisk[locations[[1]],Quantity[100,"Kilom
eter"]], GeoDisk[locations[[2]],Quantity[100,"Kilometer"]], 
GeoPath[locations,"Geodesic"]}, GeoRange->"Country", GeoProjection-
>"Mercator"]

Figure 5.2 displays the result:

Figure 5.2 Plotting a path in the Mercator projection system
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First, we define a pair of points using the GeoPosition primitive function. Then, 
GeoGraphics is called to render the map with two disks. The disks use the locations 
we defined earlier, and are each 100 km in radius. The GeoGraphics primitive 
GeoPath represents a line in the Geodesic projection system. GeoRange is used to 
define a particular range to render the map. The map is rendered using the Mercator 
projection system (a cylindrical map projection system used in geological science).

Note the change in the disk radius along the path. This is due to the particular 
projection system we chose to render the map. The Mercator projection system 
exaggerates areas as we go farther from the equator.

Interactivity in GeoGraphics
We can use ToolTip and similar context-aware functions to make GeoGraphics 
more interactive. The following is adapted from one of the example codes in the 
Mathematica documentation. We use the BridgeData function to find and display  
all the bridges in the city of Cambridge in Massachusetts:

bd = BridgeData[ GeoNearest["Bridge", Entity["City",{"Cambridge",
"Massachusetts","UnitedStates"}], {All,Quantity[5,"Kilometer"]}], 
{"Position","Image"}];

GeoGraphics[{Blue,PointSize[.03],Tooltip[Point[#1],#2] & @@@ bd}]

Figure 5.3 shows the output when hovering the mouse pointer over one of the points:

Figure 5.3 Rendering images of bridges as a tooltip within GeoGraphics
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The BridgeData function returns data on bridges in a particular area defined by its 
parameters. GeoNearest[entity type, location] returns a geographic entity 
based on the location provided. Here, we define a general broad location using the 
geographical function Entity["City",{"Cambridge","Massachusetts","UnitedS
tates"}], where Cambridge is the city, located in the state of Massachusetts, within 
the country of UnitedStates. We also ask GeoNearest to search within a 5km radius. 
Finally, we only extract the Position and Image fields from BridgeData.

Once we have the position and image tuple for each bridge, we map the ToolTip 
function to each of these tuples using the @@@ operator, which is a shortcut to apply  
a function on every element in a list. This happens within GeoGraphics, which 
renders all the tooltips together, along with a blue dot at each location of the  
bridge on the map.

There are several interesting examples in the documentation that show how to  
use GeoGraphics in various ways. However, as mentioned at the beginning of  
the chapter, we are limited by the restricted Wolfram|Alpha API calls. It is better  
to understand the nuts and bolts of a map visualization system to acquire more 
control over our data and analysis pipeline. The next section demonstrates the 
skeleton of a map visualization engine in Mathematica.

Anatomy of a map visualization engine
The standard map visualization scenario is explained here. Usually, we are given a 
shape-description file that has the polygon information for a particular area's map. 
These files can be downloaded for free from an open source map repository such  
as OpenStreetMap. We will want to load the file, acquire the polygon information 
from the data, and store it as a list of polygons, so we can use Graphics to render  
the polygons together. Now, the data that we try to visualize can come in many 
varieties. For simplicity, we can assume that we have numeric datasets associated 
with the polygons.

For example, we might want to visualize the annual expenditure for the lower 48 
states of the US. To create the map, we require a shape description file for the US. 
The file will have the polygon information for each state's geographic shape. We  
will also want access to the actual expenditure values, and we will want to fill  
each polygon with a color based on the expenditure for each state.
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In the data folder of the Chapter5 code bundle folder, there is a shape-description 
file (.shp format) named usa_state_shapefile.shp. Along with the shape file, we 
have 10 CSV files, usgs_state_2001.csv, …, usgs_state_2010.csv, which contain 
the state name and expenditure values from 2001 to 2010. Each row contains a state's 
name, followed by the expenditure information in the second column. There are other 
information columns too, and the interested reader can change the code to visualize 
the other columns of data. The rows are sorted according to the alphabetical ordering 
of the states. We will use these datasets to create a map visualization.

The visual interface
We essentially have a time series for each state. We will like to see how the state's 
expenses vary from 2001 to 2010. To visualize this, we will fill each polygon with  
a color. In this case, we will demonstrate how we can build our own simple color 
map using a Graphics primitive. The following screenshot shows the interface  
we are going to build:

Figure 5.4 Visualizing the US state expenditure using a custom color map
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The Fiscal Year slider will change the year from 2001 to 2010, so we can see the 
transition of colors between different states as years change. On the bottom left, 
we show our custom color map, which is a uniform blending from light brown to 
blue. The visualization is interactive, so each state polygon will have a mouse-over 
behavior that displays a text stating the individual state's expenses. In figure 5.4, the 
mouse pointer is over the Missouri state's polygon, so it is highlighted with a black 
boundary, and a small text below the map shows the annual spending of Missouri.

We will use the Manipulate function to create the interface, within which we will 
render a Graphics object that holds all the polygons and text information.

Code and explanation
We start by loading the .shp and .csv files:

SetDirectory[ NotebookDirectory[] ]
shpdat = Import["data/usa_state_shapefile.shp", "Data"]
names = shpdat[[1, 4, 2, 2, 2]];
polys = "Geometry" /. shpdat[[1]]
filenames = Table["data/usgs_state_" <> ToString[i] <> ".csv", {i, 
2001, 2010}]
yeardats = Map[Import, filenames];
yeardats = Table[Select[yeardats[[i]], Length[#] == 11 &], {i, 1, 
10}];

shpdat loads the Data property of the shape file. Other than this property, the 
file contains many other additional attributes, such as names of the states, header 
information, and so on. Mentioning the Data property to the Import function loads 
the relevant portion of the file, namely, the geometry information. Since we do need 
the names of the states along with the geometry, we access the relevant element in 
shpdat using shpdat[[ 1,4,2,2,2 ]]. This might seem a little random, and in 
fact, it came out of some data hacking. There are many data file formats out there, 
and whenever we work with something that is not commonly used, we will need to 
deal with the list structure returned after importing it in Mathematica. In this case, 
exploring the sublists one at a time (by printing them out) revealed the level at  
which the names were located.

Next, we extract the polygon information from the Geometry header of shpdat  
using the /. operator. This is a standard way to extract information from lists  
that have header information with them. shpdat looks like the following:

{{Names -> {Alabama, Alaska, …}, Geometry -> {Polygon[{…}], 
Polygon[{…}], …}, …}}
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Basically, we have lists of information that have headers (for example, Names, 
Geometry, and so on) associated with them. "Geometry" /. shpdat[[1]] returns 
us the list that has the Polygons element.

Then, we create a table of filenames for the .csv files, and load them using the 
Import function mapped to each one of the filenames. The data for each year is 
filtered to get rid of the header information by selecting only the rows that have  
11 columns. By scrutinizing the file structure, it was found that all the relevant  
rows have 11 columns.

The next piece of code prepares the expenditure data:

spending = Table[yeardats[[i]][[2 ;;, 2]], {i, 1, 10}];
population = Table[yeardats[[i]][[2 ;;, 10]], {i, 1, 10}];
spendingscaled = Table[spending[[i]] / Max[spending[[i]]], {i, 1, 
10}];
populationscaled = 
  Table[population[[i]]/Max[population[[i]]], {i, 1, 10}];

The second column of the .csv files has the expenditure values for states, and the 
tenth column has the population. We extract these numbers as a list from yeardats, 
and scale them to lie between 0 and 1 for convenience. The matrices can be checked 
just by printing them in the output cell at this point. The rows are the years and the 
columns are the state names, and each (i, j) entry is the spending value for the ith 
year and the jth state, respectively. The population values are not used in the actual 
visualization, though replacing the spendingscaled list with populationscaled 
will yield a population visualization. This is left as an exercise. Next, we write the 
Manipulate function that creates the actual visualization:

Manipulate[
 polytable = Table[
   {Blend[{LightBrown, Blue}, spendingscaled[[year, i]]],
    EdgeForm[None],
    Mouseover[polys[[i]], {
      EdgeForm[Thin],
      polys[[i]],
      Black,
      Text[names[[i]] <> ": " <> ToString[spending[[year, i]]] <>
        " billions", {-112, 28}]
      }
     ]},
   {i, 1, Length[polys]}];
 polytable2 = Drop[Drop[polytable, {2}], {11}];
 Framed[Graphics[{Style[
     Text["State Expenditure in " <> ToString[2000 + year] <>
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       " (in Billions)", {-79, 22}], FontSize -> 16],
 polytable2,
    Table[{Blend[{LightBrown, Blue}, x], Disk[{-122 + x*8, 22}]}, {x, 
0, 1, 1/8}],
    Black,
    Text[Min[spending[[year]]], {-124, 22}],
    Text[Max[spending[[year]]], {-111, 22}]
    }, ImageSize -> 650], RoundingRadius -> 10]
 , {{year, 1, "Fiscal Year"}, 1, 10, 1}
 ]

The code is surprisingly small for all the things it actually does. Throughout the book, 
the readers must have noticed the elegance of Mathematica in achieving quite a lot 
while writing very little code. Inside the Manipulate function, we first create a list 
of the polygons that will be rendered using Graphics. Each element of polytable 
contains the styling information along with the actual polygon command.

At first, using the Blend function (the syntax is Blend[{color1, color2}, ratio], 
where ratio is a single number between [0, 1] (ranging between 0 and 1) that dictates 
what proportion of color1 should be mixed with color2), we create a custom 
color that lies between light brown and blue. The ratio of mixing is governed by 
spendingscaled[[year, i]], which we have already scaled between 0 and 1.  
The year variable is a control variable for Manipulate, which can be changed using  
the slider, and i loops over the number of elements in polys, which is the same as  
the number of states.

The EdgeForm[None] function is used to ask Graphics to not render the polygon 
boundaries. Next, Mouseover draws the bare polygon, polys[[i]], if the mouse 
pointer is not on top of this particular polygon, and draws it with a thin black 
boundary along with a text at the coordinate (-112, 28), which displays the  
name of the state along with the spending value. The symbol <> is a shorthand  
for the function StringJoin, which simply concatenates strings.

Once we are done building the polytable function, we define a second table  
named polytable2, which drops the second and eleventh elements in polytable. 
These correspond to Hawaii and Alaska (remember, we are only visualizing the 
lower 48 states). We are almost done with the processing now.

Next, we simply arrange all the elements in order inside the Graphics function. 
The text at the bottom-right is first rendered with a font size of 16. It changes the 
year name as we change the slider value. Next, we pass polytable2 to Graphics. 
This will render all the filled polygons for all states. Then, to provide a color map 
guidance to the viewer, we create a color map bar that shows filled disks progressing 
from light brown to blue. Finally, we put two texts at the left and right of the color 
bar we just created. These show the actual minimum and maximum values of 
spending for the currently selected year.
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That's it! Evaluating the cells in the MapVisualization.nb notebook (provided in 
the code folder) will render the map visualization as seen in the first screenshot. 
Moving the slider reveals intermediate flow of government expenditure between 
eastern and western states, which is pretty amazing to watch.

This is the last mini project in the book. By now, we have covered all types of 
data that were mentioned in Chapter 1, Visualization as a Tool to Understand Data. 
We worked through various mini projects to gain a better understanding of the 
visualization and interactivity functions available in Mathematica. With this 
knowledge, you can hopefully go on writing your own code to create any data 
visualization prototype of your design and choice. However, we are left with  
an important discussion that every beginner in data visualization must know.  
The next section will briefly introduce you to some essential aesthetics and  
design issues in data visualization.

Aesthetics in visualization
Before we write even a single line of code, we should always sketch out our 
visualization's design. It is often true that over time, the design will keep changing, 
based on the nature of the data and the questions asked. This is another reason to 
use Mathematica to create any prototype, as it saves a lot of time.

Once we have the visualization designed and coded, our next concern should be 
the perceptibility of our visualization. Does it answer the question we asked? Is it 
discernible for the user or the audience? In order to tackle these issues, we should  
be careful about few things.

Choosing the right color map
We have already mentioned in Chapter 4, Statistical and Information Visualization,  
that even though the rainbow color map is widely used, it is bad. Unfortunately, 
many of the color maps provided by Mathematica also have the same problem, 
which makes the rainbow color map harmful. Our visualization is there to help  
the viewer understand deep inferences about the data. However, a bad color  
map can destroy the user experience. Here is why.
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The rainbow color map is misleading
Data visualizations are there to save our time. Looking at our map visualization,  
one can infer right away what the low and high spending states are, along with  
the intermediate states. This will only be possible if there is a good color map. 
Let's say the range of values we want to map is between 0 and 1. A color map is 
considered good if it does not swing between different colors while we progress 
from 0 to 1. Why? The user will have a hard time understanding whether the  
orange color denotes a greater value than green. Figure 5.5 shows the rainbow  
color map provided by Mathematica:

Figure 5.5 Rainbow color map provided by Mathematica

The rainbow color map is based on the colors in the light spectrum—the VIBGYOR 
colors. Even if the user remembers all the colors in the spectrum (which is often  
not the case), it is sometimes very confusing to compare the intermediate values.  
It is not intuitive and poses a challenge to the user to understand the data. Mapping 
continuous-valued data to a rainbow color map is discouraged for this reason.

Understanding hue and luminance
Instead of the well-known RGB color space, a color can be represented using  
hue and luminance too. Hue refers to the actual colors, and luminance refers to  
the perceived brightness of the colors. For example, light blue or dark blue has  
the same hue, but their luminance changes. Figure 5.6 shows a sampling of  
Hue colors, generated using Mathematica.

Figure 5.6 A sampling of colors corresponding to minimum to maximum hue values

There are two problems with the rainbow color map. The first is that the hue changes 
a few times, and secondly, each time the hue changes, the luminance changes abruptly 
to generate the lighter to darker shades.
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Some better color maps
As always, we will like to have a nice transition in our color map so that it is obvious 
to the user. There are several simple solutions. Figure 5.7 shows the concept of two 
simple color maps that can remedy the situation. One of them has already been used 
in map visualization.

Figure 5.7 (left) DeepSeaColors color map in Mathematica, and (right) custom  
color map (sampled) blending two hues

One way to generate a better color map is to use the same hue and vary the luminance. 
Throughout the book, we used the GrayTones color map in several visualizations, 
which varies the color from dark gray to light gray smoothly. Figure 5.7 (left) shows the 
DeepSeaColors color map in Mathematica. It transitions between dark to lighter blue. 
These color maps are examples of keeping the same hue and varying the luminance.

If we wish to change the hue in our color map, then it is better to stick to two hues 
only and vary the luminance between them uniformly. Figure 5.7 (right) shows the 
color map we used in the map visualization. There are two hues: brown and blue, 
but the luminance changes smoothly.

There are other complex ways to create color maps, but they require 
a knowledge of color theory. The readers should definitely check the 
ColorBrewer website online, which provides a database of good color 
maps that can be readily used in visualizations.

Designing the right interface
The 7-year-old son of one of my professors once asked him about the meaning of 
visualization. After he explained what data visualization means (in the simplest  
form possible), the professor's son replied, "Oh! So, it is like you design ways to  
see information, and then spend your time explaining to others how to make  
sense of the design itself!"

He basically figured out the problems with many data visualization interface 
designs right away. A complicated interface that has a steep learning curve defeats 
the purpose of data visualization. The visual signatures that we typically use (for 
example, plots, chord diagrams, parallel coordinates, and so on) should also be 
simple enough to convey the right amount of information.
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When designing new visual signatures for new types of dataset, we should 
remember that visualization is essentially a coding system. It is a way to encode a lot 
of information in a small space. The power and beauty of it comes with the potential 
danger of misunderstanding if we are not careful about our design. It makes sense 
to design new signatures and/or interfaces if the new visualization system has the 
following properties:

• Ability to generate more insights once the data is visualized
• Two distinct datasets do not translate to the same visualization, or,  

there are well-defined rules that do not produce conflicts when it comes  
to transcribing the visual inference back to the real-world domain

• Ease of transcription between the visualization and the real-world  
inference back and forth

• Ability to compress information
• Reusability of the system for similar datasets

These are not golden rules that one has to abide by, but they raise the right questions 
that we should be asking when critiquing our own designs.

In general, it is better to use less buttons, controls, sliders, and so on. The visualization 
should not be too small or too big (so the user has to scroll around to view it). Where 
possible, it should be made interactive. Finally, user feedback is very important when 
designing visualizations. Before deploying our system, we should always test it with 
some users.

Deploying Mathematica visualizations
There are several ways in which we can deploy our visualizations and share them  
with people. We can save our Mathematica notebooks in the CDF format. Mathematica 
provides a free CDF player that can be downloaded to view Mathematica code and 
visualizations interactively. To deploy the system in your websites, you can subscribe 
to the webMathematica interface. Starting from Version 10, Mathematica will have an 
online interface that you can buy. The Wolfram Demonstrations site also provides a 
way to host our notebooks online. Details of preparing a notebook to upload in this  
site can be found in the documentation.
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Looking forward
Within the short span of this book, we have covered a whole bunch of techniques 
that should make us confident about working with different kinds of data and 
visualizing them in Mathematica. We explored the capabilities of Mathematica 
for data visualization, and now it is time to start building some of your own 
visualizations too.

In order to tackle big datasets, you will need to know how to use Hadoop, CUDA,  
or MPI with Mathematica. This is not in the scope of the book, but there are books 
and tutorials available online that can get you started.

Mathematica is a good tool for creating data visualizations, but there are other 
widely used tools too. VTK, Processing, and D3.js are a few libraries that you  
might want to check out. Though they do not provide a single workspace to  
do the analysis and visualization together (as Mathematica does), they are well  
known and worth learning.

Good luck with your exciting endeavors in the world of data visualization!

Further reading
To understand the harmful implications of the rainbow color map, the interested 
reader can take a look at the academic paper Rainbow Color Map (Still) Considered 
Harmful, Borland and Taylor, IEEE Journal of Computer Graphics and Applications  
(Vol. 27, Issue 2). There are several websites that provide very useful resources  
for aesthetics in data visualization. The eagereyes.org website has a set of nice 
articles on issues ranging over design, aesthetics, and colors.

Summary
In this (short) chapter, we learned how to use the GeoGraphics package, and how we 
can use a .shp file to create interactive map visualizations. We also learned about color 
maps, what kind of color maps can be harmful, and what kind is useful. Other than 
colors, we briefly talked about the principles of interface design. Finally, different ways 
to deploy our visualizations were mentioned.
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