
www.allitebooks.com

http://www.allitebooks.org

Microsoft Dynamics
AX 2012 R3 Development
Cookbook

Over 80 effective recipes to help you solve real-world
Microsoft Dynamics AX development problems

Mindaugas Pocius

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

FM-2

Microsoft Dynamics AX 2012 R3
Development Cookbook

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its
dealers and distributors will be held liable for any damages caused or alleged to be
caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: December 2009

Second edition: May 2012

Third edition: April 2015

Production reference: 1230415

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78528-169-3

www.packtpub.com

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

FM-3

Credits

Author
Mindaugas Pocius

Reviewers
Palle Agermark

Pankaj Chaturvedi

Fatih Demirci

Stefan Ebert

Rodrigo Fraga

Kishor Jadhav

Umesh Pandit

Commissioning Editor
Amarabha Banerjee

Acquisition Editor
Vinay Argekar

Content Development Editor
Amey Varangaonkar

Technical Editor
Ankita Thakur

Copy Editors
Charlotte Carneiro

Dipti Kapadia

Project Coordinator
Suzanne Coutinho

Proofreaders
Simran Bhogal

Bridget Braund

Maria Gould

Paul Hindle

Indexer
Tejal Soni

Production Coordinator
Manu Joseph

Cover Work
Manu Joseph

www.allitebooks.com

http://www.allitebooks.org

FM-4

About the Author

Mindaugas Pocius is currently a freelance Dynamics AX technical and functional consultant
and trainer at DynamicsLab Limited (www.dynamicslab.com). The company specializes in
providing development, consulting, and training services for Microsoft Dynamics AX resellers
and customers.

Mindaugas started his IT consulting career back in 2001 while he was still pursuing his
master's degree in information technology at Kaunas University of Technology in Lithuania.
Since then, he has become a recognized Microsoft Certified Professional for Dynamics AX
in all major areas, such as development, configuration and installation, financials, projects,
and trade and logistics. He is also a Certified Microsoft Trainer for Dynamics AX and has
delivered numerous Dynamics AX trainings.

Mindaugas has participated in over 20 Dynamics AX implementations. He has held a wide
range of development, consulting, and lead roles while always maintaining the significant
role of a business application developer.

In December 2009, he released his first book, Microsoft Dynamics AX 2009 Development
Cookbook, and then in May 2012, its second edition, Microsoft Dynamics AX 2012
Development Cookbook, both of which are published by Packt Publishing.

First of all, I would like to thank my wife, Rasa, and my two boys, Dominykas
and Augustas, for their support and understanding during the long hours
that I spent on this book. I also want to apologize for the time I've stolen
from them to make this book a reality.

Secondly, I wish to thank all the reviewers, who provided very valuable
comments to improve the code in this book and who helped to make
the code's explanations clearer.

Lastly, a special thanks goes to the Packt Publishing team who made this
book possible.

www.allitebooks.com

www.dynamicslab.com
http://www.allitebooks.org

FM-5

About the Reviewers

Palle Agermark has worked as a developer and technical consultant with Concorde XAL
and Microsoft Dynamics AX for more than 20 years. He has worked for a number of years at
the Microsoft Development Center, Copenhagen, primarily developing the financial, accounts
payable, and accounts receivable modules; he has also worked on other things, such as the
Unit Test framework.

Currently, Palle works for one of Scandinavia's largest Microsoft Dynamics AX partners, EG,
in Copenhagen.

In 2006, Palle wrote a chapter titled Extending Microsoft Dynamics AX for Inside Microsoft
Dynamics AX 4.0, Microsoft Press. He has been a reviewer of several books from Packt
Publishing, including Microsoft Dynamics AX 2012 R2 Services.

I'd like to thank the author and publisher for putting their time and money
into this excellent book, which will be very helpful to the entire Dynamics AX
developer community.

Pankaj Chaturvedi is an experienced Dynamics AX technical consultant. He is currently
working with Sonata Software Ltd. in Bangalore, India.

Pankaj began working with AX in 2006 and has a wide range of expertise, both technical and
functional. Apart from Dynamics AX, he also works with other Microsoft technologies, including
Microsoft NAV, SharePoint, Reporting Services, Analysis Services, and Visual Studio.

Pankaj has worked on many Dynamics AX implementations, which specialize in business
solutions design, X++ programming, reporting, and business intelligence. He is a Microsoft
Certified Professional for AX (development, installation, and configuration) as well as for key
modules (finance and trade and logistics). He is also a Microsoft Certified Trainer for AX.

www.allitebooks.com

http://www.allitebooks.org

FM-6

Fatih Demirci (MCT) is a technical consultant and trainer. He has been working
professionally on Dynamics AX since 2006. He has worked with many Microsoft partners
and customers. He has over 9 years of consulting experience, where he has played a variety
of roles, including senior software engineer, team leader, trainer, and technical consultant in
Dynamics AX. He is one of the cofounders of DMR Consultancy, which is the most promising
ERP consultancy company in Turkey, and he works with some of the most experienced and
creative Dynamics AX professionals.

Fatih runs a professional and technical blog at www.fatihdemirci.net, and shares his
thoughts and readings on Twitter and LinkedIn.

I would like to thank my family and friends for motivating me and for always
pushing me to do my best.

Stefan Ebert started his Dynamics AX career in 2007 after studying computer science at
Hochschule Darmstadt. As a consequence of working on IT projects for a large manufacturing
company for more than 10 years, he has a deep and wide knowledge of the company's
business and economic activities.

He is experienced in the overall software development cycle, from designing, implementing,
and integrating to testing, building, and deploying applications and tools. He is a thorough
professional and loves topics such as quality, performance, testing, reviewing, and version
control systems.

Stefan can be contacted via LinkedIn at http://de.linkedin.com/in/
dynamicsaxbusiness.

I would like to thank Mindaugas and Packt Publishing for letting me be a
part of the making of this book. It was a great experience.

Rodrigo Fraga has been working with Dynamics AX since 2006 and has participated in
different projects, implementing AX, across South and North America.

Currently, Rodrigo works for Hewlett-Packard, allocated at Suncor, one of the largest AX
implementations in the world.

www.allitebooks.com

www.fatihdemirci.net
http://de.linkedin.com/in/dynamicsaxbusiness
http://de.linkedin.com/in/dynamicsaxbusiness
http://www.allitebooks.org

FM-7

Kishor Jadhav is currently working as a Microsoft Dynamics AX senior technical consultant
with 42 Hertz INC. He has completed his master's degree in computer application from the
University of Mumbai, and his bachelor's degree in information technology from Vidyalankar
School of Information Technology, Mumbai.

Kishor has around 6 years of IT experience. He has worked with Godrej Infotech Ltd., Mumbai,
as a Dynamics AX technical consultant. He has a deep understanding of Microsoft Dynamics
AX ERP systems. He has worked with different versions of AX, such as AX 5.0 (AX 2009) and
AX 6.0 (AX 2012, AX 2012 R2, and AX 2012 R3). He has a good knowledge of Microsoft
technologies such as SQL, VB 6.0, C#, SSRS, and SSAS.

He can be contacted via Skype (kishorworld) or e-mail (kishoworld1@gmail.com),
and he blogs at http://kdynamics.blogspot.in.

I would like to thank Mindaugas Pocius, Suzanne Coutinho, and Packt
Publishing team for giving me the opportunity to review this book.

Umesh Pandit is a Microsoft Dynamics AX deployment senior specialist who currently works
with Hitachi Solutions, India. He has completed his master's degree in computer applications,
with first division, having specialized in ERP from Ideal Institute of Technology, Ghaziabad.

Umesh is also a Microsoft Certified Professional for Microsoft Dynamics AX 2009 Installation
and Configuration, Microsoft Dynamics AX 2012 Installation and Configuration, Server
Virtualization with Windows Server Hyper-V and System Center, Microsoft Dynamics AX 2012
Development Introduction I, Microsoft Dynamics POS 2009, Administering Microsoft SQL
Server 2012 Databases, and Implementing Microsoft Azure Infrastructure Solutions.

In the past, he has successfully reviewed Microsoft Dynamics AX 2012 Reporting Cookbook
by Kamalakannan Elangovan, Developing SSRS Reports for Dynamics AX by Mukesh Hirwani,
Microsoft Dynamics AX 2012 Programming: Getting Started by Mohammed Rasheed and
Erlend Dalen, and Reporting in TFS by Dipti Chhatrapati, all by Packt Publishing.

He has worked with top IT giants, such as KPIT Technologies, Capgemini India, and Google
India, as well as with a cable manufacturing company called Cords Cable Industries Limited.

www.allitebooks.com

http://kdynamics.blogspot.in
http://www.allitebooks.org

FM-8

Umesh has a deep understanding of ERP systems, such as Microsoft Dynamics AX and SAP.
He has worked with different versions of Microsoft Dynamic AX, starting with Axapta versions,
such as AX 3.0, AX 4.0, AX 2009, AX 2012, AX 2012 R2, AX 2012 R3, and AX 2012 R3 CU8.
He has vast knowledge of Microsoft Technologies, such as SQL 2014, CRM, TFS, Office 2013,
Windows Server 2003, Window Server 2008, Windows Server 2012, Office 365, Microsoft
Dynamics NAV, SSRS, Cubes, Management Reporter, SSAS, and Visual Studio.

He can be reached at pandit.umesh@hotmail.com, and he blogs at
http://msdynamicsaxtips.blogspot.in/.

I would like to give special thanks to my close friend Pramila who supported
me a lot, and best buddies at work—Sunil Wadhwa, Rohan Sodani, Fareeda
Begum, Aman Bhatia, Gyan Chand Kabra, Debashish Ray, Arjita Choudhury,
and Meenakshi Pandey—who have guided me and encouraged my passion.

www.allitebooks.com

http://msdynamicsaxtips.blogspot.in/
http://www.allitebooks.org

FM-9

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
 f Fully searchable across every book published by Packt
 f Copy and paste, print, and bookmark content
 f On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib
today and view 9 entirely free books. Simply use your login credentials for immediate access.

Instant updates on new Packt books
Get notified! Find out when new books are published by following @PacktEnterprise on
Twitter or the Packt Enterprise Facebook page.

www.allitebooks.com

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com
http://www.allitebooks.org

i

Table of Contents
Preface v
Chapter 1: Processing Data 1

Introduction 2
Creating a new number sequence 2
Renaming the primary key 8
Merging two records 11
Adding a document handling note 14
Using a normal table as a temporary table 17
Copying a record 19
Building a query object 23
Using a macro in a SQL statement 27
Executing a direct SQL statement 29
Enhancing the data consistency check 36
Exporting data to an XML file 40
Importing data from an XML file 43
Creating a comma-separated value file 45
Reading a comma-separated value file 48
Using the date effectiveness feature 52

Chapter 2: Working with Forms 57
Introduction 57
Creating dialogs using the RunBase framework 58
Handling a dialog event 63
Building a dynamic form 68
Adding a form splitter 73
Creating a modal form 78
Modifying multiple forms dynamically 80
Storing user selections 82

ii

Table of Contents

Using a Tree control 86
Building a checklist 97
Adding the View details link 106

Chapter 3: Working with Data in Forms 109
Introduction 109
Using a number sequence handler 110
Creating a custom filter control 113
Creating a custom instant search filter 118
Building a selected/available list 121
Preloading images 130
Creating a wizard 137
Processing multiple records 150
Coloring records 151
Adding an image to records 153

Chapter 4: Building Lookups 163
Introduction 163
Creating an automatic lookup 164
Creating a lookup dynamically 167
Using a form to build a lookup 169
Building a tree lookup 175
Displaying a list of custom options 179
Displaying custom options in another way 181
Building a lookup based on the record description 185
Building the browse for folder lookup 192
Building a lookup to select a file 196
Creating a color picker lookup 200

Chapter 5: Processing Business Tasks 207
Introduction 207
Using a segmented entry control 208
Creating a general journal 214
Posting a general journal 222
Processing a project journal 224
Creating and posting a ledger voucher 228
Changing an automatic transaction text 233
Creating a purchase order 236
Posting a purchase order 239
Creating a sales order 244
Posting a sales order 247
Creating an electronic payment format 252

iii

Table of Contents

Chapter 6: Integration with Microsoft Office 261
Introduction 261
Creating an Excel file 262
Reading an Excel file 265
Creating a Word document from a template 268
Creating a Word document with repeating elements 272
Creating a Microsoft Project file 276
Sending an e-mail using Outlook 281

Chapter 7: Using Services 285
Introduction 285
Consuming the system query service 286
Consuming the system metadata service 291
Consuming an existing document service 293
Creating a document service 297
Consuming a document service 302
Using an enhanced document service 305
Creating a custom service 310
Consuming a custom service 313
Consuming an external service 315

Chapter 8: Improving Development Efficiency 319
Introduction 319
Creating a code editor template 320
Modifying the Tools menu 325
Modifying the right-click context menu 327
Searching for an object in a development project 333
Modifying the Personalization form 336
Modifying the About Microsoft Dynamics AX dialog 340

Chapter 9: Improving Dynamics AX Performance 343
Introduction 343
Calculating code execution time 343
Writing efficient SQL statements 346
Caching a display method 348
Using Dynamics AX Trace Parser 351
Using SQL Server Database Engine Tuning Advisor 357

Index 361

v

Preface
As a Dynamics AX developer, your responsibility is to deliver all kinds of application
customizations, whether it is a small adjustment or a bespoke module. Dynamics AX is a
highly customizable system and requires a significant amount of knowledge and experience
to deliver quality solutions. One goal can be achieved in multiple ways, and there is always
the question of which way is the best.

This book takes you through numerous recipes to help you with daily development tasks.
Each recipe contains detailed step-by-step instructions along with the application screenshots
and in-depth explanations. The recipes cover multiple Dynamics AX modules, so at the same
time, the book provides an overview of the functional aspects of the system for developers.

What this book covers
The book's content is presented in nine chapters that cover various aspects of Dynamics AX.

Chapter 1, Processing Data, focuses on data manipulation. It explains how to build data
queries, how to check and modify existing data, how to read and write external files, and
how to use date effectiveness.

Chapter 2, Working with Forms, covers various aspects of building forms in Dynamics AX.
In this chapter, dialogs and their events are explained. Also, various useful features such
as splitters, tree controls, and checklists are explained here.

Chapter 3, Working with Data in Forms, basically supplements Chapter 2, Working with
Forms, and explains about data organization in forms. Examples in this chapter include
instructions about how to build filter controls on forms, process multiple records, and work
with images and colors.

Chapter 4, Building Lookups, covers all kinds of lookups in the system. The chapter starts
with a simple, automatically generated lookup, continues with more advanced ones, and
finishes with standard Windows lookups, such as the file selection dialog or color picker.

Preface

vi

Chapter 5, Processing Business Tasks, explains the usage of the Dynamics AX business logic
API. In this chapter, topics such as how to process journals, as well as purchase and sales
orders are discussed. Other features such as posting ledger vouchers, modifying transaction
texts and creating electronic payment formats are included as well.

Chapter 6, Integration with Microsoft Office, shows how Word, Excel, Outlook, and Project
applications can be integrated with Dynamics AX.

Chapter 7, Using Services, explains how to use services in Dynamics AX. The chapter covers
standard query, metadata, and document system services. It also demonstrates how to create
custom services and how to consume external services.

Chapter 8, Improving Development Efficiency, presents a few ideas on how to make daily
development tasks easier. The chapter demonstrates how to build code templates, modify the
tools and the right-click context menus, use search in development projects, and customize
the Personalization form.

Chapter 9, Improving Dynamics AX Performance, discusses how system performance can
be improved by following several simple rules. The chapter explains how to calculate code
execution time, how to write efficient SQL statements, how to properly cache display methods,
and how to use Dynamics AX Trace Parser and SQL Server Database Engine Tuning Advisor.

Exceptions and considerations
The code in this book follows the best practice guidelines provided by Microsoft, but there are
some exceptions:

 f No text labels were used to make the code clear

 f No three-letter code was used in front of each new AOT object

 f No configuration or security keys were used

 f Object properties that are not relevant to the topic being discussed are not set

Also, here are some considerations that you need to keep in mind when reading the book:

 f Each recipe only demonstrates the principle and is not a complete solution

 f The data in your environment might not match the data used in the recipes, so the
code might have to be adjusted appropriately

 f For each recipe, the assumption is that no other modifications are present in the
system, unless it is explicitly specified

 f The code might not have all the possible validations that are not relevant to the
principle being explained

Preface

vii

 f The code might have more variables than required in order to ensure that it is clear
for all audiences

 f Sometimes, unnecessary code wrapping is used to make sure the code fits into the
page width of this book and is easy readable

What you need for this book
All the coding examples were performed in a virtual Microsoft Dynamics AX 2012 R3 image
downloaded from the Microsoft CustomerSource or PartnerSource websites. The following list
of software from the virtual image was used in this book:

 f Microsoft Dynamics AX 2012 R3 (kernel: 6.3.164.0, application: 6.3.164.0)

 f Microsoft Dynamics AX Trace Parser (version: 6.3.164.0)

 f Microsoft Windows Server 2012 R2 Datacenter

 f Microsoft SQL Server 2014

 f Microsoft Office Excel 2013

 f Microsoft Office Word 2013

 f Microsoft Office Outlook 2013

 f Microsoft Office Project 2013

 f Microsoft Internet Explorer 11

 f Windows Notepad

Although all the recipes have been tested on the previously-mentioned software, they
might work on older or newer software versions without any implications or with minor
code adjustments.

Who this book is for
This book is for Dynamics AX developers primarily focused on delivering time-proven application
modifications. Although new X++ developers can use this book along with their beginner guides,
this book is more focused on people who are willing to raise their programming skills above
beginner level and, at the same time, learn the functional aspects of Dynamics AX. So, some
Dynamics AX coding experience is expected.

Sections
In this book, you will find several headings that appear frequently (Getting ready, How to do it,
How it works, There's more, and See also).

Preface

viii

To give clear instructions on how to complete a recipe, we use these sections as follows:

Getting ready
This section tells you what to expect in the recipe, and describes how to set up any software or
any preliminary settings required for the recipe.

How to do it…
This section contains the steps required to follow the recipe.

How it works…
This section usually consists of a detailed explanation of what happened in the previous section.

There's more…
This section consists of additional information about the recipe in order to make the reader
more knowledgeable about the recipe.

See also
This section provides helpful links to other useful information for the recipe.

Conventions
In this book, you will find a number of text styles that distinguish between different kinds of
information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, all Application Object Tree (AOT) object names like tables, forms, extended
data types, classes and others, folder names, filenames, file extensions, pathnames, dummy
URLs, and user input are shown as follows: "We start the recipe by adding a number sequence
initialization code into the NumberSeqModuleCustomer class."

A block of code is set as follows:

datatype.parmDatatypeId(extendedTypeNum(CustGroupId));
datatype.parmReferenceHelp("Customer group ID");
datatype.parmWizardIsContinuous(false);
datatype.parmWizardIsManual(NoYes::No);
datatype.parmWizardIsChangeDownAllowed(NoYes::Yes);
datatype.parmWizardIsChangeUpAllowed(NoYes::Yes);

Preface

ix

datatype.parmWizardHighest(999);
datatype.parmSortField(20);
datatype.addParameterType(
 NumberSeqParameterType::DataArea, true, false);
this.create(datatype);

New terms and important words are shown in bold. Words that you see on the screen,
for example, in menus or dialog boxes, appear in the text like this: "Click on Details to
view more information."

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or disliked. Reader feedback is important for us as it helps us
develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to
get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.packtpub.com
for all the Packt Publishing books you have purchased. If you purchased this book elsewhere,
you can visit http://www.packtpub.com/support and register to have the files e-mailed
directly to you.

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/diagrams used
in this book. The color images will help you better understand the changes in the output.
You can download this file from: http://www.packtpub.com/sites/default/files/
downloads/1693EN_ColorImages.pdf.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/sites/default/files/downloads/1693EN_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/1693EN_ColorImages.pdf

Preface

x

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you find a mistake in one of our books—maybe a mistake in the text or the code—we would be
grateful if you could report this to us. By doing so, you can save other readers from frustration
and help us improve subsequent versions of this book. If you find any errata, please report them
by visiting http://www.packtpub.com/submit-errata, selecting your book, clicking on
the Errata Submission Form link, and entering the details of your errata. Once your errata are
verified, your submission will be accepted and the errata will be uploaded to our website or
added to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you come
across any illegal copies of our works in any form on the Internet, please provide us with
the location address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors and our ability to bring you valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at questions@
packtpub.com, and we will do our best to address the problem.

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

1

1
Processing Data

In this chapter, we will cover the following recipes:

 f Creating a new number sequence

 f Renaming the primary key

 f Merging two records

 f Adding a document handling note

 f Using a normal table as a temporary table

 f Copying a record

 f Building a query object

 f Using a macro in a SQL statement

 f Executing a direct SQL statement

 f Enhancing the data consistency check

 f Exporting data to an XML file

 f Importing data from an XML file

 f Creating a comma-separated value file

 f Reading a comma-separated value file

 f Using the date effectiveness feature

Processing Data

2

Introduction
This chapter focuses on data manipulation exercises. These exercises are very useful when
doing data migration, system integration, custom reporting, and so on. Here, we will discuss
how to work with query objects from the X++ code. We will also discuss how to reuse macros in
X++ SQL statements and how to execute SQL statements directly in the database. This chapter
will explain how to rename primary keys, how to merge and copy records, how to add document
handling notes to selected records, and how to create and read XML and comma-separated
value (CSV) files. The chapter ends with a recipe about the date effectiveness feature.

Creating a new number sequence
Number sequences in Dynamics AX are used to generate specifically formatted numbers used
for various identification. These number sequences can be anything from voucher numbers or
transaction identification numbers to customer or vendor account codes.

When developing custom functionality, often one of the tasks is to add a new number sequence
to the system in order to support newly created tables and forms. Adding a number sequence
to the system is a two-step process. First, we create the number sequence itself; second, we
start using it in some particular form or from the code. Number sequences can be created either
manually or automatically by the wizard.

Dynamics AX contains a list of NumberSeqApplicationModule derivative classes, which
hold the number sequence's setup data for the specific module. These classes are read by the
number sequence wizard, which detects already created number sequences and proposes
to create the missing ones. The wizard is normally run as part of the application initialization.
It can also be rerun any time later when expanding the Dynamics AX functionality used. The
wizard also has to be rerun if new custom number sequences are added to the system.

In this recipe, we will do the first step, that is, add a new number sequence to the system. In a
standard application, the customer group number is not driven by a number sequence, so we
will enhance this by creating a new number sequence for customer groups. The second step
is explained later in the Using a number sequence handler recipe in Chapter 3, Working with
Data in Forms.

How to do it...
Carry out the following steps in order to complete this recipe:

1. Open the NumberSeqModuleCustomer class in the Application Object Tree (AOT)
and add the following code snippet at the bottom of the loadModule() method:
datatype.parmDatatypeId(extendedTypeNum(CustGroupId));
datatype.parmReferenceHelp("Customer group ID");
datatype.parmWizardIsContinuous(false);

Chapter 1

3

datatype.parmWizardIsManual(NoYes::No);
datatype.parmWizardIsChangeDownAllowed(NoYes::Yes);
datatype.parmWizardIsChangeUpAllowed(NoYes::Yes);
datatype.parmWizardHighest(999);
datatype.parmSortField(20);
datatype.addParameterType(
 NumberSeqParameterType::DataArea, true, false);
this.create(datatype);

Downloading the example code
You can download the example code files for all Packt books you have
purchased from your account at http://www.packtpub.com. If you
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

2. Create a new job with the following lines of code and run it:
static void NumberSeqLoadAll(Args _args)
{
 NumberSeqApplicationModule::loadAll();
}

3. Navigate to Organization administration | Common | Number sequences and open
the Number sequences list page. Run the number sequence wizard by clicking on the
Generate button. On the first wizard's page, click on the Next button, as shown in the
following screenshot:

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support

Processing Data

4

4. On the next page, click on Details to view more information. Delete everything apart
from the rows where Area is Accounts receivable and Reference is Customer group.
Note the number sequence codes and click on the Next button, as shown here:

5. On the last page, click on the Finish button to complete the setup, as shown in the
following screenshot:

Chapter 1

5

6. The newly created number sequences can now be found in the Number sequences
list page, as shown in the following screenshot:

7. Navigate to Organization administration | Number sequences | Segment
configuration and notice the new Customer group reference under the Accounts
receivable area:

Processing Data

6

8. Navigate to Accounts receivable | Setup | Accounts receivable parameters
and select the Number sequences tab page. Here, you should see the new number
sequence code:

9. The last thing to be done is to create a helper method for this number sequence.
Locate the CustParameters table in the AOT by navigating to Data Dictionary |
Tables and create the following method:
client server static NumberSequenceReference numRefCustGroupId()
{
 return NumberSeqReference::findReference(
 extendedTypeNum(CustGroupId));
}

Chapter 1

7

How it works...
We start the recipe by adding a number sequence initialization code into the
NumberSeqModuleCustomer class. This class holds all the definitions of the number
sequence parameters that belong to the Accounts receivable module. There are many
other similar classes, such as NumberSeqModuleVendor or NumberSeqModuleLedger,
that holds the number sequence definitions for other modules.

The code in the loadModule() method defines the default number sequence settings
to be used in the wizard, such as the data type, description, and highest possible number.
Additional options such as the starting sequence number, number format, and others can
also be defined here. All the mentioned options can be changed while running the wizard.
The addParameterType() method is used to define the number sequence scope. In the
example, we created a separate sequence for each Dynamics AX company.

Before we start the wizard, we initialize number sequence references. The references are
those records that are normally located under the Number sequences tab pages in the
parameters forms in most of the Dynamics AX modules. This is normally done as a part
of the Dynamics AX initialization checklist, but in this example, we execute it manually by
calling the loadAll() method of the NumberSeqApplicationModule class.

Next, we execute the wizard that will create the number sequence codes for us. We skip the
welcome page, and in the second step of the wizard, the Details button can be used to display
more options. The options can also be changed later in the Number sequences form before or
even after the number sequence codes actually used. The last page shows an overview of what
will be created. Once completed, the wizard creates new records in the Number sequences form
for each company.

The newly created number sequence reference appears in the Segment configuration form.
Here, we can see that the Data area checkbox is checked, which means that we will have
separate number lists for each company.

See also
 f The Using a number sequence handler recipe in Chapter 3, Working with Data in Forms

Processing Data

8

Renaming the primary key
Most of you who are familiar with the Dynamics AX application have probably used the
standard Rename function. This function allows you to rename the primary key of almost
any record. With this function, you can fix records that were saved or created by mistake.
The Rename function ensures data consistency, that is, all the related records are renamed
as well. The function can be accessed from the Record information form (shown in the
following screenshot), which can be opened by selecting Record info in the record's right-click
context menu:

When it comes to mass renaming, this function might be very time-consuming as you need
to run it on every record. An alternative way of doing this is to create a job that automatically
runs through all the required records and calls this function automatically.

This recipe will explain how a record's primary key can be renamed through the code. As an
example, we will create a job that renames a vendor account.

Chapter 1

9

How to do it...
Carry out the following steps in order to complete this recipe:

1. Navigate to Accounts payable | Common | Vendors | All vendors and find the
account that you want to rename, as shown here:

2. Click on Transactions in the action pane to check the existing transactions, as shown
in the following screenshot:

www.allitebooks.com

http://www.allitebooks.org

Processing Data

10

3. Open the AOT, create a new job named VendAccountRename, and enter the
following code snippet. Use the previously selected account:
static void VendAccountRename(Args _args)
{
 VendTable vendTable;

 ttsBegin;

 select firstOnly vendTable
 where vendTable.AccountNum == 'US-101';

 if (vendTable)
 {
 vendTable.AccountNum = 'US-101_';
 vendTable.renamePrimaryKey();
 }

 ttsCommit;
}

4. Run the job and check whether the renaming was successful by navigating to
Accounts payable | Common | Vendors | All vendors again and finding the
new account. The new account should have retained all its transactions and
other related records, as shown in the following screenshot:

Chapter 1

11

5. Click on Transactions in the action pane in order to see whether the existing
transactions are still in place, as shown here:

How it works...
In this recipe, we first select the desired vendor record and set its account number to the new
value. Note that only the fields belonging to the table's primary key can be renamed in this way.

Then, we call the table's renamePrimaryKey() method, which does the actual renaming.
The method finds all the related records for the selected vendor account and updates them
with the new value. The operation might take a while, depending on the volume of data, as
the system has to update multiple records located in multiple tables.

Merging two records
For various reasons, the data in a system—such as customers, ledger accounts, configuration
settings, and similar data—may become obsolete. This can be because of changes in the
business or it can simply be a user input error. For example, two sales people can create two
records for the same customer, start entering sales orders, and post invoices. One of the ways
to solve this problem is to merge both the records into a single record.

In this recipe, we will explore how to merge one record into another, including all the related
transactions. For this demonstration, we will merge two ledger reason codes into a single one.

Processing Data

12

How to do it...
Carry out the following steps in order to complete this recipe:

1. Navigate to General ledger | Setup | Ledger reasons in order to find the reasons
that you want to merge. Pick any two ledger reasons. In this example, we will use
ADJ and OTHER, as shown in the following screenshot:

2. Open the AOT and create a new job named LedgerReasonMerge with the following
code snippet (replace the reason codes with your own values):
static void LedgerReasonMerge(Args _args)
{
 ReasonTable reasonTableDelete;
 ReasonTable reasonTable;

 ttsBegin;

 select firstOnly forUpdate reasonTableDelete
 where reasonTableDelete.Reason == 'ADJ';

 select firstOnly forUpdate reasonTable
 where reasonTable.Reason == 'OTHER';

 reasonTableDelete.merge(reasonTable);
 reasonTable.doUpdate();

Chapter 1

13

 reasonTableDelete.doDelete();

 ttsCommit;
}

3. Run the job to merge the records.

4. Open the Ledger reasons form again; you will notice that both the reasons were
merged into one and all the related transactions have also been updated to reflect
the change:

How it works...
First, we retrieve both the records from the database and prepare them for updating.

The key method in this recipe is merge(). This method will ensure that all the data from one
record will be copied into the second one and all the related transactions will be updated to
reflect the change.

Finally, we save the changes of the destination record and delete the first record.

All the code has to be within the ttsBegin/ttsCommit pair as we perform several database
update operations in one go.

Such a technique can be used to merge two or more records of any type.

Processing Data

14

Adding a document handling note
Document handling in Dynamics AX is a feature that allows you to add notes, links, documents,
images, files, and other related information to almost any record in the system. For example, we
can track all the correspondence sent out to our customers by attaching the documents to their
records in the system. Document handling on most of the forms can be accessed either from
the action pane by clicking on the Attachments button, selecting Document handling from the
Command menu under File, or selecting the Document handling icon from the status bar.

Document handling has a number of configuration parameters that you can find by navigating
to Organization administration | Setup | Document management. Please refer to Dynamics
AX documentation to find out more.

Dynamics AX also allows you to add document handling notes from the code. This can be
useful when you need to automate the document handling process. In this recipe, we will
demonstrate this by adding a note to a vendor account.

Getting ready
Before you start, ensure that document handling is enabled on the user interface. Open
Document management parameters by navigating to Organization administration | Setup |
Document management and make sure that Use Active document tables is not marked,
as shown in the following screenshot:

Chapter 1

15

Then, open the Document types form from the same location and locate or create a new
document type with its Group set to Note, as shown in the following screenshot. In our
demonstration, we will use a document type called Note:

How to do it...
Carry out the following steps in order to complete this recipe:

1. Navigate to Accounts payable | Common | Vendors | All vendors and locate any
vendor account to be updated, as shown here:

Processing Data

16

2. Open the AOT, create a new job named VendAccountDocu, and enter the following
code snippet. Use the previously selected vendor account and document type:
static void VendAccountDocu(Args _args)
{
 VendTable vendTable;
 DocuType docuType;
 DocuRef docuRef;

 vendTable = VendTable::find('US-108');
 docuType = DocuType::find('Note');

 if (!docuType ||
 docuType.TypeGroup != DocuTypeGroup::Note)
 {
 throw error("Invalid document type");
 }

 docuRef.RefCompanyId = vendTable.dataAreaId;
 docuRef.RefTableId = vendTable.TableId;
 docuRef.RefRecId = vendTable.RecId;
 docuRef.TypeId = docuType.TypeId;
 docuRef.Name = 'Automatic note';
 docuRef.Notes = 'Added from X++';
 docuRef.insert();

 info("Document note has been added successfully");
}

3. Run the job to create the note.

4. Go back to the vendor list and click on the Attachments button in the form's action
pane or expand the File menu and navigate to Command | Document handling to
view the note added by our code, as shown in the following screenshot:

Chapter 1

17

How it works...
All the document handling notes are stored in the DocuRef table, where three fields,
RefCompanyId, RefTableId, and RefRecId, are used to identify the parent record.
In this recipe, we set these fields to the vendor company ID, vendor table ID, and vendor
account record ID, respectively. Then, we set the type, name, and description and insert
the document handling record. Notice that we have validated the document type before
using it. In this way, we added a note to the record.

Using a normal table as a temporary table
Temporary tables in Dynamics AX are used in numerous places. In forms and reports, they are
used as data sources when it is too complicated to query normal tables. In code, they can be
used for storing intermediate results while running complex operations.

Temporary tables can be either created from scratch or existing regular tables could be
reused as temporary. The goal of this recipe is to demonstrate the latter approach. As an
example, we will use the vendor table to insert and display a couple of temporary records
without affecting the actual data.

Processing Data

18

How to do it...
Carry out the following steps in order to complete this recipe:

1. In the AOT, create a new class named VendTableTmp with the following code snippet:
class VendTableTmp
{
}

server static void main(Args _args)
{
 VendTable vendTable;

 vendTable.setTmp();

 vendTable.AccountNum = '1000';
 vendTable.Blocked = CustVendorBlocked::No;
 vendTable.Party = 1;
 vendTable.doInsert();

 vendTable.clear();
 vendTable.AccountNum = '1002';
 vendTable.Blocked = CustVendorBlocked::All;
 vendTable.Party = 2;
 vendTable.doInsert();

 while select vendTable
 {
 info(strFmt(
 "%1 - %2",
 vendTable.AccountNum,
 vendTable.Blocked));
 }
}

2. Run the class and check the results, which may be similar to this:

Chapter 1

19

How it works...
The key method in this recipe is setTmp(). This method is available on all the tables, and it
makes the current table instance behave as a temporary table in the current scope. Basically,
it creates an InMemory temporary table that has the same schema as the original table.

In this recipe, we create a new class and place all the code in its main() method. The reason
why we create a class and not a job is that the main() method can be set to run on the
server tier by specifying the server modifier. This will improve the code's performance.

In the code, we first call the setTmp() method on the vendTable table to make it temporary
in the scope of this method. This means that any data manipulations will be lost once the
execution of this method is over and the actual table content will not be affected.

Next, we insert a couple of test records. Here, we use the doInsert() method to bypass any
additional logic, which normally resides in the table's insert() method. We have to keep
in mind that even the table becomes temporary; all the code in its insert(), update(),
delete(), initValue(), and other methods is still present and we have to make sure
that we don't call it unintentionally.

The last thing to do is to check for newly created records by showing them on the screen.
We can see that although the table contains many actual records, only the records that we
inserted were displayed in the Infolog window. Additionally, the two records we inserted do
not appear in the actual table.

Copying a record
Copying existing data is one of the data manipulation tasks in Dynamics AX. There are numerous
places in the standard Dynamics AX application where users can create new data entries just by
copying existing data and then modifying it. A few examples are the Copy button on the Costing
versions form located in Inventory management | Setup | Costing and the Copy project
button on the All projects list page located in Project management and accounting | Common
| Projects. Also, although the mentioned copying functionality might not be that straightforward,
the idea is clear: the existing data is reused while creating new entries.

In this recipe, we will learn two ways to copy records in X++. We will discuss the usage of the
table's data() method, the global buf2buf() function, and their differences. As an example,
we will copy one of the existing main account records into a new record.

Processing Data

20

How to do it...
Carry out the following steps in order to complete this recipe:

1. Navigate to General ledger | Common | Main accounts and find the account to be
copied. In this example, we will use 130100, as shown here:

2. Open the AOT, create a new job named MainAccountCopy with the following code
snippet, and run it:
static void MainAccountCopy(Args _args)
{
 MainAccount mainAccount1;
 MainAccount mainAccount2;

 mainAccount1 = MainAccount::findByMainAccountId(
 '130100');

 ttsBegin;

 mainAccount2.data(mainAccount1);

 mainAccount2.MainAccountId = '130101';
 mainAccount2.Name += ' - copy';

 if (!mainAccount2.validateWrite())

Chapter 1

21

 {
 throw Exception::Error;
 }

 mainAccount2.insert();

 ttsCommit;
}

3. Navigate to General ledger | Common | Main accounts again and notice that there
are two identical records now, as shown in the following screenshot:

How it works...
In this recipe, we have two variables: mainAccount1 for the original record and
mainAccount2 for the new record. First, we find the original record by calling
findMainAccountId() in the MainAccount table.

Next, we copy the original record into the new one. Here, we use the table's data()
method, which copies all the data fields from one variable into another.

After that, we set a new main account number, which is a part of the table's unique index.

Finally, we call insert() on the table if validateWrite() is successful. In this way,
we create a new main account record that is exactly the same as the existing one apart
from the account number.

Processing Data

22

There's more...
As we saw before, the data() method copies all the table fields, including the system fields
such as the record ID or company account. Most of the time it is OK because when the new
record is saved, the system fields are overwritten with the new values. However, this function
may not work for copying records across companies. In this case, we can use another function
called buf2Buf(). This function is a global function and is located in the Global class, which
you can find by navigating to AOT | Classes. The buf2Buf() function is very similar to the
table's data() method with one major difference. The buf2Buf() function copies all the
data fields excluding the system fields. The code in the function is as follows:

static void buf2Buf(
 Common _from,
 Common _to,
 TableScope _scope = TableScope::CurrentTableOnly)
{
 DictTable dictTable = new DictTable(_from.TableId);
 FieldId fieldId = dictTable.fieldNext(0, _scope);

 while (fieldId && ! isSysId(fieldId))
 {
 _to.(fieldId) = _from.(fieldId);
 fieldId = dictTable.fieldNext(fieldId, _scope);
 }
}

We can clearly see that during the copying process, all the table fields are traversed, but the
system fields, such as RecId or dataAreaId, are excluded. The isSysId() helper function
is used for this purpose.

In order to use the buf2Buf() function, the code of the MainAccountCopy job can be
amended as follows:

static void MainAccountCopy(Args _args)
{
 MainAccount mainAccount1;
 MainAccount mainAccount2;

 mainAccount1 = MainAccount::findByMainAccountId('130100');

 ttsBegin;

 buf2Buf(mainAccount1, mainAccount2);

 mainAccount2.MainAccountId = '130101';

Chapter 1

23

 mainAccount2.Name += ' - copy';

 if (!mainAccount2.validateWrite())
 {
 throw Exception::Error;
 }

 mainAccount2.insert();

 ttsCommit;
}

Building a query object
Query objects in Dynamics AX are used to build SQL statements for reports, views, forms,
and other AOT objects. They are normally created in the AOT using the drag and drop
functionality and by defining various properties. Query objects can also be created from
the code at runtime. This is normally done when AOT tools cannot handle complex and/or
dynamic queries.

In this recipe, we will create a query from the code to retrieve project records from the Project
management module. We will select the records where project ID starts with 00005, project
type is time & material and project has at least one transaction of type hour registered.

How to do it...
Carry out the following steps in order to complete this recipe:

1. Open the AOT, create a new job named ProjTableQuery, and enter the following
code snippet:
static void ProjTableQuery(Args _args)
{
 Query query;
 QueryBuildDataSource qbds1;
 QueryBuildDataSource qbds2;
 QueryBuildRange qbr1;
 QueryBuildRange qbr2;
 QueryRun queryRun;
 ProjTable projTable;

 query = new Query();

 qbds1 = query.addDataSource(tableNum(ProjTable));

Processing Data

24

 qbds1.addSortField(
 fieldNum(ProjTable, Name),
 SortOrder::Ascending);

 qbr1 = qbds1.addRange(fieldNum(ProjTable,Type));
 qbr1.value(queryValue(ProjType::TimeMaterial));

 qbr2 = qbds1.addRange(fieldNum(ProjTable,ProjId));
 qbr2.value(
 SysQuery::valueLikeAfter(queryValue('00005')));

 qbds2 = qbds1.addDataSource(tableNum(ProjEmplTrans));
 qbds2.relations(true);
 qbds2.joinMode(JoinMode::ExistsJoin);

 queryRun = new QueryRun(query);

 while (queryRun.next())
 {
 projTable = queryRun.get(tableNum(ProjTable));
 info(strFmt(
 "%1, %2, %3",
 projTable.ProjId,
 projTable.Name,
 projTable.Type));
 }
}

2. Run the job and you will get a screen similar to the following screenshot:

Chapter 1

25

How it works...
First, we create a new query object. Next, we add a new ProjTable data source to the
query object by calling its addDataSource() method. The method returns a reference to
the QueryBuildDataSource object—qbds1. Here, we call the addSortField() method
to enable sorting by the project name.

Next we create two ranges. The first range filters only the projects of the
ProjType::TimeMaterial type and the second one lists only the records where the
project number starts with 00005. These two ranges are automatically added together using
SQL's AND operator. The QueryBuildRange objects are created by calling the addRange()
method of the QueryBuildDataSource object with the field ID number as the argument.
The range value is set by calling value() on the QueryBuildRange object itself. We use
the queryValue()function from the Global class and the valueLikeAfter() function
from the SysQuery class to prepare the values before applying them as a range. More
functions, such as queryNotValue() and queryRange(), can be found in the Global
application class, which is located in AOT | Classes. Note that these functions are actually
shortcuts to the SysQuery application class, which in turn has even more interesting helper
methods that might be handy for every developer.

Adding another data source to an existing one connects both the data sources using SQL's
JOIN operator. In this example, we are displaying projects that have at least one posted hour
line. We start by adding the ProjEmplTrans table as another data source.

Next, we need to add relationships between the tables. If relationships are not defined on
tables, we will have to use the addLink() method. In this example, relations in the tables
are already defined, so you only need to enable them by calling the relations() method
with true as an argument.

Calling joinMode() with JoinMode::ExistsJoin as a parameter ensures that only the
projects that have at least one transaction of type hour will be selected. In situations like this,
where we do not need any data from the second data source, performance-wise it is better
to use an exists join instead of the inner join. This is because the inner join fetches the
data from the second data source and therefore takes longer to execute.

The last thing that needs to be done is to create and run the queryRun object and show the
selected data on the screen.

There's more...
It is worth mentioning a couple of specific cases when working with query objects from the code.
One of them is how to use the OR operator and the other one is how to address array fields.

Processing Data

26

Using the OR operator
As you have already noted, regardless of how many ranges are added, all of them will be
added together using SQL's AND operator. In most cases, this is fine, but sometimes complex
user requirements demand ranges to be added using SQL's OR operator. There might be a
number of workarounds, such as using temporary tables or similar tools, but we can use the
Dynamics AX feature that allows you to pass a part of a raw SQL string as a range.

In this case, the range has to be formatted in a manner similar to a fully-qualified SQL WHERE
clause, including field names, operators, and values. The expressions have to be formatted
properly before you use them in a query. Here are some of the rules:

 f The expression must be enclosed within single quotes and then inside the
quotes—within parenthesis

 f Each subexpression must also be enclosed within parentheses

 f String values have to be enclosed within double quotes

 f For enumerations, use their numeric values

For value formatting, use various Dynamics AX functions, such as queryValue() and
date2StrXpp(), or methods from the SysQuery class.

Let's replace the code snippet from the previous example with the following lines of code:

qbr2.value(SysQuery::valueLikeAfter(queryValue('00005')));
with the new code:
qbr2.value(strFmt(
 '((%1 like "%2") || (%3 = %4))',
 fieldStr(ProjTable,ProjId),
 queryvalue('00005')+'*',
 fieldStr(ProjTable,Status),
 ProjStatus::InProcess+0));

Notice that by adding zero to the enumeration in the previous code, we can force the strFmt()
function to use the numeric value of the enumeration. The strFmt() output should be similar
to the following line:

((ProjId like "00005*") || (Status = 3))

Chapter 1

27

Now if you run the code, besides all the projects starting with 00005, the result will also
include all the active projects, as shown in the following screenshot:

See also
 f The Creating a custom filter control recipe in Chapter 3, Working with Data in Forms

 f The Using a form to build a lookup recipe in Chapter 4, Building Lookups

Using a macro in a SQL statement
In a standard Dynamics AX application, there are macros, such as InventDimJoin and
InventDimSelect, that are reused numerous times across the application. These macros
are actually full or partial X++ SQL queries that can be called with various arguments. Such
approaches save development time by allowing you to reuse pieces of X++ SQL queries.

In this recipe, we will create a small macro that holds a single WHERE clause to display only
the active vendor records. Then, we will create a job that uses the created macros to display
a vendor list.

Processing Data

28

How to do it...
Carry out the following steps in order to complete this recipe:

1. Open the AOT and create a new macro named VendTableNotBlocked with the
following code snippet:
(%1.Blocked == CustVendorBlocked::No)

2. In the AOT, create a new job called VendTableMacro with the following code snippet:
static void VendTableMacro(Args _args)
{
 VendTable vendTable;

 while select vendTable
 where #VendTableNotBlocked(vendTable)
 {
 info(strFmt(
 "%1 - %2",
 vendTable.AccountNum,
 vendTable.name()));
 }
}

3. Run the job and check the results, as shown in the following screenshot:

How it works...
In this recipe, first we define a macro that holds the WHERE clause. Normally, the purpose of
defining SQL in a macro is to reuse it a number of times in various places. We use %1 as an
argument. More arguments formatted as %2, %3, and so on can be used.

Chapter 1

29

Next, we create a job with the SELECT statement. Here, we use the previously created macro
in the WHERE clause and pass vendTable as an argument.

The query works like any other query, but the advantage is that the code in the macro can be
reused elsewhere.

Remember that before we start using macros in SQL queries, we should be aware of the
following caveats:

 f Too much code in a macro might reduce the SQL statement's readability for
other developers

 f Cross-references do not take into account the code inside the macro

 f Changes in the macro will not be reflected in the objects where the macro is used
until the objects are recompiled

Executing a direct SQL statement
Dynamics AX allows developers to build X++ SQL statements that are flexible enough to fit
into any custom business process. However, in some cases, the usage of X++ SQL is either
not effective or not possible at all. One such case is when we run data upgrade tasks during
an application version upgrade. A standard application contains a set of data upgrade tasks
to be completed during the version upgrade. If the application is highly customized, then most
likely, standard tasks have to be modified in order to reflect data dictionary customizations,
or a new set of tasks have to be created to make sure data is handled correctly during the
upgrade.

Normally, at this stage, SQL statements are so complex that they can only be created using
database-specific SQL and executed directly in the database. Additionally, running direct SQL
statements dramatically increases data upgrade performance because most of the code
is executed on the database server where all the data resides. This is very important when
working with large volumes of data.

Another case when we will need to use direct SQL statements is when we want to connect
to an external database using the ODBC connection. In this case, X++ SQL is not supported
at all.

This recipe will demonstrate how to execute SQL statements directly. We will connect to the
current Dynamics AX database directly using an additional connection and retrieve a list of
vendor accounts.

www.allitebooks.com

http://www.allitebooks.org

Processing Data

30

How to do it...
Carry out the following steps in order to complete this recipe:

1. In the AOT, create a new class named VendTableSql using the following code snippet:
class VendTableSql
{
}

server static void main(Args _args)
{
 UserConnection userConnection;
 Statement statement;
 str sqlStatement;
 SqlSystem sqlSystem;
 SqlStatementExecutePermission sqlPermission;
 ResultSet resultSet;
 DictTable tblVendTable;
 DictTable tblDirPartyTable;
 DictField fldParty;
 DictField fldAccountNum;
 DictField fldDataAreaId;
 DictField fldBlocked;
 DictField fldRecId;
 DictField fldName;

 tblVendTable = new DictTable(tableNum(VendTable));
 tblDirPartyTable = new DictTable(tableNum(DirPartyTable));

 fldParty = new DictField(
 tableNum(VendTable),
 fieldNum(VendTable,Party));

 fldAccountNum = new DictField(
 tableNum(VendTable),
 fieldNum(VendTable,AccountNum));

 fldDataAreaId = new DictField(
 tableNum(VendTable),
 fieldNum(VendTable,DataAreaId));

 fldBlocked = new DictField(
 tableNum(VendTable),

Chapter 1

31

 fieldNum(VendTable,Blocked));

 fldRecId = new DictField(
 tableNum(DirPartyTable),
 fieldNum(DirPartyTable,RecId));

 fldName = new DictField(
 tableNum(DirPartyTable),
 fieldNum(DirPartyTable,Name));

 sqlSystem = new SqlSystem();

 sqlStatement = 'SELECT %1, %2 FROM %3 ' +
 'JOIN %4 ON %3.%5 = %4.%6 ' +
 'WHERE %7 = %9 AND %8 = %10';

 sqlStatement = strFmt(
 sqlStatement,
 fldAccountNum.name(DbBackend::Sql),
 fldName.name(DbBackend::Sql),
 tblVendTable.name(DbBackend::Sql),
 tblDirPartyTable.name(DbBackend::Sql),
 fldParty.name(DbBackend::Sql),
 fldRecId.name(DbBackend::Sql),
 fldDataAreaId.name(DbBackend::Sql),
 fldBlocked.name(DbBackend::Sql),
 sqlSystem.sqlLiteral(curext(), true),
 sqlSystem.sqlLiteral(CustVendorBlocked::No, true));

 userConnection = new UserConnection();
 statement = userConnection.createStatement();

 sqlPermission = new SqlStatementExecutePermission(
 sqlStatement);

 sqlPermission.assert();

 resultSet = statement.executeQuery(sqlStatement);

 CodeAccessPermission::revertAssert();

 while (resultSet.next())
 {
 info(strFmt(

Processing Data

32

 "%1 - %2",
 resultSet.getString(1),
 resultSet.getString(2)));
 }
}

2. Run the class to retrieve a list of vendors directly from the database, as shown in the
following screenshot:

How it works...
We start the code by creating the DictTable and DictField objects to handle the vendor
table and its fields, which are used later in the query. The DirPartyTable is used to get an
additional vendor information.

A new SqlSystem object is also created. It is used to convert Dynamics AX types to SQL types.

Next, we set up a SQL statement with a number of placeholders for the table or field names
and field values to be inserted later.

The main query creation takes place next, when the query placeholders are replaced with
the right values. Here, we use the previously created DictTable and DictField objects .
We call their name() methods with the DbBackend::Sql enumeration as an argument. This
ensures that we use the table and field names exactly as they are defined in the database.
This is because due to some technical restrictions, the names in SQL database sometimes
might slightly differ from their names in the Dynamics AX application.

We also use the sqlLiteral() method of the previously created sqlSystem object to
properly format SQL values in order to ensure that they do not have any unsafe characters.

Chapter 1

33

The value of the sqlStatement variable that holds the prepared SQL query depending on
your environment is as follows:

SELECT ACCOUNTNUM, NAME FROM VENDTABLE
 JOIN DIRPARTYTABLE ON VENDTABLE.PARTY = DIRPARTYTABLE.RECID
 WHERE DATAAREAID = 'usmf' AND BLOCKED = 0

Once the SQL statement is ready, we initialize a direct connection to the database and run
the statement. The results are returned in the resultSet object, and we get them by using
the while statement and calling the next() method until no records left.

Note that we created an sqlPermission object of the type
SqlStatementExecutePermission here and called its assert() method before
executing the statement. This is required in order to comply with Dynamics AX's trustworthy
computing requirements.

Another thing that needs to be mentioned is that when building direct SQL queries, special
attention has to be paid to license, configuration, and security keys. Some tables or fields
might be disabled in the application and may contain no data in the database.

The code in this recipe also can be used to connect to external ODBC databases. We only
need to replace the UserConnection class with the OdbcConnection class and use
text names instead of the DictTable and DictField objects.

There's more...
The standard Dynamics AX application provides an alternate way of building direct SQL
statements by using a set of SQLBuilder classes. By using these classes, we can create
SQL statements as objects, as opposed to text. Next, we will demonstrate how to use the
SQLBuilder classes. We will create the same SQL statement as we did before.

First, in AOT, create another class named VendTableSqlBuilder using the following
code snippet:

class VendTableSqlBuilder
{
}

server static void main(Args _args)
{
 UserConnection userConnection;
 Statement statement;
 str sqlStatement;
 SqlStatementExecutePermission sqlPermission;
 ResultSet resultSet;

Processing Data

34

 SQLBuilderSelectExpression selectExpr;
 SQLBuilderTableEntry vendTable;
 SQLBuilderTableEntry dirPartyTable;
 SQLBuilderFieldEntry accountNum;
 SQLBuilderFieldEntry dataAreaId;
 SQLBuilderFieldEntry blocked;
 SQLBuilderFieldEntry name;

 selectExpr = SQLBuilderSelectExpression::construct();
 selectExpr.parmUseJoin(true);

 vendTable = selectExpr.addTableId(
 tablenum(VendTable));

 dirPartyTable = vendTable.addJoinTableId(
 tablenum(DirPartyTable));

 accountNum = vendTable.addFieldId(
 fieldnum(VendTable,AccountNum));

 name = dirPartyTable.addFieldId(
 fieldnum(DirPartyTable,Name));

 dataAreaId = vendTable.addFieldId(
 fieldnum(VendTable,DataAreaId));

 blocked = vendTable.addFieldId(
 fieldnum(VendTable,Blocked));

 vendTable.addRange(dataAreaId, curext());
 vendTable.addRange(blocked, CustVendorBlocked::No);

 selectExpr.addSelectFieldEntry(
 SQLBuilderSelectFieldEntry::newExpression(
 accountNum,
 'AccountNum'));

 selectExpr.addSelectFieldEntry(
 SQLBuilderSelectFieldEntry::newExpression(
 name,
 'Name'));

Chapter 1

35

 sqlStatement = selectExpr.getExpression(null);

 userConnection = new UserConnection();
 statement = userConnection.createStatement();

 sqlPermission = new SqlStatementExecutePermission(
 sqlStatement);

 sqlPermission.assert();

 resultSet = statement.executeQuery(sqlStatement);

 CodeAccessPermission::revertAssert();

 while (resultSet.next())
 {
 info(strfmt(
 "%1 - %2",
 resultSet.getString(1),
 resultSet.getString(2)));
 }
}

In the preceding method, we first create a new selectExpr object, which is based on the
SQLBuilderSelectExpression class. It represents the object of the SQL statement.

Next, we add the VendTable table to it by calling its member method addTableId(). This
method returns a reference to the vendTable object of the type SQLBuilderTableEntry,
which corresponds to a table node in a SQL query. We also add DirPartyTable as a joined
table.

Then, we create a number of field objects of the SQLBuilderFieldEntry type to be used
later and two ranges to show only this company account and only the active vendor accounts.

We use addSelectFieldEntry() to add two fields to be selected. Here, we use the
previously created field objects.

The SQL statement is generated once the getExpression() method is called, and the
rest of the code is the same as in the previous example.

Running the class will give us the results that are similar to the ones we got earlier.

Processing Data

36

Enhancing the data consistency check
It is highly recommended for system administrators to run the standard Dynamics AX
data consistency checks from time to time, which can be found by navigating to System
administration | Periodic | Database | Consistency check, to evaluate the system's data
integrity. This function finds orphan data, validates parameters, and checks many other things.

In this recipe, we will see how we can enhance the standard Dynamics AX consistency check
to include more tables in their data integrity validation.

Getting ready
Before we start, we need to create an invalid setup in order to make sure that we can simulate
data inconsistency. Navigate to Fixed assets | Setup | Value models and create a new model,
for instance, TEST, as shown in the following screenshot:

Navigate to Fixed assets | Setup | Fixed asset posting profiles and under the Ledger
accounts tab page, create a new record with the newly created value model for any of the
posting types, as shown here:

Chapter 1

37

Go back to the Value models form and delete the previously created value model.
Now, we have a nonexistent value model in the fixed asset posting settings.

How to do it...
Carry out the following steps in order to complete this recipe:

1. In the AOT, create a new class named AssetConsistencyCheck with the following
code snippet:
class AssetConsistencyCheck extends SysConsistencyCheck
{
}

client server static ClassDescription description()
{
 return "Fixed assets";
}

client server static HelpTxt helpText()
{
 return "Consistency check of the fixed asset module";
}

Integer executionOrder()

Processing Data

38

{
 return 1;
}

void run()
{
 this.kernelCheckTable(tableNum(AssetLedgerAccounts));
}

2. Navigate to System administration | Periodic | Database | Consistency check,
select the newly created Fixed assets option from the Module drop-down list,
and click on OK to run the check, as shown here:

3. Now, the message displayed in the Infolog window should complain about the missing
value model in the fixed assets posting settings, as shown in the following screenshot:

Chapter 1

39

How it works...
The consistency check in Dynamics AX validate only the predefined list of tables for each
module. The system contains a number of classes derived from SysConsistencyCheck.
For example, the CustConsistencyCheck class is responsible for validating the Accounts
receivable module, LedgerConsistencyCheck for validating General ledger, and so on.

In this recipe, we created a new class named AssetConsistencyCheck, extending
the SysConsistencyCheck class for the fixed asset module. The following methods
were created:

 f description(): This provides a name to the consistency check form.

 f helpText(): This displays some explanation about the check.

 f executionOrder(): This determines where the check is located in the list.

 f run(): This holds the code to perform the actual checking. Here, we use the
kernelCheckTable() method, which validates the given table.

There's more...
The classes that we just mentioned can only be executed from the main Consistency check
form. Individual checks can also be invoked as standalone functions. We just need to create
an additional method to allow the running of the class:

static void main(Args _args)
{
 SysConsistencyCheckJob consistencyCheckJob;
 AssetConsistencyCheck assetConsistencyCheck;

 consistencyCheckJob = new SysConsistencyCheckJob(
 classIdGet(assetConsistencyCheck));

 if (!consistencyCheckJob.prompt())
 {
 return;
 }

 consistencyCheckJob.run();
}

Processing Data

40

Exporting data to an XML file
Briefly, XML defines a set of rules for encoding documents electronically. It allows the creation
of all kinds of structured documents that can be exchanged between systems. In Dynamics
AX, XML files are widely used across the application.

Probably the main thing that is associated with XML in Dynamics AX is the Application
Integration Framework (AIF). It is an infrastructure that allows you to expose business
logic or exchange data with other external systems. The communication is done by using
XML-formatted documents. By using the existing XML framework's application classes
prefixed with Axd, you can export or import data into the system. It is also possible to create
new Axd classes using AIF Document Service Wizard from the Tools menu to support the
export and import of newly created tables.

Dynamics AX also contains a set of application classes prefixed with Xml, such as
XmlDocument and XmlNode. Basically, these classes are wrappers around the
System.XML namespace in the .NET Framework.

In this recipe, we will create a new simple XML document by using the Xml classes in
order to show the basics of XML. We will create a file with the data from the main account
table and save it as an XML file.

How to do it...
Carry out the following steps in order to complete this recipe:

1. Open the AOT and create a new class named CreateXmlFile with the following
code snippet:
class CreateXmlFile
{
}

static void main(Args _args)
{
 XmlDocument doc;
 XmlElement nodeXml;
 XmlElement nodeTable;
 XmlElement nodeAccount;
 XmlElement nodeName;

Chapter 1

41

 MainAccount mainAccount;
 #define.filename(@'C:\Temp\accounts.xml')

 doc = XmlDocument::newBlank();

 nodeXml = doc.createElement('xml');

 doc.appendChild(nodeXml);

 while select RecId, MainAccountId, Name from mainAccount
 order by mainAccountId
 where mainAccount.LedgerChartOfAccounts ==
 LedgerChartOfAccounts::current()
 {
 nodeTable = doc.createElement(tableStr(MainAccount));

 nodeTable.setAttribute(
 fieldStr(MainAccount, RecId),
 int642str(mainAccount.RecId));

 nodeXml.appendChild(nodeTable);

 nodeAccount = doc.createElement(
 fieldStr(MainAccount, MainAccountId));

 nodeAccount.appendChild(
 doc.createTextNode(mainAccount.MainAccountId));

 nodeTable.appendChild(nodeAccount);

 nodeName = doc.createElement(
 fieldStr(MainAccount, Name));

 nodeName.appendChild(
 doc.createTextNode(mainAccount.Name));

 nodeTable.appendChild(nodeName);
 }

 doc.save(#filename);

 info(strFmt("File %1 created.", #filename));
}

Processing Data

42

2. Run the class. The XML file named accounts.xml will be created in the specified
folder. Open the XML file using any XML editor or viewer, such as Microsoft Internet
Explorer, and review the created XML structure, as shown in the following screenshot:

How it works...
We start the recipe by creating a new XmlDocument using the newBlank() method,
which represents an XML structure. Then, we create its root node named xml using
the createElement() method and add the node to the document by calling the
document's appendChild() method.

Next, we go through all the main accounts in the current chart of accounts and perform
the following tasks for each record:

 f Create a new XmlElement node, which is named exactly the same as the table
name, and add this node to the root node.

 f Create a node that represents the account number field and a child node representing
its value. The account number node is created using createElement() and its value
is created using createTextNode(). The createTextNode() method basically
adds a value as text with no XML tags.

 f Add the account number node to the table node.

Chapter 1

43

 f Create a node representing the account name field and a child node representing
its value.

 f Add the account name node to the table node.

Finally, we save the created XML document as a file.

In this way, we create an XML document that contains the current chart of accounts.

Importing data from an XML file
In Dynamics AX, an XML file is imported in a similar way as it is exported. In this recipe,
we will continue using the XML application classes. We will create a new class that reads
XML files and displays their content on the screen. As the source file, we will use the
previously created accounts.xml file.

How to do it...
Carry out the following steps in order to complete this recipe:

1. Open the AOT and create a new class named ReadXmlFile with the following
code snippet. Use the document created in the previous recipe:
class ReadXmlFile
{
}
static void main(Args _args)
{
 XmlDocument doc;
 XmlNodeList data;
 XmlElement nodeTable;
 XmlElement nodeAccount;
 XmlElement nodeName;
 #define.filename(@'C:\Temp\accounts.xml')

 doc = XmlDocument::newFile(#filename);

 data = doc.selectNodes('//'+tableStr(MainAccount));

 nodeTable = data.nextNode();

 while (nodeTable)
 {
 nodeAccount = nodeTable.selectSingleNode(
 fieldStr(MainAccount, MainAccountId));

Processing Data

44

 nodeName = nodeTable.selectSingleNode(
 fieldStr(MainAccount, Name));

 info(strFmt(
 "%1 - %2",
 nodeAccount.text(),
 nodeName.text()));

 nodeTable = data.nextNode();
 }
}

2. Run the class. The Infolog window will display the contents of the accounts.xml file
on the screen, as shown here:

How it works...
In this recipe, we first create a new XmlDocument object. We create it from the file and hence
we use the newFile() method for this. Then, we get all the document nodes of the
MainAccount table as XmlNodeList. We also obtain its first element by calling the
nextNode() function.

Next, we loop through all the list elements and perform the following tasks:

 f Get an account number node as an XmlElement.

 f Obtain an account name node as an XmlElement.

 f Display the text of both the nodes in the Infolog window. Normally, this should be
replaced with more sensible code to process the data.

 f Get the next list element.

In this way, we retrieve data from the XML file. A similar approach can be used to read any
other XML file.

Chapter 1

45

Creating a comma-separated value file
CSV files are widely used across various systems. Although nowadays modern systems use XML
formats for data exchange, CSV files are still popular because of the simplicity of their format.

Normally, the data in a file is organized, so one line corresponds to one record and each line
contains a number of values, normally separated by commas. Record and value separators
can be any other symbol, depending on the system requirements.

In this recipe, we will learn how to create a custom CSV file from the code. We will also export
a list of main accounts—account number and name from the current chart of accounts.

How to do it...
Carry out the following steps in order to complete this recipe:

1. Open the AOT and create a new class named CreateCommaFile with the
following code snippet:
class CreateCommaFile
{
}
static client void main(Args _args)
{
 CommaTextIo file;
 container line;
 MainAccount mainAccount;
 #define.filename(@'C:\Temp\accounts.csv')
 #File

 file = new CommaTextIo(#filename, #io_write);

 if (!file || file.status() != IO_Status::Ok)
 {
 throw error("File cannot be opened.");
 }

 file.outRecordDelimiter('\r\n');
 file.outFieldDelimiter(',');

 while select MainAccountId, Name from mainAccount
 order by MainAccountId
 where mainAccount.LedgerChartOfAccounts ==

Processing Data

46

 LedgerChartOfAccounts::current()
 {
 line = [
 mainAccount.MainAccountId,
 mainAccount.Name];
 file.writeExp(line);
 }

 info(strFmt("File %1 created.", #filename));
}

2. Run the class. A new file named accounts.csv should be created in the specified
folder. Open this file with Notepad or any other text editor to view the results, as shown
in the following screenshot:

How it works...
In the variable declaration section of the main() method of the newly created
CreateCommaFile class, we define a name for the output file along with other variables. Here,
we also declare the standard #File macro, which contains a number of file-handling definitions
like modes, such as #io_read, #io_write, #io_append, file types, and delimiters.

Chapter 1

47

Then, we create a new CSV file by calling the new() method on a standard CommaTextIo
class. It accepts two parameters: filename and mode. For mode, we use #io_write from
the #File macro to make sure that a new file is created and opened for further writing. If a
file with the given name already exists, then it will be overwritten. In order to make sure that
a file is created successfully, we check whether the file object exists and its status is valid,
otherwise we show an error message.

In multilingual environments, it is better to use the CommaTextIo class. It behaves the same
way as the CommaIo class does, plus it supports Unicode, which allows you to process data
with various language-specific symbols.

Next, we specify the delimiters for the output file. As the name suggests, by default,
a CSV file contains a number of rows separated by line breaks and a number of values
in each line separated by commas. The two methods outRecordDelimiter() and
outFieldDelimiter() allow you to specify those delimiters for output files. In this example,
we called these two methods just for demonstration purposes as the values we specify are the
default values anyway.

Finally, we loop through all the main accounts in the current chart of accounts, store all
the account numbers and their names into a container, and write them to the file using
the writeExp() method.

In this way, we create a new CSV file with a list of main accounts inside.

There's more...
You probably might have already noticed that the main() method has the client modifier,
which forces its code to run on the client. When dealing with large amounts of data, it is more
effective to run the code on the server. In order to do this, we need to change the modifier to
server. The following class generates exactly the same file as before, except that this file is
created in the folder on the server's file system:

class CreateCommaFileServer
{
}

static server void main(Args _args)
{
 CommaTextIo file;
 container line;
 MainAccount mainAccount;
 FileIoPermission perm;
 #define.filename(@'C:\Temp\accounts.csv')
 #File

Processing Data

48

 perm = new FileIoPermission(#filename, #io_write);
 perm.assert();

 file = new CommaTextIo(#filename, #io_write);

 if (!file || file.status() != IO_Status::Ok)
 {
 throw error("File cannot be opened.");
 }

 file.outRecordDelimiter('\r\n');
 file.outFieldDelimiter(',');

 while select MainAccountId, Name from mainAccount
 order by MainAccountId
 where mainAccount.LedgerChartOfAccounts ==
 LedgerChartOfAccounts::current()
 {
 line = [
 mainAccount.MainAccountId,
 mainAccount.Name];
 file.writeExp(line);
 }

 CodeAccessPermission::revertAssert();

 info(strFmt("File %1 created.", #filename));
}

File manipulation on the server is protected by Dynamics AX code access security, and we
must use the FileIoPermission class to make sure that we match the requirements.

At the end, we call CodeAccessPermission::revertAssert() to revert the
previous assertion.

Reading a comma-separated value file
Besides data import/export, CSV files can be used for integration between systems. It is
probably the most simple integration approach, when one system generates CSV files in
some network folder and another system reads those files at specified intervals. Although
this is not a very sophisticated real-time integration, in most cases, it does the job and
does not require any additional components, such as Dynamics AX AIF or similar.

Chapter 1

49

In this recipe, you will learn how to read CSV files from the code. As an example, we will process
the file created in the previous recipe.

How to do it...
Carry out the following steps in order to complete this recipe:

1. In the AOT, create a new class named ReadCommaFile with the following code snippet:
class ReadCommaFile
{
}

static client void main(Args _args)
{
 CommaTextIo file;
 container line;
 #define.filename(@'C:\Temp\accounts.csv')
 #File

 file = new CommaTextIo(#filename, #io_read);

 if (!file || file.status() != IO_Status::Ok)
 {
 throw error("File cannot be opened.");
 }

 file.inRecordDelimiter('\r\n');
 file.inFieldDelimiter(',');

 line = file.read();

 while (file.status() == IO_Status::Ok)
 {
 info(con2Str(line, ' - '));
 line = file.read();
 }
}

Processing Data

50

2. Run the ReadCommaFile class to view the file's content, as shown in the
following screenshot:

How it works...
As in the previous recipe, we first create a new file object using the CommaTextIo class.
This time, we use #io_read as the mode to ensure that the existing file is opened for
reading only. We also perform the same validations to make sure that the file object is
correctly created; otherwise, an error message is displayed.

Finally, we read the file line by line until we reach the end of the file. Here, we use the while
loop until the file status changes from IO_Status::OK to any other status, which means
we reached the end of the file or something unexpected had happened. Inside the loop, we
call the read() method on the file object, which returns the current line as a container and
moves the internal file cursor to the next line. The data in the file is then simply shown on
the screen using the standard global info() function in conjunction with the con2Str()
function, which converts a container to a string.

There's more...
File reading can also be executed in a way similar to file writing on the server tier in order to
improve performance. The client modifier has to be changed to server, and the code with
the FileIoPermission class has to be added to fulfill the code access security requirements.

Chapter 1

51

The modified class will look similar to the following code snippet:

class ReadCommaFileServer
{
}

static server void main(Args _args)
{
 CommaTextIo file;
 container line;
 FileIoPermission perm;
 #define.filename(@'C:\Temp\accounts.csv')
 #File

 perm = new FileIoPermission(#filename, #io_read);
 perm.assert();

 file = new CommaTextIo(#filename, #io_read);

 if (!file || file.status() != IO_Status::Ok)
 {
 throw error("File cannot be opened.");
 }

 file.inRecordDelimiter('\r\n');
 file.inFieldDelimiter(',');

 line = file.read();

 while (file.status() == IO_Status::Ok)
 {
 info(con2Str(line, ' - '));
 line = file.read();
 }

 CodeAccessPermission::revertAssert();
}

Processing Data

52

Using the date effectiveness feature
Date effectiveness is a feature in Dynamics AX 2012 that allows developers to easily create
date range fields. Date ranges are used to define record validity between the specified dates,
for example, defining employee contract dates.

This feature significantly reduces the amount of time that developers spend on writing code
and also provides a consistent approach to implementing data range fields.

This recipe will demonstrate the basics of the date effectiveness feature. We will implement
the date effectiveness functionality for e-mail templates on the E-mail templates forms.

How to do it...
Carry out the following steps in order to complete this recipe:

1. In the AOT, find the SysEmailTable table and change its property, as shown in the
following table:

Property Value
ValidTimeStateFieldType Date

2. Note the two new fields that are automatically added to the table, as shown in the
following screenshot:

Chapter 1

53

3. Add the newly created ValidFrom and ValidTo fields to the existing emailIdIdx
index and change its properties, as shown in the following table:

Property Value
AlternateKey Yes

ValidTimeStateKey Yes

ValidTimeStateMode NoGap

4. Save the table. The system should prompt you to synchronize the table. Click on
Continue, as shown here:

Processing Data

54

5. After the changes, the index should look similar to the following screenshot:

6. Next, add the ValidFrom and ValidTo fields to the table's Identification
group, as shown in the following screenshot:

Chapter 1

55

7. In the AOT, find the SysEmailTable form, refresh it using the Restore
command from the right-click context menu, then locate its data source named
SysEmailTable and change its properties, as follows:

Property Value
ValidTimeStateAutoQuery DateRange

ValidTimeStateUpdate Correction

8. In order to test the results, navigate to Organization administration | Setup | E-mail
templates and notice the newly created fields: Effective and Expiration. Try creating
records with the same E-mail ID and overlapping date ranges—you will notice how
the system is proposing to maintain valid date ranges, as shown in the following
screenshot:

How it works...
We start the recipe by setting the ValidTimeStateFieldType property of
SysEmailTable to Date. This automatically creates two new fields, ValidFrom and
ValidTo, that are used to define a date range.

Next, we add the created fields to the primary index where the EmailId field is used and
adjust the index's properties.

We set the AlternateKey property to Yes in order to ensure that this index is part of an
alternate key.

We set the ValidTimeStateKey property to Yes in order to specify that the index is used
to determine valid date ranges.

Processing Data

56

We also set the ValidTimeStateMode property to NoGap in order to ensure that e-mail
templates with the same identification number can be created within continuous periods
only. This property can also be set to Gap, allowing noncontinuous date ranges.

Finally, we adjust the SysEmailTable form to reflect the changes. We add the newly created
ValidFrom and ValidTo fields to the SysEmailTable table's Identification group so
that they automatically appear in the form's Overview grid. We also change a few properties
of the SysEmailTable data source, as follows:

1. Set the ValidTimeStateAutoQuery property to DateRange in order to ensure
that all the records are visible. The default AsOfDate value can be used if you want
to display only the records for the current period.

2. Set the ValidTimeStateUpdate property to Correction, allowing the system to
automatically adjust the dates of the associated records.

There's more...
Forms with date-effective records can be enhanced with an automatically
generated toolbar for filtering the records. This can be done with the help of the
DateEffectivenessPaneController application class.

In order to demonstrate this, let's modify the previously used SysEmailTable form
and add the following code snippet at the bottom of the form's init() method:

DateEffectivenessPaneController::constructWithForm(
 this,
 SysEmailTable_ds);

Now, when you open the form, it contains an automatically generated date effectiveness filter
at the top, as shown in the following screenshot:

57

2
Working with Forms

In this chapter, we will cover the following recipes:

 f Creating dialogs using the RunBase framework

 f Handling a dialog event

 f Building a dynamic form

 f Adding a form splitter

 f Creating a modal form

 f Modifying multiple forms dynamically

 f Storing user selections

 f Using a Tree control

 f Building a checklist

 f Adding the View details link

Introduction
Forms in Dynamics AX represent the user interface and are mainly used to enter or modify
data. They are also used to run reports, execute user commands, validate data, and so on.

Normally, forms are created using the AOT by creating a form object and adding various
controls into it, such as tabs, tab pages, grids, groups, data fields, and others. The form's
behavior is controlled by its properties or the code in its methods. The behavior and layouts of
form controls are also controlled by their properties and the code in their methods. Although it
is very rare, forms can also be created dynamically from the code.

Working with Forms

58

In this chapter, we will cover various aspects of using Dynamics AX forms. We start by building
Dynamics AX dialogs, and discuss how to handle their events. The chapter will also show you
how to build dynamic forms, how to add dynamic controls to existing forms, and how to make
modal forms.

This chapter also discusses the usage of splitters and tree controls as well as how to create
checklists, save user selections, and other things.

Creating dialogs using the RunBase
framework

Dialogs are a way to present users with a simple input form. They are commonly used for
small user tasks, such as filling in report values, running batch jobs, and presenting only the
most important fields to the user when creating new records. Dialogs are normally created
from X++ code without storing the actual layout in the AOT.

The application class called Dialog is used to build dialogs. Other application classes, such
as DialogField, DialogGroup, DialogTabPage and others, are used to create dialog
controls. The easiest way to create dialogs is to use the RunBase framework. This is because
the framework provides a set of predefined methods, which make the creation and handling
of the dialog well-structured as opposed to having all the code in a single place. Although in
Dynamics AX 2012 the RunBase framework was replaced by the SysOperation framework,
the RunBase framework is still widely used across the application.

In this example, we will demonstrate how to build a dialog from the code using the RunBase
framework class. The dialog will contain customer table fields shown in different groups and
tabs for creating a new record. There will be two tab pages, General and Details. The first page
will have the Customer account and Name input controls. The second page will be divided
into two groups, Setup and Payment, with the relevant fields inside each group. The actual
record will not be created, as it is out of the scope of this example. However, for demonstration
purposes, the information specified by the user will be displayed in the Infolog window.

How to do it...
Carry out the following steps in order to complete this recipe:

1. Open the AOT and create a new class CustCreate with the following code snippet:
class CustCreate extends RunBase
{
 DialogField fieldAccount;
 DialogField fieldName;
 DialogField fieldGroup;
 DialogField fieldCurrency;

Chapter 2

59

 DialogField fieldPaymTermId;
 DialogField fieldPaymMode;
 CustAccount custAccount;
 CustName custName;
 CustGroupId custGroupId;
 CurrencyCode currencyCode;
 CustPaymTermId paymTermId;
 CustPaymMode paymMode;
}

container pack()
{
 return conNull();
}

boolean unpack(container _packedClass)
{
 return true;
}

protected Object dialog()
{
 Dialog dialog;
 DialogGroup groupCustomer;
 DialogGroup groupPayment;

 dialog = super();

 dialog.caption("Customer information");

 fieldAccount = dialog.addField(
 extendedTypeStr(CustVendAC),
 "Customer account");

 fieldName =
 dialog.addField(extendedTypeStr(CustName));

 dialog.addTabPage("Details");

 groupCustomer = dialog.addGroup("Setup");
 fieldGroup = dialog.addField(
 extendedTypeStr(CustGroupId));
 fieldCurrency = dialog.addField(
 extendedTypeStr(CurrencyCode));

Working with Forms

60

 groupPayment = dialog.addGroup("Payment");
 fieldPaymTermId = dialog.addField(
 extendedTypeStr(CustPaymTermId));
 fieldPaymMode = dialog.addField(
 extendedTypeStr(CustPaymMode));

 return dialog;
}

boolean getFromDialog()
{
 custAccount = fieldAccount.value();
 custName = fieldName.value();
 custGroupId = fieldGroup.value();
 currencyCode = fieldCurrency.value();
 paymTermId = fieldPaymTermId.value();
 paymMode = fieldPaymMode.value();
 return super();

}

void run()
{
 info("You have entered customer information:");
 info(strFmt("Account: %1", custAccount));
 info(strFmt("Name: %1", custName));
 info(strFmt("Group: %1", custGroupId));
 info(strFmt("Currency: %1", currencyCode));
 info(strFmt("Terms of payment: %1", paymTermId));
 info(strFmt("Method of payment: %1", paymMode));
}

static void main(Args _args)
{
 CustCreate custCreate = new CustCreate();

 if (custCreate.prompt())
 {
 custCreate.run();
 }
}

Chapter 2

61

2. In order to test the dialog, run the CustCreate class. The following form will appear,
with the General tab page open initially:

3. Click on the Details tab page; you will see a screen similar to the following screenshot:

Working with Forms

62

4. Enter information in all the fields and click on OK. The results will be displayed in the
Infolog window, as shown here:

How it works...
First, we create a new class named CustCreate. By extending it from RunBase, we utilize
a standard approach to develop data manipulation functions in Dynamics AX. The RunBase
framework will define a common structure and automatically add additional controls, such as
the OK and Cancel buttons, to the dialog.

Then, we declare class variables, which will be used later. The DialogField type variables
are actual user input controls. The rest of the variables are used to store the values returned
from the user input.

The pack() and unpack() methods are normally used to convert an object into a container
and convert the container back into an object, respectively. A container is a common format
used to store objects in the user cache (SysLastValue) or to transfer the object between the
server and client tiers. The RunBase framework needs these two methods to be implemented
in all its subclasses. In this example, we are not using any of the pack() or unpack()
features, but because these methods are mandatory, we still create them and return an
empty container from pack() and we return true from unpack().

The layout of the actual dialog is constructed in the dialog() method. Here, we define local
variables for the dialog itself and the control groups inside the dialog. The super() method
creates the initial dialog object for us and automatically adds the relevant controls, including
the OK and Cancel buttons.

Additional dialog controls are added to the dialog by using the addField(), addGroup(),
and addTabPage() methods. There are more methods, such as addText(), addImage(),
and addMenuItemButton(), to add different types of controls. All the controls have to be
added to the dialog object directly. Adding an input control to groups or tabs is done by calling
addField() right after addGroup() or addTabPage(). In the previous example, we added
tab pages, groups, and fields in a top down logical sequence. Note that it is enough only to
add a second tab page, and the first tab page labeled General is added automatically by
the RunBase framework.

Chapter 2

63

Values from the dialog controls are assigned to the variables by calling the value() method
of DialogField. If a dialog is used within the RunBase framework, as it is used in this
example, the best place to assign dialog control values to variables is the getFormDialog()
method. The RunBase framework calls this method right after the user clicks on OK.

The main processing is done in the run() method. For demonstration purposes, this class
only shows the user input in the Infolog window.

In order to make this class runnable, the main() static method has to be created. Here,
we create a new CustCreate object and invoke the user dialog by calling the prompt()
method. Once the user has finished entering customer details by clicking on OK, we call
the run() method to process the data.

See also
 f The Handling a dialog event recipe

Handling a dialog event
Sometimes, in the user interface, it is necessary to change the status of one field, depending
on the status of another field. For example, if the user marks the Show filter checkbox, then
another field, Filter, appears or becomes enabled. In AOT forms, this can be done using the
modified() input control event. However, if this feature is required on runtime dialogs,
handling events are not that straightforward.

Often, existing dialogs have to be modified in order to support events. The easiest way to do
this is, of course, to convert the dialog into an AOT form. However, when the existing dialog is
complex enough, probably a more cost-effective solution would be to implement dialog event
handling instead of converting to an AOT form. Event handling in dialogs is not flexible, as in
the case of AOT forms, but in most cases, it does the job.

In this recipe, we will create a dialog similar to the previous dialog, but instead of entering
the customer number, we will be able to select the number from the list. Once the customer
is selected, the rest of the fields will be filled in automatically by the system from the
customer record.

Working with Forms

64

How to do it...
Carry out the following steps in order to complete this recipe:

1. In the AOT, create a new class named CustSelect with the following code snippet:
class CustSelect extends RunBase
{
 DialogField fieldAccount;
 DialogField fieldName;
 DialogField fieldGroup;
 DialogField fieldCurrency;
 DialogField fieldPaymTermId;
 DialogField fieldPaymMode;
}

container pack()
{
 return conNull();
}

boolean unpack(container _packedClass)
{
 return true;
}

protected Object dialog()
{
 Dialog dialog;
 DialogGroup groupCustomer;
 DialogGroup groupPayment;

 dialog = super();

 dialog.caption("Customer information");
 dialog.allowUpdateOnSelectCtrl(true);

 fieldAccount = dialog.addField(
 extendedTypeStr(CustAccount),
 "Customer account");

 fieldName = dialog.addField(extendedTypeStr(CustName));
 fieldName.enabled(false);

Chapter 2

65

 dialog.addTabPage("Details");

 groupCustomer = dialog.addGroup("Setup");
 fieldGroup = dialog.addField(
 extendedTypeStr(CustGroupId));
 fieldCurrency = dialog.addField(
 extendedTypeStr(CurrencyCode));
 fieldGroup.enabled(false);
 fieldCurrency.enabled(false);

 groupPayment = dialog.addGroup("Payment");
 fieldPaymTermId = dialog.addField(
 extendedTypeStr(CustPaymTermId));
 fieldPaymMode = dialog.addField(
 extendedTypeStr(CustPaymMode));
 fieldPaymTermId.enabled(false);
 fieldPaymMode.enabled(false);

 return dialog;
}

void dialogSelectCtrl()
{
 CustTable custTable;

 custTable = CustTable::find(fieldAccount.value());
 fieldName.value(custTable.name());
 fieldGroup.value(custTable.CustGroup);
 fieldCurrency.value(custTable.Currency);
 fieldPaymTermId.value(custTable.PaymTermId);
 fieldPaymMode.value(custTable.PaymMode);
}

static void main(Args _args)
{
 CustSelect custSelect = new CustSelect();

 if (CustSelect.prompt())
 {
 CustSelect.run();
 }
}

Working with Forms

66

2. Run the CustSelect class, select any customer from the list, and move the cursor
to the next control. Notice how the rest of the fields were populated automatically
with the customer's information, as shown in the following screenshot:

3. When you click on the Details tab page, you will see more information about the
customer, as shown in the following screenshot:

Chapter 2

67

How it works...
The new class named CustSelect is actually a copy of the CustCreate class from the
previous recipe, with a few changes. In its class declaration, we leave all the DialogField
declarations and remove the rest of the variables.

The pack() and unpack() methods remain the same as we are not using any of
their features.

In the dialog() member method, we call the allowUpdateOnSelectCtrl() method
with the true parameter to enable input control event handling. We also disable all the
controls apart from Customer account by calling enable() with the false parameter
for each control.

The dialogSelectCtrl() member method of the RunBase class is called every time
the user modifies any input control in the dialog. It is the place where we have to add all the
required code to ensure that in our case, all the controls are populated with the correct data
from the customer record—once Customer account is selected.

The main() method ensures that the class is runnable.

There's more...
Sometimes, the usage of the dialogSelectCtrl() method might appear a bit limited,
as this method is only invoked when the dialog control loses its focus. Also, no other events
can be controlled, and it can become messy if the events on multiple controls need to
be processed.

The Dialog class does not provide direct access to the underlying form's event handling
functions, but we can still control this in a slightly different way. Let's modify the previous
example to include more events. We will add an event to the second tab page, which is
triggered once the page is activated.

First, we have to override the dialogPostRun() method in the CustSelect class,
as shown here:

void dialogPostRun(DialogRunbase dialog)
{
 dialog.formRun().controlMethodOverload(true);
 dialog.formRun().controlMethodOverloadObject(this);
 super(dialog);
}

Working with Forms

68

Here, we enable event overloading in the runtime form after it is fully initialized and is ready
to be displayed on the screen. We also pass the CustSelect object as an argument to the
controlMethodOverloadObject() method in order to ensure that the form knows where
the overloaded events are located.

Next, we have to create a method that will be executed once the tab page is opened:

void TabPg_1_pageActivated()
{
 info('Tab page activated');
}

The method name consists of the control name and the event name joined by an underscore.
Now, run the class again and select the Details tab page. The message should be displayed
in the Infolog window.

Before creating such methods, we first have to obtain the name of the runtime control.
This is because the dialog form is created dynamically and the system defines control names
automatically without allowing the user to define them. In this example, we have to temporarily
add the following code snippet to the bottom of the dialog() method, which displays the
name of the Details tab page control. Just replace dialog.addTabPage("Details");
with info(dialog.addTabPage("Details").name());.

Running the class will display the name of the control in the Infolog window.

Note that this approach may not work properly if the dialog contains an automatically generated
query. In such cases, control names will change if the user adds or removes query ranges.

See also
 f The Creating dialogs using the RunBase framework recipe

Building a dynamic form
A normal approach for creating forms in Dynamics AX is to build and store form objects in
the AOT. It is possible to achieve a high level of complexity using this approach. However, in a
number of cases, it is necessary to have forms created dynamically. In a standard Dynamics
AX application, we can see that application objects, such as the Table browser form, various
lookups, or dialogs, are built dynamically.

In this recipe, we will create a dynamic form. In order to show how flexible the form can be,
we will replicate the layout of the existing Customer groups form located in the Accounts
receivable module under Setup | Customers.

Chapter 2

69

How to do it...
Carry out the following steps in order to complete this recipe:

1. In the AOT, create a new class called CustGroupDynamic with the following
code snippet:
class CustGroupDynamic
{
}

static void main(Args _args)
{
 DictTable dictTable;
 Form form;
 FormBuildDesign design;
 FormBuildDataSource ds;
 FormBuildActionPaneControl actionPane;
 FormBuildActionPaneTabControl actionPaneTab;
 FormBuildButtonGroupControl btngrp1;
 FormBuildButtonGroupControl btngrp2;
 FormBuildCommandButtonControl cmdNew;
 FormBuildCommandButtonControl cmdDel;
 FormBuildMenuButtonControl mbPosting;
 FormBuildFunctionButtonControl mibPosting;
 FormBuildFunctionButtonControl mibForecast;
 FormBuildGridControl grid;
 FormBuildGroupControl grpBody;
 Args args;
 FormRun formRun;
 #Task

 dictTable = new DictTable(tableNum(CustGroup));

 form = new Form();
 form.name("CustGroupDynamic");

 ds = form.addDataSource(dictTable.name());
 ds.table(dictTable.id());

 design = form.addDesign('Design');
 design.caption("Customer groups");
 design.style(FormStyle::SimpleList);
 design.titleDatasource(ds.id());

Working with Forms

70

 actionPane = design.addControl(
 FormControlType::ActionPane, 'ActionPane');
 actionPane.style(ActionPaneStyle::Strip);
 actionPaneTab = actionPane.addControl(
 FormControlType::ActionPaneTab, 'ActionPaneTab');
 btngrp1 = actionPaneTab.addControl(
 FormControlType::ButtonGroup, 'NewDeleteGroup');
 btngrp2 = actionPaneTab.addControl(
 FormControlType::ButtonGroup, 'ButtonGroup');

 cmdNew = btngrp1.addControl(
 FormControlType::CommandButton, 'NewButton');
 cmdNew.buttonDisplay(FormButtonDisplay::TextAndImageLeft);
 cmdNew.normalImage('11045');
 cmdNew.imageLocation(SysImageLocation::EmbeddedResource);
 cmdNew.primary(NoYes::Yes);
 cmdNew.command(#taskNew);

 cmdDel = btngrp1.addControl(
 FormControlType::CommandButton, 'NewButton');
 cmdDel.text("Delete");
 cmdDel.buttonDisplay(FormButtonDisplay::TextAndImageLeft);
 cmdDel.normalImage('10121');
 cmdDel.imageLocation(SysImageLocation::EmbeddedResource);
 cmdDel.saveRecord(NoYes::Yes);
 cmdDel.primary(NoYes::Yes);
 cmdDel.command(#taskDeleteRecord);

 mbPosting = btngrp2.addControl(
 FormControlType::MenuButton, 'MenuButtonPosting');
 mbPosting.helpText("Set up related data for the group.");
 mbPosting.text("Setup");

 mibPosting = mbPosting.addControl(
 FormControlType::MenuFunctionButton, 'Posting');
 mibPosting.text('Item posting');
 mibPosting.saveRecord(NoYes::No);
 mibPosting.dataSource(ds.id());
 mibPosting.menuItemName(menuitemDisplayStr(InventPosting));

 mibForecast = btngrp2.addControl(
 FormControlType::MenuFunctionButton, 'SalesForecast');
 mibForecast.text('Forecast');
 mibForecast.saveRecord(NoYes::No);

Chapter 2

71

 mibForecast.menuItemName(
 menuitemDisplayStr(ForecastSalesGroup));

 grpBody = design.addControl(FormControlType::Group, 'Body');
 grpBody.heightMode(FormHeight::ColumnHeight);
 grpBody.columnspace(0);
 grpBody.style(GroupStyle::BorderlessGridContainer);

 grid = grpBody.addControl(FormControlType::Grid, "Grid");
 grid.dataSource(ds.name());
 grid.showRowLabels(false);
 grid.widthMode(FormWidth::ColumnWidth);
 grid.heightMode(FormHeight::ColumnHeight);

 grid.addDataField(
 ds.id(), fieldNum(CustGroup,CustGroup));

 grid.addDataField(
 ds.id(), fieldNum(CustGroup,Name));

 grid.addDataField(
 ds.id(), fieldNum(CustGroup,PaymTermId));

 grid.addDataField(
 ds.id(), fieldnum(CustGroup,ClearingPeriod));

 grid.addDataField(
 ds.id(), fieldNum(CustGroup,BankCustPaymIdTable));

 grid.addDataField(
 ds.id(), fieldNum(CustGroup,TaxGroupId));

 args = new Args();
 args.object(form);

 formRun = classFactory.formRunClass(args);
 formRun.init();
 formRun.run();

 formRun.detach();
}

Working with Forms

72

2. In order to test the form, run the CustGroupDynamic class. Notice that the dynamic
form is similar to the static Customer groups form, which can be obtained by navigating
to Accounts receivable | Setup | Customers, as shown in the following screenshot:

How it works...
We start the code by declaring our variables. Note that most of the variable types begin with
FormBuild, which are a part of a set of application classes used to build dynamic forms.
Each of these types corresponds to the control types that are manually used when building
forms in the AOT.

Right after the variable declaration, we create a dictTable object based on the CustGroup
table. We will use this object several times later in the code. Then, we create a form object
and set a name by calling the following lines of code:

form = new Form();
form.name("CustGroupDynamic");

The name of the form is not important as this is a dynamic form. The form should have a data
source, so we add one by calling the addDataSource() method to the form object and by
providing a previously created dictTable object, as shown here:

ds = form.addDataSource(dictTable.name());
ds.table(dictTable.id());

Every form has a design, so we add a new design, define its style as a simple list, and set its
title data source, as shown in the following code snippet:

design = form.addDesign('Design');
design.caption("Customer groups");
design.style(FormStyle::SimpleList);
design.titleDatasource(ds.id());

Chapter 2

73

Once the design is ready, we can start adding controls from the code as if we were doing
this from the AOT. The first thing you need to do is to add an action pane of Strip type
with its buttons:

actionPane = design.addControl(
 FormControlType::ActionPane, 'ActionPane');
actionPane.style(ActionPaneStyle::Strip);
actionPaneTab = actionPane.addControl(
 FormControlType::ActionPaneTab, 'ActionPaneTab');
btngrp1 = actionPaneTab.addControl(

Right after the action pane, we add an automatically expanding grid that points to the
previously mentioned data source. Just to follow the best practices, we place the grid
inside a Group control:

grpBody = design.addControl(FormControlType::Group, 'Body');
grpBody.heightMode(FormHeight::ColumnHeight);
grpBody.columnspace(0);
grpBody.style(GroupStyle::BorderlessGridContainer);

grid = grpBody.addControl(FormControlType::Grid, "Grid");
grid.dataSource(ds.name());
grid.showRowLabels(false);
grid.widthMode(FormWidth::ColumnWidth);
grid.heightMode(FormHeight::ColumnHeight);

Next, we add a number of grid controls that point to the relevant data source fields by
calling addDataField() on the grid object. The last thing is to initialize and run the
form. Here, we use a recommended approach to create and run forms using the globally
available classFactory object.

Adding a form splitter
In Dynamics AX, complex forms consist of one or more sections. Each section may contain
grids, groups, or any other element. In order to maintain section sizes while resizing the
form, the sections are normally separated by the so-called splitter. Splitters are not special
Dynamics AX controls; they are Group controls with their properties modified so that they
look like splitters. Most of the multisection forms in Dynamics AX already contain splitters.

Working with Forms

74

In this recipe, in order to demonstrate the usage of the splitters, we will modify one of the
existing forms that does not have a splitter. We will modify the Account reconciliation
form. To open this form, navigate to Cash and bank management | Common | Bank
accounts, select any bank account, and click on the Account reconciliation button under
the Reconcile group in the action pane. Then, select any of the existing records, and click on
the Transactions button. From the following screenshot, you can see that it is not possible to
control the size of each grid individually and that they are resized automatically using a fixed
ratio when resizing the form:

In this recipe, we will demonstrate how to add a splitter to the Account reconciliation form.
We will add a form splitter between the two grids. This will allow users to set the sizes of both
the grids in order to ensure that the data is displayed optimally.

Chapter 2

75

How to do it...
Carry out the following steps in order to complete this recipe:

1. Open the BankReconciliation form in the AOT, and in the form's design, add a
new Group control right after the ActionPane control with the following properties:

Property Value
Name Top

AutoDeclaration Yes

Width Column width

FrameType None

2. Move the AllReconciled, Balances, and Tab controls into the newly
created group.

3. Change the following properties of the existing BankTransTypeGroup group:

Property Value
Top Auto

Height Column height

4. Change the following property of the exiting TypeSums grid located inside the
BankTransTypeGroup group:

Property Value
Height Column height

5. Add a new Group control immediately below the Top group with the
following properties:

Property Value
Name Splitter

Style SplitterHorizontalContainer

AutoDeclaration Yes

6. Add the following line of code at the bottom of the form's class declaration:
SysFormSplitter_Y formSplitter;

Working with Forms

76

7. Add the following line of code at the bottom of the form's init() method:
formSplitter = new SysFormSplitter_Y(Splitter, Top, element);

8. In the AOT, the modified BankReconciliation form should look similar to the
following screenshot:

9. Now, in order to test the results, navigate to Cash and bank management | Common
| Bank accounts, select any bank account, click on Account reconciliation, select
an existing or create a new bank statement, and click on the Transactions button.
Note that now the form has a splitter in the middle, which makes the form look better
and allows you to resize both the grids, as shown in the following screenshot:

Chapter 2

77

How it works...
Normally, a splitter has to be placed between two form groups. In this recipe, to follow this
rule, we need to adjust the BankReconciliation form's design. The AllReconciled,
Balances, and Tab controls are moved to a new group called Top. We set the group's
FrameType property to None to make sure its border is not visible to the user. We also
change its AutoDeclaration property to Yes allowing you to access this object from the
code. Finally, we make this group automatically expand in the horizontal direction by setting
its Width property to Column width. At this stage, the visual form layout does not change.

Next, we change the BankTransTypeGroup group. We set its Top behavior to Auto and
make it fully expandable in the vertical direction by setting its Height property to Column
height in order to fill all the vertical space.

Working with Forms

78

Now, we add a new Group control in between the Top and BankTransTypeGroup groups.
We set its Style property to SplitterHorizontalContainer, which makes this group
look like a proper form splitter.

Finally, we have to declare and initialize the SysFormSplitter_Y application class, which
does the rest of the tasks.

In this way, horizontal splitters can be added to any form. Vertical splitters can also be added
to forms using a similar approach. For this, we need to use another application class called
SysFormSplitter_X.

Creating a modal form
Often, people who are not familiar with computers and software tend to get lost among open
application windows. The same can be applied to Dynamics AX. Often, a user opens a form,
clicks on a button to open another form, and then goes back to the first form without closing
the second form. Sometimes this happens intentionally, sometimes not, but the result is that
the second form gets hidden behind the first one and the user starts wondering why it is not
possible to close or edit the first form.

Although it is not the best practice, sometimes such issues can be easily solved by making
the second form a modal window. In other words, the second form always stays on top of the
first one until it is closed. In this recipe, we will make the Create sales order form to behave
as a modal window.

How to do it...
Carry out the following steps in order to complete this recipe:

1. Open the SalesCreateOrder form in the AOT and change its design's property,
as follows:

Property Value
WindowType Popup

2. In order to test the modal form, navigate to Sales and marketing | Common | Sales
orders | All sales orders and start creating a new order. Notice that now the Create
sales order form always stays on top:

Chapter 2

79

How it works...
The form's design has the WindowType property, which is set to Standard by default.
In order to make a form behave as a modal window, we have to change it to Popup.
Such forms will always stay on top of the parent form.

There's more...
We already know that some of the Dynamics AX forms are created dynamically using the
Dialog class. If we take a look deeper into the code, we can find that the Dialog class
actually creates a runtime form. This means that we can apply the same principle—change
the WindowType property to Popup on the form's Design node. The following lines of code
can be added to the dialog creation code:

dialog.dialogForm().buildDesign().windowType(
 FormWindowType::Popup);

Here, we get a reference to the form's design by first using the dialogForm() method
of the Dialog object to get a reference to the DialogForm object, and then we call
buildDesign() on the latter object. Lastly, we set the design's window type by calling
its windowType() method with the FormWindowType::Popup as an argument.

See also
 f The Creating dialogs using the RunBase framework recipe

www.allitebooks.com

http://www.allitebooks.org

Working with Forms

80

Modifying multiple forms dynamically
In the standard Dynamics AX application, there is a class called SysSetupFormRun.
The class is called during the run of every form; therefore, it can be used to override some
of the common behaviors for all Dynamics AX forms at once. For example, different form
background colors can be set for different company accounts, some controls can be hidden
or added depending on specific circumstances, and so on.

In this recipe, we will modify the SysSetupFormRun class to automatically add the About
Microsoft Dynamics AX button to every form in Dynamics AX.

How to do it...
Carry out the following steps in order to complete this recipe:

1. In the AOT, open the SysSetupFormRun class and create a new method with the
following code snippet:
private void addAboutButton()
{
 FormActionPaneControl actionPane;
 FormActionPaneTabControl actionPaneTab;
 FormCommandButtonControl cmdAbout;
 FormButtonGroupControl btngrp;
 #define.taskAbout(259)

 actionPane = this.design().controlNum(1);
 if (!actionPane ||
 !(actionPane is FormActionPaneControl) ||
 actionPane.style() == ActionPaneStyle::Strip)
 {
 return;
 }

 actionPaneTab = actionPane.controlNum(1);
 if (!actionPaneTab ||
 !(actionPaneTab is FormActionPaneTabControl))
 {
 return;
 }

 btngrp = actionPaneTab.addControl(
 FormControlType::ButtonGroup, 'ButtonGroup');
 btngrp.caption("About");

Chapter 2

81

 cmdAbout = btngrp.addControl(
 FormControlType::CommandButton, 'About');
 cmdAbout.command(#taskAbout);
 cmdAbout.imageLocation(SysImageLocation::EmbeddedResource);
 cmdAbout.normalImage('412');
 cmdAbout.big(NoYes::Yes);
 cmdAbout.saveRecord(NoYes::No);
}

2. In the same class, override its run() method with the following code snippet:
void run()
{
 this.addAboutButton();
 super();
}

3. In order to test the results, open any list page; for example, go to General ledger
| Common | Main accounts and notice a new button named About Microsoft
Dynamics AX in the action pane, as shown in the following screenshot:

Working with Forms

82

How it works...
The SysSetupFormRun is the application class that is called by the system every time a user
runs a form. The best place to add our custom control is in its run() method.

We use the this.design() method to get a reference to the form's design and then we
check whether the first control in the design is an action pane. We continue by adding a new
separate button group and the About Microsoft Dynamics AX command button. Now, every
form in Dynamics AX with an action pane will have one more button.

In this way, any other control or controls can be added or changed in all Dynamics AX form
at once.

Storing user selections
Dynamics AX has a very useful feature that allows you to save the latest user choices for
forms, reports, and other objects. This feature is already implemented across a number of
standard forms, reports, periodic jobs, and other objects, which require user input. When
developing a new functionality for Dynamics AX, it is recommended that you keep it that way.

In this recipe, we will demonstrate how to save the latest user selections. In order to make
it as simple as possible, we will use the existing filter on the Bank statement form, which
can be opened by navigating to Cash and bank management | Common | Bank accounts,
selecting any bank account, and then clicking on the Account reconciliation button in the
action pane. This form contains one filter called View, which allows you to display bank
statements based on their status. We will enhance this form so the system will remember
the latest user's choice when the form is opened next time.

How to do it...
Carry out the following steps in order to complete this recipe:

1. In the AOT, find the BankAccountStatement form and add the following code
snippet at the bottom of its class declaration:
AllNotReconciled showAllReconciled;
#define.CurrentVersion(1)
#localmacro.CurrentList
 showAllReconciled
#endmacro

2. Create the following additional form methods:
void initParmDefault()
{
 showAllReconciled = AllNotReconciled::NotReconciled;
}

Chapter 2

83

container pack()
{
 return [#CurrentVersion, #CurrentList];
}

boolean unpack(container _packedClass)
{
 int version = RunBase::getVersion(_packedClass);

 switch (version)
 {
 case #CurrentVersion:
 [version, #CurrentList] = _packedClass;
 return true;
 default:
 return false;
 }
 return false;
}

IdentifierName lastValueDesignName()
{
 return element.args().menuItemName();
}

IdentifierName lastValueElementName()
{
 return this.name();
}

UtilElementType lastValueType()
{
 return UtilElementType::Form;
}

UserId lastValueUserId()
{
 return curUserId();
}

DataAreaId lastValueDataAreaId()
{
 return curext();
}

Working with Forms

84

3. Override the form's run() method and add the following lines of code right before
its super() method:
xSysLastValue::getLast(this);
AllReconciled.selection(showAllReconciled);

4. Override the form's close() method and add the following lines of code at the
bottom of this method:
showAllReconciled = AllReconciled.selection();
xSysLastValue::saveLast(this);

5. Finally, delete the following line of code from the init() method of the
BankAccountStatement data source:
allReconciled.selection(1);

6. Now to test the form, navigate to Cash and bank management | Common | Bank
accounts, select any bank account, click on Account reconciliation, change the
filter's value, close the form, and then open it again. The previous choice should stay,
as shown in the following screenshot:

Chapter 2

85

How it works...
First, we define a variable that will store the value of the filter control and the #CurrentList
macro, which defines a list of variables that we are going to save in the usage data storage
(the SysLastValue table). Currently, we have our single variable inside it.

The #CurrentVersion macro defines a version of the saved values. In other words, it says
that the variables defined by the #CurrentList macro, which will be stored in the system
usage data storage, can be addressed using the number 1.

Normally, when implementing this feature for the first time for a particular object,
#CurrentVersion is set to 1. Later on, if you decide to add new values or change the existing
ones, you have to change the value of #CurrentVersion, normally increasing it by 1. This
ensures that the system addresses the correct list of variables in the usage data storage.

The initParmDefault() method specifies the default values if nothing is found in the
usage data storage. Normally, this happens if we run a form for the first time, we change
#CurrentVersion, or clear the usage data. This method is called automatically by
the xSysLastValue class.

The pack() and unpack() methods are responsible for formatting a storage container
from the variables and extracting variables from a storage container, respectively. In our case,
pack() returns a container consisting of two values: version number and the View filter's value.
These values will be saved in the system usage data storage after the form is closed. When
the form is opened, the xSysLastValue class calls unpack() to extract the values from the
stored container. In this method, first of all the container version of the stored data is checked
against the version number defined by #CurrentVersion, and only if both numbers match,
the values in the container are considered correct and are assigned to the form's variables.

The return values of lastValueDesignName(), lastValueElementName(),
lastValueType(), lastValueUserId(), and lastValueDataAreaId() represent a
unique combination that is used to identify the stored usage data. This ensures that different
users can store their selections for different objects in different companies without overriding
each other's values.

The lastValueDesignName() method is meant to return the name of the object's current
design in the cases where the object can have several designs. In this recipe, there is only one
design, so instead of leaving it empty, we used it for a slightly different purpose. The method
returns the name of the menu item used to open this form. In this case, separate usage
datasets will be stored for each menu item that opens the same form.

The last two pieces of code need to be added to the form's run() and close() methods.
In the run() method, xSysLastValue::getLast(this) retrieves the saved user values
from the usage data and assigns them to the form's variables.

Finally, the code in the close() method is responsible for assigning user selections to the
variables and saving them to the usage data by calling xSysLastValue::saveLast(this).

Working with Forms

86

Using a Tree control
Frequent users will notice that some of the Dynamics AX forms use Tree controls instead
of the commonly used grids. In some cases, it is extremely useful, especially when there are
parent-child relationships among records. It is a much clearer way to show the whole hierarchy
as compared to a flat list. For example, product categories are organized as a hierarchy and
give a much better overview when displayed in a tree layout.

This recipe will discuss the principles of how to build tree-based forms. As an example, we will
use the Budget model form, which can be found by navigating to Budgeting | Setup | Basic
Budgeting | Budget models. This form contains a list of budget models and their submodels,
and although the data is organized using a parent-child structure, it is still displayed as a grid.
In this recipe, in order to demonstrate the usage of the Tree control, we will convert the grid
into the tree.

How to do it...
Carry out the following steps in order to complete this recipe:

1. In the AOT, create a new class called BudgetModelTree with the following
code snippet:
class BudgetModelTree
{
 FormTreeControl tree;
 BudgetModelId modelId;
}

void new(
 FormTreeControl _formTreeControl,
 BudgetModelId _budgetModelId)
{
 tree = _formTreeControl;
 modelId = _budgetModelId;
}

static BudgetModelTree construct(
 FormTreeControl _formTreeControl,
 BudgetModelId _budgetModelId = '')
{
 return new BudgetModelTree(
 _formTreeControl,
 _budgetModelId);
}

Chapter 2

87

TreeItemIdx createNode(
 TreeItemIdx _parentIdx,
 BudgetModelId _modelId,
 RecId _recId)
{
 TreeItemIdx itemIdx;
 BudgetModel model;
 BudgetModel submodel;

 model = BudgetModel::find(HeadingSub::Heading, _modelId);

 itemIdx = SysFormTreeControl::addTreeItem(
 tree,
 _modelId + ' : ' + model.Txt,
 _parentIdx,
 _recId,
 0,
 true);
 if (modelId == _modelId)
 {
 tree.select(itemIdx);
 }
 while select submodel
 where submodel.ModelId == _modelId &&
 submodel.Type == HeadingSub::SubModel
 {
 this.createNode(
 itemIdx,
 submodel.SubModelId,
 submodel.RecId);
 }
 return itemIdx;
}

void buildTree()
{
 BudgetModel model;
 BudgetModel submodel;
 TreeItemIdx itemIdx;

 tree.deleteAll();
 tree.lock();
 while select RecId, ModelId from model
 where model.Type == HeadingSub::Heading

Working with Forms

88

 notExists join submodel
 where submodel.SubModelId == model.ModelId &&
 submodel.Type == HeadingSub::SubModel
 {
 itemIdx = this.createNode(
 FormTreeAdd::Root,
 model.ModelId,
 model.RecId);
 SysFormTreeControl::expandTree(tree, itemIdx);
 }
 tree.unLock(true);
}

2. In the AOT, open the BudgetModel form's design, expand the Body group, then
expand the GridContainer group, and change the following property of the
BudgetModel grid control:

Property Value
Visible No

3. Create a new Tree control right below the BudgetModel grid with the following
properties, along with their values:

Property Value
Name Tree

Width Column width

Height Column height

Border Single line

RowSelect Yes

4. Add the following line of code to the bottom of the form's class declaration:
BudgetModelTree modelTree;

5. Add the following lines of code at the bottom of the form's init() method:
 modelTree = BudgetModelTree::construct(Tree);
 modelTree.buildTree();

6. Override selectionChanged() on the Tree control with the following
code snippet:
void selectionChanged(
 FormTreeItem _oldItem,
 FormTreeItem _newItem,
 FormTreeSelect _how)

Chapter 2

89

{
 BudgetModel model;
 BudgetModelId modelId;

 super(_oldItem, _newItem, _how);

 if (_newItem.data())
 {
 select firstOnly model
 where model.RecId == _newItem.data();
 if (model.Type == HeadingSub::SubModel)
 {
 modelId = model.SubModelId;
 select firstOnly model
 where model.ModelId == modelId
 && model.Type == HeadingSub::Heading;
 }
 BudgetModel_ds.findRecord(model);
 BudgetModel_ds.refresh();
 }

}

7. Override the delete() method on the BudgetModel data source with the following
code snippet:
void delete()
{
 super();

 if (BudgetModel.RecId)
 {
 modelTree.buildTree();
 }
}

8. Override the delete() method on the SubModel data source with the following
code snippet:
void delete()
{
 super();

 if (SubModel.RecId)
 {
 modelTree.buildTree();
 }
}

Working with Forms

90

9. Add the following line of code at the bottom of the write() method on the
BudgetModel data source:
 modelTree.buildTree();

10. Override the write() method on the SubModel data source and add the following
line of code at the bottom:
 modelTree.buildTree();

11. In the AOT, the BudgetModel form should look like the following screenshot:

12. To test the Tree control, navigate to Budgeting | Setup | Basic budgeting | Budget
models. Notice how the budget models are presented as a hierarchy, as shown here:

Chapter 2

91

How it works...
This recipe contains a lot of code, so we create a class to hold most of it. This allows you to
reuse the code and keep the form less cluttered.

The new class contains a few common methods, such as new() and construct(),
to initialize the class, and two methods, which actually generate the tree.

The first method is createNode() and is used to create a single budget model node with
its children, if any. It is a recursive method, and it calls itself to generate the children of the
current node. It accepts a parent node and a budget model as arguments. In this method, we
create the node by calling the addTreeItem() method of the SysFormTreeControl class.
The rest of the code loops through all the submodels and creates subnodes (if there are any)
for each of them.

Working with Forms

92

The second method is buildTree(). This is the main method where the Tree control is
populated with the tree structure. At the top of this method, we delete all the existing nodes
(in case we are updating an existing tree) and then lock the Tree control to make sure that
the user cannot modify it while it's being built. Then, we add nodes by looping through all the
parent budget models and calling the previously mentioned createNode(). We call the
expandTree() method of the SysFormTreeControl class in order to expand every node.
Once the hierarchy is ready, we unlock the Tree control.

Next, we modify the BudgetModel form by hiding the existing grid section and adding a new
Tree control. Tree nodes are always generated from the code and the previously mentioned
class will do exactly that. On the form, we declare and initialize the modelTree object and
build the tree in the form's init() method.

In order to ensure that the currently selected tree node is displayed on the form on the
right-hand side, we override the Tree control's selectionChanged() event, which is
triggered every time a tree node is selected. Here, we locate a corresponding budget model
record to make sure it is displayed on the right-hand side once the tree node is selected.

The rest of the code on the form is to ensure that the tree is rebuilt whenever the data
is modified.

There's more...
There are a few other things to be considered when working with Tree controls. One of them
is the performance of the tree and the other one is the drag and drop support in the tree.

Performance
Generating a tree hierarchy might be time consuming, so for bigger trees, it is not beneficial
to build the whole tree initially. Instead, it is better to generate only a visible part of the tree
which, most of the time, is the first level of nodes, and to generate the rest of the branches
only when/if the user expands them. This can be achieved by placing the relevant code into
the expanding() method of the Tree control, which represents an event when a tree node
is being expanded. Such an approach ensures that no system resources are used to generate
unused tree nodes.

Drag and drop
Besides the hierarchical layout, Tree controls also allow users to use the drag and drop
functionality. This makes daily operations much quicker and more effective. Let's modify
the previous example to support drag and drop. We are going to allow users to move budget
submodels to different parents within the tree. In order to do this, we need to make some
changes to the BudgetModelTree class and the BudgetModel form.

Chapter 2

93

Let's perform the following steps:

1. Add the following lines of code to the BudgetModelTree class declaration:
TreeItemIdx dragItemIdx;
TreeItemIdx lastItemIdx;

2. Create the following additional methods in the BudgetModelTree class:
private boolean canMove()
{
 BudgetModel model;
 RecId recId;

 recId = tree.getItem(dragItemIdx).data();

 select firstOnly recId from model
 where model.RecId == recId
 && model.Type == HeadingSub::SubModel;

 return model.RecId ? true : false;
}

private void move(RecId _from, RecId _to)
{
 BudgetModel modelFrom;
 BudgetModel modelTo;

 select firstOnly ModelId from modelTo
 where modelTo.RecId == _to;

 ttsBegin;

 select firstOnly forupdate modelFrom
 where modelFrom.RecId == _from;

 modelFrom.ModelId = modelTo.ModelId;

 if (modelFrom.validateWrite())
 {
 modelFrom.update();
 }

 ttsCommit;
}

Working with Forms

94

void stateDropHilite(TreeItemIdx _idx)
{
 FormTreeItem item;

 if (lastItemIdx)
 {
 item = tree.getItem(lastItemIdx);
 item.stateDropHilited(false);
 tree.setItem(item);
 lastItemIdx = 0;
 }

 if (_idx)
 {
 item = tree.getItem(_idx);
 item.stateDropHilited(true);
 tree.setItem(item);
 lastItemIdx = _idx;
 }
}

int beginDrag(int _x, int _y)
{
 [dragItemIdx] = tree.hitTest(_x, _y);
 return 1;
}

FormDrag dragOver(
 FormControl _dragSource,
 FormDrag _dragMode,
 int _x,
 int _y)
{
 TreeItemIdx currItemIdx;

 if (!this.canMove())
 {
 return FormDrag::None;
 }

 [currItemIdx] = tree.hitTest(_x, _y);

 this.stateDropHilite(currItemIdx);

Chapter 2

95

 return FormDrag::Move;
}

void drop(
 FormControl _dragSource,
 FormDrag _dragMode,
 int _x,
 int _y)
{
 TreeItemIdx currItemIdx;

 if (!this.canMove())
 {
 return;
 }

 this.stateDropHilite(0);

 [currItemIdx] = tree.hitTest(_x,_y);

 if (!currItemIdx)
 {
 return;
 }

 this.move(
 tree.getItem(dragItemIdx).data(),
 tree.getItem(currItemIdx).data());

 tree.moveItem(dragItemIdx, currItemIdx);

}

3. In the AOT, locate the BudgetModel form, find its Tree control, and change its
following property:

Property Value
DragDrop Manual

4. Also, override the following methods of the Tree control:
int beginDrag(int _x, int _y)
{
 return modelTree.beginDrag(_x, _y);
}

Working with Forms

96

FormDrag dragOver(
 FormControl _dragSource,
 FormDrag _dragMode,
 int _x,
 int _y)
{
 return modelTree.dragOver(
 _dragSource,
 _dragMode,
 _x,
 _y);
}

void drop(
 FormControl _dragSource,
 FormDrag _dragMode,
 int _x,
 int _y)
{
 modelTree.drop(_dragSource, _dragMode, _x, _y);
}

5. Now when you navigate to Budgeting | Setup | Basic Budgeting | Budget models,
you should be able to move budget models within the tree with a mouse.

The main element in the latter modification is the DragDrop property of the Tree control. It
enables the drag and drop functionality in the tree, once we set its value to Manual. The next
step is to override the drag and drop events on the Tree control. Trees can have a number of
methods covering various drag and drop events. A good place to start investigating them is
the Tutorial_Form_TreeControl form in the standard application. In this example, we
will cover only three of them, as follows:

 f beginDrag(): This is executed when dragging begins. Here, we normally store the
number of the item that is being dragged for later processing.

 f dragOver(): This is executed once the dragged item appears over another node.
This method is responsible for highlighting nodes when the dragged item is over
them. Its return value defines the mouse cursor icon once the item is being dragged.

 f drop(): This is executed when the mouse button is released, that is, the dragged
item is dropped over some node. Here, we normally place the code that does the
actual data modifications.

Chapter 2

97

In this example, all the logic is stored in the BudgetModelTree class. Each of the mentioned
form methods call the corresponding method in the class. This is to reduce the amount of code
placed on the form and in order to allow the code to be reused on multiple forms. We add the
following methods to the class:

 f canMove(): This checks whether the currently selected node can be dragged.
Although there might be more conditions, for this demonstration, we only disallow
the dragging of the top nodes.

 f move(): This is where the actual movement of the budget model is performed,
that is, the submodel is assigned to another parent.

 f stateDropHilite(): This is responsible for highlighting and removing the
highlighting from relevant items. Using stateDropHilited(), we highlight the
current item and remove the highlight from the previously highlighted one. This
ensures that as we move the dragged item over the tree, items are highlighted once
the dragged item is over them and the highlight is removed once the dragged item
leaves them. This method is called later from several places to ensure that node
highlighting works correctly.

 f beginDrag(): This stores the item currently being dragged into a variable.

 f dragOver(): This first checks whether the currently selected item can be moved.
If not, then it returns FormDrag::None, which changes the mouse cursor to the
forbidden sign. Otherwise, the cursor is changed to an icon that represents node
movement. This method also calls stateDropHilite() to ensure the correct
node highlighting.

 f drop(): This also checks whether the item being dropped can be moved. If yes,
then it uses move() in order to update the data and moveItem() to visually
change the node's place in the tree. It also calls stateDropHilite() to update
tree node highlighting.

See also
 f The Preloading images recipe in Chapter 3, Working with Data in Forms

 f The Building a tree lookup recipe in Chapter 4, Building Lookups

Building a checklist
Anyone who has performed a Dynamics AX application installation or upgrade has to be
familiar with standard checklists. Normally, a checklist is a list of menu items displayed in a
logical sequence. Each item represents either mandatory or optional actions to be executed by
the user in order to complete the whole procedure. In custom Dynamics AX implementations,
checklists can be used as a convenient way to configure nonstandard settings. Checklists can
also be implemented as a part of third-party modules for their initial setup.

Working with Forms

98

In this recipe, we will create a checklist for user friendly ledger budget setup. The checklist will
consist of two mandatory items and one optional item.

How to do it...
Carry out the following steps in order to complete this recipe:

1. Open the AOT and create a new interface called SysCheckListInterfaceBudget:
interface SysCheckListInterfaceBudget
extends SysCheckListInterface
{
}

2. Create a new class for the first checklist item with the following code snippet:
class SysCheckListItem_BudgetModel
extends SysCheckListItem
implements SysCheckListInterfaceBudget
{
}

str getCheckListGroup()
{
 return "Setup";
}

str getHelpLink()
{
 #define.TopicId('Dynamics://DynamicsHelp/Topic?Id=' +
 '84030522-0057-412c-bfc7-dbeb4d40e5a1')
 return #TopicId;
}

MenuItemName getMenuItemName()
{
 return menuitemDisplayStr(BudgetModel);
}

MenuItemType getMenuItemType()
{
 return MenuItemType::Display;
}

Chapter 2

99

str label()
{
 return "Models";
}

3. Create another class for the second checklist item with the following code snippet:
class SysCheckListItem_BudgetCode
extends SysCheckListItem
implements SysCheckListInterfaceBudget
{
}

void new()
{
 super();
 this.placeAfter(classNum(SysCheckListItem_BudgetModel));
}

str getCheckListGroup()
{
 return "Setup";
}

str getHelpLink()
{
 #define.TopicId('Dynamics://DynamicsHelp/Topic?Id=' +
 'd42c3c30-d3b3-4d71-aa86-396516a3c8ee')
 return #TopicId;
}

MenuItemName getMenuItemName()
{
 return menuitemDisplayStr(BudgetTransactionCode);
}

MenuItemType getMenuItemType()
{
 return MenuItemType::Display;
}

str label()
{
 return "Codes";
}

Working with Forms

100

4. Create one more class for the last checklist item with the following code snippet:
class SysCheckListItem_Budget
extends SysCheckListItem
implements SysCheckListInterfaceBudget
{
}

void new()
{
 super();

 this.addDependency(classNum(SysCheckListItem_BudgetModel));
 this.addDependency(classNum(SysCheckListItem_BudgetCode));
 this.placeAfter(classNum(SysCheckListItem_BudgetCode));
 this.indeterminate(true);
}

str getCheckListGroup()
{
 return "Create budgets";
}

str getHelpLink()
{
 #define.TopicId('Dynamics://DynamicsHelp/Topic?Id=' +
 '846e3e47-acc3-4a86-bbd3-678a62d2953f')
 return #TopicId;
}

MenuItemName getMenuItemName()
{
 return menuitemDisplayStr(BudgetTransactionListPage);
}

MenuItemType getMenuItemType()
{
 return MenuItemType::Display;
}

str label()
{
 return "Budget register entries";
}

Chapter 2

101

5. Now, create a class for the checklist itself, as shown here:
class SysCheckList_Budget extends SysCheckList
{
 container log;
}

protected str getCheckListCaption()
{
 return "Budget checklist";
}

protected str getHtmlHeader()
{
 return "Budget checklist";
}

protected ClassId getInterfaceId()
{
 return classNum(SysCheckListInterfaceBudget);
}

void save(
 IdentifierName _name,
 ClassDescription _description = "")
{
 if (!conFind(log, _name))
 {
 log = conIns(log, conLen(log)+1, _name);
 }
}

boolean find(
 IdentifierName _name,
 ClassDescription _description = "")
{
 return conFind(log, _name) ? true : false;
}

protected boolean isRunnable()
{
 return true;
}

Working with Forms

102

static void main(Args _args)
{
 SysCheckList::runCheckListSpecific(
 classNum(SysCheckList_Budget),
 true);
}

6. Find the SysCheckList class in the AOT and add the following code snippet
at the bottom of its checkListItemsHook() method, just before the closing
square bracket of the returning container. The method should look similar to this:
protected static container checkListItemsHook()
{
 return [
 classNum(RetailStoreSetup_CreateStoreDatabase),
 …
 ,classNum(SysCheckListItem_Budget)
 ,classNum(SysCheckListItem_BudgetCode)
 ,classNum(SysCheckListItem_BudgetModel)
];
}

7. In the same SysCheckList class, replace its checkListsHook() method with the
following code snippet:
protected static container checkListsHook()
{
 return [classNum(SysCheckList_Budget)];
}

8. Open the BudgetModel form in the AOT and override its close() method with the
following code snippet:
void close()
{
 super();

 SysCheckList::finished(
 classNum(SysCheckListItem_BudgetModel));
}

9. Open the BudgetTransactionCode form in the AOT and override its close()
method with the following code snippet:
void close()
{
 super();

Chapter 2

103

 SysCheckList::finished(
 classNum(SysCheckListItem_BudgetCode));
}

10. In the AOT, create a new action menu item with the following properties:

Property Value
Name SysCheckList_Budget

Label Budget checklist

ObjectType Class

Object SysCheckList_Budget

11. To test the checklist, run the SysCheckList_Budget menu item from the AOT.
On the right-hand side of the Dynamics AX window, you will see something similar
to what is shown in the following screenshot:

Working with Forms

104

12. Click on the listed items to start and complete the relevant actions. Notice how the
status icons change upon the completion of each task, as shown here:

How it works...
The main principle when creating a checklist is that we have to create a main class, which
represents the checklist itself, and a number of checklist item classes representing each item
in the checklist. The main class has to extend the SysCheckList class, and the items must
extend the SysCheckListItem class. The relationships between the main class and the
checklist item classes are made by the use of an interface; that is, each checklist item class
implements the interface, and the main class holds a reference to that interface.

In this example, we create a new interface called SysCheckListInterfaceBudget and
specify it in the getInterfaceId() method of the main checklist class, SysCheckList_
Budget. Next, we implement the interface in three SysCheckListItem classes, which
correspond to Models, Codes, and Budget register entries items in the checklist.

Each SysCheckListItem class contains a set of inherited methods, which allow you to
define a number of different parameters for individual items, as follows:

 f All the initialization code can be added to the new() methods. In this example,
we use placeAfter() to determine the position of the item in the list relative to
other items, indeterminate() to make an item optional, and addDependency()
to make an item inactive until another specified item is completed.

Chapter 2

105

 f The getCheckListGroup() methods define the dependency on a specific group.
The budget checklist has two groups: Setup and Create budgets.

 f The getHelpLink() methods are responsible for placing relevant help links.

 f The getMenuItemName() and getMenuItemType() methods contain a name and
the type of menu item, which is executed on user request. Here, we have the Budget
models, Budget codes, and Budget register entries menu items in each class.

 f Finally, custom labels can be set in the label() methods.

Once the items are ready, we create the main checklist class named SysCheckList_Budget,
which extends the standard SysCheckList class. Next, we override some of the methods to
add custom functionality to the checklist, as follows:

 f The getCheckListCaption() method sets the title of the checklist.

 f The getHtmlHeader() method is used to add some descriptive text.

 f As mentioned before, getInterfaceId() is the place where we specify the name
of the interface which is used for the checklist item classes.

 f The save() and find() methods are used to store and retrieve, respectively, the
status of each item in the list. In this example, we store statuses in the local variable
named log to make sure that statuses are reset every time we run the checklist.

 f The main()static method runs the class. Here, we use runCheckListSpecific()
of the SysCheckList class to start the checklist.

The display menu item we have created points to the checklist class and may be used to add
the checklist to any menu.

When building checklists, it is necessary to add them and their items to the global
checklist and the checklist item list. The SysCheckList class contains two methods—
checkLists() and checkListItems()—where all the system checklists and their items
are registered. The same class provides two more methods, checkListsHook() and
checkListItemsHook(), where custom checklists should be added. As a part of this
example, we add our budget checklist and its items to the SysCheckList class.

Final modifications have to be done on each form called by the checklist. We call the
finished() method of the SysCheckList class, within the close() method of each form,
to update the corresponding checklist item. This means that the checklist item status will
be set as completed when the user closes the form. Obviously, this will not ensure that each
checklist item was completed successfully but still it gives some level of control. This code
does not affect the normal use of the form when it is opened from the regular menu. Normally,
more logic is added here if the completion of a specific item is not that straightforward.

Working with Forms

106

There's more...
In this example, the checklist's statuses are maintained only while the checklist is running.
This means that every time the checklist is closed, the statuses are lost and are set to their
initial states if the checklist is started again.

However, it is possible to store the statuses permanently in the SysSetupLog table just by
replacing save() and find() in SysCheckList_Budget with the following code snippet:

boolean find(
 IdentifierName _name,
 ClassDescription _description = "")
{
 return (SysSetupLog::find(_name, _description).RecId != 0);
}

void save(
 IdentifierName _name,
 ClassDescription _description = "")
{
 SysSetupLog::save(_name, _description);
}

In this case, every time the checklist starts, the system will pick up its last status from the
SysSetupLog table and allow the user to continue with the checklist.

Adding the View details link
Dynamics AX has a very useful feature that allows the user on any form to view related record
information with just a few mouse clicks. The feature is called View details and is available
in the right-click context menu on some controls. It is based on table relationships and is
available for those controls whose data fields have foreign key relationships with other tables.

Because of the data structure's integrity, the View details feature works most of the time.
However, when it comes to complex table relations, it does not work correctly or does not
work at all. Another example of when this feature does not work automatically is when the
display or edit methods are used on a form. In these and many other cases, the View
details feature has to be implemented manually.

In this recipe, to demonstrate how it works, we will modify the General journal form in
the General ledger module and add the View details feature to the Description control,
allowing users to jump from the right-click context menu to the Journal names form.

Chapter 2

107

How to do it...
Carry out the following steps in order to complete this recipe:

1. Open the LedgerJournalTable form in the AOT and override the jumpRef()
method of the Name field in the LedgerJournalTable data source with the
following code snippet:
void jumpRef()
{
 LedgerJournalName name;
 Args args;
 MenuFunction mf;

 name = LedgerJournalName::find(
 LedgerJournalTable.JournalName);

 if (!name)
 {
 return;
 }

 args = new Args();
 args.caller(element);
 args.record(name);

 mf = new MenuFunction(
 menuitemDisplayStr(LedgerJournalSetup),
 MenuItemType::Display);
 mf.run(args);
}

Working with Forms

108

2. Navigate to General ledger | Journals | General journal, select any of the existing
records, and right-click on the Description column. Notice that the View details
option, which will open the Journal names form, is available now, as shown here:

How it works...
Normally, the View details feature is controlled by the relationships between the underlying
tables. If there are no relationships or the form control is not bound to a table field, then this
option is not available. However, we can force this option to appear by overriding the control's
jumpRef() method.

In this method, we add code that opens the relevant form. This can be done by declaring,
instantiating, and running a FormRun object, but an easier way to do this is to simply run the
relevant menu item from the code. In this recipe, the code in jumpRef() does exactly that.

In the code, first we check whether a valid journal name record is found. If yes, we run the
LedgerJournalSetup menu item with an Args object that holds the journal name record
and the current form object as a caller. The rest is done automatically by the system, that is,
the Journal names form is opened with the currently selected journal name.

109

3
Working with Data

in Forms

In this chapter, we will cover the following recipes:

 f Using a number sequence handler

 f Creating a custom filter control

 f Creating a custom instant search filter

 f Building a selected/available list

 f Preloading images

 f Creating a wizard

 f Processing multiple records

 f Coloring records

 f Adding an image to records

Introduction
This chapter basically supplements the previous one and explains about data organization in
the forms. It shows how to add custom filters to forms to allow users to filter data and create
record lists for quick data manipulation.

This chapter also discusses how the displaying of data can be enhanced by adding icons to
record lists and trees and how normal images can be stored along with the data.

Working with Data in Forms

110

A couple of recipes will show you how to create wizards for guiding users through complex
tasks. This chapter will also show several approaches to capture user-selected records on
forms for further processing and ways to distinguish specific records by coloring them.

Using a number sequence handler
As already discussed in the Creating a new number sequence recipe in Chapter 1, Processing
Data, number sequences are widely used throughout the system as a part of the standard
application. Dynamics AX also provides a special number sequence handler class to be used
in forms. It is called NumberSeqFormHandler, and its purpose is to simplify the usage of
record numbering on the user interface. Some of the standard Dynamics AX forms, such as
Customers or Vendors, already have this feature implemented.

This recipe shows you how to use the number sequence handler class. Although in this
demonstration we will use an existing form, the same approach will be applied when
creating brand-new forms.

For demonstration purposes, we will use the existing Customer groups form located in
Accounts receivable | Setup | Customers and change the Customer group field from
manual to automatic numbering. We will use the number sequence created earlier in the
Creating a new number sequence recipe in Chapter 1, Processing Data.

How to do it...
Carry out the following steps in order to complete this recipe:

1. In the AOT, open the CustGroup form and add the following code snippet to its
class declaration:
NumberSeqFormHandler numberSeqFormHandler;

2. Also, create a new method called numberSeqFormHandler() in the same form:
NumberSeqFormHandler numberSeqFormHandler()
{
 if (!numberSeqFormHandler)
 {
 numberSeqFormHandler = NumberSeqFormHandler::newForm(
 CustParameters::numRefCustGroupId().NumberSequenceId,
 element,
 CustGroup_ds,
 fieldNum(CustGroup,CustGroup));
 }
 return numberSeqFormHandler;
}

Chapter 3

111

3. In the same form, override the CustGroup data source's create() method with the
following code snippet:
void create(boolean _append = false)
{
 element.numberSeqFormHandler(
).formMethodDataSourceCreatePre();

 super(_append);

 element.numberSeqFormHandler(
).formMethodDataSourceCreate();
}

4. Then, override its delete() method with the following code snippet:
void delete()
{
 ttsBegin;

 element.numberSeqFormHandler().formMethodDataSourceDelete();

 super();

 ttsCommit;
}

5. Then, override the data source's write() method with the following code snippet:
void write()
{
 ttsBegin;

 super();

 element.numberSeqFormHandler().formMethodDataSourceWrite();

 ttsCommit;
}

6. Similarly, override its validateWrite() method with the following code snippet:
boolean validateWrite()
{
 boolean ret;

 ret = super();

 ret = element.numberSeqFormHandler(
).formMethodDataSourceValidateWrite(ret) && ret;

 return ret;
}

Working with Data in Forms

112

7. In the same data source, override its linkActive() method with the following
code snippet:
void linkActive()
{
 element.numberSeqFormHandler(
).formMethodDataSourceLinkActive();

 super();
}

8. Finally, override the form's close() method with the following code snippet:
void close()
{
 if (numberSeqFormHandler)
 {
 numberSeqFormHandler.formMethodClose();
 }

 super();
}

9. In order to test the numbering, navigate to Accounts receivable | Setup |
Customers | Customer groups and try to create several new records—the
Customer group value will be generated automatically:

Chapter 3

113

How it works...
First, we declare an object of type NumberSeqFormHandler in the form's class declaration.
Then, we create a new corresponding form method called numberSeqFormHandler(),
which instantiates the object if it is not instantiated yet and returns it. This method allows
us to hold the handler creation code in one place and reuse it many times within the form.

In this method, we use the newForm() constructor of the NumberSeqFormHandler class
to create the numberSeqFormHandler object. It accepts the following arguments:

 f The number sequence code, which was created in the Creating a new number
sequence recipe in Chapter 1, Processing Data, and which ensures a proper format
of the customer group numbering. Here, we call the numRefCustGroupId() helper
method from the CustParameters table to find which number sequence code will
be used when creating a new customer group record.

 f The FormRun object, which represents the form itself.

 f The form data source, where we need to apply the number sequence handler.

 f The field ID into which the number sequence will be populated.

Finally, we add the various NumberSeqFormHandler methods to the corresponding methods
on the form's data source to ensure proper handling of the numbering when various events
are triggered.

See also
 f The Creating a new number sequence recipe in Chapter 1, Processing Data

Creating a custom filter control
Filtering in forms in Dynamics AX is implemented in a variety of ways. As a part of the standard
application, Dynamics AX provides various filtering options, such as Filter By Selection, Filter
By Grid, or Advanced Filter/Sort that allows you to modify the underlying query of the currently
displayed form. In addition to the standard filters, the Dynamics AX list pages normally allow
quick filtering on most commonly used fields. Besides that, some of the existing forms have even
more advanced filtering options, which allow users to quickly define complex search criteria.

Although the latter option needs additional programming, it is more user-friendly than standard
filtering and is a very common request in most of the Dynamics AX implementations.

In this recipe, we will learn how to add custom filters to a form. We will use the Main accounts
form as a basis and add a few custom filters, which will allow users to search for accounts
based on their name and type.

Working with Data in Forms

114

How to do it...
Carry out the following steps in order to complete this recipe:

1. In the AOT, locate the MainAccountListPage form and change the following
property for its Filter group:

Property Value
Columns 2

2. In the same group, add a new StringEdit control with the following properties:

Property Value
Name FilterName

AutoDeclaration Yes

ExtendedDataType AccountName

3. Add a new ComboBox control to the same group with the following properties:

Property Value
Name FilterType

AutoDeclaration Yes

EnumType DimensionLedgerAccountType

Selection 10

4. Override the modified() methods for both the newly created controls with the
following code snippet:
boolean modified()
{
 boolean ret;

 ret = super();

 if (ret)
 {
 MainAccount_ds.executeQuery();
 }

 return ret;
}

Chapter 3

115

5. After all modifications, in the AOT, the MainAccountListPage form will look similar
to the following screenshot:

6. In the same form, update the executeQuery() method of the MainAccount
data source as follows:
public void executeQuery()
{
 QueryBuildRange qbrName;
 QueryBuildRange qbrType;

 MainAccount::updateBalances();

 qbrName = SysQuery::findOrCreateRange(
 MainAccount_q.dataSourceTable(tableNum(MainAccount)),
 fieldNum(MainAccount,Name));

 qbrType = SysQuery::findOrCreateRange(
 MainAccount_q.dataSourceTable(tableNum(MainAccount)),
 fieldNum(MainAccount,Type));

Working with Data in Forms

116

 if (FilterName.text())
 {
 qbrName.value(SysQuery::valueLike(queryValue(
 FilterName.text())));
 }
 else
 {
 qbrName.value(SysQuery::valueUnlimited());
 }

 if (FilterType.selection() ==
 DimensionLedgerAccountType::Blank)
 {
 qbrType.value(SysQuery::valueUnlimited());
 }
 else
 {
 qbrType.value(queryValue(FilterType.selection()));
 }

 super();
}

7. In order to test the filters, navigate to General ledger | Common | Main accounts
and change the values in the newly created filters—the account list will change
reflecting the selected criteria:

8. Click on the Advanced Filter/Sort button in the toolbar to inspect how the criteria
was applied in the underlying query (note that although changing the filter values
here will affect the search results, the earlier created filter controls will not reflect
those changes):

Chapter 3

117

How it works...
We start by changing the Columns property of the existing empty Filter group control to
make sure all our controls are placed from the left to the right in one line.

We add two new controls that represent the Account name and Main account type filters
and enable them to be automatically declared for later usage in the code. We also override
their modified() event methods to ensure that the MainAccount data source's query is
re-executed whenever the controls' value change.

All the code is placed in the executeQuery() method of the form's data source. The code
has to be placed before super() to make sure the query is modified before fetching the data.

Here, we declare and create two new QueryBuildRange objects, which represent the ranges
on the query. We use the findOrCreateRange() method of the SysQuery application
class to get the range object. This method is very useful and important, as it allows you to
reuse previously created ranges.

Working with Data in Forms

118

Next, we set the ranges' values. If the filter controls are blank, we use the valueUnlimited()
method of the SysQuery application class to clear the ranges. If the user types some text
into the filter controls, we pass those values to the query ranges. The global queryValue()
function—which is actually a shortcut to SysQuery::value()—ensures that only safe
characters are passed to the range. The SysQuery::valueLike() method adds the *
character around the account name value to make sure that the search is done based on
partial text.

Note that the SysQuery helper class is very useful when working with queries, as it does
all kinds of input data conversions to make sure they can be safely used. Here is a brief
summary of few other useful methods in the SysQuery class:

 f valueUnlimited(): This method returns a string representing an unlimited query
range value, that is, no range at all.

 f value(): This method converts an argument into a safe string. The global
queryValue() method is a shortcut for this.

 f valueNot(): This method converts an argument into a safe string and adds an
inversion sign in front of it.

See also
 f The Building a query object recipe in Chapter 1, Processing Data

Creating a custom instant search filter
The standard form filters and majority of customized form filters in Dynamics AX are only
applied once the user presses some button or key. It is acceptable in most cases, especially
if multiple criteria are used. However, when the result retrieval speed and usage simplicity
has priority over system performance, it is possible to set up the search so the record list is
updated instantly when the user starts typing.

In this recipe, to demonstrate the instant search, we will modify the Main accounts form.
We will add a custom Account name filter, which will update the account list automatically
when the user starts typing.

Chapter 3

119

How to do it...
Carry out the following steps in order to complete this recipe:

1. In the AOT, open the MainAccountListPage form and add a new StringEdit
control with the following properties to the existing Filter group:

Property Value
Name FilterName

AutoDeclaration Yes

ExtendedDataType AccountName

2. Override the control's textChange() method with the following code snippet:
void textChange()
{
 super();

 MainAccount_ds.executeQuery();
}

3. On the same control, override the control's enter() method with the following
code snippet:
void enter()
{
 super();
 this.setSelection(
 strLen(this.text()),
 strLen(this.text()));
}

4. Update the executeQuery() method of the MainAccount data source as follows:
public void executeQuery()
{
 QueryBuildRange qbrName;

 MainAccount::updateBalances();

 qbrName = SysQuery::findOrCreateRange(
 this.queryBuildDataSource(),
 fieldNum(MainAccount,Name));

 qbrName.value(
 FilterName.text() ?

Working with Data in Forms

120

 SysQuery::valueLike(queryValue(FilterName.text())) :
 SysQuery::valueUnlimited());

 super();
}

5. In order to test the search, navigate to General ledger | Common | Main accounts
and start typing into the Account name filter. Note how the account list is being
filtered automatically:

How it works...
Firstly, we add a new control, which represents the Account name filter. Normally, the user's
typing triggers the textChange() event method on the active control every time a character
is entered. So, we override this method and add the code to re-execute the form's query
whenever a new character is typed in.

Next, we have to correct the cursor's behavior. Currently, once the user types in the first
character, the search is executed and the system moves the focus out of this control and
then moves back into the control selecting all the typed text. If the user continues typing,
the existing text will be overwritten with the new character and the loop will continue.

In order to get around this, we have to override the control's enter() event method. This
method is called every time the control receives a focus whether it was done by a user's mouse,
key, or by the system. Here, we call the setSelection() method. Normally, the purpose of
this method is to mark a control's text or a part of it as selected. Its first argument specifies the
beginning of the selection and the second one specifies the end. In this recipe, we are using this
method in a slightly different way.

Chapter 3

121

We pass the length of the typed text as a first argument, which means the selection starts
at the end of the text. We pass the same value as a second argument, which means that
selection ends at the end of the text. It does not make any sense from the selection point
of view, but it ensures that the cursor always stays at the end of the typed text allowing the
user to continue typing.

The last thing to do is to add some code to the executeQuery() method to change the query
before it is executed. Modifying the query was discussed in detail in the Creating a custom filter
control recipe. The only thing to note here is that we use the SysQuery::valueLike() helper
method which adds * to the beginning and the end of the search string to make the search by a
partial string.

Note that the system's performance might be affected as the data search is executed
every time the user types in a character. It is not recommended to use this approach for
large tables.

See also
 f The Creating a custom filter control recipe

Building a selected/available list
Frequent users might note that some of the Dynamics AX forms contain two sections placed
next to each other and allow moving items from one side to the other. Normally, the right
section contains a list of available values and the left one contains the values that have
been chosen by the user. Buttons in the middle allow moving data from one side to another.
Double-click and drag-and-drop mouse events are also supported. Such design improves the
user's experience as data manipulation becomes more user-friendly. Some of the examples in
the standard application can be found at General ledger | Setup | Financial dimensions |
Financial dimension sets or System administration | Common | Users | User groups.

This functionality is based on the SysListPanelRelationTable application class.
Developers only need to create its instance with the required parameters and the rest
is done automatically.

This recipe will show the basic principle of how to create selected/available lists. We will
add an option for assigning customers to buyer groups in the Buyer groups form in the
Inventory management module.

Working with Data in Forms

122

How to do it...
Carry out the following steps in order to complete this recipe:

1. In the AOT, create a new table named InventBuyerGroupList. We will not change
any of its properties as this table is for demonstration only.

2. Add a new field to the table with the following properties (click on Yes if asked to add
a new relation to the table):

Property Value
Type String

Name GroupId

ExtendedDataType ItemBuyerGroupId

3. Add another field to the table with the following properties:

Property Value
Type String

Name CustAccount

ExtendedDataType CustAccount

4. In the AOT, open the InventBuyerGroup form and change its design's property
as follows:

Property Value
Style Auto

5. Add a new Tab control with the following properties to the design's bottom:

Property Value
Name Tab

Width Column width

Height Column height

6. Add a new TabPage control with the following properties to the newly created tab:

Property Value
Name BuyerGroups

Caption Buyer groups

Chapter 3

123

7. Add another TabPage control with the following properties to the newly created tab:

Property Value
Name Customers

Caption Customers

8. Move the existing Grid control into the first tab page and hide the existing Body
group by setting its property:

Property Value
Visible No

9. The form will look similar to the following screenshot:

10. Add the following line to the form's class declaration:
SysListPanelRelationTable sysListPanel;

11. Override the form's init() method with the following code snippet:
void init()
{
 container columns;
 #ResAppl

Working with Data in Forms

124

 columns = [fieldNum(CustTable, AccountNum)];

 sysListPanel = SysListPanelRelationTable::newForm(
 element,
 element.controlId(
 formControlStr(InventBuyerGroup,Customers)),
 "Selected",
 "Available",
 #ImageCustomer,
 tableNum(InventBuyerGroupList),
 fieldNum(InventBuyerGroupList,CustAccount),
 fieldNum(InventBuyerGroupList,GroupId),
 tableNum(CustTable),
 fieldNum(CustTable,AccountNum),
 columns);

 super();

 sysListPanel.init();

}

12. Override the pageActivated() method on the newly created Customers tab page
with the following code snippet:
void pageActivated()
{
 sysListPanel.parmRelationRangeValue(
 InventBuyerGroup.Group);

 sysListPanel.parmRelationRangeRecId(
 InventBuyerGroup.RecId);

 sysListPanel.fill();

 super();
}

13. In order to test the list, navigate to Inventory management | Setup | Inventory |
Buyer groups and select any group. Then, go to the Customers tab page and use
the buttons provided to move records from one side to the other. You can also
double-click or drag-and-drop with your mouse:

Chapter 3

125

How it works...
In this recipe, the InventBuyerGroupList table is used as a many-to-many relationship
table between the buyer groups and the customers.

In terms of form design, the only thing that needs to be added is a new tab page. The rest
is created dynamically by the SysListPanelRelationTable application class.

In the form's class declaration, we declare a new variable based on the
SysListPanelRelationTable class and instantiate it in the form's init() method
using its newForm() constructor. The method accepts the following parameters:

 f The FormRun object representing the form itself.

 f The name of the tab page.

 f The label of the left section.

 f The label of the right section.

 f The number of the image that is shown next to each record in the lists.

 f The relationship table number.

 f The field number in the relationship table representing the child record. In our case,
it is the customer account number—CustAccount.

Working with Data in Forms

126

 f The field number in the relationship table representing the parent table. In this case,
it is the buyer group number—GroupId.

 f The number of the table that is displayed in the lists.

 f A container of the field numbers displayed in each column.

We also have to initialize the list by calling it's member method init() in the form's init()
method right after the super() method.

The list's controls are created dynamically when the Customers tab page is opened.
In order to accommodate that, we add the list's creation code to the pageActivated()
event method of the newly created tab page. In this way, we ensure that the list is populated
whenever a new buyer group is selected.

There's more...
The SysListPanelRelationTable class can only display fields from
a single table. Alternatively, there is another application class named
SysListPanelRelationTableCallback, which allows you to create more complex lists.

In order to demonstrate its capabilities, we will expand the previous example by displaying the
customer name next to the account number. The customer name is stored in another table
and can be retrieved by using the name() method on the CustTable table.

First, in the form's class declaration, we have to change the list declaration to the following
code line:

SysListPanelRelationTableCallback sysListPanel;

Next, we create two new methods—one for the left list and another one for the right list—that
generate and return data containers to be displayed in each section. The methods will be
placed on the InventBuyerGroupList table. In order to improve the performance, these
methods will be executed on the server tier (note the server modifier):

static server container selectedCustomers(
 ItemBuyerGroupId _groupId)
{
 container ret;
 container data;
 CustTable custTable;
 InventBuyerGroupList groupList;

 while select custTable
 order by AccountNum
 exists join groupList

Chapter 3

127

 where groupList.CustAccount == custTable.AccountNum
 && groupList.GroupId == _groupId

 {
 data = [custTable.AccountNum,
 custTable.AccountNum,
 custTable.name()];

 ret += [data];
 }

 return ret;
}

static server container availableCustomers(
 ItemBuyerGroupId _groupId)
{
 container ret;
 container data;
 CustTable custTable;
 InventBuyerGroupList groupList;

 while select custTable
 order by AccountNum
 notExists join firstOnly groupList
 where groupList.CustAccount == custTable.AccountNum
 && groupList.GroupId == _groupId
 {
 data = [custTable.AccountNum,
 custTable.AccountNum,
 custTable.name()];

 ret += [data];
 }

 return ret;
}

Each of the methods returns a container of containers. The outer container holds all the
items in the list. The inner container represents one item in the section and it contains
three elements—the first is an identification number of the element and the next two are
the values displayed in the lists.

Working with Data in Forms

128

Next, we create two new methods with the same names on the InventBuyerGroup
form itself. These methods are required to be present on the form by the
SysListPanelRelationTableCallback class. These methods are nothing else
but wrappers to the previously created methods:

private container selectedCustomers()
{
 return InventBuyerGroupList::selectedCustomers(
 InventBuyerGroup.Group);
}

private container availableCustomers()
{
 return InventBuyerGroupList::availableCustomers(
 InventBuyerGroup.Group);
}

In this way, we are reducing the number of calls between the client and server tiers while
generating the lists.

Finally, we replace the form's init() method with the following code snippet:

void init()
{
 container columns;
 #ResAppl

 columns = [0, 0];

 sysListPanel = SysListPanelRelationTableCallback::newForm(
 element,
 element.controlId(
 formControlStr(InventBuyerGroup,Customers)),
 "Selected",
 "Available",
 #ImageCustomer,
 tableNum(InventBuyerGroupList),
 fieldNum(InventBuyerGroupList,CustAccount),
 fieldNum(InventBuyerGroupList,GroupId),
 tableNum(CustTable),
 fieldNum(CustTable,AccountNum),
 columns,
 0,
 '',
 '',

Chapter 3

129

 identifierStr(selectedCustomers),
 identifierStr(availableCustomers));

 super();

 sysListPanel.init();

}

This time, we used the newForm() constructor of the
SysListPanelRelationTableCallback class, which is very similar to the previous one,
but accepts the names of methods as arguments, which will be used to populate the data in
the right and left sections.

Note that the columns container that previously held a list of fields now contains two zeros.
By doing that, we simply define that there will be two columns in each list. Since the lists
actually are generated outside the SysListPanelRelationTableCallback class,
we do not need to specify the field numbers of the columns anymore.

Now, when you run the Buyer groups form, both the sections contain a new Customer
name column:

Working with Data in Forms

130

Preloading images
Some of the Dynamics AX controls such as trees or lists, in most cases, have small icon images
in front of the text. These icons make the user interface look better and can represent a type,
status, availability, or any other property of the current item in the control.

Images are binary data and their processing may be resource demanding. The Dynamics
AX application provides a way of handling images to increase application performance.
Normally, on those forms with lists or trees, all required images are preloaded during
the forms' initialization. This reduces the image-loading time when the image is actually
displayed to the user.

For this purpose, Dynamics AX contains a set of ImageListAppl derivative classes,
which holds a specific set of image data required in specific circumstances. For example,
the ImageListAppl_Proj class in the Project management and accounting module
preloads project-related images representing project types during the project tree
initialization. So, virtually no time is consumed for displaying the images later, when
the user starts browsing the project tree control.

In this recipe, we will create a new image list class for image preloading. As a base, we will
use the list created in the Building a selected/available list recipe. We will enhance that list
by showing different icons for customers, which are marked as on hold.

How to do it...
Carry out the following steps in order to complete this recipe:

1. In the AOT, create a new class named ImageListAppl_Cust with the following
code snippet:
class ImageListAppl_Cust extends ImageListAppl
{
}

protected void build()
{
 super();
 this.add(#ImageCustomer);
 this.add(#ImageWarning);
}

2. Then, find the SysListPanelRelationTableCallback class and modify its
newForm() method by adding one more argument to the end of its argument list:
ImageListAppl _imageListAppl = null

Chapter 3

131

3. In the same method, add the following line of code right before sysListPanel.
build():
 sysListPanel.parmImageList(_imageListAppl);

4. In the AOT, find the InventBuyerGroup form and add the following line of code to
its class declaration:
#ResAppl

5. On the same form, replace its existing methods with the following code snippet:
void init()
{
 container columns;
 ImageListAppl_Cust imageListAppl;

 columns = [0, 0];

 imageListAppl = new ImageListAppl_Cust(
 Imagelist::smallIconWidth(),
 Imagelist::smallIconHeight());

 sysListPanel = SysListPanelRelationTableCallback::newForm(
 element,
 element.controlId(
 formControlStr(InventBuyerGroup,Customers)),
 "Selected",
 "Available",
 0,
 tableNum(InventBuyerGroupList),
 fieldNum(InventBuyerGroupList,CustAccount),
 fieldNum(InventBuyerGroupList,GroupId),
 tableNum(CustTable),
 fieldNum(CustTable,AccountNum),
 columns,
 0,
 '',
 '',
 identifierStr(selectedCustomers),
 identifierStr(availableCustomers),
 0,
 imageListAppl);

 super();

 sysListPanel.init();

}

Working with Data in Forms

132

private container selectedCustomers()
{
 container ret;
 container data;
 CustTable custTable;
 InventBuyerGroupList groupList;

 while select custTable
 exists join groupList
 where groupList.CustAccount == custTable.AccountNum
 && groupList.GroupId == InventBuyerGroup.Group
 {
 data = [custTable.AccountNum,
 (custTable.Blocked==CustVendorBlocked::No ?
 #ImageCustomer :
 #ImageWarning),
 custTable.AccountNum,
 custTable.name()];

 ret = conIns(ret, conLen(ret)+1, data);
 }

 return ret;
}

private container availableCustomers()
{
 container ret;
 container data;
 CustTable custTable;
 InventBuyerGroupList groupList;

 while select custTable
 notExists join firstOnly groupList
 where groupList.CustAccount == custTable.AccountNum
 && groupList.GroupId == InventBuyerGroup.Group
 {
 data = [custTable.AccountNum,
 (custTable.Blocked==CustVendorBlocked::No ?
 #ImageCustomer :
 #ImageWarning),
 custTable.AccountNum,
 custTable.name()];

 ret = conIns(ret, conLen(ret)+1, data);
 }

 return ret;
}

Chapter 3

133

6. In order to test the results, navigate to Inventory management | Setup | Inventory
| Buyer groups, go to the Customers tab page, and note that customers on hold are
now marked with a different icon:

How it works...
The first task in this recipe is to create a class that handles the required set of images.
We use two different images—one for normal customers and one for customers on hold.

Dynamics AX has lots of image resources, which can be used for any given scenario. The
resources can be found in the Development Workspace by navigating to Tools | Embedded
resources. Each of the images has a number associated with it, and most of those numbers
are already associated with descriptive textual representations in the #ResAppl macro
library, which is located in the AOT under the Macros node. In this example, we have chosen
a few images from the resource library and added them into the build() method of the
new ImageListAppl_Cust class.

The second step is to modify the SysListPanelRelationTableCallback class to make
sure its newForm() method accepts ImageListAppl as an argument and passes it to the
class using the parmImageList() method. A new method can be created here, but it is not
a good idea to copy so much code, especially when our changes are very small and do not
affect the standard method's behavior as the parameter is set to null by default.

Working with Data in Forms

134

The final step is to modify the form. First, we instantiate a new imageListAppl
object based on our class and pass it to the modified newForm() method of the
SysListPanelRelationTableCallback class as a last argument. In this way,
we ensure that all the images defined in imageListAppl will be stored and reused
from cache instead of loading them every time from the original source. Then, we modify
the form's selectedItems() method and the availableItems() methods to include
image resource numbers in the returned data. We use the #ImageCustomer macro for
normal customers and #ImageWarning for customers on hold. Note that the inner container
structure, when using the SysListPanelRelationTableCallback class, is different—the
second element is an image resource number.

There's more...
As mentioned earlier, images can be used on tree controls too. In this section, we will enhance
the tree created in the Using a Tree control recipe in Chapter 2, Working with Forms. We will
add small icons in front of each node.

First in the AOT, we create a new class called ImageListAppl_LedgerBudget with the
following code snippet:

class ImageListAppl_LedgerBudget extends ImageListAppl
{
}

protected void build()
{
 super();
 this.add(#ImageFolder);
 this.add(#ImageLedgerBudget);
}

As in the previous example, the class extends ImageListAppl and is responsible for
preloading the images to be used on the tree. We will only use two different images—
a folder icon for parent ledger budget models and a budget icon for submodels.

Next, we need to modify the BudgetModelTree class created earlier in the book.
Let's add the following line of code to the bottom of its class declaration:

ImageListAppl imageListAppl;

Add the following lines of code to the buildTree() method right after the variable
declaration section:

imageListAppl = new ImageListAppl_LedgerBudget();
tree.setImagelist(imageListAppl.imageList());

Chapter 3

135

This creates an instance of the ImageListAppl_LedgerBudget class and passes it to the
Tree control.

Replace the createNode() method with the following code snippet:

private TreeItemIdx createNode(
 TreeItemIdx _parentIdx,
 BudgetModelId _modelId,
 RecId _recId)
{
 TreeItemIdx itemIdx;
 BudgetModel model;
 BudgetModel submodel;
 ImageRes imageRes;
 #ResAppl

 if (_parentIdx == FormTreeAdd::Root)
 {
 imageRes = imageListAppl.image(#ImageFolder);
 }
 else
 {
 imageRes = imageListAppl.image(#ImageLedgerBudget);
 }

 model = BudgetModel::find(HeadingSub::Heading, _modelId);

 itemIdx = SysFormTreeControl::addTreeItem(
 tree,
 _modelId + ' : ' + model.Txt,
 _parentIdx,
 _recId,
 imageRes,
 true);

 if (modelId == _modelId)
 {
 tree.select(itemIdx);
 }

 while select submodel
 where submodel.ModelId == _modelId &&
 submodel.Type == HeadingSub::SubModel
 {

Working with Data in Forms

136

 this.createNode(
 itemIdx,
 submodel.SubModelId,
 submodel.RecId);
 }

 return itemIdx;
}

At the top of this method, we check whether the current node is a parent node. If yes, we set its
image as the folder icon. If not, we set it as the budget model icon. Then, we pass the image to
the addTreeItem() method.

In order to test the tree icons, navigate to Budgeting | Setup | Basic budgeting | Budget
models and note how the tree has changed:

See also
 f The Using a Tree control recipe in Chapter 2, Working with Forms

Chapter 3

137

Creating a wizard
Wizards in Dynamics AX are used to help a user perform a specific task. Some examples of
standard Dynamics AX wizards are Report Wizard, Class Wizard, Number Sequence Wizard,
and so on.

Normally, a wizard is presented to a user as a form with a series of steps. During the wizard
run, all the user's inputs are collected and committed to the database when the user presses
the Finish button on the last page.

In this recipe, we will create a new wizard, which helps creating new main accounts. First, we
will use the standard Dynamics AX Wizard to create a framework, and then we will add some
additional controls manually.

How to do it...
Carry out the following steps in order to complete this recipe:

1. In the Development Workspace, navigate to Tools | Wizards | Wizard Wizard.

2. Click on Next on the first page:

Working with Data in Forms

138

3. Select Standard Wizard and click on Next:

Chapter 3

139

4. Specify MainAccount in the name field and click on Next:

Working with Data in Forms

140

5. Accept the default number of steps and click on Next:

Chapter 3

141

6. On the last page, click on Finish to complete the wizard:

Working with Data in Forms

142

7. The wizard creates an AOT development project with three new objects in it: a form, a
class, and a menu item, as shown in the following screenshot:

8. Create a new macro library named MainAccountWizard with the following line
of code:
#define.tabStep2(2)

9. Modify the MainAccountWizard class by adding the following lines of code to
its class declaration:
MainAccount mainAccount;
#MainAccountWizard

Chapter 3

143

10. Add the following line of code to the existing setupNavigation() method in the
same class:
nextEnabled[#tabStep2] = false;

11. Override the finish() method of the class with the following code snippet:
protected void finish()
{
 mainAccount.initValue();
 mainAccount.LedgerChartOfAccounts =
 LedgerChartOfAccounts::current();
 mainAccount.MainAccountId = formRun.accountNum();
 mainAccount.Name = formRun.accountName();
 mainAccount.Type = formRun.accountType();

 super();
}

12. Replace the validate() method of the same class with the following code snippet:
boolean validate()
{
 return mainAccount.validateWrite();
}

13. Replace the run() method of the same class with the following code snippet:
void run()
{
 mainAccount.insert();

 info(strFmt(
 "Ledger account '%1' was successfully created",
 mainAccount.MainAccountId));
}

14. In the MainAccountWizard form, add the following line of code to its
class declaration:
#MainAccountWizard

15. Change the form's design property:

Property Value
Caption Main account wizard

Working with Data in Forms

144

16. Modify the properties of the Step1 tab page, as follows:

Property Value
Caption Welcome

17. Add a new StaticText control in this tab page with the following properties:

Property Value
Name WelcomeTxt

Text This wizard helps you to create a new
main account.

18. Modify the properties of the Step2 tab page:

Property Value
Caption Account setup

HelpText Specify account number, name,
and type.

19. Add a new StringEdit control in this tab page with the following properties:

Property Value
Name AccountNum

AutoDeclaration Yes

Label Main account

ExtendedDataType AccountNum

20. Add one more StringEdit control in this tab page with the following properties:

Property Value
Name AccountName

AutoDeclaration Yes

ExtendedDataType AccountName

21. Add a new ComboBox control in this tab page with the following properties:

Property Value
Name AccountType

AutoDeclaration Yes

EnumType DimensionLedgerAccountType

Chapter 3

145

22. Modify the properties of the Step3 tab page, as follows:

Property Value
Caption Finish

23. Add a new StaticText control on this tab page with the following properties:

Property Value
Name FinishTxt

Text This wizard is now ready to create new
main account.

24. Create the following four methods at the top level of the form:
MainAccountNum accountNum()
{
 return AccountNum.text();
}

AccountName accountName()
{
 return AccountName.text();
}

DimensionLedgerAccountType accountType()
{
 return AccountType.selection();
}

void setNext()
{
 sysWizard.nextEnabled(
 this.accountNum() && this.accountName(),
 #tabStep2,
 false);
}

25. Now, override the textChange() method on the AccountNum and AccountName
controls with the following code:
void textChange()
{
 super();
 element.setNext();
}

Working with Data in Forms

146

After all modifications, the form will look as follows:

26. In order to test the newly created wizard, run the MainAccountWizard menu item,
and the wizard will appear. On the first page, click on Next:

Chapter 3

147

27. On the second page, specify Main account, Account name, and Main account type:

Working with Data in Forms

148

28. On the last page, click on Finish to complete the wizard:

29. The Infolog window will display a message that a new account was
created successfully:

How it works...
The Dynamics AX Wizard creates three AOT objects for us:

 f The MainAccountWizard class, which contains all the logic required to run
the wizard

Chapter 3

149

 f The MainAccountWizard form, which is the wizard layout

 f Finally, the MainAccountWizard display menu item, which is used to start the
wizard and can be added to a menu

The generated objects are just a starting point for our custom wizard. It already has three
pages as we specified during the creation, but we still have to add new user input controls
and custom code in order to implement our requirements.

We start with defining a new #tabStep2 macro, which holds the number of the second
tab page. We are going to refer to this page several times, so it is good practice to define
its number in one place.

In the MainAccountWizard class, we override its setupNavigation() method, which is
used for defining initial button states. We use this method to disable the Next button on the
second page by default. The nextEnabled variable is an array holding the initial enabled or
disabled state for each tab page.

The overridden finish() method is called when the user clicks on the Finish button.
Here, we initialize the record and and assign the user's input values to the corresponding
field values.

In the validate() method, we check the account that will be created. This method is called
right after the user clicks on the Finish button at the end of the wizard and before the main
code is executed in the run() method. Here, we simply call the validateWrite() method
for the record, from the main account table.

The last thing to do in the class is to place the main wizard code—insert the record and display
a message—in the run() method.

In the MainAccountWizard form's design, we modify properties of each tab page and
add text to explain to the user the purpose of each step. Note that the HelpText property
value on the second tab page appears as a step description right below the step title during
runtime. This is done automatically by the SysWizard class.

Finally, on the second tab page, we place three controls for user input. Later on, we
create three methods, which return the controls' values: account number, name, and type
values, respectively. We also override the textChange() event methods on the controls
to determine and update the runtime state of the Next button. These methods call the
setNext() method, which actually controls the behavior of the Next button. In our case,
we enable the Next button as soon as all input controls have values.

Working with Data in Forms

150

Processing multiple records
In Dynamics AX, by default, most of the functions available on forms are related to a currently
selected single record. It is also possible to process several selected records at once, although
some modification is required.

In this recipe, we will explore how a selection of multiple records can be processed on a form.
For this demonstration, we will add a button to the action pane on the Main account list page
to show multiple selected accounts in the Infolog window.

How to do it...
Carry out the following steps in order to complete this recipe:

1. In the AOT, open the MainAccountListPage form and create a new method with
the following code snippet:
void processSelected()
{
 MultiSelectionHelper helper =
 MultiSelectionHelper::construct();

 helper.parmDatasource(MainAccount_ds);

 tmpMainAccount = helper.getFirst();

 while (tmpMainAccount)
 {
 info(strFmt(
 "You've selected '%1'",
 tmpMainAccount.MainAccountId));
 tmpMainAccount = helper.getNext();
 }
}

2. Add a new Button control anywhere in the form's action pane with the
following properties:

Property Value
Name ProcessSelected

Text Process

MultiSelect Yes

Chapter 3

151

3. Override the button's clicked() event method with the following code snippet:
void clicked()
{
 super();
 element.processSelected();
}

4. In order to test the record selection, navigate to General ledger | Common | Main
accounts, select several records, and click on the new Process button. The selected
items will be displayed in the Infolog window:

How it works...
The key element in this recipe is the processSelected() method, where we utilize the
MultiSelectionHelper application class to handle user selections.

Firstly, we create a new instance of the MultiSelectionHelper class, and then specify
which data source will be used to track user selections.

Next, get the first marked record, and then we go through all the other marked records (if any)
and process them one by one. In this demonstration, we simply show them on the screen.

The last thing to do is to add the ProcessSelected button to the form and call
processSelected() from its clicked() method. Note that the button's MultiSelect
property is set to Yes to ensure it is still enabled when multiple records are marked.

Coloring records
One of Dynamics AX's exciting features, which can enhance user experiences, is the ability to
color individual records. Some users might find the system more intuitive and user-friendly
through this modification.

For example, emphasizing the importance of disabled records, by highlighting the terminated
employees or stopped customers in red, allows users to identify relevant records at a glance.
Another example is to show processed records, such as posted journals or invoiced sales
orders in green.

Working with Data in Forms

152

In this recipe, we will learn how to change a record's color. We will modify the existing Users
form located in System administration | Common | Users and show disabled users in red.

How to do it...
Carry out the following steps in order to complete this recipe:

1. In the AOT, open the SysUserInfoPage form and override the displayOption()
method in its UserInfo data source with the following code snippet:
void displayOption(
 Common _record,
 FormRowDisplayOption _options)
{
 if (!_record.(fieldNum(UserInfo,Enable)))
 {
 _options.backColor(WinAPI::RGB2int(255,100,100));
 }

 super(_record, _options);
}

2. In order to test the coloring, navigate to System administration | Common | Users |
Users and note how disabled users are displayed now in a different color:

Chapter 3

153

How it works...
The displayOption() method on any form's data source can be used to change some
of the visual options. Before displaying each record, this method is called by the system with
two arguments—the first is the current record and the second is a FormRowDisplayOption
object—whose properties can be used to change a record's visual settings just before it appears
on the screen. In this example, we check if the current user is disabled, and if it is, we change
the background property to light red by calling the backColor() method with the color code.

In this example, we used the _record.(fieldNum(UserInfo,Enable)) expression to
address the Enable field on the UserInfo table. This type of expression is normally used
when we know the type of record, but it is declared as a generic Common type.

For demonstration purposes, we specified the color directly in the code, but it is a good
practice if the color code comes from some configuration table. See the Creating a color
picker lookup recipe in Chapter 4, Building Lookups, to learn how to allow the user to
choose and store the color selection.

See also
 f The Creating a color picker lookup recipe in Chapter 4, Building Lookups

Adding an image to records
Company-specific images in Dynamics AX can be stored along with the data in the database
tables. They can be used for different purposes, such as a company logo that is displayed on
every printed document, employee photos, inventory pictures, and so on.

Images are binary objects and can be stored in the container table fields. In order to make
the system perform better, it is always recommended to store the images in a separate table
so that it does not affect the retrieval speed of main data.

One of the most convenient ways to attach images to any record is to use the Document
handling feature of Dynamics AX. It does not require any change in the application. However,
the Document handling feature is a very generic way of attaching files to any record and
might not be suitable for specific circumstances.

Another way of attaching images to records can be to utilize the standard application objects,
though minor application changes are required. For example, the company logo in the Legal
entities form, located at Organization administration | Setup | Organization, is one of the
places where the images are stored that way.

In this recipe, we will explore the latter option. As an example, we will add the ability to store
an image for each customer. We will also add a new Image button on the Customers list page
allowing to attach or remove images from the customers.

Working with Data in Forms

154

How to do it...
Carry out the following steps in order to complete this recipe:

1. Open the CustTableListPage form in the AOT. Add a new MenuItemButton
control to the bottom of the MaintainGroup button group, which is located at
ActionPane | HomeTab, with the following properties:

Property Value
Name Image

Text Image

ButtonDisplay Text & Image above

NormalImage 10598

ImageLocation EmbeddedResource

DataSource CustTable

MenuItemType Display

MenuItemName CompanyImage

2. Navigate to Accounts receivable | Common | Customers | All customers and note
the new Image button in the action pane:

Chapter 3

155

3. Click on the button, and then use the Change button to upload a new image for the
selected item:

The Remove button can be used to delete an existing image.

How it works...
In this demonstration, there are only three standard Dynamics AX objects used:

 f The CompanyImage table, which holds image data and information about the record
to which the image is attached. The separate table allows you to easily hook image
functionality to any other existing table without modifying that table or decreasing
its performance.

 f The CompanyImage form, which shows an image and allows you to modify it.

 f The display menu item CompanyImage, which allows you to open the form.

We added the menu item to the CustTableListPage form and modified some of its
visual properties. This ensures that it looks consistent with the rest of the action pane.
We also changed its DataSource property to the CustTable data source. This makes
sure that the image is stored against that record.

There's more...
The following two topics will explain how a stored image can be displayed as a new tab page
on the main form and how it can be saved back to a file.

Displaying an image as part of a form
In this section, we will extend the recipe by displaying the stored image on a new tab page on
the Customers form.

Firstly, we need to add a new tab page to the end of the CustTable form's TabHeader
control, which is located inside another tab page called TabPageDetails. This is where
our image will be displayed.

Working with Data in Forms

156

Set the properties of the new tab page:

Property Value
Name TabImage

AutoDeclaration Yes

Height Column height

Caption Image

Add a new Window control to the tab page. This control will be used for displaying the image.
Set its properties as follows:

Property Value
Name CustImage

AutoDeclaration Yes

Width Column width

Height Column height

AlignControl No

Setting the Height and Width properties to Column height and Column width,
respectively, will ensure that the image control occupies all the available space. The image does
not have a label, so we exclude it from the form's label alignment by setting the AlignControl
property to No.

Next, let's create a new method at the top level of the CustTable form:

void loadImage()
{
 Image img;
 CompanyImage companyImage;

 companyImage = CompanyImage::find(
 CustTable.dataAreaId,
 CustTable.TableId,
 CustTable.RecId);

 if (companyImage.Image)
 {
 img = new Image();
 img.setData(companyImage.Image);
 CustImage.image(img);
 }
 else
 {
 CustImage.image(null);
 }

}

Chapter 3

157

This method finds a CompanyImage record first, which is attached to the current record,
and then displays the binary data using the CustImage control. If no image is attached,
the Window control is cleared to display an empty space.

Next, we add the following line of code to the bottom of the selectionChanged()
method of the CustTable data source to ensure that the image is loaded for a
currently selected record:

element.loadImage();

In the AOT, the form will look similar to the following screenshot:

Working with Data in Forms

158

Now, navigate to Account receivable | Common | Customers | All customers, select
previously used customers, and click on the Edit button in the action pane. On the
Customers form, note the new tab page with the image displayed:

Saving a stored image as a file
This section will describe how the stored image can be restored back to a file. This is quite a
common case when the original image file is lost. We will enhance the standard Image form
by adding a new Save as button, which allows us to save the stored image to a file.

Let's find the CompanyImage form in the AOT and add a new Button control to the form's
ButtonGroup, which is located in the first tab of the ActionPane control. Set the button's
properties as follows:

Property Value
Name SaveAs

Text Save as

Chapter 3

159

Create a new method at the top level of the form:

void saveImage()
{
 Image img;
 Filename name;
 str type;
 #File

 if (!imageContainer)
 {
 return;
 }

 img = new Image();
 img.setData(imageContainer);

 type = '.'+strLwr(enum2value(img.saveType()));
 name = WinAPI::getSaveFileName(
 element.hWnd(),
 [WinAPI::fileType(type),#AllFilesName+type],
 '',
 '');

 if (name)
 {
 img.saveImage(name);
 }
}

This method will present the user with the Save as dialog, allowing them to choose the
desired filename to save the current image. Note that the imageContainer form variable
holds image data. If it is empty, it means there is no image attached, and we do not run any
of the code. We also determine the loaded file type to make sure our Save as dialog shows
only files of that particular type, for example, JPG.

Override the button's clicked() method with the following code snippet to make sure that
the saveImage() method is executed once the user clicks on the button:

void clicked()
{
 super();
 element.saveImage();
}

Working with Data in Forms

160

In the AOT, the form will look similar to the following screenshot:

Now, when you open the image form, a new Save as button is available:

Chapter 3

161

Use this button to save the stored image to a file:

Note that the CompanyImage form is used system wide and the new button is available
across the whole system now.

163

4
Building Lookups

In this chapter, we will cover the following recipes:

 f Creating an automatic lookup

 f Creating a lookup dynamically

 f Using a form to build a lookup

 f Building a tree lookup

 f Displaying a list of custom options

 f Displaying custom options in another way

 f Building a lookup based on the record description

 f Building the browse for folder lookup

 f Building a lookup to select a file

 f Creating a color picker lookup

Introduction
Lookups are the standard way to display a list of possible selection values to the user, while
editing or creating database records. Normally, standard lookups are created automatically
by the system and are based on the extended data types and table setup. It is also possible
to override the standard functionality by creating your own lookups from the code or using
the Dynamics AX forms.

In this chapter, we will cover various lookup types, such as file selector, color picker, or tree
lookup, as well as the different approaches to create them.

Building Lookups

164

Creating an automatic lookup
Simple lookups in Dynamics AX can be created in seconds without any programming
knowledge. They are based on table relations and appear automatically. No additional
modifications are required.

This recipe will show you how to create a very basic automatic lookup using table relations.
To demonstrate this, we will add a new Method of payment column to the existing Customer
group form.

How to do it...
1. Open the CustGroup table in the AOT and create a new field with the

following properties:

Property Value
Type String

Name PaymMode

ExtendedDataType CustPaymMode

2. Add the newly created field to the end of the Overview field group of the table.

3. Open the EDT relations migration tool form located in Tools | Code upgrade.
Find the CustGroup table on the left (refresh relation data, if required). In the
EDT relations section, change the value in the Migration action field to Migrate,
where Field name is set to PaymMode as follows:

Chapter 4

165

4. Click on the Migrate single table button to migrate the relation. The message
in the Infolog window will inform us that the migration was successful.

5. To check the results, navigate to Accounts receivable | Setup | Customers |
Customer groups and note the newly created Method of payment column with
the lookup:

How it works...
The newly created PaymMode field is based on the CustPaymMode extended data type and
therefore it automatically inherits its relation. To follow the best practices, all relations must
be present on tables, so we run the EDT relation migration tool to copy the relation from the
extended data type to the table. We also add the newly created field to the table's Overview
group to make sure that the field automatically appears on the Customer group form. This
relation ensures that the field has an automatic lookup.

There's more...
The automatically generated lookup, in the preceding example, has only two columns—
Method of payment and Description. Dynamics AX allows us to add more columns
or change the existing columns with minimum effort by changing various properties.
Lookup columns can be controlled at several different places:

 f Relation fields, on either an extended data type or a table, are always shown
on lookups as columns.

 f Fields defined in the table's TitleField1 and TitleField2 properties are
also displayed as lookup columns.

 f The first field of every table's index is displayed as a column.

Building Lookups

166

 f The index fields and the TitleField1 and TitleField2 properties are in effect
only when the AutoLookup field group of a table is empty. Otherwise, the fields
defined in the AutoLookup group are displayed as lookup columns along with
the relation columns.

 f Duplicate columns are shown only once.

Now, to demonstrate how the AutoLookup group can affect the lookup's columns, let's
modify the previous example by adding an additional field to this group. Let's add the
PaymSumBy field to the AutoLookup group on the CustPaymModeTable table in the
middle between the PaymMode and Name fields. Now, the lookup has one more column
labeled Period:

It is also possible to add display methods to the lookup's column list. We can extend our
example by adding the paymAccountName() display method to the AutoLookup group
on the CustPaymModeTable table right after PaymSumBy. This is the result:

Chapter 4

167

Creating a lookup dynamically
Automatic lookups, mentioned in the previous recipe, are widely used across the system and
are very useful in simple scenarios. When it comes to showing different fields from different
data sources, applying various static or dynamic filters, some coding is required. Dynamics AX
is flexible enough that the developer can create custom lookups, either using
the AOT forms or by running them dynamically from the X++ code.

This recipe will show how to dynamically build a runtime lookup from the code. In this
demonstration, we will modify the Vendor account lookup on the Customers form to allow users
to select only those vendors that use the same currency as the currently selected customer.

How to do it...
1. Open the VendTable table in the AOT and create a new method:

public static void lookupVendorByCurrency(
 FormControl _callingControl,
 CurrencyCode _currency)
{
 Query query;
 QueryBuildDataSource qbds;
 QueryBuildRange qbr;
 SysTableLookup lookup;

 query = new Query();

 qbds = query.addDataSource(tableNum(VendTable));

 qbr = qbds.addRange(fieldNum(VendTable,Currency));

 qbr.value(queryvalue(_currency));

 lookup = SysTableLookup::newParameters(
 tableNum(VendTable),
 _callingControl,
 true);

 lookup.parmQuery(query);

 lookup.addLookupField(
 fieldNum(VendTable, AccountNum),
 true);

Building Lookups

168

 lookup.addLookupField(fieldNum(VendTable,Party));

 lookup.addLookupField(fieldNum(VendTable,Currency));

 lookup.performFormLookup();
}

2. In the AOT, open the CustTable form and find its data source named CustTable.
Then, in the data source, locate the VendAccount field and override its lookup()
method with the following code snippet:
public void lookup(FormControl _formControl, str _filterStr)
{
 VendTable::lookupVendorByCurrency(
 _formControl,
 CustTable.Currency);
}

3. To test this, navigate to Accounts receivable | Common | Customers | All
customers, select any of the customers, and click on Edit in the action pane. Once
the Customers form is displayed, expand the Vendor account lookup located in the
Miscellaneous details tab page, under the Remittance group. The modified lookup
now has an additional column named Currency, and vendors in the list will match
the customer's currency:

Chapter 4

169

How it works...
First, on the VendTable table, we create a new method that generates the lookup. This is the
most convenient place for such a method, taking into consideration that it may be reused in
other places.

In this method, we first create a new query, which will determine the data displayed in the
lookup. In this query, we add a new data source based on the VendTable table and define
a new range based on the Currency field.

Next, we create the actual lookup object and and pass the query object to it using its
parmQuery() method. The lookup object is created using the newParameters()
constructor of the SysTableLookup class. It accepts the following three parameters:

 f The table ID, which is going to be displayed in the lookup.

 f A reference to the calling control on the form.

 f An optional boolean value, which specifies that the value in the form control should
be preselected in the lookup. The default is true.

We use the addLookupField() method to add three columns—Vendor account, Name,
and Currency. This method accepts the following parameters:

 f The ID of the field that will be displayed as a column.

 f An optional boolean parameter that defines which column will be used as a return
value to the caller control upon user selection. Only one column can be marked as a
return value. In our case, it is vendor account.

Finally, we run the lookup by calling the performFormLookup() method.

The last thing to do is to add some code to the lookup() method of the VendAccount field of
the CustTable data source in the CustTable form. By replacing its super() method with our
custom code, we override the standard automatically generated lookup with the custom one.

Using a form to build a lookup
For the most complex scenarios, Dynamics AX offers the possibility to create and use a
form as a lookup. The form lookups support various features like tab pages, event handling,
complex logic, and so on.

In this recipe, we will demonstrate how to create a lookup using a form. As an example,
we will modify the standard customer account lookup to display only the customers who
are not placed on hold for invoicing and delivery.

Building Lookups

170

How to do it...
1. In the AOT, create a new form named CustLookup. Add a new data source with the

following properties:

Property Value
Name CustTable

Table CustTable

Index AccountIdx

AllowCheck No

AllowEdit No

AllowCreate No

AllowDelete No

OnlyFetchActive Yes

2. Change the properties of the form's design as follows:

Property Value
Frame Border

WindowType Popup

3. Add a new grid control to the form's design with the following properties:

Property Value
Name Customers

ShowRowLabels No

DataSource CustTable

4. Add a new StringEdit control to the grid with the following properties:

Property Value
Name AccountNum

AutoDeclaration Yes

DataSource CustTable

DataField AccountNum

5. Add a new ReferenceGroup control to the grid with the following properties,
right after AccountNum:

Property Value
Name Name

DataSource CustTable

Chapter 4

171

Property Value
ReferenceField Party

6. Add one more StringEdit control to the grid with the following properties, right
after the Name:

Property Value
Name Phone

DataSource CustTable

DataMethod phone

7. Add a new ComboBox control with the following properties to the end of the grid:

Property Value
Name Blocked

DataSource CustTable

DataField Blocked

8. Override the form's init() method with the following code snippet:
public void init()
{
 super();
 element.selectMode(AccountNum);
}

9. Override the form's run() method with the following code snippet:
public void run()
{
 FormStringControl callingControl;
 boolean filterLookup;

 callingControl = SysTableLookup::getCallerStringControl(
 element.args());

 filterLookup = SysTableLookup::filterLookupPreRun(
 callingControl,
 AccountNum,
 CustTable_ds);

 super();

 SysTableLookup::filterLookupPostRun(
 filterLookup,
 callingControl.text(),
 AccountNum,
 CustTable_ds);
}

Building Lookups

172

10. Finally, override the init() method of the CustTable data source with the
following code snippet:
public void init()
{
 Query query;
 QueryBuildDataSource qbds;
 QueryBuildRange qbr;

 query = new Query();

 qbds = query.addDataSource(tableNum(CustTable));

 qbr = qbds.addRange(fieldNum(CustTable,Blocked));

 qbr.value(queryvalue(CustVendorBlocked::No));

 this.query(query);
}

11. The form in the AOT will look similar to the following screenshot:

Chapter 4

173

12. Locate the CustAccount extended data type in the AOT and change its property
as follows:

Property Value
FormHelp CustLookup

13. To test the results, navigate to Sales and marketing | Common | Sales orders |
All sales orders and start creating a new sales order. Note that now the Customer
account lookup is different, and it includes active customers only:

How it works...
Automatically generated lookups have a limited set of features and are not suitable in more
complex scenarios. In this recipe, we are creating a brand new form-based lookup, which
will replace the existing customer account lookup. The name of the newly created form
is CustLookup and it contains the Lookup text at the end to make sure it can be easily
distinguished from other forms in the AOT.

In the form, we add a new data source and change its properties. We do not allow any data
updating by setting the AllowEdit, AllowCreate, and AllowDelete properties to No.
Security checks will be disabled by setting AllowCheck to No. To increase the performance,
we set OnlyFetchActive to Yes, which will reduce the size of the database result set to the
fields that are visible on the form only. We also set the data source index to define the initial
data sorting.

Building Lookups

174

Next, in order to make our form lookup look exactly like a standard lookup, we have to adjust
its layout. Therefore, we set its Frame and WindowType properties to Border and Popup,
respectively. This removes form borders and makes the form very similar to a standard lookup.
Then, we add a new grid control with four controls inside, which are bound to the relevant
CustTable table fields and methods. We set the ShowRowLabels property of the grid to
No to hide the grid's row labels.

After this, we have to define which form control will be used to return a value from the lookup
to the calling form control. We need to specify the form control manually in the form's init()
method, by calling element.selectMode(), with the name of the control as an argument.

In the form's run() method, we add some filtering, which allows the user to use the asterisk (*)
symbol to search for records in the lookup. For example, if the user types 1* into the Customer
account control, the lookup will open automatically with all customer accounts starting with
1. To achieve this, we use the filterLookupPreRun() and filterLookupPostRun()
methods of the standard SysTableLookup class. Both these methods require a reference
to the calling control, which can be obtained by calling the getCallerStringControl()
method of the same SysTableLookup class. The first method reads the user input and returns
true if a search is being performed, otherwise, it returns false. It must be called before the
super() method in the form's run() method, and it accepts four arguments:

 f The calling control on the parent form

 f The returning control on the lookup form

 f The main data source on the lookup form

 f An optional list of other data sources on the lookup form, which are used in the search

The filterLookupPostRun() method must be called after the super() method in the
form's run() method, and it also accepts four arguments:

 f The result from the previously called filterLookupPreRun() method

 f The user text specified in the calling control

 f The returning control on the lookup form

 f The lookup's data source

The code in the CustTable data source's init() method replaces the data source query
created by its super() method with the custom one. Basically, here, we create a new Query
object and change its range to include only active customers.

The FormHelp property of the CustAccount extended data type will make sure that this
form is opened every time the user opens the Customer account lookup.

See also
 f The Building a query object recipe in Chapter 1, Processing Data

Chapter 4

175

Building a tree lookup
The Tree controls are a user-friendly way of displaying a hierarchy of related records, such
as a company's organizational structure, inventory bill of materials, projects with their
subprojects, and so on. These hierarchies can also be displayed in the custom lookups,
allowing users to browse and select the required value in a more convenient way.

The Using a Tree control recipe in Chapter 2, Working with Forms, explained how to present
the budget model hierarchy as a tree in the Budget model form. In this recipe, we will reuse
the previously created BudgetModelTree class and demonstrate how to build a budget
model tree lookup.

How to do it...
1. In the AOT, create a new form named BudgetModelLookup. Set its design's

properties as follows:

Property Value
Frame Border

WindowType Popup

2. Add a new Tree control to the design with the following properties:

Property Value
Name ModelTree

Width 250

3. Add the following line of code to the form's class declaration:
BudgetModelTree budgetModelTree;

4. Override the form's init() method with the following code snippet:
public void init()
{
 FormStringControl callingControl;

 callingControl = SysTableLookup::getCallerStringControl(
 this.args());

 super();

 budgetModelTree = BudgetModelTree::construct(
 ModelTree,

Building Lookups

176

 callingControl.text());

 budgetModelTree.buildTree();
}

5. Override the mouseDblClick() and mouseUp() methods of the ModelTree
control with the following code snippet:
public int mouseDblClick(
 int _x,
 int _y,
 int _button,
 boolean _ctrl,
 boolean _shift)
{
 int ret;
 FormTreeItem formTreeItem;
 BudgetModel budgetModel;

 ret = super(_x, _y, _button, _ctrl, _shift);

 formTreeItem = this.getItem(this.getSelection());

 select firstOnly SubModelId from budgetModel
 where budgetModel.RecId == formTreeItem.data();

 element.closeSelect(budgetModel.SubModelId);

 return ret;
}

public int mouseUp(
 int _x,
 int _y,
 int _button,
 boolean _ctrl,
 boolean _shift)
{
 int ret;

 ret = super(_x, _y, _button, _ctrl, _shift);

 return 1;
}

Chapter 4

177

6. The form will look similar to the following screenshot:

7. In the AOT, open the BudgetModel table and change its lookupBudgetModel()
method with the following code snippet:
public static void lookupBudgetModel(
 FormStringControl _ctrl,
 boolean _showStopped = false)
{
 Args args;
 Object formRun;

 args = new Args();
 args.name(formStr(BudgetModelLookup));
 args.caller(_ctrl);

 formRun = classfactory.formRunClass(args);
 formRun.init();

 _ctrl.performFormLookup(formRun);
}

Building Lookups

178

8. To see the results, navigate to Budgeting | Common | Budget register entries | All
budget register entries. Start creating a new entry by clicking on the Budget register
entry button in the action pane and expanding the Budget model lookup:

How it works...
First, we create a new form named BudgetModelLookup, which we will use as a custom
lookup. We set its design's Frame and WindowType to Border and Popup respectively,
to change the layout of the form so that it looks like a lookup. We also add a new Tree
control and set its width.

In the form's class declaration, we define the BudgetModelTree class, which we have
already created in the Using a Tree control recipe in Chapter 2, Working with Forms.

The code in the form's init() method builds the tree. Here, we create a new object of
the BudgetModelTree type by calling the construct() constructor, which accepts
two arguments:

 f The Tree control, which represents the actual tree.

 f The Budget model, which is going to be preselected initially. Normally, it's a value in
the calling control, which can be detected using the getCallerStringControl()
method of the SysTableLookup application class.

The code in mouseDblClick() returns the user-selected value from the tree node back to
the calling control and closes the lookup.

Chapter 4

179

Finally, the mouseUp() method has to be overridden to return 1 to make sure that the lookup
does not close while the user expands or collapses the tree nodes.

See also
 f The Using a Tree control recipe in Chapter 2, Working with Forms

Displaying a list of custom options
Besides normal lookups, Dynamics AX provides a number of other ways to present the
available data for user selection. It doesn't necessarily have to be a record from the database;
it can be a list of "hardcoded" options or some external data. Normally, such lists are much
smaller as opposed to those of the data-driven lookups and are used for very specific tasks.

In this recipe, we will create a lookup of several predefined options. We will use a job for
this demonstration.

How to do it...
1. In the AOT, create a new job named PickList:

static void PickList(Args _args)
{
 Map choices;
 str ret;

 choices = new Map(
 Types::Integer,
 Types::String);

 choices.insert(1, "Axapta 3.0");
 choices.insert(2, "Dynamics AX 4.0");
 choices.insert(3, "Dynamics AX 2009");
 choices.insert(4, "Dynamics AX 2012");
 choices.insert(5, "Dynamics AX 2012 R2");
 choices.insert(6, "Dynamics AX 2012 R3");

 ret = pickList(choices, "", "Choose version");

 if (ret)
 {
 info(strFmt("You've selected option No. %1", ret));
 }
}

Building Lookups

180

2. Run the job to view the results:

3. Double-click on one of the options to show the selected option in the Infolog window:

How it works...
The key element in this recipe is the global pickList() function. Lookups created using this
function are based on values stored in a map. In our example, we define and initialize a new
map. Then, we insert a few key-value pairs and pass the map to the pickList() function.
This function accepts three parameters:

 f A map that contains lookup values

 f A column header, which is not used here

 f A lookup title

The function that displays values from the map returns the corresponding key, once the option
is selected.

There's more...
The global pickList() function can basically display any list of values. Besides that,
Dynamics AX also provides a number of other global lookup functions, which can be
used in more specific scenarios. Here are a few of them:

 f pickDataArea(): This shows a list of Dynamics AX companies.

Chapter 4

181

 f pickUserGroups(): This shows a list of user groups in the system.

 f pickUser(): This shows a list of Dynamics AX users.

 f pickTable(): This shows all Dynamics AX tables.

 f pickField(): This shows table fields. The table number has to be specified
as an argument for the function.

 f pickClass(): This shows a list of Dynamics AX classes.

Displaying custom options in another way
The global system functions, such as pickList() and pickUser(), allow developers to
build various lookups displaying a list of custom options. Besides that, the standard Dynamics
AX application contains a few more useful functions, allowing the user to build more complex
lookups of custom options.

One of the functions is called selectSingle(), and it presents the user with a list of
options. It also displays a checkbox next to each option that allows users to select the
option. To demonstrate this, we will create a new job that shows the usage of this function.

How to do it...
1. In the AOT, create a new job named SysListSelectSingle:

static void SysListSelectSingle(Args _args)
{
 container choices;
 container headers;
 container selection;
 container selected;
 boolean ok;

 choices = [
 ["3.0\nAxapta 3.0", 1, false],
 ["4.0\nDynamics AX 4.0", 2, false],
 ["2009\nDynamics AX 2009", 3, false],
 ["2012\nDynamics AX 2012", 4, false],
 ["2012R2\nDynamics AX 2012 R2", 5, false],
 ["2012R3\nDynamics AX 2012 R3", 6, true]];

 headers = ["Version", "Description"];

 selection = selectSingle(
 "Choose version",

Building Lookups

182

 "Please select Dynamics AX version",
 choices,
 headers);

 [ok, selected] = selection;

 if (ok && conLen(selected))
 {
 info(strFmt(
 "You've selected option No. %1",
 conPeek(selected,1)));
 }
}

2. Run the job to display the options:

3. Select any of the options, click on the OK button, and note that your choice is
displayed in the Infolog window

Chapter 4

183

How it works...
We start with defining the choices variable and setting its value. The variable is a container
of containers, where each container inside the parent container is made of three elements
and represents one selectable option in the list:

 f The first element is text displayed on the lookup. By default, in the lookup, only one
column is displayed, but it is possible to define more columns, simply by separating
the texts using the new line symbol.

 f The second element is a number of an item in the list. This value is returned from
the lookup.

 f The third value specifies whether the option is marked by default.

Now, when the list values are ready, we call the selectSingle() function to build the actual
lookup. This function accepts five arguments:

 f The window title

 f The lookup description

 f A container of list values

 f A container representing column headings

 f An optional reference to a caller object

The singleSelect() function returns a container of two elements:

 f true or false depending on whether the lookup was closed using the OK button
or not

 f The numeric value of the selected option

There's more...
You may notice that the lookup, which was created using the singleSelect() method,
allows the choosing of only one option from the list. There is another similar function named
selectMultiple(), which is exactly the same except that the user can select multiple
options from the list. The following code snippet demonstrates its usage:

static void SysListSelectMultiple(Args _args)
{
 container choices;
 container headers;
 container selection;
 container selected;
 boolean ok;
 int i;

Building Lookups

184

 choices = [
 ["3.0\nAxapta 3.0", 1, false],
 ["4.0\nDynamics AX 4.0", 2, false],
 ["2009\nDynamics AX 2009", 3, true],
 ["2012\nDynamics AX 2012", 4, false],
 ["2012R2\nDynamics AX 2012 R2", 5, false],
 ["2012R3\nDynamics AX 2012 R3", 6, true]];

 headers = ["Version", "Description"];

 selection = selectMultiple(
 "Choose version",
 "Please select Dynamics AX version",
 choices,
 headers);

 [ok, selected] = selection;

 if (ok && conLen(selected) > 0)
 {
 for (i = 1; i <= conLen(selected); i++)
 {
 info(strFmt(
 "You've selected option No. %1",
 conPeek(selected,i)));
 }
 }
}

Now, in the lookup, it is possible to select multiple options:

Note that, in this case, the returned value is a container holding the selected options.

Chapter 4

185

Building a lookup based on the record
description

Normally, data lookups in Dynamics AX display a list of records where the first column always
contains a value, which is returned to the calling form control. The first column in the lookup
normally contains a unique record identification value, which is used to build relations
between tables. For example, the Customer lookup displays the customer account number,
the customer name, and some other fields; the Inventory item lookup displays the item
number, the item name, and other fields.

In some cases, the record identifier can be not so informative. For example, it is much more
convenient to display a person's name versus its number. In the standard application, you
can find a number of places where the contact person is displayed as a person's name,
even though the actual table relation is based on the contact person's ID.

In this recipe, we will create such a lookup. We will replace the Vendor group selection lookup
on the Vendors form to show group description, instead of group ID.

How to do it...
1. In the AOT, create a new String extended data type with the following properties:

Property Value
Name VendGroupDescriptionExt

Label Group

Extends Description

2. Open the VendTable table and create a new method with the following code snippet:
public edit VendGroupDescriptionExt editVendGroup(
 boolean _set,
 VendGroupDescriptionExt _group)
{
 VendGroup vendGroup;

 if (_set)
 {
 if (_group)
 {
 if (VendGroup::exist(_group))
 {
 this.VendGroup = _group;
 }

Building Lookups

186

 else
 {
 select firstOnly VendGroup from vendGroup
 where vendGroup.Name == _group;
 this.VendGroup = vendGroup.VendGroup;
 }
 }
 else
 {
 this.VendGroup = '';
 }
 }

 return VendGroup::name(this.VendGroup);
}

3. In the AOT, find the VendTable form, locate the Posting group control inside
MainTab | TabPageDetails | Tab | TabGeneral | UpperGroup | Identification,
and modify its properties as follows:

Property Value
DataGroup

4. In the same form, in the Posting group, modify the Posting_VendGroup control
as follows:

Property Value
DataField

DataMethod editVendGroup

5. Override the lookup() method of the Posting_VendGroup control with the
following code snippet:
public void lookup()
{
 this.performTypeLookup(extendedTypeNum(VendGroupId));
}

6. To check the results, navigate to Accounts payable | Common | Vendors | All
vendors, select any record, and click on the Edit button in the action pane. In the
opened form, check the newly created lookup on the Group control, located in the
General tab page:

Chapter 4

187

How it works...
First, we create a new extended data type, which we will use as the basis for the vendor
Group selection control. The type extends the existing Description extended data type
as it has to be of the same size as the vendor group name. It will also have the same label
as VendGroupId because it is going to replace the existing Group control on the form and
their labels has to match.

Next, we create a new edit method, which is used to show the group description instead of
the group ID on the form. It also allows changing the control's value.

The edit method is created on the VendTable table—the most convenient place—and it
uses the newly created extended data type. This ensures that the label of the user control
stays the same. The method accepts two arguments as this is a mandatory requirement for
the edit methods. The first argument defines whether the control was modified by the user,
and, if yes, the second argument holds the modified value. In this recipe, the second value
can be either group ID or group description. The value will be group ID if the user selects
this value from the lookup. It will be group description if the user decides to manually type
the value into the control. We use the VendGroupDescriptionExt extended data type,
which is bigger in size and fits for both the group ID and group description values.

Building Lookups

188

Next, we need to modify the VendTable form. We change the existing vendor group ID control
to use the newly created edit method. By doing this, we make the control unbound and
therefore lose the standard lookup functionality. To correct this, we override the lookup()
method on the control. Here, we use the performTypeLookup() method to restore the
lookup functionality.

There's more...
In the previous example, you may notice that the lookup does not find the currently
selected group. This is because the system tries to search for group ID by group description.
This section will show you how to correct this issue.

First, we have to create a new form named VendGroupLookup that acts as a lookup. Add a
new data source to the form, with the following properties:

Property Value
Name VendGroup

Table VendGroup

Index GroupIdx

AllowCheck No

AllowEdit No

AllowCreate No

AllowDelete No

OnlyFetchActive Yes

Change the properties of the form's design as follows:

Property Value
Frame Border

WindowType Popup

Add a new Grid control to the form's design with the following properties:

Property Value
Name VendGroups

ShowRowLabels No

DataSource VendGroup

DataGroup Overview

Chapter 4

189

Several new controls will appear in the grid automatically. Change the properties of the
VendGroups_VendGroup control as follows:

Property Value
AutoDeclaration Yes

Override the form's init() and run() methods with the following code snippet, respectively:

public void init()
{
 super();
 element.selectMode(VendGroups_VendGroup);
}

public void run()
{
 VendGroupId groupId;

 groupId = element.args().lookupValue();

 super();

 VendGroup_ds.findValue(
 fieldNum(VendGroup,VendGroup), groupId);
}

The key element here is the findValue() method in the form's run() method. It places
the cursor on the currently selected vendor group record. The group ID is retrieved from the
arguments object using the lookupValue() method.

Building Lookups

190

In the AOT, the form will look similar to the following screenshot:

Next, we need to create a new static method on the VendGroup table, which opens the new
lookup form:

public static void lookupVendorGroupForm(
 FormStringControl _callingControl,
 VendGroupId _groupId)
{
 FormRun formRun;
 Args args;

 args = new Args();
 args.name(formStr(VendGroupLookup));
 args.lookupValue(_groupId);

 formRun = classFactory.formRunClass(args);
 formRun.init();

 _callingControl.performFormLookup(formRun);
}

Chapter 4

191

Here, we use the formRunClass() method of the global classFactory object. Note that
here we pass the group ID to the form through the Args object.

The final touch is to change the code in the lookup() method of the VendGroups_
VendGroup control on the VendTable form:

public void lookup()
{
 VendGroup::lookupVendorGroupForm(this, VendTable.VendGroup);
}

Now, when you open the Vendors form, the current vendor group in the Group lookup is
preselected correctly:

Building Lookups

192

Building the browse for folder lookup
Folder browsing lookups can be used when the user is required to specify a local or network
folder for storing or retrieving external files. Such lookups are generated outside Dynamics AX
using Windows API.

In this recipe, we will learn how to create a lookup for folder browsing. As an example, we will
create a new field and control named Documents on the General ledger parameters form,
which will allow us to store a folder path.

How to do it...
1. In the AOT, open the LedgerParameters table and create a new field with the

following properties:

Property Value
Type String

Name DocumentPath

Label Documents

ExtendedDataType FilePath

2. Add the newly created field to the bottom of the table's General field group.

3. In the AOT, open the LedgerParameters form and create a new method with the
following code snippet at the top level of the form:
public str filePathLookupTitle()
{
 return "Select document folder";
}

4. To test the results, navigate to General ledger | Setup | General ledger parameters
and note the newly created Documents control, which allows us to select a folder:

Chapter 4

193

How it works...
The folder browsing lookup form is bound to the FilePath extended data type, and it appears
automatically for every control that is based on that type. In this recipe, we create a new field,
which extends FilePath and consequently inherits the lookup. We also add the newly created
field to the field group, for it to appear on the form automatically.

We also create a new form method named filePathLookupTitle(), which is required by
the folder browsing lookup. This method holds a description displayed on the lookup window.
The system will show an error if this method is not present on the caller form.

Building Lookups

194

There's more...
In this section, we will explore other enhancements to the previous example. Firstly, we will
build exactly the same lookup, but use a slightly different technique. Secondly, we will enable
the Make New Folder button on the lookup, allowing users to create new folders.

Manual folder browsing lookup
The lookup created in this recipe has a few programming limitations. Firstly, the lookup
requires the filePathLookupTitle() method to be present on a caller form. The name
of this method has to be exactly like this and cannot be changed.

Another reason is that a single form cannot have two or more folder browsing lookups unless
they share the same description. Every lookup calls the same filePathLookupTitle()
method and will obviously have the same description.

Internally, the browsing for folder lookup is generated with the help of the browseForPath()
method of the WinAPI class. This method invokes the standard Windows folder browsing
dialog box, and we can call this method directly, without using the extended data type.

Let's modify our previous example by deleting the filePathLookupTitle() method from
the LedgerParameters form and overriding the lookup() method of the DocumentPath
field in the LedgerParameters form data source with the following code snippet:

public void lookup(FormControl _formControl, str _filterStr)
{
 FilePath path;

 path = WinAPI::browseForPath(
 element.hWnd(),
 "Select document folder extended");

 LedgerParameters.DocumentPath = path;
 LedgerParameters_ds.refresh();
}

Now, if you open the lookup, you may note that it looks exactly the same as before, apart from
its description. The description is defined in the lookup() method, and is only used for this
particular lookup. Using this technique, we can create more than one folder browsing lookup
on the same form without adding additional methods to the form itself.

Chapter 4

195

Adding a Make New Folder button
The previously mentioned WinAPI class has one more method named
browseForFolderDialog(). Besides folder browsing, it also allows for creating
a new one. The method accepts three optional arguments:

 f The lookup description.

 f The folder path selected initially.

 f The boolean value, where true shows and false hides the Make New Folder
button. The button is shown by default if this argument is omitted.

Let's replace the lookup() method of the DocumentPath field in the LedgerParameters
form data source with the following code snippet:

public void lookup(FormControl _formControl, str _filterStr)
{
 FilePath path;

 path = WinAPI::browseForFolderDialog(
 "Select document folder extended",

Building Lookups

196

 LedgerParameters.DocumentPath,
 true);

 LedgerParameters.DocumentPath = path;
 LedgerParameters_ds.refresh();
}

Now, the folder browsing lookup has a new Make New Folder button, which allows the user to
create a new folder straight away, without leaving the lookup:

Building a lookup to select a file
In Dynamics AX, file reading or saving is a very common operation. Normally, for non-automated
operations, the system prompts the user for file input.

This recipe will demonstrate how the user can be presented with the file browse dialog box
in order to choose the files in a convenient way. As an example, we will create a new control
called Terms & conditions in the Form setup form in Procurement and sourcing module,
which allows storing a path to the text document.

Chapter 4

197

How to do it...
1. In the AOT, open the VendFormLetterParameters table and create a new field

with the following properties:

Property Value
Type String

Name TermsAndConditions

Label Terms & conditions

ExtendedDataType FilenameOpen

2. Then, add the field to the bottom of the table's PurchaseOrder field group.

3. Next, open the PurchFormLetterParameters form and create the following
four methods:
public str fileNameLookupTitle()
{
 return "Select Terms & conditions document";
}

public str fileNameLookupInitialPath()
{
 container file;

 file = fileNameSplit(
 VendFormletterParameters.TermsAndConditions);

 return conPeek(file ,1);
}

public str fileNameLookupFilename()
{
 Filename path;
 Filename name;
 Filename type;

 [path, name, type] = fileNameSplit(
 VendFormletterParameters.TermsAndConditions);

 return name + type;
}

Building Lookups

198

public container fileNameLookupFilter()
{
 #File

 return [WinAPI::fileType(#txt), #AllFilesName+#txt];
}

4. As a result, we will be able to select and store a text file in the Procurement and
sourcing | Setup | Forms | Form setup form in the Terms & conditions field under
the Purchase order tab page:

How it works...
In this recipe, we first create a new field to store the file location. We use the FilenameOpen
extended data type, which is bound to the file selection dialog box. The newly created field
automatically inherits the dialog box. We also add this field to the field group in the table to
ensure that it is displayed on the form automatically.

Chapter 4

199

The following four form methods are called by the lookup and must be present on the
caller form:

 f The fileNameLookupTitle() method contains a text to be displayed as the
lookup title.

 f The fileNameLookupInitialPath() method defines the initial folder. In our
example, if there is a value in the Terms & conditions field, then this method strips
the filename part, and returns the directory path to the lookup to be used as
a starting point. Here, we use the global fileNameSplit() function to process
the stored file path.

 f The fileNameLookupFilename() method detects the current value in the
field and extracts the filename to be displayed on the lookup. We use the global
fileNameSplit() function again to separate the given directory path into three
parts: directory path, filename, and file extension. For example, if the current Terms
& conditions value is C:\Documents\terms.txt, then once the user clicks on
the lookup button, the method returns only the filename terms.txt (file name +
file extension) separated from the rest of the directory path.

 f The fileNameLookupFilter() method is responsible for the displaying of a list
of allowed file extensions. It returns a container of allowed extensions in pairs of two.
The first, third, fifth, and the other odd values hold the name of the file extension and
the second, fourth, sixth, and the other even values contain the extension itself. In
this example, only the text files are allowed, so the method returns two values in the
container. The first value is a string, Text Document, and the second one is *.txt.
In order to avoid literals in the X++ code, we use these #File macro definitions:
#txt and #AllFileName. These contain the .txt and * strings, respectively, and
are concatenated by the lookup to present the user with Text Document (*.txt)
as a file extension filter. The fileType() method of the WinAPI class converts file
extensions to their textual representation.

There's more...
Although the file browsing dialog box created in this recipe is technically correct, it still
has some limitations. Firstly, it requires creating a number of methods on the caller form.
Secondly, it will not work with multiple file lookups on the same form. A slightly different
approach can be used to avoid these issues and keep the lookup's appearance unchanged.

Let's modify the previous example by removing all four methods from the form itself and
overriding the lookup() method on the on the TermsAndConditions field on the
VendFormletterParameters data source with the following code snippet:

public void lookup(FormControl _formControl, str _filterStr)
{
 FilenameOpen file;
 Filename path;

Building Lookups

200

 Filename name;
 Filename type;
 #File

 [path, name, type] = fileNameSplit(
 VendFormLetterParameters.TermsAndConditions);

 file = WinAPI::getOpenFileName(
 element.hWnd(),
 [WinAPI::fileType(#txt), #AllFilesName+#txt],
 path,
 "Select Terms & conditions document",
 "",
 name + type);

 if (file)
 {
 VendFormLetterParameters.TermsAndConditions = file;
 VendFormLetterParameters_ds.refresh();
 }
}

The file browsing dialog box is in the getOpenFileName() method of the WinAPI class, which
in turn opens the Windows file browsing dialog. The method accepts a number of arguments:

 f A handler to the calling window.

 f A container of allowed file extensions. This is exactly what the
fileNameLookupFilter() method returns in the previous example.

 f The file path selected initially.

 f The lookup's title.

 f The default filename.

Creating a color picker lookup
In Dynamics AX, the color selection dialog boxes are used in various places, allowing the
user to select and store a color code in a table field. Then the stored color code can be
used in various places to color data records, change form backgrounds, set colors for
various controls, and so on.

In this recipe, we will create a color lookup. For demonstration purposes, we will add an
option to set a color for each legal entity in the system.

Chapter 4

201

How to do it...
1. In the AOT, open the CompanyInfo table and create a new field with the

following properties:

Property Value
Type Integer

Name CompanyColor

ExtendedDataType CCColor

2. Open the OMLegalEntity form, locate the TopPanel group in Body | Content |
Tab | General, and add a new IntEdit control with the following properties to the
bottom of the group:

Property Value
Name CompanyColor

AutoDeclaration Yes

LookupButton Always

ShowZero No

ColorScheme RGB

Label Company color

3. In the same form, create a new method with the following code snippet in the
CompanyInfo data source:
public edit CCColor editCompanyColor(
 boolean _set,
 CompanyInfo _companyInfo,
 CCColor _color)
{
 if (_companyInfo.CompanyColor)
 {
 CompanyColor.backgroundColor(
 _companyInfo.CompanyColor);
 }
 else
 {
 CompanyColor.backgroundColor(
 WinAPI::RGB2int(255,255,255));
 }

 CompanyColor.foregroundColor(
 CompanyColor.backgroundColor());

Building Lookups

202

 return 0;
}

4. Update the properties of the newly created CompanyColor control as follows:

Property Value
DataSource CompanyInfo

DataMethod editCompanyColor

5. On the same control, override its lookup() method with the following code snippet:
public void lookup()
{
 int red;
 int green;
 int blue;
 container color;

 [red, green, blue] = WinApi::RGBint2Con(
 CompanyColor.backgroundColor());

 color = WinAPI::chooseColor(
 element.hWnd(),
 red,
 green,
 blue,
 null,
 true);

 if (color)
 {
 [red, green, blue] = color;
 CompanyInfo.CompanyColor = WinAPI::RGB2int(
 red,
 green,
 blue);

 CompanyColor.backgroundColor(
 CompanyInfo.CompanyColor);
 }
}

Chapter 4

203

6. To test the results, navigate to Organization administration | Setup | Organization |
Legal entities and note the newly created Company color control with the color lookup:

How it works...
Dynamics AX does not have a special control to select colors. Therefore, we have to create
a fake control, which is presented to the user as a color selection.

Colors in Dynamics AX are stored as integers, so we first create a new Integer field on
the CompanyInfo table. On the form, we create a new control, which will display the color.
The created control does not have any automatic lookup and therefore it does not have
the lookup button next to it. We have to force the button to appear by setting the control's
LookupButton property to Always. We also need to set the ColorScheme property to
RGB to make sure the control allows us to set its color using the red-green-blue code.

Next, we create a new edit method, which is then set on the created control as a data
method. This method is responsible for changing the control's background to match the
stored color. This gives an impression to the user that the chosen color was saved. The
background is set to white if no value is present. The method always returns the value
0 because we do not want to show the actual color code in it. The control's ShowZero
property is set to No to ensure that even the returned 0 is not displayed. In this way,
we create a control that looks like a real color selection control.

Building Lookups

204

The last thing to do is to override the control's lookup() method with the code that invokes
the color selection dialog box. Here, we use the RGBint2Con() method of the WinAPI class
to convert the current control's background color into a red-green-blue component set. This
set is then passed to the chooseColor() method of the same WinAPI class to make sure
that the currently set color is selected on the lookup initially. The chooseColor() method
is the main method, which invokes the lookup. It accepts the following arguments:

 f The current window handle

 f The red color component

 f The green color component

 f The blue color component

 f A binary object representing up to 16 custom colors

 f A boolean value, which defines whether the full or short version of the lookup is
displayed initially

This method returns a container of red, green, and blue color components, which has to be
converted back to a numeric value in order to store it in the table field.

There's more...
You probably have noticed that the fifth argument in the preceding example is set
to null. This is because we did not use custom colors. This feature is not that important,
but it might be used in some circumstances.

To demonstrate how it can be used, let's modify the lookup() method with the following
code snippet in order to implement the custom colors:

public void lookup()
{
 int red;
 int green;
 int blue;
 container color;
 Binary customColors;

 customColors = new Binary(64);

 customColors.byte(0,255);
 customColors.byte(1,255);
 customColors.byte(2,0);

 customColors.byte(4,0);
 customColors.byte(5,255);

Chapter 4

205

 customColors.byte(6,0);

 customColors.byte(8,255);
 customColors.byte(9,0);
 customColors.byte(10,0);

 [red, green, blue] = WinApi::RGBint2Con(
 CompanyColor.backgroundColor());

 color = WinAPI::chooseColor(
 element.hWnd(),
 red,
 green,
 blue,
 customColors,
 true);

 if (color)
 {
 [red, green, blue] = color;
 CompanyInfo.CompanyColor = WinAPI::RGB2int(
 red,
 green,
 blue);

 CompanyColor.backgroundColor(
 CompanyInfo.CompanyColor);
 }
}

Here, we define the customColors variable as a Binary object to store the initial set of
custom colors. The object structure contains 64 elements to store the color codes. The set
of red, green, and blue components for each color is stored in three subsequent elements in
the object, followed by an empty element. In our code, we store yellow (red = 255, green =
255, and blue = 0) in the elements from 0 to 2, green (red = 0, green, = 255, blue = 0) in the
elements from 4 to 6, and red (red = 255, green = 0, blue = 0) in the elements from 8 to 10.
This system allows you to create up to 16 custom colors.

Building Lookups

206

After implementing those changes, the color selection dialog box now looks slightly different,
as shown in the following screenshot:

The custom colors can also be modified by the user and be saved in a table field or cache for
later use by storing the whole binary customColors object.

Processing Business
Tasks

In this chapter, we will cover the following recipes:

 f Using a segmented entry control

 f Creating a general journal

 f Posting a general journal

 f Processing a project journal

 f Creating and posting a ledger voucher

 f Changing an automatic transaction text

 f Creating a purchase order

 f Posting a purchase order

 f Creating a sales order

 f Posting a sales order

 f Creating an electronic payment format

Introduction
In Dynamics AX, various business operations, such as creating financial journals, posting
sales orders, and generating vendor payments are performed from the user interface
by the user on a periodic basis. For developers, it is very important to understand how it
works internally so that the knowledge can be used to design and implement new custom
business logic.

5

Processing Business Tasks

208

This chapter will explain how various Dynamics AX business operations can be performed
from the code. We will discuss how to create and post various journals. This chapter also
explains how to work with the ledger voucher object and how to enhance the setup of the
automatically generated transaction texts. Posting purchase and sales orders, and creating
electronic payments are also discussed here.

Using a segmented entry control
In Dynamics AX, segmented entry control can simplify the task of entering complex account
and dimension combinations. The control consists of a dynamic number of elements named
segments. The number of segments may vary depending on the setup, and their lookup values
may depend on the values specified in other segments in the same control. The segmented
entry control always uses the controller class, which handles the entry and display of the control.

In this recipe, we will show you how a segmented entry control can be added to a form. In this
demonstration, we will add a new Ledger account control to the General ledger parameters
form, assuming that the control can be used as a default ledger account for various functions.
The example does not make much sense in practice, but it is perfectly suitable to demonstrate
the usage of the segmented entry control.

How to do it...
Carry out the following steps in order to complete this recipe:

1. In the AOT, locate the LedgerParameters table and create a new field with the
following properties (click on Yes to automatically add a foreign key relationship
once you are asked):

Property Value
Type Int64

Name LedgerDimension

ExtendedDataType LedgerDimensionAccount

2. Add the newly created field to the General group in the table.

3. Find the table's relation, named DimensionAttributeValueCombination,
and change its property, as follows:

Property Value
UseDefaultRoleNames No

Chapter 5

209

4. In the AOT, find the LedgerParameters form and add the following line of code to
its class declaration:
LedgerDimensionAccountController ledgerDimensionAccountController;

5. Add the following lines of code at the bottom of the form's init() method:
ledgerDimensionAccountController =
 LedgerDimensionAccountController::construct(
 LedgerParameters_ds,
 fieldStr(LedgerParameters,LedgerDimension));

6. In the same form, find the General_LedgerDimension segmented entry control by
going to Tab | LedgerTab | LedgerTabBody | LedgerTabFastTab | GeneralTabPage
| General, and override three of its methods with the following code snippet:
void loadAutoCompleteData(LoadAutoCompleteDataEventArgs _e)
{
 super(_e);
 ledgerDimensionAccountController.loadAutoCompleteData(_e);
}

void loadSegments()
{
 super();
 ledgerDimensionAccountController.parmControl(this);
 ledgerDimensionAccountController.loadSegments();
}

void segmentValueChanged(SegmentValueChangedEventArgs _e)
{
 super(_e);
 ledgerDimensionAccountController.segmentValueChanged(_e);
}

7. In the same form, in its LedgerParameters data source, locate the
LedgerDimension field and override three of its methods with the
following code snippet:
Common resolveReference(
 FormReferenceControl _formReferenceControl)
{
 return ledgerDimensionAccountController.resolveReference();
}

void jumpRef()

Processing Business Tasks

210

{
 super();
 ledgerDimensionAccountController.jumpRef();
}

boolean validate()
{
 boolean ret;

 ret = super();

 ret = ledgerDimensionAccountController.validate() && ret;

 return ret;
}

8. To test the results, navigate to General ledger | Setup | General ledger parameters
and notice the newly created Ledger account control, which allows you to select
and save the main account and a number of financial dimensions, as shown in the
following screenshot:

Chapter 5

211

How it works...
We start the recipe by creating a new field in the LedgerParameters table. The field extends
the LedgerDimensionAccount extended data type in order to ensure that the segmented
entry control appears automatically once this field is added to the user interface. We also add
the newly created field to one of the table's groups in order to make sure that it appears on
the form automatically.

Next, we have to modify the LedgerParameters form. In its class declaration and the
init() method, we define and instantiate the LedgerDimensionAccountController
class, which handles the events raised by the segmented entry control. The combination of
the class and the control allows the user to see a dynamic number of segments, based on the
system configuration.

Then, we override the following methods of the control:

 f loadAutoCompleteData(): This retrieves the data for the autocomplete lookup

 f loadSegments(): This loads the value stored in the table field into the control

 f segmentedValueChanged(): This updates the controller class when the value of
the control is changed by the user

Lastly, we override the following methods in the data source field:

 f resolveReference(): This finds the ledger account record specified by the user

 f jumpRef(): This enables the View details link in the control's right-click context menu

 f validate(): This performs user input validation

There's more...
In this section, we will discuss how the input of the segmented entry control can be simulated
from the code. It is very useful when migrating or importing data into the system. In the AOT,
locate the DimensionAttributeValueCombination table and create a new method with
the following code snippet:

static LedgerDimensionAccount getLedgerDimension(
 MainAccountNum _mainAccountId,
 container _dimensions,
 container _values)
{
 MainAccount mainAccount;
 DimensionHierarchy dimHier;
 LedgerStructure ledgerStruct;
 Map dimSpec;
 Name dimName;

Processing Business Tasks

212

 Name dimValue;
 DimensionAttribute dimAttr;
 DimensionAttributeValue dimAttrValue;
 List dimSources;
 DimensionDefaultingEngine dimEng;
 int i;

 mainAccount = MainAccount::findByMainAccountId(
 _mainAccountId);

 if (!mainAccount.RecId)
 {
 return 0;
 }

 select firstOnly RecId from dimHier
 where dimHier.StructureType ==
 DimensionHierarchyType::AccountStructure
 && dimHier.IsDraft == NoYes::No
 exists join ledgerStruct
 where ledgerStruct.Ledger == Ledger::current()
 && ledgerStruct.DimensionHierarchy == dimHier.RecId;
 if (!dimHier.RecId)
 {
 return 0;
 }

 dimSpec =
 DimensionDefaultingEngine::createEmptyDimensionSpecifiers();

 for (i = 1; i <= conLen(_dimensions); i++)
 {
 dimName = conPeek(_dimensions, i);
 dimValue = conPeek(_values, i);

 dimAttr = DimensionAttribute::findByName(dimName);
 if (!dimAttr.RecId)
 {
 continue;
 }

 dimAttrValue =
 DimensionAttributeValue::findByDimensionAttributeAndValue(

Chapter 5

213

 dimAttr, dimValue, false, true);
 if (dimAttrValue.IsDeleted)
 {
 continue;
 }

 DimensionDefaultingEngine::insertDimensionSpecifer(
 dimSpec,
 dimAttr.RecId,
 dimValue,
 dimAttrValue.RecId,
 dimAttrValue.HashKey);
 }

 dimSources = new List(Types::Class);
 dimSources.addEnd(dimSpec);

 dimEng = DimensionDefaultingEngine::constructForMainAccountId(
 mainAccount.RecId,
 dimHier.RecId);
 dimEng.applyDimensionSources(dimSources);

 return dimEng.getLedgerDimension();
}

This method can be used to convert a combination of main accounts and a number of financial
dimension values into a ledger account. The method accepts the following three arguments:

 f The main account number

 f A container of dimension names

 f A container of dimension values

We start this method by searching for the main account record. We also locate the record of
the hierarchy of the current chart of accounts.

Next, we fill an empty map with the dimension values. Before inserting each value, we check
whether the dimension and its value are present in the system. To do this, we use the methods
in the DimensionAttribute and DimensionAttributeValue tables.

We end the method by creating a new DimensionDefaultingEngine object and
passing the list of dimensions and their values to it. Now, when everything is ready,
the getLedgerDimension() method of DimensionDefaultingEngine returns
the ledger account number.

Processing Business Tasks

214

See also
 f The Creating a general journal recipe

 f The Creating and posting a ledger voucher recipe

Creating a general journal
Journals in Dynamics AX are manual worksheets that can be posted into the system. One of
the frequently used journals for financial operations is the General journal. It allows processing
of any type of posting: ledger account transfers, fixed asset operations, customer/vendor
payments, bank operations, project expenses, and so on. Journals, such as the Fixed assets
journal, Payment journal in Accounts receivable or in Accounts payable, and many others,
are optimized for specific business tasks, but they basically do the same job.

In this recipe, we will demonstrate how to create a new general journal record from the code.
The journal will hold a single line for debiting one ledger account and crediting another one.
For demonstration purposes, we will specify all the input values in the code.

How to do it...
Carry out the following steps in order to complete this recipe:

1. In the AOT, create a new class named LedgerJournalTransData with the following
code snippet:
class LedgerJournalTransData extends JournalTransData
{
}

void create(
 boolean _doInsert = false,
 boolean _initVoucherList = true)
{
 lastLineNum++;

 journalTrans.LineNum = lastLineNum;

 if (journalTableData.journalVoucherNum())
 {
 this.initVoucher(

Chapter 5

215

 lastVoucher,
 false,
 _initVoucherList);
 }

 this.addTotal(false, false);

 if (_doInsert)
 {
 journalTrans.doInsert();
 }
 else
 {
 journalTrans.insert();
 }

 if (journalTableData.journalVoucherNum())
 {
 lastVoucher = journalTrans.Voucher;
 }
}

2. Open the LedgerJournalStatic class and replace its newJournalTransData()
method with the following code snippet:
JournalTransData newJournalTransData(
 JournalTransMap _journalTrans,
 JournalTableData _journalTableData)
{
 return new LedgerJournalTransData(
 _journalTrans,
 _journalTableData);
}

3. Double-check whether the getLedgerDimension() method exists in the
DimensionAttributeValueCombination table. If not, create the method
as described in the first recipe of this chapter.

4. Create a new job named LedgerJournalCreate with the following code snippet:
static void LedgerJournalCreate(Args _args)
{
 LedgerJournalTable jourTable;
 LedgerJournalTrans jourTrans;

Processing Business Tasks

216

 LedgerJournalTableData jourTableData;
 LedgerJournalTransData jourTransData;
 LedgerJournalStatic jourStatic;
 DimensionDynamicAccount ledgerDim;
 DimensionDynamicAccount offsetLedgerDim;

 ttsBegin;

 ledgerDim =
 DimensionAttributeValueCombination::getLedgerDimension(
 '110180',
 ['BusinessUnit', 'Department'],
 ['005', '024']);

 offsetLedgerDim =
 DimensionAttributeValueCombination::getLedgerDimension(
 '170150',
 [' BusinessUnit', 'Department'],
 ['005', '024']);

 jourTableData = JournalTableData::newTable(jourTable);

 jourTable.JournalNum = jourTableData.nextJournalId();
 jourTable.JournalType = LedgerJournalType::Daily;
 jourTable.JournalName = 'GenJrn';

 jourTableData.initFromJournalName(
 LedgerJournalName::find(jourTable.JournalName));

 jourStatic = jourTableData.journalStatic();

 jourTransData = jourStatic.newJournalTransData(
 jourTrans,
 jourTableData);

 jourTransData.initFromJournalTable();

 jourTrans.CurrencyCode = 'USD';
 jourTrans.initValue();
 jourTrans.TransDate = systemDateGet();

Chapter 5

217

 jourTrans.LedgerDimension = ledgerDim;
 jourTrans.Txt = 'General journal demo';
 jourTrans.OffsetLedgerDimension = offsetLedgerDim;
 jourTrans.AmountCurDebit = 1000;

 jourTransData.create();

 jourTable.insert();

 ttsCommit;

 info(strFmt(
 "Journal '%1' has been created", jourTable.JournalNum));
}

5. Run the job and check the results by navigating to General ledger | Journals |
General journal, as shown in the following screenshot:

Processing Business Tasks

218

6. Click on the Lines button to open journal lines and notice the created line,
as shown here:

How it works...
We start the recipe by creating the LedgerJournalTransData class, which will handle
the creation of journal lines. It inherits everything from the JournalTransData class,
apart from its create() method. Actually, this method is a copy of the same method from
the JournalTransData class, with the exception that it does not contain the code that is
not relevant to the ledger journal creation. We also modify the newJournalTransData()
constructor of the LedgerJournalStatic class to use our newly created class.

The journal creation code is placed in a new job. We start the code by initializing ledger
accounts. Here, we use the getLedgerDimension() method from the previous recipe.
This method accepts three parameters: the main account number, a container of dimension
names, and a container of dimension values, and returns RecId of the ledger account. In this
example, the ledger accounts consist of the main account, business unit, and department and
their values are 110180-005-024 and 170150-005-024. Use your own values depending
on the data you have.

We also create a new jourTableData object that is used for journal record handling. Then,
we set the journal number, type, and name and call the initFromJournalName() method
to initialize some additional values from the journal name settings. At this stage, the journal
header record is ready.

Chapter 5

219

Next, we create a journal line. We create a new jourTransData object to handle the journal
line, and we call its initFromJournalTable() method to initialize additional values from
the journal header. Then, we set some of the journal line values, such as the currency and
transaction date.

Finally, we call the create() method on the jourTransData object and the insert()
method on the jourTable object to create the journal line and header records, respectively.
The journal is now ready to be reviewed.

There's more
The preceding example can be easily modified to create different journals, not just the
General journal. For instance, the Payment journal in the Accounts payable module is based
on the same tables as the General journal and some of its code is the same. So, let's create a
new, similar job named VendPaymJournalCreate with the following code snippet:

static void VendPaymJournalCreate(Args _args)
{
 LedgerJournalTable jourTable;
 LedgerJournalTrans jourTrans;
 LedgerJournalTableData jourTableData;
 LedgerJournalTransData jourTransData;
 LedgerJournalStatic jourStatic;
 DimensionDynamicAccount ledgerDim;
 DimensionDynamicAccount offsetLedgerDim;

 ttsBegin;

 ledgerDim = DimensionStorage::getDynamicAccount(
 '1001',
 LedgerJournalACType::Vend);

 offsetLedgerDim = DimensionStorage::getDynamicAccount(
 'USMF OPER',
 LedgerJournalACType::Bank);

 jourTableData = JournalTableData::newTable(jourTable);

 jourTable.JournalNum = jourTableData.nextJournalId();
 jourTable.JournalType = LedgerJournalType::Payment;
 jourTable.JournalName = 'VendPay';

Processing Business Tasks

220

 jourTableData.initFromJournalName(
 LedgerJournalName::find(jourTable.JournalName));

 jourStatic = jourTableData.journalStatic();

 jourTransData = jourStatic.newJournalTransData(
 jourTrans,
 jourTableData);

 jourTransData.initFromJournalTable();

 jourTrans.CurrencyCode = 'USD';
 jourTrans.initValue();
 jourTrans.TransDate = systemDateGet();
 jourTrans.AccountType = LedgerJournalACType::Vend;
 jourTrans.LedgerDimension = ledgerDim;
 jourTrans.Txt = 'Vendor payment journal demo';
 jourTrans.OffsetAccountType = LedgerJournalACType::Bank;
 jourTrans.OffsetLedgerDimension = offsetLedgerDim;
 jourTrans.AmountCurDebit = 1000;

 jourTransData.create();

 jourTable.insert();

 ttsCommit;

 info(strFmt(
 "Journal '%1' has been created", jourTable.JournalNum));
}

Now, the newly created journal can be found by navigating to Accounts payable | Journals |
Payments | Payment journal, as shown here:

Chapter 5

221

The journal's lines should reflect what we've specified in the code, as shown in the
following screenshot:

Processing Business Tasks

222

The code in this section has only slight differences compared to the previous example,
as follows:

 f The ledger account contains a reference to a vendor account, and the offset ledger
account refers to a bank account record

 f The journal type is changed to a vendor disbursement, that is,
LedgerJournalType::Payment

 f The journal name is different and is configured for creating payment journals

 f The journal line account type is set to Vendor, and the offset account type is set
to Bank

See also
 f The Using a segmented entry control recipe

 f The Posting a general journal recipe

Posting a general journal
Journal posting is the next step once the journal has been created. Although most of the time
journals are posted from the user interface, it is also possible to perform the same operation
from the code.

In this recipe, we will explore how a general journal can be posted from the code. We are going
to process an open journal. The journal created in the previous recipe can be used here.

How to do it...
Carry out the following steps in order to complete this recipe:

1. Navigate to General ledger | Journals | General journal and find an open journal.
Create a new journal if none exists. Note the journal's number.

2. In the AOT, create a new job named LedgerJournalPost with the following code
snippet (replace the 00472 text with your journal's number):
static void LedgerJournalPost(Args _args)
{
 LedgerJournalCheckPost jourPost;
 LedgerJournalTable jourTable;

 jourTable = LedgerJournalTable::find('00472');

Chapter 5

223

 jourPost = LedgerJournalCheckPost::newLedgerJournalTable(
 jourTable,
 NoYes::Yes);

 jourPost.run();
}

3. Run the job and notice the Infolog window, confirming that the journal was
successfully posted, as shown here:

4. Navigate to General ledger | Journals | General journal and locate the journal in
order to make sure that it was posted, as shown in the following screenshot:

How it works...
In this recipe, we create a new job named LedgerJournalPost, which holds all the code
and here, we use the LedgerJournalCheckPost class, which does all the work. This class
ensures that all the necessary validations are performed. It also locks the journal so that no
user can access it from the user interface while the posting is being performed.

Processing Business Tasks

224

In the job, we create the jourPost object by calling the newLedgerJournalTable()
constructor on the LedgerJournalCheckPost class. This method accepts two arguments:
a journal header record to be processed and NoYes parameter, defining whether the journal
should be validated and posted or validated only. In this recipe, we use journal 00472 and
pass it to the LedgerJournalCheckPost class along with the second argument, instructing
the method to perform both validation and posting.

See also
 f The Creating a general journal recipe

Processing a project journal
As with most of the modules in Dynamics AX, the Project management and accounting
module contain several journals, such as Hour, Expense, Fee, and Item. Although they are
similar to the General journal, they provide a more convenient user interface to work with
projects and contain some module-specific features.

In this recipe, we will create and post a project journal from the code. We will process the
Hour journal, which contains employees' time registrations.

How to do it...
Carry out the following steps in order to complete this recipe:

1. In the AOT, create a new job named ProjJournalCreate with the following code
snippet (replace the input values in the code to match your data):
static void ProjJournalCreate(Args _args)
{

 ProjJournalTable jourTable;
 ProjJournalTrans jourTrans;
 ProjJournalTableData jourTableData;
 ProjJournalTransData jourTransData;
 ProjJournalStatic jourStatic;

 ttsBegin;

 jourTableData = JournalTableData::newTable(jourTable);

 jourTable.JournalId = jourTableData.nextJournalId();
 jourTable.JournalType = ProjJournalType::Hour;

Chapter 5

225

 jourTable.JournalNameId = 'Hour';

 jourTableData.initFromJournalName(
 ProjJournalName::find(jourTable.JournalNameId));

 jourStatic = jourTableData.journalStatic();

 jourTransData = jourStatic.newJournalTransData(
 jourTrans,
 jourTableData);

 jourTransData.initFromJournalTable();

 jourTrans.initValue();

 jourTrans.ProjId = '000061';
 jourTrans.initFromProjTable(
 ProjTable::find(jourTrans.ProjId));

 jourTrans.TransDate = systemDateGet();
 jourTrans.ProjTransDate = jourTrans.TransDate;

 jourTrans.CategoryId = 'Car Audio';
 jourTrans.setHourCostPrice();
 jourTrans.setHourSalesPrice();
 jourTrans.TaxItemGroupId =
 ProjCategory::find(jourTrans.CategoryId).TaxItemGroupId;

 jourTrans.Worker =
 HcmWorker::findByPersonnelNumber('000062').RecId;
 jourTrans.Txt = 'Car audio installtion';
 jourTrans.Qty = 8;

 jourTransData.create();

 jourTable.insert();

 ttsCommit;

 info(strFmt(
 "Journal '%1' has been created", jourTable.JournalId));
}

Processing Business Tasks

226

2. Run the job and check the results by navigating to Project management and
accounting | Journals | Hour, as shown in the following screenshot:

3. Click on the Lines button to open journal lines and notice the newly created record,
as shown here:

Chapter 5

227

How it works...
In this recipe, we create a new job where we store all the code. In the job, we use the
ProjJournalTableData and ProjJournalTransData classes in a way similar to how
we used the LedgerJournalTableData and LedgerJournalTransData classes in the
Creating a general journal recipe. Here, we create a new jourTableData object used for
journal record handling. Then, we initialize the journal number, type, and name of the actual
journal record. Next, we call initFromJournalName() on the jourTableData object in
order to initialize some additional values from the journal name settings. At this stage, the
journal header record is ready.

Next, we create a journal line. Here, we first create a new jourTransData object to handle
the journal line. Then, we call its initFromJournalTable() method in order to initialize
the additional values from the journal header. Finally, we set some of the journal line values,
such as transaction and project date, category, and worker number.

Lastly, we call the create() method on jourTransData and the insert() method on
jourTable to create the journal line and the header records, respectively. The journal is
now ready to be reviewed.

There's more...
For further journal processing, we can use the class named ProjJournalCheckPost to post
project journals from the code. In the AOT, let's create another job named ProjJournalPost
with the following code snippet (replace PJJ-00368 with your journal number):

static void ProjJournalPost(Args _args)
{
 ProjJournalCheckPost jourPost;

 jourPost = ProjJournalCheckPost::newJournalCheckPost(
 true,
 true,
 JournalCheckPostType::Post,
 tableNum(ProjJournalTable),
 'PJJ-00368');

 jourPost.run();
}

Processing Business Tasks

228

Run the job to post the journal. The Infolog window should display the confirmation,
as shown here:

In the newly created job, we use the newJournalCheckPost() constructor of the
ProjJournalCheckPost class. The constructor accepts the following arguments:

 f A boolean value that specifies whether to block the journal while it is being posted.
It is good practice to set the value to true, as this ensures that no one modifies this
journal while it is being posted.

 f A boolean value that specifies whether to display results in the Infolog window.

 f The type of action being performed. The possible values for this class are either Post
or Check. The latter one only validates the journal, and the first one validates and
posts the journal at once.

 f The table ID of the journal being posted.

 f The journal number to be posted.

Finally, we call the run() method, which posts the journal.

Creating and posting a ledger voucher
In Dynamics AX, all the financial transactions, regardless of where they originated, end up in
the General ledger module. When it comes to customized functionality, developers should
use the Dynamics AX APIs to create the required system entries. No transactions can be
created directly in the tables, as this may affect the accuracy of financial data.

In order to ensure data consistency, the system provides numerous APIs for developers to
use. One of them is ledger voucher processing. This allows you to post a financial voucher
in the General ledger module. Vouchers in Dynamics AX are balanced financial entries
that represent a single operation. They include two or more ledger transactions. The ledger
voucher API ensures that all the required criteria, such as voucher numbers, financial periods,
ledger accounts, financial dimensions, balances, and others, are valid.

In this recipe, we will demonstrate how a ledger voucher can be created and posted from the
code. We will create a single voucher with two balancing transactions.

Chapter 5

229

How to do it...
Carry out the following steps in order to complete this recipe:

1. Double-check whether the getLedgerDimension() method exists in
the DimensionAttributeValueCombination table. If not, create it
as described in the first recipe of this chapter.

2. In the AOT, create a new job named LedgerVoucherPost with the following
code snippet (replace the values in the code to match your data):
static void LedgerVoucherPost(Args _args)
{
 LedgerVoucher voucher;
 LedgerVoucherObject voucherObj;
 LedgerVoucherTransObject voucherTrObj1;
 LedgerVoucherTransObject voucherTrObj2;
 DimensionDynamicAccount ledgerDim;
 DimensionDynamicAccount offsetLedgerDim;
 CurrencyExchangeHelper currencyExchHelper;
 CompanyInfo companyInfo;

 ledgerDim =
 DimensionAttributeValueCombination::getLedgerDimension(
 '110180',
 ['BusinessUnit', 'Department'],
 ['005', '024']);

 offsetLedgerDim =
 DimensionAttributeValueCombination::getLedgerDimension(
 '170150',
 ['BusinessUnit', 'Department'],
 ['005', '024']);

 voucher = LedgerVoucher::newLedgerPost(
 DetailSummary::Detail,
 SysModule::Ledger,
 '');

 voucherObj = LedgerVoucherObject::newVoucher('TEST00001');

 companyInfo = CompanyInfo::findDataArea(curext());

Processing Business Tasks

230

 currencyExchHelper = CurrencyExchangeHelper::newExchangeDate(
 Ledger::primaryLedger(companyInfo.RecId),
 voucherObj.parmAccountingDate());

 voucher.addVoucher(voucherObj);

 voucherTrObj1 =
 LedgerVoucherTransObject::newTransactionAmountDefault(
 voucherObj,
 LedgerPostingType::LedgerJournal,
 ledgerDim,
 'USD',
 1000,
 currencyExchHelper);

 voucherTrObj2 =
 LedgerVoucherTransObject::newTransactionAmountDefault(
 voucherObj,
 LedgerPostingType::LedgerJournal,
 offsetLedgerDim,
 'USD',
 -1000,
 currencyExchHelper);

 voucher.addTrans(voucherTrObj1);
 voucher.addTrans(voucherTrObj2);

 voucher.end();

 info(strFmt(
 "Voucher '%1' has been posted", voucher.lastVoucher()));
}

3. Run the LedgerVoucherPost job to create a new ledger voucher.

4. To check what has been posted, navigate to General Ledger | Inquiries | Voucher
transactions and type in the voucher number TEST00001 used in the code, as
shown in the following screenshot:

Chapter 5

231

5. Click on OK to display the posted voucher:

How it works...
In the newly created job, we first define the ledger accounts which will be used for postings.
For demonstration purposes, here we have specified it in the code. We use the previously
created getLedgerDimension() method to simulate the ledger account entry.

Processing Business Tasks

232

Next, we create a new LedgerVoucher object, which represents a collection of
vouchers. Here, we call the newLedgerPost() constructor of the LedgerVoucher
class. The newLedgerPost() constructor accepts three mandatory and four optional
arguments, which are listed as follows:

 f Post detailed or summarized ledger transactions.

 f The system module from which the transactions originate.

 f A number sequence code, which is used to generate the voucher number. In this
example, we will set the voucher number manually. So, this argument can be left empty.

 f The transaction type that will appear in the transaction log.

 f The transaction text.

 f A boolean value, which specifies whether this voucher should meet the approval
requirements.

 f A boolean value, defining whether the voucher can be posted without a posting type
when posting inventory transactions.

Then, we create a new LedgerVoucherObject object, which represents a single voucher.
We call the newVoucher() constructor of the LedgerVoucherObject class. It accepts only
one mandatory and a number of optional parameters, which are listed as follows:

 f The voucher number; normally, this should be generated using a number sequence,
but in this example, we set it manually

 f The transaction date; the default is the session date

 f The system module from which the transactions originate

 f The ledger transaction type

 f A flag defining whether this is a correcting voucher; the default is No

 f The posting layer; the default is Current

 f The document number

 f The document date

 f The acknowledgement date

The addVoucher() method of the LedgerVoucher class adds the created voucher object
to the voucher

Once the voucher is ready, we create two voucher transactions. The transactions are
handled by the LedgerVoucherTransObject class. They are created by calling its
newTransactionAmountDefault() constructor with the following mandatory arguments:

 f The ledger voucher object

 f The ledger posting type

Chapter 5

233

 f The ledger account number

 f The currency code

 f The amount in the currency

 f The currency exchange rate helper

Notice the last argument, which is a currency exchange rate helper, used when operating in
currencies other that the main company currency.

We add the created transaction objects to the voucher by calling its addTrans() method.
At this stage, everything is ready for posting.

Finally, we call the end() method on the LedgerVoucher object, which posts the
transactions to the general ledger.

See also
 f The Using a segmented entry control recipe

Changing an automatic transaction text
Every financial transaction in Dynamics AX can (and normally should) have a descriptive
text. Some texts are entered by users and some can be generated by the system. The latter
option holds true for automatically generated transactions where the user cannot interact
with the process.

Dynamics AX provides a way to define texts for automatically generated transactions.
The setup can be found by navigating to Organizations administration | Setup | Default
descriptions. Here, the user can create custom transaction texts for various automatic
transaction types and languages. The text itself can have a number of placeholders—digits
with a percent sign in front of them, which are replaced with actual values during the process.
The placeholders can be from %1 to %6, and they can be substituted with the following values:

 f %1: This is the transaction date

 f %2: This value depends on a context

 f %3: This is the voucher number

 f %4 to %6: These are custom values and depends on the module

In this recipe, we will demonstrate how the existing automatic transaction text functionality
can be modified and extended. One of the places where it is used is the automatic creation
of vendor payment journal lines during the vendor payment proposal process. We will modify
the system so that the texts of the automatically generated vendor payment lines include the
vendor names.

Processing Business Tasks

234

Getting ready
First, we need to make sure that the vendor payment transaction text is set up properly.
Navigate to Organization administration | Setup | Default descriptions, find or create a
line with Description set to Vendor - payment, vendor and change the text to Vendor
payment %2 to %5, as shown in the following screenshot:

How to do it...
Carry out the following steps in order to complete this recipe:

1. In the AOT, find the CustVendPaymProposalTransferToJournal class and add
the following lines of code at the bottom of the getTransactionText() method,
right before its return statement:
transactionTxt.setKey2(
 _custVendPaymProposalLine.custVendTable().name());

2. Navigate to Accounts payable | Journals | Payments | Payment journal and create
a new journal. Click on Lines, and then run Create payment proposal, which is
located in the toolbar under Payment proposal. Define the desired criteria or leave
the default values and click on OK. In the newly opened Vendor payment proposal
form, click on the Transfer button to transfer all the proposed lines to the journal.
Notice that the transaction text in each journal line includes the vendor name,
as shown in the following screenshot:

Chapter 5

235

How it works...
The vendor payment proposal uses the CustVendPaymProposalTransferToJournal
class to create the lines. The same class contains a method named getTransactionText(),
which is responsible for formatting the text for each line. If we look inside of this method, we can
see that the TransactionTxt class is used for this purpose. This class contains the following
methods, which are used to substitute the placeholders from %1 to %6 in the defined text:

 f %1: setDate()

 f %2: setFormLetter()

 f %3: setVoucher()

 f %4: setKey1()

 f %5: setKey2()

 f %6: setKey3()

By taking a look at the code, you can see that only the %4 placeholder is used. So, you can
fill the %5 placeholder with the vendor name. To achieve this, you need to call the setKey2()
method with the vendor name as an argument. In this way, every journal line created by the
automatic vendor payment proposal will contain a vendor name in its description.

Processing Business Tasks

236

There's more...
If more than three custom placeholders are required, it is always possible to add an
additional placeholder by creating a new setKey() method in the TransactionTxt
class. For example, if we want to add a %7 placeholder, we have to do the following:

1. Add the following line of code to the class declaration of the TransactionTxt class:
str 20 key4;

2. Create a new method with the following code snippet:
void setKey4(str 20 _key4)
{
 key4 = _key4;
}

3. Change the last line of the txt() method to the following:
return strFmt(
 txt,
 date2StrUsr(transDate, DateFlags::FormatAll),
 formLetterNum,
 voucherNum,
 key1,
 key2,
 key3,
 key4);

4. Now, we can use the setKey4() method to substitute the %7 placeholder.

Note that although more placeholders can be added, you should take into consideration the
fact that the transaction text field has a finite number of characters and excessive text will
simply be truncated.

Creating a purchase order
Purchase orders are used throughout the purchasing process to hold information about the
goods or services that a company buys from its suppliers. Normally, purchase orders are
created from the user interface, but in automated processes, purchase orders can be also
created from the code.

In this recipe, you will learn how to create a purchase order from the code. We will use one of
the standard methods provided by the application.

Chapter 5

237

How to do it...
Carry out the following steps in order to complete this recipe:

1. In the AOT, create a new job named PurchOrderCreate with the following
code snippet: (replace the values in the code to match your data)
static void PurchOrderCreate(Args _args)
{
 NumberSeq numberSeq;
 PurchTable purchTable;
 PurchLine purchLine;

 ttsBegin;

 numberSeq = NumberSeq::newGetNum(
 PurchParameters::numRefPurchId());
 numberSeq.used();

 purchTable.PurchId = numberSeq.num();
 purchTable.initValue();
 purchTable.initFromVendTable(VendTable::find('1001'));

 if (!purchTable.validateWrite())
 {
 throw Exception::Error;
 }

 purchTable.insert();

 purchLine.PurchId = purchTable.PurchId;
 purchLine.ItemId = 'C0004';

 purchLine.createLine(true, true, true, true, true, true);

 ttsCommit;

 info(strFmt(
 "Purchase order '%1' has been created",
 purchTable.PurchId));
}

2. Run the job to create a new purchase order.

Processing Business Tasks

238

3. Navigate to Procurement and sourcing | Common | Purchase orders | All
purchase orders in order to view the purchase order created, as shown in the
following screenshot:

How it works...
In this recipe, we create a new job named PurchOrderCreate, which holds all the code.
Here, we start by getting the next purchase order number with the help of the NumberSeq
class. We also call the initValue() and initFromVendTable() methods to initialize
various purchTable buffer fields. We insert the purchase order record into the table only if
the validation in the validateWrite() method is successful.

Next, we create purchase order lines. Here, we assign the previously used purchase order
number and then set the item number.

Finally, we call the createLine() method of the PurchLine table to create a new line.
This is a very useful method, allowing you to quickly create purchase order lines. This method
accepts a number of optional boolean arguments, which are listed as follows:

 f Perform data validations; the default is false

 f Initialize the line record from the PurchTable table; the default is false

 f Initialize the line record from the InventTable table; the default is false

Chapter 5

239

 f Calculate inventory quantity; the default is false

 f Add miscellaneous charges; the default is true

 f Use trade agreements to calculate the item price; the default is false

 f Do not copy the inventory site and warehouse from the purchase order header;
the default is false

 f Use purchase agreements to get the item price; the default is false

Posting a purchase order
In Dynamics AX, the purchase order goes through a number of statuses in order to reflect its
current position within the purchasing process. The status can be updated either manually by
using the user interface or programmatically from the code.

In this recipe, we will demonstrate how a purchase order status can be updated from the
code. We will confirm the purchase order created in the previous recipe and print the relevant
document on the screen.

How to do it...
Carry out the following steps in order to complete this recipe:

1. In the AOT, create a new job named PurchOrderPostConfirm with the following
code snippet (replace 000037 with your number):
static void PurchOrderPostConfirm(Args _args)
{
 PurchFormLetter purchFormLetter;
 PurchTable purchTable;

 purchTable = PurchTable::find('000037');

 purchFormLetter = PurchFormLetter::construct(
 DocumentStatus::PurchaseOrder);

 purchFormLetter.update(
 purchTable,
 '',
 DateTimeUtil::date(DateTimeUtil::utcNow()),
 PurchUpdate::All,
 AccountOrder::None,
 NoYes::No,
 NoYes::Yes);
}

Processing Business Tasks

240

2. Run the job to post the specified purchase order and display the Purchase order
document, as shown in the following screenshot:

3. Navigate to Procurement and sourcing | Common | Purchase orders | All purchase
orders and note that the Approval status column of the posted order is now different,
as shown here:

Chapter 5

241

How it works...
In this recipe, we create a new job named PurchOrderPostConfirm, which holds all
the code.

First, we find a purchase order, which we are going to update. In this recipe, we use the
purchase order created in the previous recipe.

Next, we create a new PurchFormLetter object using its construct() constructor. The
constructor accepts an argument of the DocumentStatus type, which defines the type of
posting to be done. Here, we use DocumentStatus::PurchaseOrder as a value, as we
want to confirm the purchase order.

The last thing to do is to call the update() method of the PurchFormLetter object, which
does the actual posting. It accepts a number of arguments, which are listed as follows:

 f The purchase order header record; in this case, it is the PurchTable table.

 f An external document number; it's not used in this demonstration, as it is not
required when posting a purchase order confirmation.

 f The transaction date; the default date is the system's date.

 f The quantity to be posted; the default is PurchUpdate::All. Other options, such as
PurchUpdate::PackingSlip or PurchUpdate::ReceiveNow, are not relevant
when confirming a purchase order.

Processing Business Tasks

242

 f The order summary update; this argument is not used at all. The default is
AccountOrder::None.

 f A boolean value defining whether a preview or the actual posting should be done.

 f A boolean value defining whether the document should be printed.

 f A boolean value specifying whether printing management should be used. The
default value is false.

 f A boolean value defining whether to keep the remaining purchase quantity when
posting credit notes; otherwise, it is set to zero.

 f A container holding TmpFrmVirtual records. This argument is optional and is used
only when posting purchase invoices.

There's more...
The same technique can be used to post a purchase packing slip or invoice. Let's modify the
previous example so the purchase gets invoiced. Locate the following line of code:

purchFormLetter = PurchFormLetter::construct(
 DocumentStatus::PurchaseOrder);

Replace the preceding line of code with the following line of code:

purchFormLetter = PurchFormLetter::construct(
 DocumentStatus::Invoice);

Then, locate another code snippet:

purchFormLetter.update(
 purchTable,
 '',
 DateTimeUtil::date(DateTimeUtil::utcNow()),
 PurchUpdate::All,
 AccountOrder::None,
 NoYes::No,
 NoYes::Yes);

Replace the preceding code snippet with the following:

purchFormLetter.update(
 purchTable,
 '8001',
 DateTimeUtil::date(DateTimeUtil::utcNow()),
 PurchUpdate::All,
 AccountOrder::None,
 NoYes::No,
 NoYes::Yes);

Chapter 5

243

Now, when you run the job, the purchase order will be updated to an invoice, and the invoice
document will be displayed on the screen, as shown in the following screenshot:

Processing Business Tasks

244

To check the updated purchase order, navigate to Procurement and sourcing | Common |
Purchase orders | All purchase orders; notice that its Status column is different now, as
shown here:

Creating a sales order
Sales orders are used throughout the sales process to hold information about the goods or
services that a company sells to its customers. Normally, sales orders are created from the
user interface, but in automated processes, sales orders can be also created from the code.

In this recipe, you will learn how to create a sales order from the code. We will use a standard
method provided by the application.

How to do it...
Carry out the following steps in order to complete this recipe:

1. In the AOT, create a new job named SalesOrderCreate with the following
code snippet (replace the values in the code to match your data):
static void SalesOrderCreate(Args _args)
{
 NumberSeq numberSeq;
 SalesTable salesTable;

Chapter 5

245

 SalesLine salesLine;

 ttsBegin;

 numberSeq = NumberSeq::newGetNum(
 SalesParameters::numRefSalesId());
 numberSeq.used();

 salesTable.SalesId = numberSeq.num();
 salesTable.initValue();
 salesTable.CustAccount = 'US-017';
 salesTable.initFromCustTable();

 if (!salesTable.validateWrite())
 {
 throw Exception::Error;
 }

 salesTable.insert();

 salesLine.SalesId = salesTable.SalesId;
 salesLine.ItemId = 'D0001';

 salesLine.createLine(true, true, true, true, true, true);

 ttsCommit;

 info(strFmt(
 "Sales order '%1' has been created", salesTable.SalesId));
}

2. Run the job to create a new sales order.

Processing Business Tasks

246

3. Navigate to Sales and marketing | Common | Sales orders | All sales orders in
order to view the newly created sales order, as shown in the following screenshot:

How it works...
In this recipe, we create a new job named SalesOrderCreate, which holds all the code.
The job starts by generating the next sales order number with the help of the NumberSeq
class. We also call the initValue() and initFromCustTable() methods to initialize
various salesTable buffer fields. Notice that for initFromCustTable(), we first set the
customer account and call the method afterwards, instead of passing the customer record
as an argument. We insert the sales order record into the table only if the validation in the
validateWrite() method is successful.

Next, we create sales order lines. Here, we assign the previously created sales order number
and set the item number.

Finally, we call the createLine() method of the SalesLine table to create a new line.
This is a very useful method, which allows you to quickly create sales order lines. The method
accepts a number of optional boolean arguments. The following list explains most of them:

 f Perform data validations before saving; the default is false

 f Initialize the line record from the SalesTable table; the default is false

 f Initialize the line record from the InventTable table; the default is false

 f Calculate inventory quantity; the default is false

 f Add miscellaneous charges; the default is true

Chapter 5

247

 f Use trade agreements to calculate the item price; the default is false

 f Reserve the item; the default is false

 f Ignore customer credit limit; the default is false

Posting a sales order
In Dynamics AX, a sales order goes through a number of statuses in order to reflect its current
position within the sales process. The status can be updated either manually using the user
interface or programmatically from the code.

In this recipe, we will demonstrate how a sales order status can be updated from the code.
We will register a packing slip for the sales order created in the previous recipe and print the
relevant document on the screen.

How to do it...
Carry out the following steps in order to complete this recipe:

1. In the AOT, create a new job named SalesOrderPostPackingSlip with the
following code snippet (replace 000760 with your number):
static void SalesOrderPostPackingSlip(Args _args)
{
 SalesFormLetter salesFormLetter;
 salesTable salesTable;

 salesTable = SalesTable::find('000760');

 salesFormLetter = SalesFormLetter::construct(
 DocumentStatus::PackingSlip);

 salesFormLetter.update(
 salesTable,
 DateTimeUtil::date(DateTimeUtil::utcNow()),
 SalesUpdate::All,
 AccountOrder::None,
 NoYes::No,
 NoYes::Yes);
}

Processing Business Tasks

248

2. Run the job to post the specified sales order and display the Packing slip document
on the screen, as shown here:

Chapter 5

249

3. Navigate to Sales and marketing | Common | Sales orders | All sales orders and
notice the updated sales order status, as shown in the following screenshot:

How it works...
In this recipe, we create a new job named SalesOrderPostPackingSlip, which holds
all the code.

First, we find a sales order, which we are going to update. In this recipe, we use the sales
order created in the previous recipe.

Next, we create a new SalesFormLetter object using its construct() constructor.
The constructor accepts an argument of the DocumentStatus type, which defines the
type of posting to be done. Here, we use DocumentStatus::PackingSlip as a value,
as we want to register a packing slip.

Finally, we call the update() method of SalesFormLetter, which does the actual posting.
It accepts a number of arguments, as follows:

 f The sales order header record, that is, the SalesTable table.

 f The transaction date; the default is the system date.

 f The quantity to be posted; the default is SalesUpdate::All.

Processing Business Tasks

250

 f The order summary update; this argument is not used at all. The default is
AccountOrder::None.

 f A boolean value defining whether a preview or the actual posting should be done.

 f A boolean value defining whether the document should be printed.

 f A boolean value specifying whether printing management should be used; the
default is false.

 f A boolean value defining whether to keep the remaining sales quantity when posting
credit notes; otherwise, it is set to zero.

 f A container holding TmpFrmVirtual records; this argument is optional and is used
only when posting sales invoices.

There's more...
The SalesFormLetter class can also be used to do other types of posting, such as sales
order confirmation, picking lists, or invoices. Let's modify the previous example so we could
invoice the previously used sales order. Locate the following line of code:

salesFormLetter = SalesFormLetter::construct(
 DocumentStatus::PackingSlip);

Replace the preceding line of code with the following line of code:

salesFormLetter = SalesFormLetter::construct(
 DocumentStatus::Invoice);

Chapter 5

251

Now when you run the job, the sales order will be updated to an invoice and the invoice
document will be displayed on the screen:

Processing Business Tasks

252

To check the updated sales order, navigate to Sales and marketing | Common | Sales
orders | All sales orders; notice that the Status column has now changed, as shown here:

Creating an electronic payment format
Electronic payments, in general, can save time and reduce paperwork when making
or receiving payments within a company. Dynamics AX provides a number of standard
out-of-the-box electronic payment formats and also provides an easy way of customizing
the existing payment formats or creating new ones.

In this recipe, you will learn how to create a new custom electronic payment format.
To demonstrate the principle, we will only output some basic information, and we will
concentrate on the approach itself.

How to do it...
Carry out the following steps in order to complete this recipe:

1. In the AOT, create a new class named VendOutPaymRecord_Test with the
following code snippet:
class VendOutPaymRecord_Test extends VendOutPaymRecord
{
}

Chapter 5

253

void output()
{
 str outRecord;
 Name companyName;
 BankAccount bankAccount;

 outRecord = strRep(' ', 50);

 companyName = subStr(
 custVendPaym.recieversCompanyName(), 1, 40);
 bankAccount = subStr(
 custVendPaym.recieversBankAccount(), 1, 8);

 outRecord = strPoke(outRecord, companyName, 1);
 outRecord = strPoke(outRecord, bankAccount, 43);

 file.write(outRecord);
}

2. Create another class named VendOutPaym_Test with the following code snippet:
class VendOutPaym_Test extends VendOutPaym
{
}

PaymInterfaceName interfaceName()
{
 return "Test payment format";
}

ClassId custVendOutPaymRecordRootClassId()
{
 return classNum(VendOutPaymRecord_Test);
}

protected Object dialog()
{
 DialogRunbase dialog;

 dialog = super();

 this.dialogAddFileName(dialog);

Processing Business Tasks

254

 return dialog;
}

boolean validate(Object _calledFrom = null)
{
 return true;
}

void open()
{
 #LocalCodePage

 file = CustVendOutPaym::newFile(filename, #cp_1252);

 if (!file || file.status() != IO_Status::Ok)
 {
 throw error(
 strFmt("File %1 could not be opened.", filename));
 }

 file.outFieldDelimiter('');
 file.outRecordDelimiter('\r\n');

 file.write('Starting file:');
}

void close()
{
 file.write('Closing file');
}

3. Navigate to Accounts payable | Setup | Payment | Methods of payment and create
a new record, as follows:

Chapter 5

255

4. Open the File formats tab page, click on the Setup button, and move your newly
created Test payment format file format from the pane on the right-hand side to the
pane on the left-hand side:

Processing Business Tasks

256

5. Then, go back to the Methods of payment form and select Test payment format in
the Export format field as follows:

6. Close the Methods of payment form. Navigate to Accounts payable | Journals |
Payments | Payment journal and create a new journal, as shown here:

Chapter 5

257

7. Click on the Lines button to open the journal lines. Create a new line and make sure
you set Method of payment to Test:

8. Next, navigate to Functions | Generate payments. Fill in the dialog fields as
displayed in the following screenshot:

Processing Business Tasks

258

9. Click on OK and select the exported file's name:

10. Click on OK to complete the process; notice that the journal line's Payment status
changed from None to Sent, which means that the payment file was generated
successfully, as shown in the following screenshot:

Chapter 5

259

11. Open the created file with any text editor (for example, Notepad) to check its contents,
as shown here:

How it works...
In this recipe, we create two new classes, which are normally required for generating custom
vendor payments. Electronic payments are presented as text files to be sent to the bank. The
first class is the VendOutPaymRecord_Test class, which is responsible for formatting the
payment lines, and the second one is the VendOutPaym_Test class, which generates the
header and footer sections and creates the payment file itself.

The VendOutPaymRecord_Test class extends VendOutPaymRecord and inherits all the
common functionality. We only need to override its output() method to define our own
logic in order to format the payment lines. The output() method is called once for each
payment line.

Inside the output() method, we use the outRecord variable, which we initially fill in with
50 blank characters using the global strRep() function, and then insert all the necessary
information into the predefined positions within the variable as per format requirements.
Normally, here we should insert all the required information, such as dates, account numbers,
amounts, references, and so on. However, to keep this demonstration to a minimum, we only
insert the company name and the bank account number.

In the same method, we use another variable named custVendPaym of the CustVendPaym
type, which already holds all the information we need. In this example, to get the
company name and the bank account number, we call recieversCompanyName() and
recieversBankAccount(), respectively. We trim the returned values using the global
subStr() function, and insert them into the first and 43rd positions of the outRecord
variable using the global strPoke() function.

Finally, at the bottom of the output() method, we add the formatted text to the end of the
payment file.

Processing Business Tasks

260

Another class that we create is VendOutPaym_Test. It extends the VendOutPaym class and
also inherits all the common functionality. We only need to override some of the methods that
are specific to our format.

The interfaceName() method returns a name of the payment format. Normally, this text is
displayed in the user interface when configuring payments.

The custVendOutPaymRecordRootClassId() method returns an ID of the class, which
generates payment lines. It is used internally to identify which class to use when formatting
the lines. In our case, it is VendOutPaymRecord_Test.

The dialog() method is used only if we need to add something to the user screen when
generating payments. Our payment is a text file, so we need to ask a user to specify the
filename. We do this by calling the dialogAddFileName() method, which is a member
method of the parent class. It will automatically add a file selection control and we won't
have to worry about things, such as a label or how to get its value from the user input. There
are numerous other standard controls, which can be added to the dialog by calling various
dialogAdd...() methods. Additional controls can also be added here using addField()
or similar methods of the dialog object directly.

The validate() method is one of the methods that has to be implemented in each custom
class. Normally, user input validation should go here. Our example does not have any
validation, so we simply return true.

In the open() method, we initialize the file variable for further processing. Here, we
use the newFile() constructor of the CustVendOutPaym class to create a new instance
of the variable. After some standard validations, we set the field and the row delimiters
by calling the outFieldDelimiter() and outRecordDelimiter() methods of the
CustVendOutPaym class respectively. In this example, the values in each line should not
be separated by any symbol, so we call the outFieldDelimiter() method with an empty
string. We call the outRecordDelimiter() method with the new line symbol to define
that every line ends with a line break. Note that the last line of this method writes a text to
the file's header. Here, we place some simple text so that we can recognize it later when
viewing the generated file.

The last one is the close() method, which is used to perform additional actions before the
file is closed. Here, we specify some text to be displayed in the footer of the generated file.

Now, this new payment format is ready for use. After some setup, we can start creating the
vendor payment journals with this type of payment. Note the file generated in the previous
section of this recipe—we can clearly see which text in the file comes from which part of the
code. These parts should be replaced with your own code to build custom electronic payment
formats for Dynamics AX.

Integration with
Microsoft Office

In this chapter, we will cover the following recipes:

 f Creating an Excel file

 f Reading an Excel file

 f Creating a Word document from a template

 f Creating a Word document with repeating elements

 f Creating a Microsoft Project file

 f Sending an e-mail using Outlook

Introduction
In most of the companies where Dynamics AX is implemented, people use Microsoft Office
too. Dynamics AX maintains a very close relationship with Microsoft Office as it has a similar
navigation, look and feel, out-of-the-box integration, and so on.

In this chapter, we will pay special attention to Microsoft Office applications, such as Excel, Word,
Project, and Outlook. You will learn how to create and read various Office documents that can
be used to export/import business data for further distribution or analysis. We will also see how
personalized documents can be created within Dynamics AX from predefined templates.

6

Integration with Microsoft Office

262

Creating an Excel file
The Microsoft Office Excel format is one of the formats that has been supported by Dynamics
AX right from its early versions. Since Dynamics AX 2009, almost every form has the Export
to Excel function, which quickly allows you to load data on the screen into Excel for further
analysis with powerful Excel tools. In Dynamics AX 2012, new Microsoft Office add-ins were
introduced. They allow you to export data, edit it, and publish it back to Dynamics AX in a
user-friendly manner.

If the add-ins have not been installed, you can still create an Excel document from the code.
Dynamics AX holds a set of standard application classes prefixed with SysExcel. Basically,
these classes are COM wrappers for Excel, and they contain additional helper methods to
make the developer's tasks easier. The classes can be only used on the client tier and on
those machines where Microsoft Excel is present.

In this recipe, we will demonstrate the use of the SysExcel classes. We will create a new
Excel file from the code and will fill it with a customer list from the system.

How to do it...
Carry out the following steps in order to complete this recipe:

1. In the AOT, create a new job named CreateExcelFile with the following code
snippet:
static void CreateExcelFile(Args _args)
{
 CustTable custTable;
 SysExcelApplication excel;
 SysExcelWorkbooks workbooks;
 SysExcelWorkbook workbook;
 SysExcelWorksheets worksheets;
 SysExcelWorksheet worksheet;
 SysExcelCells cells;
 SysExcelCell cell;
 int row;

 try
 {
 excel = SysExcelApplication::construct();

Chapter 6

263

 workbooks = excel.workbooks();
 workbook = workbooks.add();
 worksheets = workbook.worksheets();
 worksheet = worksheets.itemFromNum(1);
 cells = worksheet.cells();
 cells.range('A:A').numberFormat('@');

 while select custTable
 {
 row++;
 cell = cells.item(row, 1);
 cell.value(custTable.AccountNum);
 cell = cells.item(row, 2);
 cell.value(custTable.name());
 }

 excel.visible(true);
 }
 catch
 {
 if (workbook)
 {
 workbook.close();
 }
 if (excel)
 {
 excel.quit();
 }
 }
}

Integration with Microsoft Office

264

2. Run the job and check the list of customers on the screen, as shown in the following
screenshot:

3. Save the list as a file for further use in the next recipe, say, C:\temp\customers.
xlsx.

4. Close the Excel file once you're done.

How it works...
We start the code by creating the SysExcelApplication object, which represents
an instance of Excel. Next, we get a collection of Excel documents that are stored in the
SysExcelWorkbooks class. Initially, the collection is empty, so we have to create a new
document by calling the add() method of the SysExcelWorkbooks class.

Once the document is ready, we get a reference to a collection of sheets within the document,
and then we get a reference to the first sheet in the collection. This is where we start adding
the data.

Chapter 6

265

Next, we get a reference to a collection of cells within the sheet. We use the SysExcelCells
class for this. The first column in the sheet will contain a customer's account number, so
we have to make sure that it is formatted as text. To do this, we address the first column by
using the A:A range and setting its format to @. This will prevent automatic Excel formatting.
Sometimes, customer accounts can be expressed as numbers such as 1000 and 1001, and
although they are stored in the system as text, Excel will automatically display them as numbers.

To display all the customers, we start looping through the CustTable table and fill the
customer account number into the first column and the customer name into the second one,
for each row. In this way, we populate as many rows as we have customers in the system.

Finally, we set the Excel instance to show up on the screen by calling its visible() method.
We do this after all the data has been populated, to ensure that the user cannot interfere with
the process.

All the code is placed in the try/catch block to ensure that in the case of any errors, the
created Excel instance and the created document are closed and do not stay in memory.

Reading an Excel file
In Dynamics AX, data can be retrieved from Excel files with the help of the same SysExcel
classes that we used to create Excel files. These classes provide a simple interface for
developers to access and read data in Excel files.

In this recipe, we will demonstrate how to read Excel files using the SysExcel classes. We will
read the file created in the previous recipe and display its contents in the Infolog window.

How to do it...
Carry out the following steps in order to complete this recipe:

1. In the AOT, create a new job named ReadExcelFile with the following code snippet
(replace the filename with your own):
static void ReadExcelFile(Args _args)
{
 SysExcelApplication excel;
 SysExcelWorkbooks workbooks;
 SysExcelWorkbook workbook;
 SysExcelWorksheets worksheets;

Integration with Microsoft Office

266

 SysExcelWorksheet worksheet;
 SysExcelCells cells;
 COMVariantType type;
 int row;
 CustAccount account;
 CustName name;
 #define.filename(@'C:\temp\customers.xlsx')

 try
 {
 excel = SysExcelApplication::construct();

 workbooks = excel.workbooks();
 workbooks.open(#filename);
 workbook = workbooks.item(1);
 worksheets = workbook.worksheets();
 worksheet = worksheets.itemFromNum(1);
 cells = worksheet.cells();
 type = cells.item(row+1, 1).value().variantType();

 while (type != COMVariantType::VT_EMPTY)
 {
 row++;
 account = cells.item(row, 1).value().bStr();
 name = cells.item(row, 2).value().bStr();
 info(strFmt('%1 - %2', account, name));
 type = cells.item(row+1, 1).value().variantType();
 }

 excel.quit();

 }
 catch
 {
 if (workbook)
 {
 workbook.close();
 }
 if (excel)
 {
 excel.quit();
 }
 }
}

Chapter 6

267

2. Run the job to display the contents of the file in the Infolog window, as shown in the
following screenshot:

How it works...
We start the code by creating the SysExcelApplication object, which represents
an instance of Excel. Next, we get a collection of Excel documents that are stored in the
SysExcelWorkbooks class. Initially, the collection is empty and we open the previously
created file, as the first document in the collection, by calling the open() method of the
SysExcelWorkbooks class. Then, we get a reference to the opened document, which is
expressed as the SysExcelWorkbook class.

Once the document is ready, we get a reference to a collection of sheets within the document
and then we get a reference to the first sheet in the collection. This is where our data is
located.

Next, we get a reference to a collection of cells within the sheet. We use the SysExcelCells
class for this. We also use a do while statement to go through all the rows until the first cell
of the next row is empty. Inside the statement, we read the customer account number from
the first cell and the customer name from the second cell in each row, and output them to the
Infolog window. The value() method of the SysExcelCells class returns an object of the
COMVariant type, and we call its bStr() method to retrieve the textual data.

The COMVariant class is used to store various types of data when dealing with external
objects. The objects could be of any type, such as string, integer, or decimal. In the cases
where it is not known what type of data to expect in a cell, we can call the variantType()
method to check what kind of data is stored in the cell, and depending on the result, we can
use bStr(), int(), float(), or other relevant methods of the COMVariant class.

Finally, we close the instance of Excel by calling its quit() method.

Integration with Microsoft Office

268

All the code is placed in the try/catch block to ensure that in the case of any errors, the
created Excel instance and the created document are closed and do not stay in memory.

Creating a Word document from a template
Microsoft Office Word allows presenting Dynamics AX data in a variety of formats.Using Word
templates makes things even more easier. The newly introduced Microsoft Office add-ins also
provide a user friendly way to do this.

If add-ins have not been installed, Dynamics AX still allows you to create Word documents
from the code. Although there are no Dynamics AX application classes for Word as we have
for Excel, Word documents can still be created using a very similar approach by calling the
COM components directly. The only inconvenience is that IntelliSense in the code editor will
not provide method suggestions. However, the methods and their parameters can be easily
looked up in the online MSDN library.

In this recipe, we will create a simple Word document from a template. We will
use the COM component model to read a Word template and fill it in with data
from the system.

Getting ready
Before we start with the code, we have to create a new Word template. Open Microsoft Word,
create a new blank document, and then create the following lines in the document (to create
bookmarks, use the Bookmark button located in the toolbar under Insert | Links):

 f Insert the bold text To: and then add a bookmark named Customer

 f Insert the text Thank you for contacting us.

 f Insert a blank line

 f Insert the bold text Kind Regards,

 f Insert a bookmark named User

 f Insert a bookmark named Company

 f Insert the bold text Company address:

 f Insert a bookmark named Address

Save the file as letter.dotx.

Chapter 6

269

The document should look identical to what is shown in the following screenshot:

How to do it...
Carry out the following steps in order to complete this recipe:

1. In the AOT, create a new job named CreateWordDocument with the following code
snippet (replace US-027 with your own customer account and make sure that the
location of the letter.dotx template is correct):
static void CreateWordDocument(Args _args)
{
 Filename template;
 CustTable custTable;
 COM word;
 COM documents;
 COM document;
 COM bookmarks;
 COM bookmark;
 COM range;

Integration with Microsoft Office

270

 void processBookmark(str _name, str _value)
 {
 if (!bookmarks.Exists(_name))
 {
 return;
 }
 bookmark = bookmarks.Item(_name);
 range = bookmark.Range();
 range.InsertAfter(_value);
 }

 #define.Word('Word.Application')
 #define.template(@'C:\temp\letter.dotx');

 custTable = CustTable::find('US-027');

 try
 {
 word = new COM(#Word);
 }
 catch (Exception::Internal)
 {
 if (word == null)
 {
 throw error("Microsoft Word is not installed");
 }
 }

 try
 {
 documents = word.Documents();
 document = documents.Add(#template);
 bookmarks = document.Bookmarks();

 processBookmark('Customer', custTable.name());
 processBookmark('User', HcmWorker::find(
 DirPersonUser::current().worker()).name());
 processBookmark('Company', CompanyInfo::find().Name);
 processBookmark('Address',
 CompanyInfo::find().postalAddress().Address);

 word.Visible(true);
 }
 catch

Chapter 6

271

 {
 if (document)
 {
 document.Close(false);
 }
 if (word)
 {
 word.Quit();
 }
 }
}

2. Run the job to see the results. Note the data inserted in the template from the system
near each bookmark, as shown in the following screenshot:

How it works...
In this recipe, in the declaration section we declare a number of COM objects for the Word
application itself and its other elements. We also declare a local function to insert a value
into the document near a predefined bookmark.

Integration with Microsoft Office

272

Next, we create a new instance of Word, get a reference to the document collection, and
create a new document from the template. Then, we get a reference to the bookmark
collection and start inserting the values into the document with the help of the previously
defined function.

Finally, once the document is ready, we display it on the screen. Alternatively, we can call the
SaveAs() method on the document object in order to save the document
as a file without even showing it on the screen.

All the code is placed in the try/catch block to ensure that in the case of any errors, the
created Word instance and the created document are closed and do not stay in memory.

Creating a Word document with repeating
elements

Microsoft Office Word documents created from the Dynamics AX code, besides simple data
output, can have more complex structures, such as a dynamic number of repeating elements.
For example, a collection letter document can have a variable list of overdue invoices for
different customers.

In this recipe, we will create a Word document with repeating elements. For this demonstration,
we will display a list of customers in a dynamically-generated Word table.

Getting ready
For this example, we need to prepare a new Word template and save it as a file named
table.dotx. The template will contain one bookmark named Title at the top and one
table beneath, with a single row and two columns, shown as follows:

Chapter 6

273

How to do it...
Carry out the following steps in order to complete this recipe:

1. In the AOT, create a new job named CreateWordTable with the following code
snippet (make sure the location of the template is correct):
static void CreateWordTable(Args _args)
{
 CustTable custTable;
 COM word;
 COM documents;
 COM document;
 COM bookmarks;
 COM bookmark;
 COM tables;
 COM table;
 COM rows;
 COM row;
 COM cells;
 COM cell;
 COM range;
 int i;

Integration with Microsoft Office

274

 void processBookmark(str _name, str _value)
 {
 if (!bookmarks.exists(_name))
 {
 return;
 }
 bookmark = bookmarks.Item(_name);
 range = bookmark.Range();
 range.InsertAfter(_value);
 }

 #define.Word('Word.Application')
 #define.template(@'C:\temp\table.dotx');

 try
 {
 word = new COM(#Word);
 }
 catch (Exception::Internal)
 {
 if (word == null)
 {
 throw error("Microsoft Word is not installed");
 }
 }

 try
 {
 documents = word.Documents();
 document = documents.Add(#template);
 bookmarks = document.Bookmarks();
 processBookmark('Title', 'Customers');

 tables = document.Tables();
 table = tables.Item(1);
 rows = table.Rows();

 while select custTable
 {
 i++;
 row = rows.Item(i);
 cells = row.Cells();
 cell = cells.Item(1);
 range = cell.Range();

Chapter 6

275

 range.InsertAfter(custTable.AccountNum);
 cell = cells.Item(2);
 range = cell.Range();
 range.insertAfter(custTable.name());
 row = rows.Add();
 }

 row.Delete();
 word.Visible(true);
 }
 catch
 {
 if (document)
 {
 document.Close(false);
 }
 if (word)
 {
 word.Quit();
 }
 }
}

2. Run the job to generate the document containing a list of customers,
as shown here:

Integration with Microsoft Office

276

How it works...
In this recipe, we declare a number of COM objects that represent various elements, such
as the Word application itself, a document collection, and bookmarks. We also declare the
objects and their collections for handling the table, its rows, and cells. We also define a local
helper function to insert a value into a document near a predefined bookmark.

After the declaration section, we create a new instance of Word, get a reference to the
document collection, and create a new document from the template. Then, we get a reference
to the bookmark collection and insert the document title with the help of the previously
defined function.

Next, we get a reference to a table collection and then a reference to the first (and only) table
in the collection. This is the table that we inserted into the template previously.

Finally, we select all the customers and insert their account numbers and names one by one
into the document table.

All the code is placed in the try/catch block to ensure that in the case of any errors, the
created Word instance and the created document are closed and do not stay in memory.

Creating a Microsoft Project file
Microsoft Project files are one of the many files that can be created in Dynamics AX by using the
COM component model. Microsoft Project files can be very useful when it comes to presenting
some kind of scheduling information, such as a project plan or production schedule.

In this recipe, we will create a new Microsoft Project file from the code. We will output a
project's forecast data as a project plan in Microsoft Project.

Getting ready
For this recipe, we need to set up some data. Navigate to Project management and accounting
| Common | Projects | All projects, select any of the open projects, click on Hour forecasts
by going to Plan | Forecast in the action pane, in order to open the Hours forecasts form, and
create several forecast lines similar to the ones shown in the following screenshot:

Chapter 6

277

Note the project number and the forecast model, which will be required later in the code.

To update scheduling, navigate to Scheduling | Resource scheduling in the action pane of
the Hours forecasts form and then click on the OK button to accept the default parameters
and run the scheduling, as shown here:

Integration with Microsoft Office

278

Now, the information in the Scheduling tab page of the Hours forecast form should look
identical to what is shown in to the following screenshot:

How to do it...
Carry out the following steps in order to complete this recipe:

1. In the AOT, create a new job named CreateProjectFile with the following code
snippet (replace the project number and the forecast model with your own values):
static void CreateProjectFile(Args _args)
{
 ProjId projId = '000061';
 ProjForecastModelId modelId = 'CurrentF';
 ProjTable projTable;
 ProjForecastEmpl forecastEmpl;
 COM msproject;
 COM projects;
 COM project;
 COM tasks;
 COM task;
 int n;
 #define.MSProject('MSProject.Application')

 projTable = ProjTable::find(projId);
 try
 {
 msproject = new COM(#MSProject);
 }
 catch (Exception::Internal)

Chapter 6

279

 {
 if (msproject == null)
 {
 throw error("Microsoft Project is not installed");
 }
 }

 try
 {
 projects = msproject.Projects();
 project = projects.Add();
 tasks = project.Tasks();
 task = tasks.Add();
 task.Name(ProjTable.Name);
 task.OutlineLevel(1);

 while select forecastEmpl
 where forecastEmpl.ProjId == projTable.ProjId
 && forecastEmpl.ModelId == modelId
 {
 task = tasks.Add();
 task.OutlineLevel(2);
 task.Name(forecastEmpl.Txt);
 task.Start(forecastEmpl.SchedFromDate);
 task.Duration(forecastEmpl.SchedTimeHours*60);
 if (n)
 {
 task.LinkPredecessors(tasks.UniqueID(n));
 }
 n = task.UniqueID();
 }

 msproject.visible(true);
 }
 catch
 {
 if (msproject)
 {
 msproject.Quit(0);
 }
 }
}

Integration with Microsoft Office

280

2. To test the code, run the job. Note the forecasted project hours displayed as a
Microsoft Project plan, as shown in the following screenshot:

How it works...
In this recipe, we first declare a number of COM objects for handling various Microsoft Project
elements. Then, we create a new instance of the Microsoft Project application, get a reference
to the collection of projects, which is initially empty, and create a new project.

Once the project is ready, we get a reference to the collection of tasks and start adding
individual tasks. The first task is a parent task and we set its name to the name of the
selected project.

Next, we go through all the project hour forecast records and start adding each line as a
new task in the document. Here, we set various task properties, such as name, start date,
and duration. We also define every task to be dependent on the previous task by calling the
LinkPredecessors() method with the number of the previous task, as an argument.
Finally, once the document is ready, we display it on the screen.

All the code is placed in the try/catch block to ensure that in the case of any errors, the
created Project instance and the created document are closed and do not stay in memory.

Chapter 6

281

Sending an e-mail using Outlook
In Dynamics AX, e-mails can be sent in several ways. One of them is to use Microsoft Office
Outlook. The benefit of using Outlook is that the user can review e-mails and modify them,
if required, before they are actually sent. Also, all the sent e-mails can be stored in the user's
Outlook folders.

In this recipe, we will send an e-mail using Outlook. We will incorporate customer data from
the system into a template in order to create the e-mail's text.

Getting ready
Before we start with the code, we need to create a new e-mail template. Navigate to
Organization administration | Setup, open the E-mail templates form and create the
following record:

Integration with Microsoft Office

282

Next, click on the E-mail message button and enter the e-mail body, as shown in
the following screenshot:

How to do it...
Carry out the following steps in order to complete this recipe:

1. In the AOT, create a new job named SendCustReminderEmail with the following
code snippet (replace the customer account number with your own):
static void SendCustReminderEmail(Args _args)
{
 CustTable custTable;
 Map mappings;

 custTable = custTable::find('US-027');

 mappings = new Map(Types::String, Types::String);

 mappings.insert('customer', custTable.name());
 mappings.insert('company', CompanyInfo::find().Name);
 mappings.insert('user', HcmWorker::find(
 DirPersonUser::current().worker()).name());

Chapter 6

283

 SysINetMail::sendEMail(
 'Reminder',
 custTable.languageId(),
 custTable.email(),
 mappings);
}

2. Run the job and a message similar to what is shown in the following screenshot will
appear on the screen:

How it works...
In this recipe, we prepare a number of key-value mappings that will be inserted into the e-mail
template. Then, we use the sendEMail() method of the SysINetMail class to send an
e-mail using Outlook. This method accepts the following arguments:

 f The name of the template

 f The customer's language code

 f The customer's e-mail address

 f The prepared mapping

Note that depending on the version of Outlook, the To... field may not be populated automatically
with the customer's e-mail address. This is due to a MAPI compatibility issue.

Chapter 7

285

7
Using Services

In this chapter, we will cover the following recipes:

 f Consuming the system query service

 f Consuming the system metadata service

 f Consuming an existing document service

 f Creating a document service

 f Consuming a document service

 f Using an enhanced document service

 f Creating a custom service

 f Consuming a custom service

 f Consuming an external service

Introduction
Dynamics AX provides many out-of-the-box services—programmable objects that can be
used to communicate with application components or third-party applications. In order to
meet complex business requirements, existing services can be customized or new services
can be created from scratch.

The services are divided into three categories: non-customizable built-in system services,
document services—which provide a standard approach for communicating between systems,
and custom services—which allow you to expose any X++ logic as a service.

In this chapter, the various scenarios of creating and consuming all three types of services
will be presented. The recipes in this chapter will demonstrate how services can be exposed
and consumed using different techniques. All the examples, one way or another, will use the
system currency information.

Using Services

286

Consuming the system query service
The query service is one of the built-in system services in Dynamics AX. This service provides
a set of operations that allow you to execute any AOT or dynamic query. The results are
returned as an ADO.NET DataSet object. The query service cannot be customized and is
hosted on the Application Object Server (AOS) at a fixed address.

In this recipe, we will create a .NET console application that will connect to the query service.
The application will retrieve a list of currencies in the system, with the help of a dynamically
created query.

Getting ready
Just before we start, we have to figure out the server name and the port that should be used
while working with the services.

The server name can normally be found in the Windows OS settings. Navigate to Control
Panel | System and Security | System and then look for Computer name, as shown in the
following screenshot:

Chapter 7

287

In these demonstrations, as long as the AOS and the client code is on the same machine,
it is also possible to use localhost as a server name regardless of the real server name.
This effectively means the name of the current machine.

The port number can be found in Microsoft Dynamics AX Server Configuration Utility, which
can be found by navigating to Control Panel | Administrative Tools. The port number is the
one in the Services WSDL port field, as shown here:

How to do it...
Carry out the following steps in order to complete this recipe:

1. In Visual Studio, create a new Visual C# Console Application project named
ConsumeSystemQueryService.

Using Services

288

2. Add a new service reference named QueryService to the project as per what is
shown in the following screenshot (replace localhost:8101 with your machine
name and port as described in the previous section):

3. Add the following lines of code in the top section of the Program.cs file:
using ConsumeSystemQueryService.QueryService;
using System.Data;

4. Add the following code snippet to the Main() method:
QueryServiceClient serviceClient;
QueryMetadata query;
QueryDataSourceMetadata currencyDataSource;
QueryDataFieldMetadata field1, field2;
Paging paging = null;
DataSet result;

query = new QueryMetadata();
query.QueryType = QueryService.QueryType.Join;
query.AllowCrossCompany = true;
query.DataSources = new QueryDataSourceMetadata[1];

Chapter 7

289

currencyDataSource = new QueryDataSourceMetadata();
currencyDataSource.Name = "Currency";
currencyDataSource.Enabled = true;
currencyDataSource.FetchMode = FetchMode.OneToOne;
currencyDataSource.Table = "Currency";
currencyDataSource.DynamicFieldList = false;
currencyDataSource.Fields = new QueryFieldMetadata[2];
query.DataSources[0] = currencyDataSource;

field1 = new QueryDataFieldMetadata();
field1.FieldName = "CurrencyCode";
field1.SelectionField = SelectionField.Database;
currencyDataSource.Fields[0] = field1;

field2 = new QueryDataFieldMetadata();
field2.FieldName = "Txt";
field2.SelectionField = SelectionField.Database;
currencyDataSource.Fields[1] = field2;

serviceClient = new QueryServiceClient();

result = serviceClient.ExecuteQuery(query, ref paging);

serviceClient.Close();

foreach (DataRow row in result.Tables[0].Rows)
{
 Console.WriteLine(
 String.Format("{0} - {1}", row[0], row[1]));
}

Console.ReadKey();

Using Services

290

5. Run the program by clicking on F5. The results will be similar to what is shown in the
following screenshot:

How it works...
We start the recipe by creating a new Visual C# Console Application project and adding a new
service reference. We specify the Web Services Description Language (WSDL) address of the
Dynamics AX query service in the Address field of the service reference. This address is not a
service itself; it only holds all the required information about the service. The query service's
WSDL address cannot be changed, and it is formatted as http://<servername>:<port>/
DynamicsAx/Services/QueryService. Here, <servername> and <port> will be
replaced with the AOS machine name and WSDL port number.

In this recipe, we replace <servername> with our machine name, which is localhost,
and <port> with our service's WSDL port number, which is 8101, (defined in the Microsoft
Dynamics AX Server Configuration Utility). The result is http://localhost:8101/
DynamicsAx/Services/QueryService.

Just for information purposes, if you open the preceding address in a browser, say Internet
Explorer, you will find that the definition of the actual query service address is net.tcp://
localhost:8201/DynamicsAx/Services/QueryService.

Next, we continue with the code. All the logic goes into the Main() method of the application.
In the code, we create a new query with the help of the QueryMetadata class, add a new
data source based on the QueryDataSourceMetadata class, and define two fields in
the data source that will be retrieved from the database. The query, data source and field
classes, and their properties are very similar to the Query, QueryBuildDataSource, and
QueryBuildFieldList classes in Dynamics AX.

Chapter 7

291

Finally, we call the query service with the created query as an argument. The service returns
a DataSet object, and we go through each row in the first table and display its fields on the
screen.

Consuming the system metadata service
The metadata service is another system service that allows clients to get the object's
metadata information from the AOT, for example, table or field properties. Metadata services
are not customizable and are hosted on the AOS at a fixed address.

In this recipe, we will create a .NET console application that will connect to the metadata service.
The application will retrieve a few properties of the Currency and ExchangeRate tables.

How to do it...
Carry out the following steps in order to complete this recipe:

1. In Visual Studio, create a new Visual C# Console Application project named
ConsumeSystemMetadataService.

2. Add a new service reference, named MetadataService, to the project (replace
localhost:8101 with your own address and port):

Using Services

292

3. Add the following line of code in the top section of the Program.cs file:
using ConsumeSystemMetadataService.MetadataService;

4. Add the following code snippet to the Main() method:
AxMetadataServiceClient serviceClient;
TableMetadata[] tables;

serviceClient = new AxMetadataServiceClient();
serviceClient.Open();

tables = serviceClient.GetTableMetadataByName(
 new string[] { "Currency", "ExchangeRate" });

serviceClient.Close();

foreach (TableMetadata table in tables)
{
 Console.WriteLine(String.Format("{0}: {1}, {2}",
 table.Name,
 table.TitleField1.Name,
 table.TitleField2.Name));
}

Console.ReadKey();

5. Run the program by clicking on F5. The results will be similar to what is shown in the
following screenshot:

Chapter 7

293

How it works...
In this recipe, we first create a new Visual C# Console Application project and then add a
new service reference. We specify the WSDL address of the Dynamics AX metadata service
in the Address field of the service reference. The metadata service's WSDL address cannot
be changed, and it is formatted as http://<servername>:<port>/DynamicsAx/
Services/MetadataService. Here, <servername> and <port> will be replaced with the
AOS machine name and the WSDL port number.

In this recipe, we replace <servername> with our machine name, which is localhost,
and <port> with our service's WSDL port number, which is 8101 (defined in the Microsoft
Dynamics AX Server Configuration Utility). The result is http://localhost:8101/
DynamicsAx/Services/MetadataService.

All the code resides in the Main() method of the application. Here, we create and open a
connection to the service. Then, we call GetTableMetadataByName()—one of the many
available operations. This method accepts a list of table names and returns information about
them in a form of the TableMetadata class.

Finally, we close the connection to the service and then display we display the TitleField1
and TitleField2 properties of each object in the returned result on the screen.

Consuming an existing document service
In Dynamics AX, document services allow you to exchange data with external systems by
sending and receiving XML documents, such as customers, sales orders, vendors, purchase
orders, products, and so on.

In this recipe, we will explore how data can be retrieved from the system using one of the
existing services. We will create a .NET console application that will get a currency description
from the system using the read operation.

How to do it...
Carry out the following steps in order to complete this recipe:

1. In the AOT, locate the CurrencyServices service group.

2. Select the Deploy Service Group option from the right-click context menu.
A number of messages will be displayed in the Infolog window, about the
successful deployment.

Using Services

294

3. Navigate to System administration | Setup | Services and Application Integration
Framework | Inbound ports in order to check the newly deployed service (note the
value in the WSDL URI field), as shown in the following screenshot:

4. In Visual Studio, create a new Visual C# Console Application project named
ConsumeExistingDocumentService.

5. Add a new service reference named CurrencyServices to the project.

6. Copy the address from the WSDL URI field into the Address field:

Chapter 7

295

7. Add the following line of code in the top section of the Program.cs file:
using ConsumeExistingDocumentService.CurrencyServices;

8. Add the following code snippet to the Main() method:
CurrencyServiceClient serviceClient;
AxdLedgerCurrency currency;

KeyField keyField = new KeyField();
keyField.Field = "CurrencyCode";
keyField.Value = "LTL";

EntityKey keys = new EntityKey();
keys.KeyData = new KeyField[1] { keyField };

serviceClient = new CurrencyServiceClient();

currency = serviceClient.read(
 null, new EntityKey[1] { keys });

serviceClient.Close();

Console.WriteLine(String.Format("{0} - {1}",
 currency.Currency[0].CurrencyCode,
 currency.Currency[0].Txt));

Console.ReadKey();

9. Run the program by clicking on F5. The results should be similar to what is shown in
the following screenshot:

Using Services

296

How it works...
We start this recipe by deploying the CurrencyServices service group. This action reads
the group's configuration, creates a new basic port in the Inbound ports form, and then
activates the port. The existing port, if it exists, will be overridden.

The newly created port has two addresses. One of them is WSDL URI—the address that
holds all the information about the service, and the other one is URI—the address of the
actual service.

Next, we create a new Visual C# Console Application project and a new service reference.
We provide the WSDL URI value from the Inbound port form as its address.

The Main() method starts by defining and creating a new KeyField instance. Here, we set
the information that will be used to search—the field name and its value. Then, the key field
is added to the table key list, which normally holds the number of elements that match the
number of fields in the table's primary key.

Next, we create the service's client object and call its read operation with the table key
list as an argument. The result is an AxdLedgerCurrency object, which represents the
Currency table.

Lastly, we close the connection to the service and then display the currency code and its
description on the screen.

There's more...
The previous example returns only one value matching the key provided. It can be slightly
modified to return multiple results. Let's replace the code in the Main() method with the
following code snippet:

CurrencyServiceClient serviceClient;

CriteriaElement criteriaElement = new CriteriaElement();
criteriaElement.DataSourceName = "Currency";
criteriaElement.FieldName = "CurrencyCode";
criteriaElement.Value1 = "A??";
criteriaElement.Operator = Operator.Equal;

QueryCriteria query = new QueryCriteria();
query.CriteriaElement =
 new CriteriaElement[1] { criteriaElement };

serviceClient = new CurrencyServiceClient();

AxdLedgerCurrency currency = serviceClient.find(null, query);

Chapter 7

297

serviceClient.Close();

if (currency.Currency != null)
{
 foreach (AxdEntity_Currency c in currency.Currency)
 {
 Console.WriteLine(String.Format(
 "{0} - {1}",
 c.CurrencyCode,
 c.Txt));
 }
}

Console.ReadKey();

The difference is that now we use the find operation, which executes the provided query and
returns the results. In the code, we define a query with a single data source and a filter on
the CurrencyCode field, to find all the currencies that start with the letter A. The program's
results will now be similar to what is shown in the following screenshot:

Creating a document service
In Dynamics AX, new document services can be created using the AIF Document Service
Wizard. The developer has to provide a table and a query representing the document service,
and the wizard generates all the objects required to run the service. Document services
created by the wizard can be further customized to meet more complex requirements.

In this recipe, we will use the AIF Document Service Wizard to create a new document
service for exposing currency information. Currency information is used for demonstration
purposes only; Dynamics AX already contains an out-of-the-box currency document service.

Using Services

298

How to do it...
Carry out the following steps in order to complete this recipe:

1. In the AOT, create a new query named CurrencyQuery.

2. Add a new data source to the newly created query with the following properties:

Property Value
Table Currency

Name Currency

Update Yes

3. In the data source, change the property of the Fields node, as follows:

Property Value
Dynamic Yes

4. Open the AIF Document Service Wizard form, which can be found by navigating
to Tools | Wizards. Click on the Next button on the first page, then enter the query
name, and finally click on the Next button again, as shown here:

Chapter 7

299

5. On the next page, leave the default names as is, mark the options as shown in the
following screenshot, and click on the Next button:

6. On the next page, review what will be generated by the system and click on the
Generate button:

Using Services

300

7. On the last page, click on the Finish button to complete the wizard:

8. To review the newly created objects, locate and open the AxdCurrencyQuery private
development project, which has been created by the wizard:

Chapter 7

301

9. Compile the project to ensure that there are no errors.

10. In the AOT, create a new service group named BasicCurrencyServices.

11. In the service group, create a new service node with the following properties:

Property Value
Name CurrencyQueryService

Service CurrencyQueryService

12. Deploy the service group by selecting the Deploy Service Group option from the
service group's right-click context menu. The Infolog window will display a number
of messages about the successful deployment.

13. Navigate to System administration | Setup | Services and Application Integration
Framework | Inbound ports in order to view the newly deployed service, as shown in
the following screenshot:

How it works...
We start the recipe by creating a new query. This query will be used by the service to return
the data. The query contains only one data source linked to the Currency table. Although,
in this recipe, we will only retrieve the data, setting the Update property of the data source
to Yes will allow you to modify the data too. We also set the Fields node to be dynamic,
to make sure that any field added to the table later will automatically appear in the query.

Using Services

302

Once the query is ready, we start the wizard. On the second page, we specify the query name
and document name. On the third page, we select the operations to be implemented. And
on the final two pages, we review which objects will be created and complete the wizard.
The wizard creates a new private development project, with all the generated objects in it.
At this point, everything is ready and we only need to create a new service group, add our
service, and publish the group.

If everything is successful, we should see a new entry in the Inbound ports form. It is activated
automatically, and we can use the address specified in the WSDL URI field to access the
service.

Consuming a document service
In Dynamics AX, document services normally provide a number of predefined operations,
such as create, delete, read, find, and findKeys. Each operation is responsible for
some particular action; for example, create allows you to create a new document, delete
allows you to delete a document, and so on. The read operation was demonstrated in the
Consuming an existing document service recipe.

In this recipe, we will create a .NET console application to demonstrate how the find
operation can be used. We will consume the service created in the Creating a document
service recipe to list all the currencies in the system.

How to do it...
Carry out the following steps in order to complete this recipe:

1. In Visual Studio, create a new Visual C# Console Application project named
ConsumeBasicDocumentService.

2. Add a new service reference named BasicCurrencyServices to the project.

3. Copy the address from the WSDL URI field, from the Creating a document service
recipe, into the Address field, as shown here:

Chapter 7

303

4. Add the following line of code in the top section of the Program.cs file:
using ConsumeBasicDocumentService.BasicCurrencyServices;

5. Add the following code snippet to the Main() method:
CurrencyQueryServiceClient serviceClient;

CriteriaElement criteriaElement = new CriteriaElement();
criteriaElement.DataSourceName = "Currency";
criteriaElement.FieldName = "CurrencyCode";
criteriaElement.Value1 = "";
criteriaElement.Operator = Operator.NotEqual;

QueryCriteria query = new QueryCriteria();
query.CriteriaElement =
 new CriteriaElement[1] { criteriaElement };

serviceClient = new CurrencyQueryServiceClient();

AxdCurrencyQuery currency = serviceClient.find(null, query);

Using Services

304

serviceClient.Close();

if (currency.Currency != null)
{
 foreach (AxdEntity_Currency c in currency.Currency)
 {
 Console.WriteLine(String.Format(
 "{0} - {1}",
 c.CurrencyCode,
 c.Txt));
 }
}

Console.ReadKey();

6. Run the program by clicking on F5. The results will be similar to what is shown in the
following screenshot:

How it works...
In this recipe, we first create a new Visual C# Console Application project and then add a new
service reference pointing to the address from the previous recipe.

The code in the Main() method creates a new query based on the Currency table and a
filter on the CurrencyCode field. Here, we set the filter to not empty, that is, return all the
records from the table.

To get the results, we call the find operation, which accepts the query as an argument and
returns the AxdCurrencyQuery document. The last thing to do is to close the connection to
the service and then display all the returned records on the screen.

Chapter 7

305

See also
 f The Creating a document service recipe

Using an enhanced document service
In Dynamics AX, services can be exposed using basic or enhanced integration ports. Normally,
simple services are exposed using basic ports. Conversely, enhanced ports are used in
more complex scenarios. Enhanced ports offer additional capabilities compared to the basic
integration ports. Enhanced ports can restrict data, execute complex preprocessing and post-
processing rules, and be hosted on the Internet Information Services, and so on.

In this recipe, we will demonstrate how to create and consume a document service created in
the Creating a document service recipe, using an enhanced integration port. We will use the
document filtering feature of the enhanced port to restrict the range of data being exposed.

How to do it...
Carry out the following steps in order to complete this recipe:

1. Navigate to System administration | Setup | Services and Application Integration
Framework | Inbound ports and create a new record, as follows:

2. Click on the Service operations button to open the Select service operations form.

Using Services

306

3. Select all the CurrencyQueryService service operations that were previously
created in the Creating a document service recipe:

4. Close the Select service operations form.

5. In the Inbound ports form, expand the Processing Options tab page and open the
Document filters form by clicking on the Document filters button.

6. In the opened form, click on the Add button, type Currencies starting with B
into the Description field, and save the record. This is how the form will look:

Chapter 7

307

7. Click on the Configure button, while the newly created record is selected, and specify
B?? in the Criteria field, as follows:

8. Close the Query configuration form and then close the Document filters form.

9. In the Inbound ports form, make sure that the EnhancedCurrencyServices record is
selected and then click on the Activate button. The status should change as follows
(note the value in the WSDL URI field):

Using Services

308

10. In Visual Studio, create a new Visual C# Console Application project named
ConsumeEnhancedDocumentService.

11. Add a new service reference named EnhancedCurrencyServices to the project.

12. Copy the address from the WSDL URI field into the Address field:

13. Add the following line of code in the top section of the Program.cs file:
using ConsumeEnhancedDocumentService.EnhancedCurrencyServices;

14. Add the following code snippet to the Main() method:
CurrencyQueryServiceClient serviceClient;

serviceClient = new CurrencyQueryServiceClient();

EntityKeyPage keyPage = serviceClient.getKeys(null, null);

serviceClient.Close();

foreach (EntityKey key in keyPage.EntityKeyList)
{
 Console.WriteLine(key.KeyData[0].Value);

Chapter 7

309

}

Console.ReadKey();

15. Run the program by clicking on F5. The results will be similar to what is shown in the
following screenshot:

How it works...
In this recipe, no X++ code is required. In the Inbound ports form, we create a new entry and
select the operations created in one of the previous recipes. Note that the Category field for
manually created ports is set to Enhanced automatically, which means that the additional
features will be available for this port. One of these is document filtering. To demonstrate its
use, we create a new filter in order to limit the returned results to only the currencies that start
with B. Once everything is ready, we activate the port.

At this stage, the service is ready. Next, we create a new Visual C# Console Application project
and add a new service reference pointing to the address of the newly created port.

In the Main() method, we create a new service client object and call its getKeys operation.
Document filters applied on enhanced ports are used only in the getChangedKeys and
getKeys operations, so our operation returns only the entity keys that match the applied filters.

The last thing to do is to close the connection to the service and then go through the results
and display them on the screen.

See also
 f The Creating a document service recipe

Using Services

310

Creating a custom service
Custom services in Dynamics AX allows you to expose any X++ logic as a service. In order
to expose X++ code as a service, we only need to add a special attribute to it. This allows
us easily reuse the exiting code without any additional changes.

In this recipe, we will create a new custom service with a single, simple operation. The operation
will accept currency code and return currency description.

How to do it...
Carry out the following steps in order to complete this recipe:

1. In the AOT, create a new class named CustomCurrencyService with the following
code snippet:
class CustomCurrencyService
{
}

[SysEntryPointAttribute]
public CurrencyName getCurrencyName(CurrencyCode _currencyCode)
{
 return Currency::find(_currencyCode).Txt;
}

2. Set the class' properties as follows:

Property Value
RunOn Server

3. In the AOT, create a new service with the following properties:

Property Value
Name CustomCurrencyService

Class CustomCurrencyService

4. Expand the newly created service and select the Add Operation option from the
Operations node's right-click context menu.

5. In the Add service operations form, select the getCurrencyName line by marking the
Add checkbox and clicking on OK:

Chapter 7

311

6. The service in the AOT will look similar to what is shown in the following screenshot:

7. In the AOT, create a new service group named CustomCurrencyService.

8. In the service group, create a new service node reference with the following properties:

Property Value
Name CustomCurrencyService

Service CustomCurrencyService

9. Deploy the service group by selecting the Deploy Service Group option from its
right-click context menu. The Infolog window will display a number of messages
about the successful deployment.

Using Services

312

10. Navigate to System administration | Setup | Services and Application Integration
Framework | Inbound ports in order to check the newly deployed service:

11. To verify the service, open the address specified in the WSDL URI field in a browser
say Internet Explorer. The screen should look similar to this:

Chapter 7

313

How it works...
In Dynamics AX, any class can be exposed as a custom service. Here, we create a new one
with a single method that accepts currency code and returns currency name. To enable the
method as a service operation, we specify the SysEntryPointAttribute attribute at the
top of the method, which will ensure that the method is available in the service operation list
when creating service nodes. We also set the class to run on the server tier.

Next, we create a new service node and add the newly created operation to it. In order
to deploy it, we also have to create a new service group that includes the created service.
Once deployed, a new record is created in the Inbound ports form.

If everything is successful, the service is ready to be consumed. This will be explained in
the next recipe.

See also
 f The Consuming a custom service recipe

Consuming a custom service
Custom services are consumed in a way similar to any other Dynamics AX service.
The difference is that each custom service can have a totally different set of operations,
where system or document services always expose the same operations.

In this recipe, we will create a new .NET console application to demonstrate how to consume
a custom service. We will use the service created in the Creating a custom service recipe,
which returns a description of the provided currency.

How to do it...
Carry out the following steps in order to complete this recipe:

1. In Visual Studio, create a new Visual C# Console Application project named
ConsumeBasicCustomService.

2. Add a new service reference named CustomCurrencyServices to the project.

Using Services

314

3. Copy the address from the WSDL URI field, from the Creating a custom service
recipe, into the Address field:

4. Add the following line of code in the top section of the Program.cs file:
using ConsumeBasicCustomService.CustomCurrencyServices;

5. Add the following code snippet to the Main() method:
CustomCurrencyServiceClient serviceClient;

serviceClient = new CustomCurrencyServiceClient();

string currencyName =
 serviceClient.getCurrencyName(null, "EUR");

serviceClient.Close();

Console.WriteLine(currencyName);

Console.ReadKey();

Chapter 7

315

6. Run the program by clicking on F5. The results will be similar to what is shown in the
following screenshot:

How it works...
We start this recipe by creating a new Visual C# Console Application project and adding a new
service reference pointing to the address from one of the previous recipes.

The code in the Main() method is similar to code in the other recipes. Here, we create a new
connection to the service and call its getCurrencyName operation to get the currency name.

See also
 f The Creating a custom service recipe

Consuming an external service
In Dynamics AX, external services can be used in a variety of scenarios to retrieve information
from external providers. This can be currency exchange rates, address information, logistics
data, and many others. Such external services can be consumed directly from the X++ code,
with the help of Visual Studio.

In this recipe, we will demonstrate how external services can be consumed from the X++
code. For demonstration purposes, we will use the service created in the Creating a custom
service recipe, and we will assume that this service is an external service.

Using Services

316

How to do it...
Carry out the following steps in order to complete this recipe:

1. In Visual Studio, create a new Visual C# Class Library project named ExtSrv.

2. Delete Class1.cs from the project.

3. Add a new service reference named CurServices to the project.

4. Copy the address from the WSDL URI field, from the Creating a custom service
recipe, into the Address field:

5. In Visual Studio, add the project to the AOT by selecting the Add ExtSrv to AOT option
from the File menu.

6. Open the Properties Window from the View menu, change the following properties of
the project, and save the project:

Property Value
Deploy to Client Yes

Deploy to Server Yes

Chapter 7

317

7. In Visual Studio, this is how the project will look:

8. Restart the Dynamics AX client and verify that the ExtSrv project exists in the AOT by
navigating to Visual Studio Projects | C Sharp Projects:

Using Services

318

9. Create a new job named ConsumeExternalService with the following code snippet:
static void ConsumeExternalService(Args _args)
{
 ClrObject serviceClientType;
 ExtSrv.CurServices.CustomCurrencyServiceClient serviceClient;
 System.Exception ex;

 try
 {
 serviceClientType = CLRInterop::getType(
 "ExtSrv.CurServices.CustomCurrencyServiceClient");
 serviceClient = AifUtil::CreateServiceClient(
 serviceClientType);
 info(serviceClient.getCurrencyName(null, "USD"));
 }
 catch (Exception::CLRError)
 {
 ex = CLRInterop::getLastException();
 info(ex.ToString());
 }
}

10. Run the job. The Infolog window will display the results, as shown here:

How it works...
In this recipe, we create a new Visual C# Class Library project and add a new service reference
pointing to the address from the previous recipe.

Next, we add the project to the AOT and then change the deployment properties to make sure
that the service is available for the X++ code running on both the server and client tiers.

To demonstrate how to consume the service, we create a new job. We start the job by defining
the service reference created in Visual Studio. Then, we create the service client object and
call its getCurrencyOperation operation, as if it was a regular X++ method.

See also
 f The Creating a custom service recipe

319

8
Improving Development

Efficiency

In this chapter, we will cover the following recipes:

 f Creating a code editor template

 f Modifying the Tools menu

 f Modifying the right-click context menu

 f Searching for an object in a development project

 f Modifying the Personalization form

 f Modifying the About Microsoft Dynamics AX dialog

Introduction
Microsoft Dynamics AX has its own integrated development environment called MorphX,
which contains various tools for designing, modifying, compiling, and debugging code.
Besides this, the system allows you to modify existing tools and create new tools in order
to improve development experience and efficiency.

This chapter contains several recipes for this purpose. It explains how code editor templates
can be created, how the Tools and right-click context menus can be modified, and how to
search for objects within development projects. The chapter also discusses how we can
modify the Personalization form and modify the About Microsoft Dynamics AX dialog.

Improving Development Efficiency

320

Creating a code editor template
Code editor templates allow developers to reuse commonly used blocks of code. Dynamics AX
already provides a number of out-of-the-box code templates for creating the construct(),
main(), and parm() methods, various statements (such as if, else, and switch), code
comments, and so on. The templates can be invoked by right-clicking anywhere in the code
editor and navigating to Scripts | template from the context menu. It is also possible to
activate the templates by simply typing the name of the template and pressing the Tab key.
The existing templates can be modified and new templates can be created.

In this recipe, we will create a new code template for the find() method, which is normally
created in most of the tables. The template will only be available in the table's methods, and
it will automatically detect the current table name and use its primary key to determine the
method's arguments.

How to do it...
Carry out the following steps in order to complete this recipe:

1. In the AOT, locate the xppSource class and create a new method with the following
code snippet:
Source findMethod(TableName _tableName)
{
 str method;
 DictTable dictTable;
 DictIndex dictIndex;
 DictField dictField;
 FieldName fieldName;
 DictType dictType;
 DictEnum dictEnum;
 int fieldCount;
 int i;
 container fields1;
 container fields2;
 container fields3;
 IdentifierName varName;
 IdentifierName varType;

 method =
 'static %1 find' +
 '(%2, boolean _forUpdate = false)%5' +
 '{%5' +
 ' %1 table;%5' +

Chapter 8

321

 '%5' +
 ' if (%3)%5' +
 ' {%5' +
 ' if (_forUpdate)%5' +
 ' table.selectForUpdate(_forUpdate);%5' +
 '%5' +
 ' select firstOnly table%5' +
 ' where %4;%5' +
 ' }%5' +
 ' return table;%5' +
 '}';

 dictTable = new DictTable(tableName2id(_tableName));

 dictIndex = dictTable.indexObject(
 dictTable.replacementKey() ?
 dictTable.replacementKey() :
 dictTable.primaryIndex());

 if (dictIndex)
 {
 fieldCount = dictIndex.numberOfFields();

 for (i = 1; i <= fieldCount; i++)
 {
 dictField = new dictField(
 dictTable.id(),
 dictIndex.field(i));
 fieldName = dictField.name();
 varName = '_' + strLwr(subStr(fieldName,1,1)) +
 subStr(fieldName,2,strLen(fieldName)-1);

 if (dictField.typeId())
 {
 dictType = new DictType(dictField.typeId());
 varType = dictType.name();
 }
 else if (dictField.enumId())
 {
 dictEnum = new DictEnum(dictField.enumId());
 varType = dictEnum.name();
 }
 else
 {

Improving Development Efficiency

322

 throw error(
 strfmt(
 "Field '%1' type is not defined",
 fieldName));
 }

 fields1 += strFmt('%1 %2',
 varType,
 varName);
 fields2 += varName;
 fields3 += strFmt(
 'table.%1 == %2',
 fieldName,
 varName);
 }
 }

 source = strFmt(
 method,
 _tableName,
 con2Str(fields1,', '),
 con2Str(fields2, ' && '),
 con2Str(fields3, #newLine + strRep(' ', 14) + '&& '),
 #newLine);

 return source;
}

2. In the AOT, locate another class, EditorScripts, and create a new method with the
following code snippet:
void template_method_find(Editor _editor)
{
 TreeNode objNode;
 xppSource xpp;
 Source template;

 objNode = EditorScripts::getApplObjectNode(_editor);

 if (!objNode)
 {
 return;
 }

 _editor.gotoLine(1);

Chapter 8

323

 _editor.firstLine();
 while (_editor.moreLines())
 {
 _editor.deleteLines(1);
 _editor.nextLine();
 }

 xpp = new xppSource();
 template = xpp.findMethod(objNode.AOTname());
 _editor.insertLines(template);
}

3. In the same class, find the isApplicableMethod() method and add the following
lines of code at the bottom of the switch statement:
case methodStr(EditorScripts, template_method_find):
 return (_aotNode &&
 _aotNode.treeNodeType().id() == #NT_DBTABLE);

4. To test the template in the AOT, create a new table or locate any table that does not
have the find() method, for example, CustCollectionsPool.

5. Create a new method, then right-click anywhere in the editor, and navigate to Scripts
| template | method | find in the context menu (alternatively, type find anywhere
in the editor and click on the Tab key):

Improving Development Efficiency

324

6. The code snippet shown in the following screenshot will be generated:

How it works...
Code templates are located in the xppSource class of a standard application. We start the
recipe by creating a new method called findMethod() in that class. This new method holds
all the code required to generate the find() method for a given table. The method accepts
the table name as an argument, and this is the only thing we need.

Right after the variable declaration section, we initialize the method variable that contains
the static code for creating the find() methods. The placeholders, %1, %2, and others,
will be dynamically replaced with the following information:

 f %1: The table name.

 f %2: The list of arguments that depend on the number of fields in the table's
primary key. The list contains a number of type/name pairs used as parameters
for the method.

 f %3: The list of fields in the if statement. The list consists of the method's parameters
separated by &&. The statement is used to improve the method's performance so that
no database query is executed if any of the primary fields are empty.

 f %4: The list of fields in the where clause. The list consists of table fields from the
primary key and the corresponding method parameters.

 f %5: A new line symbol.

The method returns a dynamically generated code for the find() method for a given table.

Chapter 8

325

In this recipe, to simplify the demonstration, the findMethod() method is created using a
simple string formatting function, strFmt(). Alternatively, the template code can be formatted
using various helper methods of the xppSource class, such as beginBlock(), endBlock(),
indent(), and others. For more information, explore the other methods in the same class.

The next step is to create a link in the right-click context menu for the newly created template.
This can be done simply by creating a new method in the EditorScripts application class.
The method name should follow a special format, where each submenu is separated by
underscores. In our example, we want our template to show up as find in template | method,
so we name the method as template_method_find().

The code in template_method_find() will be executed once the user activates the find
template. In this method, we first call the code, which removes all the existing code from the
user's editor window, and then we call the previously created findMethod() method to
insert the generated code into the empty editor window.

Lastly, we modify the isApplicableMethod() method in the same class in order to ensure
that the find option is only available in table methods. The method contains a big switch
statement, where each case corresponds to one of the template methods. The method is
called automatically for every template whenever the right-click context menu is opened. The
conditions inside this method, depending on the current context, evaluate to either true or
false, which subsequently determines the visibility of each template in the menu.

Modifying the Tools menu
In the AOT, Dynamics AX contains the Menus node, which holds all the user menus. Although
most of them correspond to a specific module, there are several special system menus. For
example, the MainMenu menu is a top-level menu that holds references to all the module
menus and allows you to navigate throughout the system. The GlobalToolsMenu menu
represents the Tools folder, which is under the File menu, in the user workspace and contains
shortcuts to commonly used user functions. The DevelopmentTools menu represents the
Tools menu in the Development Workspace and contains tools for developers.

In this recipe, we will demonstrate how the system menus can be modified. We will add a link
to the Online users form in the DevelopmentTools menu.

How to do it...
Carry out the following steps in order to complete this recipe:

1. In the AOT, locate the DevelopmentTools menu.

2. Add a new separator at the top of the menu.

Improving Development Efficiency

326

3. Add a new menu item at the top of the same menu with the following properties:

Property Value
MenuItemType Display

MenuItemName SysUsersOnline

4. The following screenshot shows how the DevelopmentTools menu will look:

5. To test the menu, open the Tools menu in the Development Workspace window and
note the newly added Online users option:

Chapter 8

327

How it works...
In this recipe, we only need to add the desired menu item to the DevelopmentTools menu. For
users, the menu item will be available under the Tools menu in the Development Workspace.

Modifying the right-click context menu
In the Development Workspace, many developer tools can be accessed from the right-click
context menu in the AOT. Some of the tools, such as Export, Delete, and Restore, are common
for all AOT objects. Some of the options are only available for specific objects; for example, the
Compile function is only available for classes, tables, and other objects that contain code.

In this recipe, we will demonstrate how to modify the right-click context menu. We will add two
new options to the right-click context menu for development projects nodes, which allows you
to set the selected project as a startup project and clear it from the startup project.

Improving Development Efficiency

328

How to do it...
Carry out the following steps in order to complete this recipe:

1. In the AOT, create a new action menu item with the following properties:

Property Value
Name DevProjectStartupUpdateSet

Label Set as the startup project

2. Create one more action menu item with the following properties:

Property Value
Name DevProjectStartupUpdateClear

Label Clear startup project

3. In the AOT, create a new class with the following code snippet:
DevProjectStartupUpdate
{
}

static void main(Args _args)
{
 UserInfo userInfo;
 SysContextMenu contextMenu;
 IdentifierName projectName;

 if (!_args.menuItemName() ||
 !SysContextMenu::startedFrom(_args))
 {
 return;
 }

 contextMenu = _args.parmObject();

 switch (_args.menuItemName())
 {
 case menuitemActionStr(DevProjectStartupUpdateSet):
 projectName =
 contextMenu.getFirstNode().treeNodeName();
 break;

Chapter 8

329

 case menuitemActionStr(DevProjectStartupUpdateClear):
 projectName = '';
 break;
 default:
 return;
 }

 ttsBegin;

 select firstOnly forUpdate userInfo
 where userInfo.id == curUserId();

 userInfo.startupProject = projectName;

 if (!userInfo.validateWrite())
 {
 throw Exception::Error;
 }

 userInfo.update();

 ttsCommit;
}

static boolean isStartupProject(
 IdentifierName _projectName,
 UserId _userId = curUserId())
{
 return (select firstOnly UserInfo
 where UserInfo.id == _userId
 && UserInfo.startupProject == _projectName).RecId ?
 true :
 false;
}

4. For both menu items, set the following properties:

Property Value
ObjectType Class

Object DevProjectStartupUpdate

Improving Development Efficiency

330

5. Add the newly created menu items to the SysContextMenu menu, as shown in the
following screenshot:

6. In the AOT, find the SysContextMenu class, open its verifyItem() method,
and locate the last case statement at the bottom. Add two new case statements
just below the last case statement:
case menuitemActionStr(DevProjectStartupUpdateSet):
 if (firstNode.handle() != classNum(ProjectNode) ||
 !match(#pathProjects, firstNode.treeNodePath()))
 {
 return 0;
 }
 return !DevProjectStartupUpdate::isStartupProject(
 firstNode.treeNodeName());
case menuitemActionStr(DevProjectStartupUpdateClear):
 if (firstNode.handle() != classNum(ProjectNode) ||
 !match(#pathProjects, firstNode.treeNodePath()))
 {
 return 0;
 }
 return DevProjectStartupUpdate::isStartupProject(
 firstNode.treeNodeName());

Chapter 8

331

7. To test the results, open the Projects window by clicking on Project in the toolbar of
the Development Workspace, select any project, and select the newly created Set as
startup project option, which is under Add-Ins, from the right-click context menu:

8. Restart the Development Workspace; you will notice that the previously set project
opens automatically.

Improving Development Efficiency

332

9. To clear the startup project from the project window, select the same project again
and choose the Clear startup project option, which is under Add-Ins, from the right-
click context menu:

How it works...
We start this recipe by creating two new menu items. One of them is used to set the currently
selected project as the startup project, and the other one is used to clear the current project
from the startup project, if it was set before. Each of the menu items point to the class that,
depending on the caller menu item, will update the UserInfo table with the startup project
or clear it. The same class also contains the isStartupProject() helper method, which
is used later to determine whether the given project is already defined as a startup project.

Chapter 8

333

Next, we add the newly created menu items to the SysContextMenu menu, which is
actually the right-click context menu for the AOT. In order to ensure that the menu items are
displayed only for the project nodes, we modify the verifyItem() method of the standard
SysContextMenu class. At the top level, this method has a switch statement with three
cases (one for each type of menu item): display, action, and output. Inside each case,
there is another switch statement with cases for the individual menu items located in the
SysContextMenu menu—an item is displayed in the menu if a case returns 1, and it is not
visible if 0 is returned.

We add two additional cases for our menu items under the action case. Both the menu items
will be visible only for project nodes. The menu item that is used to set the project as a startup
project will be shown if the current project is not already defined as a startup project, and the
menu item that is used to clear the startup project is only shown if the current project is defined
as a startup project.

Searching for an object in a development
project

In Dynamics AX, any development changes to the application normally have to be organized
in development projects. The same object could belong to one or more projects, but Dynamics
AX does not provide an easy way to determine which development projects a specific object
belongs to.

In this recipe, we will create a class to search for an object in the development projects.
The class is only for demonstration purposes, but it can be easily converted to a standalone
tool and integrated into the right-click menu.

How to do it...
Carry out the following steps in order to complete this recipe:

1. In the AOT, create a new class with the following code snippet:
class DevProjectSearch
{
}
private boolean findChildren(
 TreeNode _parent,
 UtilElementType _type,
 IdentifierName _name)
{
 TreeNode child;
 TreeNodeIterator iterator;
 #TreeNodeSysNodeType

 iterator = _parent.AOTiterator();

Improving Development Efficiency

334

 child = iterator.next();

 while (child)
 {
 if (child.treeNodeType().id() == #NT_PROJECT_GROUP)
 {
 return this.findChildren(child, _type, _name);
 }
 else if (child.AOTname() == _name &&
 child.treeNodePath() &&
 child.utilElement().recordType == _type)
 {
 return true;
 }
 child.treeNodeRelease();
 child = iterator.next();
 }
 return false;
}

void find(UtilElementType _type, IdentifierName _name)
{
 TreeNode projects;
 ProjectNode project;

 projects = SysTreeNode::getSharedProject();

 if (!projects)
 {
 return;
 }

 project = projects.AOTfirstChild();

 while (project)
 {
 if (this.findChildren(
 project.loadForInspection(),
 _type,
 _name))
 {
 info(project.AOTname());
 }
 project = project.AOTnextSibling();
 }
}

Chapter 8

335

2. To test the class, create a new job with the following code snippet:
static void TestDevProjectSearch(Args _args)
{
 DevProjectSearch search;
 search = new DevProjectSearch();
 search.find(UtilElementType::Table, tableStr(CustTable));
}

3. Run the job to display the results in the Infolog window, as follows:

How it works...
In this recipe, we create a new class with several methods. The first method is
findChildren() and is used for a recursive search operation within the AOT node. It
accepts three parameters: a TreeNode object, an element type, and an element name. In
this method, we go through all the children of the TreeNode object and check whether any
of them match the provided element type and name. If any of the child nodes contain more
nodes within, we use the same findChildren() method to determine whether any of its
children match the element type and name.

The second method is named find() and is used for the actual search, for the given element
type and name. The method goes through all of the shared development projects and calls the
findChildren() method to determine whether the given element is in one of its nodes.

The class can be called from anywhere in the system, but in this recipe, to demonstrate how it
works, we create a new job, define and instantiate the class, and use the find() method to
search for the CustTable table in all the shared projects.

See also
 f The Modifying the right-click context menu recipe

Improving Development Efficiency

336

Modifying the Personalization form
The Personalization form allows users to customize their most often-used forms to fit their
needs. Users can hide or move form controls, change labels, and so on. The setup is available
for any Dynamics AX form and can be opened from the right-click context menu, by selecting
the Personalize option.

For developers, this form can be very useful too. For example, it contains the handy System
name field, which displays the name of the currently selected table field or method so that
you don't need to search for it in the AOT. The Information tab provides details about the
form itself, the caller object, and the menu item used, and it allows you to open those objects
instantly in the AOT view. The last tab, Query, shows the tables used in the form's query; this
is also very useful in facilitating a quick understanding of the underlying data structure.

In this recipe, we will demonstrate how to enhance the Personalization form. We will add a
new button to the last tab page, which will open the selected table in the AOT.

How to do it...
Carry out the following steps in order to complete this recipe:

1. Open the SysSetupForm form in the AOT and find the following code in its
fillQueryTreeQueryDatasource() method:
formTreeItem = new FormTreeItem(
 nodeText, imagelist.image(#ImageDataSource), -1, null);

2. Replace it with the following code:
formTreeItem = new FormTreeItem(
 nodeText,
 imagelist.image(#ImageDataSource),
 -1,
 queryBuildDataSource.table());

3. Add a new ButtonGroup control to the QueryPage tab, with the following property:

Property Value
Name ButtonGroup1

4. Add a new Button control to the created button group and set its properties,
as follows:

Property Value
Name EditTable

AutoDeclaration Yes

Chapter 8

337

Property Value
Text Edit

5. Override the clicked() event method of the button with the following code snippet:
void clicked()
{
 FormTreeItem formTreeItem;
 TableId tableId;
 TreeNode treeNode;
 #AOT

 formTreeItem = QueryTree.getItem(
 QueryTree.getSelection());

 tableId = formTreeItem.data();

 if (!tableId || !tableId2name(tableId))
 {
 return;
 }

 treeNode = infolog.findNode(
 #TablesPath +
 #AOTDelimiter +
 tableid2name(tableId));

 if (!treeNode)
 {
 return;
 }

 treeNode.AOTnewWindow();
}

6. In the QueryTree control, override the selectionChanged() event method with
the following code snippet:
void selectionChanged(
 FormTreeItem _oldItem,
 FormTreeItem _newItem,
 FormTreeSelect _how)
{
 super(_oldItem, _newItem, _how);

 EditTable.enabled(
 tableid2name(_newItem.data()) ? true : false);
}

Improving Development Efficiency

338

7. To test the changes, open any form (for example, Main accounts located in General
ledger), and then open the Personalization form by right-clicking anywhere on the
form and selecting the Personalize option:

8. Go to the Query tab page and select one of the tables in the displayed query,
as shown here:

Chapter 8

339

9. Click on the newly created Edit button to open the selected table in the AOT, as
shown in the following screenshot:

How it works...
First, we modify the initialization of the QueryTree control. Normally, each tree node can hold
some data. The query tree in the SysSetupForm form does not have any data associated
with its nodes, so we have to modify the code and store the table number in each node that
represents a table.

Next, we add a new button and override its clicked() method. In this method, we get the
table number stored in the currently selected node—this is what we stored earlier—and search
for that table in the AOT. We display it in a new AOT window, if found.

Finally, we override selectionChanged() on the QueryTree control to make sure that the
button's status is updated upon node selection. In other words, the Edit button is enabled if
the current tree node contains some data; otherwise, it is disabled.

In this way, we have modified the Personalization form to provide the developer with quick
access to the underlying tables, directly in the AOT.

Improving Development Efficiency

340

Modifying the About Microsoft Dynamics
AX dialog

The About Microsoft Dynamics AX dialog in Dynamics AX contains various information about
the system. It shows kernel and application version numbers, localization information, links to
other information, and so on. The dialog is available under the Help menu.

This dialog is also a good place to add any additional third-party information. In this recipe,
you will learn how to modify the system in order to add a simple custom version number to
the About Microsoft Dynamics AX dialog.

How to do it...
Carry out the following steps in order to complete this recipe:

1. In the AOT, find the ApplicationVersion class and create a new method with the
following code snippet:
static str usrAppl()
{
 return '1.0.0';
}

2. In the AOT, locate the SysAbout form and add a new StaticText control, with the
following properties, at the bottom of VersionInfoGroup, which is located in DetailGrp
| MainGrp | RightGroup:

Property Value
Name CustomVersion

AutoDeclaration Yes

Width Column width

Text

Chapter 8

341

3. The following screenshot shows how the form in the AOT will look:

4. Add the following line of code to the variable declaration section of the form's
run() method:
str usrVersionNumber = ApplicationVersion::usrAppl();

5. Add the following code snippet to the same method, right before element.
unLock(true):
if (usrVersionNumber)
{
 CustomVersion.text('Custom version: ' + usrVersionNumber);
}

Improving Development Efficiency

342

6. Navigate to Help | About Microsoft Dynamics AX and note the newly created
Custom version control, as shown here:

How it works...
The ApplicationVersion class is the place where the application version numbers are
stored. For example, applBuildNo() returns the current application version. By modifying
this class, Dynamics AX developers can modify original or custom version numbers. This class is
called from the SysAbout form, which is actually the About Microsoft Dynamics AX dialog box.

In this recipe, we first create a new method in the ApplicationVersion class, which returns
our version number. Normally, the number is updated with every new release.

Next, we modify the SysAbout form by adding a new control. Then, we modify the form's run()
method to ensure that the number in the previously created method is displayed on the form.

Now, the About Microsoft Dynamics AX dialog box contains a new line that shows our custom
version number.

Improving Dynamics AX
Performance

In this chapter, we will cover the following recipes:

 f Calculating code execution time

 f Writing efficient SQL statements

 f Caching a display method

 f Using Dynamics AX Trace Parser

 f Using SQL Server Database Engine Tuning Advisor

Introduction
It is quite common for many large Microsoft Dynamics AX installations to suffer from
performance issues. These issues can be caused by insufficient hardware, incorrect
configuration, ineffective code, and many other reasons.

There are lots of ways to troubleshoot and fix performance issues. This chapter discusses a
few simple must-know techniques to write code properly and to deal with basic performance
issues. This is in no way a complete guide to solving performance issues in Dynamics AX.

Calculating code execution time
When working on improving an existing code, there is always the question of how to
measure the results. There are numerous ways to do this, for example, visually assessing
the improvements, getting feedback from users, using the code profiler and/or trace parser,
and various other methods.

9

Improving Dynamics AX Performance

344

In this recipe, we will discuss how to measure the code execution time using a very simple
method, just by temporarily adding a few lines of code. In this way, the execution time
of the old code can be compared with that of the new one in order to show whether any
improvements were made.

How to do it...
Carry out the following steps in order to complete this recipe:

1. In the AOT, create a new job with the following code snippet:
static void GetExecutionTime(Args _args)
{
 int start;
 int end;

 start = WinAPI::getTickCount();
 sleep(1000); // pause for 1000 milliseconds
 end = WinAPI::getTickCount();

 info(strFmt("%1", end - start));
}

2. Run the job to see how many milliseconds it takes to execute the code, as shown in
the following screenshot:

How it works...
In this recipe, the sleep() command simulates the business logic which execution time
is being measured.

The main element in the created job is the getTickCount() method of the standard
WinAPI class. The method returns the TickCount property of the .NET environment,
which is a 32-bit integer containing the amount of time, in milliseconds, that has passed
since the last time the computer was started.

Chapter 9

345

We place the first call to the getTickCount() method before the code we want to measure,
and we place the second call right after the code. In this way, we know when the code was
started and when it was completed. The difference between the times is the code execution
time, in milliseconds.

Normally, using such a technique to calculate the code execution time does not provide useful
information, as we cannot exactly tell whether the amount of time taken is right or wrong. It is
much more beneficial to measure the execution time before and after we optimize the code.
In this way, we can clearly see whether any improvements were made.

There's more...
The approach described in the previous section can be successfully used to measure a
long-running code, such as numerous calculations or complex database queries. However,
it may not be possible to assess the code that takes only a few milliseconds to execute.

The improvement in the code may not be noticeable, as it can be greatly affected by the
variances caused by the current system conditions. In such cases, the code in question
can be executed a number of times so that the execution times can be properly compared.

To demonstrate this, we can modify the previously created job as follows:

static void GetExecutionTimeLoop(Args _args)
{
 int start;
 int end;
 int i;

 start = WinAPI::getTickCount();
 for (i = i; i <= 100; i++)
 {
 sleep(1000); // pause for 1000 milliseconds
 }
 end = WinAPI::getTickCount();

 info(strFmt("%1", end - start));
}

Now, the execution time will be much longer and, therefore, easier to assess.

Improving Dynamics AX Performance

346

Writing efficient SQL statements
In Dynamics AX, SQL statements can often become performance bottlenecks. Therefore, it is
very important to understand how Dynamics AX handles database queries and to follow all the
best practice recommendations in order to keep your system healthy.

In this recipe, we will discuss some of the best practices to be used when writing database
queries. For demonstration purposes, we will create a sample method with several scenarios
and discuss each of them. The method will locate the CustGroup table record of a given
customer account.

How to do it...
Carry out the following steps in order to complete this recipe:

1. In the AOT, locate the CustGroup table and create the following method:
static CustGroup findByCustAccount(
 CustAccount _custAccount,
 boolean _forupdate = false)
{
 CustTable custTable;
 CustGroup custGroup;

 if (_custAccount)
 {
 select firstOnly CustGroup from custTable
 where custTable.AccountNum == _custAccount;
 }
 if (custTable.CustGroup)
 {
 if (_forupdate)
 {
 custGroup.selectForUpdate(_forupdate);
 }

 select firstOnly custGroup where
 custGroup.CustGroup == custTable.CustGroup;
 }
 return custGroup;
}

Chapter 9

347

2. In the same table, create another method with the following code snippet:
static CustGroup findByCustAccount2(
 CustAccount _custAccount,
 boolean _forupdate = false)
{
 CustTable custTable;
 CustGroup custGroup;

 if (_custAccount)
 {
 if (_forupdate)
 {
 custGroup.selectForUpdate(_forupdate);
 }
 select firstOnly custGroup exists
 join custTable
 where custGroup.CustGroup == custTable.CustGroup
 && custTable.AccountNum == _custAccount;
 }
 return custGroup;
}

How it works...
In this recipe, we have two different versions of the same method. Both methods are
technically correct, but the second one is more efficient. Let's analyze each of them.

In the first method, we should pay attention to the following points:

 f Verify that the _custAccount argument is not empty; this will avoid the running of
an unnecessary database query.

 f Use the firstOnly keyword in the first SQL statement to disable the effect of the
read-ahead caching. If the firstOnly keyword is not present, the statement will
retrieve a block of records, return the first one, and ignore the others. In this case,
even though the customer account is a primary key and there is only one match, it is
always recommended that you use the firstOnly keyword in the find() methods.

Improving Dynamics AX Performance

348

 f In the same statement, specify the field list——we want to retrieve, instructing the
system not to fetch any other fields that we are not planning to use. In general,
this can also be done on the AOT query objects, by setting the Dynamic property
of the Fields node to No in the query data sources and adding only the required
fields manually. This can also be done in forms, by setting the OnlyFetchActive
property to Yes on the form's data sources.

 f Execute the selectForUpdate() method only if the _forupdate argument is
set. Using the if statement is more efficient than calling the selectForUpdate()
method with false.

The second method already uses all the discussed principles, plus an additional one,
as follows:

 f Both the SQL statements are combined into one using an exists join. One of the
benefits is that only a single trip is made to the database. Another benefit is that no
fields are retrieved from the customer table because of the exists join. This makes
the statement even more efficient.

Caching a display method
In Dynamics AX, display methods are widely used to show additional information on forms
or reports that come from different data sources, including special calculations, formatting,
and more. Although they are shown as physical fields, their values are the result of various
calculations.

The display methods are executed each time the form is redrawn. This means that the more
complex the method is, the longer it will take to display the results on the screen. Normally,
it is recommended that you keep the code in the display methods to a minimum.

The performance of the display methods can be improved by caching them. This is when
the display method's return value is retrieved from a database or calculated only once and
subsequent calls to retrieve the same value are made to the cache.

In this recipe, we will create a new cached display method. We will also discuss a few scenarios
in order to learn how to properly use caching.

Chapter 9

349

How to do it...
Carry out the following steps in order to complete this recipe:

1. In the AOT, locate the CustGroup table and create a new display method with the
following code snippet:
display Description displayPaymTermDescription()
{
 return (select firstOnly Description from PaymTerm
 where PaymTerm.PaymTermId == this.PaymTermId).Description;
}

2. Add the newly created method to the table's Overview group, right beneath the
PaymTermId field, as shown in the following screenshot:

Improving Dynamics AX Performance

350

3. In the AOT, find the CustGroup form and override the init() method of its
CustGroup data source with the following code snippet:
void init()
{
 super();
 this.cacheAddMethod(
 tableMethodStr(CustGroup,displayPaymTermDescription));
}

4. To test the display method, open the Customer groups form located in Accounts
receivable | Setup | Customers and notice the newly create Description column,
as shown here:

How it works...
In this recipe, we create a new display method on the CustGroup table to show the description
of the group's payment terms. In the method, we use a query to retrieve only the Description
field from the PaymTerm table. Here, we can use the find() method of the PaymTerm table,
but that would decrease the display method's performance, as it returns the whole PaymTerm
record while we only need a single field. In a scenario such as this, when there are only a few
records in the table, it is not so important; however, in the case of millions of records, the
difference in the performance will be noticeable.

We also add the method that we created to the Overview group in the table in order to ensure
that it automatically appears on the overview screen of the Customer group form.

In order to cache the display method, we override the init() method of the CustGroup
data source and call its cacheAddMethod() method to ensure that the method's return
values are stored in the cache.

Chapter 9

351

The cacheAddMethod() method instructs the system's caching mechanism to load the
method's values into the cache for the records visible on the screen, plus some subsequent
records. It is important that only the display methods that are visible in the overview screen
are cached. The display methods located in different tab pages show a value from a single
record at a time, and therefore it is not efficient to cache such methods.

Speaking about the display method caching, there are other ways to do this. One of the ways
is to place the SysClientCacheDataMethodAttribute attribute at the top of the display
method, as shown in the following code snippet:

[SysClientCacheDataMethodAttribute]
display Description displayPaymTermDescription()
{
 return (select firstOnly Description from PaymTerm
 where PaymTerm.PaymTermId == this.PaymTermId).Description;
}

In this case, the method will automatically be cached on any form where it is used without
any additional code.

Another way is to change the CacheDataMethod property of the form's control to
Yes. This will have the same effect as using the cacheAddMethod() method or the
SysClientCacheDataMethodAttribute attribute.

Using Dynamics AX Trace Parser
Microsoft Dynamics AX has a feature that allows you to generate trace files of the client and
server activity. It collects lots of useful information, such as user sessions, call trees, SQL
statements, and execution durations. Such trace files can be analyzed with a tool called
Dynamics AX Trace Parser, which displays all the trace information within the informative
graphical user interface and allows developers to see what is happening behind the scenes
and make appropriate decisions.

In this recipe, we will demonstrate how to use Dynamics AX Trace Parser. We will create and
run a simple class that contains a simple SQL statement while running AX tracing. Then, we
will analyze the generated trace using Trace Parser.

Improving Dynamics AX Performance

352

How to do it...
Carry out the following steps in order to complete this recipe:

1. In the AOT, create a new class with the following code snippet:
class CustTransTracing
{
}
static void main(Args _args)
{
 CustTrans custTrans;

 select count(RecId) from custTrans
 where custTrans.Approved;

 info("Finished");
}

2. Change the following property of the class:

Property Value
RunOn Server

3. Navigate to Tools | Tracing cockpit. Mark the Bind parameters checkbox and accept
the default values for the rest of the parameters, as shown here:

Chapter 9

353

4. Click on Start trace and then save the trace file to, say, C:\temp\trace.etl.

5. Go back to the created class and run it.

6. Now, in the Tracing cockpit form, click on Stop trace:

Improving Dynamics AX Performance

354

7. Open Microsoft Dynamics AX 2012 Trace Parser by clicking on Open trace (if
required, select an existing database or register a new tracing database) and select
your server session (Ax32Serv.exe) in the Session field at the top of the screen, as
shown here:

Chapter 9

355

8. Open the SQL tab page. The query will be displayed here. If there are too many
records, apply the filter by typing CustTrans into the Name Filter field and marking
the Show Tables checkbox to find your query, as shown in the following screenshot:

Improving Dynamics AX Performance

356

9. Click on Jump to Call Tree in order to display the query in the call stack, as shown in
the following screenshot:

How it works...
The goal of this recipe is to demonstrate how we can trace X++ code and X++ SQL statements
converted to actual database queries.

For this purpose, we create a simple class with the main() method containing a single
SQL statement.

Chapter 9

357

Then, we start the tracing, run the class, and stop the tracing, which generates the trace file
with all the information we need. Note that tracing can also be started and stopped from the
code by calling the start() and stop() methods of the xClassTrace class.

The next step is to open the file using Trace Parser. This tool provides a lot of information,
but for the purpose of this recipe, we only search for our SQL statement in the SQL tab
page. In this tab page, we can see the details of our query, along with its tracked execution
times. We can see the class and method name that this SQL statement was called from.
We can also see how the actual SQL statement, which has been executed in the database,
looks. Such information is very useful to understand how Dynamics AX converts X++ code
into SQL queries.

Additionally, it is possible to locate the SQL statement in the call stack by clicking on the Jump
to Call Tree button. This view shows the code in question, in the context of other processes.

Note that the statement we used contains a non-indexed field in its where clause, which makes
it inefficient. In the next recipe, we will demonstrate how to improve it.

See also
 f The Using SQL Server Database Engine Tuning Advisor recipe

Using SQL Server Database Engine Tuning
Advisor

SQL Server Database Engine Tuning Advisor allows developers to analyze and improve
database queries. The tunning advisor examines query usage and recommends how it
can be improved. Though most of the time the results of this tool are accurate, before
making any database changes, it is recommended that you you double check them by
using some other technique.

In this recipe, we will use Database Engine Tuning Advisor to analyze the query captured
by Trace Parser from the previous recipe.

Improving Dynamics AX Performance

358

How to do it...
Carry out the following steps in order to complete this recipe:

1. Open SQL Server Management Studio and connect to the server where your
Dynamics AX database resides.

2. Select the Dynamics AX database, create a new query, and copy the SQL
statement from the previous recipe. Execute the query to ensure that it is
error-free, as shown here:

3. Right-click anywhere in the query window, and from the right-click context menu,
select Analyze Query in Database Engine Tuning Advisor and then click on Start
Analysis and wait for the results, as shown in the following screenshot:

Chapter 9

359

4. Observe the recommendations. Click on the last one, where the creation of a new
index is recommended:

How it works...
The goal of this recipe is to demonstrate how we can use suggestions from Database Engine
Tuning Advisor to improve the performance of SQL statements in Dynamics AX. As an example,
we use the SQL statement from the previous recipe, which contains a non-indexed field in its
where clause.

The Database Engine Tuning Advisor window can be opened from the Tools menu of SQL
Server Management Studio or directly from the right-click context menu of the query window.
In the latter case, it will automatically analyze a query specified in the query window.

Improving Dynamics AX Performance

360

Once the analysis is complete, the Database Engine Tuning Advisor window displays a list of
recommendations, which can be reviewed by clicking on the value in the Definition column of
the Recommendations tab page.

In this recipe, the tuning advisor suggests that you create database statistics and a new
index. Here, the index is the most important element. In the SQL Script Preview window,
we can see which fields are included in the index, which helps us to create the same index
in Dynamics AX.

Normally, after creating indexes, we have to run Database Engine Tuning Advisor to check
whether the estimated query's performance was improved.

See also
 f The Using Dynamics AX Trace Parser recipe

361

Index
A
About Microsoft Dynamics AX dialog

about 340
modifying 340-342

Application Integration Framework (AIF) 40
Application Object Server (AOS) 286
Application Object Tree (AOT) 2
AssetConsistencyCheck class, methods

description() 39
executionOrder() 39
helpText() 39
run() 39

automatic lookup
creating 164, 165

automatic transaction text
modifying 233-235

B
browse

building, for folder lookup 192, 193

C
checklist

creating, for user friendly ledger budget
setup 98-105

code editor template 320
code execution time

calculating 343-345
color picker lookup

creating 200-206
comma-separated value (CSV) files

about 45
creating 45-48
reading 48-50

custom filter control
creating 113-117

custom instant search filter
creating 118-120

custom options
displaying 181-184

custom service
about 310
consuming 313-315
creating 310-313

D
data

exporting, to XML file 40-43
importing, from XML file 43, 44

data consistency
checks, enhancing 36-39

date effectiveness feature
using 52-56

development project
object, searching in 333-335

Dialog class 58
dialog event

handling 63-67
DialogField class 58
DialogGroup class 58
dialogs

about 58
creating, RunBase framework used 58-62

dialogSelectCtrl() method 67
DialogTabPage class 58
direct SQL statement

executing 29-35
display method

caching 348-351

362

document handling 14
document handling note

adding 14-16
document service

consuming 302-304
creating 297-301
enhanced document service, using 305-309
existing document service,

consuming 293-297
dynamic form

building 68-73
Dynamics AX Trace Parser

about 351
using 351-357

E
editor template

creating 320-325
efficient SQL statements

writing 346-348
electronic payment format

creating 252-260
e-mail

sending, Outlook used 281-283
enhanced document service

using 305-309
Excel file

creating 262-265
reading 265-268

existing document service
consuming 293-297

external service
consuming 315-318

F
file

stored image, saving as 158-161
file selection

lookup, building for 196-200
folder lookup

browse, building for 192, 193
form

about 57
used, for building lookup 169-174

form, methods
fileNameLookupFilename() 199
fileNameLookupInitialPath() 199
fileNameLookupTitle() 199

form splitter
adding 73-78

G
general journal

creating 214-218
posting 222, 223

global lookup functions
pickClass() 181
pickDataArea() 180
pickField() 181
pickTable() 181
pickUser() 181
pickUserGroups() 181

I
image

adding, to records 153-155
displaying, as part of form 155-158
preloading 130-134
stored image, saving as file 158-161

J
journal 214
journal posting 222
journal processing

examples 227, 228

L
last form values

storing 82-85
ledger voucher

creating 228-232
posting 228-232

list, of custom options
displaying 179, 180

lookup
about 163
building, based on record

description 185-191

363

building, for file selection 196-200
building, form used 169-174
creating, dynamically 167-169

lookup columns 165, 166

M
macro

using, in SQL statement 27, 28
Make New Folder button

adding 195, 196
manual folder browsing lookup 194
methods, BudgetModelTree class

beginDrag() 96, 97
canMove() 97
dragOver() 96, 97
drop() 96, 97
stateDropHilite() 97

Microsoft Office Excel format 262
Microsoft Project file

about 276
creating 276-280

modal form
creating 78, 79

MorphX 319
multiple forms

modifying, dynamically 80-82
multiple records

processing 150, 151

N
normal table

using, as temporary table 19
number sequence

about 2
creating 2-7

number sequence handler
using 110-113

O
object

searching, in development project 333-335
OR operator

using 26
Outlook

used, for sending e-mail 281-283

P
Personalization form

about 336
modifying 336-339

primary key
renaming, Rename function used 8-11

project journal
processing 224-227

purchase order
about 236
creating 237, 238
posting 239-244

Q
query object

about 23
building 23-25

R
records

coloring 151-153
copying 19-22
image, adding to 153-155
merging 11-13

Rename function
used, for renaming primary key 8-11

repeating elements
Word document, creating with 272-276

right-click context menu
modifying 327-333

RunBase framework
used, for creating dialogs 58-62

S
sales order

creating 244-247
posting 247-252

segmented entry control
using 208-213

selected/available list
building 121-126

splitters 73
SQL Server Database Engine Tuning Advisor

about 357

364

using 358-360
SQL statement

macro, using in 27, 28
stored image

saving, as file 158-161
SysListPanelRelationTableCallback class

capabilities, demonstrating 126-129
SysListPanelRelationTable class

capabilities, demonstrating 126-129
SysQuery methods

value() 118
valueNot() 118
valueUnlimited() 118

system metadata service
consuming 291-293

system query service
consuming 286-291

T
template

Word document, creating from 269-271
temporary table

normal table, using as 19
Tools menu

modifying 325-327
Tree control

drag and drop functionality 92-96
performance 92
using 86-92

tree lookup
building 175-178

U
user friendly ledger budget setup

checklist, creating for 98-105

V
VendPaymJournalCreate job

creating 219-222
View details link

adding 106-108

W
Web Services Description Language

(WSDL) 290
wizard

creating 137-149
wizard, AOT objects

MainAccountWizard class 148
MainAccountWizard display menu item 149
MainAccountWizard form 149

Word document
creating, from template 268-271
creating, with repeating elements 272-276

X
XML file

data, exporting to 40-43
data, importing from 43, 44

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Processing Data
	Introduction
	Creating a new number sequence
	Renaming the primary key
	Merging two records
	Adding a document handling note
	Using a normal table as a temporary table
	Copying a record
	Building a query object
	Using a macro in a SQL statement
	Executing a direct SQL statement
	Enhancing the data consistency check
	Exporting data to an XML file
	Importing data from an XML file
	Creating a comma-separated value file
	Reading a comma-seperated value file
	Using the date effectiveness feature

	Chapter 2: Working with Forms
	Introduction
	Creating dialogs using the RunBase framework
	Handling a dialog event
	Building a dynamic form
	Adding a form splitter
	Creating a modal form
	Modifying multiple forms dynamically
	Storing user selections
	Using a Tree control
	Building a checklist
	Adding the View details link

	Chapter 3: Working with Data in Forms
	Introduction
	Using a number sequence handler
	Creating a custom filter control
	Creating a custom instant search filter
	Building a selected/available list
	Preloading images
	Creating a wizard
	Processing multiple records
	Coloring records
	Adding an image to records

	Chapter 4: Building Lookups
	Introduction
	Creating an automatic lookup
	Creating a lookup dynamically
	Using a form to build a lookup
	Building a tree lookup
	Displaying a list of custom options
	Displaying custom options in another way
	Building a lookup based on the record description
	Building the browse for folder lookup
	Building a lookup to select a file
	Creating a color picker lookup

	Chapter 5: Processing Business Tasks
	Introduction
	Using a segmented entry control
	Creating a general journal
	Posting a general journal
	Processing a project journal
	Creating and posting a ledger voucher
	Changing an automatic transaction text
	Creating a purchase order
	Posting a purchase order
	Creating a sales order
	Posting a sales order
	Creating an electronic payment format

	Chapter 6: Integration with Microsoft Office
	Introduction
	Creating an Excel file
	Reading an Excel file
	Creating a Word document from a template
	Creating a Word document with repeating elements
	Creating a Microsoft Project file
	Sending an e-mail using Outlook

	Chapter 7: Using Services
	Introduction
	Consuming the system query service
	Consuming the system metadata service
	Consuming an existing document service
	Creating a document service
	Consuming a document service
	Using an enhanced document service
	Creating a custom service
	Consuming a custom service
	Consuming an external service

	Chapter 8: Improving Development Efficiency
	Introduction
	Creating a code editor template
	Modifying the Tools menu
	Modifying the right-click context menu
	Searching for an object in a development project
	Modifying the Personalization form
	Modifying the About Microsoft Dynamics
AX dialog

	Chapter 9: Improving Dynamics AX Performance
	Introduction
	Calculating code execution time
	Writing efficient SQL statements
	Caching a display method
	Using Dynamics AX Trace Parser
	Using SQL Server Database Engine Tuning Advisor

	Index

