
www.allitebooks.com

http://www.allitebooks.org

Maven Build Customization

Discover the real power of Maven 3 to manage your
Java projects more effectively than ever

Lorenzo Anardu

Roberto Baldi

Umberto Antonio Cicero

Riccardo Giomi

Giacomo Veneri

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

[FM-2]

Maven Build Customization

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: October 2014

Production reference: 1251014

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78398-722-1

www.packtpub.com

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

[FM-3]

Credits

Authors
Lorenzo Anardu

Roberto Baldi

Umberto Antonio Cicero

Riccardo Giomi

Giacomo Veneri

Reviewers
Cedric Gatay

Sharafat Ibn Mollah Mosharraf

Rohit Mukherjee

Commissioning Editor
Akram Hussain

Acquisition Editor
Kevin Colaco

Content Development Editor
Susmita Sabat

Technical Editors
Tanvi Bhatt

Siddhi Rane

Copy Editors
Sayanee Mukherjee

Laxmi Subramanian

Project Coordinator
Neha Thakur

Proofreaders
Simran Bhogal

Maria Gould

Ameesha Green

Paul Hindle

Indexers
Monica Ajmera Mehta

Rekha Nair

Priya Sane

Graphics
Valentina D'silva

Abhinash Sahu

Production Coordinators
Adonia Jones

Nilesh R. Mohite

Komal Ramchandani

Cover Work
Kyle Albuquerque

Komal Ramchandani

www.allitebooks.com

http://www.allitebooks.org

[FM-4]

About the Authors

Lorenzo Anardu graduated in Computer Science from the University of Pisa
with a thesis in Parallel Computing. He was born in Sardinia and currently lives in
Tuscany where, since 2011, he started working at Autostrade Tech SPA. His main
fields of interest are J2EE technology and Android development. He is an expert
in optimization and high-performance computing. He has been working with
Maven for 5 years, applying it in small and big projects for building and integration
purposes. He loves to run.

Roberto Baldi graduated in Information Technology from the University of
Florence. He is a senior Java developer with 10 years of experience developing
backend and frontend applications. He also has experience as a software analyst,
Android developer, and Linux system administrator. He has been working at Softec
SPA since 2011. He is interested in programming languages, operating systems,
and developer tools. He lives in Pistoia (Italy) with his wife, Chiara, and his
son, Alessandro.

Umberto Antonio Cicero is a computer engineer; he received his degree from
the University of Calabria. He was born, raised, and educated in Calabria (Italy)
and currently lives in Tuscany. He works as a software developer, specialist in web
environments and mobile applications. He has been involved in a large number of
projects based on Java and Maven. In 2012, he started collaborating with Engineering
SPA and started developing apps for Android. He loves Arduino and rock music.

www.allitebooks.com

http://www.allitebooks.org

[FM-5]

Riccardo Giomi is a senior analyst and developer at Autostrade Tech SPA.
He received the Laurea degree in Electronic Engineering in 1996 at the University
of Florence. He usually works on large Java EE projects, all managed with Maven.
He loves Java programming, mathematics, and playing the piano. He lives in
Florence with his girlfriend Barbara.

Giacomo Veneri graduated in Computer Science from the University of Siena.
He holds a PhD in neuroscience context with various scientific publications. He is
an IEEE member, and is OCA Java 7 certified. He has 15 years of experience as an
IT architect and a team leader. He is an expert in computer-assisted diagnosis in a
real-time context and is experienced in the automotive, defense, and public sectors.
He is currently an active developer and sponsor of various open source projects.
He lives in Tuscany where he loves cycling.

www.allitebooks.com

http://www.allitebooks.org

[FM-6]

About the Reviewers

Cedric Gatay has an engineering degree in Computer Science. He likes well-crafted
and unit-tested code. He has a very good understanding of Java languages (giving
courses in engineering schools and talking at local Java User Groups).

He has been working with Apache Maven since 2006, and from day one he has been
the technical leader of a successful software company, editing a Wicket-based SaaS:
SRMvision: http://www.srmvision.com.

He is also the founder of a collaborative blog for developers, Bloggure: http://www.
bloggure.info. He is now a freelance developer member of the Code-Troopers
team: http://www.code-troopers.com.

www.allitebooks.com

http://www.srmvision.com
http://www.bloggure.info
http://www.bloggure.info
http://www.code-troopers.com
http://www.allitebooks.org

[FM-7]

Sharafat Ibn Mollah Mosharraf graduated from the University of Dhaka in
Computer Science and Engineering. He is currently working as a senior software
engineer at Therap Services, LLC. He has expertise and experience in architecting,
designing, and developing enterprise applications in Java, PHP, Android, and
Objective-C. He loves researching as well as training people on state-of-the-art
technologies to design, develop, secure, and maintain web and mobile applications.
He also provides coaching for various teams participating in national software
development contests. His areas of interest include user experience, application
security, application performance, and designing scalable applications. He loves
spending his free time with his family and friends.

I'd like to thank the author for writing such a wonderful book on
advanced Maven concepts. It had been difficult for me to train people
to master this topic due to a lack of detailed and organized resources.
I'd also like to thank Neha Thakur, the project coordinator of the book.
It was a pleasure working with her. And last, but not least, I thank
my wife, Sadaf Ishaq, for bearing with me while I put my busy time
reviewing the book. It's always been great to have you by my side!

Rohit Mukherjee is a final year student of computer engineering at the
National University of Singapore (NUS). He spent some time in Zurich,
Switzerland, studying graduate courses in computer science at ETH Zurich.

He has experience working in financial and healthcare technology, and enjoys
working his way through the stack.

I would like to thank my parents and Pratish Mondal for
their support.

www.allitebooks.com

http://www.allitebooks.org

[FM-8]

www.PacktPub.com

Support files, eBooks, discount offers, and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.com
and as a print book customer, you are entitled to a discount on the eBook copy. Get in
touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can access, read and search across Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print and bookmark content
• On demand and accessible via web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials
for immediate access.

www.allitebooks.com

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
http://PacktLib.PacktPub.com
www.PacktPub.com
http://www.allitebooks.org

Table of Contents
Preface 1
Chapter 1: Maven and Its Philosophy 7

Core concepts of Maven 8
Introduction to the transportation project 9

Creating the project 11
Structuring the project 13

Summary 17
Chapter 2: Core Maven Concepts 19

Build lifecycles 19
The default lifecycle 20
The clean lifecycle 26

Maven goals 26
Getting help on plugin goals and parameters 27

Packaging types 28
JAR 29
WAR 29
POM 30
EJB 30
EAR 31
Built-in lifecycles and default bindings 31

Adding and configuring Maven plugins 33
The plugin-level configuration 33
The execution-level configuration 34

Managing dependencies 37
Dependency scopes 38
Dependency version ranges 42
Transitive dependencies and the dependency tree 43

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Dependency inheritance 46
The super and the effective POMs 46

Maven settings 50
Properties and resource filtering 51

Maven properties 51
Resource filtering 52

Building EE applications 54
Building WEB applications 54
Building enterprise applications 55

Configuring repositories 60
Enabling releases and snapshots 61

Best practices 62
Aggregate POMs 62
Dependency management 63
Plugin management 65

Summary 66
Chapter 3: Writing Plugins 67

A problem to solve 68
Developing a new plugin 68
Implementing Mojo 76
Testing Mojo 80
Best practices for testing 82
Integration testing 84
maven-plugin-plugin 87
Custom plugin – mantis-maven-plugin 93

Custom plugin implementations 93
Summary 98

Chapter 4: Managing the Code 99
Maven build profiles 99

What is a profile? 100
The structure of a profile 101
Profile activation 102
Sample build profiles 103

Maven Assembly Plugin 105
Fitting to environment 106
Building your own archive through the Assembly plugin 107
The descriptor file 108
The project configuration 109

Maven Site Plugin 114
Creating a simple site 114

Table of Contents

[iii]

Creating your own project site manually 114
Configuring the site for a submodule 120
Reporting the Javadoc 121
Skinning Maven sites 124
Maven site content 126

Summary 128
Chapter 5: Continuous Integration and Delivery with Maven 129

Key concepts of continuous integration and delivery 130
The repository management server 132

Installing Nexus 133
Installing Nexus on a Unix-based OS 133
Installing Nexus on Windows 133

Customizing Nexus 134
Testing the Nexus installation 134
Configuring the Nexus server 134
Testing the Nexus server 134
Managing repositories 135

Configuring official repositories 135
The User Managed Repository 136

Nexus access-level security 138
Integrating Ant 138

Installing Ant 138
Understanding Ant 138
Ant custom tasks 139

Maven-Ant integration 139
Ant-Maven integration 140

SCM integration 141
Maven SCM Plugin 142
Maven Release Plugin 143
Deploying on the remote repository 145

Continuous Integration and Delivery with Hudson or Jenkins 147
Installing Hudson 147
Configuring Hudson 148
Working with Hudson 149
Working with Hudson interactively 151
Maven-Hudson integration to deliver a new artifact 153
Testing software automation 154

Scheduling a test reporting 156
Integration tests 159
Static code analysis tools (FindBugs) 160

Bug fixing 162
A case study with MantisBT 163

Table of Contents

[iv]

A more realistic case – the transportation project 165
Choosing the component to build 166
Preparing the version of a multimodule component 169

Configuring Hudson 171
Preparing the version of a multimodule with a flat structure (an alternative way) 172
Finalizing the release 174

Summary 175
Chapter 6: Maven Android 177

Prerequisites 177
Creating your own Android application with an archetype 178
Creating your own Android application 178

Creating or modifying the AndroidManifest file 179
Defining a simple Maven POM file 181

Description tags 183
Building with Maven plugin goals 184

Declaring dependencies 185
A compatibility library for API v4 186

The final POM file with dependencies 187
Useful instrumentations to test, sign, and zipalign 189

The test profile 189
Signing and zipaligning the package 191
The bug detector (Lint) 194

Eclipse integration 196
Installing the Android connector 196
Mavenized Android Project 196

Summary 197
Appendix A: Integrating Maven – Gradle 199

What is Gradle? 199
How Gradle works 201
Creating a simple project with Gradle 201
Gradle's project configuration 202
Deploying on the Maven repository 204
Creating the project's POM 206

Appendix B: Maven Integration for Eclipse 209
Importing existing Maven projects 210
Checking out Maven projects from SCM repositories 211
Building Maven projects 213
m2e plugin settings 215
Managing the POM 216

Table of Contents

[v]

Managing repository indexes 219
Managing dependencies and plugins 221
m2e connectors and lifecycle mapping 222
Managing Java EE projects 228

Appendix C: Maven Global Settings 231
The settings.xml file 231

Servers 232
Proxies 233
Profiles 233

Appendix D: Maven Short References – Common Commands
and Archetypes 235

Commands 235
Build 235
Deploy and release 236
Android 237
Miscellaneous 238

Archetypes 239
Maven variables 240
The default and clean Maven lifecycle 241

Index 243

Preface
As, someone we don't actually remember, said, a preface is something you write
after, you put before, and you don't read neither after or before. So we're here
trying to explain why someone who is not going to read this preface should read
a book about Maven.

If you are looking for a book about Maven, you've probably faced some issues
related to the management of a Java project. As a matter of fact, managing medium
and big projects often results in problems related to the build, distribution, and
documentation, leading to team cooperation and communication issues. In such
environments, Maven emerged as one of the state-of-the-art tools to manage
software projects.

This book will drive you to become a Maven expert. This book will provide you
not only with the basic information to manage dependencies, but also with the
knowledge to improve project management in your organization, resulting in
resources savings and positively impacting the software quality.

The book is intended to provide an advanced treatise about Maven to a range of
readers from software analysts to project managers. You will learn both Maven
basic usage and how to exploit its advanced functionalities through an example
project that will follow you throughout the book.

Finally, the four appendices attached to the book will treat specific topics in a very
pragmatic way. You will read about the usage of Maven in Android projects, how
to integrate Maven in your IDE or with other tools such as Gradle, and how to set
up Maven.

Preface

[2]

What this book covers
Chapter 1, Maven and Its Philosophy, explores Maven's core concepts and describes
the structure of the sample project that we will follow through this book.

Chapter 2, Core Maven Concepts, teaches you how Maven plugins are tied to the build
lifecycles and how to use and configure plugins for various purposes. We will dive
into the Maven dependency management system and speak about how to build
multimodule projects containing Java WEB and EE applications.

Chapter 3, Writing Plugins, tells you how to develop a Maven plugin, since most of
the work in Maven is done by plugins. You will also learn how to customize your
builds with tasks that are not available in public plugins.

Chapter 4, Managing the Code, covers the most common procedures to create code,
artifacts, additional documentation, and packages in order to create maintainable
code in the production environment, improve software quality, and simplify the
build phase.

Chapter 5, Continuous Integration and Delivery with Maven, covers how to implement
a real Continuous Integration process with Maven and some popular tools such as
Hudson, Nexus, and ANT, focusing on the Maven release and deploy process to
perform a real releasing pipeline.

Chapter 6, Maven Android, shows you how to create an Android project with Maven.
You will learn how Maven plugins and profiles make the applicants' planning stages
easy, such as creating a simple structure, implementing and running the test, and
running and deploying it on your devices.

Appendix A, Integrating Maven - Gradle, discusses the integration of Maven with an
emerging tool named Gradle. Gradle is a new build automation tool, sponsored by
some important IT companies. You will learn how to use a Maven repository from
Gradle, and how to create a Project Object Model (POM) using Gradle's functionalities.

Appendix B, Maven Integration for Eclipse, teaches you some important tips to exploit
Maven's features from Eclipse. As you are aware, working with Maven from Eclipse
is one of the most common needs.

Appendix C, Maven Global Settings, discusses how to customize the global build
environment of Maven: proxies, repositories, and security.

Appendix D, Maven Short References – Common Commands and Archetypes, gives you
information about the common commands and archetypes. This small chapter
resumes the most common Maven commands discovered in this book. You will
find a practical quick reference of Maven here.

Preface

[3]

What you need for this book
The following are the requirements for this book:

• Software:
 ° Maven version 3.2.x or later
 ° Eclipse Luna or Kepler
 ° JDK 7
 ° Nexus OSS Sonatype
 ° Hudson CI 3.2.0
 ° Gradle 2.0
 ° ANT
 ° Android SDK

• Operating Systems:

 ° Any operating system that supports JDK 6+

Please note that the code reported in this book has been tested on CentOS Linux
and/or Windows 7.

Who this book is for
This book is intended for developers, project managers, and delivery managers
who know a little bit about Maven and Java and want to extend their knowledge
on building process automation in order to reduce human error.

It would be helpful to have familiarity with building and releasing best practices.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"We can add plugins to our project by right-clicking on our pom.xml file."

Preface

[4]

A block of code is set as follows:

<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.
apache.org/maven-v4_0_0.xsd">

 <modelVersion>4.0.0</modelVersion>

 <!-- Project coordinates -->
 <groupId>com.mycompany.projects</groupId>
 <artifactId>my-first-maven-project</artifactId>
 <version>1.0-SNAPSHOT</version>
 <packaging>jar</packaging>

 <name>My First Maven Project!</name>
</project>

When we wish to draw your attention to a particular part of a code block, the relevant
lines or items are set in bold:

 <reportSet>
 <reports>
 <report>javadoc</report>
 <report>test-javadoc</report>
 </reports>
 </reportSet>

Any command-line input or output is written as follows:

$ mvn site:deploy

New terms and important words are shown in bold. Words that you see on the screen,
in menus or dialog boxes for example, appear in the text like this: "Open the new
project window by navigating to File | New | Project…."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

[5]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things
to help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to
have the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link,
and entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list of
existing errata, under the Errata section of that title. Any existing errata can be viewed
by selecting your title from http://www.packtpub.com/support.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
http://www.packtpub.com/support

Preface

[6]

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works, in any form, on the Internet,
please provide us with the location address or website name immediately so
that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring
you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem
with any aspect of the book, and we will dos our best to address it.

Maven and Its Philosophy
If we ask software developers what Maven is, the majority will probably respond
that Maven is a build tool. We can't say they are wrong, but this definition is not
complete. If we want to be more precise, we should say that Maven is a project
management tool that provides build and distribution functionalities, code generation,
and communication features. Above all, Maven provides an advanced dependency
management system that is able to retrieve transitive dependencies and download
them from both local and remote repositories.

Maven is built with a plugin-based architecture; the core architecture provides
a set of features that can be extended through a set of official or custom plugins
downloadable from repositories.

Maven comes with the convention over configuration philosophy. The origin of this
philosophy resides in the idea that accepting conventions resulting from a set of
past experiences leads to advantages such as saving time, reuse, and maintenance
simplification. Maven pursues this philosophy through the use of defaults, which
means that unnecessary configurations should be avoided; a project should just work.

While the use of defaults is a powerful concept, users might want to customize
some behavior. Maven meets the users' needs by allowing the customization of
almost all defaults.

In this chapter, we will:

• Introduce Maven and explain its basic concepts
• Present the example project used to show the concepts that we will treat
• Start structuring the project, deepening some of the concepts introduced

Maven and Its Philosophy

[8]

Core concepts of Maven
In this paragraph, we will explore some of Maven's core concepts through a simple
example. Maven defines project configurations through a Project Object Model
(POM), which is stored in a file named pom.xml.

The following example of pom.xml defines a simple project. Such a simple POM
file is capable of compiling and building the project without the need to specify
any additional information:

<project xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.
apache.org/maven-v4_0_0.xsd">

 <modelVersion>4.0.0</modelVersion>

 <!-- Project coordinates -->
 <groupId>com.mycompany.projects</groupId>
 <artifactId>my-first-maven-project</artifactId>
 <version>1.0-SNAPSHOT</version>
 <packaging>jar</packaging>

 <name>My First Maven Project!</name>
</project>

Reading the example POM file, the following concepts emerge:

• Inheritance: This concept simply means that everything that is not specified
in a POM file is inherited from the upper-level POM. At the top level,
Maven provides a parent POM defining all default values, which were
mentioned earlier. According to this principle, multimodular projects are
often structured with a root POM file defining common settings and a pom.
xml file related to each submodule to manage each module's peculiarities.

• Overriding: This concept derives from the preceding one. All the values
defined in the lower levels of the POM hierarchy override the definitions in
the upper layers. As we can see in the preceding example POM file, only the
project's coordinates have been defined, any other value is inherited from the
parent POM. A project is uniquely identified into Maven repositories by its
coordinates, which is composed of groupId, artifactId, and version. Project
coordinates are fundamental since they allow Maven to correctly manage
modules and plugins.

Chapter 1

[9]

• Modularity: When we install Maven, we formally install only its core
functionalities. Whenever we need some extra features, we can find it in
some plugin. Plugins as well as software dependencies are downloaded
from a set of configurable repositories.

• Repository: Maven downloads a project's dependencies and plugins
through repositories. Maven only distinguishes between two types of
repositories: local and remote. The local repository is a folder inside the
machine in which a project is being developed, acting as a cache with
respect to the remote repositories. For what concerns remote repositories,
Apache provides a central repository containing thousands of common
dependencies, which is the default one. Maven does not rely on this specific
repository, thus allowing users to define their own custom repositories.

Introduction to the transportation project
We briefly explored some of Maven's core concepts. Before we start diving
into details, we will introduce the project that will guide us across this book:
transportation project.

This project aims to develop an application to track vehicles moving around the
world and provides an integrated GUI for visualization and statistic calculations.

The example project that we will describe in this book is a complex multimodule
J2EE application. Its functional architecture is shown in the following figure:

Maven and Its Philosophy

[10]

As we can see in the preceding figure, the project is composed of several modules that
interact with each other and store their data in a shared database. All the modules
composing the project follow a common naming convention. The first part of the
name indicates the project. The second part is a descriptive name indicating the main
functionality of the module. The final part indicates the packaging of each module.
All the parts composing the name are separated by a dash.

The following list describes what these modules are in charge of:

• transportation-android-apk: This is an Android application in charge of
collecting GNSS coordinates and periodically sending them to the backend.

• transportation-acq-ear: This is an archive module containing all the
functionalities of the backend interface.

• transportation-acq-war: This is a web application module exposing
the backend functionalities to an app across the world using the REST
technology. This module receives the application requests, validates them,
and invokes the transportation-acq-ejb functionalities in order to
perform its tasks.

• transportation-acq-ejb: This is an Enterprise Java Bean containing
all the data acquisition APIs. This module is in charge of persisting the
collected coordinates into the database.

• transportation-reporting-ear: This is an archive module containing
all the reporting functionalities.

• transportation-reporting-war: This is a web application containing
the reporting GUI.

• transportation-reporting-ejb: This is an enterprise Java Bean containing
all of the business logic related to the statistics visualization.

• transportation-common-jar: This is a JAR file containing common
utility classes.

• transportation-statistics-batch-jar: This is a scheduled standalone
application in charge of statistical computations on the collected coordinates.

In order to explain some advanced Maven features, we assume that the project
is developed in an integrated environment. This environment consists of several
entities, managing different phases of the software's lifecycle:

• Source code repository: We assume that the code is available in an SVN
repository, even though the kind of repository is not binding.

• Bug-tracking tool: In order to avoid dependencies from specific products such
as MantisBT or Jira, we assume to have a custom database to track bugs.

Chapter 1

[11]

• Custom-dependencies repository: This is proprietary software stored in
the repository.

• Integrated-build and versioning environment: This environment relies
on Maven features to perform most of its work. Since, in this case, we
must target a specific tool, we will assume to work with Hudson.

In the following figure, we can see the overall picture of the development and
build environment:

Life cycle of the software

In spite of the fact that Maven is agnostic with respect to operating systems and
IDE, in the course of this book, we assume to develop the software using Eclipse
IDE with the M2E-Maven Integration for Eclipse plugin, m2e.

You can download Eclipse from https://www.eclipse.
org/downloads/.
You can find all details about m2e at https://www.eclipse.
org/m2e/.

Creating the project
Now that we have a clear view of the project's structure and context, we can start
getting our hands dirty.

In Maven, a multimodule project simply consists of a folder containing all submodule
projects and a central POM file referencing these modules. This file is usually referred
to as parent POM or aggregate POM. In this book, we will comply with this naming.

https://www.eclipse.org/downloads/
https://www.eclipse.org/downloads/
https://www.eclipse.org/m2e/
https://www.eclipse.org/m2e/

Maven and Its Philosophy

[12]

To start working, we simply need to open our IDE and create the project. Through
the m2e plugin, Eclipse provides a wizard specific for Maven project creation.

The project creation starts as any other project. Open the new project window by
navigating to File | New | Project….

When the window opens, select the Maven Project option from the Maven folder.
As we can see in the following screenshot, the last two steps consist of creating a
simple project and filling in the form with the project's coordinates and packaging:

We finally have our Maven project. Our pom.xml file will look a bit desolate, but it
will soon grow up. In the following sections, we will start structuring this POM file:

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://
www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.
apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">

 <modelVersion>4.0.0</modelVersion>
 <groupId>com.packt.examples</groupId>
 <artifactId>transportation-project</artifactId>
 <version>0.0.1-SNAPSHOT</version>
 <packaging>pom</packaging>
 <name>transportation-project</name>
 <description>The Transportation Project</description>
</project>

Chapter 1

[13]

A project packaging pom does not produce any software
package; it simply defines a POM file referencing a set of
specified modules, and provides the common settings such
as repositories, dependencies, and plugins.
This is the case of an aggregate POM, but it is possible to create
POM projects with only specific settings; such projects might be
used as a dependencies of other projects or modules that inherit
the specified settings.

Structuring the project
Actually, we created an empty project. In order to start structuring our project, we
will start adding the project modules that we saw in the earlier sections. The easiest
way to add a module is to exploit the m2e functionalities. Just right-click on the pom.
xml file and navigate to Maven | New Maven Module Project from the context
menu. After this, we can fill in the modules, as shown in the following screenshot:

New Maven module creation

Now, our project will have the first module. We can iterate the same operation for
the remaining modules, taking care to choose the right packaging for each module.

Remember that EJBs don't have proper packaging. They are often
included in JAR packages.

Maven and Its Philosophy

[14]

Once we stop adding modules, we will see that m2e created all the submodules.
Each module that is stored as a folder into the project has its own pom.xml file, which
will specify its specific coordinates and settings. In order to distinguish between the
POM file of the project and the POM files of its modules, we will call the aggregate
POM that we created earlier. The following screenshot shows the added modules
and submodules:

As we might notice, this multimodular project follows the standard that we
discussed in the Core concepts section.

While terminating the structuration of our project, we take the chance to deepen
two more concepts, plugins and dependencies.

As we mentioned earlier, Maven's core functionalities do not cover all needs; most
of them are implemented in external plugins. We can add plugins to our project by
right-clicking on our pom.xml file and navigating to Maven | Add Plugin from the
context menu, as shown in the following screenshot. We can see that the Version
field is not mandatory; if we don't specify its value, Maven will download the
latest version.

In the following example, we add the maven-surefire-plugin to transportation
project. This plugin is used during the test phase to execute the unit tests of the
applications. It supports different unit-test frameworks such as JUnit and TestNG.

Chapter 1

[15]

Since we want to use JUnit, we can simply add JUnit as a dependency of our project.
We can add a new dependency the same way as we added a plugin before.

Of course, it is possible to add more plugins and dependencies by manually editing
the POM file of each project. In order to add the Maven compiler plugin in our
parent POM, we simply add the following tags as a child of the <plugins> tag:

<plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-compiler-plugin</artifactId>
 <configuration>
 <source>1.7</source>
 <target>1.7</target>
 </configuration >
</plugin>

After we add all the modules and plugins described earlier, our pom.xml file will
look like this:

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://
www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.
apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">

 <modelVersion>4.0.0</modelVersion>
 <groupId>com.packt.examples</groupId>
 <artifactId>transportation-project</artifactId>
 <version>0.0.1-SNAPSHOT</version>
 <packaging>pom</packaging>
 <name>transportation-project</name>
 <description>The Transportation Project</description>

 <modules>

www.allitebooks.com

http://www.allitebooks.org

Maven and Its Philosophy

[16]

 <module>transportation-acq-ear</module>
 <module>transportation-acq-war</module>
 <module>transportation-acq-ejb</module>
 <module>transportation-reporting-ear</module>
 <module>transportation-reporting-war</module>
 <module>transportation-reporting-ejb</module>
 <module>transportation-common-jar</module>
 <module>transportation-statistics-batch-jar</module>
 </modules>

 <dependencies>
 <dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>4.8.1</version>
 <scope>test</scope>
 </dependency>
 </dependencies>

 <build>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-surefire-plugin</artifactId>
 <version>2.17</version>
 </plugin>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-compiler-plugin</artifactId>
 <version>2.5.1</version>
 <configuration>
 <source>1.7</source>
 <target>1.7</target>
 </configuration >
 </plugin>
 </plugins>
 </build>
</project>

Downloading the example code
You can download the example code files for all Packt books you
have purchased from your account at http://www.packtpub.com.
If you purchased this book elsewhere, you can visit http://www.
packtpub.com/support and register to have the files e-mailed
directly to you.

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support

Chapter 1

[17]

We have finally structured our project. Actually, it contains all of its modules, a
single plugin, and one dependency.

Before exploring the concepts we introduced in this chapter in more detail, it is
important to focus on the best practice described in the following snippet. This
practice concerns dependency management and will allow us to avoid some
common problems related to this topic.

The aggregate POM should be the only one defining the
dependency version. The modules composing the project
should use the dependencies in an anonymous way (that is,
without specifying their versions).
Archive modules such as EARs should be the only way to
physically contain the libraries; all the submodules should
consider their dependencies as provided.

Summary
In this chapter, we explored Maven's core concepts and described the structure of
the sample project that we will follow across this book.

We also discussed the concepts of dependency and plugins in detail, and explained
how to practically manage them.

In the following chapter, we will dive into our project and discuss the advanced
use and customization of Maven plugins in detail.

Core Maven Concepts
As we saw in the previous chapter, each Maven project is described by an XML
configuration file called Project Object Model. What we have yet to see is how
Maven will use the information contained in the POM, how we can clean and build
our projects, which tasks we can decide to run, and finally, how Maven plugins take
part in the build process. In order to answer all these questions, we'll dive into the
core concepts of Maven, which are as follows:

• Build lifecycles
• Lifecycle phases and plugin goals
• Packaging types (JAR, WAR, EAR)
• Dependencies and repositories
• Resource filtering

Using all these features, you will learn how to set up and build a complex
multimodule Java EE application. All the examples of this chapter refer to a direct
usage of the Maven tool from the command line; in Appendix B, Maven Integration for
Eclipse we will show you how to manage a Maven project from Eclipse IDE.

Build lifecycles
A lifecycle is a sequence of phases. In each phase, depending on the POM
configuration, one or more tasks are executed. These tasks are called goals.
Despite the enormous variety of work that can be accomplished by Maven,
there are only three built-in Maven lifecycles: default, clean, and site.

Core Maven Concepts

[20]

The default lifecycle
The default lifecycle is responsible for the build process, so it's the most interesting.
Among its phases, the most important phases are described in the following table:

Phase Actions
process-resources Filter the resource files and copy them in the

output directory
compile Compile the source code
process-test-resources Filter the test resource files and copy them in the test

output directory
test-compile Compile the test source code
test Run the unit tests
package Produce the packaged artifact (JAR, WAR, EAR)
install Install the package in the local repository so that other

projects can use it as a dependency
deploy Install the package in a remote repository

We'll speak later about local and remote Maven repositories.

When we invoke one phase from the command line, Maven executes all the phases
of the lifecycle from the beginning up to the specified phase (included). In fact, one
of the most common ways to run Maven is just to use the following syntax:

$ mvn <phase>

It will run all the portions of the respective lifecycle, ending with this phase.

Let's consider an example. Suppose that the POM file of our transportation-acq-
ejb module is the following, and it is located in the /transportation-project/
transportation-acq-ejb directory:

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://
www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.
apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <parent>
 <groupId>com.packt.examples</groupId>
 <artifactId>transportation-project</artifactId>
 <version>0.0.1-SNAPSHOT</version>
 </parent>
 <artifactId>transportation-acq-ejb</artifactId>
 <packaging>jar</packaging>

Chapter 2

[21]

 <name>transportation-acq-ejb</name>
 <dependencies>
 <dependency>
 <groupId>javax</groupId>
 <artifactId>javaee-api</artifactId>
 <version>6.0</version>
 <scope>provided</scope>
 </dependency>
 </dependencies>
</project>

As we can see in the preceding code, the transportation-acq-ejb module's
parent is the transportation-project parent project. We can add some sample
Java classes and interfaces in the transportation-acq-ejb project. First, we add
an EJB local interface, MyEjb.java:

package com.packt.samples;

import javax.ejb.Local;

@Local
public interface MyEjb
{
 public int myMethod();
}

Then, we add a dummy implementation, MyEjbImpl.java:

package com.packt.samples;

import javax.ejb.Stateless;

@Stateless
public class MyEjbImpl implements MyEjb
{

 @Override
 public int myMethod()
 {
 return 0;
 }
}

Core Maven Concepts

[22]

Finally, we add a unit test class, SampleTest.java:

package com.packt.samples;

import static org.junit.Assert.*;

import org.junit.Test;

public class SampleTest
{
 @Test
 public void test()
 {
 assertTrue(true);
 }
}

The directory structure of the transportation-acq-ejb module is as shown in the
following screenshot:

Chapter 2

[23]

In a Maven project, we have to put the project sources under /src/
main/java and the test sources under /src/main/test. These
default conventional values can be overridden, as we'll see later in this
chapter, but this is not recommended; remember the convention over
configuration paradigm!

Execute the following command:

$ mvn install

We'll see the following output after executing the preceding command:

[INFO] Scanning for projects...

[...]

[INFO] ---

[INFO] Building transportation-acq-ejb 0.0.1-SNAPSHOT

[INFO]

[INFO] --- maven-resources-plugin:2.6:resources (default-resources) @
transportation-acq-ejb ---

[…]

[INFO] --- maven-compiler-plugin:2.5.1:compile (default-compile) @
transportation-acq-ejb ---

[INFO] Compiling 2 source files to ~/transportation-project/
transportation-acq-ejb/target/classes

[INFO]

[INFO] --- maven-resources-plugin:2.6:testResources (default-
testResources) @ transportation-acq-ejb ---

[…]

[INFO] --- maven-compiler-plugin:2.5.1:testCompile (default-testCompile)
@ transportation-acq-ejb ---

[INFO] Compiling 1 source file to ~/transportation-project/
transportation-acq-ejb/target/test-classes

[INFO]

[INFO] --- maven-surefire-plugin:2.17:test (default-test) @
transportation-acq-ejb ---

[INFO] Surefire report directory: ~/transportation-
project/transportation-acq-ejb/target/surefire-repor
ts---

 T E S T S

Running com.packt.samples.SampleTest

Core Maven Concepts

[24]

Tests run: 1, Failures: 0, Errors: 0, Skipped: 0, Time elapsed: 0.032 sec
- in com.packt.samples.SampleTest

Results :

Tests run: 1, Failures: 0, Errors: 0, Skipped: 0

[INFO] --- maven-jar-plugin:2.4:jar (default-jar) @ transportation-acq-
ejb ---

[INFO] Building jar: ~/transportation-project/transportation-acq-ejb/
target/transportation-acq-ejb-0.0.1-SNAPSHOT.jar

[INFO]

[INFO] --- maven-install-plugin:2.4:install (default-install) @
transportation-acq-ejb ---

[INFO] Installing ~/transportation-project/transportation-acq-ejb-0.0.1-
SNAPSHOT.jar to ~/.m2/repository/com/packt/examples/transportation-acq-
ejb/0.0.1-SNAPSHOT/transportation-acq-ejb-0.0.1-SNAPSHOT.jar

[INFO] Installing ~/transportation-project/transportation-acq-ejb/pom.
xml to ~/.m2/repository/com/packt/examples/transportation-acq-ejb/0.0.1-
SNAPSHOT/transportation-acq-ejb-0.0.1-SNAPSHOT.pom

[INFO] ---

[INFO] BUILD SUCCESS

[INFO] ---

If we run Maven for the first time, in addition to the preceding
output shown, we'll see a lot of other output lines saying that
project plugins and dependencies are being downloaded from
the Maven central repository.

So, as we can see, the sequence of operations performed by Maven follows the steps
specified in the default lifecycle. You will also notice that each action performed by
Maven is delegated to a certain plugin. In order to compile the project, Maven will
download and use the specified dependencies (in this case, Java EE API is needed
to compile the EJB classes). Plugins and dependencies are downloaded on-demand,
and they are saved in the local repository, which is located under the local user
home in the /.m2/repository subdirectory by default.

Chapter 2

[25]

For Linux users, the local repository is located under ~/.m2/
repository, where ~ means the user home directory that usually
has the /home/<username> path.
For Windows users, the local repository is (usually) located under
C:\Users\<username>\.m2\repository.

Once Maven downloads an artifact or a plugin, it will reuse its stored copy and
never search the same version of this artifact or plugin in the Maven central
repository or in other remote repositories that can be specified in our POM file
again. The only exception to this rule regarding the snapshot versions is that if
the version of a dependency or plugin is marked with the -SNAPSHOT suffix, this
version is currently on development. For this reason, Maven will periodically
attempt to download this artifact from all the remote repositories that have
snapshots enabled in their configurations (refer the Configuring repositories
section in this chapter).

If we look in the /target directory, we'll see all the work done by Maven;
in this case, the compiled classes, unit test reports, and packaged artifact
transportation-acq-ejb-0.0.1-SNAPSHOT.jar:

Build output of the transportation-acq-ejb module

Core Maven Concepts

[26]

Note that if instead of running the previous command, we run the mvn package
command, the lifecycle execution will stop with the package phase and the artifact
will not be installed in the local repository. This can be a problem if the artifact is
needed by other projects as a dependency.

The clean lifecycle
The clean lifecycle is responsible for cleaning the build output. Its phases are
as follows:

• Preclean
• Clean
• Postclean

If we run the mvn clean command, the target directory will be deleted, but not
the artifact installed in the local repository:

$ mvn clean

Now, if we build the project again, we'll see that no downloads
will take place.

Maven can also be used to generate project documentations in various formats
and reports about the project. This is achieved through the site lifecycle. We'll
discuss these features in Chapter 4, Managing the Code.

Maven goals
Now that we explored the concepts of lifecycle and phase, we have to answer
questions such as what is executed in each phase and how we can customize
the build process in order to accomplish the desired results. To answer these
questions, we need to speak of goals.

A goal is a task contained in a Maven plugin. It can be invoked by directly
running the following command:

$ mvn <plugin-prefix>:<goal-name>

Chapter 2

[27]

A plugin prefix is a shortcut that allows us to refer to the plugin without
having to specify its Maven coordinates groupId, artifactId, and
version. We'll speak about this in the next chapter.

For example, from the /transportation-project/transportation-acq-ejb
directory, we can run the following command:

$ mvn compiler:compile

[INFO] Scanning for projects...

[...]

[INFO] --

[INFO] Building transportation-acq-ejb 0.0.1-SNAPSHOT

[INFO] --

[INFO]

[INFO] --- maven-compiler-plugin:2.5.1:compile (default-cli) @
transportation-acq-ejb ---

[INFO] Compiling 2 source files to ~/transportation-project/
transportation-acq-ejb/target/classes

[INFO] --

[INFO] BUILD SUCCESS

We can see that, in this case, Maven just compiles the Java sources. So, we can
invoke the Maven executable by specifying a phase, a goal, or both. In fact, if we
ask for help on the command line, we obtain the following output:

$ mvn -h

usage: mvn [options] [<goal(s)>] [<phase(s)>]

Getting help on plugin goals and parameters
We can list the available goals of a certain plugin through the Maven Help Plugin.
For example, we can type on the command line:

$ mvn help:describe –Dplugin=compiler

[...]

Name: Maven Compiler Plugin

Core Maven Concepts

[28]

Description: The Compiler Plugin is used to compile the sources of your
project.

Group Id: org.apache.maven.plugins

Artifact Id: maven-compiler-plugin

Version: 3.1

Goal Prefix: compiler

This plugin has 3 goals:

compiler:compile

 Description: Compiles application sources

compiler:help

 Description: Display help information on maven-compiler-plugin.

 Call mvn compiler:help -Ddetail=true -Dgoal=<goal-name> to display

 parameter details.

compiler:testCompile

 Description: Compiles application test sources.

For more information, run 'mvn help:describe [...] -Ddetail'

With the –Ddetail parameter, we'll get information about the available parameters
that can be specified through the –D<parameter name> syntax in case of direct
invocation of the plugin goals. We can also try the following command:

$ mvn help:describe –Dplugin=help

This way, we'll obtain help on the Maven Help Plugin!

Packaging types
It's time to introduce one of the most important Maven concepts: how plugin goals
are tied to lifecycle phases. This happens through packaging types. The packaging
type is specified in the pom.xml descriptor through the <packaging> element, usually
after its Maven coordinates. The default packaging type is jar. The plugin goals that
are executed by default in each phase of the lifecycle depend on the packaging type
of the project that we will build. This is because we need to execute different tasks for
different packaging types. Let's see some details about the most common packaging
types and their default bindings.

Chapter 2

[29]

JAR
This is the default packaging type. It produces an archive in the JAR format.
Its default bindings in the default lifecycle are shown in the following table.
The plugin goal is expressed in the <plugin-prefix>:<goal-name> form.

Lifecycle phase Plugin goal
process-resources resources:resources

compile compiler:compile

process-test-resources resources:testResources

test-compile compiler:testCompile

test surefire:test

package jar:jar

install install:install

deploy deploy:deploy

We can see that the plugin goals are the same as those we encountered when we
built our sample module, transportation-acq-ejb.

WAR
The WAR packaging type binds the war goal of maven-war-plugin to the package
phase. This goal creates a web application archive using the JSP pages and XML
descriptors under /src/main/webapp, the compiled classes of the project, and all
the JAR dependencies that have the compile or runtime scope. We'll speak later
about dependencies and dependency scopes. The default bindings of the WAR
packaging type are shown in the following table:

Lifecycle phase Plugin goal
process-resources resources:resources

compile compiler:compile

process-test-resources resources:testResources

test-compile compiler:testCompile

test surefire:test

package war:war

install install:install

deploy deploy:deploy

Core Maven Concepts

[30]

POM
This is the packaging type of project parent POM files (such as the
transportation-project parent POM of our sample) or aggregate POM files
(that we'll discuss later in this chapter). Here, there aren't source files to process
or compile; we only need to install and deploy the POM, along with its site
descriptor, if present. Here are the default bindings of the POM packaging type:

Lifecycle phase Plugin goal
package site:attach-descriptor

install install:install

deploy deploy:deploy

EJB
This packaging type differs from the JAR packaging type in the package phase, in
which the ejb:ejb goal of maven-ejb-plugin is used in place of the jar:jar goal of
maven-jar-plugin. The ejb:ejb goal behaves like the jar:jar goal, but in addition,
it checks for the presence of the ejb-jar.xml descriptor when the ejbVersion
configuration parameter of the plugin is set to 2.x (the default). If this descriptor is
missing, an error is thrown. As the ejb-jar.xml descriptor is not needed when we
use EJB version 3.x, we should explicitly configure maven-ejb-plugin, specifying
EJB version 3.x. This way, we will obtain the exact same result as when using the
jar:jar plugin goal, and ultimately, the JAR packaging type. For this reason, we
used the JAR instead of the EJB packaging type in the EJB modules of our sample
project. The following table shows the default bindings of the EJB packaging type:

Lifecycle phase Plugin goal
process-resources resources:resources

compile compiler:compile

process-test-resources resources:testResources

test-compile compiler:testCompile

test surefire:test

package ejb:ejb

install install:install

deploy deploy:deploy

Chapter 2

[31]

For more information on maven-ejb-plugin, we can ask for help from Maven using
the Maven Help Plugin:

$ mvn help:describe –Dplugin=ejb –Ddetail

We can also get help on the official Maven site:

http://maven.apache.org/plugins/maven-ejb-plugin/

EAR
The EAR packaging type binds maven-ear-plugin to the generate-resources and
package phases of the default lifecycle. It generates the application.xml descriptor
and Java EE Enterprise Archive. Its default bindings are shown in the following table:

Lifecycle phase Plugin goal
generate-resources ear:generate-application-xml

process-resources resources:resources

package ear:ear

install install:install

deploy deploy:deploy

The generate-resources phase is not bound to any plugin goal
for the packaging types that we saw before. In the next section, we'll
show the complete list of the default lifecycle phases.

Built-in lifecycles and default bindings
We can find a complete reference for the built-in lifecycles on the Maven site,
http://maven.apache.org, navigating to Documentation | Introduction |
The Build Lifecycle. We can wonder where these lifecycles and default bindings
are actually defined. All these definitions are in the Maven core library, maven-core
-<Maven version>.jar, under the /lib subdirectory of the Maven installation.
For example, in maven-core-3.2.1.jar, under the META-INF/plexus folder, we
can find the components.xml and default-bindings.xml descriptors. These two
descriptors contain the lifecycle definitions and their default bindings, respectively.
Looking at the components.xml descriptor, we can see the following elements:

<component>
 <role>org.apache.maven.lifecycle.Lifecycle</role>

http://maven.apache.org/plugins/maven-ejb-plugin/
http://maven.apache.org

Core Maven Concepts

[32]

 <implementation>org.apache.maven.lifecycle.Lifecycle</
implementation>
 <role-hint>default</role-hint>
 <configuration>
 <id>default</id>
 <phases>
 <phase>validate</phase>
 <phase>initialize</phase>
 <phase>generate-sources</phase>
 <phase>process-sources</phase>
 <phase>generate-resources</phase>
 <phase>process-resources</phase>
 <phase>compile</phase>
 <phase>process-classes</phase>
 <phase>generate-test-sources</phase>
 <phase>process-test-sources</phase>
 <phase>generate-test-resources</phase>
 <phase>process-test-resources</phase>
 <phase>test-compile</phase>
 <phase>process-test-classes</phase>
 <phase>test</phase>
 <phase>prepare-package</phase>
 <phase>package</phase>
 <phase>pre-integration-test</phase>
 <phase>integration-test</phase>
 <phase>post-integration-test</phase>
 <phase>verify</phase>
 <phase>install</phase>
 <phase>deploy</phase>
 </phases>
 </configuration>
</component>

These are all the phases of the default lifecycle.

We will never need to inspect the Maven core jars! These details are
documented in the Maven site, and there are other ways to discover
the defaults of our projects. We'll see them later in this book.

Chapter 2

[33]

Adding and configuring Maven plugins
Now that we explored the core concepts of Maven, we know that all the work is done
by Maven plugins. We can say that there are no exceptions to this rule. Till now, we
saw some core and packaging plugins such as the Maven Compiler Plugin, the Maven
Install Plugin, the and the Maven JAR Plugin. We also learned how to explore their
goals and properties using the Maven Help Plugin. What we have to know is how to
customize the behavior of the plugins that are already bound by default to the build
lifecycle and how to fill the lifecycle with the other required plugin goals.

The plugin-level configuration
If we need to configure a plugin, we can specify some common configuration
parameters that will be used for all the invocations of the plugin within our project.
This means that such parameters will be used both when we invoke a plugin goal
directly from the command line (in the project directory) and when the plugin
is invoked during a phase of the build lifecycle. We can achieve this putting a
<configuration> element into the <plugin> element related to our plugin in
the project POM. An abstract example is the following:

<project>
 [...]
 <build>
 <plugins>
 <plugin>
 <groupId>...</groupId>
 <artifactId>...</artifactId>
 <version>...</version>
 <configuration>
 <param1>value1</param1>
 <param2>value2</param2>
 [...]
 </configuration>
 </plugin>
 </plugins>
 </build>
 [...]
</project>

Core Maven Concepts

[34]

We have to remark on this:

• Even if the plugin is bound (by default) to the lifecycle, we need to declare
it explicitly in the POM file if we want to set its configuration parameters
with values that differ from their defaults.

• The configuration elements that we can specify are the same that we can
see when invoking the Maven Help Plugin with the –Ddetail option.
Using the Maven Help Plugin, we can also see the default values for all
the plugin parameters.

If we look at the parent POM of our sample project introduced in the previous
chapter, we will see that we set the source and target parameters to 1.7 in order
to compile with JDK 1.7:

<plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-compiler-plugin</artifactId>
 <version>2.5.1</version>
 <configuration>
 <source>1.7</source>
 <target>1.7</target>
 </configuration>
</plugin>

If we use the version 2.5.1 of the Maven Compiler Plugin the default values for both
these parameters are 1.5, so we need to change them.

The execution-level configuration
A plugin can be bound to more than one phase of the lifecycle. We can execute
multiple goals or the same goal more than once in the same phase or in different
phases. To obtain this, we can use multiple <execution> elements, each containing
the <configuration> element to be considered for the execution. In the same manner,
when a plugin is not bound by default to the build lifecycle, we have to specify an
<execution> element with its configuration. The plugin-level and execution-level
configuration can coexist, in which case, the execution-level configuration settings
will override the plugin-level settings.

Let's consider an example. Suppose we have to generate the JAXB beans from a
given XSD schema and we want to put them into the transportation-common-jar
module of our sample project. We can use jaxb2-maven-plugin and bind it to the
generate-sources phase of the lifecycle, as follows:

<plugin>
 <groupId>org.codehaus.mojo</groupId>

Chapter 2

[35]

 <artifactId>jaxb2-maven-plugin</artifactId>
 <version>1.6</version>
 <executions>
 <execution>
 <id>myExecution</id>
 <goals>
 <goal>xjc</goal>
 </goals>
 <configuration>
 <schemaDirectory>
 src/main/resources/schema/
 </schemaDirectory>
 <bindingDirectory>src/main/resources/xjb</bindingDirectory>
 <arguments>-extension</arguments>
 </configuration>
 </execution>
 </executions>
</plugin>

If we put one or more XSD files in the schema directory and we build the project,
we'll see the following output:

$ mvn install

[...]

[INFO] --- jaxb2-maven-plugin:1.6:xjc (myExecution) @ transportation-
common-jar ---

[INFO] Generating source...

[...]

[INFO] --- maven-resources-plugin:2.6:resources (default-resources) @
transportation-common-jar ---

[...]

[INFO] --- maven-compiler-plugin:2.5.1:compile (default-compile) @
transportation-common-jar ---

[...]

We'll notice that the JAXB beans have been generated in the /target/
generated-sources/jaxb directory, which is the default value for the
outputDirectory configuration parameter of the JAXB-2 Maven Plugin.
Also, schemaDirectory and bindingDirectory have default values, but
in this case, they have been overridden in the execution-level configuration.

www.allitebooks.com

http://www.allitebooks.org

Core Maven Concepts

[36]

For a complete description of this plugin, we can run the
following command:
$ mvn help:describe -Dplugin=jaxb2 –Ddetail

We can also read the plugin documentation at the following URL:
http://mojo.codehaus.org/jaxb2-maven-plugin/

The compiler plugin is able to compile the generated sources in addition to those
in /src/main/java.

We have to remark on this:

• The <execution> element and goal specification are needed. If they
are missing, no goals will be executed. This is because no goals of
jaxb2-maven-plugin are bound by default
to the default lifecycle.

• We can specify a <phase>generate-sources</phase> child element of
the <execution> element, but in this case, it is not needed because the
binding of the xjc goal to the generate-sources phase is a default setting
for jaxb2-maven-plugin and is defined within the plugin itself. We can
discover the default phase for a plugin goal using the Maven Help Plugin,
as suggested earlier.

The execution ID, which is the <id> child element of the <execution> element,
is not mandatory. If it misses a value, default will be used. When we need to
configure plugins that are already bound to the Maven lifecycle (for example,
compiler-maven-plugin or ear-maven-plugin), we should know that each plugin
goal invoked by the build process will have the default-<goalName> execution ID
assigned to it. For example, maven-compiler-plugin is executed twice during the
default lifecycle: during the compile phase, the compile goal is executed with the
default-compile execution ID; during the test-compile phase, the testCompile
goal is executed with the default-testCompile execution ID. This way, we'll be
able to configure the two executions independently. We can verify this behavior
looking at the Maven output of the previous examples. In the case of direct
invocation of a plugin goal, the execution ID will always be default-cli. Let's
see an example about the configuration of a plugin that is invoked directly: suppose
we don't want to bind the JAXB-2 Maven Plugin to the generate-sources phase,
and we want to invoke this plugin directly (and only once) to generate the JAXB
beans under the /src/main/java source folder. All we have to do is modify the
plugin configuration as follows:

<plugin>
 <groupId>org.codehaus.mojo</groupId>

http://mojo.codehaus.org/jaxb2-maven-plugin/

Chapter 2

[37]

 <artifactId>jaxb2-maven-plugin</artifactId>
 <version>1.6</version>
 <executions>
 <execution>
 <id>default-cli</id>
 <configuration>
 <schemaDirectory>src/main/resources/schema/</schemaDirectory>
 <bindingDirectory>src/main/resources/xjb</bindingDirectory>
 <outputDirectory>src/main/java</outputDirectory>
 <arguments>-extension</arguments>
 </configuration>
 </execution>
 </executions>
</plugin>

This way, the xjc plugin goal will not be bound to the generate-sources phase
because no goals are specified. If we want to generate the JAXB beans, we have to
use the following command, and the configuration of the default-cli execution ID
will be used:

$ mvn jaxb2:xjc

We need to notice that we cannot have multiple executions with different
configurations for direct invocation because only the default-cli execution
ID is available.

We can find more examples about this on the Maven site at the following URL:

http://maven.apache.org/guides/mini/guide-default-execution-ids.html

Managing dependencies
When we build a project, we usually need external libraries and archives of
third parties, or those developed by us in other projects. These are called project
dependencies. One Maven project will have other Maven projects as dependencies,
and it will refer to them through their groupId, artifactId, and version Maven
coordinates. When we declare a dependency in a project, this is first searched in the
local repository, then in the Maven central repository and other remote repositories,
if specified in the POM. When the dependency is found, it is downloaded and stored
in the local repository for future reuse. As we are about to see, project dependencies
can be available to the build process in different ways, depending on various attributes
that we can specify when we declare them.

http://maven.apache.org/guides/mini/guide-default-execution-ids.html

Core Maven Concepts

[38]

Dependency scopes
When we declare a dependency, we can specify a dependency scope. The scope
indicates the classpaths in which the dependency will be included. There are five
dependency scopes, and they are summarized in the following table:

Scope Description
compile This is the default scope. Dependencies at compile scope will be available in

all the classpaths with which Maven deals; they are used to compile and test
our project, and they are packaged in WAR and EAR archives.

provided Dependencies at this scope are available only during the compile, test-
compile, and test phases. They are not packaged in WAR and EAR
archives.

runtime Runtime dependencies are used during the test phase and packaged in
WAR and EAR archives. They are included in the runtime classpath of WEB
and EE applications, but are not used to compile our project and its unit
tests. We should use this scope if we need these dependencies just to run
our project and its unit tests.

test These dependencies are available only in the test-compile and test
phases to compile and run the unit tests.

system This scope is not recommended. It is similar to the provided scope, but we
have to specify the full path of the artifact using the <systemPath> child
element of the <dependency> element. Dependencies at this scope will not
be searched in Maven repositories.

Let's see an example of a simple web application. Its POM file is as follows:

<project>
 <modelVersion>4.0.0</modelVersion>
 <groupId>com.packt.samples</groupId>
 <artifactId>dependency-sample-war</artifactId>
 <packaging>war</packaging>
 <version>0.0.1-SNAPSHOT</version>
 <dependencies>
 <dependency>
 <groupId>javax</groupId>
 <artifactId>javaee-web-api</artifactId>
 <version>6.0</version>
 <scope>provided</scope>
 </dependency>

Chapter 2

[39]

 <dependency>
 <groupId>commons-logging</groupId>
 <artifactId>commons-logging</artifactId>
 <version>1.1.1</version>
 <!— Default scope (compile) -->
 </dependency>
 <dependency>
 <groupId>log4j</groupId>
 <artifactId>log4j</artifactId>
 <version>1.2.16</version>
 <scope>runtime</scope>
 </dependency>
 <dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>4.8.1</version>
 <scope>test</scope>
 </dependency>
 </dependencies>
</project>

The directory structure of the project is shown in the following screenshot:

Core Maven Concepts

[40]

The SampleClass.java code is as follows:

package com.packt.sample;

import org.apache.log4j.Logger;

public class SampleClass
{
 private static Logger log = Logger.getLogger(SampleClass.class);

 public void logMessage(String msg)
 {
 log.info(msg);
 }
}

If we try to build the project, we'll get the following error:

[...]

[INFO] Compiling 2 source files to ~\dependency-sample-war\target\classes

[INFO] ---

[ERROR] COMPILATION ERROR :

[INFO] ---

[ERROR] ~\dependency-sample-war\src\main\java\com\packt\sample\
SampleClass.java:[3,23] package org.apache.log4j does not exist

[...]

This is because the log4j dependency is not available at compile time. We will get
a similar error if we use the JUnit API in a source under src/main/java rather than
under src/test/java because the scope of the junit dependency is test.

If we change our SampleClass.java file as follows, then the build is successful:

package com.packt.sample;

import org.apache.commons.logging.Log;
import org.apache.commons.logging.LogFactory;

public class SampleClass
{
 private static Log log = LogFactory.getLog(SampleClass.class);

 public void logMessage(String msg)

Chapter 2

[41]

 {
 log.info(msg);
 }
}

Now, the build process will succeed; both the SampleClass.java and
SampleServlet.java classes (the latter needs the servlet API contained in
the javaee-web-api dependency) are compiled, and we'll see the output in
the target folder, as shown in the following screenshot:

We can see the compiled classes under target/classes, the exploded WEB
application, and the WAR archive. The WEB-INF/lib directory contains both
the compile and runtime dependencies; it does not contain the provided and
test dependencies.

Core Maven Concepts

[42]

Dependency version ranges
Instead of specifying a certain version number for a dependency, we can also
specify a range of versions. The syntax to be used is the following:

• The (<from version>,<to version>) syntax specifies an excluding range
• The [<from version>,<to version>] syntax specifies an including range
• We can use the mixed forms (,] and [,)
• The version numbers before and after the comma are optional
• We can specify multiple ranges, which are separated by commas

Some examples are summarized in the following table:

Range Meaning
(1.0, 1.7) Any version between 1.0 and 1.7, both excluded
[1.0, 1.7] Any version between 1.0 and 1.7, both included
[1.0, 2.0) Any version; 1.0 included and 2.0 excluded
(1.0, 1.9] Any version; 1.0 excluded and 1.9 included
[1.0] Strictly 1.0, no other version will be accepted
(, 2.0) Versions up to 2.0 excluded
[, 2.0) Versions up to 2.0 excluded
(1.0,) Versions greater than 1.0 (excluded)
(1.0,] Versions greater than 1.0 (excluded)
(1.0, 1.9], [2.1, 3.0) Any version in the specified ranges

We might wonder which version will be chosen by Maven when a range of versions
is specified. We have to keep in mind that when we declare a dependency version
(and not a range of versions), we simply give a suggestion about what version Maven
should prefer. On the other hand, when we declare a version range, we tell Maven
that we can't accept version numbers that are out of the specified range. Maven will
use this kind of information to resolve conflicts with other declarations of the same
dependency within the same build process. This can happen because of the transitive
dependency mechanism or the dependency inheritance, which we'll see in the
following sections. When two or more conflicting ranges are specified for the
same dependency, the build process exits with an error.

Chapter 2

[43]

Transitive dependencies and the dependency
tree
When we have a project A that declares project B among its dependencies, and
project B in turn depends on project C, then project A will also depend on project
C. This is assured by the Maven dependency mechanism. In other words, we
don't need to declare the dependency on project C in project A because project C
is a transitive dependency of project A. This leads to great advantages in project
dependency management because it permits you to use a certain dependency out
of the box without caring whether it requires other artifacts, which are included
automatically among the overall project dependencies.

Transitive dependency management depends on the scopes of the direct
dependency (the project B of our sample) and the transitive dependency
(the project C), as follows:

• If the scope of the transitive dependency (project C) is compile,
then its scope in our project A will be the same as of the direct
dependency (project B).

• If the scope of the transitive dependency is test, then it will not be
a dependency of our project.

• If the scope of the transitive dependency is provided, then it will be
a provided dependency of our project only if the scope of the direct
dependency is also provided. In all other cases, it will not affect
our project.

• Finally, if the scope of the transitive dependency is runtime, it will be a
runtime dependency of our project if the direct dependency is compile;
otherwise, its scope will be the same as that of the direct dependency.

This behavior is summarized in the following table. The intersection of the direct
and transitive scopes will give the scope that will be assigned to the transitive
dependency in our project.

TRANSITIVE SCOPE (C)
DIRECT SCOPE (B) compile provided runtime test
compile compile - runtime -
provided provided provided provided -
runtime runtime - runtime -
test test - test -

Core Maven Concepts

[44]

This default behavior can be overridden in two different ways:

• We can specify the exclusion of a transitive dependency in the direct
dependency declaration.

• We can declare a dependency with the <optional> attribute set to true,
and it will not be considered as a transitive dependency of projects that
depend on our project.

To take control of the dependencies of our project, know what the effective
dependencies are, and from which other dependencies they come from, we can
invoke the dependency:tree goal of the Maven Dependency Plugin. Let's take
the sample dependency-sample-war and add the JAXB dependencies to the
project, as follows:

[...]
<dependency>
 <groupId>javax.xml.bind</groupId>
 <artifactId>jaxb-api</artifactId>
 <version>2.1</version>
</dependency>

<dependency>
 <groupId>com.sun.xml.bind</groupId>
 <artifactId>jaxb-impl</artifactId>
 <version>2.1</version>
</dependency>
[...]

Now, if we invoke the Maven Dependency Plugin, we'll obtain the following result:

$ mvn dependency:tree

[INFO] --- maven-dependency-plugin:2.8:tree (default-cli) @ dependency-
sample-war ---

[INFO] com.packt.samples:dependency-sample-war:war:0.0.1-SNAPSHOT

[INFO] +- javax:javaee-web-api:jar:6.0:provided

[INFO] +- commons-logging:commons-logging:jar:1.1.1:compile

[INFO] +- log4j:log4j:jar:1.2.16:runtime

[INFO] +- junit:junit:jar:4.8.1:test

[INFO] +- javax.xml.bind:jaxb-api:jar:2.1:compile

Chapter 2

[45]

[INFO] | +- javax.xml.stream:stax-api:jar:1.0-2:compile

[INFO] | \- javax.activation:activation:jar:1.1:compile

[INFO] \- com.sun.xml.bind:jaxb-impl:jar:2.1:compile

[INFO] --

[INFO] BUILD SUCCESS

We can see that our project acquired two other dependencies, which are the stax-
api version 1.0-2 and activation version 1.1. Both these artifacts come from
the jaxb-api dependency. Just to give an example, if we don't need the activation
library in our project, we can exclude it as follows:

<dependency>
 <groupId>javax.xml.bind</groupId>
 <artifactId>jaxb-api</artifactId>
 <exclusions>
 <exclusion>
 <groupId>javax.activation</groupId>
 <artifactId>activation</artifactId>
 </exclusion>
 </exclusions>
 <version>2.1</version>
</dependency>

As we can see, in the exclusion element, only groupId and artifactId (and
not version) of the transitive dependency have to be specified. This way, the
dependency tree becomes the same as is shown:

$ mvn dependency:tree

[...]

[INFO] com.packt.samples:dependency-sample-war:war:0.0.1-SNAPSHOT

[INFO] +- javax:javaee-web-api:jar:6.0:provided

[INFO] +- commons-logging:commons-logging:jar:1.1.1:compile

[INFO] +- log4j:log4j:jar:1.2.16:runtime

[INFO] +- junit:junit:jar:4.8.1:test

[INFO] +- javax.xml.bind:jaxb-api:jar:2.1:compile

[INFO] | \- javax.xml.stream:stax-api:jar:1.0-2:compile

[INFO] \- com.sun.xml.bind:jaxb-impl:jar:2.1:compile

Core Maven Concepts

[46]

Our exploded WAR archive will have the structure shown in the following screenshot:

Dependency inheritance
We have to remember that all the Maven projects inherit everything from their parent
POMs. Dependencies are not exceptions to this rule; if the parent of our POM declares
some dependencies, our project will inherit these dependencies at the same scope
they have in the parent project. For example, in our transportation-project POM,
we declare the junit dependency with the test scope, so we don't need to declare it
again in all the modules of our projects because they inherit this dependency by their
parent. Of course, the dependency:tree plugin goal will display both the inherited
as well as the transitive dependencies.

The super and the effective POMs
Even when a Maven POM does not refer to a parent project, it inherits implicitly
from a parent POM that is embedded in the Maven core libraries. This parent POM
is called the super POM. In Version 3.2.1 of Maven, the super POM is located in the
maven-model-builder-3.2.1.jar archive under the /lib folder of the Maven
installation directory. This JAR and the other core JARs in the same directory
are not downloaded from remote repositories.

Chapter 2

[47]

Browsing the model-builder-3.2.1.jar archive, we can find a pom-4.0.0.xml
file under the org.apache.maven.model package, which is the super POM. This
POM basically contains the definitions of the sources, resources, test sources,
test resources, and output directories, and the declaration of the Maven central
repository (but no project-default dependencies). Thanks to the super POM, Maven
expects to find Java sources under /src/main/java, builds the project output in the
/target directory, and searches for dependencies in the Maven central repository
at http://repo.maven.apache.org/maven2. Remember the concept of convention
over configuration!

We can be interested in the result of merging our project POM with its ancestors up
to the super POM. This is provided by the help:effective-pom plugin goal. If we
invoke this goal for our sample project, dependency-sample-war, we'll obtain the
following result:

$ mvn help:effective-pom

[...]

<project>

 <modelVersion>4.0.0</modelVersion>

 <groupId>com.packt.samples</groupId>

 <artifactId>dependency-sample-war</artifactId>

 [...]

 <dependencies>

 <dependency>

 <groupId>javax</groupId>

 <artifactId>javaee-web-api</artifactId>

 <version>6.0</version>

 <scope>provided</scope>

 </dependency>

 <dependency>

 <groupId>commons-logging</groupId>

 <artifactId>commons-logging</artifactId>

 <version>1.1.1</version>

 <scope>compile</scope>

 </dependency>

 [...]

 </dependencies>

 <repositories>

http://repo.maven.apache.org/maven2

Core Maven Concepts

[48]

 <repository>

 <snapshots>

 <enabled>false</enabled>

 </snapshots>

 <id>central</id>

 <name>Central Repository</name>

 <url>http://repo.maven.apache.org/maven2</url>

 </repository>

 </repositories>

 [...]

 <build>

 <sourceDirectory>~\dependency-sample-war\src\main\java</
sourceDirectory>

 <scriptSourceDirectory>~\dependency-sample-war\src\main\scripts</
scriptSourceDirectory>

 <testSourceDirectory>~\dependency-sample-war\src\test\java</
testSourceDirectory>

 <outputDirectory>~\dependency-sample-war\target\classes</
outputDirectory>

 [...]

 <plugins>

 <plugin>

 <artifactId>maven-clean-plugin</artifactId>

 <version>2.5</version>

 <executions>

 <execution>

 <id>default-clean</id>

 <phase>clean</phase>

 <goals>

 <goal>clean</goal>

 </goals>

 </execution>

 </executions>

 </plugin>

Chapter 2

[49]

 [...]

 <plugin>

 <artifactId>maven-compiler-plugin</artifactId>

 <version>2.5.1</version>

 <executions>

 <execution>

 <id>default-testCompile</id>

 <phase>test-compile</phase>

 <goals>

 <goal>testCompile</goal>

 </goals>

 </execution>

 <execution>

 <id>default-compile</id>

 <phase>compile</phase>

 <goals>

 <goal>compile</goal>

 </goals>

 </execution>

 </executions>

 </plugin>

 [...]

 </plugins>

 </build>

 <reporting>

 <outputDirectory>~\dependency-sample-war\target\site</
outputDirectory>

 </reporting>

</project>

As we can see, our project POM is merged with the super POM and with the built-in
lifecycle default bindings. For example, we can see the bindings of the compiler plugin
with the compile and test-compile phases, even if these bindings aren't declared in
any of the module's POMs or the super POM. Notice that transitive dependencies are
not merged—to see them, we have to invoke the dependency:tree goal.

Core Maven Concepts

[50]

Maven settings
The /conf folder of the Maven installation directory contains a settings.xml
file that can be edited to customize some configuration properties used during our
builds. This file is also referred to as the Maven Global Settings file. We can override
these settings in a settings.xml file that we can create in the ~/.m2/ folder. While
the Global Settings file is used by all the users of the same machine, the file under
~/.m2/ is used only by the local user, and it is called the Maven Local Settings file.

Remember that by ~ we mean the user home, which is usually
located under /home/<username> for Linux users and under
C:\Users\<username> for Windows users.

In the Maven settings, we can specify some properties and flags, as follows:

• The path of the local repository. This is ~/.m2/repository by default.
• The offline flag prevents Maven from connecting to remote repositories

(useful in case of network problems).
• The <proxies> element allows us to configure proxies used to connect to

the network.
• The <servers> element allows us to specify the credentials of the Maven

repositories to which we want to deploy our artifacts. We'll speak about
deploying our projects to remote repositories in Chapter 5, Continuous
Integration and Delivery with Maven.

• The <profiles> element is similar to the one that we can specify in
our POMs. We'll speak of Maven profiles in Chapter 4, Managing the Code.
This element should be used very carefully because a project should not
depend too much on settings specified outside of its POM.

For example, it can be convenient to share a local repository between all the users
of the same machine. This can be done specifying a path for the local repository
in the Maven Global Settings file, which is accessible by all the users.

In order to see the result of the merging between the local and Global Settings,
we can use the Maven Help Plugin, as follows:

$ mvn help:effective-settings

This goal is analogous to the effective-pom goal of the same plugin. We
can find a complete reference of the Maven settings on the Maven site at
http://maven.apache.org/settings.html.

http://maven.apache.org/settings.html

Chapter 2

[51]

Properties and resource filtering
In this section, we'll see how to use references to various types of properties in
our POMs and how to use them to perform replacements in our project resources.
This feature is called resource filtering.

Maven properties
Maven properties are referenced using the ${property-name} syntax. They can
be used as follows:

• Anywhere in the POM
• In all the project resources under /src/main/resources (and/or under

any other resource directories defined in our POM)

We have to distinguish between implicit and user-defined properties. The implicit
properties are as follows:

• Project properties: We can use the ${project.*} syntax to reference
the value of all elements of our effective POM. For example,
${project.groupId} and ${project.build.directory} refer to the
<project><groupId> and <project> <build><directory> elements
of our (effective) POM, respectively. Of course, we can only specify
properties that are uniquely determined by their path. In other words,
we cannot reference a <dependency> or <plugin> element.

• Settings properties: These are analogous to the project properties, but they
refer to the Maven settings files through the ${settings.*} syntax.

• Environment properties: We can refer to the environment variables through
the ${env.<variable-name>} syntax. For example, we can reference the
JAVA_HOME or PATH variable using placeholders such as ${env.JAVA_HOME}
and ${env.PATH}.

• System properties: We can reference all the properties accessible via System.
getProperties() by the Maven Java process. Some examples are ${os.
name} and ${line.separator}.

In addition to the implicit properties, we can define our arbitrary user-defined
properties in the <properties> element of our POM, as follows:

<project>
 [...]
 <properties>
 <my.property>myValue</my.property>
 <other.property>Other value</other.property>

Core Maven Concepts

[52]

 <logback.version>1.0.7</logback.version>
 </properties>
 [...]
 <dependencies>
 <dependency>
 <groupId>ch.qos.logback</groupId>
 <artifactId>logback-classic</artifactId>
 <version>${logback.version}</version>
 </dependency>
 <dependency>
 <groupId>ch.qos.logback</groupId>
 <artifactId>logback-core</artifactId>
 <version>${logback.version}</version>
 </dependency>
 </dependencies>
</project>

This way, we can put in evidence and factorize some particular values that are used
in multiple places in our POMs, for example, the dependency versions of platforms
and frameworks that consist of more than one artifact.

Resource filtering
Resource filtering is disabled by default and can be activated in the <resources>
child element of the <build> element of our POM, as shown in the following
example. We have to set the <filtering> flag of the desired <resource> element
to true:

<project>
 [...]
 <properties>
 [...]
 </properties>
 [...]
 <build>
 <resources>
 <resource>
 <directory>src/main/resources</directory>
 <filtering>true</filtering>
 </resource>
 </resources>
 </build>
 [...]
</project>

Chapter 2

[53]

This way, all the properties referenced in our resources will be replaced with their
real values by the Maven Resource Plugin.

In addition to the Maven properties, resource filtering can also use properties
defined in further property files, which are called filters. The properties contained
in these files will be used only for resource filtering, and they cannot be referred
in our POM. In the next example, we specify an additional property file, app.
properties, to be used for resource filtering:

<build>
 <filters>
 <filter>src/main/filters/app.properties</filter>
 </filters>
 <resources>
 <resource>
 <directory>src/main/resources</directory>
 <filtering>true</filtering>
 </resource>
 </resources>
</build>

We can specify multiple resource directories with different settings for the
<filtering> flag, as follows:

 <resources>
 <resource>
 <directory>src/main/resources-alt</directory>
 <filtering>true</filtering>
 </resource>
 <resource>
 <directory>src/main/resources</directory>
 </resource>
 </resources>

In this case, only the resources in the src/main/resources-alt folder will
be filtered.

Notice that we have to also specify the default src/main/resources
directory when we add further resource directories because the
<resources> element definition replaces the defaults completely.

Core Maven Concepts

[54]

Building EE applications
Now that we explored all the core features of Maven, we are ready to use them
together to manage the build process of Java EE applications. Usually, EE applications
consist of several WAR and JAR archives, and so the Maven way to manage them is to
create a multimodule Maven project.

Building WEB applications
As we have already seen in the preceding examples, and also when we spoke of
WAR packaging, we have to put the web application resources (JSP files, deployment
descriptors, static images, and so on) under /src/main/webapp. This is the default
value for the warSourceDirectory configuration property of the Maven WAR Plugin.

In addition, we can define other web resource directories and activate resource
filtering for the additional resources. We can also enable the filtering of the deployment
descriptors using the filteringDeploymentDescriptors configuration property,
but other resources under the /src/main/webapp default directory cannot be filtered.

It seems that only the web.xml descriptor can be filtered setting the
filteringDeploymentDescriptors property to true. Other
proprietary descriptors such as weblogic-web.xml or jboss-web.
xml are left unaltered. The recommended way to filter web application
resources is to put them in additional web resource directories.

Here is an example of how to configure the Maven WAR Plugin to enable web
resource filtering:

<filters>
 <filter>src/main/filters/webapp.properties</filter>
</filters>
<plugins>
 <plugin>
 <artifactId>maven-war-plugin</artifactId>
 <configuration>
 <filteringDeploymentDescriptors>
true
</filteringDeploymentDescriptors>
 <nonFilteredFileExtensions>
 <!-- default value contains jpg, jpeg, gif, bmp, png -->
 <nonFilteredFileExtension>pdf</nonFilteredFileExtension>
 </nonFilteredFileExtensions>

Chapter 2

[55]

 <webResources>
 <resource>
 <directory>src/main/webResources</directory>
 <filtering>true</filtering>
 </resource>
 </webResources>
 </configuration>
 </plugin>
</plugins>

Further information about the Maven WAR Plugin can be obtained invoking the
Maven Help Plugin, as follows:

$ mvn help:describe -Dplugin=war -Ddetail

When we declare dependencies for a web application, we have to pay attention to the
dependency scopes. As we know, all the direct and transitive dependencies resulting
at the compile and runtime scopes will be included in the packaged archive. Often,
we don't need to include artifacts in our WAR; we can encounter classpath problems
doing this, which happens when these libraries are provided by the web application
container. We have to remember to use the provided scope for these dependencies.
In case of transitive dependencies, their scope should be overridden in our POM,
or they can be excluded if they are not needed for the compilation of our project.

Building enterprise applications
Enterprise applications are packaged in EAR archives and can contain multiple
EJB modules, WAR archives, and JAR libraries. All these artifacts must be referred
to through their Maven coordinates, and some of them are usually siblings within
the same multimodule Maven project.

Let's consider our transportation-project example and suppose that we want to
build an EAR corresponding to the transportation-acq-ear module. This archive
should contain the following:

• The transportation-acq-ejb module
• The transportation-acq-war module
• All the compile and runtime dependencies needed by EJB and WAR modules
• The application.xml descriptor

The common dependencies of EJB and WAR modules should be put in the library
directory of the EAR and should not be repeated in the /WEB-INF/lib folders of
the WAR modules.

Core Maven Concepts

[56]

We can achieve this result by just configuring the POMs of all these modules; the
Maven EAR Plugin, bound by default to the package phase of the build lifecycle,
will do the job and also generate the application.xml descriptor.

Suppose that the POM of the EJB module is as follows:

<project>
 <modelVersion>4.0.0</modelVersion>
 <parent>
 <groupId>com.packt.examples</groupId>
 <artifactId>transportation-project</artifactId>
 <version>0.0.1-SNAPSHOT</version>
 </parent>
 <artifactId>transportation-acq-ejb</artifactId>
 <name>transportation-acq-ejb</name>
 <dependencies>
 <dependency>
 <groupId>org.mybatis</groupId>
 <artifactId>mybatis</artifactId>
 <version>3.1.1</version>
 </dependency>
 <dependency>
 <groupId>javax</groupId>
 <artifactId>javaee-api</artifactId>
 <version>6.0</version>
 <scope>provided</scope>
 </dependency>
 <dependency>
 <groupId>org.slf4j</groupId>
 <artifactId>slf4j-api</artifactId>
 <version>1.7.1</version>
 </dependency>
 </dependencies>
</project>

Suppose that the POM of the WEB module is the following. Notice that all its
dependencies have the provided scope:

<project>
 <modelVersion>4.0.0</modelVersion>
 <parent>
 <groupId>com.packt.examples</groupId>
 <artifactId>transportation-project</artifactId>
 <version>0.0.1-SNAPSHOT</version>
 </parent>

Chapter 2

[57]

 <artifactId>transportation-acq-war</artifactId>
 <packaging>war</packaging>
 <name>transportation-acq-war</name>
 <dependencies>
 <dependency>
 <groupId>javax</groupId>
 <artifactId>javaee-web-api</artifactId>
 <version>6.0</version>
 <scope>provided</scope>
 </dependency>
 <dependency>
 <groupId>org.slf4j</groupId>
 <artifactId>slf4j-api</artifactId>
 <version>1.7.1</version>
 <scope>provided</scope>
 </dependency>
 <dependency>
 <groupId>javax.xml.bind</groupId>
 <artifactId>jaxb-api</artifactId>
 <version>2.1</version>
 <scope>provided</scope>
 </dependency>
 <dependency>
 <groupId>com.sun.xml.bind</groupId>
 <artifactId>jaxb-impl</artifactId>
 <version>2.1</version>
 <scope>provided</scope>
 </dependency>
 </dependencies>
</project>

Then, we can edit the POM of the EAR module and customize the Maven EAR
Plugin this way:

<project>
 <modelVersion>4.0.0</modelVersion>
 <parent>
 <groupId>com.packt.examples</groupId>
 <artifactId>transportation-project</artifactId>
 <version>0.0.1-SNAPSHOT</version>
 </parent>
 <artifactId>transportation-acq-ear</artifactId>
 <packaging>ear</packaging>
 <name>transportation-acq-ear</name>

Core Maven Concepts

[58]

 <description>Transportation Project Acquisition EAR</description>
 <dependencies>
 <dependency>
 <groupId>${project.groupId}</groupId>
 <artifactId>transportation-acq-ejb</artifactId>
 <version>${project.version}</version>
 <type>ejb</type>
 </dependency>
 <dependency>
 <groupId>${project.groupId}</groupId>
 <artifactId>transportation-acq-war</artifactId>
 <version>${project.version}</version>
 <type>war</type>
 </dependency>
 <dependency>
 <groupId>javax.xml.bind</groupId>
 <artifactId>jaxb-api</artifactId>
 <version>2.1</version>
 </dependency>
 <dependency>
 <groupId>com.sun.xml.bind</groupId>
 <artifactId>jaxb-impl</artifactId>
 <version>2.1</version>
 </dependency>
 </dependencies>
 <build>
 <plugins>
 <plugin>
 <artifactId>maven-ear-plugin</artifactId>
 <configuration>
 <displayName>Java EE Application</displayName>
 <version>6</version>
 <generateApplicationXml>true</generateApplicationXml>
 <defaultLibBundleDir>lib</defaultLibBundleDir>
 <modules>
 <ejbModule>
 <groupId>${project.groupId}</groupId>
 <artifactId>transportation-acq-ejb</artifactId>
 </ejbModule>
 <webModule>
 <groupId>${project.groupId}</groupId>

Chapter 2

[59]

 <artifactId>transportation-acq-war</artifactId>
 </webModule>
 </modules>
 </configuration>
 </plugin>
 </plugins>
 </build>
</project>

We have to note the following points:

• The EJB and WEB modules have to be declared in the Maven EAR
Plugin configuration

• The EJB and WEB modules also have to appear among the dependencies
of the EAR module, and for these dependencies, we have to specify the
attribute type (with values ejb and war, respectively)

• The dependencies of the WAR module have the provided scope,
and they are reintroduced at the compile scope in the EAR module

The resulting archive will have the following structure:

Core Maven Concepts

[60]

The WAR module will not contain any JAR archive, and the content of the generated
application.xml descriptor will be as follows:

<application>
 <description> Transportation Project Acquisition EAR</description>
 <display-name>Java EE Application</display-name>
 <module>
 <ejb>transportation-acq-ejb-0.0.1-SNAPSHOT.jar</ejb>
 </module>
 <module>
 <web>
 <web-uri>transportation-acq-war-0.0.1-SNAPSHOT.war</web-uri>
 <context-root>/transportation-acq-war</context-root>
 </web>
 </module>
 <library-directory>lib</library-directory>
</application>

If we want to customize the context root of the WEB module, this defaults to its
artifactId. We should put the <contextRoot> child element in the <webModule>
element of the Maven EAR Plugin configuration, as follows:

<webModule>
 <groupId>${project.groupId}</groupId>
 <artifactId>transportation-acq-war</artifactId>
 <contextRoot>/custom-context-root</contextRoot>
</webModule>

Finally, in the case of WEB modules, the dependencies at the compile scope, as
we have seen before, will be packaged in the WAR archives, but they will not be
transitive dependencies of the EAR module, so they will not be duplicated in the
library directory of the EAR archive.

Configuring repositories
In addition to the Maven central repository, we can also configure other repositories
to be used for plugin and dependency downloads. We have to remark that there
are separate configuration elements for dependencies and plugin repositories, the
<repositories> and <pluginRepositories> elements. For example, if we want
to download both dependencies and plugins from the Java.net repository, we
should declare the following:

<project>
[...]
<repositories>

Chapter 2

[61]

 <repository>
 <id>java.net-Public</id>
 <name>Maven Java Net Snapshots and Releases</name>
 <url>https://maven.java.net/content/groups/public</url>
 </repository>
</repositories>
<pluginRepositories>
 <pluginRepository>
 <id>java.net-Public</id>
 <name>Maven Java Net Snapshots and Releases</name>
 <url>https://maven.java.net/content/groups/public</url>
 </pluginRepository>
</pluginRepositories>
[...]

In Chapter 5, Continuous Integration and Delivery with Maven, we'll speak about
the Nexus repository service that simplifies the repository management in
Enterprise environments.

Enabling releases and snapshots
By default, Maven will attempt to download both releases and snapshots from the
additional repositories. If we don't want these releases or snapshots to be searched
on a remote repository, we have to disable them explicitly, as follows:

<repository>
 <id>sample-release-id</id>
 <name>A release repository</name>
 <url>...</url>
 <releases>
 <enabled>true</enabled>
 </releases>
 <snapshots>
 <enabled>false</enabled>
 </snapshots
</repository>
<repository>
 <id>sample-snapshot-id</id>
 <name>A snapshot repository</name>
 <url>...</url>
 <releases>
 <enabled>false</enabled>
 </releases>
 <snapshots>

Core Maven Concepts

[62]

 <enabled>true</enabled>
 </snapshots
</repository>

If we look at the effective POM of any Maven project, we'll see that snapshots are
disabled in the Maven central repository configuration.

In a multimodule project, the best choice is to declare an additional repository in
the parent POM so that they will be available to all the modules of the project.

Best practices
In this last section, we'll speak about how to refactor POMs of multimodule projects
in order to avoid errors and dependency conflicts.

Aggregate POMs
When we have a project consisting of several modules, we will sometimes want
to build only a subset of them. If we build the parent project, all the modules will
be compiled. On the other hand, building each module separately can be tedious,
and we should remember to build the modules in the right order if they depend
on each other. To accomplish all these needs, we can use an additional aggregate
POM. Let's consider our transportation project example again and suppose that
we want to clean and build not only the transportation-acq-ear module but
also all the other modules on which it depends. We can create the following
transportation-acq-pom.xml file in the project root directory (at the same
level of the parent POM):

<project>
 <modelVersion>4.0.0</modelVersion>
 <groupId>com.packt.examples</groupId>
 <artifactId>transportation-acq</artifactId>
 <version>1.0</version>
 <packaging>pom</packaging>
 <modules>
 <module>transportation-acq-ear</module>
 <module>transportation-acq-war</module>
 <module>transportation-acq-ejb</module>
 </modules>
</project>

Chapter 2

[63]

As Maven uses the pom.xml file present in the project directory by default, we
can build the aggregate POM instead of the parent POM using the –f parameter,
as follows:

$ mvn –f transportation-acq-pom.xml clean install

[...]

[INFO] Reactor Build Order:

[INFO]

[INFO] transportation-acq-ejb

[INFO] transportation-acq-war

[INFO] transportation-acq-ear

[INFO] transportation-acq

[...]

As we can see, the Maven Build Reactor builds the modules taking account of
the dependencies among them, and so it first builds the EJB module, followed
by the WAR module, and finally the EAR module.

We can obtain the same result directly from the command line of the project
directory, as follows:

$ mvn -pl transportation-acq-ear -am install

The –pl parameter allows us to specify a list of modules to build, and the –am
parameter tells Maven to build the projects required by the list. Without the –am
(or --also-make) parameter, only the modules of the list (in this case only the
EAR module) will be built.

Dependency management
The Maven dependency mechanism can prove to be a double-edged weapon,
especially in multimodule projects, or in case of conflicts between dependencies.
Of course, we are speaking of conflicts regarding different versions or scopes
of dependencies having the same groupId and artifactId. In these cases,
the default Maven behavior is as follows:

• The version/scope declared in a project overrides the version/scope of
the same dependency declared in a parent (or ancestor) POM.

• The version/scope declared in (or inherited by) our project prevails on
the version/scope of a transitive dependency.

Core Maven Concepts

[64]

• If two or more conflicting transitive dependencies have different
versions/scopes, the version/scope with the shortest path in the
dependency tree will prevail. In the case of paths of the same length,
the version/scope of the dependency assigned first in the POM
will prevail.

• If a range of version is declared for a direct or transitive dependency,
Maven will choose a version within the specified interval, but in the case
of a conflict with other ranges of versions for the same dependency, the
build process will exit with an error.

If we want to assure that all the modules of a project use the same dependency
versions of certain artifacts even when they are transitive dependencies, we have
to use a <dependencyManagement> element in our POM. In the case of multimodule
projects, the dependency management configuration is usually specified in the
parent POM.

For example, in the parent POM of our transportation project, we can insert an
element such as this:

<project>
[...]
<dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>javax</groupId>
 <artifactId>javaee-api</artifactId>
 <version>6.0</version>
 <scope>provided</scope>
 </dependency>
 <dependency>
 <groupId>javax</groupId>
 <artifactId>javaee-web-api</artifactId>
 <version>6.0</version>
 <scope>provided</scope>
 </dependency>
 <dependency>
 <groupId>org.slf4j</groupId>
 <artifactId>slf4j-api</artifactId>
 <version>1.7.1</version>
 </dependency>

[…]
 </dependencies>
</dependencyManagement>
[...]

Chapter 2

[65]

This means that the specified dependencies, when declared directly or assigned as
transitive dependencies, will have the default versions and scopes defined in the
Dependency management section. So, we don't need to explicitly declare the versions
and scopes of these dependencies, for example, we can (or better, we should) declare
the SLF4J and Java EE web API dependencies simply, as follows:

<dependencies>
 [...]
 <dependency>
 <groupId>org.slf4j</groupId>
 <artifactId>slf4j-api</artifactId>
 </dependency>

 <dependency>
 <groupId>javax</groupId>
 <artifactId>javaee-web-api</artifactId>
 </dependency>
 [...]

Note that the Dependency management section does not declare the
dependencies that are specified in it, it only fixes their default version
numbers and scopes. We have to declare these dependencies (in any
case) explicitly in the <dependencies> element if they are needed.

If we declare versions and scopes in the <dependencies> element for dependencies
that are declared in the dependency management section of the same POM (or of
its parent POM), the values specified in the <dependencies> element will override
those specified in the <dependencyManagement> element. On the other hand,
versions and scopes of transitive dependencies will be always overridden by
the values specified in the dependency management section.

Plugin management
Analogous to the dependency management configuration is the plugin management
configuration. We can use a <pluginManagement> element under the <build>
element to fix the plugin versions. For example, we can introduce the following
element in a parent POM:

<build>
 <pluginManagement>
 <plugins>
 <plugin>
 <groupId>org.codehaus.mojo</groupId>

Core Maven Concepts

[66]

 <artifactId>jaxb2-maven-plugin</artifactId>
 <version>1.6</version>
 </plugin>
 </plugins>
 </pluginManagement>

This will help us fix the version of the JAXB-2 Maven Plugin across all the modules
that need its declaration.

Other than plugin versions, we can also specify default plugin
configurations and executions in the <pluginManagement>
section, but we discourage this practice because it might make it
difficult to customize configurations and executions, which might
be different for different modules of the project.

Summary
In this chapter, we explored several Maven core concepts and the basic usage of
the Maven tool. We saw that every Maven build process relies on a skeleton called
build lifecycle. We were introduced to Maven plugins, and learned how they are
tied to the phases of the build lifecycle. We dived into the Maven dependency
management system and saw how features such as transitive dependencies and
dependency inheritance help us to maintain consistency in our projects. Other
interesting features such as Maven properties, Maven settings, and resource
filtering were also explained. Finally, we learned how to build WEB applications
and multimodule EE applications constituted by JAR archives, WAR modules,
and EJB modules packaged in EAR archives.

Some other core concepts such as build profiles and site generation will be explained
in Chapter 4, Managing the Code. As all of the Maven work is done by plugins, we'll
speak about how to develop a Maven plugin in the next chapter in case we need to
customize our builds with tasks that are not available in public plugins.

Writing Plugins
As we saw in the previous chapters, Maven isn't a monolithic self-standing
product. Instead, it is a pluggable and evolving tool. The sake of extensibility
is achieved through the Maven plugin system.

The need for extensibility comes from the nature of the environment Maven
operates in. The need for flexibility comes from a vast community of users
with different exigencies for their products producing different applications.

Plugins extend Maven's core functionality, allowing it to accomplish many custom
tasks. In the previous chapter, we used plugins to build modules with different
packaging used as common product distributions (WAR, EAR, EJB). Other plugins
make possible custom packaging for autoexecutable products (executable JAR),
generating web service implementations based on XSD or WSDL definition, and
many other functionalities.

Most of the plugins are developed by Apache. Despite that, everyone can develop their
own plugin to fit their needs. A plugin could cover specific project requirements or
simply extend the execution of an operation to different lifecycle phases.

In this chapter, we will learn about the following topics:

• Writing a simple Maven plugin
• How to test our plugin
• How to publish your plugin in a local repository

Thanks to maven-plugin-plugin, we can use many different programming
languages in order to build an executable Maven plugin. It supports different
programming languages such as Java, C#, Ruby/JRuby, Scala, Groovy, and Ant.
On the other hand, maven-plugin-testing-harness provides unit test and
integration functionalities.

Writing Plugins

[68]

A problem to solve
A common issue that many developers face is release policies. Often, companies
impose to trace every step of every project release.

Projects are composed of many modules, and for each of these modules we have
to trace its history. In order to declare a module as released, we have to trace
which issues were resolved in that release, and how many issues remain open.

For issue tracking and management, we hosted an instance of Mantis bug tracker in
a private server. All issue information is stored in a MySQL database instance.

You can find more information on Mantis here:
http://www.mantisbt.org/.

The version of the project model differs from the Mantis version of a module.
In order to fill this gap, we created an XML file named release_structure.xml
and stored it in the ${basedir} folder of each versioned module.

In this file, we store information about the actual production version of the module.
The release structure is updated every time a new module version is released. If the
project's version is not specified, the actual project.version value is used.

In order to resolve this automation problem, we implemented a plugin named
mantis-maven-plugin. Whenever a build is performed, our plugin queries for
the release version of the project ID passed through configurations. Once it resolves
the project, it gets all the resolved issues related to the project, and marks them
as released in that build version.

Our plugin performs all these operations by means of the
release_structure.xml file.

Starting from this problem, we can explain how to build a custom plugin.

Developing a new plugin
For the development of a Java Maven plugin, we will use the same tool chain
we presented in Chapter 1, Maven and Its Philosophy.

http://www.mantisbt.org/

Chapter 3

[69]

Using Eclipse's utility, we can create a new project with Maven archetype. So,
we obtain a skeleton for the new Maven plugin project. This is a good starting
point for our project. Perform the following steps:

1. First of all, we will create a new Eclipse project as a new Maven project
from the menu, as shown in the following screenshot:

Writing Plugins

[70]

2. Then, we can choose the location for our project and click on Next:

Chapter 3

[71]

3. Now, we have to select the artifact type for our project. First, we choose
Nexus Indexer, then we select maven-archetype-plugin, as shown in
the following screenshot, and then click on Next:

4. The last step in the creation procedure is the selection of the project's
coordinates, as shown in the following screenshot:

Writing Plugins

[72]

The encouraged naming convention for artifactId is <ourplugin>-maven-plugin.

The name pattern, maven-<pluginname>-plugin, is reserved
for official Apache Maven plugins. Such plugins are maintained
by the official Apache Maven team and have groupId as org.
apache.maven.plugins.
Using this name pattern is an infringement of the Apache Maven
Trademark.

The archetype we chose during the creation phase created a pom.xml file with
some dependencies imported by default:

• maven-plugin-api: The articfact generation is set as default version 2.0. This
is the basic library containing plugin utility classes.

• maven-plugin-annotation: This contains the annotation system.
More details are available at http://maven.apache.org/plugin-tools/
maven-plugin-tools-annotations/.

• maven-testing-plugin-harness: This is a library developed by Apache,
for developing unit tests based on JUnit.

• junit: This is imported with the scope test for testing purposes.

The POM file generated by our IDE will also contain a build profile that is created
for integration tests, named maven-invoker-plugin.

Before you start writing the plugin source code, we have to slightly edit the POM
file that has been generated. First, we need to change the plexus-utils default
dependency with maven-core. The second and last modification consists of aligning
the version of maven-plugin-api with the version we chose for maven-core.

The result of our work is the following POM file:

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://
www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.
apache.org/maven-v4_0_0.xsd">
 <modelVersion>4.0.0</modelVersion>

 <groupId>com.example.mojo</groupId>
 <artifactId>mantis-maven-plugin</artifactId>
 <packaging>maven-plugin</packaging>
 <version>0.0.1-SNAPSHOT</version>
 <name>mantis-plugin Maven Mojo</name>
 <url>http://maven.apache.org</url>

http://maven.apache.org/plugin-tools/maven-plugin-tools-annotations/
http://maven.apache.org/plugin-tools/maven-plugin-tools-annotations/

Chapter 3

[73]

 <properties>
 <mavenVersion>3.2.1</mavenVersion>
 </properties>

 <dependencies>
 <!-- Maven dependencies -->
 <dependency>
 <groupId>org.apache.maven</groupId>
 <artifactId>maven-plugin-api</artifactId>
 <version>${mavenVersion}</version>
 </dependency>

 <dependency>
 <groupId>org.apache.maven</groupId>
 <artifactId>maven-core</artifactId>
 <version>${mavenVersion}</version>
 </dependency>

 <dependency>
 <groupId>org.apache.maven.plugin-tools</groupId>
 <artifactId>maven-plugin-annotations</artifactId>
 <version>3.2</version>
 <scope>provided</scope>
 </dependency>

 <!-- MySql driver -->
 <dependency>
 <groupId>mysql</groupId>
 <artifactId>mysql-connector-java</artifactId>
 <version>5.1.30</version>
 </dependency>

 <!-- Test dependencies -->
 <!-- Mandatory in order to works with maven-plugin-testing-
harness v. 3.1.0 -->
 <dependency>
 <groupId>org.apache.maven</groupId>
 <artifactId>maven-compat</artifactId>
 <version>3.2.1</version>
 <scope>test</scope>
 </dependency>

 <dependency>
 <groupId>org.apache.maven.plugin-testing</groupId>
 <artifactId>maven-plugin-testing-harness</artifactId>
 <version>3.1.0</version>

Writing Plugins

[74]

 <scope>test</scope>
 </dependency>

<dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>3.8.1</version>
 <scope>test</scope>
</dependency>
</dependencies>

<build>
<pluginManagement>
 <plugins>
 <plugin>
 <groupId>
 org.apache.maven.plugins
 </groupId>
 <artifactId>maven-plugin-plugin</artifactId>
 <version>3.2</version>
 <executions>
 <execution>
 <id>mojo-descriptor</id>
 <goals>
 <goal>descriptor</goal>
 </goals>
 </execution>
 </executions>
 <configuration>
 <skipErrorNoDescriptorsFound>
 true
 <skipErrorNoDescriptorsFound>
 </configuration>

 </plugin>
</plugins>
</pluginManagement>
</build>
 <profiles>
 <profile>
 <id>integration-tests</id>
 <build>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>

Chapter 3

[75]

 <artifactId>maven-invoker-plugin</artifactId>
 <version>1.7</version>
 <configuration>
 <debug>true</debug>
 <cloneProjectsTo>
 ${project.build.directory}/it
 </cloneProjectsTo>
 <pomIncludes>
 <pomInclude>*/pom.xml</pomInclude>
 </pomIncludes>
 <postBuildHookScript>verify</postBuildHookScript>
 <localRepositoryPath>
 ${project.build.directory}/local-repo
 </localRepositoryPath>
 <settingsFile>src/it/settings.xml</settingsFile>
 <goals>
 <goal>clean</goal>
 <goal>test-compile</goal>
 </goals>
 </configuration>
 <executions>
 <execution>
 <id>integration-test</id>
 <goals>
 <goal>install</goal>
 <goal>integration-test</goal>
 <goal>verify</goal>
 </goals>
 </execution>
 </executions>
 </plugin>
 </plugins>
 </build>
 </profile>
 </profiles>

The maven-plugin-annotations dependency has the provided
scope. Since annotations are not needed during plugin execution, this
dependency can be excluded from the built package.
The maven-compat Version 3.2.1 is mandatory in order to make it
possible to us the maven-plugin-testing-harness Version 3.1.0.

Once we perform a Maven update from our IDE, we can start to code the first Mojo.

Writing Plugins

[76]

Implementing Mojo
What is a Mojo? A simple definition for Mojo is that Mojo is a Maven goal.
This is not far from reality.

In order to be more accurate, we can say that a Mojo is a Maven plain Old Java
Object. Each Mojo is an executable goal in Maven, and a plugin is a distribution
of one or more related Mojos.

In practice, to create a Mojo, we must create a class extending the abstract class,
as follows:

org.apache.maven.plugin.AbstractMojo

Such a class provides a utility method for common operations. Furthermore,
it provides the abstract method, public void execute() throws
MojoExecutionException, to perform all the dirty work when the plugin
is executed.

In order to associate our Mojo to a goal for our plugin, we have to use an
annotation in Java style on our class definition:

@Mojo(name = "mark-resolved",
 defaultPhase = LifecyclePhase.PACKAGE,
 requiresOnline = true,
 requiresProject = true,
 threadSafe = true)
public class MarkResolved extends AbstractMojo

With the @Mojo annotation, we indicate that the MarkResolved class is a Mojo,
and its goal is mark-resolved. With other parameters of annotation, we specified
the default phase when the plugin is executed. In the same annotation, we can
indicate other desirable characteristics as follows:

• requiresOnline: This indicates that the operation requires online mode
to be executed

• requiresProject: This indicates that Mojo requires a project in order to
be executed

• threadSafe: This marks Mojo to be thread safe; with this flag it can
support parallel execution during parallel build

Chapter 3

[77]

This kind of notation is quite different from the old-fashioned way. The old, and still
supported, annotation system provides the use of comments. With such a system,
our Mojo definition would look like the following code:

/**
 * @goal mark-resolved
 * @phase package
 * @requiresOnline true
 * @requiresProject true
 * @threadSafe true
 */
public class MarkResolved extends AbstractMojo

As we can see, the functionality and parameters are the same. The only change is
represented by the declaration syntax.

All the plugins have a configuration section in which the users can set parameters
used for accomplishing the plugin goal. Parameters can also be passed through the
command line:

$ mvn plugin-name:goal -Dmy.custom.parameter=somevalue

In order to match the configuration properties with Mojo's fields, we have to
annotate our Mojo fields as follows:

@Parameter(property="basedir", required=true)
protected File baseDir;

The @Parameter annotation's function is to pass the base directory of the project.
Within the annotation, we specified the name of the configuration parameter with
property="basedir".

We also specified whether the parameter is mandatory or not with the
required=true notation.

Our basedir property is automatically injected into our object without the need for
other coding. We can thank the Plexus Inversion of Control framework for this.

With the old annotation, we could obtain the same result with the following code:

/**
 * @parameter expression="${basedir}"
 * @required
 */
protected File baseDir;

Writing Plugins

[78]

In this way, all the annotated Mojo fields will be associated with a relative parameter
without the need for getter and setter methods.

The direct injection is only possible if the name of the field matches
the name of the property specified within the annotation, propert
y="propertyNameToInject".
If we want to inject a property with a different name with respect
to the field, we have to specify a setter method for such a property.

In order to use a property name different from the field name, we have to indicate
the configuration property name used in the plugin configuration. We can do this
through the alias="dbUserName" notation.

This indication is not enough; we also have to create a setter for the new aliased
property name:

public void setDbUserName(String dbUserName) {
 this.dbUser = dbUserName;
}

As we can see, we linked the dbUserName property to the dbUser
private field.

Using this method, we can remap the configuration properties on different
Mojo field names. With this feature, we can remap private fields that are
incomprehensible to users, to friendly name parameters.

Another powerful feature is the capability of assigning a default value if there is
no value for nonmandatory parameters:

@Parameter(property="project.desctiption", defaultValue="${project.
description}")
protected String projectDesctiption;

The projectDescription field is a nonmandatory field so, if the
configuration does not provide a value for this parameter, we can
assign the value of the internal property inherited from the Maven's
central POM, {project.description}.
Note that using Maven 3.0, all the pom.* properties are deprecated.
All the properties must be named project.*.

Chapter 3

[79]

We have some specific properties, defined in the Maven's central POM, as follows:

• ${basedir}: This is a built-in property representing the directory in which
the pom.xml is stored.

• ${version}: This is a built-in property, equivalent to ${project.version},
containing the version of the project.

• ${project.build.directory}: This is a property defined in the Maven's
central POM, containing the path of the build directory. Its default value
is target.

• ${project.build.outputDirectory}: This is a property defined in the
Maven's central POM, containing the directory in which the class files are
stored during the build process. Its default value is target/classes.

• ${project.name}: This contains the name of the project.
• ${project.build.finalName}: This contains the final name of the file

created when the built project is packaged.
• ${settings.localRepository}: This refers to the path of the user's

local repository.
• ${env.M2_HOME}: This is an environment variable containing the

Maven2 installation folder.
• ${java.home}: This is an environment variable specifying the path to

the current JRE_HOME folder.

Notice how some of these properties have a common name prefix. Such a prefix
is used to specify the scope of the property. So, properties defined at the
project level will be prefixed with project, while properties defined in the
user's settings.xml file will be prefixed with settings.

The convention for referring to the parent project's variables provides using the
${project.parent} syntax.

Maven also gives users the possibility of defining custom properties. We can simply
add a property into our pom.xml file with the following syntax:

<project>
...
 <properties>
 <my.property>hello</my.property>
 </properties>
...
</project>

Writing Plugins

[80]

If we add this kind of snippet into our project, the ${my.property}
property would result in hello.

As we saw before, Maven links each property to a getter/setter method. Thus,
properties such as ${project.build.directory} will be matched with the
getProject().getBuild().getDirectory()method chain.

In order to implement a Mojo, we need to extend the AbstractMojo
abstract class. This class provides some common utility methods.

The first inherited method that we will see is getLog(). This method returns a logger
of type org.apache.maven.plugin.logging.Log. Such a logger allows you to write
on output of the plugin's execution. The following line of code will produce the
[INFO] Jdbc Driver :: com.mysql.jdbc.Driver output:

log.info("Jdbc Driver :: " + jdbcDriver);

The plugin logger provides three different levels of output: info, error, and debug.

Another inherited method is getPluginContext(). This method returns java.
util.Map containing all the property mappings defined in Mojo's context.
These mappings contain all the properties explained before, that are visible from
Mojo's POM. We can access the basedir property using the following notation:

String baseDir = (String) getPluginContext("basedir");

Using the setter method, we set a custom plugin context to our Mojo, as follows:

public void setPluginContext(Map pluginContext)

We can get the plugin context map using getPluginContext, add some parameters,
and set the new map with setPluginContext.

Best practices discourage this kind of manipulation of the context map.

Testing Mojo
An essential need during development is to test the code. In order to satisfy this
need, we used a specific library named maven-plugin-testing-harness. Such
a library has been designed specifically to test Mojo functionalities.

Chapter 3

[81]

To start using testing-harness for our tests, we need to create a test class in the
test package. As in the Mojo development, our class must extend this abstract class
in order to inherit testing and utility methods:

org.apache.maven.plugin.testing.AbstractMojoTestCase

As a first step, we must override the following two basic methods for initialization
and ending:

@Override
protectedvoid setUp() throws Exception {
 super.setUp();
}

@Override
protectedvoid tearDown() throws Exception {
 super.tearDown();
}

The setUp method is in charge of creating a default Maven project configuration,
and adding it to PlexusContainer. For IoC's tearDown method simply dismisses
PlexusContainer.

PlexusContainer was chosen by the Maven team because
at that time, it was the only implementation of the Inversion
of Control (IoC) pattern.
Later on, Spring came out. Spring is a general framework
encapsulating Inversion of Control using XML/Annotations
and other patterns build scalable web applications.

All public methods with the prefix test will be executed during the test execution
phase. To launch the test case, test, we can use both Eclipse or the Maven command
line. Execute this command from the project's root directory:

$ mvn test

The inheritance hierarchy of the AbstractMojotestCase class refers to the junit.
framework.TestCase class. This allows us to use all the Junit methods for assertions.

In order to test a plugin, we need a project context for fetching project properties. Since
we can't load the test POM inside the test case, we must use the following method:

public static File getTestFile(final String path)

This method gets the POM file from the location passed as the input parameter.

Writing Plugins

[82]

In order to start our Mojo, we need to load it from the POM file loaded through
the getTestFile method. We can easily perform this operation using the
following inherited method:

protected Mojo lookupMojo(String goal, File pom) throws Exception

Otherwise, we can load a Mojo with a particular configuration using the
following code:

protected Mojo lookupConfiguredMojo(MavenProject project, String goal)
throws Exception

It is also possible to perform multiple launches to test different goals, as follows:

protected MojoExecution newMojoExecution(String goal)

We can also extract the plugin configuration using the following code:

protected PlexusConfiguration extractPluginConfiguration(String
artifactId, File pom)throws Exception

The PlexusConfiguration object contains all the configuration within a map, so we
can test whether some configuration is present or not and elaborate those values.

Best practices for testing
In order to test a plugin, we must create a condition for the plugin execution.
In other words, we need one or more test POM files. By using different POM files,
we can cover a wide range of test cases and plugin settings.

We can organize the test structure inside the test/resources directory as follows:

Chapter 3

[83]

A testing POM must contain a simple project where we can use our plugin.
An example POM file for testing is as follows:

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://
www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.
apache.org/xsd/maven-4.0.0.xsd">
 <modelVersion>4.0.0</modelVersion>

 <groupId>com.example.mojo</groupId>
 <artifactId>project-to-test</artifactId>
 <version>1.0-SNAPSHOT</version>
 <packaging>jar</packaging>
 <name>Test MyMojo</name>
 <dependencies>
 <dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>3.8.1</version>
 <scope>test</scope>
 </dependency>
 </dependencies>
 <build>
 <plugins>
 <plugin>
 <artifactId>mantis-maven-plugin</artifactId>
 <version>0.0.1-SNAPSHOT</version>
 <configuration>
 <basedir>
 ${basedir}/src/test/resources/unit/project-to-test
 </basedir>
 <rsName>release_structure.xml</rsName>
 <databaseUrl>http://localhost:8090</databaseUrl>
 <jdbcDriver>com.mysql.jdbc.Driver</jdbcDriver>
 <dbUserName>testName</dbUserName>
 <dbPassword>testPassword</dbPassword>
 <databaseName>mantisIssue</databaseName>
 <projectId>test</projectId>
 </configuration>
 </plugin>
 </plugins>
</build>
</project>

Writing Plugins

[84]

The following code uses the example POM file to access our Mojo as a Java object,
and performs some functional tests:

public void testPomAndGoalForNoProperty() throws Exception {

File pom = getTestFile("src/test/resources/unit/project-to-test/pom.
xml");

 assertNotNull(pom);
 assertTrue(pom.exists());

 MarkResolved myMojo = (MarkResolved) lookupMojo("mark-resolved",
pom);

 assertNotNull(myMojo);

 myMojo.execute();
 }

First, we get the test POM file, using the getTestFile method. We pass the relative
path to the test POM as a parameter.

Subsequently, we exploit the Junit assertion mechanism in order to check whether the
test POM exists. We perform the same checks on the Mojo object. We can extract
the Mojo from the POM file using the lookupMojo method described earlier.

Finally, we execute the Mojo, invoking its execute method directly. Using
different POM files, we can test different plugin goals as different Mojos.
In general, it is better to define a test POM for each goal to test.

Integration testing
In the classic software lifecycle, unit tests are naturally followed by the integration
phase. Earlier, we studied the unit testing of a Maven plugin, and now we will
deepen the integration phase.

The integration phase is covered by maven-invoker-plugin because this plugin can
run a set of Maven projects (features that we didn't use at all for our plugin project)
and can verify the output generated from the project launched. The ability to verify
the output generated from the project that is executed is accomplished by a script
that could be a bash script or a groovy script. This plugin is included in a specific
build profile for the integration phase.

The integration build profile, by default, is named run-its.
It is possible to rename it.

Chapter 3

[85]

Whenever we want to perform integration tests, we have to run the
following command:

$ mvn integration-test -Prun-its

When we run such a command, Maven executes the plugin related to the profile,
and creates a local repository structure in the ${basedir}/target directory. Once
the local repository has been created, Maven tries to install the plugin under testing
and verifies the correctness of the installation process. In order to perform the check
for the correct installation of the plugin, we used the configuration option of maven-
invoker-plugin: postbuildhookscript called verify.bsh.

The configuration part of the plugin is as follows:

<postBuildHookScript>verify</postBuildHookScript>

It is important to adopt a custom local repository for integration tests, such as the
${basedir}/target folder. Thus, we avoid polluting the local Maven repository.

As we can see from the configuration of maven-invoker-plugin, we configured
the plugin in order to perform the installation, the integration test, and verify the goals:

<executions>
 <execution>
 <id>integration-test</id>
 <goals>
 <goal>install</goal>
 <goal>integration-test</goal>
 <goal>verify</goal>
 </goals>
 </execution>
</executions>

The structure created to perform tests is as follows:

www.allitebooks.com

http://www.allitebooks.org

Writing Plugins

[86]

The settings.xml file contains settings for maven-invoker-plugin. These settings
allow Maven to locate the test repository.

The pom.xml files within the folders simulate the project environment in which
we want to test our plugin.

We had two test projects to test two different conditions: it-test-1 verifies
the correct plugin installation and it-test-2 verifies whether the database
was updated correctly. All tests were performed by verify.bsh.

If scripts found no expected behavior, they throw an exception.

When we execute the integration-test command on the pom.xml file, we obtain
the sequence of operations declared in maven-invoker-plugin:

[INFO] --

[INFO] Building mantis-plugin Maven Mojo 0.0.1-SNAPSHOT

[INFO] --

 [INFO] --- maven-invoker-plugin:1.7:install (integration-test) @ mantis-
maven-plugin ---

[INFO] Installing projects/mantis-plugin/pom.xml to target/local-repo/
com/example/mojo/mantis-maven-plugin/0.0.1-SNAPSHOT/mantis-maven-plugin-
0.0.1-SNAPSHOT.pom

[INFO] Installing /Users/robertobaldiprojects/mantis-plugin/target/
mantis-maven-plugin-0.0.1-SNAPSHOT.jar to /target/local-repo/com/example/
mojo/mantis-maven-plugin/0.0.1-SNAPSHOT/mantis-maven-plugin-0.0.1-
SNAPSHOT.jar

[INFO]

[INFO] --- maven-invoker-plugin:1.7:integration-test (integration-test) @
mantis-maven-plugin ---

[WARNING] File encoding has not been set, using platform encoding
MacRoman, i.e. build is platform dependent!

[INFO] Building: it-test-1/pom.xml

[INFO] ..SUCCESS (5.3 s)

[INFO] Building: it-test-2/pom.xml

[INFO] run script verify.bsh

[INFO] ..SUCCESS (3.4 s)

[INFO] --

[INFO] BUILD SUCCESS

[INFO] --

Chapter 3

[87]

As we can see from the preceding logs (the only interesting lines were reported for
shortness), first the plugin is installed. Then, Maven finds the two test projects and
executes our plugin on the projects. After that, it executes postbuildhookscript
in order to check the correct installation of the plugin (test-1) and the correct
execution of the plugin on the database (test-2).

If something goes wrong during one of the checks, then the following error is returned:

[INFO] Building: it-test-1/pom.xml

[INFO] ..SUCCESS (4.3 s)

[INFO] Building: it-test-2/pom.xml

[INFO] run script verify.bsh

[INFO] ..FAILED (3.5 s)

[INFO] The post-build script did not succeed. Database is not updated
correctly!!

maven-plugin-plugin
After the Mojo has been compiled and packaged into a JAR, Maven can invoke it as
a plugin. The main difference between a common JAR and a plugin JAR lies in a file
named plugin.xml, stored inside the JAR's directory, META-INF/maven/plugin.xml.

In a plugin's JAR artifact, this file is the plugin descriptor. It contains all the
information that Maven needs to recognize a JAR as a plugin's JAR artifact:

• The list of Mojo classes
• The list of plugin's configurations
• The list of dependencies and requirements needed

Manually writing all the information can be a long and error-prone task. Fortunately,
Maven provides a plugin for doing this dirty work. The maven-plugin-plugin
provides the descriptor goal to generate the plugin descriptor file. The following
sample shows how to configure maven-plugin-plugin to generate a descriptor:

<plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-plugin-plugin</artifactId>
 <version>3.2</version>

 <executions>
 <execution>

Writing Plugins

[88]

 <id>mojo-descriptor</id>
 <goals>
 <goal>descriptor</goal>
 </goals>
 </execution>
 </executions>
 <configuration>
 <skipErrorNoDescriptorsFound>
 true
 </skipErrorNoDescriptorsFound>
 </configuration>
</plugin>

The next sample shows the head section of the generated plugin descriptor:

<plugin>
 <name>mantis-plugin Maven Mojo</name>
 <description></description>
 <groupId>com.example.mojo</groupId>
 <artifactId>mantis-maven-plugin</artifactId>
 <version>0.0.1-SNAPSHOT</version>
 <goalPrefix>mantis</goalPrefix>
 <isolatedRealm>false</isolatedRealm>
 <inheritedByDefault>true</inheritedByDefault>

The plugin descriptor also contains one section for each goal covered by the
plugin. Each of these sections contain the goal execution's requirements and
configurations. In the following sample, we can see the configurations related
to the mark-resolved goal:

<mojos>
 <mojo>
 <goal>mark-resolved</goal>
 <description>
 Goal touching a timestamp file.
 </description>
 <requiresDirectInvocation>
 false
 </requiresDirectInvocation>
 <requiresProject>true</requiresProject>
 <requiresReports>false</requiresReports>
 <aggregator>false</aggregator>
 <requiresOnline>true</requiresOnline>

Chapter 3

[89]

 <inheritedByDefault>true</inheritedByDefault>
 <phase>package</phase>
 <implementation>
 com.example.mojo.plugin.MarkResolved
 </implementation>
 <language>java</language>
 <instantiationStrategy>
 per-lookup
 </instantiationStrategy>
 <executionStrategy>
 once-per-session
 </executionStrategy>
 <threadSafe>true</threadSafe>
 <parameters>
 <parameter>
 <name>basedir</name>
 <type>java.io.File</type>
 <required>true</required>
 <editable>true</editable>
 <description>The base directory.</description>
 </parameter>

The plugin's configurations represent the Mojo fields. In the following sample,
we can see how, for each parameter, we declare its type and, optionally, its
default value:

 <configuration>
 <basedir implementation="java.io.File">
 ${basedir}
 </basedir>
 <databaseUrl implementation="java.lang.String">
 ${databaseUrl}
 </databaseUrl>
 <projectDescription>
 implementation="java.lang.String"
 default-value="${project.description}">
 ${project.description}
 </projectDescription>
 <projectId implementation="java.lang.String"
 default-value="${project.artifactId}">
 ${projectId}
 </projectId>
 <projectVersion

Writing Plugins

[90]

 implementation="java.lang.String"
 default-value="${project.version}">
 ${projectVersion}
 </projectVersion>
 <rsName implementation="java.lang.String">
 ${rsName}
 </rsName>
 </configuration>

The preceding sample shows the dependencies of our plugin. As we can see,
the dependencies declaration is the same as the one used for normal projects:

<dependencies>
 <dependency>
 <groupId>org.apache.maven</groupId>
 <artifactId>maven-plugin-api</artifactId>
 <type>jar</type>
 <version>3.2.1</version>
 </dependency>
 <dependency>
 <groupId>org.apache.maven</groupId>
 <artifactId>maven-model</artifactId>
 <type>jar</type>
 <version>3.2.1</version>
 </dependency>

All plugins have a useful help goal explaining how to use that plugin, and which
configurations it needs. Since every plugin goal is a Mojo, it would be expensive
work to implement a custom Mojo only to satisfy the help goal. In order to realize
this task, we can take advantage of a maven-plugin-plugin goal named helpmojo,
as follows:

<plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-plugin-plugin</artifactId>
 <version>3.2</version>
 <execution>
 <id>generated-helpmojo</id>
 <goals>
 <goal>helpmojo</goal>
 </goals>
 </execution>
 </executions>
</plugin>

Chapter 3

[91]

After executing a compile command, we will find a new Mojo class generated by
the helpmojo goal at the following location:

target
 |
 |-generated-source
 |
 |-our packaging directory structure
 |
 |-HelpMojo.java

The generated class, HelpMojo, is a standard Mojo class, with all its necessary fields
and a preimplemented execute method, where the goal task logic is implemented:

@Mojo(name = "help", requiresProject = false, threadSafe = true)
publicclass HelpMojo extends AbstractMojo
/**
 * If <code>true</code>, display all settable properties for each
goal.
 *
 */
 @Parameter(property = "detail", defaultValue = "false")
 private boolean detail;

 /**
 * The name of the goal for which to show help. If unspecified,
all goals will be displayed.
 *
 */
 @Parameter(property = "goal")
 private java.lang.String goal;

 /**
 * The maximum length of a display line, should be positive.
 *
 */
 @Parameter(property = "lineLength", defaultValue = "80")
 private int lineLength;

 /**
 * The number of spaces per indentation level, should be positive.
 *
 */
 @Parameter(property = "indentSize", defaultValue = "2")
 private int indentSize;

Writing Plugins

[92]

The only task in charge to the help goal, is to print out all the information related to the
implemented plugin. All the information is extracted from an XML file located at the
following location:

META-INF
 |
 |-maven
 |
 |-com.example.mojo
 |
 |-mantis-maven-plugin
 |
 |-plugin-help.xml

To check whether the help Mojo generated by maven-plugin-plugin has all the
correct information, we need to perform mvn install on our project (a previous
build is needed in order to make a successful install possible). After a successful
return of the install command, we can execute mvn help ourPluginGroupId:
ourpluginArtifactId:help.

If all the previous operations were successful, we can read the help information
as follows:

[INFO] mantis-plugin Maven Mojo 0.0.1-SNAPSHOT

This plugin has 3 goals:

mantis:help

 Display help information on mantis-maven-plugin.

 Call mvn mantis:help -Ddetail=true -Dgoal=<goal-name> to display
parameter details.

mantis:issue-info

 Passing module articaftId return all open mantis issue, if exist any,
for that project.

mantis:mark-resolved

 Perform an update on all issue attached to projectId passed as
configuration parameter.

All the information related to a single goal is written in the class comments of the
matching Mojo definition, as shown in the following example:

/**
 * Passing module artifactId return all open
 * mantis issue, if there exist any, for that project.

Chapter 3

[93]

 *
 *
 */
@Mojo(name = "issue-info", defaultPhase = LifecyclePhase.NONE,
requiresOnline = true, requiresProject = true, threadSafe = true)
public class IssueInfo extends MarkResolved

To launch our plugin's help goal (mvn mantis:help) with user friendly notation, we
have to edit the settings.xml file and add our plugin group to the pluginGroups tag:

<pluginGroups>
 <pluginGroup>com.example.mojo</pluginGroup>
</pluginGroups>

In this way, we can execute all goals for our plugin with user-friendly notation.

Custom plugin – mantis-maven-plugin
In order to deepen all the concepts described earlier, we will expose a real-world
experience. We will build up a plugin for automating the publication process of
our transportation project.

Referring to the problem introduced in the beginning of this chapter, we move
forward to its implementation.

Custom plugin implementations
In order to resolve this automation problem, we implemented a plugin named
mantis-maven-plugin. Whenever a build is performed, our plugin queries for
the release version of project ID that is passed through configurations. Once it
resolves the project, it gets all the resolved issues related to the project and
marks them as released in that build version.

Our plugin performs all these operations by means of the release_structure.xml
file.

If the project ID was not present, then get projectId as the default value.

The mantis-maven-plugin architecture is quite simple. The main plugin goal
is implemented by MarkResolved.java. This class simply retrieves all the
parameters needed for a correct execution.

The IssueInfo.java class extends the MarkResolved functionalities to implement
the second goal.

Writing Plugins

[94]

The last goal for our plugin is implemented in HelpMojo.java. As you probably
imagine, this class has been generated through maven-plugin-plugin using the
helpmojo goal.

In the following code snippet, we can see how all the concepts that were exposed
earlier were implemented.

In order to accomplish the database update, we implemented a class named
MySqlAccess.java. Such a class deals with database connections and performs
update operations. Since these functionalities have been implemented through
standard libraries, we won't complicate this class.

Instead, we find more interesting DataReader.class. This class, used
by getProjectVersion to get XML data, uses utility classes from the
org.codehaus.plexus.util package. As you remember, this is the same
package used by AbstractMojo:

@Mojo(name = "mark-resolved", defaultPhase = LifecyclePhase.PACKAGE,
requiresOnline = true, requiresProject = true, threadSafe = true)
public class MarkResolved extends AbstractMojo {

 @Parameter(property = "basedir", required = true)
 protected File basedir;

 @Parameter(property="rsName", required = true)
 protected String rsName;

 @Parameter(required = true)
 protected String jdbcDriver;

 @Parameter(property="projectId", required = true,
defaultValue="${project.artifactId}")
 protected String projectId;

 @Parameter(property="projectVersion", required=true,
defaultValue="${project.version}")
 protected String projectVersion;

 @Parameter(property="projectDescription", defaultValue="${project.
description}")
 protected String projectDescription;

 @Parameter(property="databaseUrl", required = true)

Chapter 3

[95]

 protected String databaseUrl;

 @Parameter(required=true, alias="dbUserName")
 protected String dbUser;

 @Parameter(required=true, alias="dbPassword")
 protected String dbPswd;

 @Parameter(required=true, alias="databaseName")
 protected String dbName;

 @Component(role=MavenProject.class)
 protected MavenProject projectArtifact;

 protected MySqlAccess mySqlAccess;

 protected DataReader dataReader;

 protected Log log;

 public void setDbUserName(String dbUserName) {
 this.dbUser = dbUserName;
 }

 public void setDbPassword(String dbPassword) {
 this.dbPswd = dbPassword;
 }

 public void setDatabaseName(String databaseName) {
 this.dbName = databaseName;
 }

 public void execute() throws MojoExecutionException {
 String projectV = null;
 log = getLog();

 log.info("base dir :: " + basedir);

 log.info("Jdbc Driver :: " + jdbcDriver);

 log.info("urldb passed :: " + databaseUrl);

Writing Plugins

[96]

 log.info("projectId :: " + projectId);

 try {

 projectV = getProjectVersion();

 if (projectV != null && !projectV.isEmpty()) {
 log.info("Current module version to update is :: " +
projectV);

 // Start part with db management
 mySqlAccess = new MySqlAccess(dbUser, dbPswd, databaseUrl,
dbName, jdbcDriver);

 mySqlAccess.updateStatus(projectId, projectV);

 }

 } catch (XmlPullParserException e) {
 throw new MojoExecutionException("Error on parsing xml file for
version to update");

 } catch (IOException e) {
 throw new MojoExecutionException("Error on accessing xml file
for version to update ");

 } catch (SQLException e) {
 throw new MojoExecutionException("Error on mantis database
execution");

 } catch (ClassNotFoundException e) {
 throw new MojoExecutionException("Error on instantiation for
driver class");
 }

 }

 protected String getProjectVersion() throws XmlPullParserException,
IOException {
 String prjVersion = null;

Chapter 3

[97]

 File xmlReleaseStructure = null;

 if (this.projectVersion == null || this.projectVersion.isEmpty())
{
 if (basedir != null && (projectVersion == null ||
projectVersion.isEmpty())) {
 xmlReleaseStructure = new File(basedir.getAbsolutePath() +
File.separator + rsName);

 if (xmlReleaseStructure.exists()) {
 dataReader = new DataReader();
 prjVersion = dataReader.getVersionFromXml(xmlReleaseStructu
re, projectId);

 }
 }
 } else {
 prjVersion = this.projectVersion;

 }

 return prjVersion;
 }

}

As mentioned earlier, we use the release_structure.xml file to get the information
about the project name and version. The file has the following structure:

<releaseStructure>
 <module>
 <name>test</name>
 <version>2.4</version>
 </module>
</releaseStructure>

Since a software module can be composed of several submodules, the XML structure
allows more than one occurrence for the module tag. This structure allows us to get
data in a simple way through the DataReader class functionalities:

import java.io.File;
import java.io.IOException;

import org.codehaus.plexus.util.ReaderFactory;
import org.codehaus.plexus.util.xml.Xpp3Dom;

Writing Plugins

[98]

import org.codehaus.plexus.util.xml.Xpp3DomBuilder;
import org.codehaus.plexus.util.xml.pull.XmlPullParserException;

public class DataReader {

 public String getVersionFromXml(File xmlReleaseStructure, String
projectId) throws XmlPullParserException, IOException {
 String version = null;
 Xpp3Dom xmlDom = Xpp3DomBuilder.build(ReaderFactory.newXmlReader(
xmlReleaseStructure));
 Xpp3Dom[] modules = xmlDom.getChildren("module");

 for (Xpp3Dom child : modules) {
 String nameModule = child.getChild("name").getValue();

// If name module isn't null and not empty then check for
// searching name
 if (nameModule != null && !nameModule.isEmpty()) {
 if (projectId.equalsIgnoreCase(nameModule)) {
 // If we found correct module, then get version
 version = child.getChild("version").getValue();

 break;
 }
 }
 }
 return version;
 }
 }

Summary
In this chapter, we saw how to create a custom plugin starting from a real-world
problem. We learned how to create a plugin project, we saw which libraries to
import in order to make the project work, and which class we need for developing
basic functions for our purpose. We also saw how to structure tests for plugin
development and how to perform simple integration tests.

The next chapter will show how Maven can be integrated with new and various
instruments in order to automate operations and different tasks.

Managing the Code
In the previous chapters, we studied how Maven core works and how to write
a Maven plugin by implementing custom functionalities. In this chapter, we will
talk about some extended Maven concepts and functionalities.

This chapter will show us the following concepts in detail:

• How build profiles are structured
• How to customize your build phase to face different environments
• How to use Maven Assembly Plugin to build customized archives

out of your project
• How to use Maven Site Plugin to create a wiki-style website containing

all the information related to the project

Maven build profiles
In the previous chapters, we saw how to configure the build of our project.
However, we did not address the problem of build portability in the previous
chapters. With build portability, we measure how easily we can port a build
configuration across different environments. A nonportable build will need
more configurations and hacks compared to a portable build.

Of course, portability is sometimes not entirely possible. Some plugins and
some applications' configurations might depend on resources that are related
to a specific environment.

In order to address such circumstances and facilitate build portability across
environments, Maven introduces the concept of a build profile. A build profile
is a set of POM elements that you can optionally activate by overriding the
corresponding tags in a POM file. This is the only point in which you need
to define environment-specific settings.

Managing the Code

[100]

Profiles modify the POM file at build time by overriding the POM settings
according to the configurations set in the profile. In some ways, the profiles
are similar to the mvn –f command, providing maintainability to the POM file.

In the following sections, we will see how profiles are structured, and we will
instantiate them in our transportation project.

What is a profile?
Maven allows the definition of profiles in different levels.

A build profile might contain project-specific settings. In this case, it must be defined
in the pom.xml file of a single project. Based upon whether we want to centralize all
the profiles' information related to a single project, we can also define them in the
profile descriptor file contained in the ${basedir}/profiles.xml folder. Profiles
must be defined in a specific POM file element, which is named profiles.

As shown in the following snippet, all profiles are identified by a unique ID:

 <profiles>
 <profile>
 <id>profile1-id</id>
 <!-- configurations and other stuff -->
 </profile>
 <profile>
 <id>profile2-id</id>
 <!-- configurations and other stuff -->
 </profile>
 </profiles>

Profiles can also be defined at the user level. In this case, the profiles section, which
we saw earlier, will be defined in the ${USER_HOME}/.m2/settings.xml file and
will be visible for all the projects in the machine.

Profiles defined at the global level are contained in the ${M2_HOME}/conf/
settings.xml file.

Since profiles can be defined across many layers, Maven
provides a specific goal to track the active build profiles of a
project. Running mvn active-profiles will show all the
active profiles of our project.

Chapter 4

[101]

The structure of a profile
As we said before, build profiles are designed to port a build configuration across
different environments. We also said that this result is achieved by overriding some
of the POM settings; but which settings can be overridden? The obvious answer to
this question is that we can override almost all the properties that we defined in the
POM file.

The following snippet from the book titled Maven: The Complete Reference shows the
full structure of the plugins:

 <profiles>
 <profile>
 <id>...</id>
 <activation>...</activation>
 <build>
 <defaultGoal>...</defaultGoal>
 <finalName>...</finalName>
 <resources>...</resources>
 <testResources>...</testResources>
 <plugins>...</plugins>
 </build>
 <reporting>...</reporting>
 <modules>...</modules>
 <dependencies>...</dependencies>
 <dependencyManagement>...</dependencyManagement>
 <distributionManagement>...</distributionManagement>
 <repositories>...</repositories>
 <pluginRepositories>...</pluginRepositories>
 <properties>...</properties>
 </profile>
 </profiles>

As we can see, the profile can override almost all the POM sections. It is possible to
customize the build package with different modules and dependencies, and it is also
possible to define custom resources and properties to fit in the environment settings.
We can customize the database connection, the namespace of a WSDL, or the web.
xml configuration of a WAR module.

Smart readers will probably notice that two tags of the preceding code sample do
not appear in a normal POM file. The id and activation tags are specific to the
profile element. As we said earlier, only the id element can uniquely identify
the profile within the project.

The activations element explains when the profile has to be used. The concept of
profile activation will be explained in more detail in the following section.

Managing the Code

[102]

Profile activation
As we explained earlier, profiles are needed to activate environment-specific settings
during the build phase. The main implication of this fact is that more than one profile
will exist within a single project. The concept of activation of a profile is strictly related
to its nature; we might want to enable a specific profile when we build the project for a
specific operating system or JDK version, or even by default.

Maven provides several different ways to activate a build profile.

A profile might be set to activate by default. If the activation element contains the
activeByDefault tag that is set to true, the profile will be active, unless some
other profile in the same POM file is activated:

 <activation>
 <activeByDefault>true</activeByDefault>
 </activation>

Usage of the activeByDefault flag is discouraged. This flag activates
the profile if no other profile is active. This implies that the default
activation is inhibited by another profile's activation. When you run a
multimodule build, the default activation will miss if a build profile has
been activated, even if it has been defined in other modules.
The best practice to obtain default activation consists in relying on the
absence of a property:

<activation>

 <property>

 <name>dummy.property.name</name>

 </property>

</activation>

You can just define the property in another profile if you want to inhibit
the profile's activation:

<properties>

 <dummy.property.name>dummyValue</dummy.property.name>

</properties>

As hinted before, a build profile can also be activated for a specific operating system
or JDK version. In these cases, the specific child elements are os and jdk. As we can
see in the following code snippet, the os element allows the user to specify the name,
family, version, and architecture of the operating system to activate the profiles.
All of these elements are optional.

Chapter 4

[103]

The following snippet shows the structure of this element for a specific operating
system and architecture:

 <activation>
 <os>
 <name>Windows 7</name>
 <version>6.1</version>
 <family>Windows</family>
 <arch>amd64</arch>
 </os>
 </activation>

The jdk element allows you to specify a range of JDK versions to be used.
The version's range has to be defined through the version range system.
It is possible to exclude a specific version using the exclamation mark, as
shown in the following example:

 <activation>
 <jdk>!1.5</jdk>
 </activation>

Other activation methods rely on the presence or lack of a property or file. With
the property element, we can specify to activate the build profile if a property
exists, if it does not, or if it has a specific value. As in the preceding example, the
lack of the property is specified by the use of an exclamation mark. The file
element allows us to specify whether a file exists with the specific exists child
element of the missing element.

Finally, Maven provides the possibility of manually activating one or more build
profiles through the –P option. It is possible to indicate more than one profile with
a comma-separated notation, as shown here:

mvn clean package –P profile_id1,profile_id2,!profile_id3

Sample build profiles
Throughout this book, we'll show the use of the build profiles mechanism through
our example project. We will specifically write two different profiles to build the
transportation-acq-war module into a development environment and on the
production environment.

Our build profiles will be identified by the dev and prod IDs. The first profile will
be active when a fake property doesn't exist, and the production profile will only
activate with a specific set of configurations.

Managing the Code

[104]

Each of these profiles will define a set of properties containing environmental
settings. The classic example of such settings, highlighted in the next code snippet,
is the database connection string; this string sets different values for different profiles
and allows developers to work avoiding to care about environmental details. Once
the build has been set up, Maven will set the correct configuration according to the
environment that we are building on.

In the following code snippet, we can see the resulting profiles section of our POM
file. In addition to everything we've already covered, we also add some different
plugin configurations.

During the development phase, we will run unit tests with a custom configuration
to ignore test failures, and in the production phase, we will build a WAR file
containing a custom web.xml file:

 <profiles>
 <profile>
 <id>dev</id>
 <activation>
 <property>
 <name>!dev.profile.trigger</name>
 </property>
 </activation>

 <properties>
 <db.driverClass>
 oracle.jdbc.driver.OracleDriver
 </db.driverClass>
 <db.url>jdbc:oracle:thin:@127:0:0:1:1521/DBService</db.url>
 <db.user>dbuser</db.user>
 <db.password>dbuser123</db.password>
 </properties>

 <build>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-surefire-plugin</artifactId>
 <version>2.17</version>

 <configuration>
 <testFailureIgnore>true</testFailureIgnore>
 <includes>
 <include>**/test/java/*.java</include>
 </includes>

Chapter 4

[105]

 </configuration>
 </plugin>
 </plugins>
 </build>
 </profile>

 <profile>
 <id>production</id>

 <activation>
 <jdk>[1.6,)</jdk>
 <os>
 <family>Unix</family>
 <arch>amd64</arch>
 </os>
 </activation>

 <properties>
 <db.jndi>jdbc/productionOracle</db.jndi>
 <!—- dev profile inhibition -->
 <dev.profile.trigger>I'm a dummy value</dev.profile.trigger>
 </properties>

 <build>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-war-plugin</artifactId>

 <configuration>
 <webXml>src/main/webapp/WEB-INF/prod/web.xml</webXml>
 </configuration>
 </plugin>
 </plugins>
 </build>
 </profile>
 </profiles>

Maven Assembly Plugin
The Maven plugin generates a structure that fits our needs, but in some cases,
we have to produce an output different from the common plugin structure;
in such cases, the appropriate choice is Maven Assembly Plugin.

Managing the Code

[106]

Fitting to environment
Our particular case of study has to face a deployment of batch application. In the
specific batch application called BatchHandler, we have to perform read operations
for data acquisition, produce output on files, and send files via FTP to be stored in
other locations. In order to be deployed, our batch has to satisfy some specifications:

• It must be a ZIP file
• Once the ZIP file is unpacked, we must have a precise directory structure

To accomplish this specification without making strange operations in order to
create the package, we use maven-assembly-plugin.

As described before, our batch application is a simple JAR with some dependency,
so we manage to add the assembly plugin to our project's POM.

The structure within the ZIP file should be like the one shown in the
following screenshot:

All the directories contain some specific files as described here:

• The bin directory contains the script to launch the application in
an environment-agnostic fashion (Windows, Linux, or Mac OSX)

• The conf directory contains all the configurations for correct
application execution

• The etc directory contains all the configurations related to the
environment variables and database connections

• The lib directory contains all the libraries that are needed for
batch execution

• The libRun directory contains the batch application's JAR
• The log directory contains some configurations to log
• The backup directory contains the log configuration backup

Chapter 4

[107]

In order to generate the whole structure in a single step, we use a custom
generation option for maven-assembly-plugin using the assembly descriptor,
as described previously.

Building your own archive through the
Assembly plugin
The common meaning of assembly is to merge a group of files, directories,
or dependencies into an archive format and distribute it to someone or into
some environment.

The Assembly plugin can be used to aggregate a project with its dependencies, source
code, documentation, and other files as configuration files into a single archive.

If we simply need to aggregate our project with the most common files present in
a project structure, we can use a predefined model. When the predefined descriptor
can't accomplish a specific user's target, a more powerful tool to manage the
assembly architecture and files comes to the rescue: the descriptor file.

In all the examples, we used Version 2.4 of maven-assembly-plugin. This version
provides a single goal.

All other goals are deprecated and will be removed in the future versions of
the plugin.

Goals such as assembly:assembly, assembly:attached, assembly:directory,
and assembly:directory-inline are deprecated because they break normal
build processes and promote nonstandard build practices.

Since the assembly:single-directory goal is redundant, it has been deprecated
in favor of the dir goal. Moreover, the assembly:format and assembly:unpack
goals have been deprecated in favor of a far more comprehensive Maven
Dependency Plugin.

Maven Assembly Plugin's most important function is represented by
descriptorRef. This element represents the key for all packaging operations
because it describes the structure to be created in the output.

As we said before, with descriptorRef, you can specify a predefined descriptor
because Maven provides a set of descriptors covering all the common usages:

• With the jar-with-dependencies descriptor, the plugin can generate
an executable JAR such as Maven Shade Plugin.

Managing the Code

[108]

• The bin descriptor allows the creation of a redistributable archive, starting
from your project. Such archives can be in any of the three formats: ZIP, tar.
gz, or tar.bz2. The resulting project JAR is included, and it is possible to
specify other files such as readme, license, or notice.

• The src descriptor produces an output packaging similar to the bin
descriptor output. This descriptor adds content from the src project
directory, which enables you to redistribute source code in conjunction with
the executable. Output formats are the same as that of the bin descriptor.

• The project descriptor consists of the sum of the bin and src descriptors.
This descriptor creates an archive containing all the elements from our project
structure. Only the target directory will be excluded from packaging. Also, in
this case, the output formats are ZIP, tar.gz, and tar.bz2.

The predefined descriptors cover almost all the common needs; if someone needs
specific behavior, the assembly plugin accepts a custom XML descriptor as input.
This descriptor allows you to specify how to create the output archive and the
contents to be included. This kind of operation can be accomplished using the
descriptor file.

The descriptor file
The descriptor file has different sections to describe various interactions with a
project's files. We will describe the principal sections in order to understand the
descriptor structure and functionality:

• As we saw before, the assembly section usually describes a compressed
archive (tar, tar.gz, or ZIP) starting from the original project. It's possible
to create a compressed file within the project's JAR artifact, a directory
within dependencies, usually called lib, and another directory called bin
within scripts in order to execute the application in a standalone mode.

• The containerDescriptorHandler is used to filter the files to aggregate
them into the assembly archive. It's possible to aggregate different types
of descriptor fragments, such as XML files for project configuration.

• With moduleSet, it is possible to include sources or binaries from different
modules that are declared in a project's pom.xml file.

• The sources element allows us to define configuration options to add
a project's source code into our assembly file.

• The fileSet element allows us to include files or a group of files into
the assembly.

Chapter 4

[109]

• The binaries element is useful for including a project's module binary
files in the resultant package.

• We can exploit a set of options provided by dependencySet to manage project
dependencies by the inclusion and exclusion of the output assembly package.

• The unpackOptions element provides us with the possibility to manage item
extraction from the archive in order to filter, exclude, or include resources.

• The file element allows us to specify the inclusion of individual files. It also
permits us to change the destination filename.

• The groupVersionAlignement element gives us the possibility to align a
group of artifacts to a specific version, passed as a configuration parameter.

• The repository element is particularly useful whenever we need to
deploy archives to internal repositories. It allows us to reorganize the
project's dependencies into a small Maven repository and include it in
the output archive.

Currently, only the artifacts from the central repository are allowed
values for the element repository.

Thanks to the information provided within the descriptor file, we can create different
structures for the plugin output.

The project configuration
In our project, the Assembly plugin configuration has the following form:

 <plugin>
 <artifactId>maven-assembly-plugin</artifactId>
 <version>2.4</version>
 <configuration>
 <descriptorRefs>
 <descriptorRef>
 ${descriptorDir}/assembly-descriptor.xml
 </descriptorRef>
 </descriptorRefs>
 </configuration>
 <executions>
 <execution>
 <id>make-assembly</id>
 <phase>package</phase>

Managing the Code

[110]

 <goals>
 <goal>single</goal>
 </goals>
 </execution>
 </executions>
 </plugin>

We bind execution to the package phase and pass a custom descriptor as
descriptorRef.

The ${descriptorDir} variable stores the path to the descriptor file used by
the assembly plugin.

In the preceding section, we described all the components of a descriptor file. Now,
we will understand how it works. The following is the first element that we have:

<id>run</id>

It just sets the ID for assembly and represents a symbolic name for files from the
project. The ID value will also be attached to generate a final filename. Another
function of the id element is to be an artifact's classifier at deploying time:

<includeBaseDirectory>false</includeBaseDirectory>

As the tag name suggests, this option tells the plugin whether to include the project's
base directory in the output archive. In our example, we set it to false, since we don't
want to include the base directory.

With the following tag, we specify to use the ZIP format as the output:

<formats>
 <format>zip</format>
</formats>

As we said before, this option accepts many formats, such as ZIP, tar, tar.gz, tar.
bz2, jar, dir, and war. All formats but dir are well known: that is not a file format but
a directive to create an exploded directory and not a compressed file or a Java archive.

In the fileSets tag, we specify which file we want to put in the output directories.
In the case of the bin directory, all the source directory contents will be copied into
the destination directory:

<fileSet>
 <directory>src/main/resources/scripts</directory>
 <outputDirectory>bin</outputDirectory>
</fileSet>

Chapter 4

[111]

The same operation was performed for the log and etc directories. In the conf
directory, we included a subset of the files present in the source directory. Through
the include directive, we configure this behavior:

<fileSet>
 <directory>src/main/resources</directory>
 <outputDirectory>conf</outputDirectory>
 <includes>
 <include>app.properties</include>
 <include>log4j.xml</include>
 <include>extract_ldap.param</include>
 <include>extract_ldap.param.sample.INT</include>
 <include>extract_ldap.param.sample.INT1</include>
 <include>extract_ldap.param.sample.PREPROD</include>
 <include>extract_ldap.param.sample.PROD</include>
 </includes>
</fileSet>

All the JAR files related to the libraries and application batches are included using
the dependencySets tag. As in the previous section, we can use the include and
exclude directives to manage the set of JAR files that we want to copy:

<dependencySets>
 <dependencySet>
 <outputDirectory>libRun</outputDirectory>
 <unpack>false</unpack>
 <scope>runtime</scope>
 <outputFileNameMapping>
 ${artifactId}.jar
 </outputFileNameMapping>
 <includes>
 <include>${artifact}</include>
 </includes>
 </dependencySet>
 <dependencySet>
 <outputDirectory>lib</outputDirectory>
 <unpack>false</unpack>
 <scope>runtime</scope>
 <excludes>
 <exclude>${artifact}</exclude>
 </excludes>
 </dependencySet>
</dependencySets>

Managing the Code

[112]

The includes directive defines a set of files and directories to be
included in the output archive. If no pattern is specified, all the files
are included. Similarly, the excludes tag represents a set of files
to exclude. On the other hand, if the excludes tags are empty, no
files will be excluded.
Since the excludes tag takes priority over the includes tag, if we
leave both the elements empty, all the files will be included in the
output archive.

In the preceding snippet, we can see two different dependency sets. The first set
specifies through the use of appropriate tags:

• Output directory
• To copy without unpacking the archive
• The set of libraries to copy, based on the scope and name pattern of the

library to copy

Since the include statement specified the filename pattern described in
outputFileNameMapping, only the libraries fitting the pattern will be included inside
the libRun directory. In our examples, the pattern includes only the generated JAR file.

The second dependencySet looks very similar to the first one. The main difference
relies in the usage of the excludes statement in order to exclude a set of dependencies.
Using the ${artifact} pattern, we exclude only the batch application JAR.

Put together all the configurations that we saw previously into the original descriptor
file and complete it with its header results, as shown in the following code:

<assembly
 xmlns="http://maven.apache.org/plugins/maven-assembly-plugin/
assembly/1.1.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/plugins/maven-assembly-
plugin/assembly/1.1.0 http://maven.apache.org/xsd/assembly-1.1.0.xsd">

 <id>run</id>
 <includeBaseDirectory>false</includeBaseDirectory>
 <formats>
 <format>zip</format>
 </formats>

 <dependencySets>
 <dependencySet>
 <outputDirectory>libRun</outputDirectory>
 <unpack>false</unpack>

Chapter 4

[113]

 <scope>runtime</scope>
 <outputFileNameMapping>
 ${artifactId}.jar
 </outputFileNameMapping>
 <includes>
 <include>${artifact}</include>
 </includes>
 </dependencySet>
 <dependencySet>
 <outputDirectory>lib</outputDirectory>
 <unpack>false</unpack>
 <scope>runtime</scope>
 <excludes>
 <exclude>${artifact}</exclude>
 </excludes>
 </dependencySet>
 </dependencySets>

 <fileSets>
 <fileSet>
 <directory>src/main/resources/config</directory>
 <outputDirectory>etc</outputDirectory>
 </fileSet>
 <fileSet>
 <directory>src/main/resources</directory>
 <outputDirectory>conf</outputDirectory>
 <includes>
 <include>app.properties</include>
 <include>log4j.xml</include>
 <include>extract_ldap.param</include>
 <include>extract_ldap.param.sample.INT</include>
 <include>extract_ldap.param.sample.INT1</include>
 <include>extract_ldap.param.sample.PREPROD</include>
 <include>extract_ldap.param.sample.PROD</include>
 </includes>
 </fileSet>
 <fileSet>
 <directory>src/main/resources/scripts</directory>
 <outputDirectory>bin</outputDirectory>
 </fileSet>
 <fileSet>
 <directory>src/main/tmp</directory>
 <outputDirectory>tmp</outputDirectory>
 </fileSet>
 <fileSet>
 <directory>src/main/resources/log</directory>
 <outputDirectory>log/backup</outputDirectory>

Managing the Code

[114]

 </fileSet>
 </fileSets>
</assembly>

As a result, we manage to generate a single file named BatchHandler-run.zip
containing all the directories and libraries that we need to put our batch into action.

Maven Site Plugin
Maven Site Plugin is a very useful mechanism used to generate some basic
information, such as the Javadoc, project and module descriptions, dependencies,
and management tools, for the project.

Maven Site Plugin provides a fine-grained way to customize the final outcome using
the APT language. In this section, we will learn how to produce a basic site, grabbing
information from the pom.xml file and the source code of our project and avoiding
extra documentation. In the last paragraph, we will customize a module to provide
more information.

Creating a simple site
To create a site easily, we first choose a directory for a sample project using the
following archetype:

$ mvn archetype:create -DgroupId=org.sonatype.mavenbook
-DartifactId=sample-project

This archetype creates a simple project named sample-project:

Then, we run the following command:

$ mvn site

The preceding command will create a target/site folder.

To see the result, open the index.html file or connect to the http://
localhost:8080/ URL after running the following command:

$ mvn site:run

Maven will use the default configuration to create the site.

Creating your own project site manually
Now, we are ready to customize the site for our multimodule project structure.

Chapter 4

[115]

Open the pom.xml file of transportation-project and add the following plugin
in the reporting element:

[…]
<reporting>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-project-info-reports-plugin</artifactId>
 <version>2.7</version>
 <reportSets>
 <reportSet>
 <reports>
 <report>index</report>
 <report>dependencies</report>
 </reports>
 </reportSet>
 </reportSets>
 </plugin>
 </plugins>
</reporting>
[…]

Use the following command line to run the goal:

$ mvn clean install site

The install command is required if it is not already installed. Maven will
create the target/site folder, including our HTML pages, one site for each
submodule. Opening the index.html file, you should get a result as shown in
the following screenshot:

The transportation project's index page

Managing the Code

[116]

Unfortunately, we cannot navigate the site correctly. To explore each submodule,
we must deploy the site into the final deploy directory.

We can simply define the deploy directory by creating a new property named
siteDirectory:

[…]
<properties>
 <siteDirectory>C://siteDirectory</siteDirectory>
</properties>
[…]

After we define the property, we have to set the distributionManagement
element, as shown in the following snippet:

[…]
<distributionManagement>
 <site>
 <id>transportation-site</id>
 <url>file://${siteDirectory}</url>
 </site>
</distributionManagement>
[…]

The url tag describes the deploy location. It's possible to save it into both a local
and remote directory (at the moment, only SSH is supported).

Now, we can deploy the site running the following command:

$ mvn site:deploy

Maven should produce the following result:

[INFO] --

[INFO] Building transportation-statistics-batch-jar 0.0.1

[INFO] --

[INFO]

[INFO] --- maven-site-plugin:3.3:deploy (default-cli) @ transportation-
statistics-batch-jar ---

file://C://siteDirectory/ - Session: Opened

[INFO] Pushing C:\\WSSites\transportation-project\transportation-

statistics-batch-jar\target\site

Chapter 4

[117]

[INFO] >>> to file://C://siteDirectory/transportation-statistics-
batch-jar

file://C://siteDirectory/ - Session: Disconnecting

file://C://siteDirectory/ - Session: Disconnected

[INFO] --

[INFO] Reactor Summary:

[INFO]

[INFO] transportation-project SUCCESS [1.268 s]

[INFO] transportation-common-jar SUCCESS [0.357 s]

[INFO] transportation-acq-ejb SUCCESS [0.264 s]

[INFO] transportation-acq-war SUCCESS [0.217 s]

[INFO] transportation-acq-ear SUCCESS [0.340 s]

[…]

It's also possible to define other interesting reports by editing maven-project-info-
reports-plugin and adding the highlighted reports:

[…]
<reporting>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-project-info-reports-plugin</artifactId>
 <version>2.7</version>
 <reportSets>
 <reportSet>
 <reports>
 <report>index</report>
 <report>dependencies</report>
 <report>project-team</report>
 <report>cim</report>
 <report>issue-tracking</report>
 <report>scm</report>
 </reports>
 </reportSet>
 </reportSets>
 </plugin>
 </plugins>
</reporting>
[…]

Let's further explore the reports we added in the POM snippet previously.

Managing the Code

[118]

First, we can define the project team by adding the following code at the project
root of our pom.xml file:

<project …>
 […]
 <developers>
 <developer>
 <id>ucicero</id>
 <name>Umberto Cicero</name>
 <email>mymail@example.com</email>
 <organization>MyOrganization</organization>
 <roles>
 <role>book-author</role>
 <role>developer</role>
 </roles>
 </developer>
 </developers>
 […]

The cim report is the Continuous Integration Management (CIM) system based
on triggers or timings such as Hudson CI (see Chapter 5, Continuous Integration
and Delivery with Maven).

Other possible reports are License and Mailing Lists.

We can configure the cim report using the ciManagement element given here:

[…]
<ciManagement>
 <system>Hudson CI</system>
 <url>http:// localhost:8080/</url>
 <notifiers>
 <notifier>
 <type>mail</type>
 <address>mymail@example.com</address>
 </notifier>
 </notifiers>
</ciManagement>
[…]

To carry out information on issue management, it's possible to set our issue tracker,
such as JIRA or MantisBT. Set the issueManagement element as follows:

[…]
<issueManagement>
 <system>MantisBT</system>

Chapter 4

[119]

 <url>http://localhost/mantisbt</url>
</issueManagement>
[…]

Finally, we can define scm or Source Code Management (SCM). It is used to provide
information related to the code management system in order to maintain the project
in the code repository (check SVN, GIT, CVS, Mercurial, and so on, in Chapter 5,
Continuous Integration and Delivery with Maven). To configure SCM, include the
following code in the pom.xml file:

[…]
<scm>
 <connection>
 scm:svn:https://my-scm-host/trunk/project/
 </connection>
 <developerConnection>
 scm:svn:https://my-scm-host/trunk/project/
 </developerConnection>
 <url>https://my-scm-host/trunk/project </url>
</scm>
[…]

We are finally ready to rebuild our project's site and deploy it. Just run the following
compact command:

$ mvn clean site:site site:deploy

The following screenshot shows the team's project.html page:

The project's team page

This configuration is the same for each module of the project since it is inherited
from the parent POM.

Managing the Code

[120]

Configuring the site for a submodule
In this section, we'll see how to configure a site for a single submodule. We chose the
transportation-acq-ear module as an example.

First, we open the pom.xml file of transportation-acq-ear, and then add a new
person at project-team:

[…]
 <developers>
 <developer>
 <id>ucicero</id>
 <name>Umberto Cicero</name>
 <email>mymail@example.com</email>
 <organization>MyOrganization</organization>
 <roles>
 <role>book-author</role>
 <role>developer</role>
 </roles>
 </developer>
 <developer>
 <id>gveneri</id>
 <name>Giacomo Veneri</name>
 <email>hismail@example.com</email>
 <organization>HisOrganization</organization>
 <roles>
 <role>book-author</role>
 <role>developer</role>
 <role>tester</role>
 </roles>
 </developer>
 </developers>
[…]

You need not include the site plugin because it is inherited from the
parent POM.

Run the following command again:

$ mvn clean site:site site:deploy

Chapter 4

[121]

The following screenshot shows a different team for the transportation-acq-ear
module as a result of our operation:

The transportation-acq-ear's project team

Reporting the Javadoc
It is also possible to publish the Javadoc on the generated site through Javadoc
Plugin. Add the following snippet in the reporting element of the pom.xml file
of our multimodule project:

<project>
 […]
 <reporting>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-javadoc-plugin</artifactId>
 <version>2.9</version>
 <reportSets>
 <reportSet>
 <reports>
 <report>javadoc</report>
 <report>test-javadoc</report>
 </reports>
 </reportSet>
 <reportSet>
 <id>aggregate</id>

Managing the Code

[122]

 <inherited>false</inherited>
 <reports>
 <report>aggregate</report>
 </reports>
 </reportSet>
 </reportSets>
 </plugin>
 […]
 </reporting>
 […]
</project>

The aggregate directive tells Maven to aggregate the Javadoc of each module
on a global directory. The highlighted code, <report>test-javadoc</report>,
requires the processing of the Javadoc for the test code.

Execute the following command:

$ mvn clean site:site site:deploy

We should see a result like this:

[…]
[INFO] >>> maven-javadoc-plugin:2.9:javadoc (report:javadoc) >
generate-sources
@ transportation-reporting-ear >>>
[INFO]
[INFO] <<< maven-javadoc-plugin:2.9:javadoc (report:javadoc) <
generate-sources
@ transportation-reporting-ear <<<
[INFO]
[INFO] >>> maven-javadoc-plugin:2.9:test-javadoc (report:test-javadoc)
> generat
e-test-sources @ transportation-reporting-ear >>>
[INFO]
[INFO] --- maven-ear-plugin:2.8:generate-application-xml (default-
generate-appli
cation-xml) @ transportation-reporting-ear ---
[INFO] Generating application.xml
[INFO]

Chapter 4

[123]

Maven will create a new item on the site's menu, linking it to the Javadoc:

The Javadoc link

Clicking on the link, you will see a result like this:

The Javadoc result

Managing the Code

[124]

Skinning Maven sites
If you don't like the classic Maven site skin, or if you want a more charming
template, Maven provides you with the possibility of customizing it. All we
have to do is create the following directory in our project:

Create an XML file named site.xml inside the directory. To customize our site,
we will use Skin (Maven Fluido Skin), which is included by default in the site
plugin. Other available Skins are:

• Maven Application Skin
• Maven Classic Skin
• Maven Default Skin
• Maven Stylus Skin

Define the site.xml file as follows:

<?xml version="1.0" encoding="ISO-8859-1"?>

<project name="Maven"
 xmlns="http://maven.apache.org/DECORATION/1.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/DECORATION/1.0.0
 http://maven.apache.org/xsd/decoration-1.0.0.xsd">

 <bannerLeft>
 <name>A Maven Site</name>
 <src>
 http://ww1.prweb.com/prfiles/2011/10/26/9257737/gI_61351_
Packt%20Publishing%20logo.PNG
 </src>
 <href>http://www.packtpub.com/</href>
 </bannerLeft>
 <skin>
 <groupId>org.apache.maven.skins</groupId>
 <artifactId>maven-fluido-skin</artifactId>
 <version>1.3.1</version>
 </skin>
 <custom>
 <fluidoSkin>
 <sideBarEnabled>true</sideBarEnabled>
 <googlePlusOne />
 </fluidoSkin>

Chapter 4

[125]

 </custom>

 <body>
 <links>
 <item name="packtpub" href="http://www.packtpub.com/"/>
 </links>

 <menu name="Regular Web Site">
 <item name="APT Format"
href="http://maven.apache.org/doxia/references/apt-format.html"/>
 <item name="Xdoc Example" href="xdoc.html"/>
 <item name="FAQ" href="faq.html"/>
 </menu>

 <menu ref="reports"/>

 <footer>Packt. All rights reserved.</footer>
 </body>
</project>

If we run the following command, we will get a site that has a new (and very
cool) look:

$ mvn clean site:site site:deploy

The following is an example of a site with a new look:

The transportation project site with maven-fluido-skin

Managing the Code

[126]

Maven site content
Maven Site Plugin supports an easy way to provide additional details about the
project. Customizing the main page of each submodule is very easy; we only need
to write a few text lines.

Maven Site Plugin allows us to write content in different languages. In our example,
we will use Almost Plain Text (APT). Navigate to the directory shown in the
following screenshot:

Create a simple text file named index.apt that contains the following data;
take care to preserve the same indentation:

 Title: transportation-acq-ear

transportation-acq-ear

 This component acquires information from:

 * android

 * Onboard Unit Device

* Technology

** Java

 Java is ...

** Maven

 Maven is ..

Chapter 4

[127]

Now, copy the site.xml file that was previously defined in the folder shown in the
following screenshot:

Finally, run the following command:

$ mvn clean site:site site:deploy

The resulting index page will look as follows:

Custom index transportation-project-acq-ear

Following the same procedure, it is possible to build different APT pages.

Managing the Code

[128]

Summary
This chapter covered the common procedures to create code, artifacts,
additional documentation, and packages in order to create maintainable
code in the production environment.

We discussed the following topics in detail:

• How to build different artifacts according to a given profile. Profiles are great
tools that can change the final package according to the environment settings.
On big projects, it is common to change the security policy or database JNDI
name in order to fit the destination environment (for example, development,
preproduction, test, and production).

• How to change the web.xml file to accomplish operations.
• How to produce a proof package, including additional resources

(for example, for a batch) required for correct component execution.
• How to produce a simple site hosting the Javadoc and project's information.

Documentation is a boring activity as it's normally detached from the code.
• How to produce a minimalistic site reporting Javadoc, dependencies, and

generic information about SCM or CI.

In the following chapter, we will see how to exploit Maven's features to exercise
the Continuous Integration and Delivery pattern through integration with some
state-of-the-art open source tools.

Continuous Integration and
Delivery with Maven

Continuous Integration is a common practice proposed by the extreme programming
(XP) methodology to integrate various components developed over a long period
of time by different groups. Continuous Delivery is a series of processes designed
to ensure software quality and to deploy them safely as the final version to a
production-like environment. Continuous Integration is de facto complimentary
to Continuous Delivery and anticipates this stage.

The Continuous Integration workflow can be summarized as follows:

• A developer submits changed code to the Software Configuration
Management system

• The code build is automated (periodically or triggered by code changes)
• Unit tests are executed
• The component is deployed on the integration-test environment
• The integration tests are (automatically) executed

The Continuous Delivery workflow can be summarized as follows:

• The code is officially tagged, versioned, and released
• The components are deployed on the official environment test

(preproduction)
• The functional tests are executed by the test team
• The components are approved and released for the production environment

Continuous Integration and Delivery with Maven

[130]

Other authors refer to Continuous Integration as part of Continuous Delivery. In
this book, we will avoid a complete discussion of these concepts; we will refer to
the complete process as Continuous Integration and Delivery (CID). CID consists
of continuous software releasing during the day, software versioning, a tool to
align the development environment (development) with the shared environment
(mainline), a platform to release and manage the versioned components, continuous
unit test management, integration test management, and functional test execution.

CID needs a complete build-and-integration tool, allowing the development team
to build and manage the versions, integrate a bug-fixing tool, perform some basic
tests, and release the software to the test team. In this chapter, we will build a
complete Maven CID environment using some common open source tools such as
Nexus, Jenkins/Hudson, MantisBT, and Ant. There are other powerful commercial
products, but generally speaking, the main concepts of CID can be discovered and
applied through these tools.

In particular, we will cover the following topics:

• Setting up the Maven repository
• Setting up the Software Configuration Management system
• Setting up the Software Version Management system
• Setting up the Build Integration tool
• Setting up the Test Integration tool
• Customizing CID

Key concepts of continuous integration
and delivery
CID's flowchart is a set of repeatable steps implementing the software-releasing
phase for a production-like environment. This phase aims to package the application
and related components, assign the correct version number, archive the code,
and provide the correct information to test and install the new patch.

The following diagram shows CID's flowchart. Following change requests due to
bugs or new features, developers make the new changes to the source code and test
the components on the development environment. Developers mark the issue as
resolved and provide the needed information (prerequisites), such as configuration,
the database changes, and preinstallation actions (Development Phase), to install
the components.

Chapter 5

[131]

Release lifecycle

Throughout CID's workflow, the Build Phase starts the following:

1. A version that is assigned to each component (artifact)
2. Source code that is tagged
3. Source code that is built and tested through a test platform (Test Phase)
4. The issues that are marked as released on the component version
5. Each component that is packaged
6. A patch with one or more new components that are notified

Continuous Integration and Delivery with Maven

[132]

Finally, the test team installs and validates the patch using the following steps:

1. The prerequisites (the database changes or configuration) are applied
2. The components are installed (Deploy Phase)
3. According to the test plan, functional, integration, and regression tests

are executed by the delivery team

These last steps are a part of the delivery (and validation) stage. In this book, we
will not discuss about the final delivery stage as we assume that all released versions
will be validated and promoted (for production) by a delivery team, rather than by
an automation system. Therefore, we will refer to the keyword release version in the
sense of release candidate version for production.

The previous diagram reports some technologies used in this chapter to implement
CI's pipeline. In particular, Nexus is used to administer a shared and remote Maven
repository, Subversion (SVN) to manage source code, MantisBT as a bug-tracking
tool, Hudson/Jenkins to manage the build pipeline, and, obviously, Maven to
manage the software's version and to compile and package the components. Different
technologies, such as GIT or JIRA will shortly be discussed to complete the overall
view. Finally, Maven Ant integration will be discussed to customize some basic steps.

The repository management server
On medium/large projects, it is common practice to control the external Maven
repositories through an internal repository manager. Maven's central repository is
very convenient for the users of Maven, but it is recommended to maintain your
own repositories to ensure stability within your organization. Just as Software
Configuration Management (SCM) tools are designed to manage source artifacts,
repository managers have been designed to manage external dependencies and
artifacts generated by your own build.

Consider an organization that has 100 developers split into different groups, each
group working on a different part of the system without an easy way to share internal
dependencies, and every group creating an ad hoc filesystem-based repository
or building the system in its entirety so that dependencies are installed in every
developer's local repository. Indeed, if your application is being continuously built
and deployed using a tool such as Hudson (which we will discuss later), a developer
can get a specific module from a large project build and not have to constantly
compile the entire source at any given time.

Chapter 5

[133]

Internal repository managers offer some advantages, such as:

• Sharing released artifacts with other developers or end users
• Caching software artifacts from remote repositories
• Applying fine-grained security and access policies
• Blocking or stabilizing some obsolete or not fully compliant or

specific artifacts

Nexus Open Source or Professional is one of the most common repository managers
(an alternative is Artifactory); Nexus has a very flexible infrastructure and allows
us to configure multiple environments for different teams.

Installing Nexus
There are two distributions of Nexus: Nexus Open Source and Nexus Professional.
For our purpose, we will use Nexus Open Source (referred to as Nexus for short),
which is distributed under the GNU Affero General Public License Version 3.
Nexus is a Java web application and can be downloaded from http://www.
sonatype.org/downloads/nexus-latest-bundle.tar.gz.

Nexus can be run with a Jetty instance that runs on port 8081 by default,
but should be installed on a different servlet container.

Installing Nexus on a Unix-based OS
We can install Nexus on a Unix-based OS by launching the following script:

$ cp nexus-oss-webapp-<version>-bundle.tgz /usr/local

$ cd /usr/local

$ sudo tar xvzf nexus-oss-webapp-<version>-bundle.tgz

$ ln -s nexus-oss-webapp-<version> nexus

$ /usr/local/bin/nexus start

Installing Nexus on Windows
Unzip the file content in <NEXUS HOME> and, with administrative privileges,
run the installation program located in <NEXUS HOME>/bin/jws.

http://www.sonatype.org/downloads/nexus-latest-bundle.tar.gz
http://www.sonatype.org/downloads/nexus-latest-bundle.tar.gz

Continuous Integration and Delivery with Maven

[134]

Customizing Nexus
Finally, the location of the work directory can be customized by altering
the nexus-work property in /usr/local/conf/nexus.properties or
<NEXUS HOME>/conf/nexus.properties.

Testing the Nexus installation
To test the correct installation, we can open the browser to
http://<nexus_host>:8081/.

The default username and password are admin and admin123, respectively.

Configuring the Nexus server
The Nexus server can be easily configured through the administrative console.
On the left-hand side menu, navigate to Administration | Server to view the
administrative settings console. Since Nexus has to access the remote repository,
it is strongly encouraged to configure the proxy. On the administrative settings
console (called nexus), enable the Default HTTP Proxy settings and configure
them using your organization proxy (see the following screenshot):

Nexus proxy settings

Testing the Nexus server
Since Nexus is configured to proxy the most common public repositories such as
Central Repository or Apache Repository, to test the Internet connection of Nexus,
we can download maven-ejb-plugin directly from our local Nexus instance using
this link: http://<nexus_host>:8081/nexus/content/repositories/central/
maven/maven-ejb-plugin/1.7.3/maven-ejb-plugin-1.7.3.pom.

Chapter 5

[135]

The maven-ejb-plugin artifact is downloaded on the local Nexus working directory
and is cached for further applications. We can browse the local cached repository
(see the following screenshot) on the left-hand side menu; the Repositories item
opens a list of repositories and we can use the Browse Index menu to explore the
index of Nexus.

Nexus browse index

Managing repositories
When Nexus works properly, we can configure our pom.xml file to use it. We have to
configure both the official and custom repositories to allow the download of artifacts.

Configuring official repositories
Maven is configured by default to use the official central repository, http://repo1.
maven.org.

To change the declared default repository to point to the installed Nexus repository,
we have to configure the <repository> and <pluginRepository> tags in the pom.
xml file:

<repositories>
 <repository>
 <snapshots>
 <enabled>false</enabled>
 </snapshots>
 <id>central</id>
 <name>Proxied Maven Repository</name>
 <url> http://<nexus_host>:8081/nexus/content/
 repositories/central/

Continuous Integration and Delivery with Maven

[136]

</url>
 </repository>
 </repositories>
<pluginRepositories>
 <pluginRepository>
 <releases>
 <updatePolicy>never</updatePolicy>
 </releases>
 <snapshots>
 <enabled>false</enabled>
 </snapshots>
 <id>central</id>
 <name>Proxied Maven Plugin Repository</name>
<url>http://<nexus_host>:8081/nexus/content/repositories/central/</
url>
 </pluginRepository>
 </pluginRepositories>

To add other proxy repositories, access the online Nexus console and, from the
repositories view, navigate to Add… | Hosted Repository (see the following
screenshot); you can then configure the repository. In this case, the repository
has been declared as a not snapshot repository through the following tag:

[…]
<snapshots>
 <enabled>false</enabled>
</snapshots>
[…]

By default, the snapshots and releases tags are true, which means that the
repository is enabled for both the snapshot and release artifacts (refer to Chapter 2,
Core Maven Concepts).

The User Managed Repository
The User Managed Repository is the most important functionality provided by
Nexus. Configuring a User Managed Repository is quite simple, requiring only
a couple of steps. From the online Nexus console, navigate to Add… | Proxy
Repository (see the following screenshot):

Chapter 5

[137]

Adding a new Nexus repository

Nexus requires the name and ID of the repository (see the following screenshot).
The ID is the identifier of the repository; it will be part of the URL and cannot
contain spaces.

The Nexus repository manager

By default, Nexus is configured with three user repositories:

• Snapshots: This is used to develop artifacts for your organization
• Releases: This is used for the released artifacts of your organization
• 3rd party: This is used for the artifacts provided by other parties

For our purposes, these repositories are adequate.

Continuous Integration and Delivery with Maven

[138]

Nexus access-level security
Nexus provides other important functionalities such as fine-grained
access-level security. By default, Nexus allows an anonymous user to work with
all the repositories. If your organization needs some specific policies for each
group, the security view allows you to define an external LDAP server or add
custom users to Nexus. Finally, through the privileges view, it is easy to grant
or revoke some specific levels.

Integrating Ant
Apache Ant is one of the most important automation build tools. It is based on
XML, it has been written in Java, and the concept is similar to Make.

Despite Maven and Ant being complementary, with the introduction of Maven,
Ant has lost its importance and popularity; Ant was developed to compile, test,
and package Java applications (or other applications), and Maven shares the same
purpose. Ant provides a wide range of plugins such as Maven. To conclude,
most Maven plugins are now outperforming Ant. Ant, however, is precious when
we need to orchestrate some Maven executions or modulate Maven parameters.

Installing Ant
Ant is a command-line tool. To install Ant, you can download the binary from http://
ant.apache.org/bindownload.cgi. Unzip the distribution file into a folder.

Set the JAVA_HOME environmental variable in your Java environment, set Ant_HOME
to the directory you uncompressed Ant to, and add ${Ant_HOME}/bin (Unix) or
%Ant_HOME%\bin (Windows) to your PATH.

Run the following command for help to be displayed:

$ <Ant_HOME>/bin/ant --help

Understanding Ant
Ant uses a simple XML file called build.xml located in the running directory.
The build.xml file must contain a set of tasks called target. The following code
defines a global property called dist and a simple task creating the dist directory:

<project name="MyProject" default="dist-task" basedir=".">

 <!-- set global properties for this build -->
 <property name="dist-task" location="dist"/>

Chapter 5

[139]

 <target name="dist-task">
<!-- Create the dist directory -->
 <mkdir dir="${dist}"/>
 </target>
</project>

You can execute the build.xml file by running the following command:

$ <Ant_HOME>/bin/ant

You can also use the following command explicitly:

$ <Ant_HOME>/bin/ant –f build.xml dist-task

Ant custom tasks
Like Maven, Ant provides a set of APIs to create a custom plugin called task.

A list of the official Ant tasks can be found at http://ant.apache.org/manual/
tasksoverview.html.

Through these tasks, we can package (WAR, JAR, and EAR), zip, compile, make a
Javadoc, work with a filesystem, SSH and SFTP, work with CVS, read a properties
file, and so on.

Other unofficial tasks have been developed by the community; the following points
show the most popular Ant tasks contributed by the community:

• if, then, else: These are used to control Ant tasks
• Svnant: This is used to operate with Subversion
• maven-ant: This is used to integrate Maven with Ant

Maven-Ant integration
If you plan to integrate Maven and Ant, you probably need the Maven-ant task.

Download the plugin from https://maven.apache.org/ant-tasks/download.
html and copy the JAR file into the <Ant_HOME>/lib directory.

The next step is to customize the build.xml file to use the plugin. The following
code snippet is a minimal Ant project:

<project name="MyProject"
 default=" maven-task "
 basedir="."

http://ant.apache.org/manual/tasksoverview.html
http://ant.apache.org/manual/tasksoverview.html
https://maven.apache.org/ant-tasks/download.html
https://maven.apache.org/ant-tasks/download.html

Continuous Integration and Delivery with Maven

[140]

 xmlns:artifact="antlib:org.apache.maven.artifact.ant">
 <target name="maven-task">
 <artifact:mvn pom="path/to/my-pom.xml"
 mavenHome="/path/to/maven-3.0.x">
 <arg value="install"/>
 </artifact:mvn>
 </target>
</project>

The namespace definition of the project tag declares the plugin to Ant. The Maven
task, artifact:mvn, executes the install goal of the my-pom.xml file. The mavenHome
attribute is optional, but it is good practice to provide the Maven installation directory.

The maven-ant plugin supports other tasks. The following code snippet reads the
my-pom.xml file and prints the POM version number.

<project name="MyProject"
 default=" maven-task "
 basedir="."
 xmlns:artifact="antlib:org.apache.maven.artifact.ant">

 <target name="maven-task">
 <artifact:pom id="mypom" file=" path/to/my-pom.xml" />
 <echo>The version is ${mypom.version}</echo>
 </target>
</project>.

Ant-Maven integration
If your organization has an old library of Ant procedures that are not easy to refactor,
you can use the Maven AntRun Plugin to call Ant from Maven. The following code
snippet calls the my-task task during the installation phase:

<project>
 [...]
 <build>
 <plugins>
 <plugin>
 <artifactId>maven-antrun-plugin</artifactId>
 <version>1.7</version>
 <executions>
 <execution>
 <phase>install</phase>
 <configuration>
 <target>my-task</target>
 </configuration>

Chapter 5

[141]

 <goals>
 <goal>run</goal>
 </goals>
 </execution>
 </executions>
 </plugin>
 </plugins>
 </build>
 [...]
</project>

Despite this plugin appearing very useful, it is strongly encouraged
to use the Maven plugin instead of a custom Ant task. It is good
practice to prepare the Maven environment through Ant, without
interfering with Maven.

SCM integration
SCM (Software Configuration Management), which is also referred to as version
control, is the core of the project. If your organization uses an SCM system, there
is an easy way to place information into the POM file. The following code snippet
declares a local SVN repository:

[…]
 <scm>
 <connection>
 scm:svn:http://127.0.0.1/svn/my-project
 </connection>
 <developerConnection>
 scm:svn:http://127.0.0.1/svn/myproject
 </developerConnection>
 <tag>HEAD</tag>
 <url>http://127.0.0.1/websvn/my-project</url>
 </scm>
[…]

The Maven SCM plugin or site generation uses these SCM configurations in the
POM file to perform some tasks and goals. Eclipse, through the M2Eclipse plugin,
will materialize your Maven project from SCM using these configurations.

Maven SCM supports the repositories SVN, Git, CVS, Jazz, Bazaar,
Mercurial, Perforce, StarTeam, and CM Synergy.

Continuous Integration and Delivery with Maven

[142]

Maven SCM Plugin
Maven SCM Plugin is a vendor-independent plugin to gain access to SCM supported
by Maven. It allows you to execute the basic versioning functionalities of check-in,
check-out, update, tag, branch, add, and remove.

The following code snippet declares the plugin in the pom.xml file:

 […]
 <build>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-scm-plugin</artifactId>
 <version>1.9</version>
 <configuration>
 <connectionType>connection</connectionType>
 </configuration>
 </plugin>
 </plugins>
 </build>
 […]

The connectionType tag declares the SCM connection to use.

You can check your configuration is correct by executing the validation goal:

$ mvn scm:validate

The result is as follows:

…

[INFO] connectionUrl scm connection string is valid.

[INFO] project.scm.connection scm connection string is valid.

[INFO] project.scm.developerConnection scm connection string is valid.

[INFO] --

[INFO] BUILD SUCCESS

[INFO] --

…

You can perform an SVN checkout by executing the checkout goal:

$ mvn scm:checkout

Chapter 5

[143]

The result is as follows:

…

[INFO] Executing: svn checkout http://localhost/svn/example/ /ws

[INFO] Working directory: C:\wsxample\target

[DEBUG] Checked out revision 0.

[INFO] --

[INFO] BUILD SUCCESS

[INFO] --

…

If the checkout does not work, check that you have correctly installed
the SCM client on the client machine, whether it's SVN, Git, and so on.
The SCM Maven plugin works with the native client. The client must be
accessible and the bin directory must be declared on the PATH settings.

Other useful available goals are as follows:

• scm:branch -Dbranch=<name>: This is used to branch the project
• scm:checkin: This is used to commit changes
• scm:tag -Dbranch=<name>: This is used to tag a certain revision
• scm:list: This is used to get the list of project files
• scm:update: This is used to update the working copy with the latest changes

Maven Release Plugin
Maven Release Plugin is the most important plugin in a CI project; the plugin
allows us to tag the source code using the SCM information and change the POM
release and snapshot version. It is based on two phases: the prepare phase and the
perform/rollback phase. As the first step, the plugin asks the user for a specific
version, prepares the release version, and makes the tag of the component. As
the second step, Maven deploys (or rolls back) the changes.

The plugin was introduced after Maven 2, but it is strongly recommended to
use Maven Version 3.0.4 or later. The plugin makes some assumptions:

• The start version must be a snapshot version (SNAPSHOT)
• The allowTimestampedSnapshots and ignoreSnapshots

dependencies must be released or set to true
• No changes have to be committed

Continuous Integration and Delivery with Maven

[144]

The plugin performs some actions:

• It changes the current version to a release version by removing the
SNAPSHOT suffix

• It tags all the changes
• It packages and installs the current version on the local repository
• It sets the current version to a new snapshot version and commits it

(by default, a +1 will be added to the final version number)

To add the plugin, you have to configure the pom.xml file, as follows:

[…]
 <build>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-release-plugin</artifactId>
 <version>2.5</version>
 <configuration>
 <tagBase>
http://127.0.0.1/websvn/my-project/tags
</tagBase>
 </configuration>
</plugin>
 </plugins>
 </build>
[…]

The next step is to launch Maven, as follows:

$ mvn release:clean release:prepare

Maven will ask for the new released version ID, tag name, and new development
release (SNAPSHOT) ID:

What is SCM release tag or label for "Chp5Release Test"? (com.mycompany.
project

s:my-first-maven-project) my-first-maven-project-1.0: :

…

Chapter 5

[145]

What is SCM release tag or label for "Chp5 Release Test"? (com.mycompany.
project

s:my-first-maven-project) my-first-maven-project-1.0: :

…

What is the new development version for "Chp5 Release Test"? (com.
mycompany.proj

ects:my-first-maven-project) 1.1-SNAPSHOT: :

…

[INFO] Release preparation complete.

[INFO] ---

[INFO] BUILD SUCCESS

[INFO] ---

Then, you can deploy the changes on a remote repository:

$ mvn release:perform

Maven will check out from SCM and release the project (deploy and site-deploy)
on the remote repository. This step requires the definition of the repository location.

Deploying on the remote repository
The released software must be deployed on the remote (Nexus) repository in order
to be accessible by every developer. Generally speaking, it is a good idea to create
different repositories for each team of your organization on the remote server in order
to control access to the artifacts; in our case, we use the default Nexus repositories.
If your organization doesn't require strict access to some artifacts, the default Nexus
installation is what you are looking for.

To publish the released plugin on Nexus, we have to define the release or snapshot
repository, and we can call the maven deploy command:

$ mvn deploy

You can also use the following command if you use Maven Release Plugin:

$ mvn release:perform

Continuous Integration and Delivery with Maven

[146]

In the pom.xml file, we have to define the repository manager (Nexus) URL:

[…]
<properties>
 <repo-id>nexus_releases</repo-id>
 <repo-name>Nexus Release</repo-name>
 <repo-url>
 http://localhost/nexus/content/repositories/releases/
 </repo-url>
</properties>
[…]
 <distributionManagement>
 <repository>
 <id>${repo-id}</id>
 <name>${repo-name}</name>
 <url>${repo-url}</url>
 </repository>
 </distributionManagement>
[…]

If the repository requires authentication, we have to define the credentials in the
settings.xml file:

 <server>
 <id>nexus_releases</id>
 <username>admin</username>
 <password>admin123</password>
 </server>

Formally speaking, the example proposed here is not correct, and Maven offers
two types of repository declarations: repository and snapshotRepository.
A snapshotRepository declaration is used only for the snapshot artifact.
A repository declaration is used for the release and snapshot artifacts if the
snapshot repository has not been declared. To conclude, a more correct
definition of the repositories is as follows:

[…]
 <distributionManagement>
<repository>
 <id>${repo-id}</id>
 <name>${repo-name}</name>
 <url>${repo-url}</url>
</repository>

Chapter 5

[147]

<snapshotRepository>
 <id>${repo-snapshot-id}</id>
 <name>${repo-snapshot-name}</name>
 <url>${repo-snapshot-url}</url>
</snapshotRepository>
</distributionManagement>
[…]

In this case, Maven will deploy the release artifact in the release repository and
snapshot artifact (version x.x.x-SNAPSHOT) in the snapshot repository.

Continuous Integration and Delivery with
Hudson or Jenkins
Hudson CI, or the new fork Jenkins CI, is a Java web server application to automate
and control the building of projects.

Hudson is very similar to Jenkins, and they differ only in the sense
of licensing policies, hosting, and some minimal functionalities;
some authors work with both systems, but in this book, we will
refer only to Hudson.

Installing Hudson
You can download Hudson (formally known as Hudson Open Source Continuous
Integration Server from the Eclipse Foundation) from http://eclipse.org/
hudson/download.php.

The next step is to launch the embedded Jetty servlet container:

$ java -jar Hudson.<version>.war

Jenkins can be downloaded from http://mirrors.
jenkins-ci.org/war/latest/jenkins.war.
To launch Jenkins or deploy a WAR file on a servlet
container, execute the following command:
$ java -jar jenkins.war

Then, we can connect to http://localhost:8080 and click on Finish.

http://eclipse.org/hudson/download.php
http://eclipse.org/hudson/download.php
http://mirrors.jenkins-ci.org/war/latest/jenkins.war
http://mirrors.jenkins-ci.org/war/latest/jenkins.war

Continuous Integration and Delivery with Maven

[148]

Configuring Hudson
To configure Hudson (and Jenkins) CI, we need to accomplish the following steps:

1. Configuring the proxy: Navigate to Manage Hudson | Manage Plugins |
Advanced, and then configure the proxy server (see the following screenshot):

Hudson proxy configuration settings

2. Installing plugins: Navigate to Manage Hudson | Manage Plugins,
then check the Hudson Maven 3, Hudson Subversion Plugin, Maven2
Legacy Integration plugin, and Email-ext plugin options if they are not
yet installed, and click on Install.

3. Configuring JDK, Maven, and Ant (see the following screenshot):
Navigate to Manage Hudson | Configure System, and then perform
the following steps:

 ° Click on Add Jdk, uncheck Install automatically, and provide
the name and Java home

 ° Click on Add Maven3, uncheck Install automatically, and provide the
name and Maven home (refer to Chapter 1, Maven and Its Philosophy)

Chapter 5

[149]

 ° Click on Add Ant, uncheck Install automatically, and provide the
name and Ant home

Hudson installation configuration settings

4. Configuring security (optional): The security configuration is not strictly
required for the purpose of this book, but it is strongly encouraged to enable
security. Navigate to Manage Hudson | Configure Security, click on Enable
security, and enable Hudson's own user database or configure LDAP.

5. Finally, restart Hudson.

Working with Hudson
Hudson (and Jenkins) is based on jobs; jobs can be scheduled or launched by users.
Jobs can execute a shell script, a Maven goal, an Ant target, or a specific action defined
by a plugin. In our examples, we will work with Maven and Maven-Ant jobs.

Continuous Integration and Delivery with Maven

[150]

To create a new job, perform the following steps:

1. Click on the New Job option from the left-hand side menu, ensure
that the free-style job is checked, and provide the job name (see the
following screenshot):

Hudson's new job

2. On the Configuration Job panel, do the following:
 ° Navigate to Advanced Options | Custom Workspace and provide

the path of the workspace
 ° From the Build section (see the following screenshot), navigate to

Add build step | Invoke Maven 3

Hudson's invoke new step option

3. Click on Save at the end of the page.

Chapter 5

[151]

In the workspace directory, enter the following pom.xml code:

<project>
 <modelVersion>4.0.0</modelVersion>
 <name>My Hudson Test</name>
 <groupId>com.mycompany.projects</groupId>
 <artifactId>my-first-maven-project</artifactId>
 <version>1.0-SNAPSHOT</version>
 <packaging>jar</packaging>
</project>

Finally, execute the job. Click on build job from the Hudson home screen or
from the menu on the left-hand side. See the output console to monitor the build.
Hudson launches Maven on the given workspace directory.

The following output will be shown:

Started by user anonymous

[INFO] Using Maven 3 installation: Maven3

…

[INFO] --

[INFO] Building My Hudson Test 1.0-SNAPSHOT

[INFO] --

…

[DEBUG] Waiting for process to finish

[DEBUG] Result: 0

Finished: SUCCESS

Working with Hudson interactively
The previous example is completely didactic since it does not introduce anything
interesting. Hudson provides an easy way to customize a job by asking the user
for some parameters. In this example, we will change the pom.xml version through
Hudson and Maven Release Plugin.

From the Hudson home screen, select the job configured in the previous example
(or duplicate it). From the left-hand side menu, perform the following steps:

1. Click on Configure Job.
2. Enable This build is parameterized.
3. Navigate to Add Parameter | String parameter.

Continuous Integration and Delivery with Maven

[152]

4. In the Name field, write developmentVersion (see the following screenshot):

Configuring the development version in Hudson

The next step is to change the Maven goal to release:update-versions. In the
build section, change clean install to release:update-versions (see the
following screenshot):

Configuring the Maven release step in Hudson

Finally, we need to add the maven-release-plugin to the pom.xml file. Open the
pom.xml file located in your workspace and add the following lines:

[…]
<build>
<plugins>
 <plugin>
 <artifactId>maven-release-plugin</artifactId>
 <version>2.5</version>
 <configuration>

Chapter 5

[153]

 <releaseProfiles>release</releaseProfiles>
 <goals>deploy assembly:single</goals>
 </configuration>
 </plugin>
</plugins>
</build>
[…]

Now, we are ready to launch the job. Select the configured job from the Maven home
screen. Click on the Build Now button.

Hudson will require the version number; provide the version number in the x.x.x-
SNAPSHOT format.

The result appears like this:

[INFO] Transforming 'My Hudson Test 2'...

[INFO] Cleaning up after release...

[INFO] --

[INFO] BUILD SUCCESS

[INFO] --

Finally, reopen the pom.xml file located in your workspace; it will appear changed
to the given version number.

All the Maven actions are performed with the batch mode option,
–B. You do not need to specify it.

Maven-Hudson integration to deliver a new
artifact
The following list shows the basic steps to release a new artifact (see the
following screenshot):

1. Test the software (unit and integration test) and quality assurance.
2. Fix bugs on the issue-tracking system.
3. Assign a new version to the pom.xml file.
4. Make a new svn tag and create the package.
5. Assign a new SNAPSHOT version to the pom.xml file and commit

changes to the development stage.

Continuous Integration and Delivery with Maven

[154]

This work can be easily done by Maven Release Plugin.

This plugin can be easily integrated with Hudson/M2 Release Plugin.
To install Hudson M2 Release Plugin, navigate to Manage Hudson |
Plugin Manager from the available plugin list, look for the plugin and
enable it, click on Install, and restart Hudson. We do not use this plugin.

Testing software automation
The building step is formally complete when all the unit tests are passed. Unit tests
are typically written and run by developers to ensure that the code meets its design
and functionalities, but it is good practice to rerun all the tests during the software
release. To enable Maven to run the unit tests, we need to define Surefire Plugin
(see Chapter 3, Writing Plugins) in pom.xml:

[…]
<plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-surefire-plugin</artifactId>
 <version>2.17</version>
 </plugin>
[…]

Surefire Plugin will launch all the unit tests (Junit or TestNG) defined by
the developer.

From Version 2.7, Surefire Plugin will inspect the unit library (Junit
version or TestNG), and it will activate the right provider automatically.

Sometimes, you might need to skip the execution of unit tests. There are two ways to
skip tests:

• Launch Maven with the skipTest parameter. Use one of the following three
commands:
$ mvn clean install –DskipTests

$ mvn clean install –Dmaven.skip.test=true

$ mvn test –Dmaven.skip.test=true

Chapter 5

[155]

• Configure Surefire Plugin to skip all the tests:

[…]
<plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-surefire-plugin</artifactId>
 <version>2.17</version>
 <configuration>
 <skipTests>true</skipTests>
 </configuration>
 </plugin>
[…]

Finally, we can configure Hudson to ask the user about the test policy to apply.
Perform the following steps from the left-hand side menu:

1. Click on Configure Job.
2. Enable This build is parameterized.
3. Click on Add Parameter | Boolean parameter.
4. In the Name field, write skipTests (see the following screenshot):

Hudson's configure skip test parameter

5. The next step is to use the following property:

[…]
 <configuration>
 <skipTests>${skipTests}</skipTests>
 </configuration>
[…]

Continuous Integration and Delivery with Maven

[156]

Through these few steps, the user will control the execution of the unit test in order
to enable or disable it. From a theoretical point of view, automatic unit test execution
should be enabled and executed every time before any release; also, it is bad practice
to allow the final user to control this step. Unfortunately, the devil is in the details,
and this practice is the common practice in case of emergency.

A good compromise is to exclude some specific tests providing (through Hudson's
parameter) a regular expression. A regular expression must be defined with the
%regex[expression] syntax and defined into the configuration section:

[…]
 <configuration>
 <excludes>
 <exclude>%regex[.*[My|You].*Test.*]</exclude>
 </excludes>
 </configuration>
[…]

From our point of view, this solution is equivalent to the usage of the proposed
skipTests parameter since the user can specify all the tests. A second common
approach is to use a scheduled Hudson job reporting the status of the
report periodically.

Scheduling a test reporting
One common way to grant a good level of software quality is to execute some common
tasks periodically and publish these results on a site area. Hudson provides a large
number of plugins to execute the unit (NUnit, JSUnit, JUnit, and TestNG) performance
and functional tests and publish results on external (or internal) sites. Luckily, Surefire
Plugin for JUnit tests is natively integrated, and it can be easily configured without any
further installation.

A common practice is to define a new Hudson job scheduled every day (or trigger
SCM changes).

Chapter 5

[157]

From the Hudson home screen, click on the New Job option from the left-hand
side menu and copy settings from an existing job or create a new one (see the
following screenshot):

Configuring a new unit test job in Hudson

Configure the workspace and Maven build process like the previous job, but set
Fail Mode to AT_END:

1. From the Build section, click on Advanced.
2. Select AT_END for the Fail Mode parameter (see the following screenshot):

Hudson's configure build step

This parameter allows Maven to build all the modules, postponing any intermediate
error up to the end of the entire build process.

Continuous Integration and Delivery with Maven

[158]

The next step is to configure Hudson to publish the Surefire Plugin result:

1. From the Post-Build section, enable Publish JUnit test result report.
2. In the Test report XMLs field, write **/target/surefire-reports/*.xml

(see the following screenshot):

Hudson's configure Surefire report

These settings allow Hudson to parse the Surefire Plugin test result and publish it
in the test result section (or in a Hudson dashboard). To see the test result trend,
you can execute the job we just configured and see the latest test result (see the
following screenshot):

Hudson's test report

Finally, we can schedule the job to run every day at midnight:

1. From the Build-Triggers section, enable Build periodically.
2. In the Schedule field, write @midnight.

Hudson will execute the job every day at midnight and publish the test results.
Alternatively, from the From Build-Triggers section, you can poll SCM for changes.

Chapter 5

[159]

Aligning the shared development environment
If the test task just described does not fail, it is a good idea to deploy the nightly
build software on a shared environment. Unfortunately, there is a wide
range of available plugins for all the platforms, and it depends on the strategy
adopted (Weblogic, JBOSS, GlassFish, Tomcat, Job scheduling, Linux, and so on);
therefore, it is not possible to suggest a unique strategy. In Chapter 2, Core Maven
Concepts, we introduced the deployment plugin for JBOSS. The following table
provides some basic Maven plugins that can be adopted to perform this step:

Plugin Description
weblogic-maven-plugin This is the Weblogic deploy plugin. It is not available

in the central repository.
jboss-as-maven-plugin This is the JBoss deploy plugin.
tomcat7-maven-plugin This is the Tomcat 7 deploy WAR plugin.
wagon-ssh-external This plugin is used to deploy on an SSH external host.
maven-glassfish-plugin This plugin is used to deploy on a GlassFish server.

When the plugin has been configured, we can add a Maven 3 build step after the
clean install task from the previous job:

1. Click on Configure Job.
2. From the Build step section, add a new Maven 3 step.
3. In the goal field, write jboss-as:deploy.

Alternatively, you can use the dedicated Hudson plugins.

Integration tests
Now, the environment is ready to perform the integration tests. Integration tests can
be configured like the unit tests of a dedicated project (which is already deployed)
using Maven Failsafe Plugin.

To install Failsafe Plugin, configure pom.xml as follows:

<project>
 […]

 <plugins>
 <plugin>

Continuous Integration and Delivery with Maven

[160]

 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-failsafe-plugin</artifactId>
 <version>2.17</version>
</plugin>
 </plugins>

 […]
</project>

When the plugin has been configured, we can add a Maven 3 build step after the
jboss:deploy task from the previous job:

1. Click on Configure Job.
2. From the Build step section, add a new Maven 3 step.
3. In the goal field, write failsafe:integration-test failsafe:verify.

Since we are using Surefire Plugin and Failsafe Plugin together, we have to make
sure to use the correct naming convention to make it easier to identify which tests
are being executed by which plugin. Failsafe Plugin will look for tests with the **/
IT*.java, **/*IT.java, and **/*ITCase.java patterns by default, but, since it is a
branch of Surefire Plugin, it supports the include and exclude syntaxes.

Alternatively, you can develop some dedicated unit tests on each artifact and activate
them through Maven profiles.

Static code analysis tools (FindBugs)
The previous job can be refined and improved by integrating a static code analysis
tool. Static code analysis tools inspect the code for potential bugs, missing code
styles, high complexities, missing tests, or wrong patterns. Static code analysis tools
require the definition of a specific Maven plugin integrated with a Hudson Plugin.
The following table reports a short list of the most common static analysis tools:

Maven Plugin Hudson Plugin Description
findbugs-
maven-plugin

FindBugs-Plug-
in

FindBugs analyzes Java code from 1.0 to 1.7.

maven-
checkstyle-
plugin

Checkstyle
Plug-in

Checkstyle checks Java code to adhere to a
coding standard.

Chapter 5

[161]

Maven Plugin Hudson Plugin Description
maven-pmd-
plugin

PMD Plug-in PMD finds common programming flaws such
as unused variables, empty catch blocks, and
unnecessary object creation. It supports Java,
JavaScript, XML, and XSL.

cobertura-
maven-plugin

Cobertura
Plug-In

Cobertura checks the unit test coverage.

Other commercial-related products integrated with Hudson are JIRA, Clover,
and Sonar.

FindBugs is one of the most interesting and complete tools. Since a complete discussion
on all the plugins is outside the scope of this book, we can discover the power of the
code analysis tools by only experiencing FindBugs.

Firstly, we need to install a Hudson Plugin by performing the following steps:

1. Navigate to Manage Hudson | Manage Plugins, check the FindBugs
Plug-in option if not yet installed, and click on Install.

2. In the pom.xml file, define the FindBugs Plugin as follows:

<project>
 […]
 <reporting>
 <plugins>
 <plugin>
 <groupId>org.codehaus.mojo</groupId>
 <artifactId>findbugs-maven-plugin</artifactId>
 <version>2.5.4</version>
<configuration>
 <xmlOutput>true</xmlOutput>
 <threshold>Default</threshold>
</configuration>
 </plugin>
 </plugins>
 </reporting>
 […]
</project>

The next step is to configure the previous job:

1. Click on Configure Job.
2. From the Build step section, add a new Maven 3 step.

Continuous Integration and Delivery with Maven

[162]

3. In the Goals field, write site (see the following screenshot).
4. From the Post-build Actions section, enable Publish findbugs analysis tools.
5. In the FindBugs results field, write **/findbugsXml.xml (see the

following screenshot):

Hudson's configure FindBugs report

The following lines should be displayed:

[FINDBUGS] Collecting findbugs analysis files...

[FINDBUGS] Collecting findbugs analysis files...

[FINDBUGS] Finding all files that match the pattern **/findbugsXml.xml

[FINDBUGS] Parsing 1 files in …

[FINDBUGS] Successfully parsed file …\findbugsXml.xml of module with …
warnings.

To see the FindBugs report, you can execute the job just configured. To see the latest
result, click on FindBugs Warnings from the left-hand side menu.

Bug fixing
In the previous sections, we exposed the basic concepts and steps to accomplish CI's
flowchart in the form of versioning, tagging, unit testing, and releasing. To complete
the release phase, however, we need to integrate the bug-reporting system in order
to mark the issues fixed by the current release as released/resolved.

Chapter 5

[163]

Hudson (or Jenkins) integrates several plugins for popular bug-tracking systems
such as JIRA, MantisBT, and Bugzilla.

Unfortunately, these plugins are not under continuous development
and support only old versions.

In Chapter 3, Writing Plugins, we learned how to develop a plugin to update MySQL
DB. We will now extend this plugin to integrate MantisBT.

A case study with MantisBT
MantisBT is a popular bug-tracking system for multiteam environments.
Generally speaking, it is based on an internal relational DB (typically, MySQL)
and some PHP pages.

When a new component is released, it is a good idea to mark all resolved bugs
as released and assign the version numbers; this step concludes the final stage
of the release process before proceeding to the functional tests.

Firstly, we need to configure the plugin developed in Chapter 3, Writing Plugins. In
the pom.xml file of the main project, configure mantis-maven-plugin as follows:

<project>
 […]
 <build>
 <plugins>
 <plugin>
 <artifactId>mantis-maven-plugin</artifactId>
 <version>0.0.1-SNAPSHOT</version>
 <configuration> <databaseUrl>${dbUrl}</databaseUrl>
<jdbcDriver>${dbDriver}</jdbcDriver>
 <projectId>${project.artifactId}</projectId> <dbUserName>${usr}</
dbUserName>
 <dbPassword>${pswd}</dbPassword>
 <databaseName>${dbName}</databaseName>
 </configuration>
 </plugin>
 </plugins>
 </build>
 […]
</project>

Continuous Integration and Delivery with Maven

[164]

Parameters of the DB should be defined in the properties section. The plugin
developed in Chapter 3, Writing Plugins, is a generic plugin that does not need
database access implementation, but for our purpose, we need a utility class to
work with the DB.

The following code provides a short implementation of the proposed utility:

public class MySqlAccess {
 /* Parameters are : bug_id, tag_id */
 private final String INSERT_INTO_MANTIS_BUG_TAG_TABLE = "INSERT INTO
mantis_bug_tag_table(?, ?)";

 /* Parameters are : projectId */
 private final String SELECT_FROM_MANTIS_BUG_TABLE = "SELECT id,
tagId FROM mantis_bug_table where status=80 and project_id = ?";

 /* Parameters are : versionName, projectId */
 private final String UPDATE_MANTIS_BUG_TABLE = "UPDATE mantis_bug_
table SET status=85, fixed_in_version=? where status=80 and project_id
= ?";

 /* Parameters are : versionName, projectId */
 private final String UPDATE_MANTIS_BUG_TABLE_2 = "UPDATE mantis_bug_
table SET status=90, fixed_in_version= ? where status!=90 and project_
id = ? and (category_id=34 OR category_id=35)";

 private Connection connect = null;
 private Statement statement = null;
 private PreparedStatement preparedStatement = null;
 private ResultSet resultSet = null;
 private String userName;
 private String password;
 private String dbUrl;
 private String dbName;
 private String jdbcDriver;

 public MySqlAccess(String userName,
String password, String dbUrl, String dbName, String jdbcDriver)
throws SQLException, ClassNotFoundException {
 this.userName = userName;
 this.password = password;
 this.dbUrl = dbUrl;
 this.dbName = dbName;

Chapter 5

[165]

 this.jdbcDriver = jdbcDriver;

 Class.forName(jdbcDriver);
 this.connect = DriverManager.getConnection("jdbc:mysql://" + dbUrl
 + "/" + dbName + "?" + "user=" + userName + " &password="+
password);
 }

 public void updateStatus(String versionName, String projectId)
throws SQLException {

 preparedStatement = connect.prepareStatement(UPDATE_MANTIS_
BUG_TABLE);

 preparedStatement.setString(1, "versionName");
 preparedStatement.setString(2, "projectId");
 preparedStatement.executeUpdate();

 preparedStatement = connect.prepareStatement(UPDATE_MANTIS_
BUG_TABLE_2);

 preparedStatement.setString(1, "versionName");
 preparedStatement.setString(2, "projectId");
 preparedStatement.executeUpdate();
 }

 }

With these settings, we just implemented a simple way to finalize the release
process. Keep in mind that a CI process should be easy, fast, and automatic;
the basic idea is to shorten the distance between the development and test
with continuous and automatic build and release cycles.

A more realistic case – the transportation
project
It's time to bring together all the bricks just discussed. In Chapter 1, Maven and Its
Philosophy, we introduced a real project called the transportation project. Here,
we apply a CI process to the proposed project.

Continuous Integration and Delivery with Maven

[166]

The following list shows the organization of the proposed project:

• transportation-acq-ear

 ° transportation-acq-ejb

 ° transportation-acq-war

 ° transportation-common-jar

• transportation-reporting-ear

 ° transportation-reporting-war

 ° transportation-reporting-ejb

 ° transportation-common-jar

• transportation-statistics-batch-jar

The project is based on two ear components sharing a common jar library and a
single batch component. All the artifacts have the same pom.xml parent file. In this
case, we will ignore the dependencies from third-party libraries (JEE, Spring, and
so on), since these libraries are not active components during the release process;
in other words, we do not need to release or assign a version to third-party libraries.

The proposed project elicits some issues:

• The developer requires to release each component (transportation-acq-
ear, transportation-reporting-ear, or transportation-statistics-
batch-jar) with no other components: how to choose the project to build
using the CI tool?

• Two components share a common component (transportation-common-
jar): how to assign the version number and release it?

• The single batch component, transportation-statistics-batch-jar,
can be released without any dependencies: how to assign the version
number and how to release it?

• Two components (transportation-acq-ear and transportation-
reporting-ear) have three subcomponents: how to assign the
version number?

Choosing the component to build
When a large project consists of many components/modules such as a web API,
a client, and some libraries, not everything has to be re-released every time a
component changes. Maven allows the user to specify an alternate pom.xml file
through the –f option:

$ mvn -f my-pom.xml

Chapter 5

[167]

Therefore, on a multimodule project, it is common practice to define an aggregator
pom.xml file that lists the modules to be executed as a group.

The following pom.xml file defines the POM aggregator (called transportation-acq.
xml) for the multimodule project, transportation-acq-ear. We assume that the
transportation-acq-ear, transportation-acq-ejb, and transportation-acq-
war projects have been included on a subdirectory called transportation-acq
(the name must be coherent with the name of the aggregator's artifact ID).
Therefore, the final directory structure is as follows:

Continuous Integration and Delivery with Maven

[168]

Configure the pom.xml file of the project as follows:

<project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
 http://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>

<parent>
 <groupId>com.packt.examples</groupId>
 <artifactId>transportation-project</artifactId>
 <version>0.0.1 </version>
</parent>
<artifactId>transportation-acq</artifactId>
<version>0.0.1-SNAPHOST</version>
<packaging>pom</packaging>

<modules>
<module>transportation-acq/transportation-acq-ejb</module>
<module>transportation-acq/transportation-acq-ear</module>
<module>transportation-acq/transportation-acq-war</module>

</modules>
</project>

We can run the following command to build only the transportation-acq-ear
and its related modules:

$ mvn -f transportation-acq.xml clean install deploy

Order is not important; Maven will sort the modules such that dependencies will
always be built before the dependent modules.

You can build specific reactors through the –pl -am options.

The next step is to configure Hudson to ask the user which project aggregator POM
should be built on.

From the Hudson home screen, click on the New Job option from the left-hand
side menu and copy settings from an existing job or create a new one. Perform
the following steps:

1. Click on Configure Job.
2. Navigate to Add Parameter | Choice parameter.

Chapter 5

[169]

3. In the Name field, write projectName.
4. In the Choices field, write the list of projects (see the following screenshot):

Configuring artifact parameters in Hudson

Finally, we have to configure the build section. In the build section, perform the
following steps:

1. Click on Advanced.
2. In the POM File field, write ${projectName}/pom.xml.

Hudson is ready to ask the user which module to build.

The ${projectName}/pom.xml parameter is a simple convention
adopted by authors, but you can adopt your own convention. The
aggregator filename and the name configured on Hudson, however,
must be coherent.

Preparing the version of a multimodule
component
The release process of a single component has been extensively described in
the previous sections. In a multimodule component, however, dependencies
to common artifacts and module versioning require a different configuration.
Indeed, even if the submodules are versioned with the same version number
of the EAR project, common projects should follow a different lifecycle.

Continuous Integration and Delivery with Maven

[170]

In the transportation project, the proposed strategy will require the team
of developers to release common projects (transportation-common-jar)
such as a unitary component, and assign the same version of the EAR project
to each submodule (transportation-acq-ejb, transportation-acq-war,
transportation-reporting-ejb, or transportation-reporting-war).

This mixed strategy is a good compromise between the release automation and
fine-grained controls of a component's versions. Alternatively, developers can set
the version to each component manually and use Maven SCM Plugin only to tag
the code. This way, however, is not exactly the idea of CI, where all processes
(not developing) must be as automatic and easy as possible.

We configured Maven Release Plugin as explained in the previous sections,
and we can execute the following command:

$ mvn –-batch-mode \

-DallowTimestampedSnapshots=true -DignoreSnapshots=true \

-f transportation-acq.xml \

clean install release:clean release:prepare

The outcome is as follows:

[…]

[INFO] Transforming 'transportation-acq-ejb'...

[INFO] Transforming 'transportation-acq-war'...

[INFO] Transforming 'transportation-acq-ear'...

[…]

[INFO] Tagging release with the label transportation-acq-pom-0.0...

[…]

The -batch-mode option will force Maven to assign the version number automatically,
without any further user interaction. All the submodules will be released with the
same version, upgrading the final development (SNAPSHOT) version with a +1 on the
latest number.

We can force the version number, as follows:

$ mvn –-batch-mode -f transportation-acq.xml \

-DallowTimestampedSnapshots=true -DignoreSnapshots=true \

-DreleaseVersion=0.0.2 \

clean install release:clean release:prepare

The project will be delivered with the provided versions.

Chapter 5

[171]

Obviously, the plugin allows us to provide the number for each component using
the following syntax:

-DdevelopmentVersion=1.3-SNAPSHOT

We can also use the following syntax:

-Dproject.dev.groupId:projectName=1.3-SNAPSHOT

Alternatively, use the following syntax:

-Dproject.rel.groupId:projectName=1.3

However, we prefer a more easy strategy.

Configuring Hudson
Hudson can be easily configured by asking the user for the
releaseVersion parameter.

Perform the following steps from the left-hand side menu:

1. Click on Configure Job.
2. Navigate to Add Parameter | String parameter.
3. In the Name field, write releaseVersion.

Finally, configure a new Maven build step, as follows:

1. From the Build section, navigate to Add build Step | Invoke Maven 3.
2. Replace clean install with release:clean release:prepare.
3. From the Build section, navigate to Add build Step | Invoke Maven 3.
4. Replace clean install with release:perform.

Hudson will show the following output:

[…]

[artifact:mvn] [INFO] Building transportation-acq 0.0.1-SNAPSHOT

[…]

[artifact:mvn] [INFO] Building transportation-acq 0.0.1

[…]

[artifact:mvn] [INFO] Tagging release with the label transportation-acq
-0.0.1

[…]

[artifact:mvn] [INFO] Transforming 'transportation-acq'...

[artifact:mvn] [INFO] Not removing release POMs

[artifact:mvn] [INFO] Checking in modified POMs...

[…]

Continuous Integration and Delivery with Maven

[172]

Preparing the version of a multimodule with a flat
structure (an alternative way)
In some cases, it is not acceptable to adopt a hierarchical structure of folders, and we
might therefore prefer a flat environment, as is shown in the following screenshot:

In this case, the current version of Maven Release Plugin will not tag the submodules.

In the previous sections, we introduced the Ant Maven task. We can use this task to
loop over modules in order to release artifact by artifact. The Ant script works with the
For task, and the Ant Maven task will cycle between modules and release each artifact.

The script reads the aggregator POM, transportation-acq.xml, through the
Xmlproperty task.

In the root directory of your project, create a build.xml file with the following content:

<project name="maven-release" default="release" basedir="."
xmlns:artifact="antlib:org.apache.maven.artifact.ant">

<taskdef name="for" classname="net.sf.antcontrib.logic.ForTask"
classpath="${basedir}/lib/ant-contrib-1.0b3.jar" />

<typedef resource="org/apache/maven/artifact/ant/antlib.xml"
uri="antlib:org.apache.maven.artifact.ant"
path="${basedir}/lib/maven-ant-tasks-2.1.3.jar" />

Chapter 5

[173]

 <target name="release">

 <xmlproperty file="${basedir}/${projectName}.xml"
 collapseAttributes="true"/>

 <for param="line"
 list="${project.modules.module}"
 delimiter=",">
 <sequential>
 <echo>@{line}</echo>
 <artifact:mvn pom="${basedir}/@{line}/pom.xml">
 <arg value="-DallowTimestampedSnapshots=true" />
 <arg value="-DignoreSnapshots=true" />
 <arg value="release:clean"/>
 <arg value="release:prepare"/>

 </artifact:mvn>
 </sequential>
 </for>
 </target>
</project>

In Hudson, we need to replace the Maven release step with an Ant step and
configure a new Ant build step:

1. From the Build section, navigate to Add build step | Invoke Ant.
2. In the Targets field, write release.
3. Replace Invoke Maven 3 with release:perform.

Hudson will show the following output:

[…]

[artifact:mvn] [INFO] Building transportation-acq-ejb 0.0.1-SNAPSHOT

[…]

[artifact:mvn] [INFO] Building transportation-acq-ejb 0.0.1

[…]

[artifact:mvn] [INFO] Tagging release with the label transportation-acq-
ejb-0.0.1

[…]

[artifact:mvn] [INFO] Transforming 'transportation-acq-ejb'...

[artifact:mvn] [INFO] Not removing release POMs

[artifact:mvn] [INFO] Checking in modified POMs...

[…]

Continuous Integration and Delivery with Maven

[174]

This strategy is strongly discouraged by authors, but should be a good
work-around for old projects released in a production environment.

Finalizing the release
In the previous sections, we tested, versioned, and tagged the software. Then, we
packaged and released the component on the repository server. Now, it's time to
alert the delivery team about the new available version.

Hudson (or Jenkins) allows us to send an e-mail after the build step. Perform the
following steps from the left-hand side menu:

1. Click on Configure Job.
2. In the Post-build Actions section, click on Editable Email Notification.
3. Click on Advanced and add Success Trigger.
4. Click on Expand.
5. In the Recipient List field, write the list of the e-mails of users to be notified.
6. In the Content field, write New version: ${ENV, var="projectName"}

${ENV, var="releaseVersion"} (see the following screenshot):

Hudson's configure notification phase

Chapter 5

[175]

In the case of build success, the delivery team will be notified.

Sometimes, we also need to communicate some related information such as the
prerequisites for installation (new features or configurations of DB); this information
can be easily sent in the body of an e-mail or (better) attached as a child issue of the
bug issue just solved. Indeed, in the previous sections, we showed how to integrate
and automate the issue-tracking system (MantisBT). The most popular bug-tracking
systems (MantisBT and JIRA) support this function, and it is common to use
these features.

Our environment is now ready to be built; we can now release and deploy our
amazing ideas.

Summary
In this chapter, we covered how to implement a real Continuous Integration process
with Maven and some popular tools such as Hudson, Nexus, and Ant. We covered
the Maven release and its deploy process to perform a real releasing pipeline.

We proposed SVN as our Software Control Management system, but the same
principles can be applied to SVN, Git, CVS, Jazz, Bazaar, Mercurial, Perforce,
StarTeam, and CM Synergy by only configuring the SCM section.

We discussed how to prepare a build environment to work with enterprise
repositories in a multiteam company and integrate with popular issue-tracking
systems; several companies use JIRA to track issues and manage the release
process. JIRA is a powerful tool, but a complete discussion on JIRA-Maven
integration is out of the scope of this book.

Finally, we looked at how to apply the Continuous Integration process in our
custom project.

Maven Android
In this chapter, we will talk about Android Maven Plugin and its usefulness to a
team to build, deploy, release, and test Android applications with Apache Maven.
In a nutshell, we will see:

• How to configure the Maven Android environment
• How to build and package Android Application Package (APK)
• How to test an application

Prerequisites
We assume that the following packages are installed:

• JDK 1.6+ as required for Android development
• Android SDK (r21.1 or later; the latest version is best supported), preferably

installed with all platforms
• Maven 3.0.5 (advised) or higher

We set the environment variable, ANDROID_HOME, to the path of our installed Android
SDK. For example, if the SDK is installed at /opt/adt-bundle/sdk, this can be
achieved with the given commands:

• On a Unix/bash-based system, use the following command:
export ANDROID_HOME=/opt/adt-bundle/sdk

• On a Windows-based system, use the following command:

set ANDROID_HOME=C:\opt\adt-bundle\sdk

Maven Android

[178]

Then, add $ANDROID_HOME/tools as well as $ANDROID_HOME/platform-tools to
your $PATH (or add %ANDROID_HOME%\tools and %ANDROID_HOME%\platform-tools
on Windows).

Creating your own Android application
with an archetype
The simplest way to create the skeleton of our application is through the usage
of an archetype.

The archetype that we will use is ANDROID-QUICKSTART-ARCHETYPE.

The only step to perform is to run the following command:

mvn archetype:generate \

-DarchetypeArtifactId=android-quickstart \

-DarchetypeGroupId=de.akquinet.android.archetypes \

-DarchetypeVersion=0.1.0 -DgroupId=com.androidmavenproject \

-DartifactId=android-maven-project

After the execution, our project is ready and can be customized.

Creating your own Android application
Alternatively, we can create the Android application manually. We will show two
ways to create a project manually:

1. Create an empty project called AndroidMavenProject using Android tools.

Check out http://developer.android.com/training/
basics/firstapp/creating-project.html to find the
official guide to create a project using Android tools.

http://developer.android.com/training/basics/firstapp/creating-project.html
http://developer.android.com/training/basics/firstapp/creating-project.html

Chapter 6

[179]

2. In the root project directory, create the subdirectory structure shown in the
following screenshot:

Creating or modifying the AndroidManifest file
The AndroidManifest file is a powerful file in the Android platform that allows us
to describe the functionality and requirements of our Android applications.

Create the AndroidManifest.xml file in the root of the project. The
AndroidManifest.xml file has the following code:

<?xml version="1.0" encoding="utf-8"?>
<manifest
xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.androidmavenproject"
 android:versionCode="1"
 android:versionName="1.0" >

 <uses-sdk
 android:minSdkVersion="14"
 android:targetSdkVersion="19" />

 <application
 android:allowBackup="true"
 android:icon="@drawable/ic_launcher"
 android:label="@string/app_name"
 android:theme="@style/AppTheme" >
 <activity
 android:name="com.androidmavenproject.MainActivity"
 android:label="@string/app_name" >
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.
 LAUNCHER" />
 </intent-filter>
 </activity>
 </application>
</manifest>

Maven Android

[180]

Create a new layout into resources in the activity_main.xml file located at res/
layout, and define the visual structure of your app. The AndroidManifest.xml file
has the following code:

<RelativeLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:paddingBottom="@dimen/activity_vertical_margin"
 android:paddingLeft="@dimen/activity_horizontal_margin"
 android:paddingRight="@dimen/activity_horizontal_margin"
 android:paddingTop="@dimen/activity_vertical_margin"
 tools:context="com.androidmavenproject.
 MainActivity$PlaceholderFragment" >

 <TextView
 android:id="@+id/text_view"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content" />

</RelativeLayout>

Finally, write the MainActivity.java class at src/main/com/
androidmavenproject. This class contains the following code:

package com.androidmavenproject;

import android.app.Activity;
import android.os.Bundle;
import android.widget.TextView;

public class MainActivity extends Activity {

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);
 }

 @Override
 public void onStart() {
 super.onStart();
 TextView textView = (TextView) findViewById(R.id.text_view);
 textView.setText("Hello world!");
 }
}

Chapter 6

[181]

Defining a simple Maven POM file
In this section, we will learn how to define Maven projects with an XML file
named pom.xml. This file provides the project's name, version, dependencies,
and in particular, the Maven Android plugins and its configurations (see also
Chapter 1, Maven and Its Philosophy).

Create a file named pom.xml at the root of the project with the following code:

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
 http://maven.apache.org/maven-v4_0_0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <groupId>com.androidmavenproject</groupId>
 <artifactId>android-maven-project</artifactId>
 <version>0.1.0</version>
 <packaging>apk</packaging>
 <name>Android Maven project</name>

 <properties>
 <!-- use UTF-8 for everything -->
 <project.build.sourceEncoding>UTF-8
 </project.build.sourceEncoding>
 <project.reporting.outputEncoding>UTF-8
 </project.reporting.outputEncoding>
 </properties>

 <dependencies>
 <dependency>
 <groupId>com.google.android</groupId>
 <artifactId>android</artifactId>
 <version>4.1.1.4</version>
 <scope>provided</scope>
 </dependency>
 </dependencies>

 <build>
 <sourceDirectory>src</sourceDirectory>

 <plugins>
 <plugin>
 <groupId>com.jayway.maven.plugins.android.generation2
 </groupId>

Maven Android

[182]

 <artifactId>android-maven-plugin</artifactId>
 <version>3.9.0-rc.2</version>
 <extensions>true</extensions>
 <configuration>
 <sdk>
 <path>${env.ANDROID_HOME}</path>
 <platform>19</platform>
 </sdk>
 <deleteConflictingFiles>true</deleteConflictingFiles>
 <undeployBeforeDeploy>true</undeployBeforeDeploy>
 </configuration>
 </plugin>
 <plugin>
 <artifactId>maven-compiler-plugin</artifactId>
 <version>3.1</version>
 <configuration>
 <source>1.6</source>
 <target>1.6</target>
 </configuration>
 </plugin>
 </plugins>
 </build>

</project>

If you use Eclipse, especially the m2e plugin, you might get the following error:

Plugin execution not covered by lifecycle configuration: com.jayway.
maven.plugins.android.generation2:android-maven-plugin:3.6.1:generate-
sources (execution: default-generate-sources, phase: generate-sources)

Plugin execution not covered by lifecycle configuration: com.jayway.
maven.plugins.android.generation2:android-maven-plugin:3.6.1:proguard

(execution: default-proguard, phase: process-classes)

Add the following contents to remove the life cycle configuration error caused by the
m2e plugin:

<build>
 <pluginManagement>
 <plugins>
 <plugin>
 <groupId>org.eclipse.m2e</groupId>
 <artifactId>lifecycle-mapping</artifactId>
 <version>1.0.0</version>
 <configuration>

Chapter 6

[183]

 <lifecycleMappingMetadata>
 <pluginExecutions>
 <pluginExecution>
 <pluginExecutionFilter>
 <groupId>com.jayway.maven.plugins.android.
 generation2</groupId>
 <artifactId>android-maven-plugin</artifactId>
 <versionRange>[3.9.0-rc.2,)</versionRange>
 <goals>
 <goal>generate-sources</goal>
 <goal>proguard</goal>
 </goals>
 </pluginExecutionFilter>
 <action>
 <execute />
 </action>
 </pluginExecution>
 </pluginExecutions>
 </lifecycleMappingMetadata>
 </configuration>
 </plugin>
 </plugins>
 </pluginManagement>
[…]

Description tags
In this chapter, we will examine only specific tags for an Android application.

The first tag that we will examine is the <packaging> element that specifies an APK.
The APK value is allowed only after including the com.jayway.maven.plugins.
android.generation2 plugin.

As you can see, we define the Android plugin, com.jayway.maven.plugins.
android.generation2, in the <build> section, with its configuration enclosed in the
appropriate configuration tags. Here (in the platform tag), we define the Android
SDK platform to use during the build (API Level 4 is platform 1.6).

The following line tells Maven that the plugin contributes to a package and/or as a
type handler:

[…]
<extensions>true</extensions>
[…]

Maven Android

[184]

Building with Maven plugin goals
We are ready to use the most common goals to build the project; in this section,
we will see:

• How to create a JAR file
• How to install libraries
• How to deploy
• How to run the application on your device

Use the compile goal to build the compiled .class files in the target/classes
directory:

$ mvn compile

If you want to work with the .class files directly, run the package goal.

To take the compiled code and package it in its distributable format, such as JAR, run
any test and use the following goal:

$ mvn package

Performing the preceding command on our project will generate a JAR file named
android-maven-project -0.1.0.jar on the target directory.

The construction of the packaged name is based on the artifact ID
and version.

Since we set the value of packaging to apk, the result will be an APK file on
the target directory, which is ready to be deployed and launched on a device
or emulator.

If you want to install the application via Maven on your Android device, you can use
the following command:

$ mvn android:deploy

If more than one device is available, you can specify the relevant device in your
pom.xml file. Maven can also start and stop an Android virtual device automatically
for you.

To list all attached devices and emulators found with the Android debug bridge, use
the following command:

$ mvn android:devices

Chapter 6

[185]

If the android.devices property is not set, it will use all attached devices. To
specify a device, set the android.device property; it is possible to use the special
values, usb and emulator, as shown in the following code:

<properties>
 <android.device>usb</android.device>
 […]
</properties>

Finally, you can also start the application using the following command:

$ mvn android:run

To see all available goals, use the $ mvn android:help command.

Declaring dependencies
Now, we will see how to insert and use third-party libraries easily. For our scope,
we will use a very simple and functional library, which is called RoboGuice 2, and
which allows us to inject our view, resource, system service, or any other object into
our activity (we call this activity RoboActivity).

To do this, we have to modify the MainActivity.java class. This class contains the
following code:

package com.androidmavenproject;

import roboguice.activity.RoboActivity;
import roboguice.inject.ContentView;
import roboguice.inject.InjectView;
import android.os.Bundle;
import android.widget.TextView;

@ContentView(R.layout.activity_main)
public class MainActivity extends RoboActivity {

 @InjectView(R.id.text_view)
 TextView name;

 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 name.setText("Hello world!");
 }
}

Maven Android

[186]

We take advantage of the functionalities offered by this library to set the content
view and inject the TextView instance.

The next step is to insert the dependent library into the pom.xml file:

[…]
<dependency>
 <groupId>org.roboguice</groupId>
 <artifactId>roboguice</artifactId>
 <version>2.0</version>
</dependency>
[…]

A compatibility library for API v4
Another common add-on is the compatibility library for API v4 and higher.
Obviously, we need to include the library in the final package (.apk), and this
does not have the provided scope.

If you generate a project with the Eclipse wizard, make sure that
no support for library v4 is automatically included into the libs
folder; if it is, delete it.

The next step is to include support-v4 in the pom.xml file:

[…]
<dependency>
 <groupId>com.google.android</groupId>
 <artifactId>support-v4</artifactId>
 <version>r7</version>
</dependency>
[…]

Finally, modify the MainActivity class to use android.support.v4.app.
FragmentActivity with the following code:

package com.androidmavenproject;

import android.os.Bundle;
import android.support.v4.app.FragmentActivity;
import android.widget.TextView;

public class MainActivity extends FragmentActivity {
 @Override

Chapter 6

[187]

 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_main);
 }

 @Override
 public void onStart() {
 super.onStart();
 TextView textView = (TextView) findViewById(R.id.text_view);
 textView.setText("Hello world!");
 }
}

The final POM file with dependencies
We are ready to run our application with dependencies. First, we need to resolve the
dependencies; for this, run the following command:

$ mvn package

The following is the code of the final pom.xml file:

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
 http://maven.apache.org/maven-v4_0_0.xsd">
 <modelVersion>4.0.0</modelVersion>
 <groupId>com.androidmavenproject</groupId>
 <artifactId>android-maven-project</artifactId>
 <version>0.1.0</version>
 <packaging>apk</packaging>
 <name>Android Maven project</name>
 <properties>
 <!-- use UTF-8 for everything -->
 <project.build.sourceEncoding>UTF-8
 </project.build.sourceEncoding>
 <project.reporting.outputEncoding>UTF-8
 </project.reporting.outputEncoding>
 </properties>
 <dependencies>
 <dependency>
 <groupId>com.google.android</groupId>
 <artifactId>android</artifactId>
 <version>4.1.1.4</version>

Maven Android

[188]

 <scope>provided</scope>
 </dependency>
 <dependency>
 <groupId>org.roboguice</groupId>
 <artifactId>roboguice</artifactId>
 <version>2.0</version>
 </dependency>
 <dependency>
 <groupId>com.google.android</groupId>
 <artifactId>support-v4</artifactId>
 <version>r7</version>
 </dependency>
 </dependencies>
 <build>
 <sourceDirectory>src</sourceDirectory>
 <plugins>
 <plugin>
 <groupId>com.jayway.maven.plugins.android.generation2
 </groupId>
 <artifactId>android-maven-plugin</artifactId>
 <version>3.9.0-rc.2</version>
 <extensions>true</extensions>
 <configuration>
 <sdk>
 <path>${env.ANDROID_HOME}</path>
 <platform>19</platform>
 </sdk>
 <deleteConflictingFiles>true</deleteConflictingFiles>
 <undeployBeforeDeploy>true</undeployBeforeDeploy>
 </configuration>
 </plugin>
 <plugin>
 <artifactId>maven-compiler-plugin</artifactId>
 <version>3.1</version>
 <configuration>
 <source>1.6</source>
 <target>1.6</target>
 </configuration>
 </plugin>
 </plugins>
 </build>
</project>

Chapter 6

[189]

Useful instrumentations to test, sign,
and zipalign
In this section, we will talk about some useful tools for our code.

The test profile
In this section, we will create a profile to install the application automatically and run
instrumentation tests at every build.

For convenience, we will refer to our profile as testProfile and perform the
following steps:

1. Create a new directory for the test classes; follow the folder structure shown
as follows:

2. Then, specify the source test directory in the POM file:
[…]
<build>
 <sourceDirectory>src</sourceDirectory>
 <testSourceDirectory>test</testSourceDirectory>
</build>
[…]

3. Create a property to enable/disable the instrumentation tests:
[…]
<properties>
 <skipTests.value>true</skipTests.value>
</properties>
[…]

Maven Android

[190]

4. Add the JUnit test dependency:
[…]
<dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>4.8.2</version>
 <scope>test</scope>
</dependency>
[…]

5. Create a test class named Tests in the previously created directory,
src/test/com/androidmavenproject:
package com.androidmavenproject;

import junit.framework.Assert;
import org.junit.Test;

public class Tests {

 @Test
 public void testEquals() {
 Assert.assertEquals("Hello World", "Hello World");
 }
}

6. Now, add the maven-surefire-plugin artifact ID to the build tag and
run the application. We can see the maven-surefire-plugin artifact ID's
following code:
<plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-surefire-plugin</artifactId>
 <version>2.12.4</version>
 <configuration>
 <skipTests>${skipTests.value}</skipTests>
 </configuration>
</plugin>

You should get a result like the following:

[INFO] --- maven-surefire-plugin:2.12.4:test (default-test) @
android-maven-project ---

[INFO] Tests are skipped.

Chapter 6

[191]

7. Finally, create the testProfile profile in the POM file:
[…]
<profiles>
 <profile>
 <id>testProfile</id>
 <properties>
 <skipTests.value>false</skipTests.value>
 </properties>
 </profile>
</profiles>
[…]

Note that the property to skip the test is set to false.

8. Now, we are ready to test the app; run Maven activating the profile from the
command line with the -P flag:

$ mvn clean install -PtestProfile

We should get a result like the following:

T E S T S

Running com.androidmavenproject.Tests

Tests run: 1, Failures: 0, Errors: 0, Skipped: 0, Time elapsed:
0.003 sec

Results :

Tests run: 1, Failures: 0, Errors: 0, Skipped: 0

Signing and zipaligning the package
To sign and zipalign the package, perform the following steps:

1. Create and add a new profile called releaseProfile that will serve to
release the APK:
[…]
<profile>
 <id>releaseProfile</id>
 <activation>
 <property>
 <name>performRelease</name>
 <value>true</value>

Maven Android

[192]

 </property>
 </activation>
</profile>
[…]

2. Create the properties to sign the app, as follows:
[…]
<properties>
 <sign.keystore>pathtokeystorefile</sign.keystore>
 <sign.alias>aliasname</sign.alias>
 <sign.keypass>somepassword</sign.keypass>
 <sign.storepass>somotherpassword</sign.storepass>
</properties>
[…]

3. Replace all sign.* properties with your keystore values. Finally, add the
JAR-signing process into the build profile:
<build>
 <plugins>
 <plugin>
 <groupId>org.apache.maven.plugins</groupId>
 <artifactId>maven-jarsigner-plugin</artifactId>
 <executions>
 <execution>
 <id>signing</id>
 <goals>
 <goal>sign</goal>
 <goal>verify</goal>
 </goals>
 <phase>package</phase>
 <inherited>true</inherited>
 <configuration>
 <removeExistingSignatures>true
 </removeExistingSignatures>
 <archiveDirectory/>
 <includes>
 <include>${project.build.directory}/
 ${project.artifactId}.apk</include>
 </includes>
 <keystore>${sign.keystore}</keystore>
 <alias>${sign.alias}</alias>
 <storepass>${sign.storepass}</storepass>
 <keypass>${sign.keypass}</keypass>

Chapter 6

[193]

 <verbose>true</verbose>
 </configuration>
 </execution>
 </executions>
 </plugin>
[…]

4. Finally, the signed APK has to be zipaligned; also, deactivate the debug sign.
To zipalign, add the following procedure:
[…]
<plugin>
 <groupId>com.jayway.maven.plugins.android.generation2
 </groupId>
 <artifactId>maven-android-plugin</artifactId>
 <inherited>true</inherited>
 <configuration>
 <sign>
 <debug>false</debug>
 </sign>
 <zipalign>
 <verbose>true</verbose>
 <inputApk>
 ${project.build.directory}/${project.artifactId}
 .apk
 </inputApk>
 <outputApk>
 ${project.build.directory}/${project.artifactId}-
 signed-aligned.apk
 </outputApk>
 </zipalign>
 </configuration>
 <executions>
 <execution>
 <id>alignApk</id>
 <phase>package</phase>
 <goals>
 <goal>zipalign</goal>
 </goals>
 </execution>
 </executions>
</plugin>
[…]

Maven Android

[194]

5. Now, we can produce your signed and zipaligned APK with the simple
command, ready to be published on the market; run the following command:

$ mvn clean install –PreleaseProfile

The output will be something like the following:

[INFO] --- maven-jarsigner-plugin:1.3.2:verify (signing) @
android-maven-project ---

[INFO] 2 archive(s) processed

[INFO]

[INFO] --- android-maven-plugin:3.0.0-alpha-11:zipalign (alignApk)
@ android-maven-project ---

[INFO] Running command: …\eclipse\adt-bundle-windows-x86_64\sdk\
tools\zipalign.exe

[INFO] with parameters: [-f, 4, …\workspace\AndroidMavenProject\
target\android-maven-project-0.1.0.apk, …\workspace\
AndroidMavenProject\target\android-maven-project-0.1.0-aligned.
apk]

[INFO] Attach …\workspace\AndroidMavenProject\target\android-
maven-project-0.1.0-aligned.apk to the project

As you can see, the zipalign procedure will take the APK file as input and produce a
new output called ${project.artifactId}-signed-aligned.apk.

The bug detector (Lint)
There are several tools to identify potential bugs in our code. In this section,
we will see the dedicated plugin for Android, and this tool is called lint.

Android lint is a new tool introduced in ADT 16 (and Tools 16). Lint can
check missing translations, unused resources, and other common mistakes
in Android programming.

Now, let's see a simple example to generate an HTML report using the errors of
our project. We need to change the Android plugin by adding a few simple lines:

[…]
<configuration>
 <sdk>
 <path>${env.ANDROID_HOME}</path>
 <platform>19</platform>
 </sdk>
 <deleteConflictingFiles>true</deleteConflictingFiles>
 <undeployBeforeDeploy>true</undeployBeforeDeploy>

Chapter 6

[195]

 <lint>
 <skip>false</skip>
 <enableHtml>true</enableHtml>
 <enableXml>false</enableXml>
 </lint>
</configuration>
[…]

We disable the XML output and enable HTML because it is more readable and we
can get a better overview of HTML pages.

We just add android:lint to the Maven commands with the following command:

$ mvn clean install android:lint

The results will be written to /target/lint-results/lint-results-html.

You should get a result like the following:

[INFO] --- android-maven-plugin:3.9.0-rc.2:lint (default-cli) @ android-
maven-project ---

[INFO] Performing lint analysis.

[INFO] Writing Lint HTML report in C:\android\workspace \
AndroidMavenProject\target\lint-results\lint-results-html

[INFO] Running command: …\eclipse\adt-bundle-windows-x86_64\sdk\tools\
lint.bat

[INFO] with parameters: [--showall, --html, …\workspace \
AndroidMavenProject\target\lint-results\lint-results-html, --sources, …\
workspace \AndroidMavenProject\src, …\workspace \AndroidMavenProject,
--exitcode]

[INFO] Lint analysis completed successfully.

It is possible to control lint invocation by adding failOnError to the lint tag.

If failOnError is true, any lint error (not warning) will stop the build. The default
is set to false. This flag is useful for continuous integration (see Chapter 5, Continuous
Integration and Delivery with Maven) builds as it allows us to enforce lint's usage.

To increase lint's granularity, use the tag ignoreWarnings=true|false.

If true, we don't report lint warnings, only errors are reported. By default, it is set
to false, as in warningsAsErrors=true|false.

If true, all lint warnings will be treated as errors. By default, it is set to false.

Maven Android

[196]

Eclipse integration
Android's official development effort provides solid support for Eclipse integration,
and we want to make sure that the Android Maven plugin helps bridge Maven,
Android, and Eclipse.

First, you will need to install Eclipse Indigo, Juno, or Android Developer Tools
(ADT), which is a plugin for Eclipse that provides a professional-grade development
environment to build Android apps.

Installing the Android connector
The m2e Android plugin is an M2E connector that adds Maven support to Eclipse
or ADT.

Install it via Eclipse Marketplace, and perform the following steps:

1. Select Help | Eclipse Marketplace... and search for android m2e.
2. Click on the Install button next to the Android connector for Maven that

appears, and follow the path through the wizard dialog to install the plugin
and all its dependencies.

3. Accept the terms of the license and click on Finish.
4. If you cannot access Marketplace, select Help | Install New Software and

paste the http://download.eclipse.org/technology/m2e/releases/
repository. Then, check Maven Integration for Eclipse, click on the Next
button, accept the terms of the license, and click on Finish.

5. Restart your Eclipse workspace.

Mavenized Android Project
If you have an Android project configured, right-click on it and chose Configure |
Convert to Maven Project.

If you are starting with a new project, you can use the Maven Android archetypes to
create Android projects completely within Eclipse using the following steps:

1. Create a new Maven Project by navigating to File | New | Project.
2. Select Maven | Maven Project.
3. When prompted to select an archetype, click on Add Archetype.
4. In the Archetype Group Id field, enter de.akquinet.android.archetypes.

Chapter 6

[197]

5. In the Archetype Artifact Id field, enter android-quickstart.
6. In the Archetype Version field, enter 0.1.0.
7. When prompted, enter your desired project group and the artifact ID,

version, and platform property for the Android version (the default is 16).
8. Click on Finish.

Summary
In this section, we covered how to create an Android project with Maven. We
learned how Maven plugins and profiles made the applicants' planning stages,
such as creating a simple structure, implementing and running a test, dependency
management, signing and zipaligning an application, detecting potential bags, and
running and deploying it on devices, easy.

In addition, we saw how to run our commands from the command line and integrate
them with Eclipse and ADT.

Integrating Maven – Gradle
Gradle is gradually becoming an important and stable tool for project automation
(at the time of writing this book, the latest version used is 2.0). We decided to
mention this tool because its percentage of adoption is growing fast; moreover,
it was adopted as an official building tool for Android apps by Google at Google
I/O 2013. After an official announcement of the Gradle adoption by Google, this
tool was completely integrated into the developer IDE Google Android Studio;
the new Eclipse plugin will be introduced by the end of 2014, as announced by
Gradleware (the Gradle developing team). All these facts, together with Gradle's
ability to download dependencies from Maven repositories, have made Gradle
eligible to be mentioned in this book.

What is Gradle?
Gradle is a project automation tool that was brought up on the concepts of Apache
Ant and Apache Maven. Among Apache's tools, Gradle does not use an XML tag
language in order to define the project structure and operation/task to execute; it
introduces a Groovy-based domain-specific language (DSL).

Ant and Maven (more often Maven) define a lifecycle that invokes different tasks
in a specific order, and every defined task is associated with a specific phase of the
lifecycle. Despite Maven's and Ant's behavior, Gradle uses directed acyclic graph
(DAG) to determine the order in which tasks can be run; using this structure, Gradle
can determine which task has to be executed before or after, without a standard
order of execution.

A match point between Gradle and Apache Maven is the capability to manage
multiproject builds. Gradle can support incremental builds by determining which
parts of a subproject are up to date, so a task that depends on these parts does not
have to be re-executed.

Integrating Maven – Gradle

[200]

The most interesting Gradle feature is represented by the ability to use Maven
repositories for dependency management (Ivy repositories can be used too). It
is possible to use remote and local repositories and declare nonstandard Maven
repositories as custom repositories.

Like Maven, Gradle makes use of a plugin that provides additionally functionalities
to accomplish common tasks to build and assemble projects in packages such
as JAR, WAR, and EAR used by the Java programming language. The Android
plugin compiles and assembles an app with all the tools to publish and sign the
generated APK.

Actually, Gradle can build different programming languages:

• Java: This adds Java compilation, testing, and bundling capabilities to
a project. It serves as the basis for many of the other Gradle plugins.

• Groovy: This adds compilation, testing, and generation of documentation.
• Scala: This adds compilation, testing, and generation of documentation
• ANTLR: This generates source files for production and testing.

There are many other incubating plugins for other languages, such as:

• assembler

• c

• cpp

• objective-C

• objective-cpp

• windows-resources: Adds support for Windows resources in native binaries

Other kinds of plugins are represented by integration plugins. They are:

• application: Adds tasks to run and build Java projects at the command line
• jetty: Deploys your web application to a Jetty web container embedded in

the build
• ear

• war

• osgi

• maven: Adds support to deploy artifacts on Maven repositories

These plugins are only a few representative numbers to help explain what Gradle
is. More documentation can be found online in order to get a deeper understanding
of the Gradle mechanics.

Appendix A

[201]

How Gradle works
Gradle executes a series of commands called task declared inside the build.gradle
file. The syntax to declare tasks is Groovy-based, as described before. A simple
example of how to declare a task is:

task goGradle {
 doLast {
 println 'Gradle Task'
 }
}

The command to execute this simple task is:

$ gradle goGradle

The output for this command is:

Gradle Task

Another syntax to define the same task is:

task goGradle << {
 println ''Gradle Task'
}

In the first task definition, we use the doLast block to wrap actions to perform;
we can use other instructions such as doFirst to decide task ordering. Thanks to
doFirst and doLast, Gradle accomplishes its main characteristic to use a DAG
for a task's order.

More Gradle functionalities are tasks, and they are executed with the command-line
syntax explained.

If you want to know more about how Gradle's tasks work, you
can consult the online manual at http://www.gradle.org/.

Creating a simple project with Gradle
Gradle can be used to create a Java project; in our case, we can create a common JAR
project to explain a simple configuration to use Maven repositories within Gradle.

http://www.gradle.org/

Integrating Maven – Gradle

[202]

First, we must download the current version of Gradle; we can download the latest
version 2.0. Once we get a ZIP file, we unzip it and put it into a folder as follows:

C:\gadle-2.0

Add GRADLE_HOME/bin to your PATH environmental variable to launch the Gradle
command from every location. Obviously, you must have an installation of Java
on your machine if you want to build a Java project.

All Gradle projects contain a file called build.gradle that contains the instructions
to build and assemble projects through the command line.

Gradle's project configuration
First, we add plugins into build.gradle used for the project:

apply plugin: 'java'
apply plugin: 'eclipse'
apply plugin: 'maven'

With these lines, we specify the use of three plugins: the Java plugin to compile and
assemble our project, the Eclipse plugin to generate files that are used to import the
project into the Eclipse IDE (if you want to use Eclipse), and the Maven plugin to
deploy artifacts into the Maven repository.

In the next section, we will declare the data, Java version compatibility, group ID,
and project version, which are relative to the project:

sourceCompatibility = 1.6
group = 'org.gradle.test'
version = '1.1'

Thanks to the Groovy syntax, we can declare what the jar manifest contains, in a
simple and elegant way:

jar {
 manifest {
 attributes 'Implementation-Title': 'Gradle Test',
 'Implementation-Version': version
 }
}

The version number refers to the global variable, version, just declared in the
previous statement.

Appendix A

[203]

In the repositories section, we can see how Gradle makes use of Maven official
repositories and our custom repository:

repositories {
 mavenCentral()
 mavenLocal()

 maven { url
 "http://ourserver:8080/nexus/content/repositories/ourrepo" }

}

Thanks to the mavenCentral() object, Gradle downloads dependencies from the
Maven 2 repository (http://repo1.maven.org/maven2), and the mavenLocal()
object indicates to get dependencies from the PATH_TO/.m2 local repository.

As we can see, we add the custom repository while looking for dependencies.

The following code snippet shows us how to declare dependencies:

configurations {
 deployerJars
}
dependencies {
 compile 'commons-collections:commons-collections:3.2'
 testCompile 'junit:junit:4.+'
 deployerJars "org.apache.maven.wagon:wagon-http:2.2"
}

The first line of the code represents a local variable to import utility libraries used
to perform a Maven deploy. In the second statement, we have the dependencies
declaration since we can use different scopes for dependency import in Maven, as
shown in the following table:

Scope Function/objective Default
compile Required to compile the source
runtime Required at runtime Includes the compile time

dependencies
testCompile Required in order to compile a

test source
Includes compiled
production and compile time

testRuntime Required in order to run tests Includes compile, runtime,
and test dependencies

To import a version greater or equal to a certain version, Gradle uses the + notation
for a JUnit import case.

http://repo1.maven.org/maven2

Integrating Maven – Gradle

[204]

We assigned the wagon-http dependency to the deployerJars variable used to
deploy the JAR into a repository.

We are able to perform a build of the project with this minimal configuration.
To perform a build positioning in the project's base directory, launch the
following command:

$ gradle build

This input will generate a simple output:

:compileJava

:processResources

:classes

:jar

:assemble

:compileTestJava

:processTestResources

:testClasses

:test

:check

:build

BUILD SUCCESSFUL

In this case, we can execute without having the declared task, build, which is
possible because of the Java plugin.

The Java plugin adds a build file command to configuration, without declaration in
the build.gradle file.

Deploying on the Maven repository
Until now, we explained how to build a JAR project with Gradle; let's add a task to
deploy an artifact on the repository with the following lines:

uploadArchives {
 repositories {
 ext.configuration = configurations.deployerJars
 mavenDeployer {
 repository(url:
 "http://ourserver/nexus/content/repositories/releases") {

Appendix A

[205]

 authentication(userName: "user", password: "boh!")
 }
 }
 }
}

This code snippet contains the task and object inherited from the Maven plugin.

In the preceding example, we used uploadArchives to perform the artifact's upload.
The uploadArchives task requires parameters such as which repository to use
for the deploy operation passed within the repositories object. To perform the
artifact's upload, we used mavenDeployer within the object that contains the url
repository and authentication credential; this object is repository, which contains
authentication within the specification for username and password, valorized
with our server authentication credentials. In order to enable mavenDeployer
to create a connection to the server, the configuration variable contains
deployerJars within the wagon-http library. Using this task, we can upload an
artifact to our Maven server.

In the code snippet, we used the new extra properties' ext syntax to dynamically
add content to objects:

ext.configuration = configurations.deployerJars

The old fashion way to declare configuration is called dynamic properties:

configuration = configurations.deployerJars

This example can upload an artifact with the Maven dependency notation:

<dependency>
 <groupId>org.gradle.test</groupId>
 <artifactId>gradle-project</artifactId>
 <version>1.1</version>
</dependency>

If we had to change a pom property at the moment of deployment, we can use the
following syntax:

uploadArchives {
 repositories {
 ext.configuration = configurations.deployerJars
 mavenDeployer {
 repository(url:
 "http://ourserver/nexus/content/repositories/releases") {
 authentication(userName: "user", password: "boh!")
 }

Integrating Maven – Gradle

[206]

 pom.version = '1.0' pom.artifactId = 'gradle-project-second'
 }
 }
}

Also, add the following two properties:

pom.version = '1.0'
pom.artifactId = 'gradle-project-second'

As a result, we will have this POM content on the published library:

<dependency>
 <groupId>org.gradle.test</groupId>
 <artifactId>gradle-project-second</artifactId>
 <version>1.0</version>
</dependency>

Creating the project's POM
Gradle's Maven plugin can create a complete POM file. To make this operation
possible, we can create an appropriate task:

task writeNewPom << {
 pom {
 project {
 inceptionYear '2014'
 licenses {
 license {
 name 'The Apache Software License, Version 2.0'
 url 'http://www.apache.org/licenses/LICENSE-2.0.txt'
 distribution 'repo'
 }
 }
 }
 }.writeTo("$buildDir/pom.xml")
}

The pom object gives us all elements for the POM file, and we can override the default
element inherited from the Gradle project configuration with other elements in order
to customize POM creation. As the final instruction, perform a write of the POM file
to the building directory with the name pom.xml using the following method:

.writeTo("$buildDir/pom.xml")

Appendix A

[207]

The resulting POM file is as follows:

<?xml version="1.0" encoding="UTF-8"?>
<project xsi:schemaLocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/xsd/maven-4.0.0.xsd"
xmlns="http://maven.apache.org/POM/4.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <modelVersion>4.0.0</modelVersion>
 <groupId>org.gradle.test</groupId>
 <artifactId>gradle-project</artifactId>
 <version>1.0</version>
 <inceptionYear>2014</inceptionYear>
 <licenses>
 <license>
 <name>The Apache Software License, Version 2.0</name>
 <url>http://www.apache.org/licenses/LICENSE-2.0.txt</url>
 <distribution>repo</distribution>
 </license>
 </licenses>
 <dependencies>
 <dependency>
 <groupId>junit</groupId>
 <artifactId>junit</artifactId>
 <version>4.+</version>
 <scope>test</scope>
 </dependency>
 <dependency>
 <groupId>commons-collections</groupId>
 <artifactId>commons-collections</artifactId>
 <version>3.2</version>
 <scope>compile</scope>
 </dependency>
 </dependencies>
</project>

Maven Integration for Eclipse
The Eclipse IDE provides support for Maven through the m2eclipse plugin, which
has been recently renamed to m2e. The newer versions of the Eclipse IDE (starting
from Kepler) come with the m2e plugin available without needing to be installed as
an additional component. The m2e plugin uses components called m2e connectors
(or Maven plugin connectors) that work as a bridge between Maven and Eclipse
and are able to trigger the execution of the Maven plugins declared in our POMs
during the automatic build process of the IDE. These connectors are searched in the
Eclipse repositories when they are needed, depending on the used Maven plugins.

This way, we can work on a Maven project within the Eclipse IDE as if it were
a native Eclipse project. In the next paragraphs, we are going to summarize the
most important use cases.

The m2e plugin is not a Maven plugin, it is a plugin
for Eclipse! The m2e plugin must not be confused
with the Maven Eclipse Plugin org.apache.maven.
plugins:maven-eclipse-plugin (with the prefix
eclipse). The latter is a Maven plugin that statically
generates/regenerates the Eclipse project files every
time we invoke the eclipse:eclipse goal.

In the first chapter, we created our sample project parent POM using the Eclipse
IDE. We can very easily create new Maven projects and modules from the Eclipse
menu by navigating to New | Project… | Maven. While creating the sample parent
POM and its child modules, we could see that other than the pom.xml descriptor,
the Eclipse project files had also been created.

In addition, we can import existing Maven projects into the Eclipse IDE, or we can
check them out from an SCM repository like SVN or CVS.

Maven Integration for Eclipse

[210]

Importing existing Maven projects
By navigating to Import… | Existing Maven Projects…, we can select the project to
import in the Eclipse IDE as shown in the following screenshot:

Import existing Maven projects

In this sample, we suppose that we created the parent project
POM from the Eclipse IDE, and all the other by hand outside
Eclipse, so that we need to import them into the IDE.

If we look in the Package Explorer view, we can see that all the project structures
are recognized: the directories /src/main/java, /src/main/resources, and so on
are displayed as source folders and the dependencies are visible under the Maven
Dependencies classpath folder. This is shown in the following screenshot:

Structure of an imported Maven project

Appendix B

[211]

If we look in the Navigator view or in the filesystem, we can see the Eclipse project
configuration that is formed by the .project and .classpath files and by the
.settings directory. These files and directories have been created by Eclipse
itself while importing the project, on the basis of the Maven POM.

Checking out Maven projects from SCM
repositories
If we have to check out a Maven project from an SCM repository such as SVN
or CVS, we can check it out directly as a Maven project. Usually, the Eclipse
configuration resources are not committed on the SCM; even better, they are
added to the .svnignore or .cvsignore files. This is because the m2e plugin
is able to recreate all the necessary Eclipse configuration starting from the POM.

If our SCM repository is Subversion, we could install the Subclipse plugin from
the Eclipse Marketplace by navigating to Help | Eclipse Marketplace…; just type
subclipse in the search textbox and then select the appropriate plugin. In addition,
we have to install the Maven SCM handler for Subclipse if we want to check out
the Maven project directly, as we are about to show. We can install this component
by navigating to Help | Install New Software…, adding the update site http://
subclipse.tigris.org/m2eclipse/latest/, and finally selecting the Maven
integration for the Subclipse checkbox, as shown in the following screenshot:

Installation of the Maven SCM Handler for Subclipse

http://subclipse.tigris.org/m2eclipse/latest/
http://subclipse.tigris.org/m2eclipse/latest/

Maven Integration for Eclipse

[212]

At this point, we are able to check out the project by opening the SVN Repository
Exploring perspective (by navigating to Window | Open Perspective | Other...),
then right-clicking on the project folder and selecting the Check out as Maven
Project… menu item, as shown in the following screenshot:

Check out from the repository exploring perspective

Alternatively, we can check out our projects directly by navigating to File | Import
| Maven | Check out Maven Projects from SCM and then filling the SCM URL
dropdown, as shown in the following screenshot:

Check out from the main menu

Appendix B

[213]

If our SCM repository is CVS, we can install the Maven SCM Handler for CVS using
the update URL http://repository.tesla.io:8081/nexus/content/sites/m2e.
extras/m2eclipse-cvs/0.13.0/N/0.13.0.201304101743/ and then proceed in a
similar manner.

Building Maven projects
Once our Maven project has been integrated in the Eclipse IDE, all the phases of the
build lifecycle, up to the compile phase, are executed automatically in the background
by the IDE itself. So, we can see that under the /target folder, there are the compiled
.class files corresponding to our project sources and test sources as well as the
filtered project and test resources. If we want to build our project till the needed phase,
we have to invoke Maven explicitly: this can be done following the Run As (or Debug
As) menu and then selecting the desired phase, as shown in the following screenshot:

Maven build options in the Run As menu

http://repository.tesla.io:8081/nexus/content/sites/m2e.extras/m2eclipse-cvs/0.13.0/N/0.13.0.201304101743/
http://repository.tesla.io:8081/nexus/content/sites/m2e.extras/m2eclipse-cvs/0.13.0/N/0.13.0.201304101743/

Maven Integration for Eclipse

[214]

If we want to launch Maven with a phase or a goal that is not listed in the pop-up
menu, we can click on the Maven Build… menu item and fill the dialog window
shown in the following screenshot:

Edit the Maven build configuration

Here, other parameters can also be specified, for example, the Skip Tests checkbox
(corresponding to the -Dmaven.test.skip=true parameter on the command line)
if we want to skip the compilation and execution of the unit tests, or the Debug
Output checkbox (corresponding to the –X parameter) to enable debug output,
or the Non-recursive checkbox (corresponding to the –N parameter) that avoids
building child modules.

In all these cases, the Maven output is displayed in the Console view of the
Eclipse IDE. From the Console view, we can click on the Open Console icon on
the right-hand side of the toolbar and then on the Maven Console menu item.
We will see the Maven commands that are launched by the m2e plugin, and the
logs of all the activities executed in the background.

Appendix B

[215]

m2e plugin settings
We can customize the behavior of the m2e plugin through the Eclipse preferences.
From the main Eclipse menu, navigate to Windows | Preferences to open the
preference window and then click on the item regarding Maven (see the following
screenshot). Here we can see some global settings for the m2e plugin. Among these,
maybe the most useful are the Download Artifact Sources and Download Artifact
JavaDoc checkboxes, to enable automatic downloads of dependency sources and
dependency Javadocs. The dependency sources and Javadocs will be integrated in
the Eclipse IDE so they will be available during all our developing and debugging
activities. To download them from the command line, we should invoke the Maven
Dependency Plugin from the project directory as follows:

$ mvn dependency:sources

$ mvn dependency:resolve -Dclassifier=javadoc

We can see the preference window as shown in the following screenshot:

Maven general preferences

Maven Integration for Eclipse

[216]

We can also edit the Maven installation used by the m2e plugin by clicking on the
Installations subitem of the Maven preferences. In fact, the m2e plugin comes with
an embedded Maven runtime that can be changed with an external installation, as
shown in the following screenshot:

Maven installations

Managing the POM
We can edit our project POM within the Eclipse IDE by clicking on the pom.xml
file. By default, it will be opened with the Maven POM editor that is shown in the
following screenshot:

Maven POM editor

Appendix B

[217]

By clicking on the Overview tab, we can edit the Maven coordinates and also the
main POM elements such as packaging, name, description, project properties,
project parent, and project modules. In the last tab, pom.xml, we can make changes
to the POM file with a text editor. We can also see a tab that displays the Effective
POM (described in Chapter 2, Core Maven Concepts) and one named Dependency
Hierarchy, which is a representation of the dependency tree (see again Chapter
2, Core Maven Concepts). Project dependencies can be edited by clicking on the
Dependencies tab, as shown in the following screenshot:

Editing Maven dependencies

Maven Integration for Eclipse

[218]

All the changes that we make to the project POM through the Maven POM editor
are automatically reflected by the Eclipse IDE and the Eclipse project configuration
is consequently updated. For example, if we add a dependency in our POM, even
through the text editor, it will be immediately visible in the Package Explorer view
under the Maven Dependencies classpath folder.

Sometimes, the pom.xml file is marked with a red cross and in the Problems view
appears the error message Project configuration is not up to date with pom.xml.
Run Maven->Update Project or use Quick Fix.

This means that a manual update of the project configuration is needed, and it can be
done by right-clicking on the project and then on the Update Maven Project menu
item, as shown in the following screenshot:

Updating the Maven project configuration

Appendix B

[219]

Managing repository indexes
Thanks to the m2e plugin, we can navigate the remote repositories declared in our
projects and open the POMs contained in them with the Maven POM editor. This
happens through repository indexes. In order to enable repository indexes, we have
to open the Maven Repositories view by navigating to Window | Show View |
Maven, as shown in the following screenshot:

The Maven Repositories view

Maven Integration for Eclipse

[220]

Then we have to choose a repository (for example, the Maven Central) and enable
the repository index, as shown in the following screenshot:

Enable the Maven repository index

After waiting a while, we will able to browse the repository as shown in the
following screenshot:

Browsing Maven repositories

Appendix B

[221]

We can keep a repository index up to date if we periodically right-click on the
repository and then on the Update Index menu item.

Managing dependencies and plugins
Repository indexes are also useful for adding dependencies and plugins from the
project pop-up menu or from the Maven POM editor.

For example, when we click on the Add... button of the Dependencies tab of the
Maven POM editor, we can insert the Maven coordinates of the needed dependency
and confirm, and a new dependency element will be created in our POM. If we
need a certain dependency but we do not exactly know its Maven coordinates, we
can input a search string and the m2e plugin will query the repository indexes. We
can choose the correct dependency in the search results that appear at the bottom of
the window, as shown in the following screenshot (in which we are looking for the
ANTLR dependency):

Searching Maven dependencies

Maven Integration for Eclipse

[222]

m2e connectors and lifecycle mapping
At the beginning of this appendix, we spoke about the Maven plugin connectors,
which work in the background to guarantee the execution of the Maven plugins
during the Eclipse build process. For example, if we declare the JAXB-2 Maven
Plugin in our project as follows (as we did in the transportation-common-jar
module of our sample project; see Chapter 2, Core Maven Concepts):

<plugin>
 <groupId>org.codehaus.mojo</groupId>
 <artifactId>jaxb2-maven-plugin</artifactId>
 <version>1.6</version>
 <executions>
 <execution>
 <id>myExecution</id>
 <goals>
 <goal>xjc</goal>
 </goals>
 <configuration>
 <schemaDirectory>src/main/resources/schema/
 </schemaDirectory>
 </configuration>
 </execution>
 </executions>
</plugin>

When we put an XSD schema in the specified schema directory, the Eclipse IDE
will automatically invoke the xjc goal of jaxb2-maven-plugin, which is bound
to the generate-sources phase; the plugin will create an additional source folder
target/generated-sources/jaxb, which is the default output directory of the
plugin. Even without invoking Maven explicitly, the project will appear as shown
in the following screenshot:

Appendix B

[223]

Structure of a project with generated sources

Of course m2e cannot support every Maven plugin out of the box. It could happen
that while declaring a certain plugin, for example, org.antlr:antlr3-maven-
plugin, we get the error Plugin execution not covered by lifecycle configuration,
as shown in the following screenshot. Notice that we have to hover with the mouse
on the underlined <execution> element of the plugin configuration to display this
pop-up message:

Plugin execution error for antl3-maven-plugin

Maven Integration for Eclipse

[224]

Here we have three quick fixes available, and we will firstly try the third option
Discover new m2e connectors. If we are lucky, we will find a suitable connector
on the Eclipse Marketplace, as shown in the following screenshot, and we will
proceed with installing it. Once the connector has been installed, our Eclipse IDE
will manage the antlr3 Maven plugin correctly.

The antl3-maven-plugin is able to generate the Java
sources corresponding to the given grammar files, as in the
case of the previous JAXB-2 plugin example.

The Install m2e connectors window is shown in the following screenshot:

When we cannot find a suitable m2e connector, we have to choose between the first
and the second quick fixes proposed by the pop-up error message. This is the case
of jaxws-maven-plugin, for which, at the moment, a m2e connector is not available
on the Eclipse Marketplace. Suppose that we have to generate the JAX-WS Java
client for a web service with a given WSDL descriptor; we would have to declare
the following Maven plugin in the <build><plugins> section of our POM:

<plugin>
 <groupId>org.jvnet.jax-ws-commons</groupId>
 <artifactId>jaxws-maven-plugin</artifactId>
 <version>2.3</version>
 <executions>
 <execution>
 <goals>
 <goal>wsimport</goal>

Appendix B

[225]

 </goals>
 </execution>
 </executions>
 <configuration>
 <wsdlDirectory>src/main/resources/wsdl/</wsdlDirectory>
 </configuration>
 <dependencies>
 <dependency>
 <groupId>com.sun.xml.ws</groupId>
 <artifactId>jaxws-tools</artifactId>
 <version>2.2.6</version>
 </dependency>
 </dependencies>
</plugin>

We have to put our WSDL file in the directory specified with the <wsdlDirectory>
element. This plugin, as usual, is bound to the generate-sources phase. The error
message that we receive is shown in the following screenshot, and the search for a
suitable connector does not give any results:

Plugin execution error for jaxws-maven-plugin

The second quick fix, Mark goal <goal-name> as ignored in Eclipse build in Eclipse
preferences, simply disables this error message acting directly on the Eclipse project
configuration and leaves the plugin ignored by the build process. As the POM is not
interested in this setting, all the developers working on this project will encounter
this error.

This happens if the Eclipse configuration files and directories
are not added to the source version control (and we
recommended adding them to .svnignore / .cvsignore).

Maven Integration for Eclipse

[226]

On the contrary, if we choose the first quick fix Permanently mark goal <goal-name>
in pom.xml as ignored in Eclipse build, a dummy plugin configuration will be
automatically inserted in the POM, in the <pluginManagement> section:

<pluginManagement>
 <plugins>
 <!--This plugin's configuration is used
 to store Eclipse m2e settings only.
 It has no influence on the Maven build itself.
 -->
 <plugin>
 <groupId>org.eclipse.m2e</groupId>
 <artifactId>lifecycle-mapping</artifactId>
 <version>1.0.0</version>
 <configuration>
 <lifecycleMappingMetadata>
 <pluginExecutions>
 <pluginExecution>
 <pluginExecutionFilter>
 <groupId>
 org.jvnet.jax-ws-commons
 </groupId>
 <artifactId>
 jaxws-maven-plugin
 </artifactId>
 <versionRange>
 [2.3,)
 </versionRange>
 <goals>
 <goal>wsimport</goal>
 </goals>
 </pluginExecutionFilter>
 <action>
 <ignore></ignore>
 </action>
 </pluginExecution>
 </pluginExecutions>
 </lifecycleMappingMetadata>
 </configuration>
 </plugin>
 </plugins>
</pluginManagement>

Appendix B

[227]

The lifecycle-mapping plugin does not exist as
a Maven plugin and it is not downloaded from any
repositories. This is only a directive for the Eclipse IDE.

This way, jaxws-maven-plugin will be ignored permanently by all the developers
who have to check out the project and open it in their Eclipse IDEs. None of them
will encounter the previous error. Now that we have fixed this problem, we still
have the original one: how can we execute the wsimport goal? In this case, we have
to manually launch the Maven build from the Debug As… or Run As… menus. The
Maven process will execute all the phases of the lifecycle with their bindings, as we
ran it from the command line. We have to remember to launch the Maven execution
every time we change the WSDL descriptor, in order to keep the Java sources up to
date. Unfortunately, there is still another problem to be solved: the Eclipse IDE does
not see the generated sources under target/generated-sources/wsimport and
so we cannot use them in the project as we might get a lot of compilation errors in
the IDE. Of course the Maven build process invoked manually will succeed, but
we want to work on our project within Eclipse and we cannot accept a "broken"
Java project. We can solve this issue using a workaround that consists of declaring
buid-helper-maven-plugin in our POM as follows:

<build>
[…]
<plugins>
[…]
<plugin>
 <groupId>org.codehaus.mojo</groupId>
 <artifactId>build-helper-maven-plugin</artifactId>
 <version>1.8</version>
 <executions>
 <execution>
 <phase>generate-sources</phase>
 <goals>
 <goal>add-source</goal>
 </goals>
 <configuration>
 <sources>
 <source>target/generated-sources/wsimport</source>
 </sources>
 </configuration>
 </execution>
 </executions>
</plugin>

Maven Integration for Eclipse

[228]

The Build Helper Maven plugin allows you to insert additional source directories
in your projects. While we can define multiple directories for resources and web
resources, the source directory is unique. There will not be a need for this plugin if
we used Maven only from the command line, because the source directories added
in the generate-sources phase are considered by the compiler plugin. As Eclipse is
ignoring the jaxws-maven-plugin, it does not know anything about its output
source directory, but it can consider the additional source directory defined through
build-helper-maven-plugin. For its part, the Build Helper plugin needs a
connector, which can be found on the Eclipse Marketplace. The final result is shown
in the following screenshot:

An additional source directory is recognized, thanks to the Build Helper
Maven Plugin.

Managing Java EE projects
The Maven Integration for Eclipse provides a number of m2e connectors that
configure our Maven Java EE projects in the Web Tools Project (WTP) environment.
These integration features add the needed project facets to WAR, EJB, and EAR
projects. Finally, the m2e plugin supports us in converting Eclipse WTP projects to
Maven Java EE projects.

Appendix B

[229]

Ultimately, a Maven Java EE project can be treated as an Eclipse WTP project and can
be deployed and debugged locally in the Eclipse IDE. All we have to do is click on
the Add and Remove… menu item of any server defined in the workspace, and add
the desired project to the server, as shown in the following screenshot:

Adding Maven projects to an application server

The consequence of this operation is that the moved resources will be deployed on
the selected application server. This happens immediately if the server is running;
otherwise, it will happen when the server is started.

Maven Global Settings
Maven's configuration can be easily customized by working with the
settings.xml file. There are two locations where we can find the file:

• The Maven global settings: $M2_HOME/conf/settings.xml
• The user's settings: ${user.home}/.m2/settings.xml

If both locations exist, the content will be merged, but the user's settings get
the highest priority.

The settings.xml file
Generally, the settings.xml file holds the following elements:

• The location of the local repository
• The default user interaction policy
• The servers' configurations
• The profiles to use
• Other issues about plugins and mirrors not discussed in this book

The following code shows a simple user's settings.xml file:

<settings xmlns="http://maven.apache.org/SETTINGS/1.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/SETTINGS/1.0.0
 http://maven.apache.org/xsd/settings-1.0.0.xsd">

 <localRepository>
 ${user.home}/.m2/repository
 </localRepository>
 <interactiveMode>true</interactiveMode>

Maven Global Settings

[232]

 <usePluginRegistry>false</usePluginRegistry>
 <offline>false</offline>

</settings>

Sometimes, especially on a remote organization's build server, you might need to
change the default local repository location since the partitioning for the current user
is too small. The following code shows how to change our default settings.xml file:

[…]
<localRepository>
 /my-high-space-disk/maven-repo
</localRepository>

<interactiveMode>false</interactiveMode>
[…]

It is also a good idea to set the interactiveMode tag to false so as to prevent any
request from Maven on a build server (check out the Continuous integration and
delivery with Hudson or Jenkins section of Chapter 5, Continuous Integration and Delivery
with Maven).

Servers
In the servers section, we can specify some important deployment settings such as
the username and password of the remote repository (refer to Chapter 5, Continuous
Integration and Delivery with Maven). The following lines define the username and
password as per the nexus server:

[…]
<servers>
 <server>
 <id>nexus</id>
 <username>admin</username>
 <password>admin123</password>
 </server>
</servers>
[…]

Appendix C

[233]

Proxies
Maven needs an Internet connection to download dependent artifacts or plugins.
If the network of your organization is controlled by a proxy, you need to define the
proxies on settings.xml:

[…]
<proxies>
 <proxy>
 <active>true</active>
 <protocol>http</protocol>
 <host>myproxy</host>
 <port>8080</port>
 <username>mydomain\myuser</username>
 <password>mysecret</password>
 <nonProxyHosts>localhost,my-server</nonProxyHosts>
 </proxy>
 <proxy>
 <active>true</active>
 <protocol>https</protocol>
 <host>myproxy</host>
 <port>8081</port>
 <username>mydomain\myuser</username>
 <password>mysecret</password>
 <nonProxyHosts>localhost,my-server</nonProxyHosts>
 </proxy>

</proxies>
[…]

The actual version of Maven doesn't support automatic
proxy through the PAC script.

Profiles
The settings.xml file provides a fine-grained mechanism to control profiles.
Profiles are extensively described in Chapter 4, Managing the Code; a profile can
be easily activated through the –P parameter:

$ mvn clean install –P myprofile

Maven Global Settings

[234]

A profile can also be defined using the activeByDefault element. It is possible to
activate a profile through the settings.xml file. The following code activates the
build-jdk5 profile when you run Maven under JDK 5:

[…]
<profiles>
 <profile>
 <id>build-jdk5</id>
 <activation>
 <activeByDefault>false</activeByDefault>
 <jdk>1.5</jdk>
 </activation>
 </profile>
</profiles>
[…]

The following code sets the delivery-host variable if a target-env property is dev:
[…]
<profiles>
 <profile>
 <id>dev</id>
 <activation>
 <property>
 <name>target-env</name>
 <value>dev</value>
 </property>
 </activation>
 <properties>
 <delivery-host>my-dev-host</delivery-host>
 </properties>
 </profile>
</profiles>
[…]

Prior to Maven's compile phase, you can test the active profiles launching with the
following command line:

$ mvn help:active-profiles

We should get the following output:

Active Profiles for Project 'com.packt.examples:transp-acq-ear:1.0':

 Dev

 Prod

The following profiles are active:

 Dev

Maven Short
References – Common

Commands and Archetypes
"Imagination is more important than knowledge..."

 Albert Einstein

This chapter summarizes the most important commands and concepts covered in
the book, and it provides a textual mind map of Maven. The first section summarizes
Maven's commands and related parameters covered during the book. The second
section reports the complete list of Maven's variables. The last paragraph shows
Maven's lifecycle.

Commands
Maven can be executed by the command line to build, check dependencies and
code, deploy, and release artifacts. A complete explanation of these commands
can be found at http://maven.apache.org/; the following subsections explain
only the most common commands.

Build
Maven will clean the workspace, compile, and install on the local repository:

$ mvn clean install

http://maven.apache.org/

Maven Short References – Common Commands and Archetypes

[236]

Or, alternatively, you can specify the pom.xml file's name:

$ mvn clean install –f pom.xml

This command is the standard Maven call.

$ mvn clean install –f my_pom.xml

Given the specified POM, Maven will clean the workspace, compile, and install on
the local repository. Also refer to Chapter 2, Core Maven Concepts; Chapter 3, Writing
Plugins; and Chapter 5, Continuous Integration and Delivery with Maven.

$ mvn clean install -DskipTests

Maven will skip all tests (Surefire Plugin and Failsafe Plugin). Also refer to Chapter
3, Writing Plugins and Chapter 5, Continuous Integration and Delivery with Maven.

$ mvn --non-recursive clean compile

Or you can use a short notation:

$ mvn -N clean compile

Maven will clean the workspace and will compile, but it does not recurse into
subprojects. It is useful to install the parent POM avoiding submodules compiling:

$ mvn -U clean compile

Maven will clean the workspace, compile, and update the local repository:

$ mvn clean install –pl my_artifact -am

Given the artifact ID, Maven will clean the workspace, compile, and install the
module specified and all snapshot dependencies on the local repository. Also refer
to Chapter 3, Writing Plugins, and Chapter 5, Continuous Integration and Delivery with
Maven. It is useful to install a specific artifact avoiding the aggregator POM.

Deploy and release
Deploy the artifact on the remote repository configured (see the
distributionManagement tag) into the given POM or parent POM
or passed as parameters:

$ mvn deploy

Or, alternatively, you can specify to deploy the artifacts at the end of the
multimodule build:

$ mvn deploy –DdeployAtEnd=true

Appendix D

[237]

You can also specify the final destination:

$ mvn deploy:deploy –DaltDeploymentRepository=http://myhost

Also refer to Chapter 2, Core Maven Concepts, and Chapter 5, Continuous Integration and
Delivery with Maven. If the repository requires user access, configure the settings.
xml file. The deployAtEnd parameter is useful for multimodules since Maven will
deploy all project reactors at the end of the build phase:

$ mvn release:clean release:prepare

Rollback the action:

$ mvn release:rollback

The preceding command performs the release preparation (Maven release plugin) or
the rollback (also refer to Chapter 5, Continuous Integration and Delivery with Maven).

$ mvn –-batch-mode -f MyMultiModule_pom.xml \

-DallowTimestampedSnapshots=true -DignoreSnapshots=true \

-DreleaseVersion=0.0.2 \

release:clean release:prepare

The preceding command performs the release preparation (Maven release plugin)
setting the current release version to 0.0.2 of the given multimodule POM (refer to
Chapter 5, Continuous Integration and Delivery with Maven):

$ mvn scm:checkin

Or you can update the current workspace with:

$ mvn scm:update

The preceding command performs the commit or update from the current SCM (SVN
and GIT) repository (refer to Chapter 5, Continuous Integration and Delivery with Maven).

Android
Maven shows the available devices, deploys the application, and launches the
Android emulator:

$ mvn android:devices

$ mvn android:deploy

$ mvn android:run

Maven Short References – Common Commands and Archetypes

[238]

Execute the following command to show all the available options:

$ mvn android:help

Miscellaneous
The following command shows the plugin's details (refer to Chapter 2, Core
Maven Concepts):

$ mvn help:describe -DgroupId=MyGroupId \

 -DartifactId=MyPlugin \

 -Dversion=0.0.0

Generate a text reporting the project's dependency tree:

$ mvn dependency:tree

You can customize the verbosity through the following command:

$ mvn dependency:tree -Dverbose -Dincludes=MyLibrary

Through the includes parameter, we can filter only the specified packages (refer to
Chapter 2, Core Maven Concepts).

$ mvn dependency:purge-local-repository

This goal is meant to delete all of the dependencies for the current project from the
local repository.

$ mvn help:active-profiles

This goal shows the active profiles (refer to Chapter 4, Managing the Code).

$ mvn site

This goal generates the reports (site or FindBugs or PMD) on the target directory.

$ mvn assembly:single

This goal is executed to package the project in conjunction with the Assembly Plugin.

$ mvn package

This goal executes a custom assembly described within the descriptor file (refer to
Chapter 4, Managing the Code).

Appendix D

[239]

Archetypes
Archetypes are templates for generating projects. The following list reports the most
common archetypes used in this book:

$ mvn archetype:create \

 -DgroupId=com.packt.myexamples \

 -DartifactId=MyProject

Maven generates a simple project:

$ mvn archetype:generate \

-DarchetypeGroupId=org.apache.maven.archetypes \

-DarchetypeArtifactId=maven-archetype-plugin \

-DarchetypeVersion=1.2

Maven generates a simple project within a class called MyMojo.java with the default
method implemented. The generated structure is:

project

|-- pom.xml

`-- src

 `-- main

 `-- java

 `-- MyMojo.java

$ mvn archetype:generate \

-DarchetypeGroupId=org.apache.maven.archetypes \

-DarchetypeArtifactId=maven-archetype-web

The archetype generates a web application project:

$ mvn archetype:generate \

-DarchetypeArtifactId=android-quickstart \

-DarchetypeGroupId=de.akquinet.android.archetypes \

-DarchetypeVersion=0.1.0 -DgroupId=MyAndroidProject \

-DartifactId=MyAndroidArtifact

Maven generates an Android archetype.

Maven Short References – Common Commands and Archetypes

[240]

Maven variables
Using Maven's variables is an easy way to customize your pom.xml file
automatically. The following table reports a complete list of these variables:

Variables Description
${project.name} This is the built-in property that contains the

name of the project.
${project.artifactId} This is the built-in property that contains the

unique identifier of the artifact.
${project.description} This is the built-in property that contains the

description of the project.
${project.groupId} This is the built-in property that contains the

unique identifier of the group.
${project.baseUri} This is the built-in property that contains the

URI of the project.
${project.version} This is the built-in property, equivalent to

${version}, containing the version of the
project.

${project.parent.version}

${project.parent.groupId}

These are the built-in properties that contain
the version or the group ID of
the parent POM.

${basedir} This is the built-in property representing the
directory in which the pom.xml file is stored.

${project.build.directory} This is a property, defined in the central
Maven's POM, containing the path of the
build directory. The default value is target.

${project.build.
sourceDirectory}

${project.build.
scriptSourceDirectory}

${project.build.
testSourceDirectory}

This is a set of properties, containing the path
of Java/script sources.

${project.build.
outputDirectory}

${project.build.
testOutputDirectory}

This is a set of properties, defined in the
central Maven's POM, containing the
directory in which class files are stored
during the build process. The default value is
target/classes.

${project.build.finalName} This is the built-in property containing the
final name of the file created when the built
project is packaged.

Appendix D

[241]

Variables Description
${settings.localRepository} This is an environment variable, containing

the Maven2 installation folder.
${env.M2_HOME} This is an environment variable containing

the Maven2 installation folder.
${env.HOME} This is the built-in property containing the

user's home directory.
${env.PATH} This is the built-in property containing the

current path in which Maven is running.
${env.JAVA_HOME} This is an environment variable specifying the

path to the current
JRE_HOME folder.

${ENV.*} Through this suffix, we can access the OSes
environment variables.

${settings.*} Through this suffix, we can access the
settings.xml variables.

${java.home} or ${java.version}
or ${os.version} or ${user.home}
or ${user.name}

The Java environment variables are accessible
by Maven. Here, we report the most common
Java environment's variables.

The default and clean Maven lifecycle
Maven's lifecycle is responsible for the build process. The default phases are
described in the following table:

Phase Actions

validate Validate the project and the directives provided

initialize Read and set properties or create directories
generate-sources Generate sources for the compilation

process-sources Process source code; for example, filter values
generate-resources Generate resources for the compilation

process-resources Filter the resource files and copy them in the output directory

compile Compile the source code

process-classes Process classes just compiled; for example, bytecode
instrumentation

generate-test-
sources

Generate sources for the test

Maven Short References – Common Commands and Archetypes

[242]

Phase Actions

process-test-
sources

Process source code for the test; for example, filter values

generate-test-
resources

Generate resources for the test

process-test-
resources

Filter the test resource files and copy them in the test
output directory

test-compile Compile the test source code
process-test-
classes

Process classes just compiled for test; for example, bytecode
instrumentation

test Run the unit tests
prepare-package Execute operations before packaging
package Produce the packaged artifact (JAR, WAR, and EAR)
pre-integration-
test

Perform operations before the integration tests; for example,
start a server

integration-test Launch integration tests
post-integration-
test

Perform operations after the integration tests; for example,
stop a server

verify Verify the correctness of the package just created
install Install the package in the local repository so that other

projects can use it as a dependency
deploy Install the package in a remote repository

The clean phases are described in the following table:

Phase Actions
preclean Preclean phase
clean Remove files generated from the previous build
postclean Finalize the clean phase

Index
Symbols
${basedir}, Maven variables 240
${descriptorDir} variable 110
${env.HOME}, Maven variables 241
${env.JAVA_HOME}, Maven variables 241
${env.M2_HOME}, Maven variables 241
${ENV.*}, Maven variables 241
${env.PATH}, Maven variables 241
${java.home}, Maven variables 241
${java.version}, Maven variables 241
${project.artifactId}, Maven variables 240
${project.build.directory}, Maven

variables 240
${project.build.finalName}, Maven

variables 240
${project.build.outputDirectory}, Maven

variables 240
${project.build.scriptSourceDirectory},

Maven variables 240
${project.build.sourceDirectory}, Maven

variables 240
${project.build.testOutputDirectory},

Maven variables 240
${project.build.testSourceDirectory},

Maven variables 240
${project.description}, Maven variables 240
${project.parent.groupId}, Maven

variables 240
${project.parent.version}, Maven

variables 240
${project.version}, Maven variables 240
${property-name} syntax 51
${settings.localRepository}, Maven

variables 241

${settings.*}, Maven variables 241
${user.home}, Maven variables 241
${user.name}, Maven variables 241
-am parameter 63
-Ddetail option 34
-Ddetail parameter 28
@Mojo annotation

about 76
requiresOnline 76
requiresProject 76
threadSafe 76

@Parameter annotation 77
-pl parameter 63
<profiles> element 50
<proxies> element 50
<servers> element 50

A
activations element 101
aggregate directive 122
aggregate POMs 62, 63
Almost Plain Text (APT) 126
Android application

AndroidManifest file, creating 179, 180
AndroidManifest file, modifying 179, 180
creating 178
creating, with archetype 178
Maven plugin goals, building with 185
simple Maven POM file, defining 181, 182

Android connector, Eclipse integration
installing 196

Android Developer Tools (ADT) 196
Android emulator

launching 237, 238

[244]

AndroidManifest file
creating 179, 180
modifying 179, 180

Android Maven Plugin
prerequisites 177

Ant
about 138, 139
Ant-Maven integration 140
custom tasks 139
installing 138
Maven-Ant integration 139, 140
tasks, URL 139

Ant-Maven integration 140, 141
Ant tasks

else 139
if 139
maven-ant 139
Svnant 139
then 139

Apache Ant. See Ant
Apache Maven 199
API v4

library, compatibility 186
archetype

about 239
used, for creating Android application 178

archive
building, through Assembly

plugin 107, 108

B
basedir property 77
BatchHandler 106
best practices, POMs

about 62
aggregate POMs 62, 63
dependency management 63-65
plugin management 65, 66

binaries element 109
bin descriptor 108
bug detector 194, 195
bug fixing

about 162
MantisBT 163-165

C
central POM, properties

${basedir} 79
${env.M2_HOME} 79
${java.home} 79
${project.build.directory} 79
${project.build.finalName} 79
${project.build.outputDirectory} 79
${project.name} 79
${settings.localRepository} 79
${version} 79

CID
about 130
Build Phase 131
Hudson, configuring 148, 149
Hudson, installing 147
Hudson, working with 150-153
key concepts 130
with Hudson 147
with Jenkins 147

clean 19
clean lifecycle, phases

clean 26
postclean 26
preclean 26

commands, Maven
Android emulator, launching 237, 238
build 235
deploy 236
miscellaneous 238
release 236
URL 235

compatibility library
for API v4 186

compile phase, Maven 241
compile scope 38
component, transportation project

selecting, to build 166-169
containerDescriptorHandler 108
Continuous Delivery 129
Continuous Integration 129
Continuous Integration and

Delivery. See CID

[245]

Continuous Integration
Management (CIM) 118

custom plugin
implementations 93-97
mantis-maven-plugin 93

D
default 19
default bindings 31, 32
default lifecycle 20-26
default phases, Maven lifecycle

compile 241
deploy 242
generate-resources 241
generate-sources 241
generate-test-resources 242
generate-test-sources 241
initialize 241
install 242
integration-test 242
package 242
post-integration-test 242
pre-integration-test 242
prepare-package 242
process-classes 241
process-resources 241
process-sources 241
process-test-classes 242
process-test-resources 242
process-test-sources 242
test 242
test-compile 242
validate 241
verify 242

dependencies
declaring 185
dependency inheritance 46
dependency scopes 38-41
dependency tree 43, 44
effective POM 46-49
managing 37, 221
POM file, used with 187
super POM 46-49
transitive dependencies 43-45
version ranges 42

dependency inheritance 46
dependency management 63-65
dependency scopes

about 38-41
compile 38
provided 38
runtime 38
system 38
test 38

dependency tree 43, 44
deployAtEnd parameter 237
deploy phase, Maven 242
description tags, Maven POM file 183
descriptor file 107, 108
descriptor file, Maven Assembly

Plugin 108, 109
directed acyclic graph (DAG) 199
domain-specific language (DSL) 199

E
EAR, packaging type

about 31
default bindings 31

Eclipse
URL 11

Eclipse integration
about 196
Android connector, installing 196
Mavenized Android Project 196

EE applications
building 54
enterprise applications, building 55-60
WEB applications, building 54, 55

effective POM 46-49
EJB, packaging type

about 30
default bindings 30

enterprise applications
building 55-60

environment, Maven Assembly Plugin
fitting to 106, 107

environment properties 51
excludes tag 112
execution-level configuration 34, 35

[246]

existing Maven projects
importing 210, 211

extreme programming (XP) 129

F
Failsafe Plugin 236
file element 103, 109
fileSet element 108
fileSets tag 110
filters 53
FindBugs 160-162

G
generate-resources phase, Maven 241
generate-sources phase, Maven 241
generate-test-resources phase, Maven 242
generate-test-sources phase, Maven 241
getPluginContext() method 80
getTestFile method 84
GIT 132
goal 19, 26
Gradle

about 199, 200
integration plugins 200
overview 199
plugins, for other languages 200
programming languages, building 200
project configuration 202-204
URL 201
used, for creating project 201
working 201

groupVersionAlignment element 109

H
Hudson

about 132
CID 147
configuring 148, 149
installing 147
Maven-Hudson integration 153, 154
URL 147
working with 149-153

Hudson, transportation project
configuring 171

I
includes directive 112
inheritance, POM file 8
initialize phase, Maven 241
install command 115
install phase, Maven 242
instrumentations 189
integration plugins, Gradle

application 200
ear 200
jetty 200
war 200

integration testing 84-87, 159, 160
Inversion of Control (IoC) 81

J
JAR, packaging type 29

about 29
default bindings 29

jar-with-dependencies descriptor 107
Javadoc

reporting 121-123
Java EE projects

managing 228, 229
jboss-as-maven-plugin 159
jdk element 103
Jenkins

about 132
CID 147
configuring 148, 149
URL 147

JIRA 118, 132
junit 72

L
lifecycle-mapping plugin 222-228
lifecycle references 31, 32
lifecycles

about 19
building 19
clean lifecycle 26
default lifecycle 20-26

lint 194, 195
local repository 24
lookupMojo method 84

[247]

M
m2e connectors 222-228
m2e plugin

about 209
settings 215, 216

Mantis
URL 68

MantisBT 118, 132-165
Mantis bug tracker 68
mantis-maven-plugin 93
Maven

about 7, 76
commands 235
variables 240

Maven 2 repository
URL 203

Maven-Ant integration 139
Maven archetype 69
Maven Assembly Plugin

about 105
descriptor file 108, 109
environment, fitting 106, 107
own archive, building through 107, 108
project configuration 109-114

Maven behavior 63
Maven build profiles

about 99, 100
profile activation 102, 103
profile, defining 100
profile structure 101
sample build profiles 103, 104

Maven central repository
URL 47

Maven Failsafe Plugin 159, 160
maven-glassfish-plugin 159
Maven Global Settings 50
Maven goals

about 26, 27
Maven help plugin 27, 28
parameters 27, 28

Maven help plugin 27, 28
Maven-Hudson integration 153

Mavenized Android Project, Eclipse
 integration 196

Maven lifecycle
clean phases 242
default phases 241

Maven Local Settings 50
Maven plain Old Java Object. See Mojo
maven-plugin-annotation

about 72
URL 72

maven-plugin-api 72
maven-plugin-plugin 87-93
Maven plugins

adding 33
configuring 33
execution-level configuration 34, 35
goals 184, 185
plugin-level configuration 33, 34

Maven POM file
defining 181, 182
description tags 183
Maven plugin goals, building with 184

Maven projects
building 213, 214
checking, from SCM repositories 211, 212

Maven properties
about 51, 52
environment properties 51
project properties 51
settings properties 51
system properties 51

Maven Release Plugin 143-145
Maven repository

deploying 204, 205
Maven SCM Plugin

about 142
goals 143

Maven settings
about 50
URL 50

Maven site
skinning 124, 125
URL 31, 37

[248]

Maven Site Plugin
about 114
project site creation, manually 114-119
simple site, creating 114

maven-surefire-plugin 14
maven-testing-plugin-harness 72
Maven variables

${basedir} 240
${ENV.*} 241
${env.HOME} 241
${env.JAVA_HOME} 241
${env.M2_HOME} 241
${env.PATH} 241
${java.home} 241
${java.version} 241
${os.version} 241
${project.artifactId} 240
${project.baseUri} 240
${project.build.directory} 240
${project.build.finalName} 240
${project.build.outputDirectory} 240
${project.build.scriptSourceDirectory} 240
${project.build.sourceDirectory} 240
${project.build.testOutputDirectory} 240
${project.build.testSourceDirectory} 240
${project.description} 240
${project.groupId} 240
${project.name} 240
${project.parent.groupId} 240
${project.parent.version} 240
${project.version} 240
${settings.*} 241
${settings.localRepository} 241
${user.name} 241
about 240

modularity, POM file 9
moduleSet 108
Mojo

about 76
implementing 76-80
testing 80-82

multimodule component, transportation
project

preparing 169-171
multimodule version, transportation project

preparing, with flat structure 172-174

N
Nexus(Nexus Open Source)

about 132
access level 138
customizing 134
installation, testing 134
installing 133
installing, on Unix-based OS 133
installing, on Windows 133
server, configuring 134
server, testing 134
URL 133

O
offline flag 50
overriding, POM file 8

P
package

signing 191-194
zipaligning 191-194

package phase, Maven 242
packaging types

about 28
default bindings 31, 32
EAR 31
EJB 30
JAR 29
lifecycle references 31, 32
POM 30
WAR 29

phases, default lifecycle
compile 20
install 20
package 20
process-resources 20
process-test-resources 20
test 20
test-compile 20

plugin documentation
URL 36

plugin-level configuration 33, 34
plugin management 65, 66

[249]

plugins
about 67
developing 68-75
managing 221

POJO (Plain Old Java Object) 76
POM

managing 216-218
POM file

about 8
inheritance 8
modularity 9
overriding 8
repository 9
with dependencies 187

POM, packaging type
about 30
default bindings 30

POM, project
creating 206

pom.xml files 86
post-integration-test phase, Maven 242
postclean phase, Maven 242
pre-integration-test phase, Maven 242
preclean phase, Maven 242
prepare-package phase, Maven 242
process-classes phase, Maven 241
process-resources phase, Maven 241
process-sources phase, Maven 241
process-test-classes phase, Maven 242
process-test-resources phase, Maven 242
process-test-sources phase, Maven 242
profile activation 102, 103
profiles, settings.xml file 234
profile structure 101
project. See transportation project
project configuration, Gradle 202-204
project configuration, Maven Assembly

Plugin 109-114
project descriptor 108
Project Object Model (POM) 8, 19
project properties 51
project site

configuring, for submodule 120
content 126, 127
creating 114-119
Javadoc, reporting 121-123
Maven sites, skinning 124, 125

provided scope 38
proxies, settings.xml file 233

R
release policies

solving 68
releases

enabling 61
release, transportation project

finalizing 174, 175
remote repository

deploying on 145, 146
repositories

configuring 60, 61
managing 135
official repositories, configuring 135, 136
releases, enabling 61
snapshots, enabling 61
User Managed Repository 136, 137

repository element 109
repository indexes

managing 219-221
repository management server

about 132, 135
advantages 133
Nexus, customizing 134
Nexus installation, testing 134
Nexus, installing 133
Nexus server, configuring 134
Nexus server, testing 135

repository, POM file 9
resource filtering 51-53
RoboGuice 2 185
runtime scope 38

S
sample build profiles 103, 104
SCM

about 119, 132
integration 141
Maven Release Plugin 143-145
Maven SCM Plugin 142
Maven SCM Plugin, goals 143

SCM repositories
Maven projects, checking 211, 212

[250]

scopes, Maven
compile 203
runtime 203
testCompile 203
testRuntime 203

servers, settings.xml file 232
settings properties 51
settings.xml file

about 86, 231, 232
elements 231
locations 231
profiles 233, 234
proxies, defining 233
servers 232

setUp method 81
shared development environment

aligning 159
site

about 19
creating 114
lifecycle 26

snapshots
enabling 61

software automation
testing 154-156

Software Configuration
Management. See SCM

sources element 108
src descriptor 108
static code analysis tools

about 160-162
cobertura-maven-plugin 161
findbugs-maven-plugin 160
maven-checkstyle-plugin 160
maven-pmd-plugin 161

Subclipse
URL 211

submodule
site, configuring for 120

super POM 46-49
Surefire Plugin 236
system properties 51
system scope 38

T
test-compile phase, Maven 242
testing

best practices 82-84
test phase, Maven 242
test profile 189, 190
test report

scheduling 156-158
test scope 38
tomcat7-maven-plugin 159
transitive dependencies 43-45
transportation-acq-ear 10
transportation-acq-ejb 10
transportation-acq-war 10
transportation-android-apk 10
transportation-common-jar 10
transportation project

about 9-11, 165
creating 11-13
creating, with Gradle 202
component, selecting to build 166-169
functional architecture 9, 10
Hudson, configuring 171
issues 166
multimodule component, version

preparing 169-171
multimodule version, preparing with

flat structure 172, 173
organization 166
POM, creating 206
release, finalizing 174, 175
structuring 13-17
transportation-acq-ear 10
transportation-acq-ejb 10
transportation-acq-war 10
transportation-android-apk 10
transportation-common-jar 10
transportation-reporting-ear 10
transportation-reporting-ejb 10
transportation-reporting-war 10
transportation-statistics-batch-jar 10

transportation-reporting-ear 10
transportation-reporting-ejb 10
transportation-reporting-war 10
transportation-statistics-batch-jar 10

[251]

U
unit tests 154
Unix-based OS

Nexus, installing on 133
unpackOptions element 109
url tag 116
User Managed Repository 136, 137
user repositories, Nexus

3rd party 137
releases 137
snapshots 137

V
validate phase, Maven 241
verify phase, Maven 242
version ranges 42

W
wagon-ssh-external plugin 159
WAR, packaging type

about 29
default bindings 29

WEB applications
building 54, 55

weblogic-maven-plugin 159
Web Tools Project (WTP) 228
Windows

Nexus, installing on 133

Z
ZIP file

backup directory 106
bin directory 106
conf directory 106
etc directory 106
lib directory 106
libRun directory 106
log directory 106

	Cover
	Copyright
	Credits
	About the Authors
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Maven and its Philosophy
	Core concepts of Maven
	Introduction to Transportation Project
	Creating the project
	Structuring the project
	Summary

	Chapter 2: Core Maven Concepts
	Build lifecycles
	The default lifecycle
	The clean lifecycle

	Maven goals
	Getting help on plugin goals and parameters

	Packaging types
	JAR
	WAR
	POM
	EJB
	EAR
	Built-in lifecycles and default bindings

	Adding and configuring Maven plugins
	Plugin-level configuration
	Execution-level configuration

	Managing dependencies
	Dependency scopes
	Dependency version ranges
	Transitive dependencies and the dependency tree
	Dependency inheritance
	The super POM and the effective POM

	Maven settings
	Properties and resource filtering
	Maven properties
	Resource filtering

	Building EE applications
	Building WEB applications
	Building enterprise applications

	Configuring repositories
	Enabling releases and snapshots

	Best practices
	Aggregate POMs
	Dependency management
	Plugin management

	Summary

	Chapter 3: Writing Plugins
	A problem to solve
	Developing a new plugin
	Implementing Mojo
	Testing Mojo
	Best practices for testing
	Integration testing
	maven-plugin-plugin
	Custom plugin – mantis-maven-plugin
	Custom plugin implementations

	Summary

	Chapter 4: Managing the Code
	Maven build profiles
	What is a profile?
	Structure of a profile
	Profile activation
	Sample build profiles

	Maven Assembly Plugin
	Fitting to environment
	Building your own archive through the Assembly plugin
	The descriptor file
	The project configuration

	Maven Site Plugin
	Creating a simple site
	Creating your own project site manually
	Configuring the site for a submodule
	Reporting the Javadoc
	Skinning Maven sites
	Maven site content

	Summary

	Chapter 5: Continuous Integration and Delivery with Maven
	Key concepts of continuous integration and delivery
	The repository management server
	Installing Nexus
	Installing Nexus on a Unix-based OS
	Installing Nexus on Windows

	Customizing Nexus
	Testing the Nexus installation
	Configuring the Nexus server
	Testing the Nexus server
	Managing repositories
	Configuring official repositories
	The User Managed Repository

	Nexus access-level security

	Integrating Ant
	Installing Ant
	Understanding Ant
	Ant custom tasks
	Maven-Ant integration
	Ant-Maven integration

	SCM integration
	Maven SCM Plugin
	Maven Release Plugin

	Deploying on the remote repository

	Continuous Integration and Delivery with Hudson or Jenkins
	Installing Hudson
	Configuring Hudson
	Working with Hudson
	Working with Hudson interactively
	Maven-Hudson integration to deliver a new artifact
	Testing software automation
	Scheduling a test reporting
	Integration tests
	Static code analysis tools (FindBugs)

	Bug fixing
	A case study with MantisBT

	A more realistic case – the transportation project
	Choosing the component to build
	Preparing the version of a multimodule component
	Configuring Hudson
	Preparing the version of a multimodule with a flat structure (an alternative way)
	Finalizing the release

	Summary

	Chapter 6: Maven Android
	Prerequisites
	Creating your own Android application with an archetype
	Creating your own Android application
	Creating or modifying the AndroidManifest file
	Defining a simple Maven POM file
	Description tags
	Building with Maven plugin goals

	Declaring dependencies
	A compatibility library for API v4
	The final POM file with dependencies

	Useful instrumentations to test, sign,
and zipalign
	Test profile
	Signing and zipaligning the package
	Bug detector (Lint)

	Eclipse integration
	Installing the Android connector
	Mavenized Android Project

	Summary

	Appendix A: Integrating Maven – Gradle
	What is Gradle?
	How Gradle works
	Creating a simple project with Gradle
	Gradle's project configuration
	Deploying on the Maven repository
	Creating the project's POM

	Appendix B: Maven Integration for Eclipse
	Importing existing Maven projects
	Checking out Maven projects from SCM repositories
	Building Maven projects
	m2e plugin settings
	Managing the POM
	Managing repository indexes
	Managing dependencies and plugins
	m2e connectors and lifecycle mapping
	Managing Java EE projects

	Appendix C: Maven Global Settings
	The settings.xml file
	Servers
	Proxies
	Profiles

	Appendix D: Maven Short References – Common Commands and Archetypes
	Commands
	Build
	Deploy and release
	Android
	Miscellaneous

	Archetypes
	Maven variables
	The default and clean Maven lifecycle

	Index

