
www.allitebooks.com

http://www.allitebooks.org

Mobile Application
Penetration Testing

Explore real-world threat scenarios, attacks on mobile
applications, and ways to counter them

Vijay Kumar Velu

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Mobile Application Penetration Testing

Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: March 2016

Production reference: 1070316

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78588-337-8

www.packtpub.com

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

Credits

Author
Vijay Kumar Velu

Reviewers
Akash Mahajan

Swaroop Yermalkar

Commissioning Editor
Veena Pagare

Acquisition Editor
Aaron Lazar

Content Development Editor
Sachin Karnani

Technical Editor
Nirant Carvalho

Copy Editors
Stuti Srivastava

Madhusudan Uchil

Project Coordinator
Nikhil Nair

Proofreader
Safis Editing

Indexer
Tejal Daruwale Soni

Graphics
Jason Monteiro

Production Coordinator
Melwyn Dsa

Cover Work
Melwyn Dsa

www.allitebooks.com

http://www.allitebooks.org

About the Author

Vijay Kumar Velu is a passionate information security practitioner, speaker, and
blogger, currently working as a cyber security technical manager at one of the Big4
consultancies based in India. He has more than 10 years of IT industry experience, is
a licensed penetration tester, and has specialized in providing technical solutions to a
variety of cyber problems, ranging from simple security configuration reviews to cyber
threat intelligence. Vijay holds multiple security qualifications including Certified
Ethical Hacker, EC-council Certified Security Analyst, and Computer Hacking
Forensics Investigator. He loves hands-on technological challenges.

Vijay was invited to speak at the National Cyber Security Summit (NCSS), Indian
Cyber Conference (InCyCon), Open Cloud Conference, and Ethical Hacking
Conference held in India, and he has also delivered multiple guest lectures and
training on the importance of information security at various business schools in
India. He also recently reviewed Learning Android Forensics, Packt Publishing.

For the information security community, Vijay serves as the director of the Bangalore
chapter of the Cloud Security Alliance (CSA) and chair member of the National
Cyber Defence and Research Center (NCDRC).

I would like to dedicate this book to my mother and sister for
believing in me and always encouraging me to do what I like with
all my crazy ideas. Special thanks to my family, friends (Hackerz),
core team (Rachel H Martis, Anil Dikshit, Karthik Belur Sridhar,
Vikram Sridharan and Vishal Patel), and Lokesh Gowda for allowing
me ample amount of time in shaping this book.

A huge thanks to Darren Fuller, my mentor and friend, for
providing his support and insights. Also to the excellent team at
Packt Publishing for all the support that they provided throughout
the journey of this book, specially Sachin and Nirant for their
indubitable coordination.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Akash Mahajan is an accomplished security professional with over a decade's
experience in providing specialist application and infrastructure consulting services
at the highest levels to companies, governments, and organizations around the
world. He is the author of Burp Suite Essentials, Packt Publishing.

Akash is an extremely active participant in the international security community
and a frequent conference speaker. He gives talks as himself, as the head of the
Bangalore chapter of OWASP, the global organization responsible for defining the
standards for web application security, and as a co-founder of NULL, India's largest
open security community.

I want to thank you, Nikhil, for making sure that reviewing this
book was a pleasurable experience.

www.allitebooks.com

http://www.allitebooks.org

Swaroop Yermalkar works as a healthcare security researcher at Philips Health
Systems, India, where he is responsible for thread modeling; security research; and
the assessment of IoT devices, healthcare products, web applications, networks, and
Android and iOS applications. He is the author of the popular iOS security book
Learning iOS Penetration Testing, Packt Publishing and also one of the top mobile
security researchers worldwide, working with Synack, Inc.

He also gives talks and training on wireless pentesting and mobile app pentesting at
various security conferences, such as GroundZero, c0c0n, 0x90, DEFCONLucknow,
and GNUnify.

He has been acknowledged by Microsoft, Amazon, eBay, Etsy, Dropbox, Evernote,
Simple banking, iFixit, and many more for reporting high-severity security issues in
their mobile apps.

He is an active member of NULL, an open security community in India, and is a
contributor to the regular meetups and Humla sessions at the Pune chapter.

He holds various information security certifications, such as OSCP, SLAE, SMFE,
SWSE, CEH, and CHFI. He has written articles for clubHACK magazine and also
authored a book, An Ethical Guide to Wi-Fi Hacking and Security.

He has organized many eminent programs and was the event head of Hackathon—a
national-level hacking competition. He has also worked with Pune Cyber Cell,
Maharashtra Police, in programs such as Cyber Safe Pune. He can be contacted
at @swaroopsy on Twitter.

www.allitebooks.com

http://www.allitebooks.org

www.PacktPub.com

eBooks, discount offers, and more
Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at customercare@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print, and bookmark content
•	 On demand and accessible via a web browser

www.allitebooks.com

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

[i]

Table of Contents
Preface	 ix
Chapter 1: The Mobile Application Security Landscape	 1

The smartphone market share	 2
The android operating system	 3
The iPhone operating system (iOS)	 3

Different types of mobile applications	 3
Native apps	 4
Mobile web apps	 4
Hybrid apps	 5

Public Android and iOS vulnerabilities	 7
Android vulnerabilities	 9
iOS vulnerabilities	 10

The key challenges in mobile application security	 11
The impact of mobile application security	 12
The need for mobile application penetration testing	 13

Current market reaction	 13
The mobile application penetration testing methodology	 14

Discovery	 14
Analysis/assessment	 15
Exploitation	 16
Reporting	 16

The OWASP mobile security project	 16
OWASP mobile top 10 risks	 17

Vulnerable applications to practice	 20
Summary	 20

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Chapter 2: Snooping Around the Architecture	 21
The importance of architecture	 22
The Android architecture	 23

The Linux kernel	 24
Confusion between Linux and the Linux kernel	 24

Android runtime	 25
The java virtual machine	 26
The Dalvik virtual machine	 26

Zygote	 27
Core Java libraries	 27
ART	 28
Native libraries	 28
The application framework	 29
The applications layer	 31

Native Android or system apps	 31
User-installed or custom apps	 31
The Android software development kit	 31
Android application packages (APK)	 32

Android application components	 36
Intent	 36
Activity	 36
Services	 38
Broadcast receivers	 40
Content providers	 41

Android Debug Bridge	 41
Application sandboxing	 42
Application signing	 43
Secure inter-process communication	 43

The Binder process	 44
The Android permission model	 45
The Android application build process	 46
Android rooting	 50

iOS architecture	 51
Cocoa Touch	 53
Media	 53
Core services	 54
Core OS	 55

iOS SDK and Xcode	 55
iOS application programming languages	 56

Objective-C	 56
The Objective-C runtime	 57

Swift	 57

Table of Contents

[iii]

Understanding application states	 57
Apple's iOS security model	 58

Device-level security	 59
System-level security	 59

An introduction to the secure boot chain	 59
System software authorization	 60
Secure Enclave	 60

Data-level security	 60
Data-protection classes	 61
Keychain data protection	 62

Changes in iOS 8 and 9	 62
Network-level security	 63
Application-level security	 63

Application code signing	 63
The iOS app sandbox	 64

iOS isolation	 64
Process isolation	 65
Filesystem isolation	 65
ASLR	 66
Stack protection (non-executable stack and heap)	 66

Hardware-level security	 66
iOS permissions	 66
The iOS application structure	 68
Jailbreaking	 69

Why jailbreak a device?	 70
Types of jailbreaks	 70

Untethered jailbreaks	 70
Tethered jailbreaks	 70
Semi-tethered jailbreaks	 70

Jailbreaking tools at a glance	 71
The Mach-O binary file format	 71

Inspecting a Mach-O binary	 73
Property lists	 74
Exploring the iOS filesystem	 74
Summary	 75

Chapter 3: Building a Test Environment	 77
Mobile app penetration testing environment setup	 77
Android Studio and SDK	 78

The Android SDK	 81
The Android Debug Bridge	 81

Connecting to the device	 82
Getting access to the device	 83

Table of Contents

[iv]

Installing an application to the device	 84
Extracting files from the device	 84
Storing files to the device	 85
Stopping the service	 85
Viewing the log information	 85
Sideloading apps	 86
Monkeyrunner	 86

Genymotion	 87
Creating an Android virtual emulator	 90
Installing an application to the Genymotion emulator	 93
Installing the vulnerable app to Genymotion	 94
Installing the Genymotion plugin to Android Studio	 95
ARM apps and Play Store in Genymotion	 97

Configuring the emulator for HTTP proxy	 99
Setting up the proxy in Wi-Fi settings	 100
Setting up the proxy on mobile carrier settings	 102

Google Nexus 5 – configuring the physical device	 103
The iOS SDK (Xcode)	 104
Setting up iPhone/iPad with necessary tools	 106

Cydia	 106
BigBoss tools	 108
Darwins CC tools	 109
iPA Installer	 109
Tcpdump	 110
iOS SSL kill-switch	 110
Cycript, Clutch, and class-dump	 110

SSH clients – PuTTy and WinSCP	 110
iFunbox at glance	 111
Accessing SSH without Wi-Fi	 112
Accessing SSH with Wi-Fi	 113
Installing DVIA to the device	 114
Configuring the HTTP proxy in Apple devices	 115

Emulator, simulators, and real devices	 116
Simulators	 117
Emulators	 117

Pros	 117
Cons	 117

Real devices	 118
Pros	 118
Cons	 118

Summary	 119

Table of Contents

[v]

Chapter 4: Loading up – Mobile Pentesting Tools	 121
Android security tools	 122

APKAnalyser	 122
The drozer tool	 124

Installing drozer on Genymotion	 126
APKTool	 128

How to make apps debuggable?	 130
The dex2jar API	 132
JD-GUI	 133
Androguard	 133

Isn't Androguard only a malware analysis tool?	 134
Androguard's androlyze shell environment	 135
Automating the analysis of multiple files	 137

Introducing Java Debugger	 137
Debugging	 138
Attaching	 138
Installing Burp CA certificate to the device	 139

The list of other tools	 142
iOS security tools	 143

oTool	 143
SSL Kill Switch	 145
The keychain dumper	 145
LLDB	 146
Clutch	 148
Class-dump-z	 150
Instrumenting with Cycript	 150
Instrumentation using Frida	 152
Hopper	 154
Snoop-it	 156
Installing Burp CA certificate to an iOS device	 160

Summary	 162
Chapter 5: Building Attack Paths – Threat Modeling
an Application	 163

Assets	 164
Threats	 164

Threat agents	 164
Vulnerabilities	 165
Risk	 165
Approach to threat models	 165
Threat modeling a mobile application	 166

Mobile application architecture	 166
Mobile applications and device data	 167

Table of Contents

[vi]

Identifying threat agents	 167
Modes of attacks	 167
Security controls	 167

How to create a threat model?	 168
The attacker view	 168
The device or system view	 169
Discovering potential threats	 169

Threat modeling methodologies	 169
STRIDE	 170
PASTA	 170
Trike	 170

Using STRIDE to classify threats	 170
Spoofing	 171
Tampering	 172
Repudiation	 172
Information disclosure	 173
Denial of service (DoS)	 173
Elevation of privilege	 174

A typical mobile application threat model	 175
Building attack plans and attack trees	 177

Attack scenarios	 178
A sample attack tree for a stolen or missing device	 179
A list of free tools	 180
A commercial tool	 181

Threat model outcomes	 181
Risk assessment models	 181

Business risk	 182
Technical risk	 182

Summary	 183
Chapter 6: Full Steam Ahead – Attacking Android Applications	 185

Setting up the target app	 187
Backend server setup	 187

Analyzing the app using drozer	 190
Android components	 191

Attacking activities	 191
Attacking services	 192
Attacking broadcast receivers	 193
Attacking content providers	 195

Attacking WebViews	 197
SQL injection	 199
Man-in-the-Middle (MitM) attacks	 201

SSL pinning	 203
Hardcoded credentials	 204

Table of Contents

[vii]

Encryption and decryption on the client side	 205
Runtime manipulation using JDWP	 207
Storage/archive analysis	 210
Log analysis	 212
Assessing implementation vulnerabilities	 212
Binary patching	 213
Summary	 214

Chapter 7: Full Steam Ahead – Attacking iOS Applications	 215
Setting up the target	 216
Storage/archive analysis	 218

Plist files	 219
Client-side data stores	 219
The keychain data	 220
HTTP response caching	 220

Reverse engineering	 221
Extracting the class information	 221
Strings	 222
Memory management	 222
Stack smashing protection	 223

Static code analysis	 223
OpenURL schemes	 225

App patching using Hopper	 226
Hardcoded username and password	 228
Runtime manipulation using Cycript	 230

The Bypass login method	 231
Sensitive information in the memory	 233

Dumpdecrypted	 233
Client-side injections	 235

SQL injection	 235
UIWebView injections	 236

Man-in-the-Middle attacks	 237
Beating the SSL cert pinning	 238

Implementation vulnerabilities	 239
Pasteboard information leakage	 239
Keyboard logs	 240
App state preservation	 241

Building a remote tracer using LLDB	 242
Snoop-IT for assessment	 244
Summary	 245

Table of Contents

[viii]

Chapter 8: Securing Your Android and iOS Applications	 247
Secure by design	 249
Security mind map for developers (iOS and Android)	 250
Device level	 251

Platform (OS) level	 252
Screenshots/snapshots	 252
System caching and logs	 252
Cut, copy, and paste	 252
iOS cookie and keychains	 253

Application level	 253
App storage protection	 254
Binary protection	 260

Network level	 266
Certificate pinning	 267
Cipher suites	 267
CFNetwork usage	 267
Secure caching	 268

Server level	 268
Authentication	 268
Authorization	 269
Input/output validations	 269
Injection flaws	 269
Session management	 270
Information leakage	 270

OWASP mobile app security checklist	 271
Mobile app developers checklist	 271

Secure coding best practices	 273
Android	 273
iOS	 274
Vendor-neutral advice	 274
Developer cheat sheet	 274
Developer policies	 274

Post-production protection	 274
Keeping up to date	 275

Summary	 275
Index	 277

[ix]

Preface
The adoption of mobile technology has changed the world, smartphones especially
have become an integral part of everyone's lives and an extension of the corporate
workplace.

With over a billion smartphone users worldwide, mobile applications play a crucial
role in almost everything a device can do. Most of the time, the security of these
applications is always an afterthought when data is the only asset that one would
like to protect.

In short, the purpose of this book is to educate you about and demonstrate application
security weaknesses on the client (device) side and configuration faults in Android and
iOS that can lead to potential information leakage.

What this book covers
Chapter 1, The Mobile Application Security Landscape, takes you through the current state
of mobile application security and provides an overview of public vulnerabilities
in Android and iOS applications. It also teaches you the OWASP mobile top 10
vulnerabilities in order for you to establish a baseline for the vulnerabilities and
principles of securing mobile applications.

Chapter 2, Snooping Around the Architecture, walks you through the importance of an
architecture and dives deep into the fundamental internals of the Android and iOS
architectures.

Chapter 3, Building a Test Environment, shows you how to set up a test environment
and provides step-by-step instructions for Android and iOS devices within a given
workstation.

Preface

[x]

Chapter 4, Loading up – Mobile Pentesting Tools, teaches you how to build the toolbox
within your workstation required to perform an assessment of any given mobile app,
and it also teaches how to configure them.

Chapter 5, Building Attack Paths – Threat Modeling an Application, shows you how to
build attack paths and attack trees for a given threat model.

Chapter 6, Full Steam Ahead – Attacking Android Applications, shows you how to
penetrate an Android application to identify its security weakness and exploit them.

Chapter 7, Full Steam Ahead – Attacking iOS Applications, shows you how to penetrate
an iOS application to exploit the weaknesses and device vulnerabilities that affect
the application.

Chapter 8, Securing Your Android and iOS Applications, teaches you the practical way of
securing Android and iOS applications, starting from the design phase, and how to
leverage different APIs to protect sensitive data on the device.

What you need for this book
The following hardware and software is recommended for maximum results:

•	 Workstation:
°° Windows 7 (64-bit):

°° At least 4 GB of RAM
°° At least 100 GB of hard disk space
°° Java Development Kit 7
°° Active Python
°° Active Perl

°° MacBook (10.10 Yosemite):

°° Xcode with the latest iOS SDK
°° LLDB
°° Python (2.6 or higher)

•	 Mobile devices:

°° A Google Nexus 5 running Android 5.0 Lollipop or higher
°° An iPhone (either 5 or 6) or iPad running iOS 8.4 or higher

Preface

[xi]

All the software mentioned in this book is free of charge and can be downloaded
from the Internet, except Hopper.

Who this book is for
If you are a mobile application evangelist, mobile application developer, information
security practitioner, infrastructure web application penetration tester, application
security professional, or someone who wants to pursue mobile application security
as a career, then this book is for you. This book will provide you with all the skills
you need to get started with Android and iOS pentesting.

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"Cydia installations are pretty much similar to Linux Debian packages; a majority
of the apps are packaged and bundled in the .deb format."

A block of code is set as follows:

public StatementDBHelper(Context paramContext)
 {
 this.context = paramContext;
 StatementOpenHelper localStatementOpenHelper = new
 StatementOpenHelper(this.context);
 SQLiteDatabase.loadLibs(paramContext);
 this.db = localStatementOpenHelper.getWritableDatabase
 ("havey0us33nmyb@seball");
 this.insertStmt = this.db.compileStatement("insert into
 history (userName, date, amount, name, balance) values
 (?,?,?,?,?)");
 this.deleteStmt = this.db.compileStatement("delete from
 history where id = ?");
 }

Any command-line input or output is written as follows:

C:\Hackbox\sdk\platform-tools>adb shell monkey 2

Events injected: 2## Network stats: elapsed time=1185ms (0ms mobile, 0ms
wifi, 1185ms not connected)

Preface

[xii]

New terms and important words are shown in bold. Words that you see on
the screen, for example, in menus or dialog boxes, appear in the text like this:
"Open the iFunbox, click on Quick Toolbar and then click on USB Tunnel."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the color images of this book
We also provide you with a PDF file that has color images of the
screenshots/diagrams used in this book. The color images will help you
better understand the changes in the output. You can download this file
from https://www.packtpub.com/sites/default/files/downloads/
MobileApplicationPenetrationTesting_ColorImages.pdf

www.packtpub.com/authors
https://www.packtpub.com/sites/default/files/downloads/MobileApplicationPenetrationTesting_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/MobileApplicationPenetrationTesting_ColorImages.pdf

Preface

[xiii]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Chapter 1

[1]

The Mobile Application
Security Landscape

Life is now in the palm of your hands. Risk is real, threats are growing!

With more than 1 billion users worldwide and 2.5 million applications (and still
counting) available across Google and Apple digital marketplaces, smartphones have
become commonplace. The difference they make to our lives is stark and simple, and
is impacting our day to day life in multiple ways—in particular, the way we interact,
work, and socialize. The increase in demand from consumer market and processing
power and the capabilities of smartphones, such as storage, GPS, camera, displays,
and so on, have changed the paradigm of the development of mobile applications.
The ability to do online banking, trading, e-mails, airport check-ins, and much more
is just a tap away.

Mobile application development is the hottest type of software development right
now. New surface area equals dangerous surface area, which means that the uppermost
layer of smartphones is mobile apps, which are the potential targets of adversaries.

This chapter will cover the current state of mobile application security. We will
discuss some of the public vulnerabilities that are disclosed in various mobile
applications in order to provide a context and reasons why security needs to be at
the forefront of every mobile application developer's mind. We will also cover the
following topics:

•	 Android and iOS vulnerabilities
•	 Key challenges in mobile application security
•	 The impact of mobile application security

The Mobile Application Security Landscape

[2]

•	 The need for mobile application penetration testing
•	 The mobile application penetration testing methodology
•	 The OWASP (short for Open Web Application Security Project) mobile

top 10 risks

There is no doubt that mobile applications have emerged as one of the most
significant innovations of all time. Statista (for more information, visit http://
www.statista.com/), a statistical portal company, reports that there are around
1.6 million applications in Google Play Store, 1.5 million applications in the Apple
app store, 400,000 applications in the Amazon app store, 340,000 applications in
Windows Phone Store, and 130,000 applications in Blackberry World. These statistics
alone reflect the exponential growth in mobile applications over the years.

Numerous applications are introduced in stores every single week. At the same time,
thousands of cyber criminals, also known as hackers, keep a tab on these applications
by constantly looking for new applications that are published to the stores and try
to compromise the user information or embed any malicious programs by various
techniques. None of the development frameworks currently used are proven as
immune to security issues.

The smartphone market share
Understanding the market share will give us a clear picture about what cyber
criminals are after and also what could be potentially targeted. The mobile application
developers can propose and publish their applications on the stores, being rewarded
by a revenue sharing of the selling price.

The following screenshot referenced from www.idc.com provides us with the overall
smartphone OS market, 2015:

Since mobile applications are platform-specific, a majority of software vendors are
forced to develop the applications for all the available operating systems.

http://www.statista.com/
http://www.statista.com/
www.idc.com

Chapter 1

[3]

The android operating system
Android is an open source Linux-based operating system for mobile devices
(smartphones and tablet computers). It was developed by the Open Handset
Alliance, which was led by Google and other companies. Android OS is Linux-based,
and it can be programmed in C/C++, but most of the application development is
done in Java (Java access to C libraries via JNI, short for Java Native Interface).

The iPhone operating system (iOS)
iOS was developed by Apple Inc. It was originally released in 2007 for the iPhone,
iPod Touch, and Apple TV. Apple's mobile version of the OS X operating system
used in Apple computers is iOS. BSD (short for Berkeley Software Distribution)
is Unix-based and can be programmed in the Objective C and Swift languages.

Different types of mobile applications
In the modern realm, mobile applications are also called mobile apps. There are
thousands of user-friendly apps on the market for most specific needs, starting
from chatting, multi-video conferencing, games, health check-ups, gambling,
communities, trading, other financial services, and so on and so forth.

One of the interesting future technologies in the mobile apps space is the development
of mobile apps running on iOS and Android devices, where the app can listen for
signals from beacons in the physical world and react accordingly, called iBeacon.

The apps are broadly categorized into the following types:

•	 Native apps
•	 Mobile web apps
•	 Hybrid apps

The Mobile Application Security Landscape

[4]

Native apps
Native applications that reside in the mobile operating system are pushed/installed
through the respective app stores. These apps are typically built using development
tools and languages (Xcode and Objective C, Swift for iOS apps, and Android Studio
and Java for Android apps) and are designed for a particular platform and can take
advantage of all the device features, such as the usage of the camera, GPS, phone
contact list, and so on. The following screen capture of a well-known game is a solid
example of a native mobile application:

Mobile web apps
Mobile web applications are non-native applications. Most of them are HTML5,
JavaScript, and CSS applications with a web interface supporting the native
application look and feel. Users first access them as they would access any
other web page, and these are mobile-optimized web pages.

Chapter 1

[5]

These applications became popular when HTML5 came around and people started
to utilize the functionality of native applications from browser. The development
and testing of these applications are easy since they all have tooling support.

The following screen capture shows one of the banking web applications:

Hybrid apps
Hybrid applications have two definitions. One definition is of a combination of
web- based content and native components accessing services on the mobile device,
most notably, storing or using storage. Another definition is of a client-server
architecture of mobile applications. An example is a mobile enterprise application.

The Mobile Application Security Landscape

[6]

These are web apps built into native mobile framework and take advantage of the
cross-compatibility of web technologies, such as HTML5, CSS, and JavaScript. The
following is a screen capture of a well-known news mobile application, which is an
example of a hybrid app:

Why does it matter?
The changes to the programming languages in order to develop
applications force developers to maintain multiple code bases.
Cyber attackers follow users; the mobile application threat scape
has grown significantly grown over the years.

Chapter 1

[7]

Public Android and iOS vulnerabilities
Before we proceed with the different types of vulnerabilities on Android and iOS,
this section introduces you to Android and iOS as operating systems and covers
various fundamental concepts that need to be understood in order to gain experience
in mobile application security.

Year Android iOS
2007/2008 1.0 iPhone OS 1

iPhone OS 2
2009 1.1 iPhone OS 3

1.5 (Cupcake)
2.0 (Eclair)
2.0.1(Eclair)

2010 2.1 (Eclair) iOS 4
2.2 (Froyo)
2.3-2.3.2(Gingerbread)

2011 2.3.4-2.3.7 (Gingerbread) iOS 5
3.0 (HoneyComb)
3.1 (HoneyComb)
3.2 (HoneyComb)
4.0-4.0.2 (Ice Cream Sandwich)
4.0.3-4.0.4 (Ice Cream Sandwich)

2012 4.1 (Jelly Bean) iOS 6
4.2 (Jelly Bean)

2013 4.3 (Jelly bean) iOS 7
4.4 (KitKat)

2014 5.0 (Lollipop) iOS 8
5.1 (Lollipop)

2015 iOS 9 (beta)

The preceding table comprises the operating system releases year after year.

www.allitebooks.com

http://www.allitebooks.org

The Mobile Application Security Landscape

[8]

An interesting research conducted by Hewlett Packard (HP), a software giant that
tested more than 2000 mobile applications from 600+ companies, has reported
the following statistics (for more details, visit http://www8.hp.com/h20195/V2/
GetPDF.aspx/4AA5-1057ENW.pdf):

•	 97% of applications tested access at least one private information source of
those applications

•	 86% of applications failed to use simple binary hardening protections against
modern-day attacks

•	 75% of applications do not use proper encryption techniques when storing
data on a mobile device

•	 71% of the vulnerabilities resided on the web server
•	 18% of applications sent usernames and password over HTTP, while another

18% implemented SSL/HTTPS incorrectly

So, the key vulnerabilities to mobile applications arise due to the lack of security
awareness, usability versus security trade-off by developers, excessive application
permissions, and lack of privacy concerns. Couple this with a lack of sufficient
application documentation, and it leads to vulnerabilities that developers are
not aware of.

Usability versus security trade-off
For every developer, it is difficult to provide an application with high
security and high usability. Making any application secure and usable
takes a lot of effort and analytical thinking.

Mobile application vulnerabilities are broadly categorized into the following
categories:

•	 Insecure transmission of data: Either the application does not enforce
any kind of encryption for the data in transit on the transport layer, or the
implemented encryption is insecure.

•	 Insecure data storage: Apps store the data in a plaintext or obfuscated
format or hardcoded keys in the mobile device. An example e-mail exchange
server configuration on an Android device using the e-mail client stores the
username and password in the plaintext format, which is easy to reverse by
any attacker if the device is rooted.

http://www8.hp.com/h20195/V2/GetPDF.aspx/4AA5-1057ENW.pdf
http://www8.hp.com/h20195/V2/GetPDF.aspx/4AA5-1057ENW.pdf

Chapter 1

[9]

•	 Lack of binary protections: Apps do not enforce any anti-reversing,
debugging techniques.

•	 Client-side vulnerabilities: Apps do not sanitize data provided by the
client side leading to multiple client-side injection attacks, such as cross-site
scripting, JavaScript injection, and so on.

•	 Hard-coded passwords/keys: Apps designed in such way that hardcoded
passwords or private keys are stored on the device.

•	 Leakage of private information: Apps unintentionally leaking private
information; this could be the use of a particular framework and obscurity
assumptions by the developers.

Rooting/jail-breaking
Rooting/jail-breaking refers to the process of removing
the limitations imposed by the operating system on
devices through the use of exploit tools. It enables users
to gain complete control of the device operating system.

Android vulnerabilities
In July 2015, a security company called Zimperium announced that it has discovered
a high risk vulnerability Stagefright (Android bug) inside the Android operating
system. They deemed it as a unicorn in the world of Android risk, and it was practically
demonstrated in one of the hacking conferences in the US on August 5, 2015.
More information can be found at https://blog.zimperium.com/stagefright-
vulnerability-details-stagefright-detector-tool-released/, and a public
exploit is available at https://www.exploit-db.com/exploits/38124/.

This has made Google release security patches for all Android operating systems,
which is believed to be 95% of Android devices, an estimated 950 million users.
The vulnerability is exploited through a particular library, which can let attackers
take control of an Android device by sending specifically crafted multimedia
services, such as MMS.

If we take a look at the Superuser and other similar application downloads from Play
Store, there are around 10 million to 50 million downloads. It can be assumed that
more than 50% of Android smartphones are rooted.

https://blog.zimperium.com/stagefright-vulnerability-details-stagefright-detector-tool-released/
https://blog.zimperium.com/stagefright-vulnerability-details-stagefright-detector-tool-released/
https://www.exploit-db.com/exploits/38124/

The Mobile Application Security Landscape

[10]

The following graph shows Android vulnerabilities from 2009 till January 2016.
There are currently 184 reported vulnerabilities for Android's Google operating
system (chart taken from http://www.cvedetails.com/product/19997/Google-
Android.html?vendor_id=1224).

More features that are introduced to the operating system in the form of applications
act as additional entry points that allow cyber attackers or security researchers to
circumvent and bypass the controls that were put in place.

iOS vulnerabilities
On June 18, 2015, a password stealing vulnerability, also known as XARA (Cross
Application Resource Attack), outlined for iOS and OS X cracked the Keychain
services on jail broken and non-jail broken devices. The vulnerability is similar to
the cross-site request forgery attack in web applications. In spite of Apple's isolation
protection and its App Store's security vetting, it was possible to circumvent the
security controls mechanism. It clearly provided the need to protect the cross-app
mechanism between the operating system and the app developer. Apple rolled
out a security update week after the XARA research. More information can be
found at http://www.theregister.co.uk/2015/06/17/apple_hosed_boffins_
drop_0day_mac_ios_research_blitzkrieg/.

The following graph shows the iOS vulnerabilities from 2007 until January 2016.
There are around 805 reported vulnerabilities for Apple IPhone OS (http://www.
cvedetails.com/product/15556/Apple-Iphone-Os.html?vendor_id=49).

http://www.cvedetails.com/product/19997/Google-Android.html?vendor_id=1224
http://www.cvedetails.com/product/19997/Google-Android.html?vendor_id=1224
http://www.theregister.co.uk/2015/06/17/apple_hosed_boffins_drop_0day_mac_ios_research_blitzkrieg/
http://www.theregister.co.uk/2015/06/17/apple_hosed_boffins_drop_0day_mac_ios_research_blitzkrieg/
http://www.cvedetails.com/product/15556/Apple-Iphone-Os.html?vendor_id=49
http://www.cvedetails.com/product/15556/Apple-Iphone-Os.html?vendor_id=49

Chapter 1

[11]

As we can see, year after year, the vulnerabilities kept on increasing. A majority of
the vulnerabilities reported are denial-of-service (DoS) attacks. This vulnerability
makes the application unresponsive.

Primarily, the vulnerabilities arise due to insecure libraries or overwriting with
plenty of buffer in the stacks.

The key challenges in mobile application
security
Mobile security is not just about code running safely on the mobile device.
Starting from the design, it also includes the residual data and data in motion.

Looking at the data and behavior of the application, any interesting mobile
application will send back data to the server. Lots of applications use third-party
web services. Some prevalent problems associated with data on different layers are
mentioned as follows:

•	 Network layer: Data travelling from mobile applications from the device
over Wi-Fi and data services

•	 Hardware layer: Baseband attacks, broadband attacks, and RF range attacks
that can affect mobile features

•	 Operating system layer: Jailbreaking or rooting vulnerability in mobile
platforms

•	 Application layer: API (short for Application Program Interface) of the
device without administrative permissions

The Mobile Application Security Landscape

[12]

Since mobile apps are platform-dependent, the key challenges change from the
traditional applications; some of the key challenges are as follows:

•	 Threat Model: Mobile applications that have a significantly complicated
threat model cannot be the same for different versions of operating systems,
devices, and manufacturers. We will discuss this in more detail in Chapter 5,
Building Attack Paths – Threat Modeling an Application.

•	 Third party code: Developers including code developed by third-parties
or open source.

•	 Obscure assumptions by developers: Assumes that the code is inherently
secure.

•	 Outsourcing: Intellectual property. Part of the code or entire code is not
available since it was outsourced.

•	 Privacy of the data: It is important to comply with regulations and end
user's private data. How many third-party API's are integrated? Who collects
what data?

The impact of mobile application security
Mobile applications put the security and privacy of an individual or corporation at
risk. With more vulnerabilities attributed to mobile application flaws than any other
category today, security has become a core concern for the business. Several attacks
are associated with the way the mobile apps are used and the specific methods the
app utilizes to communicate with the user.

Mobile applications can communicate over various services, which increases the
attack surface significantly. Some of these services from which applications can
obtain input are Bluetooth, Short Message Service (SMS), microphone, camera,
and near field communication (NFC), to name a few.

The two primary impacts of mobile application security are data at rest and data
in motion:

•	 Data at rest: Mobile applications are unique in the sense that they reside
on the user's phone. As such, threats to these devices are primarily from
mobile malware and other applications. Mobile devices are easily susceptible
to theft, getting lost, or being acquired and used by someone else. Mobile
app developers should also consider the possibility of data recovery using
forensics techniques.

•	 Data in motion: Sensitive information disclosure and man-in-the-middle
(MiTM) attacks are possible risks when the data is not secured in transit.

Chapter 1

[13]

•	 Other considerations: Mobile app developers should also consider the
implications of malicious applications that are installed from various
nonstandard app stores. Developers will always have the war game with
the latest improvements in mobile malwares, such as Zeus MITMO, Spitmo,
Citmo, Tatanga, which have bypassed plenty of mobile security features.

The need for mobile application penetration
testing
Today's mobile apps have complex security landscapes; vulnerabilities might occur
due to various reasons, starting from misconfiguration to code level bugs.

As the need for mobile applications is increasing, multiple companies ranging,
from Fortune 500 to start-ups, are investing lots of money on security programs
to protect critical information that is handy for every single individual at their
fingertip. Naturally, the companies intend the applications to be secured. Their
goal is to identify the loopholes while battling cyber attackers and prevent a
serious data breach.

As discussed earlier about the importance of mobile applications, penetration test
is one of the most effective ways to identify known and unknown weaknesses and
functionality bugs (which will lead to a vulnerability) in these applications. By
attempting to circumvent security controls and bypassing security mechanisms,
a security tester is able to identify ways in which a hacker might be able to
compromise an organization's security. Potentially, it leads to damaging the image
of an organization that they have built over a period of time while building trust.

Current market reaction
The need for security in mobile applications has paved the market to create multiple
job roles with respect to mobile security. Some of these job roles are as follows:

•	 Mobile Application Security Expert
•	 Mobile Security Compliance Specialist
•	 Mobile Technology Risk Manager
•	 Mobile Device Management Specialist
•	 Security Architect – Mobile Application
•	 Mobile Application Privacy Specialist
•	 Mobile Application Security Assurance Specialist

The Mobile Application Security Landscape

[14]

The mobile application penetration
testing methodology
The mobile application penetration testing methodology is typically based on the
application security methodology. The focus shifts from traditional application
security, where the primary threat is from multiple sources over the Internet. The key
difference is in the client-side security, filesystem, hardware, and network security.
Traditionally for mobile applications, an end user is in control of the device.

Everything starts with understanding the risk environment of mobile applications.

Discovery
Information collection is an important point to keep in mind during the penetration
testing process:

•	 Open Source Intelligence: It may be possible to find out more information
about an application. This includes checking through search engines,
third-party libraries that are used, or finding leaked source code through
the use of source code repositories, developer forums, and social media.

•	 Understanding the platform: Understanding the platform is a crucial part
of application penetration testing. This gives a clear understanding from
an external point of view when it comes to creating a threat model for
the application.

•	 Client side vs Server side scenarios: It is crucial to understand the type of
application (native, hybrid, or web) and work on the test cases.

Chapter 1

[15]

Analysis/assessment
Mobile applications have a unique way of assessment or analysis, and testers have to
check the applications pre and post installation.

•	 Static analysis: Static analysis is performed, without executing the application,
on the provided or decompiled source code and accompanying files.
Sometimes, you might be provided with just the source code of the application.

•	 Archive analysis: The application installation packages for the Android and
iOS platforms will be extracted and examined to review configuration files
that have not been compiled into the binary.

•	 Local file analysis: When the application is installed, it is given its own
directory in the filesystem. During the usage of the application, it will write
to and read from this directory. Files accessed by the application will be
analyzed to verify.

•	 Reverse engineering: Reverse engineering will be attempted to convert the
compiled applications into human-readable source code. If possible, code
review will be performed to understand the internal application functionality
and search for vulnerabilities. In the case of Android, the application code
may be modified and recompiled to enable access to debug information
during dynamic analysis.

•	 Dynamic analysis: Dynamic analysis is performed while the application is
running on the device. This includes forensic analysis of the local filesystem,
network traffic between the application and server, and assessment of the
app's local inter-process communication (IPC) surface(s).

•	 Network and web traffic: The device will be configured to route their
connection to the server through a test proxy controlled by the security tester.
This will enable web traffic to be intercepted, viewed, and modified. It will
also reveal the communication endpoints between the application and the
server so that they can be tested. Network traffic that is not traversing the
Web and is happening at a lower layer in the TCP/IP protocol stack, such as
TCP and UDP packets, will also be intercepted and analyzed.

•	 Inter-process communication endpoint analysis: Android mobile apps are
composed of the following IPC endpoints:

°° Intents: These are signals used to send messages between
components of the Android system

°° Activities: These are screens or pages within the application
°° Content providers: These provide access to databases

The Mobile Application Security Landscape

[16]

°° Services: These run in the background and perform tasks regardless
of whether the main application is running

°° Broadcast receivers: These receive and possibly act on intents
received from other applications or the Android system

Exploitation
To demonstrate real-world data breach, a properly executed exploitation can happen
very quickly:

•	 Attempt to exploit the vulnerability: Acting upon the discovered
vulnerabilities to gain sensitive information or perform malicious activities.

•	 Privilege escalation: Demonstration of identified vulnerability to gain
privileges and attempt to become a super user.

Reporting
Clearly, a thorough mobile application penetration testing methodology involves a
great deal of work in data collection, analysis, and exploitation:

•	 Risk assessments for the findings: Analyze business criticality of the
application and the security risk posture and categorize the overall risk
rating of the assessed application

•	 Final report: Detailed report about the discovered vulnerabilities, including
the overall risk rating, description, the technical risk associated, technical
impact, the business impact and proof of concept, and recommendations to
fix the findings

The OWASP mobile security project
OWASP operates as a nonprofit group and does not belong to any particular
technology company. It operates as a community of like-minded professionals,
so it has its unique position to provide impartial information to individuals and
companies. Every document, framework, tool, technique, and other details are
made available to Internet users for free. OWASP always supports innovation and
encourages experiments for the betterment of secure software development.

Mobile application security problems are as serious as web application security
problems. Attackers have begun to focus on mobile application security issues
and are actively developing tools and techniques to detect and exploit them. This
community has taken the initiative for mobile application security (https://www.
owasp.org/index.php/OWASP_Mobile_Security_Project) in order to help testers
and developers.

https://www.owasp.org/index.php/OWASP_Mobile_Security_Project
https://www.owasp.org/index.php/OWASP_Mobile_Security_Project

Chapter 1

[17]

The mobile security project aims at providing security insights into development in
order to reduce the security impact or the likelihood of exploiting the vulnerability.
The project focus is on the mobile application layer, but platform risks are considered
as well.

OWASP mobile top 10 risks
In 2013, OWASP polled the industry for new vulnerability statistics in the field of
mobile applications. The following risks were finalized in 2014 as the top 10 dangerous
risks as per the result of the poll data and the mobile application threat landscape:

•	 Weak Server Side Controls: Internet usage via mobile has surpassed
fixed Internet access. This is largely due to the emergence of hybrid and
HTML5 mobile applications. Application servers that form the backbone
of these applications must be secured on their own. The OWASP top 10
web application project defines the most prevalent vulnerabilities in this
realm. Vulnerabilities such as injections, insecure direct object reference,
insecure communication, and so on may lead to a complete compromise of
the application server, and adversaries who have gained control over the
compromised servers can push malicious content to all the application
users and compromise user devices as well.

The Mobile Application Security Landscape

[18]

•	 Insecure Data Storage: Insecure Data Storage, as the name says, is about the
protection of the data in storage. Mobile applications are used for all kinds of
tasks, such as playing games, fitness monitors, online banking, stock trading
and so on, and most of the data used by these applications is stored in the
device itself inside SQLite files, XML data stores, log files, and so on. Or, they
are pushed on to cloud storage. The types of sensitive data stored by these
applications may range from location information to bank account details.
Application programming interfaces (APIs) that handle the storage of this
data must securely implement encryption/hashing techniques so that an
adversary with direct access to these data stores via theft or malware will
not be able to decipher the sensitive information stored in them.

•	 Insufficient Transport Layer Protection: All the hybrid and HTML 5 apps
work on the client-server architecture; emphasis for data in motion is a
must as the data will have to traverse through various channels and will be
susceptible to eavesdropping and tampering by adversaries. Controls such
as SSL/TLS, which enforce confidentiality and integrity of the data, must be
verified for correct implementations on the communication channel from the
mobile application and its server.

•	 Unintended Data Leakage: Certain functionalities of mobile applications
may place sensitive data of the users in locations where it can be accessed by
other applications or even by malware. These functionalities may be there in
order to enhance usability or user experience but may have adverse effects in
the long run. Actions such as OS data caching, key press logging, copy/paste
buffer caching, and implementations of web beacons or analytics cookies for
advertisement delivery can be misused by adversaries to gain information
about victims.

•	 Poor Authorization and Authentication: As mobile devices are the most
personal devices, developers utilize this to store important data such as
credentials locally in the device itself and come up with specific mechanisms
to authenticate and authorize users locally for the services that the user is
requesting via the application. If these mechanisms are poorly developed,
adversaries may circumvent these controls and unauthorized actions can be
performed. As the code is available to adversaries, they can perform binary
attacks and recompile the code to access authorized content directly.

•	 Broken Cryptography: This relates to weak controls that are used to protect
the data. The usage of weak cryptographic algorithms, such as RC2, MD5,
and so on, that can be cracked by adversaries will lead to encryption failure.
Improper encryption key management when the key is stored in locations
accessible to other applications or the use of a predictable key generation
technique will also break the implemented cryptography techniques.

Chapter 1

[19]

•	 Client Side Injection: Injection vulnerabilities are the most common
web vulnerabilities according to OWASP web top 10. These are due to
malformed inputs that cause unintended actions, such as altering database
queries, command execution, and so on. In the case of mobile applications,
malformed inputs can be serious threat at the local application level and
on the server side as well (such as the risk of Weak Server Side Controls).
Injections at the local application level that mainly target data stores may
result in conditions such as access of paid content locked for trial users or
file inclusions, which may lead to abusing functionalities such as SMS,
and so on.

•	 Security Decisions via Untrusted Inputs: The implementation of certain
functionalities such as use of hidden variables to check the authorization
status can be bypassed by tampering them during transit via web service
calls or inter-process communication calls. This may lead to privilege
escalations and unintended behavior of the mobile application.

•	 Improper Session Handling: The application server sends back the session
token on successful authentication with the mobile application. These session
tokens are used by the mobile applications to request for services. If these
session tokens remain active for a longer duration and adversaries obtain
them via malware or theft, the user account can be hijacked.

•	 Lack of Binary Protections: Mobile application source code is available
to everyone. An attacker can reverse engineer the application and insert
malicious code components and recompile them. If these tampered
applications are installed by a user, they would be susceptible to data theft,
become victims of unintended actions, and so on. Most of the applications
do not ship with mechanisms such as checksum controls, which help in
deducing whether the application is tampered or not.

In 2015, there was another poll under the OWASP Mobile security group named the
Umbrella Project. This leads us to have M10 to M2; the trends lock binary protection
to take over weak server-side controls; however, we will have to wait until the 2015
final list. More details can be found at https://www.owasp.org/images/9/96/
OWASP_Mobile_Top_Ten_2015_-_Final_Synthesis.pdf.

https://www.owasp.org/images/9/96/OWASP_Mobile_Top_Ten_2015_-_Final_Synthesis.pdf
https://www.owasp.org/images/9/96/OWASP_Mobile_Top_Ten_2015_-_Final_Synthesis.pdf

The Mobile Application Security Landscape

[20]

Vulnerable applications to practice
The open source community has been proactively designing plenty of mobile
applications that can be utilized for practical tests. These are specifically designed
to understand the OWASP top 10 risks. Some of these applications are as follows:

•	 iMAS: This is a collaborative research project initiated by the MITRE
Corporation (http://www.mitre.org/). It is for application developers
and security researchers who would like to learn more about attack and
defense techniques in iOS. More information about iMAS can be found at
https://github.com/project-imas/about.

•	 GoatDroid: A simple functional mobile banking application for training
with location tracking developed by Jack and Ken for Android application
security is a great starting point for beginners. More information about
GoatDroid can be found at https://github.com/jackMannino/OWASP-
GoatDroid-Project.

•	 iGoat: OWASP's iGOAT project is similar to the WebGoat web application
framework. It's designed to improve the iOS assessment techniques for
developers. More information on iGoat can be found at https://code.
google.com/p/owasp-igoat/.

•	 Damn Vulnerable iOS Application (DVIA): This is an iOS application that
provides a platform for developers, testers, and security researchers to test
their penetration testing skills. This application covers all of OWASP's top
10 mobile risks and also contains several challenges that one can solve and
come up with custom solutions for. More information on this can be found
at http://damnvulnerableiosapp.com/.

•	 MobiSec: This is a live environment for the penetration testing of mobile
environments. This framework provides devices, applications, and
supporting infrastructure. It provides a great exercise for testers to view
vulnerabilities from different points of view. More information on MobiSec
can be found at http://sourceforge.net/p/mobisec/wiki/Home/.

Summary
In this chapter, we saw the evolution of mobile applications over the years and the
need for mobile application security—in particular, the role of penetration testing for
mobile applications. Understanding the methodology, common vulnerabilities around
iOS and Android are a crucial part of mobile application penetration testing. We
covered the current mobile application security landscape and existing methodologies,
such as OWASP, along with several concepts and vulnerable applications for testing.
We will discuss the different Android and iOS architectures in the next chapter.

http://www.mitre.org/
https://github.com/project-imas/about
https://github.com/jackMannino/OWASP-GoatDroid-Project
https://github.com/jackMannino/OWASP-GoatDroid-Project
https://code.google.com/p/owasp-igoat/
https://code.google.com/p/owasp-igoat/
http://damnvulnerableiosapp.com/
http://sourceforge.net/p/mobisec/wiki/Home/

[21]

Snooping Around the
Architecture

Architecture is the art of carefully designing the structure of something.

In electronics engineering, mobile architecture is the conceptual design and
fundamental operational structure of a system or product. Applications are among the
most crucial elements of any mobile platform. In this chapter, we will snoop around or
take a deep dive into aspects of the Android and iOS architectures, which will help you
harvest vulnerabilities. We will also cover the following:

Android:

•	 Understanding Android components
•	 How Android components communicate with each other, that is,

inter-process communication (IPC)
•	 Building our knowledge of the Dalvik virtual machine and Android runtime
•	 How the Android security model works
•	 The difference between the DEX and OAT file formats

iOS:

•	 How to navigate through an iOS application's directory structure
•	 The different programming languages in iOS – Objective C and Swift
•	 How the iOS security model is designed
•	 How to inspect a Mach-O binary
•	 How iOS process isolation works
•	 How to inspect property lists

Snooping Around the Architecture

[22]

By the end of this chapter, you should walk away with the knowledge of how IPC
works within Android, the difference between Dalvik and ART executables, and
also understand how to navigate through an iOS application and understand how
to identify important files and items of information that will help you in the process
of identifying vulnerabilities.

The importance of architecture
Architectures are primarily concerned with structures and the interrelationships of
the components that are used to build them.

Let's take an example; here we have two pictures, the Great Pyramid of Giza and
Cologne Cathedral:

On the left is the Great Pyramid, which is 150 meters high and built using 7.5 million
tons of rocks.

The other picture is Cologne Cathedral, which is 157 meters high and built using
160,000 tons of rocks.

Now the question that arises in our mind is why we are comparing these two.
What is the difference? Are both of these built using different technologies?

No, both are built using rocks. The immensely colossal difference is the way
the architects have utilized architecture in the Pyramid and Cathedral. This has
allowed the Cathedral to have more space, more height, and a lot more light by
using virtually 50% fewer rocks. This is the motivation behind architecture. An
application that is built with a lack of perceivable architecture will end up being a
big ball of mud. With this in mind, let's go ahead and explore the Android and iOS
architectures and their components.

Chapter 2

[23]

The Android architecture
Many a time, Android is referred to as Java on Linux. As a developer or security
researcher, it is very important to understand the architecture behind any platform.
Android's architecture is based on the Linux 2.x and 3.x kernels and acts as the
hardware abstraction layer.

It consists of:

•	 Key applications
•	 An operating system (which is the abstraction between the software and

hardware components)
•	 Middleware
•	 The runtime environment
•	 Different services
•	 Native and custom libraries

It can be represented as five different layers, as shown in the following architecture
diagram:

All the components are tuned and integrated to provide the optimal application
development and execution environment for mobile contrivances.

Now, let's take a bottom-up approach toward understanding the different layers of
the Android stack.

Snooping Around the Architecture

[24]

The Linux kernel
The Linux kernel is the heart of the Android OS. Linux has extensible portability
features, that is, it enables easy compilation of programs on different hardware
platforms, and was therefore chosen as the best candidate to start with.

The Linux kernel, which is in the bottom part of the software stack, supports basic
OS functionalities such as process management/scheduling, memory management,
and device management. It also forms an important abstraction layer by providing
access to various device drivers so that the app can interact with hardware devices.

A simple example for this is the automatic tilt/rotation adjustment of the screen to
match the orientation of the mobile device. The following questions arise:

•	 How does this happen?
•	 What triggers the device to perform this operation?
•	 How does the OS come to know that the device orientation has changed?

Let's have a look.

Hardware sensors in the device, such as the accelerometer and gyroscope, detect
minute movements and changes in orientation and relay this hardware data to
the kernel. The device drivers convert this information into software instructions
and these are picked up by the apps; if the app is programmed to respond to
these instructions, it does so accordingly. As shown in the following diagram, the
Linux kernel contains all the drivers that are required for the hardware to function
appropriately and it also performs power management.

In a nutshell, the Linux kernel is responsible for the management of memory,
resources, power, and drivers.

Confusion between Linux and the Linux kernel
The term Linux is customarily used for the entire operating system and the term
kernel designates the core of the operating system. Saying Android is predicated
on the Linux kernel does not denote that it is another Linux distribution; it is just
that the core operating system is Linux, and not all Linux packages can be installed
on Android.

Chapter 2

[25]

Why does Android use the Linux kernel?
The reason is that the Linux kernel has a proven driver model
along with its extensive collection of drivers. It additionally
provides a well-defined security model and an abundance of core
operating system capabilities, which have been working very well
for a very long period of time.

Android runtime
Although Android is developed in Java, the runtime layer of the Android
architecture consists of the Dalvik virtual machine (DVM), core Java libraries,
and recently, a new virtual machine called Android runtime (ART).

The following figure is from Android 4.4 KitKat, which allows developers to build
applications for ART:

Snooping Around the Architecture

[26]

The DVM runs Java-programmed apps. The DVM does not claim to be a Java
virtual machine (JVM) due to licensing reasons, but fulfills the same purpose. The
reason for this is that Dalvik is optimized to run on small-sized devices with limited
memory. Due to performance reasons, the DVM is started only once. Each new
instance of it is cloned by a system service called Zygote. The following diagram
provides the structure of Android runtime:

The java virtual machine
When any Java program is compiled, we get bytecode. The JVM is a virtual machine
(a virtual machine is an application that acts as an operating system) that can execute
this bytecode. The following diagram illustrates how a Java program is compiled:

The Dalvik virtual machine
In Android, the bytecode generated by the JVM is taken as the input to the DVM,
which will then produce a lightweight format called .dex.

Why do we need to convert Java bytecode to .dex?

The answer is that in the case of mobile devices, we don't have the amount of power,
memory, and RAM as compared to PC. This gives us the reason why we need more
lightweight applications. Java bytecode is suitable for heavyweight applications on
PCs. The DVM employs compression techniques and reduces redundant information
in the classes and then produces the .dex file. For example, if you have 1,000 classes
written in your Java source code, all these 1,000 classes will be available as one single
file in a format called the Dalvik executable format (.dex).

Chapter 2

[27]

The following flowchart shows the conversion of Java source code (.java) to Dalvik
byte code (.dex):

Zygote
When an Android device boots, one of the first processes to be started is Zygote,
which is responsible for:

•	 Starting up a virtual machine
•	 Preloading the core libraries
•	 Initializing various shared structures

A Google versus Oracle court case centers on the use of Java in Android,
particularly in relation to API calls (https://en.wikipedia.org/
wiki/Oracle_America,_Inc._v._Google,_Inc.)

Core Java libraries
These are different from the Java SE and Java ME libraries within the core Java
libraries. They are often referred to as Dalvik libraries. These include:

•	 DVM-specific libraries: These libraries are specifically used to interact
directly with a DVM instance. It is unlikely that the development community
will use them.

•	 Java interoperability libraries: These are nothing but a list of classes that
hold in the core Java run time libraries; typically, the libraries provide
support in file operations, handling strings and other networking.

www.allitebooks.com

https://en.wikipedia.org/wiki/Oracle_America,_Inc._v._Google,_Inc
https://en.wikipedia.org/wiki/Oracle_America,_Inc._v._Google,_Inc
http://www.allitebooks.org

Snooping Around the Architecture

[28]

ART
When Google introduced Android Lollipop, the DVM was completely replaced by
ART. ART has many advantages over the DVM, such as:

•	 Ahead-of-time (AOT) versus old just-in-time (JIT) compilation
•	 Improved garbage collection
•	 Better application performance

The following diagram illustrates how ART code is compiled:

Native libraries
When programming in Java, it is not possible to interact with some low-level
components. For example, if you have to display graphics on the device screen,
it is not possible to directly write code in Java; instead, one can write a function
or method to call other native programs that are non-Java programs.

These non-Java programs are the native libraries in Android. All the libraries
are written in C, C++, and other languages. This native code is installed using the
Android Native Development Kit (NDK), which provides a wide range of libraries
and headers that allow developers to code and build different activities.

The following diagram shows the different native libraries available on the current
Android platform:

Chapter 2

[29]

Every original equipment manufacturer (OEM) can customize it accordingly.
Typically, the libraries module includes the following:

•	 The media framework: This framework is based on PacketVideo OpenCore
platforms, and it supports standard audio, video, still-frame formats and
codec plugins. The StageFright vulnerability was uncovered using a media
framework (libStageFright) weakness that allowed full remote access to
attackers using the feature that automatically allowed video files to play
on an Android device when received through an MMS or other means.

•	 The surface manager: This supports the display subsystem and renders
2D and 3D graphics layers from multiple applications.

•	 Freetype: This is used to render bitmap and text.
•	 OpenGL ES: OpenGL is a cross-platform graphics API that specifies a

standard software interface for 3D graphics-processing hardware.
•	 SSL (short for Secure Socket Layer): This is based on OpenSSL

(www.openssl.org).
•	 SQLite: This is a lightweight relational database engine available to all

applications through the application framework API.
•	 WebKit: This is a browser engine based on the open source WebKit browser

(www.webkit.org) and it supports the rendering of pages, full CSS, JavaScript,
DOM, and AJAX as well as single-column and adaptive view rendering.

•	 SGL (short for Scalable Graphics Library): This is used for 2D graphics
libraries.

•	 libc: A BSD-derived implementation of standard C system libraries for
embedded Linux-based devices.

The application framework
The application framework provides the infrastructure for developers to build
much more complex applications or tools. The entire development lifecycle of
the application is managed using this framework.

For example, a developer who is building an app that requires the use of the
notification feature need not write a huge line of code—he or she can simply call the
Notification Manager API. This framework provides a majority of the APIs that are
required to use an Android device.

www.openssl.org
www.webkit.org

Snooping Around the Architecture

[30]

The following diagram provides a list of the frameworks that are currently available
on the Android platform:

The key services in this framework are:

•	 Activity Manager: The entire lifecycle of an app is provided by the Activity
Manager, and, it is also responsible for managing the different states of an
activity to ensure that apps using different processes are running smoothly,
which we will discuss in detail in a following section.

•	 Content Providers: This component allows applications to publish and share
data with other applications. Encapsulating data, defining data security,
and managing the structure of data is taken care of by Content Provider.
One such example is when all the input provided by the user to an app is
structured and stored in an SQLite database.

•	 Resource Manager: Access to all embedded resources that are not coded in
the app, for example, graphics, localized strings, and other layout files, are
taken care of by the Resource Manager.

•	 Notifications Manager: This provides mobile user notifications and
display alerts.

•	 View System: Different sets of view, event dispatching, and other important
buttons and lists are handled by the View System.

•	 Package Manager: This controls all the application packages that are
installed on the device.

•	 Telephony Manager: This supplies telephone services available on the
device, such as status and subscriber information

•	 Location Manager: This provides location services about location changes,
which allow an application to receive updates.

•	 Window Manager: It is responsible for organizing the screen that is displayed
to the user, and it also provides the decision-making capabilities of the surface
when the application is to be rendered and layered accordingly on the display
window.

Chapter 2

[31]

The applications layer
This is the first layer in the Android stack, where a majority of users interact with the
mobile through applications. There are two kinds of applications that are normally
available on the device, as displayed in the following figure:

Now let's explore the differences.

Native Android or system apps
System apps are applications that are preinstalled on the phone by the OEM and
shipped along with the phone. The applications loaded by default include the e-mail
client, SMS program, Phone, Calendar, Maps, phone dialer, Browser, Contacts, and
others. These apps normally cannot be uninstalled from the device and are present
in the /system folder.

User-installed or custom apps
These apps are downloaded and installed by the user from various distribution
platforms, such as Google Play and Amazon Store. These apps are present in the
/data/data/ folder within the Android filesystem. We will discuss the details
of the security features in the coming sections.

The Android software development kit
In simple terms, the Android software development kit is a repository of tools
that help developers create apps on Android; it can be downloaded from
https://developer.android.com/sdk/index.html.

The kit includes all the tools, documentation, platforms (which include data, skins,
images, and sample OS images), and add-ons (such as Google maps). A majority of
developers now use Android Studio, which is based on IntelliJ, and some use Eclipse
as the IDE for Java programming (https://eclipse.org/downloads/).

We will discuss in detail how to install and configure the Android SDK to perform
security assessment in Chapter 3, Building a Test Environment.

https://developer.android.com/sdk/index.html
https://eclipse.org/downloads/

Snooping Around the Architecture

[32]

Android application packages (APK)
Installable files in Android are called Android application package (APK) files.
This is the file format used by Google to distribute applications for the Android
operating system and is similar to .exe files in Windows.

APK files are nothing but ZIP files that are based on the JAR file format.

Let's take an example. For demonstration purposes, we have downloaded the Gmail
application from the app store, renamed the .apk file to .zip and extracted it into a
folder. Typically, this file includes the items shown in this screen capture:

•	 assets: This folder is similar to the res folder; the majority of the resources
that are in it require less memory. Asset manager classes support these files.
Many a time, you can find some interesting references left behind by the
developers, which can be beneficial for security researchers.

•	 META-INF: This folder typically includes the .MF (manifest file) and
certificates that are used to sign the app.

•	 res: This folder contains all the resources required by the application that are
not compiled into resources.arsc.

Chapter 2

[33]

•	 AndroidManifest.xml: This is the file that contains all the details about the
application and its functionality, permissions, and so on. When you unzip an
.apk file, this file won't be readable due to the .jar format; you may need
tools such as ApkTool or Androguard to make it plaintext.

•	 classes.dex: This is the compiled Dalvik executable file.
•	 resources.arsc: This file contains all the precompiled resources that are

required by the app, for example, all the XML files that support the UI
component of an app.

•	 lib: This folder is not visible in the previous screen capture, but it contains
the compiled code that is specific to a processor, such as armeabi, arm64-v8a,
x86, and MIPS.

AndroidManifest.xml
What is in the application = AndroidManifest.xml

The AndroidManifest.xml file provides complete information about an Android
application. In simple terms, the Android platform is going to read this particular
file before as well as after installation in order to start the app. The manifest file is
responsible for the following:

•	 It names the Java package for the application
•	 It describes the Android application's components; we will discuss this in

detail in the next section.
•	 It determines which process will present which application components
•	 It declares permissions
•	 It lists the libraries packaged and linked against the app
•	 It contains a declaration of the minimum level of the API that the

application requires

Snooping Around the Architecture

[34]

The structure of the Android manifest file
The following screen capture shows the general structure of any AndroidManifest.
xml file:

All the elements in this file have to be legal elements; no custom or personal elements
or attributes are supported in general.

The following table summarizes all the elements that appear in a manifest file:

Element name Description
<action> Adds an action to the intent filter
<activity> Declares an activity
<activity-alias> Is an alias for an activity
<application> Is the declaration of the application
<category> Adds a category name to an intent filter
<data> Adds data specification to an intent filter

Chapter 2

[35]

Element name Description
<grant-uri-permission> Is used to grant permission to content providers and

allows you to specify datasets
<instrumentation> Allows you to enable applications' interaction with

the system
<intent-filter> Specifies how the declared Android component

(activity, service, or broadcast receiver) should
respond

<manifest> Is the base element of the AndroidManifest.xml
file

<meta-data> Describes the details of the metadata that can be
included, such as API keys

<permission> Declares who can access which components
specifically; everything is specified in this
permission tag

<permission-group> Lets you to create a particular group within the
application

<permission-tree> Is used to declare the base name of the permission
<provider> Is the content provider component declaration
<receiver> Is the broadcast receiver component declaration
<service> Is the service component declaration
<supports-screens> Used to declare the screen sizes, compatibility, and

modes that the application can support
<uses-configuration> Indicates which hardware and software features the

application requires
<uses-feature> Declares the hardware and software features used

by the application
<uses-library> Is used to specify all the shared libraries that the

application is linked against
<uses-permission> Declares the user-specific permissions that the

application must be provided in order to function
properly

<uses-sdk> Is used to declare API-level package information

Understanding the AndroidManifest.xml file is the first and foremost element
of Android application penetration testing. Some of the fantastic features that the
application provides to users can be translated into a risky feature if there is a
mismatch in using the right elements.

Snooping Around the Architecture

[36]

Android application components
Android applications are made using application components. Each component is
equipped with a different means of working with the operating system. The overall
behavior of the application vitally depends on these components. Understanding
these components in detail will be crucial during the penetration testing activity
because any app will have at least one of these components. There are four different
types of Android components, as shown in the following diagram:

All Android components are closely connected using intents.

Intent
Intents are the key part of inter-app communication; these are objects that contain
message information about the operation that needs to be performed. Intents comes
in two forms:

•	 Explicit: These intents have components specified through classes, which
provide the exact component to be run

•	 Implicit: These intents do not have any specific components defined; instead,
they allow the Android system to evaluate and register a component based
on the data produced by the intent

Three of four types of Android application components being launched by an
asynchronous call is called an intent. It associates the base between the components
in an app.

Activity
An activity is nothing but the representation of single screen with a user interface
(UI) in which users can view and interact. For example, a phone application displays
a dialer, a different activity provides an interface for typing the contact name, and
another activity provides an interface to dial the number.

Chapter 2

[37]

An activity is created by the system by calling a set of lifecycle methods, which act as
the core, similar to the base level of a wedding cake. Subsequently, different stages
of the activity lifecycle correspond to different levels of the cake. The system moves
the activity state step by step to the top as and when newer activities invoke their
callback methods. The top level of the cake represents the foreground location at
which the activity is accessible to the user for interaction. Similarly, when the user
starts moving away from the activity, the system moves the activity state step by
step from the top to the bottom. The activity is paused and waits to be resumed or is
stopped and waits to be restarted. The base is again where the activity is concluded
and destroyed.

It is important to understand how the activity lifecycle works; let's now walk through
what happens when a mobile application is launched through a step pyramid,
with a simple illustration of the activity lifecycle from Google's Android developer
community website (https://developers.google.com):

The Android system launches the application by initiating code in an activity instance
instead of utilizing the main() method used in traditional programming constructs.
It does so by summoning the callback methods in a specific way corresponding to the
stages of its lifecycle. There are specific sequences of callback methods to start up an
activity and also tear it down. The preceding diagram shows how every callback takes
the activity a step toward the Resumed state at the top. To step down from an activity,
there is a callback method. The activity can also be returned to the Resumed state from
the Paused and Stopped states.

https://developers.google.com

Snooping Around the Architecture

[38]

The typical activities include:

•	 The launch activity: The launch activity is invoked by the onCreate()
method. This method is called when a user clicks on the application from
the home screen of the device.

•	 The create activity: New instances of activities are invoked by calling the
onCreate() method. This method is called only once for each activity. At the
end of the activity, the onStart() and onResume() methods are called by the
system. The user will be able to see an activity when the onStart() method
is called. Once the activity is started, the onResume() method is called and
the activity is in the Resumed state.

•	 The pause activity: An activity is paused by invoking by the onPause()
method. When one activity is overtaken by another activity, the new activity
comes to the foreground but the first activity is still visible in the background
and is paused. Information that is required to be persisted is saved in case the
user moves on to another activity.

•	 The resume activity: An activity is resumed by invoking the onResume()
method. This method is used to resume an activity from the Paused state.
When an activity comes into the foreground, the onResume() method is
called by the system. The activity resumes its tasks and continues to perform
considering the user to be focused on the activity.

•	 The stop activity: An activity is stopped by invoking the onStop() method.
This method is used to stop an activity when it is no longer visible, and it
releases all the resources that were used by the activity.

•	 The restart activity: An activity is restarted by invoking the onRestart()
method. This method is used when the activity comes to the foreground from
the Stopped state. The onStart() method is also invoked by default along
with the onRestart() method.

•	 The destroy activity: An activity is destroyed by invoking the onDestroy()
method. This method is used to completely end an activity. All the
information and resources are released and this method usually cleans
up any resources that were not released by the onStop() method.

Services
A service is an Android application component that can be started and stopped
without the UI. These are typically used in long-running tasks in the background.
Some examples of common services include the SMS receiver and Wi-Fi network
alerts/status. Although each of these services runs outside of the user's view, these
components take advantage of IPC facilities by sending and receiving intents.

Services are further divided into two categories: unbound and bound.

Chapter 2

[39]

Unbound or start services
An unbound service is an application component that starts the service and will
continue to run in the background even when the original component that initiated it
is destroyed. For example, on turning on Bluetooth, a service would be available and
ready to discover other devices in the background.

Bound service
A bound service can bind from one application activity or component to another
using bindservice(). This service would run as long as the activities or components
are bound to it. It is destroyed only when they are unbound.

A simple flowchart from Google's Android developer community website illustrates
the two types of service lifecycles (http://developer.android.com/guide/
components/services.html):

http://developer.android.com/guide/components/services.html
http://developer.android.com/guide/components/services.html

Snooping Around the Architecture

[40]

The important methods in a service lifecycle are:

•	 onStartCommand(): This method is called when startService() is called
•	 onBind(): This method is used when another component wants to bind with

the service calling bindService()
•	 onCreate(): All the service initiation is done by calling this method; it is

never called again
•	 onDestroy(): This method is called or used to destroy the service in order to

clean up the created threads, receivers, and so on

Broadcast receivers
A broadcast receiver is an Android component used to answer system
announcements and register for system or application events.

For example, when you plug in a headset, charger, or USB cable to a device, the
alerts you see on the screen are broadcast receivers. The following screenshot shows
that the volume button has been pressed and the notification is shown to the user:

The permission set on a broadcast receiver limits the apps that can send intents to
that or any declared endpoint.

Chapter 2

[41]

Content providers
In Android, you cannot share one application's data with another due to the
restrictions imposed by the operating system. A content provider is used to share
data between multiple applications, for example, a social networking application
such as WhatsApp accessing the contacts, calls logs, and photo gallery. Unlike other
application components, the ability to read from or write to content providers can be
restricted with permissions.

Consider the following code snippet from an example AndroidManifest.xml file:

<provider android:name="NotePadProvider"
 android:authorities="com.google.provider.NotePad"
 android:exported="false">
 <grant-uri-permission android:pathPattern=".*" />
</provider>

The application declares a provider named NotePadProvider. The
com.google.provider.NotePad class implements the ContentProvider.
The android:authorities is the list of one or more URI authorities that
identify the data offered by the content provider.

Android Debug Bridge
Before we begin to understand the process of building an Android application, it is
very important that you have good understanding of Android Debug Bridge (adb),
which is a simple command-line tool from which you can communicate with an
Android device or emulator.

adb communication happens between a client, server, and daemon (adbd). This
is one tool that we will be using throughout the Android application penetration
testing process, especially to identify potential vulnerabilities in the file structure
or the storage of an application on the device, permission details at the OS level,
shared information, and so on.

Snooping Around the Architecture

[42]

The following screen capture shows two sample commands to display devices using
the adb command and also to access the shell of the device. We will take a wider look
at how to use this powerful tool for attacking an Android application in Chapter 6,
Full Steam Ahead – Attacking Android Applications.

Application sandboxing
Android utilizes the well-established Linux protection ring model to isolate
applications from each other. In Linux, assigning a unique ID segregates every user.
This ensures that there is no cross-account data access. Similarly, in Android, every
app is assigned its own unique ID and run as a separate process. As a result, an
application sandbox is formed at the kernel level and the application will only be
able to access the resources it is permitted to access. This subsequently ensures that
the app does not breach its work boundaries and initiate any malicious activity.

The following diagram provides an illustration of the Android sandbox mechanism:

Chapter 2

[43]

From this diagram, we can see how the unique Linux UID created per application is
validated every time a resource mapped to the app is accessed, thus ensuring a form
of access control.

Application signing
Android apps bank on digital certificates to achieve entity and data origin
authentication with the app developer. Usually, self-signed certificates (certificates
signed by a certificate authority are valid as well) are used to digitally sign an
app before its installation. As this is a form of asymmetric cryptography, the app
developer holds a private key that can be used for pushing updates to the app. This
diagram provides the list of steps performed post the application development:

Secure inter-process communication
As discussed in the previous sections, apps are run as separate processes with
discrete Linux identities in order to achieve sandboxing. System services also follow
the same method by running as separate processes but with a caveat, that is, they
have more privileges. Therefore, in order to manage and synchronize data and
signals between these processes, an inter-process communication (IPC) framework
is needed. The IPC framework enables us to share information between components
and helps in privilege separation as well as data isolation.

In Android, this is achieved with the use of the Binder framework. Binder comes
from OpenBinder (https://en.wikipedia.org/wiki/OpenBinder).

The Binder framework enables us to run communication between separate processes.
Android application components such as intents and content providers are also built
on top of this Binder framework. Using Binder, it is possible to perform a wide range
of actions, such as invoking methods on remote objects by considering them as local
objects, invoking methods synchronously and asynchronously, and sending file
descriptors across processes.

https://en.wikipedia.org/wiki/OpenBinder

Snooping Around the Architecture

[44]

Let's consider that an application in process A wants to utilize the service exposed
by another process, B. So, process A becomes the client requesting the service from
process B, which eventually becomes the server. The communication model using
Binder is shown in the next screenshot, in the following subsection.

The Binder process
All the IPC using Binder is enabled through Android's modified kernel through the
driver found at /dev/binder. By default, these device drivers have read and write
permissions that are set globally, which means any application can read from or
write to them. Each Binder service has a unique 32-bit token value, which is assigned
using the Binder mechanism. This token remains unique across all the processes in
the system. The client can interact with the service after determining the token value
using Binder's context feature.

A client and a server cannot communicate directly in Binder; all the client-side
interfaces are over proxies and server-side interfaces over stubs. These proxies and
stubs hold the responsibility of data exchange and the commands that are sent over
the Binder Driver.

Chapter 2

[45]

If Process A requests to utilize a service used by Process B, the Binder driver adds
the UID and PID values of Process B for each transaction. Ultimately, Process A can
check the values obtained and decide whether the transaction should be completed
or not. This enforces security and also the Binder token acts as a security token for
the communication.

An interesting presentation was demonstrated at the Black Hat
conference of 2014 about the Man in the Binder attack. Its paper,
Man in the Binder: He who Controls IPC, Controls the Droid, can be
downloaded from https://www.blackhat.com/docs/eu-14/
materials/eu-14-Artenstein-Man-In-The-Binder-He-Who-
Controls-IPC-Controls-The-Droid.pdf.

The Android permission model
It is very beneficial to understand the Android permission model, which is
implemented for every single app while assessing it for privacy concerns. The
manifest file includes all the permissions that the application will require. The
following screenshot shows the application requesting access to multiple resources.
This is presented to the user so that he or she can make a decision whether to install
or not.

https://www.blackhat.com/docs/eu-14/materials/eu-14-Artenstein-Man-In-The-Binder-He-Who-Controls-IPC-Controls-The-Droid.pdf
https://www.blackhat.com/docs/eu-14/materials/eu-14-Artenstein-Man-In-The-Binder-He-Who-Controls-IPC-Controls-The-Droid.pdf
https://www.blackhat.com/docs/eu-14/materials/eu-14-Artenstein-Man-In-The-Binder-He-Who-Controls-IPC-Controls-The-Droid.pdf

Snooping Around the Architecture

[46]

This provides the full information to the user before the application is installed to
the device about what type of permissions the application is seeking. A majority of
users who are want to install the app on their device fail to read the permissions that
they are granting the app, which means they are exposing the device to malicious
activities or making it more vulnerable.

Until Android 5.0 Lollipop, it was not possible to install an
application with custom permission selection. You could either
cancel the installation or accept all the requested permissions
from the application. Android 6.0 Marshmallow allows users
to customize the permission model.

Android permissions are categorized into the following levels:

Permission Type Description

Normal These permissions are granted without user approval,
mostly during installation. These are default values.

Dangerous User approval for these is mandatory during installation.

Signature
Certificates that are shared should be declared with
permissions, and the permission is automatically granted
for an app that is signed by the same certificate.

Signature or
system

Only permissions that the system grants to the
application within the Android system image or that are
signed with the same certificate as the app are declared.

The Android application build process
This section provides an overview of how an Android application is compiled and
executed and what the stages of its execution process are. This process is very useful
while reverse-engineering the application.

Chapter 2

[47]

The following diagram illustrates the application build development stages:

Now, let's divide this build process into the following steps:

1.	 Generating the resource code:
All the application resource files, such as XML files, AndroidManifest.
xml, libraries, and source files are compiled using the aapt tool, as a result
of which the R.java file is produced, so that all the resources from the Java
code are referenced correctly.

2.	 Generating the interface code:
The next step is to create the interfaces for communication between a client
and service; this is achieved using the aidl tool, which converts all the .aidl
files into Java interfaces.

3.	 Compiling the Java code:
Here, the Java compiler (JVM) is introduced, which will then convert R.java
and the .aidl files into .class files (Java bytecode).

4.	 Converting the bytecode:
Now that we have compiled all the files into bytecode, it is then passed on to
dextool, which converts the .class files into Dalvik bytecode. All the other
code utilized from third-party libraries and .class files is used to produce
the .dex file.

Snooping Around the Architecture

[48]

5.	 Prebuild packaging:
The typical files and folders available in Android that we discussed in the
previous section, such as resources.arsc, assets, lib, and .dex, are
compiled into a .apk file using the ApkBuilder tool.

6.	 Signing the package:
Finally, once the packaging is done, it is then signed with a release/debug
key using JarSigner or a similar tool.

7.	 Optimizing the package:
Some developers use the Zipalign tool post the .apk file build in order to
optimize memory usage while the application runs on a device.

An excellent understanding of the application build process will enhance your skill
in reverse engineering.

The Dalvik VM has been completely replaced by ART now. The following diagram
illustrates the architectural differences between ART and the Dalvik VM:

The main difference is that the JIT compiler has been replaced with AOT; AOT could
be the next-generation JIT. ART essentially compiles the DEX file into completely
native code that will be in the .oat file format.

Chapter 2

[49]

Some of the key tools in this section are:

•	 aapt (short for Android Asset Packaging Tool): It allows developers to
create, view, and update compatible archives such as ZIP, JAR, and APK.
This tool is also used to compile resource files into a binary asset.

•	 AIDL (short for Android Interface Definition Language): Helps developers
define the interface through programming at the client and service level in
order to provide communication between each other through inter-process
communication.

•	 Dexopt: Dexopt is a tool that is used to optimize DEX files within Dalvik.
It helps by optimizing the loading of classes and ensuring proper resource
allocation. It initializes a VM, loads the DEX files, and checks for instructions,
which can be optimized so that they do not require additional resources
during the execution. Dexopt provides .odex files as output.

•	 JIT: JIT (short for just-in-time) is the execution engine within some JVM
implementations; it is known to require more memory but execute faster.
When the method is called for the first time, the JIT compiler will compile
the bytecode of the method to native machine-level code.

•	 Dex2oat: Dex2oat compiles the DEX files. Instead of interpretation by a
virtual machine, it allows the execution of native code by the processor.
It works on the concept of AOT compilation, which is different from DVM
in that uses JIT compilation. Dex2oat provides ELF (short for Executable and
Linkable Format) files as output.

•	 ODEX files: ODEX files are created as a result of the optimization performed
on application packages. These files will be present within the .apk file and
indicate that the application package has been optimized to save resources.

•	 ELF files: ELF files are the replacement for ODEX files in ART. The .dex files
supply the same bytecode to ART as they do in Dalvik. The dex2oat utility on
ART compiles the application on the device and the compiled ELF executable
is called for application execution.

Snooping Around the Architecture

[50]

The following diagram is the ELF header file format:

The header contains the following parts:

•	 ELF Header: This header holds the full details of the file in different sections
that hold all the code, instructions, and data.

•	 Program header table: This table holds the information required to create a
process image. It is basically an array of structures describing information
required from a segment or other system for program execution.

•	 Section header table: This table contains information about linking program
code, relocation, and other details.

•	 Segments: This file contains one or more sections that could be loadable,
dynamic, and so on.

Android rooting
The method of using various means of exploitation in firmware to remove
restrictions imposed by the operating system is termed as rooting in Android
and jailbreaking in iOS. Some OEMs provide devices with root enabled.

Chapter 2

[51]

There are plenty of reasons to root Android, not limited to:

•	 Sideloading applications, which is the term used for installing applications
from non-traditional app stores (other than Play Store)

•	 Customizing the CPU and kernel
•	 The ability to have full application access to move it around in the storage,

to back it up, and so on
•	 The ability to install custom firmware, normally referred to as CustomROM

Here are some rooting tools:

•	 Wondershare
•	 Kingo
•	 SRSroot
•	 Root Genius
•	 iRoot

There are also tools that can be used without connecting to the computer, such as
SuperSU Pro, Superuser, and framearoot.

Rooting or jailbreaking phones might void your phone's warranty and
will be your own risk. It is recommended not to use your personal phone
for penetration testing purposes.

iOS architecture
iOS is the operating system that runs on all Apple mobile devices (iPhones, iPads,
and iPods), which it shares with the Darwin foundation (https://en.wikipedia.
org/wiki/Darwin_(operating_system)).

Unlike other major operating systems, iOS manages the hardware device and
provides the technologies required to build the applications on the platform.
There are a few default system apps shipped along with the devices, such as Mail,
Calendar, Calculator, Phone, Safari, and so on, which are typically used by users.

It is not possible to run iOS and Mac OS X on any other hardware apart from Apple's,
and it is restricted to use iOS on any other mobile device apart from Apple's for
security and commercial reasons. This has paved the way for jailbreakers to find iOS
jailbreak attacks, which we will discuss in the Jailbreaking section. The attack surface
for applications has increased significantly, with more than 1 million applications in
App Store.

https://en.wikipedia.org/wiki/Darwin_(operating_system)
https://en.wikipedia.org/wiki/Darwin_(operating_system)

Snooping Around the Architecture

[52]

The iOS architecture is layered, and technologies are packaged as frameworks. A
framework typically contains all the necessary libraries that are shared dynamically,
and it also consists of images and header files. The following image illustrates the
layers of the iOS software stack:

It consists of four abstraction layers:

•	 Cocoa Touch
•	 Media
•	 Core Services
•	 Core OS

As development begins, a majority of developers utilize higher-level frameworks
due to various factors, such as object-oriented abstractions, it being easy to write
code with fewer lines, and also encapsulating other features. However, if one
utilizes lower-level frameworks, they have to make sure that their higher-level
frameworks do not expose them. The main reason for the attack surface on
higher-level frameworks being more is due to a vast majority of development
activities taking place using those frameworks. Let's now go ahead and explore
the different abstraction layers.

Chapter 2

[53]

Cocoa Touch
The Cocoa Touch layer is bundled with a crucial set of frameworks, written in
Objective-C, and developed based on the Mac OS X Cocoa API. The appearance
of any app that you see in iOS is developed using the Cocoa Touch framework.
Notifications, multi-tasking, touch-specific inputs, all the high-level system services,
and other key technologies are supported by this layer and it also provides basic
infrastructure support for an app.

The following is the list of important frameworks that are extensively used in
this layer:

•	 The Address Book UI framework
•	 The Event Kit UI framework
•	 The Game Kit framework
•	 The iAd framework
•	 The Map Kit framework
•	 The Message UI framework
•	 The Twitter framework
•	 The UIKit framework

Media
We often comment on multimedia experiences, particularly on sound clarity and
video quality. This role is basically played by the media layer in the iOS stack, which
provides the iOS with audio, video, graphics, and AirPlay (over-the-air) capabilities.

As with the Cocoa Touch layer, the media layer includes a set of frameworks that can
be utilized by developers:

•	 The Assets Library framework
•	 The AV Foundation framework
•	 The Core Audio framework
•	 The Core Graphics framework
•	 The Core Image framework
•	 The Core MIDI framework
•	 The Core Text framework
•	 The Core Video framework

Snooping Around the Architecture

[54]

•	 The Image I/O framework
•	 The GLKit framework
•	 The Media Player framework
•	 The OpenAL framework
•	 The OpenGL ES framework
•	 The Quartz Core framework

Core services
The core services layer provides the fundamental services that all applications can
use. Like other layers, the core services layer provides a list of frameworks:

•	 The Accounts framework
•	 The Address Book framework
•	 The Ad Support framework
•	 The CFNetwork framework
•	 The Core Data framework
•	 The Core Foundation framework
•	 The Core Location framework
•	 The Core Media framework
•	 The Core Motion framework
•	 The Core Telephony framework
•	 The Event Kit framework
•	 The Foundation framework
•	 The Mobile Core Services framework
•	 The Newsstand Kit framework
•	 The Pass Kit framework
•	 The Quick Look framework
•	 The Social framework
•	 The Store Kit framework
•	 The System Configuration framework

Chapter 2

[55]

Core OS
Core OS contains low-level fundamental services and technologies for end users.
It comprises the OS X kernel. It taps the I/O reads between the CPUs and device.
This is the layer that sits on top of the device hardware, which provides low-level
networking, access to external accessories, and fundamental system services such
as memory management, filesystem, and so on.

Core OS contains the following frameworks:

•	 The Accelerate framework
•	 The Core Bluetooth framework
•	 The External Accessory framework
•	 The Generic Security Services framework
•	 The Security framework

Missing Application Layer?
We have not included application layer in the architecture
diagram since there are confusions about application layer,
assuming the application layer can communicate only to cocoa
touch. Which is not true. Apps can communicate with any
layer of the iOS software stack.

iOS SDK and Xcode
The iOS software development kit provides resources, technologies, and tools
to developers that can help them make better choices about how to design and
implement apps. Developed and supported by Apple Inc. and released in February
2008 to develop native apps for devices, it was previously called the iPhone SDK.

The iOS SDK itself is a free download, but beta-version SDKs a are paid service for
developers. One must enroll in the Apple Developer Program (https://developer.
apple.com/programs/).

Xcode is the integrated development environment (IDE) suite developed by Apple
for the development of iOS apps (https://developer.apple.com/xcode/).

The latest version of the iOS SDK is iOS 9.3 beta 4, released on February 22, 2016
(https://developer.apple.com/ios/download/).

https://developer.apple.com/programs/
https://developer.apple.com/programs/
https://developer.apple.com/xcode/
https://developer.apple.com/ios/download/

Snooping Around the Architecture

[56]

The following restrictions apply:

•	 These SDKs can only be installed on Mac OS X
•	 Apple does not impose a license on computers that are not running Mac OS

X or are not Apple branded

There are alternatives available. The tech community has come out with alternatives
such as installing a virtualized (VMware) version of OS X in Windows and Ubuntu.

iOS application programming languages
A majority of the apps developed for iOS are native apps; these are developed
in Objective-C and, since 2015, Swift. Apple has mandated the use of Swift for
developing apps. This would be easy for those who have some background in
object-oriented programming languages.

Objective-C
Objective-C is a strict superset of and augmentation to C; it is an object-oriented
language that adds Smalltalk-style (an object-oriented, dynamically typed, reflective
programming language) messaging to the C programming language and was created
by Brad Cox and Tom Love in the early 1980s. This means that the Objective-C
compiler can also compile C programs. The following diagram provides the sample
Objective-C runtime and its components:

In Objective-C, one does not call the object one sends a message to. This language
is mainly used on the Mac OS X and iOS operating systems and their APIs. The
apps are compiled to native code and linked against the iOS SDK and Cocoa
Touch frameworks.

You may need more information about Objective-C, which you can find at
https://developer.apple.com/library/mac/documentation/
cocoa/conceptual/ProgrammingWithObjectiveC/
Introduction/Introduction.html.

https://developer.apple.com/library/mac/documentation/cocoa/conceptual/ProgrammingWithObjectiveC/Introduction/Introduction.html
https://developer.apple.com/library/mac/documentation/cocoa/conceptual/ProgrammingWithObjectiveC/Introduction/Introduction.html
https://developer.apple.com/library/mac/documentation/cocoa/conceptual/ProgrammingWithObjectiveC/Introduction/Introduction.html

Chapter 2

[57]

The Objective-C runtime
In Objective-C, all classes are designed in such a way that they are aware of their
own states and are also capable of altering their own implementation during
runtime. All compiled files (.h and .m files) are linked with a library called
libobjc.A.dylib.

The source code of the dylib file can be found at http://www.
opensource.apple.com/source/cctools/cctools-525/
ld/dylibs.c?txt.

This dylib file provides in-memory runtime functionality to the Objective-C language.
A majority of attacks during runtime depend on the libraries that are linked.

Swift
Swift is a new programming language created by Apple Inc. specifically for iOS,
OS X, and watchOS and is potentially a replacement for Objective-C in the future.
It was first released on June 2, 2014, with a stable release on September 15, 2015.
Interestingly, this proprietary software will be transitioning to open source in the
near future (https://developer.apple.com/swift/).

Similar to Apple's Swift programming language, Google came up with
Go and Dart in 2011. However, Dart was open source. It missed the
mark and is less used nowadays. Swift is mandated by Apple to develop
apps starting from iOS 8 and Yosemite. You may need more information
about Swift development, which you can find at https://developer.
apple.com/library/prerelease/mac/documentation/Swift/
Conceptual/Swift_Programming_Language/index.html#//
apple_ref/doc/uid/TP40014097-CH3-XID_0.

Understanding application states
When getting ready to assess iOS apps, it is important to understand application
states. There are various app states in iOS. Apple allows only one state at a time.
These states changes according to user or system actions.

For example, suppose you press the Home key and a text message (SMS) comes in,
the currently running app changes its state to the background.

http://www.opensource.apple.com/source/cctools/cctools-525/ld/dylibs.c?txt
http://www.opensource.apple.com/source/cctools/cctools-525/ld/dylibs.c?txt
http://www.opensource.apple.com/source/cctools/cctools-525/ld/dylibs.c?txt
https://developer.apple.com/swift/
https://developer.apple.com/library/prerelease/mac/documentation/Swift/Conceptual/Swift_Programming_Language/index.html#//apple_ref/doc/uid/TP40014097-CH3-XID_0
https://developer.apple.com/library/prerelease/mac/documentation/Swift/Conceptual/Swift_Programming_Language/index.html#//apple_ref/doc/uid/TP40014097-CH3-XID_0
https://developer.apple.com/library/prerelease/mac/documentation/Swift/Conceptual/Swift_Programming_Language/index.html#//apple_ref/doc/uid/TP40014097-CH3-XID_0
https://developer.apple.com/library/prerelease/mac/documentation/Swift/Conceptual/Swift_Programming_Language/index.html#//apple_ref/doc/uid/TP40014097-CH3-XID_0

Snooping Around the Architecture

[58]

The following are the different states in iOS:

•	 Not running: The app will be in this state before it is started and after it is
terminated or aborted.

•	 Inactive: An app in the inactive state is still running in the foreground but
will not receive any events or alerts. For example, if you are browsing a
website in Safari and receive an SMS and switch over to the SMS app, Safari
is in the inactive state until it is reopened.

•	 Active: When an app icon is clicked, it goes into the active state and will run
in the foreground and actively receive events.

•	 Background: In this state, apps run in the background. This means that apps
will execute code without user interaction. For example, your Facebook app
provides notification alerts as soon as you connect to the Internet without
even opening the app through a mechanism called background execution.

•	 Suspended: Apps that have not been used for a long time and are not
performing any tasks will enter the suspended state but still be available
in memory.

Apple's iOS security model
Before we jump to iOS apps in detail, it is vital to understand the fundamental
security features of the iOS platform, which are crucial during app assessment.

The following diagram shows the security architecture of an iOS device and also
provides an overview of security features implemented from the hardware level to
software stack:

Chapter 2

[59]

Roughly, we can split the iOS security model into these layers:

•	 Device-level security
•	 System-level security
•	 Data-level security
•	 Network-level Security
•	 Application-level security
•	 Hardware-level security

Device-level security
At the device level, the security model ensures that unauthorized personnel cannot
use a user's device. It enforces a device-level lock such as a PIN or passcode, remote
wipe using mobile device management (MDM), and options such as activation lock
and finding your phone. Strategically, Apple allows the signing of configuration
profiles, thereby allowing companies to centrally distribute all configurations to
the device in a secure way.

These kinds of configurations can restrict the device by applying a particular
policy, for example, making it impossible to open an application on a device
that is jailbroken.

System-level security
Apple designed the system-level security layer by authorizing system software on
or before system updates and implementing a secure boot chain, Secure Enclave,
and Touch ID.

An introduction to the secure boot chain
The mechanism that maintains the integrity of iOS from firmware initialization to
loading the code into the iOS device is termed the secure boot chain or chain of trust.
This chain ensures at all levels from hardware to software, making sure the code are
trusted, tamperproof and run only on valid devices.

The following diagram shows the secure boot chain in an iOS device:

Snooping Around the Architecture

[60]

The entire chain of trust is maintained since Apple signs every single step. In simple
terms, when a device is booted, the processor executes the code from Boot ROM,
which is also called the hardware root of trust, and it is essentially connected to the
chip's fabrication, which includes Apple's root CA certificate. Before iOS loads, the
Low Level Bootloader (LLB) needs to be signed by Apple. Once the LLB is passed
and the verification is done, the next stage, iBoot, is loaded, and finally, the iOS
Kernel is executed. iBoot normally acts like the second-level bootloader, which is
responsible for verifying and loading the iOS Kernel into the device.

System software authorization
Normally, software update pushes in iOS are done through iTunes or over the air.
The mechanism by which Apple prevents malicious users from downgrading the
existing iOS version to a lower one is done through system software authorization.

Secure Enclave
To prevent kernel-level attacks, Secure Enclave was introduced at the hardware
level to ensure that integrity is never compromised. This is independent from the
application processor. Interestingly, the version of Secure Enclave used on the latest
A7 or A8 Apple processors comes with unique IDs that are not known to Apple.
Secure Enclave is also responsible for Touch ID sensors, fingerprint verification,
and access approval.

Touch ID
This is nothing but the fingerprinting technology added by Apple to its latest
devices, with which users can protect their devices from unauthorized access.
However, even if Touch ID is enabled, it is possible to unlock the device with
a valid PIN or passcode.

Data-level security
The biggest challenge that developers have to deal with is data storage on mobile
devices. Data-level security is primarily aimed at protecting data that is not in transit.
This is normally achieved by enforcing encryption techniques using hardware and
software components and also through data-protection classes. You can set up the
device in such a way that it can remotely wipe all the data if a predefined number of
attempts has been made to unlock the device in the case of a stolen or lost device.
All the techniques involve encryption keys combined with device passcode or PIN.

We will discuss some important techniques of data protection in the following
subsections.

Chapter 2

[61]

Data-protection classes
Here is a list of important data-protection classes:

•	 NSFileProtectionComplete: It provides complete protection; to access the
file, one must always enter the passcode or use Touch ID.

•	 NSFileProtectionCompleteUnlessOpen: It provides complete protection to
the file unless it is open.

•	 NSFileProtectionCompleteUntilFirstUserAuthentication: It provides
complete protection to the file until it is opened. This is the class most
commonly deployed by third-party application developers.

•	 NSFileProtectionNone: It provides no protection, but still, files in iOS
are encrypted by default.

The following diagram illustrates the data-protection API:

Application developers can protect files or keychain items by using data-protection
classes. This normally includes whether the class protects the files or keychain
items. As illustrated in the preceding diagram, on the left, NSfileProtectionNone
indicates that data can be accessed any time even if the device is locked. On the
right, the NSProtectionComplete class is used, which means that data can only be
accessed if the device is unlocked either by passcode or fingerprint.

Snooping Around the Architecture

[62]

Keychain data protection
A keychain is engaged by Apple to perform basic-level password management.
Similar to the previous file data protection classes, keychain data is also protected
with classes:

•	 kSecAttrAccessibleAfterFirstUnlock: Keychains can be accessed while
the device is locked but in the case of a reboot, it requires an unlock before
allowing access to data

•	 kSecAttrAccessibleWhenUnlocked: All the keychain data will be accessible
when the device is unlocked

•	 kSecAttrAccessibleAlways: All the data is accessible at any point of time
•	 kSecAttrAccessibleWhenPasscodeSetThisDeviceOnly: This is similar

to kSecAttrAccessibleWhenUnlocked
•	 kSecAttrAccessibleAfterFirstUnlockThisDeviceOnly: This similar

to kSecAttrAccessibleAfterFirstUnlock, but data migration between
devices through backups is not possible

•	 kSecAttrAccessibleAlwaysThisDeviceOnly: This is similar to
kSecAttrAccessibleAlways, but data migration is not possible
through backups

A keychain is a single database; every time a keychain item is requested by an app or
process, the request is sent to the security daemon, which verifies the keychain item,
and decryption happens through Secure Enclave. The keychain data accessibility also
depends on the state of the service.

Changes in iOS 8 and 9
Apple introduced the concept of access control and authentication policies for
applications in iOS 8 and higher for file and keychain data protection. This screen
capture from the Apple security guide provides an overview of how file and
keychain data protection are placed:

Chapter 2

[63]

Network-level security
All data traversals over the network are protected using encryption technologies for
VPN, applications, Wi-Fi, Bluetooth, Airdrop, and so on.

A majority of inbuilt applications, such as Mail and Safari, use Transport Layer
Security by default (TLS version 1.0 to 1.2). Some important classes for a well-
developed app include the CFNetwork class, which disallows SSLv3 connections.
Also note the NSURLConnection and NSURLSessionCFURL APIs being used.

Apps that are compiled for iOS 9 automatically ensure that app transport security
is enforced.

Application-level security
Apple's close watch on app security allows plenty of layered approaches to
protecting apps, using code signing, isolation mechanisms, and ASLR and
stack-level protection.

Application code signing
The iOS app code-signing mechanism is similar to the one we saw in Android.
However, iOS will not allow any application that is not signed by App Store. Each
and every app installation will run through code signature checks during runtime.

The following diagram from the Apple developer community website (https://
developer.apple.com/library/ios/documentation/General/Conceptual/
DevPedia-CocoaCore/AppSigning.html) illustrates how app code signing is
performed using Xcode:

https://developer.apple.com/library/ios/documentation/General/Conceptual/DevPedia-CocoaCore/AppSigning.html
https://developer.apple.com/library/ios/documentation/General/Conceptual/DevPedia-CocoaCore/AppSigning.html
https://developer.apple.com/library/ios/documentation/General/Conceptual/DevPedia-CocoaCore/AppSigning.html

Snooping Around the Architecture

[64]

The purpose of app signing is to verify whether the application that is being installed
and run on your device originated from the company or person that it claims to
have. However, app signing in iOS involves digital identification, which includes
a developer-signed public key with a private key. Once the code is signed with
the keys, it is eligible to be installed on the device. Only signed applications can
be installed on a device Apple issues a set of credentials that can be used by the
developers called code sign identity.

The iOS app sandbox
The sandboxing techniques used in Android and iOS are pretty much similar.
iOS apps always run in a sandbox during installation time, and the sandbox is
exclusively controlled by iOS in order to limit the app's access to various resources,
such as files, hardware, preferences, and so on. By design the entire app is installed
in its own sandbox directory, which would be the home for that particular app and
its data.

The following screenshot from Apple's developer website (https://
developer.apple.com/library/mac/documentation/Security/Conceptual/
AppSandboxDesignGuide/AboutAppSandbox/AboutAppSandbox.html) describes
how app sandboxing techniques are implemented in iOS:

Apps can have unrestricted access without the sandbox mechanism, which is a
possibility if the device is jailbroken.

iOS isolation
The iOS operating system isolates each and every app on the system. Apps are not
allowed to view or modify each other's data, business logic, and so on. Isolation
prevents one app from knowing whether any other app is present on the system or
whether apps can access the iOS operating system kernel until the device is jailbroken.
This ensures a high degree of separation between the app and operating system.

https://developer.apple.com/library/mac/documentation/Security/Conceptual/AppSandboxDesignGuide/AboutAppSandbox/AboutAppSandbox.html
https://developer.apple.com/library/mac/documentation/Security/Conceptual/AppSandboxDesignGuide/AboutAppSandbox/AboutAppSandbox.html
https://developer.apple.com/library/mac/documentation/Security/Conceptual/AppSandboxDesignGuide/AboutAppSandbox/AboutAppSandbox.html

Chapter 2

[65]

iOS provides two types of isolation:

•	 Process isolation
•	 Filesystem isolation

Process isolation
In process isolation, it is not possible for a random app to read another's memory
region. Inter-app communication is restricted; there are no IPCs available for any
process to communicate with another process.

All apps run in their own sandboxes. Apps are isolated not only from other apps
but also from the operating system. By default, all apps on a device which is not
jailbroken will be running as user mobile; the XNU kernel (similar to the Android
Linux kernel) has a sandbox extension that separates the entire app using its own
unique directory on the filesystem.

Process-level sandboxing is also called Seatbelt, which governs the process
operations performed in the sandbox. By default, a container profile is assigned for
all third-party applications, which means disallowing file access to the app's home
directory but allowing access to media (read-only) and contacts (read-and-write).
From iOS 7 and higher, the Seatbelt profile has been mandated to request relevant
permission from the user before allowing access. Therefore, even if a malware app
has bypassed the protection process, it cannot access any of your details, such as
contacts and photos unless you as a user have approved and granted the relevant
permission. The iOS permissions section in this chapter provides more detailed
information about this profile.

Filesystem isolation
In filesystem isolation, if you have an app that actually saves a particular file onto the
disk, any other app on the device cannot even know whether your app exists.

There are some stipulations around this: although there is a certain part of the iOS
filesystem that is publicly readable, it is strictly read-only. This means no changes or
modifications can be made, and there is no communication channel; however, it is
still readable.

Snooping Around the Architecture

[66]

ASLR
If you start typing ASLR in Google, you might see that one of the first suggestions to
appear is ASLR bypass. Address Space Layout Randomization (ASLR) was initially
created for the security of data in RAM in order to prevent exploits. This was first
introduced in iOS 4.3. This technique makes all system apps ensure that the data in
memory is randomized.

Stack protection (non-executable stack
and heap)
Apple devices support the NX (short for No-eXecute) bit feature, which enables
the memory to be non-executable until instructed by the operating system. This
feature was put in place to avoid buffer overflow and underflow attack. In case of
non-compliance, which is when a processor executes code marked NX in memory,
the program will crash. iOS can be used by setting up Stack and Head as
non-executable, making it harder for adversaries.

Hardware-level security
iOS has very tight integration between hardware and software protection. All
the devices built upon the Apple A8 or A7 processors provide cryptographic
support. These devices use the AES (short for American Encryption Standard)
256 cryptographic engine and are built into a Direct Memory Access (DMA) path
between the flash and main system memory. All devices are provided with a UID
along with a device Group ID (GID), both of which are compiled at the processor
level. A person testing the firmware will only be able to see the encryption and
decryption of these techniques and will not have direct access.

iOS permissions
The iOS permission model is quite different compared to the Android platform,
Apple has mandated that every single app accessing any class must request user
permission, since all data is extremely segregated.

Chapter 2

[67]

The following screen capture lists the applications that have been provided access
to Photos:

With the recent release of iOS 8 and 9, there are plenty of changes to the privacy
settings of the user and multiple features that the user can control have been
introduced, for example, granting permission to an application that needs access
to your photos. The following screen capture is one such example:

The changes to the settings are:

•	 None of the applications are allowed access to location information
•	 Only the app that is in the running state can use the feature, for example

photos, camera, speaker, mic and so on
•	 Only apps that are allowed to can access location information

Snooping Around the Architecture

[68]

The iOS application structure
Now that we have understood the iOS security model and its permissions, we will
see how all the compiled application code, resources, and application metadata
required to define a complete application are zipped and signed with the developer's
certificate and finally issued as an iOS app store package (iPA). The structural
representation of an iOS application would typically be as shown in this diagram:

When an iPA file is opened with any archiving software such as 7-Zip, WinRAR,
and so on, you can see the following:

•	 Payload: This folder contains all the application data
°° Application.app: This folder contains all the following along with

static images and other resources
°° App binary: This is the binary executable
°° Bundle Resources: All the resources required by the app binary are

stored here
°° Embedded.mobileprovision: This file is the original provisioning

file packaged with the application, and it helps the developers re-sign
an iOS application without requiring Xcode

°° CodeSignature: This is responsible for verifying that every single
byte within the .app file is exactly the same as when the application
was signed by the developer

Chapter 2

[69]

•	 iTunesArtwork: This is an optional file, which is used by iTunesConnect
when displaying your app's logo in the Store

•	 iTunesMetadata.plist: Contains the relevant application metadata,
including details such as the developer's name, bundle identifier, and
copyright information

Jailbreaking
After looking at the security model, you might think that it takes somewhat more effort
than Android to break into iOS apps. However, there are tech communities that are
coming up with new ways of circumventing the security features implemented by iOS.
Jailbreaking is one of the techniques used to remove the limitations imposed by the
operating system on devices, through the use of software exploits.

Similar to Android rooting, jailbreaking your iPhone will also void your
warranty and support from Apple, so do not use your personal device for
testing purposes.

The following screen capture illustrates the jailbreaking of an iPad using PP
Jailbreak (http://pangu8.com/ppjb.html), with just a single click:

http://pangu8.com/ppjb.html

Snooping Around the Architecture

[70]

Why jailbreak a device?
There are a number of reasons to jailbreak a device, such as these:

•	 You can change and customize the iOS interface
•	 You have full access to the iOS filesystem and device, which even allows you

to remove built-in apps
•	 You can install custom apps or apps from non-traditional stores
•	 You can download other content for free (e-books, videos, music, and so on)
•	 There are big bounty programs

Types of jailbreaks
Jailbreaks are typically divided into three categories:

•	 Untethered jailbreaks
•	 Tethered jailbreaks
•	 Semi-tethered jailbreaks

Let's have a look at the difference between them.

Untethered jailbreaks
An untethered jailbreak is the preferred type of jailbreak, since it allows the device
to run all apps and tweaks even after rebooting, with no consequences.

Tethered jailbreaks
A tethered jailbreak is the least desired jailbreak of all; it requires you to plug your
device in to the computer to start it up because the device needs some code from
a program on the computer that will let it boot up. The reason it needs this code is
because the device checks for unsigned software running on it and it will not let itself
boot up without the code on the computer.

Semi-tethered jailbreaks
A semi-tethered jailbreak allows you to boot the device without plugging it in to the
computer, but you will not be able to use the jailbroken add-ons and tweaks until
you boot up the system using a program such as Redsnow.

Chapter 2

[71]

Jailbreaking tools at a glance
The following table provides a list of tools that were developed for particular
versions of iOS:

iOS Version Tool Reference
iPhone 3G /
iPhone OS 2.0

PwnageTool http://blog.iphone-dev.
org/

iPhone OS 3.0 PwnageTool
iOS 4.0 PwnageTool
iOS 5.0 Redsnow
iOS 6.0 Redsnow
iOS 7 evasi0n7 http://evasi0n.com/

iOS 7.1－7.1.2 Pangu http://en.7.pangu.io/

iOS 8 Pangu8 http://en.pangu.io/

iOS 8.1.1－8.4 TaiG, PP
Jailbreak

http://www.taig.com/en/,
http://pro.25pp.com/
ppghost_mac

iOS 9 Pangu9 http://www.downloadpangu.
org/pangu-9-download.html

Jailbreakers: These are security researchers who are interested only in
gaining root access to the device; some companies are running big bounty
programs in order to devise jailbreaking techniques (http://www.
ibtimes.co.in/ios-9-jailbreak-bounty-3-million-reward-
new-software-exploits-apple-iphones-ipads-647543).

The Mach-O binary file format
Similar to the file formats used in the OS X operating system, iOS apps are also
compiled to native code using the Mach-O file format. A binary can support multiple
architectures, and multiple Mach-O files can be archived into the same binary that
resides on the device; these are known as universal or fat binaries. In addition,
apps downloaded from App Store are encrypted using FairPlay DRM (short for
Digital Rights Management) and decrypted later during runtime by the loader
on the device.

http://blog.iphone-dev.org/
http://blog.iphone-dev.org/
http://evasi0n.com/
http://en.7.pangu.io/
http://en.pangu.io/
http://www.downloadpangu.org/pangu-9-download.html
http://www.downloadpangu.org/pangu-9-download.html
http://www.downloadpangu.org/pangu-9-download.html
http://www.ibtimes.co.in/ios-9-jailbreak-bounty-3-million-reward-new-software-exploits-apple-iphones-ipads-647543
http://www.ibtimes.co.in/ios-9-jailbreak-bounty-3-million-reward-new-software-exploits-apple-iphones-ipads-647543
http://www.ibtimes.co.in/ios-9-jailbreak-bounty-3-million-reward-new-software-exploits-apple-iphones-ipads-647543
http://www.taig.com/en/
http://pro.25pp.com/ppghost_mac

Snooping Around the Architecture

[72]

The Mach-O file format consists of three main regions, as shown in the following
diagram:

More detailed information about the Mach-O binary file format can be
found here:
(https://developer.apple.com/library/mac/documentation/
DeveloperTools/Conceptual/MachORuntime/Reference/
reference.html).

Let's understand the three different sections of the Mach-O file format, which can be
very beneficial during the reverse-engineering process:

•	 Header: In simple terms, the Header region identifies the Mach-O file and
contains file type information, such as the target architecture (ArmV7,
ArmV6, ARMV7s, ARMV8, X86, and x86_64) and flags that affect the
interpretation of the file.

•	 Load commands: This is the region followed by the Header and includes
details about the linkage and layout specifications for the file. These include:

°° The symbol table location
°° Encrypted segments within the file (LC_ENCRYPTION_INFO)
°° Details about shared libraries

https://developer.apple.com/library/mac/documentation/DeveloperTools/Conceptual/MachORuntime/Reference/reference.html
https://developer.apple.com/library/mac/documentation/DeveloperTools/Conceptual/MachORuntime/Reference/reference.html
https://developer.apple.com/library/mac/documentation/DeveloperTools/Conceptual/MachORuntime/Reference/reference.html

Chapter 2

[73]

°° The initial virtual memory layout
°° The specification of segments and section details

•	 Data: While Load commands specify the exact layout of segments and
sections, the Data region contains the real data in one or more segments. As
shown in the preceding diagram, each segment might contain zero or more
sections, and every section will contain data of a particular type or of code.

Inspecting a Mach-O binary
For testing purposes let's take a look at the Twitter application that is installed on
an iOS device. You can inspect its Mach-O binary using object file displaying tool
(oTool). This tool can be installed through Cydia (only after you jailbreak your device).

The following screenshot displays the Load command details from the Mach-O binary
of the Twitter app that is installed on the device:

In a similar fashion, you can use oTool to extract all details, such as encryption
used, and to determine the architecture used to compile the application, list
dynamic dependencies, locate the PIE and stack protection, and also dump
the load commands for the application.

Snooping Around the Architecture

[74]

Property lists
Property lists are nothing but XML files that are used to store application data.
These files use the .plist extension and are often used to store the settings
information of a third-party application. The NSDefaults class is used in property
lists; typically, these are stored in the /Library/Preferences folder in the
iOS filesystem.

Property lists can be accessed using the plutil (https://developer.apple.
com/library/mac/documentation/Darwin/Reference/ManPages/man1/
plutil.1.html) utility, as shown in this screenshot:

Exploring the iOS filesystem
Although a majority of our filesystem exploration will be interesting only when
the device is jailbroken, it is also possible to access the filesystem on non-jailbroken
devices and explore the files that are available. This is possible only when the device
is paired with a PC. The latest versions of iOS (7 and later) introduced a new feature
that when a device is plugged in to a PC for pairing, the user is prompted to either
trust the computer or not; earlier versions allowed pairing without issuing any alerts.

Some important file locations are summarized here:

•	 /Applications: All the system applications are stored in this location
•	 /var/mobile/Applications: Third-party applications are stored here;

this has been replaced by the Containers folder in iOS 8 and later versions
(/private/var/mobile/Containers/Bundle/Applications)

https://developer.apple.com/library/mac/documentation/Darwin/Reference/ManPages/man1/plutil.1.html
https://developer.apple.com/library/mac/documentation/Darwin/Reference/ManPages/man1/plutil.1.html
https://developer.apple.com/library/mac/documentation/Darwin/Reference/ManPages/man1/plutil.1.html

Chapter 2

[75]

•	 /private/var/mobile/Library/Voicemail: This contains voicemail details
•	 /private/var/mobile/Library/SMS: This has SMS data
•	 /private/var/mobile/Media/DCIM: This contains photos
•	 /private/var/mobile/Media/Videos: Videos are stored here
•	 /var/mobile/Library/AddressBook/AddressBook .sqlitedb: This is the

contacts database
•	 /private/var/mobile/Library/Notes: This contains notes information;

sometimes, this includes passwords and usernames in plaintext
•	 /private/var/mobile/Library/CallHistory: This has the call

history backup
•	 /private/var/mobile/Library/Mail: This contains the entire mail history
•	 /private/var/mobile/Library/Calendar/: This has calendar information

Summary
We've understood the fundamental architecture behind Android and iOS and the
way the security and permission models are built on both platforms. We also built
our knowledge of Dalvik/ART executables, Android rooting, the iOS jailbreaking
mechanism, and the different tools available for these purposes. This chapter also
provided details of how to navigate through an iOS application and understand
how to identify important files and items of information that will help in the process
of identifying vulnerabilities. You should now be able to apply this knowledge in
identifying security issues during a mobile app penetration test. We will build the
respective test environments for the platforms in the next chapter.

[77]

Building a Test Environment
A fully equipped test environment is crucial for experiments and innovation.

In this chapter, we will run through a step-by-step guide to building a mobile
app penetration testing environment for Android and iOS apps. This will include
configuring the required tools and techniques, such as Android Studio and the
iOS SDK. By the end of this chapter, you should be familiar with the following:

•	 Downloading and installing Android Studio and SDK
•	 Downloading, installing, and configuring Genymotion
•	 Installing vulnerable apps to Genymotion
•	 Downloading and installing the iOS SDK and Xcode
•	 Setting up and configuring a jailbroken iPhone with repositories
•	 Installing vulnerable apps to iOS devices
•	 Pros and cons of emulators, simulators, and physical devices

Mobile app penetration testing
environment setup
Establishing a well-structured test environment is crucial for any type of security
assessment. It is recommended that you always to begin with zero environment, that
is, assuming nothing is present in your system. The following are the hardware and
software requirements for setting up a basic infrastructure for Mobile Application
Penetration Testing.

www.allitebooks.com

http://www.allitebooks.org

Building a Test Environment

[78]

This book focuses on setting up the environment only on Windows and MacBook,
but it does not restrict you from trying on Linux and other operating systems.

•	 Hardware and OS requirements:
°° A workstation/laptop running Windows 7 (64-bit)
°° A MacBook running Yosemite OS X 10.10 or higher

•	 Mobile Devices and OS requirements:
°° Google Nexus 5 or any other device running Android 5.0 or higher

(rooted)
°° iPhone or iPad running iOS 8.4 or above (jailbroken)

•	 Other requirements:
°° Compatible USB cables for mobile devices
°° Network Wi-Fi devices (one can utilize any smartphone with a

tethering facility to act like a Wi-Fi router)

•	 Software requirements:
°° Active Python and Perl
°° Java Development Kit (1.7)

Why do you need a rooted or jailbroken phone for your test
environment?
It is as simple as the ability to customize and install any tools and also
to run unsigned apps from nontraditional app stores on the device.
Rooted/jailbroken phones will provide full access to the filesystem.
Jailbreaking or rooting a mobile device is considered to be out of the
scope of this book. However, where required, we have provided some
hints on the tools and techniques we've used.

Android Studio and SDK
On May 16, 2013, at a Google I/O conference, an integrated development
environment (IDE) was released by Katherine Chou under the Apache license 2.0 and
was called Android Studio for developing apps on the Android platform. It entered
the beta stage in 2014, and its first stable release was on December 2014, starting with
version 1.0. It was announced as an official IDE on September 15, 2015. For more
information on Android Studio and SDK, refer to http://developer.android.com/
tools/studio/index.html#build-system.

http://developer.android.com/tools/studio/index.html#build-system
http://developer.android.com/tools/studio/index.html#build-system

Chapter 3

[79]

Android Studio and SDK heavily depend on the Java SE Development Kit.

Java SE Development Kit can be downloaded from http://www.
oracle.com/technetwork/java/javase/downloads/jdk7-
downloads-1880260.html.
Some of the developers prefer different IDEs, such as Eclipse and so on.
For them, Google offers SDK-only downloads at http://dl.google.
com/android/installer_r24.4.1-windows.exe.

There are some minimum system requirements that need to be fulfilled in order to
install and use Android Studio effectively. The following is the procedure to install
Android Studio on a Windows 7 Professional 64 bit operating system with 4 GB
RAM, minimum 50 GB Hard Disk Space, and an installed Java Development Kit 7.

1.	 This IDE is available for Linux, Windows, and Mac OS X. Android Studio can
be downloaded by accessing http://developer.android.com/sdk/index.
html.

2.	 Once Android Studio is downloaded, run the installer file. By default, an
installation window will be seen, as shown in the following screen capture.
Click on Next.

http://www.oracle.com/technetwork/java/javase/downloads/jdk7-downloads-1880260.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk7-downloads-1880260.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk7-downloads-1880260.html
http://dl.google.com/android/installer_r24.4.1-windows.exe
http://dl.google.com/android/installer_r24.4.1-windows.exe
http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/index.html

Building a Test Environment

[80]

3.	 This setup will automatically verify that the system meets the requirements.
4.	 Choose all the components that are required and click on Next.
5.	 It is recommended that you read and accept the license and click on Next.
6.	 It is always recommended that you create a new folder to install the tools

that will help you track all the evidences in a single place; in this case, we
have created a folder called Hackbox in C drive, as shown in the following
screenshot:

7.	 Now, we can allocate the space required for an Android-accelerated
environment, which will provide faster performance. So, it is recommended
that you allocate a minimum 2 GB for this space.

8.	 All the required files will be extracted to C:\Hackbox\.
9.	 Once the installation is complete, you will be able to launch Android Studio,

as shown in the following screen capture:

Chapter 3

[81]

The Android SDK
The Android SDK provides developers with the ability to completely build, test,
and debug apps that run on the Android platform. It has all the relevant software
libraries, APIs, system images of the emulators, documentations, and other tools that
help create an Android app. We have installed Android Studio with the Android
SDK, and it is crucial to understand how to utilize the inbuilt SDK tools as far as
possible. This section provides an overview of some of the critical tools that we will
be using while attacking an Android app during the penetration testing activity.

The Android Debug Bridge
We have discussed this in Chapter 2, Snooping Around the Architecture. It is a simple
and powerful command line tool, which will be extensively used to communicate
with an Android device and also control it. In order to connect with adb on a
physical device, it is important to enable the USB-Debugging option. In Google
Nexus 5, you can access this by navigating to Settings | Developer options, as
shown in the following screen capture:

Building a Test Environment

[82]

If you do not see the Developer options, it means that they are hidden; they can be
turned on by tapping on Build number field, which can be found by navigating to
Settings | About device | Build number. You should tap a total of seven times.

The following is a list of adb commands that we will be using throughout the course
of testing.

Connecting to the device
Once the device is connected to the workstation, it can be found if the device is
properly configured with the right device drivers by running the adb devices
command and check whether it's properly connected or not. This command lists out
all the devices that are connected to your work station:

C:\Hackbox>adb devices

List of devices attached

0072c52ca20e47cf device

If the device drivers for the mobile device are not installed, then you will see a blank
list when you run this command, as shown here:

C:\Hackbox>adb devices

List of devices attached

Chapter 3

[83]

In this case, you may have to download the drivers from the device manufacturers
and install them to your workstation.

Getting access to the device
As discussed in Chapter 2, Snooping Around the Architecture, Android runs on the
Linux kernel. Using adb, you can access a shell to run commands on the mobile
device. The adb shell command can be used either on a rooted or an unrooted
device if the Allow USB Debugging option is enabled once entered, as shown in
the following command-line output. You will have access to normal shell with
limitations you may have to enter into the root mode by entering the su command,
which allows you to execute most of the Linux commands:

………..

C:\Hackbox>adb shell

shell@mako:/ $ ls

acct

cache

charger

config

………..

shell@mako:/ $ su

root@mako:/ # ls

acct

cache

charger

If more than one device is connected to the workstation, then you may have to use
different parameters:

C:\Hackbox>adb devices

List of devices attached

192.168.56.101:5555 device

0072c52ca20e47cf device

C:\Hackbox>adb -s 0072c52ca20e47cf shell

shell@mako:/ $ su

•	 –s to connect to particular device
•	 -d to connect only to the USB device
•	 -e to connect only to an emulator

Building a Test Environment

[84]

Installing an application to the device
During the assessment of an Android app, it would be a basic requirement to install
the application to the physical device or the emulator. You can use the adb install
command; this requires the APK file that needs to be installed, as shown in the
following screenshot:

adb install <nameoftheapp.apk>

Extracting files from the device
In order to assess what the data that is residing during the installation and
uninstallation is, we have to make sure that none of the confidential data is left in
place that can be used by malicious apps or users. So, we extract the files for offline
analysis to view any sensitive information. This can be achieved by issuing the adb
pull command, along with the file location in the device, as shown in the following
screenshot. In this screenshot, we are pulling all the applications that are installed to
the device that is rooted:

Chapter 3

[85]

Storing files to the device
A majority of the time, we might want to copy the local files from the workstation to
the Android device. The syntax is adb push localfile remotelocation, where
the file needs to be stored. For instance, the following command-line output shows
a pushme.JPG file copied from the local workstation to /sdcard/ folder within the
device:

C:\Hackbox\sdk\platform-tools>adb pushme.JPG /sdcard/

6786 KB/s (840927 bytes in 0.121s)

Stopping the service
In some cases, we might want to stop the connection between the devices, and the
adb server needs to be restarted. This can be achieved with adb kill-server as the
command that will kill the adb connection, and once you issue a fresh adb command,
it will restart the adb connection.

Viewing the log information
Android provides an excellent view of the system debugging messages through
logcat; you can run the adb logcat command, as shown in the following screenshot.
Check out what the different varieties of logs that applications and systems are
collected in different buffers are. This feature can serve as an entry point for
information leakage during the assessment.

Building a Test Environment

[86]

All the logs begin with different message types, which can be broadly interpreted
as follows:

•	 V: Verbose
•	 D: Debug
•	 I: Information
•	 W: Warning
•	 E: Error
•	 F: Fatal
•	 S: Silent

Sideloading apps
In an Android device, there are options to install a custom ROM, and adb provides
an option to sideload the package. This can be executed by running adb sideload
package.zip, which is similar to adb push and install.

Monkeyrunner
Monkeyrunner is a tool, part of the Android SDK, that lets the developer create
or use existing programs that control the connected device emulator.

For example, if you run adb shell monkey 2, it will inject the event with ID 2,
which will launch the application without the user interface:

C:\Hackbox\sdk\platform-tools>adb shell monkey 2

Events injected: 2## Network stats: elapsed time=1185ms (0ms mobile, 0ms
wifi, 1185ms not connected)

You can read more about the monkeyrunner tool here at http://
developer.android.com/tools/help/monkeyrunner_
concepts.html.

http://developer.android.com/tools/help/monkeyrunner_concepts.html
http://developer.android.com/tools/help/monkeyrunner_concepts.html
http://developer.android.com/tools/help/monkeyrunner_concepts.html

Chapter 3

[87]

Genymotion
Genymotion is an alternative to the Android SDK's AVD (short for Android
Virtual Device) manager. We will be using this throughout the course of Android
assessment in this book. Genymotion can be downloaded only when you register
an account in their cloud by following the instructions found at https://www.
genymotion.com/#!/download. There are two types of licenses:

•	 Personal use: This version of Genymotion has limited options to run
an emulation

•	 Commercial use: This version of Genymotion provides extra options, such as
network debugging, design simulation, and automation for the developers

Testers or developers would prefer Genymotion as an emulator due to the
performance of the emulator, which is faster compared to the Android SDK's
emulators (even with Intel Hardware Accelerated Execution Manager enabled).
However, this is not a replacement for the Android SDK's AVD.

The following are step-by-step instructions on how to install Genymotion:

1.	 Once the executable is downloaded, double-click on the installer and
a window wizard will appear, as shown in the following screenshot:

https://www.genymotion.com/#!/download
https://www.genymotion.com/#!/download

Building a Test Environment

[88]

2.	 Clicking on Next will take us to the following screen so that we can select
which folder we need to install this application in. In our case, we are
installing all the applications in the Hackbox folder.

3.	 Upon confirmation, the installation begins, as shown in the following
screen capture:

Chapter 3

[89]

4.	 Genymotion runs the emulator using Oracle VirtualBox so that even if
the frontend software, that is, Genymotion, is uninstalled, the system
image remains in the virtual box. If you downloaded Genymotion
without VirtualBox, then the following screenshot is not applicable:

5.	 Our downloaded Genymotion file included the package of a precompiled
version of Oracle Virtual Box, as shown in the following screenshot:

Building a Test Environment

[90]

6.	 Clicking Next will require you to proceed with installing VirtualBox,
which requires some space.

7.	 Once the Oracle VirtualBox installation is complete, the Genymotion
installation is also complete, and now, we are ready to create our first
Android virtual image.

Creating an Android virtual emulator
Now that we are all set with Genymotion and Oracle VirtualBox, we will go ahead
and create a new Android Virtual Emulator, which we will be using to perform
a variety of test cases. The following steps detail how to set up an emulator in
Genymotion:

1.	 Upon launching Genymotion, you will be receiving a popup for the usage
notice and then an alert to create a virtual device, as shown in the following
screenshot:

Chapter 3

[91]

2.	 By clicking on Yes, the next option will take us to log in to the Genymotion
Cloud account, as shown in the following screen capture:

3.	 Once we sign in to the account, we can view all the available Android images
and then click on Next.

4.	 Clicking on Next will take us to the next screen, where we will be providing
the name of the emulator that we will build. In this case, we are naming it
Google Nexus – Penetration Testing Device, as shown in the following
screen capture:

Building a Test Environment

[92]

5.	 During this installation process, we might have to configure a number of
processors that are required to run this emulator since Genymotion provides
hardware-based acceleration. For the basic setup, we are using one processor,
as shown in the following screen capture:

6.	 Upon completion of setting up the first Android virtual emulator, we are all
set to access the device by clicking on Start.

7.	 Finally, we should be able to see our virtual device:

Chapter 3

[93]

All the Genymotion free versions include free for personal use as the
watermark. All the images used in this chapter are simulated as a
normal user without any commercial licenses. For more information on
how to remove and get the professional version of Genymotion, refer to
https://www.genymotion.com/#!/legal/legal-notices.

This can be verified by issuing an adb devices command:

In some cases, we might get the trigger for an error message, as shown here, which
can be fixed by setting up Intel Virtualization Technology, or Intel VT-x, on the BIOS.

This issue is applicable only to PCs and laptops. You will need to
reboot and make the required changes in the BIOS. Some systems
may not support this feature.

Installing an application to the Genymotion
emulator
There are two ways to install an application to the emulator: either install a
downloaded application or install the one developed by developers using adb
by running the following:

adb install appname.apk

https://www.genymotion.com/#!/legal/legal-notices

Building a Test Environment

[94]

Or, you can drag and drop an APK file directly to the emulator, as shown in the
following screen capture:

Installing the vulnerable app to Genymotion
The following step-by-step instructions teach you how to install the vulnerable app
to Genymotion:

1.	 Download the vulnerable app from http://www.mcafee.com/in/
downloads/free-tools/hacme-bank-android.aspx.

2.	 Extract the ZIP file, locate the Android folder, and drag and drop the APK
file to Genymotion.

http://www.mcafee.com/in/downloads/free-tools/hacme-bank-android.aspx
http://www.mcafee.com/in/downloads/free-tools/hacme-bank-android.aspx

Chapter 3

[95]

3.	 Now we have installed the HACME BANK vulnerable app to Genymotion,
as shown in the following screenshot:

Installing the Genymotion plugin to Android
Studio
It is very difficult if the app developers are writing the code in Android Studio and
are not able to test their apps instantly using the Android emulator. Instead, they end
up signing the app every single time and then installing it.

To enable Genymotion VMs in Android Studio, we have to perform the
following steps:

1.	 Navigate to Android Studio | Go to Settings | Select Plugins.

Building a Test Environment

[96]

2.	 Search for genymotion, right-click, and select Download and Install,
as shown in the following screen capture:

3.	 Restart Android Studio. The Genymotion device manager is installed within
Android Studio. Set the application path to Genymotion by navigating to
File | Settings | Other Settings | Genymotion, as shown in the following
screenshot, so that running an application becomes easy:

Chapter 3

[97]

4.	 Finally, the Genymotion device manager is installed successfully. We are all
set to develop and run the app on the device.

ARM apps and Play Store in Genymotion
Some apps run only on ARM-based hardware. So, in order to avoid app crashes,
which significantly make use of these ARMs, we can add a specific package to fulfill
this particular issue by downloading ARM translation from https://docs.google.
com/file/d/0B-p1r5SNN4adcmhtaGdMVml0Qzg/edit.

Drag and drop the ZIP file to the emulator, as you will see in the following
screenshot. Also, note that the packages will be different for each Android platform.

https://docs.google.com/file/d/0B-p1r5SNN4adcmhtaGdMVml0Qzg/edit
https://docs.google.com/file/d/0B-p1r5SNN4adcmhtaGdMVml0Qzg/edit

Building a Test Environment

[98]

Similarly, to get Google Play Store on the virtual device, we have to download the
gapps-lp-20141109-signed.zip file from https://www.androidfilehost.
com/?fid=95784891001614559 and then drag and drop the file into the virtual device.

Post the installation of both apps, the device should now reboot and you should be
able to see Play Store installed in our Genymotion emulator, as shown here:

Having Play Store on the emulator allows us to explore all the apps in the store
that are compatible. If you are performing a black box assessment, this will be
very beneficial.

https://www.androidfilehost.com/?fid=95784891001614559
https://www.androidfilehost.com/?fid=95784891001614559

Chapter 3

[99]

Configuring the emulator for HTTP proxy
We are assuming two test scenarios here: one is the Android-emulated device from
Genymotion that has a Wi-Fi connection and other has LTE/3G/2G data services for
the Internet. This will be exactly the same even in the real device.

Before we begin to configure the emulator for proxy, let's take a tour of the different
types of proxy tools available, which we can use for our assessments, but these are
not limited to the following:

•	 Burp Proxy: The preferred proxy for a majority of penetration testers,
it can be downloaded from https://portswigger.net/burp/download.
html. There are two editions: one for commercial use and the other for free.
Multiple options are available in the commercial edition, such as scanners,
among other things.

•	 Paros Proxy: This is an open source Java-based proxy that's especially
designed to find the vulnerabilities in web applications. It can be
downloaded from http://sourceforge.net/projects/paros/files/.
Due to a lack of updates, it has been replaced by OWASP ZAP. However,
you can still use this proxy as an alternative.

•	 OWASP ZAP: This is an open source integrated penetration testing
tool designed to find vulnerabilities. It can be downloaded from
https://github.com/zaproxy/zaproxy/wiki/Downloads.

There are plenty of other tools, such as Context Application Tool,
ProxyFuzz, Odysseus proxy, Fiddler, and so on, which can be explored.

There are two ways to intercept the data flow between the device and the server:

•	 Setting up the proxy in Wi-Fi-settings
•	 Setting up the proxy in mobile carrier settings

https://portswigger.net/burp/download.html
https://portswigger.net/burp/download.html
http://sourceforge.net/projects/paros/files/
https://github.com/zaproxy/zaproxy/wiki/Downloads

Building a Test Environment

[100]

Setting up the proxy in Wi-Fi settings
Assume that the device does not have the capability of having a SIM card facility and
can only connect to Wi-Fi:

1.	 Go to Settings | Wi-Fi | select the Wi-Fi connected. Hold on for 30 seconds
and you will see the options shown in the following screen capture:

2.	 Navigate to Modify Network | Advanced Option | Proxy | Manual.

Chapter 3

[101]

3.	 Enter the IP details of your proxy; in this case, we are using 192.168.2.1 on
port 8080 running Burp Suite.

4.	 The Wi-Fi has been successfully configured to intercept the proxy. The
following screenshot from Burp Proxy is evidence that we are able to intercept
the HTTP web traffic. In order to intercept the HTTPS traffic, we will have
to do certificate pinning, which we will learn about in Chapter 4, Loading
up – Mobile Pentesting Tools.

Building a Test Environment

[102]

By default, Genymotion sets up the Network Adapter settings in the
Oracle virtual box to NAT, If you want the device to be available over
the network, then you can change the settings to Bridge Mode by
opening the Oracle Virtual Box and select Name of the VM | Settings
| Network | Adapter 2 | Change the NAT to Bridged.

Setting up the proxy on mobile carrier
settings
Assume that the Android device has the capability of having a SIM and a Wi-Fi
connection:

1.	 Navigate to Settings | more | Cellular networks | APN | select the APN to
edit, as shown in the following screenshot:

2.	 Set the IP address of your proxy and the port number.
3.	 You have configured the device to connect to your proxy.

The free version of Genymotion does not provide many of the options
such as screen capture, phone options, the virtual device version, and
so on in personal use.

Chapter 3

[103]

Google Nexus 5 – configuring the
physical device
Configuring the physical device is the same as emulators. However, the challenge is
to have the device drivers for the physical device installed and make the workstation
find your device. The following screenshot shows Google Nexus 5 running the latest
Android version and being successfully detected by adb:

Running the adb command to list down the devices, all the preceding adb commands
can be used in the real device once rooted.

Building a Test Environment

[104]

The iOS SDK (Xcode)
We have discussed what the iOS SDK and Xcode are in Chapter 2, Snooping Around
the Architecture. In this section, we will go ahead and download the iOS SDK and
run a simulator.

This SDK is available only on Mac OS X. Apple's iOS simulator is provided to run
from Xcode by default, which will be useful to simulate and test for hardware and
software combinations. The following are step-by-step instructions on how to get the
Xcode up and running on a MacBook:

1.	 Go to https://developer.apple.com/ios/download/; it will require an
Apple developer account for the new versions.

2.	 Search for Xcode, select the SDK version, and download.
3.	 Once the download is complete, click on the .dmg file and install the Xcode

application.
4.	 Upon the completion of the installation, you will be able see the following

screenshot, where you will be able to create a sample project using Xcode:

It is not permitted to access the simulators without Xcode since all the
applications are dependent on the Xcode.app package.

https://developer.apple.com/ios/download/

Chapter 3

[105]

5.	 For demonstration purposes, we will create a single screen app, as shown
here:

6.	 Once the application is selected from the window, it allows the developers
to write the code and then run it through simulators. The following screen
capture provides the list of simulators available within Xcode with which
the application can be compiled:

Building a Test Environment

[106]

7.	 Finally, you will be able to see the simulator, as shown in the following
screenshot:

Setting up iPhone/iPad with necessary
tools
We learned why we need a jailbroken device for penetration testing in an earlier
section. We will configure iPad air jailbroken with the required tools, and you can
use any device that you might want to use for testing purposes: either iPhone or iPad
running iOS 8.4 or higher.

Cydia
Cydia is the alternative app store for all the jailbroken devices, and it allows users
to install multiple applications with tweaks. An Apple device is considered to be
jailbroken only when the Cydia app is available on the device; this app provides
complete advanced package management with all the different varieties of repositories
that can be configured using different source options in the Cydia user interface.

Chapter 3

[107]

The following screenshot shows that Cydia has been installed on iPad:

Cydia installations are pretty much similar to Linux Debian packages; a majority
of the apps are packaged and bundled in the .deb format.

There are multiple applications with custom repositories; we can even create our
own set of repositories and add it to the sources, and start installing the custom apps
that we need on the device. All these tools will be of great help in our assessment
when identifying vulnerabilities.

A quick tip on setting up Cydia correctly: if you set the account settings in Cydia to
the user, you may not be able to find the relevant tools.

So, while downloading tools, we have to make sure the settings are set to Expert
as shown in the following screen capture. By default, the settings will be set as a
normal user.

Building a Test Environment

[108]

It can be changed by opening Cydia and then tapping on Installed. On top of the
menu, change User to Expert.

Some of the important tools within Cydia that we must include before loading the
pentesting tools are discussed in the upcoming sections.

BigBoss tools
As the names says, BigBoss tools provide all the toolset required during the security
assessment; they can be found at http://apt.thebigboss.org/repofiles/cydia/
debs2.0/bigboss_recommended_hacker_tools_1.3.2.deb.

The main advantage of having this repository added to Cydia is that it helps find
all the dependencies that are required and registered against any specific tool that
we download from this repository. This application provides all the command-line
tools that are required in order to install, update, and remove packages. The most
important package that we need to install from BigBoss tools is OpenSSH.

System commands, advanced commands, and everything else is created
as a part of the Sauriks telesphoreo project (http://www.saurik.com/
id/1).

http://apt.thebigboss.org/repofiles/cydia/debs2.0/bigboss_recommended_hacker_tools_1.3.2.deb
http://apt.thebigboss.org/repofiles/cydia/debs2.0/bigboss_recommended_hacker_tools_1.3.2.deb
http://www.saurik.com/id/1
http://www.saurik.com/id/1

Chapter 3

[109]

Darwins CC tools
While performing an application assessment for an iOS application, it is very likely
that we will analyze the application binary with the support of Apple's CC tools,
such as OTool, Nm, lipo. We will be able to manipulate plenty of activities that
an attacker would simulate, which we will discuss in detail in Chapter 4, Loading
up – Mobile Pentesting Tools.

iPA Installer
This application helps us install any iPA file to the device event whether the app is
signed or not. Every app that is downloaded from a nontraditional app store or is
custom developed can be used tweaked using iPA Installer.

This application can also be downloaded from https://github.com/autopear/
ipainstaller.

This requires the installation of AppSync, which is available in the
http://repo.hackyouriphone.org Cydia repository and is a
substrate tweak that disables the Apple code-signing technique by
hooking a particular function (MISValidateSingatureAndCopyInfo)
where the signature is verified.

https://github.com/autopear/ipainstaller
https://github.com/autopear/ipainstaller
http://repo.hackyouriphone.org

Building a Test Environment

[110]

Tcpdump
To perform any kind of network operation, this tool will be equally important in
order to dump the network traffic. This tool will be installed along with libpcap,
which will enable low-level network capture.

iOS SSL kill-switch
Applications that are protected from SSL certification validation and pinning can
be bypassed using this SSL kill-switch iOS app. We will be using this technique in
Chapter 7, Full Steam Ahead – Attacking iOS Applications.

Cycript, Clutch, and class-dump
Cycript, Clutch, and class-dump are three tools that are very relevant in performing
binary reverse engineering and runtime analysis.

SSH clients – PuTTy and WinSCP
PuTTy is an open source terminal emulator that provides a serial console and
file transfer functionality. It supports SSH, Telnet, Rlogin, SCP, and raw socket
connections. This application can be downloaded from http://the.earth.
li/~sgtatham/putty/latest/x86/putty.exe.

http://the.earth.li/~sgtatham/putty/latest/x86/putty.exe
http://the.earth.li/~sgtatham/putty/latest/x86/putty.exe

Chapter 3

[111]

WinSCP (which stands for Windows Secure Copy) is an open source application
that supports SFTP, FTP, WebDav, and SCP clients for Windows. It is mainly used
to transfer the file between a remote computer and a local machine.

A portable version of WinSCP can be downloaded from https://winscp.net/
download/winscp575.zip.

During our assessments, we will be extensively using Putty for Apple device
communication through SSH and WinSCP for GUI-based transfers of files between
the device and the local computer for offline analysis. It is recommended that you
save all these files under a single folder while building the test environment; in this
case, we save the files to C:\Hackbox\Tools.

iFunbox at glance
iFunbox is an application and file management tool for Apple devices (iPhone, iPad,
and iPod). This tool is available for Mac OS X, Windows, and Linux platforms and is
more effective only on jailbroken devices.

This tool also allows users to install the application from the PC to the device. Older
versions of iFunbox will not be functional due to the recent security permissioning
policy in iOS 8 and higher for non-jailbroken devices.

https://winscp.net/download/winscp575.zip
https://winscp.net/download/winscp575.zip

Building a Test Environment

[112]

Accessing SSH without Wi-Fi
To access SSH without Wi-Fi network follow the following steps:

1.	 Once PuTTy is downloaded, the required Apple device drivers to the system.
2.	 Open iFunbox, click on Quick Toolbar and then click on USB Tunnel.

As shown following:

3.	 Now that the tunnel is established on port 22 on iPhone, you can SSH
into the device by opening PuTTy and typing 127.0.0.1 on port 22,
as show here:

Chapter 3

[113]

4.	 Once you click Open, you will get a popup with the SSH certificate for the
device. Click on Yes and then enter the username as root and the password
as alpine. Then, you should have complete access to the device.

Accessing SSH with Wi-Fi
Once your workstation and the Apple device are on same wireless network, we will
be able to SSH directly into the iPhone by following these simple steps:

1.	 You should be able to ping the IP address of the iPhone connected on the
same Wi-Fi (in the following example, it is 192.168.2.109)
C:\Hackbox>ping 192.168.2.109

Pinging 192.168.2.109 with 32 bytes of data:

Reply from 192.168.2.109: bytes=32 time=411ms TTL=64

Reply from 192.168.2.109: bytes=32 time=207ms TTL=64

Reply from 192.168.2.109: bytes=32 time=229ms TTL=64

Reply from 192.168.2.109: bytes=32 time=430ms TTL=64

Ping statistics for 192.168.2.109:

 Packets: Sent = 4, Received = 4, Lost = 0 (0% loss),

Approximate round trip times in milli-seconds:

Building a Test Environment

[114]

2.	 Use any SSH client to log in to the device; we will use PuTTy to connect to
the device. As shown here, you should receive the SSH key to be accepted:

3.	 Click on Yes and then you will be able to log in with the default username
as root and the password as alpine, as mentioned in the preceding section.

Installing DVIA to the device
Once the Apple device is jailbroken, it is easy to install the application on the device.
In this section, we will install DVIA to our jailbroken iPad with the following steps:

1.	 Download the application from http://damnvulnerableiosapp.
com/#downloads.

http://damnvulnerableiosapp.com/#downloads
http://damnvulnerableiosapp.com/#downloads

Chapter 3

[115]

2.	 Copy the file from your local machine to iOS device using WinSCP, as shown
in the following screenshot:

3.	 Log in to the iPad using PuTTy or any SSH client and run the ipainstaller
DamnVulnerableiOSapp.ipa command, as shown in this screenshot:

Configuring the HTTP proxy in Apple devices
There is not much difference in the way we configure Android devices compared to
the way we configure the HTTP proxy for iOS devices. To use any HTTP proxy on
your device, you must manually configure the HTTP proxy settings on your Wi-Fi
network in your iPhone or iPad's settings:

1.	 Tap the home button. Go to Settings | Wi-Fi | and select the network you
are connected to.

Building a Test Environment

[116]

2.	 Then, click on HTTP PROXY setting and tap on Manual. Enter the IP
address of the computer running the proxy in the server field and the
port number that it is running. By default, Burp Suite runs on port 8080
(however, you can change the port number as you wish).

3.	 After the configuration is set, all the traffic from iPhone/iPad will now be
sent via a proxy tool.

Emulator, simulators, and real devices
Sometimes, we tend to believe that all virtual emulations works exactly the same
in the real devices, which is not really the case. Especially for Android, we have
multiple OEMs manufacturing multiple devices with different chipsets running
different versions of Android. It would be challenge for developers to make sure
that all the functionalities for the app reflect this in all the devices.

It is very crucial to understand the difference between an emulator, simulator, and real
devices and their advantages and disadvantages. Let's explore the differences now.

Chapter 3

[117]

Simulators
The objective of a simulator is to simulate the state of an object, which is exactly
the same state of an object. It is preferable when testing happens when the mobile
interacts with parts of the natural behavior of the available resources. This is a
reimplementation of the original software that is written; it is difficult to debug
and mostly written in high-level languages;

Due to restrictions imposed by Apple, you cannot download and install apps from
the Apple store directly and run it through the simulator. However, you can load
the source code of an app and build it yourself in the Xcode and simulate it. For
example, you have been provided with the source code of the application that you
can build and simulate yourself.

Emulators
Emulators predominantly aim at replicating the closest possible behavior of a
mobile device. They are typically used to test the mobile's behavior internally,
such as hardware, software, and firmware updates. These are typically written
in a machine-level language and are easy to debug, as we have discovered in
this chapter. This is a reimplementation of the real software.

Pros
Following are the pros of emulators:

•	 Fast, simple, and little or no price associated
•	 Availability:

Emulators/simulators are easily available to test the majority of the
functionality of the app that is being developed

•	 Findings defects:
It is very easy to find defects using emulators and fix issues

Cons
Following are the cons of emulator:

•	 Risk:
Risk is an increased in false positives; some of the functions or protections
may actually not work on a real device

Building a Test Environment

[118]

•	 Differences in software and hardware:
Some of the emulators might be able to mimic the hardware; however, it may
or may not work when it is actually installed on that particular hardware for
real

•	 Lack of network interoperability:
Since emulators are not really connected to a Wi-Fi or cellular network,
it may not be possible to test network-based risks/functions

Real devices
Real devices are physical devices that a user interacts with. In this chapter, we
covered iPad and Google Nexus; there are pros and cons for real devices too.

Pros
Following are the pros of real devices:

•	 Less false positives:
Results are more accurate

•	 Interoperability:
All test cases are on a live environment

•	 User experience:
Real user experience about CPU utilization, memory, and so on for a
provided device

•	 Performance:
Performance issues can be found quickly with real handsets

Cons
Following are the cons of real devices:

•	 Costs:
There are plenty of OEMs; buying all the devices is not viable

•	 Slowdown in development:
It may not be possible to connect the IDE to emulators, significantly slowing
down the development process

Chapter 3

[119]

•	 Other issues:
Devices connected locally to the workstation will have to make sure USB
ports are open, thus opening up an additional entry point

Summary
In this chapter, we built the mobile app penetration testing environment for Android
and iOS applications. We understood the various tools available in the Android
SDK, their specific usage in our testing, and how to configure them in our local
environment to make things easier and more efficient during testing. We installed
Genymotion as our emulator solution and Google Nexus 5 as our real device.

This chapter also covered the process of setting up and configuring jailbroken Apple
devices in order to perform iOS black-box penetration testing. We discussed Cydia
packages in detail.

Finally, we discussed the pros and cons of using physical devices against using
an emulator. Since we are ready with the test environment, we will be loading up
all the relevant and required pentesting tools in Chapter 4, Loading up – Mobile
Pentesting Tools.

[121]

Loading up – Mobile
Pentesting Tools

Tools cannot think! But you make tools work the way you think.

Effective analysis of a system or application in order to identify problems and
collect data quickly is done through tools. In this chapter, for both Android
and iOS, we will cover tools that should be in your toolbox for every penetration
test. We will explore what each of these tools is used for and how to configure them.
Each tool for each platform will include a step-by-step configuration process and
details around their applicable use cases. By the end of this chapter, you should be
familiar with the following:

•	 Setting up Android pentesting tools, such as the following:
°° APKAnalyser
°° drozer
°° APKTool, dex2jar, and JD-GUI
°° Androguard
°° JDB debugging

•	 Setting up iOS pentesting tools, such as the following:

°° oTool
°° keychain dumper
°° LLDB remote debugging
°° Clutch, Class-dump-z, and instrumentation with Frida and Cycript
°° Hopper
°° Snoop-it

Loading up – Mobile Pentesting Tools

[122]

All the tools demonstrated in this chapter can also perform multiple functions
depending upon the requirements, such as information gathering, fuzzing,
forensics, code analysis, reverse engineering, and other miscellaneous test cases.
The demonstration does not limit you to explore tools out of box. It is recommended
that you use the mobile devices only in a test environment.

Android security tools
Before we take a deep dive into tools, let's list down the tools that are crucial and
powerful. In this section, we will go ahead and install all the required tools that are
mostly used but not limited during the penetration testing activity. All the tools will
give best results on a rooted Android phone.

APKAnalyser
APKAnalyser is Java-based (GUI) application tool that can perform static and
virtual analysis. This tool provides the following detailed information during
static code analysis:

•	 API references
•	 Application architecture and dependencies
•	 Disassembled bytecodes
•	 The ability to rebuild, install, and run the app
•	 Adb logcat to verify the results

The following steps are involved in setting up APKAnalyser:

1.	 Download the tool from https://github.com/sonyxperiadev/
ApkAnalyser/downloads.

2.	 Save the file into our Hackbox folder, which we created in Chapter 3, Building
a Test Environment. This time, we are adding the tools into a new folder,
A-tools.

3.	 Launch APKAnalyser by issuing the following command:
C:\hackbox\A-tools\ java -jar apkanalyser-5.2-exec.jar

https://github.com/sonyxperiadev/ApkAnalyser/downloads
https://github.com/sonyxperiadev/ApkAnalyser/downloads

Chapter 4

[123]

4.	 Navigate to File | Settings and set the adb path to C:\Hackbox\sdk\
platform-tools\adb.exe, as shown in the following screenshot, and
click on OK.

5.	 Navigate to File | Set paths | Android SDK and select your Android SDK
platform location (C:\Hackbox\sdk\platforms\<platform version>).
On the right-hand side pane, Midlets or APK, click on Add and select the
APK file that you would like to analyze. Then, click on OK, as shown in the
following screenshot:

Loading up – Mobile Pentesting Tools

[124]

6.	 Navigate to File | Analyze; you should receive an alert on Confirmation of
Licenses and agreements. Click on Yes.

7.	 You will be able to see the following information:

Now, you are all set to analyze the APK file that is disassembled in a human-
readable form. A majority of the static code analysis can be performed using
APKAnalyser.

The drozer tool
The drozer tool is one of the finest dynamic analysis tools that allows us to discover
security vulnerabilities with the app and the device. Its unique feature allows it to
communicate with the Dalvik VM, IPCs, and the operating system.

Chapter 4

[125]

This tool is often termed as the Android vulnerability scanner. It comes in two
versions, as follows:

•	 Community edition: An open source software maintained by MWR Info
security, released under the BSD license. It can be found at https://www.
mwrinfosecurity.com/products/drozer/community-edition/.

•	 Professional edition: This version of drozer has lots of features that make
app security testing for Android easy and simple for the developers. It has
more graphical components with the reporting feature.

For further information about the differences in the versions,
you can refer to the drozers' home page at https://www.
mwrinfosecurity.com/products/drozer/.

Basically, drozer works in a traditionally distributed system with three components:

•	 The Agent APK: (the Device app): A simple APK file that can be installed on
the device or emulator that is used for testing.

•	 The drozer console: A command-line interface that allows us to interact with
the emulator or the device through the agent.

•	 The drozer server: The server uses the drozer protocol (https://github.
com/mwrlabs/drozer/wiki/drozer-Protocol) for communication.
It provides the bridge between the agents and console and also provides
route sessions between them.

The infrastructure mode was introduced in drozer version
2.0, in which the Agent establishes an outward connection
to traverse firewalls and NAT (short for Network
Address Translation), making it more realistic in attack
scenarios. This introduced us to the server component.

https://www.mwrinfosecurity.com/products/drozer/community-edition/
https://www.mwrinfosecurity.com/products/drozer/community-edition/
https://www.mwrinfosecurity.com/products/drozer/
https://www.mwrinfosecurity.com/products/drozer/
https://github.com/mwrlabs/drozer/wiki/drozer-Protocol
https://github.com/mwrlabs/drozer/wiki/drozer-Protocol

Loading up – Mobile Pentesting Tools

[126]

Installing drozer on Genymotion
The installation of drozer is pretty much straight forward; the steps are as follows:

1.	 Download the application based on your operating system from
https://www.mwrinfosecurity.com/products/drozer/.

2.	 Install the application; in our case, install it on Windows, as shown in the
following screenshot. Click on Next until the installation is complete.

3.	 The drozer installer package comes along with agent.apk, which needs to be
installed on the device. It can achieved by issuing the adb install agent.
apk command in Command Prompt, as follows:

https://www.mwrinfosecurity.com/products/drozer/

Chapter 4

[127]

4.	 Once the app is installed on the device, you will have to open the application
to run the server, as shown in the following screen capture:

5.	 The default drozer agent runs on port 31415, as shown in the
preceding screenshot. Once the server is running, we can communicate
to the device using the embedded server, which can be done with
adb forward tcp:31415 tcp:31415; local and remote hosts communicate
using tcp port 31415.

Loading up – Mobile Pentesting Tools

[128]

6.	 Finally, it's time to launch drozer by issuing the drozer console connect
command, as shown in the following screenshot:

Now, we are all set to perform dynamic analysis of an Android app.

APKTool
APKTool is a Java-based application that is predominantly used by security testers
during the Android app security assessment, which can decode the APK file into
almost original source code, and it allows us to perform modifications to the code
and rebuild it. The following are its important features:

•	 Converting the .apk file into the .smali file; debugs SMALI code
step by step

•	 Structured data
•	 Disassembling resources to their nearly original form (including resources.

arsc, classes.dex, and XMLs)

Chapter 4

[129]

•	 Rebuilding decoded resources back to the binary APK/JAR
•	 Organizing and handling APKs that depend on framework resources
•	 Smali debugging
•	 Repetitive tasks such as building rebuilding and reinstalling the apps

The tool can be downloaded from https://bitbucket.org/iBotPeaches/
apktool/downloads/apktool_2.0.2.jar. This is standard Java application, such as
APKAnalyzer. The following screen capture provides us with the sample debug and
builds an .apk file just by single command:

https://bitbucket.org/iBotPeaches/apktool/downloads/apktool_2.0.2.jar
https://bitbucket.org/iBotPeaches/apktool/downloads/apktool_2.0.2.jar

Loading up – Mobile Pentesting Tools

[130]

How to make apps debuggable?
APKTool can be used to make any Android app debuggable. In Chapter 2, Snooping
Around the Architecture, we've discussed different elements and options in the
Android manifest.

The following is the step-by-step approach used to decompile, rebuild, sign, and
install an Android app:

1.	 Decompile the app using APKTool by running APKtool d app.apk.
2.	 Locate the folder app name and edit AndroidManifest.xml, as shown in the

following example. Add android: debuggable=true to the application tag.

3.	 Rebuild the app using APKTool by issuing apktool b appfolder, as shown
in the following screenshot. The newly built .apk file will be stored in the
appname/dist/ folder.

Chapter 4

[131]

4.	 The apps that are built using APKTool will not be signed by default. You
might see the following error message when you try to install without
signing the app.

5.	 In order to sign the app, load the APK to APKAnalyser by adding the APK to
the set path under midlets or APK. Then, click on Analyse and then navigate
to Device | Re-sign apk, as shown in the following screenshot:

6.	 Finally, the APKAnalyser tool signs the app without any further hassle
of creating new certificates and keystores. You should be able to see a new
app_name_signed.apk file in the same folder, as shown in the following
screen capture:

Loading up – Mobile Pentesting Tools

[132]

Once the application is signed, it will then be ready to install the app to the device
without any issues. By following the preceding steps, one can make any Android
app debuggable.

The dex2jar API
The dex2jar API is an API that's designed to read all the Dalvik executable
(.odex or .dex) format. This tool can be downloaded from https://bitbucket.
org/pxb1988/dex2jar.

This tool can also convert the .apk file directly into .jar file, as shown in the
following screenshot:

https://bitbucket.org/pxb1988/dex2jar
https://bitbucket.org/pxb1988/dex2jar

Chapter 4

[133]

JD-GUI
JD-GUI is used to display all the Java source code of all the .class files, and it allows
us to browse the reconstructed code for instant access to all the methods and fields
from the JAR files.

It is a standalone application, which can be downloaded from http://jd.benow.ca/.

The following screenshot showcases the MobilePentest-dex2jar.jar file, which
we converted using dex2jar from the preceding section. It provides all the methods
and fields used in the source code.

Androguard
Androguard is suite of built-in tools that can perform various tasks; it's is primarily
used in malware reverse engineering process. Androguard is archived and can be
found at https://storage.googleapis.com/google-code-archive-downloads/
v2/code.google.com/androguard/androguard-1.9.tar.gz. Unzip the file using
WinRAR or any archiving software.

http://jd.benow.ca/
https://storage.googleapis.com/google-code-archive-downloads/v2/code.google.com/androguard/androguard-1.9.tar.gz
https://storage.googleapis.com/google-code-archive-downloads/v2/code.google.com/androguard/androguard-1.9.tar.gz

Loading up – Mobile Pentesting Tools

[134]

This suite contains the following:

•	 Androaxml: This is used to convert Android's binary XML file into
a human-readable XML file.

•	 Androapkinfo: This has all the APK information, such as permissions,
services, activities, receivers, and native code usage details.

•	 Androcsign: This is used to create your own signatures in order to add them
in the database.

•	 Androdd: This tool is used to output the method of the classes of the APK in
a graphical format.

•	 Androdiff: As the name says, this is used to compare the differences between
two apps. An example is an infected app versus an original app.

•	 Androdump: This creates a process dump in order to get the original class
files.

•	 Androgexf: This is used to output the graphs in the GEXF format. This
format can be viewed only by an external application called Gephi.

•	 Androlyze: This is the primary tool within the suite, and it plays a major role
in reverse engineering during the penetration testing activity. We will take a
deep dive into this tool in the next section.

•	 Andromercury: This requires an additional mercury tool to be installed on
your workstation, which can be done by typing easy_install mercury
from your command line.

•	 Androrisk: This performs calculative risks and also performs analysis on
each method.

•	 Androsign: This checks for signature matches from the database.
•	 Androsim: This is used to perform the similarities between the two apps;

functionalities are different from Androdiff.
•	 Androxgmml: All function calls with the control flow graph are produced

when Androxgmml converts the DEX files into the .xgmmi format.
•	 Apkviewer: This tool performs the basic Android package information.

Isn't Androguard only a malware analysis tool?
Isn't Androguard only a malware analysis tool? The answer is no. Every piece of
information that can be collected to create a profile to attack an app is a very crucial
part of the assessment. So, Androguard is not to be used only during the malware
reverse engineering. Androguard is considered to be one of the most efficient reverse
engineering tools in the current state of assessment for Android apps.

Chapter 4

[135]

Androguard's androlyze shell environment
The androlyze shell environment can perform multiple activities that are very useful
during the offline/online analysis of an Android app.

The main functions that are typically used in the androlyze shell are as follows:

•	 APK: The file to be analyzed
°° APK (filename, raw=False, mode="r"): You can specify

whether the file that you parse is a RAW file or an APK file path
°° get_dex(): This returns the classes' dex file
°° get_files(): This displays all the files inside the APK file that is

parsed
°° get_permissions(): The permission details present in

AndroidManifest.xml are what the app is allowed to do on
the device

°° is_valid_APK(): This validates whether the file passed in a valid
APK or not

•	 DalvikVMFormat: You will be able to parse the RAW classes.dex file
as the input

°° DalvikVMFormat(buffer, decompiler=None): The buffer refers to
the string representing the dex file and the decompiler is the object
associated with reversing and displaying the source code (Java)

•	 show_paths(self): This shows the path that has the tainted variable that
is used

•	 VMAnalysis: This class is used to analyze a dex or class file
°° VMAnalysis(vm): This is the virtual machine object

•	 Static: Static analysis automated

°° AnalyzeAPK(filename, raw=False, decompiler=None):
This analyzes the APK file

°° ExportVMToPython(vm): This exports all the classes, methods,
and fields from the analyzed file

Loading up – Mobile Pentesting Tools

[136]

The following screenshot provides the demonstration of the androlyze script
extracting the APK information and file details:

In order to avoid configuration issues in installing Androguard
on Windows, make sure you have installed Active Python and the
supporting packages such as iPython[all] and Traitlets and run
python setup.py install.

Chapter 4

[137]

Automating the analysis of multiple files
It is possible to automate and analyze multiple files (APK) using androauto.py. A
fairly simple way is to create a folder and dump all the files and run the audroauto.
py file, as shown in the following screenshot:

This Python script can be customized accordingly in order to make more changes to
achieve the automatic analysis of an APK file.

Introducing Java Debugger
Java Debugger (JDB) is a useful tool to detect bugs in Java programs. This section
provides a basic overview of how this tool can be utilized during a penetration
testing activity and how important debugging is in manipulating a program to break
the security trust through break points and stepping and managing exceptions.

One of the powerful techniques is to engage a debugger to manipulate the variable
during runtime. As we learned from the preceding tools, Androids apps are easy to
unpack, modify, re-code, and rebuild the app again. However, it is important that
you understand the variables and especially concentrate on the variables that should
be modified.

In this technique, testers/attackers normally looks for a patch or hook to attach to a
particular application code, and the execution will be debugged on that particular
piece of code, providing the ability to analyze different variables and classes and
changing the values and also interacting with the app state. Runtime analysis can be
done by making the app debuggable and then attaching the app to JDB.

Loading up – Mobile Pentesting Tools

[138]

Debugging
AndroidManifest.xml contains all the application details; it also has the
android:debuggable setting, which makes the application supportive to debugging.
As discussed in the How to make apps debuggable? section, we should be able to add
this line to the manifest file and rebuild the apps and install it to the device.

Attaching
Once everything is set in place, you can attach the running process from a device to
the Java debugger by following these steps:

1.	 Issue the adb jdwp (Java Debug Wire Protocol) command from the command
line, which will list all the apps that are running and open a new app from
the emulator. Rerun the command, and you will see an extra process ID
added to the end. The following screen capture shows the list of process IDs
that are available from the Android device/emulator.

2.	 Next, we will forward our debugging session to a port so that we can connect
to our debugger. In the following screen capture, we are forwarding the adb
connection using tcp port:8000 and attaching the process ID 5743 to jdwp:

Chapter 4

[139]

3.	 Now, we are connecting to the remote host using JDB on port 8000.
4.	 Finally, you are all set to debug the app using the Java debugger.

Some of the JDB commands are as follows:

•	 Setting a breakpoint: stop in [function name]
•	 Executing the next line: next
•	 Entering a function: step
•	 Exiting a function: step up
•	 Printing a class name: print obj
•	 Dumping a class: dump obj
•	 Setting the variable value: print [variable name]
•	 Changing the variable value: set [variable name] = [value]

We have not included the Frida instrumentation for Android,
which is not stable. Since there is limited support for ART, Frida
recommends that we start out with a Dalvik-powered ARM
device or emulator as of now.

Installing Burp CA certificate to the device
In order to perform man-in-the-middle attacks, especially while performing
HTTP/HTTPS traffic analysis, we must have any of the proxy tool root certificates
installed on the device.

Loading up – Mobile Pentesting Tools

[140]

The following are the typical steps involved in setting up the device to intercept
SSL traffic:

1.	 Launch the Burp Suite, access the web browser configured with the proxy,
and type http://burp. Then, click on CA Certificate. You must see
something similar to what we see in the following screenshot:

2.	 Save the file. By default, it will be stored in the .der format. Rename the file
that is downloaded from cacert.der to cacert.pem.

3.	 Push the file device by issuing adb push cacart.pem /sdcard/.

Chapter 4

[141]

4.	 Navigate to Settings | Security | Install from the storage; you should be
able to see your cacert.pem in the root folder of the SD card. Click on the
file, and then you should be prompted to enter the name of the certificate,
as shown in the following screenshot:

5.	 Select the credentials; use either Wi-Fi or VPN. Click on OK to proceed.

Loading up – Mobile Pentesting Tools

[142]

You will not be able to install the certificate without a minimum
security policy, which means that the device must have either a
PIN or the pass code set in order to install any user certificates. If
you do not have any PIN or pass code, Android will direct you
to set it up. Once it is set up, we are ready. The Burp certificate is
installed to trusted CA certificates.

After the installation, you can verify the certificate installed by navigating to
Settings | Security | Trusted credentials.

The list of other tools
The following table provides the list of the other tools that can be potentially
engaged in any type of penetration testing activities:

Tool name Link to explore Description
Androwarn https://github.

com/maaaaz/
androwarn/

The static code analysis tool that will help
in detecting the malicious behaviour of
the app

APKinspector https://github.
com/honeynet/
apkinspector/

APKinspector can be best utilized to
visualize the compiled Android packages
and the DEX code

Thresher http://plv.
colorado.edu/
projects/thresher/

The Android memory leak finder that can
utilized in Java Byte-code analysis (Static
Heap Analysis)

https://github.com/maaaaz/androwarn/
https://github.com/maaaaz/androwarn/
https://github.com/maaaaz/androwarn/
https://github.com/honeynet/apkinspector/
https://github.com/honeynet/apkinspector/
https://github.com/honeynet/apkinspector/
http://plv.colorado.edu/projects/thresher/
http://plv.colorado.edu/projects/thresher/
http://plv.colorado.edu/projects/thresher/

Chapter 4

[143]

Tool name Link to explore Description
Android Hooker https://github.

com/AndroidHooker/
hooker

Android Hooker is best utilized for
dynamic analysis for Android apps

Cydia substrate
for Android

http://www.
cydiasubstrate.
com/download/com.
saurik.substrate.
apk

Cydia, which is the tool for any kind of
code modification within the device.

Here are some of the Android testing distributions one can consider building
knowledge around in penetration testing:

Distribution
Name

Link

Appie https://manifestsecurity.com/appie/

Android
Tammer

http://sourceforge.net/projects/androidtamer/

Appuse https://appsec-labs.com/AppUse/

MobiSec http://sourceforge.net/projects/mobisec/

Santoku https://santoku-linux.com/

ShadowOS by
HP

http://community.hpe.com/t5/Security-Products/
Announcing-ShadowOS/ba-p/6725771#.VlKyDL973kd

Vezir https://github.com/oguzhantopgul/Vezir-Project

iOS security tools
Although there are plenty of assessment tools available on the Internet, in this
section, we will explore the important tools that suffice the requirement of assessing
known and unknown vulnerabilities. All the security tools in this section will work
only on a jailbroken device.

oTool
As we discussed in the Application code signing section in Chapter 2, Snooping Around
the Architecture, the apps in the Apple store must be signed. In order to decrypt these
apps to perform the binary analysis, we would require oTool. Unlike unsigned apps,
these can be installed on jailbroken devices only.

https://github.com/AndroidHooker/hooker
https://github.com/AndroidHooker/hooker
https://github.com/AndroidHooker/hooker
http://www.cydiasubstrate.com/download/com.saurik.substrate.apk
http://www.cydiasubstrate.com/download/com.saurik.substrate.apk
http://www.cydiasubstrate.com/download/com.saurik.substrate.apk
http://www.cydiasubstrate.com/download/com.saurik.substrate.apk
http://www.cydiasubstrate.com/download/com.saurik.substrate.apk
https://manifestsecurity.com/appie/
http://sourceforge.net/projects/androidtamer/
https://appsec-labs.com/AppUse/
http://sourceforge.net/projects/mobisec/
https://santoku-linux.com/
http://community.hpe.com/t5/Security-Products/Announcing-ShadowOS/ba-p/6725771#.VlKyDL973kd
http://community.hpe.com/t5/Security-Products/Announcing-ShadowOS/ba-p/6725771#.VlKyDL973kd
https://github.com/oguzhantopgul/Vezir-Project

Loading up – Mobile Pentesting Tools

[144]

oTool is extensively used during manual decryption to identify relevant
misconfiguration in the way the app is packaged and installed on the device.
This tool shares the relevant libraries to inspect any Mach-O binary.

All iOS 8 and higher versions of the applications are installed in the /private/var/
mobile/Containers/Bundle/Application/ folder. The following code snippet
displays the architectures that the specific app supports:

Hackers-ipAD:/private/var/mobile/Containers/Bundle/Application/9F05A0AA-
4251-4618-9FCD-F389550F3203/DamnVulnerableIOSApp.app root# otool -f
"DamnVulnerableIOSApp" Fat headers

fat_magic 0xcafebabe

nfat_arch 2

architecture 0

 cputype 12

 cpusubtype 9

 capabilities 0x0

 offset 16384

 size 2120528

 align 2^14 (16384)

architecture 1

 cputype 16777228

 cpusubtype 0

 capabilities 0x0

 offset 2146304

 size 2299376

 align 2^14 (16384)

The following code snippet provides cryptographic offsets in the file itself:

Hackers-ipAD:/private/var/mobile/Containers/Bundle/Application/9F05A0AA-
4251-4618-9FCD-F389550F3203/DamnVulnerableIOSApp.app root# otool -arch
armv7 -l "DamnVulnerableIOSApp" | grep crypt

 cryptoff 16384

 cryptsize 1900544

 cryptid 0

Chapter 4

[145]

Stack smash protection information is displayed by running the following command.
The combination of oTool and gdb can be used to completely decrypt an app.

Hackers-ipAD:/private/var/mobile/Containers/Bundle/Application/9F05A0AA-
4251-4618-9FCD-F389550F3203/DamnVulnerableIOSApp.app root# otool -IvH
"DamnVulnerableIOSApp" | grep stack

0x001d7edc 255 ___stack_chk_fail

0x001d8220 255 ___stack_chk_fail

0x001d8350 256 ___stack_chk_guard

0x0000000100089120 252 ___stack_chk_fail

0x00000001001e4120 253 ___stack_chk_guard

0x00000001001e4620 252 ___stack_chk_fail

SSL Kill Switch
The SSL Kill Switch tool was released in Blackhat, Vegas, in 2012. The iOS SSL Kill
Switch tool is designed to disable SSL certificate validation, including certificate
pinning within iOS apps. This tool patches SSL functions within the secure transport
API, such as SSLSetSessionOption() and SSLHandshake(), to override an disable
the system's default certificate validation.

To install this app directly to the device, download the .deb file from http://blog.
imaou.com/SSLKillSwitch/com.isecpartners.nabla.sslkillswitch_v0.61-
iOS_8.1.deb and install the app to the device, as shown in the following code snippet:

Hackers-ipAD:~ root# dpkg -i com.isecpartners.nabla.sslkillswitch_v0.61-
iOS_8.1.deb

(Reading database ... 4529 files and directories currently installed.)

Preparing to replace com.isecpartners.nabla.sslkillswitch 0.6-1 (using
com.isecpartners.nabla.sslkillswitch_v0.61-iOS_8.1.deb) ...

Unpacking replacement com.isecpartners.nabla.sslkillswitch ...

Setting up com.isecpartners.nabla.sslkillswitch (0.61-9) ...

The keychain dumper
We'll learn more about a keychain and its importance in Chapter 02, Snooping
Around the Architecture. The keychain dumper is a utility that's used to dump all the
keychain data from a jailbroken device. This tool can be downloaded directly from
https://github.com/ptoomey3/Keychain-Dumper.

http://blog.imaou.com/SSLKillSwitch/com.isecpartners.nabla.sslkillswitch_v0.61-iOS_8.1.deb
http://blog.imaou.com/SSLKillSwitch/com.isecpartners.nabla.sslkillswitch_v0.61-iOS_8.1.deb
http://blog.imaou.com/SSLKillSwitch/com.isecpartners.nabla.sslkillswitch_v0.61-iOS_8.1.deb
https://github.com/ptoomey3/Keychain-Dumper

Loading up – Mobile Pentesting Tools

[146]

The following screenshot shows all the keychain dump from an iPad. Many a
times, the keychain includes confidential information, such as the username,
password, and so on.

LLDB
LLDB is the default debugger in Xcode and supports the debugging of Objective-C
on iOS devices and the iOS simulator. LLDB works similar to GDB and follows a
client-server architecture. The client and the server establish a connection using the
gdb-remote protocol over TCP/IP. To read more about LLDB, visit http://lldb.
llvm.org/lldb-gdb.html.

The very purpose of the debuggers is run the app step by step and check whether we
can bypass the security protections. For this activity, we will need a debug server to
have constant connection between the client and the server. This debug server can be
obtained from the Developer Disk Image from Xcode, which is similar to the system
images from the Android SDK. It enables us to connect remotely as well.

This can be achieved using hdiutil, as shown in the following command:

hdiutil attach /Applications/Xcode.app/Contents/Developer/Platforms/
iPhoneOS.platform/DeviceSupport/8.1\ \(12A365\)/DeveloperDiskImage.dmg

http://lldb.llvm.org/lldb-gdb.html
http://lldb.llvm.org/lldb-gdb.html

Chapter 4

[147]

Any app in iOS will need the .plist file to sign the application. Here, we need
to create an entitlements.plist, which will provide additional permissions
to the application.

The following screenshot shows what entitlements.plist contains, and it allows
all the unsigned code and PIDs:

This debug server can now be signed along with the entitlements to debug,
as shown here:

codesign -s - --entitlements entitlements.plist -f debugserver

The next step is to move the debug server to an iOS device either by scp
debugserver root@ipaddress:/~ or any other means, such as WinSCP.

Once the debugger is pushed to the device, it launches the debug server, as shown
in the following screenshot. Now, we run the debug server on port 54321 and attach
DamnvulnerableIOSapp to it.

Loading up – Mobile Pentesting Tools

[148]

Now, on the client side, we must load lldb, as shown in the following screenshot:

Enabling the remote process connect by issuing the following commands from the
lldb console:

(lldb) platform select remote-ios

(lldb) process connect connect://192.168.43.56:54321

Finally, we have loaded the DamnVulnerableIOSapp binary into the LLDB. We will
explore the app building of a tracer in more detail in Chapter 7, Full Steam Ahead –
Attacking iOS Application.

Clutch
Clutch is another excellent tool that's used during the penetration testing activity;
it decrypts and dumps the data for the iPhone, iPod Touch, and iPad applications.

This tool can be installed directly from the Cydia by adding the AppCake official
repository (cydia.iphonecake.com).

cydia.iphonecake.com

Chapter 4

[149]

The following screenshot showcases the Clutch option and how it picks up the
installed apps:

For example, we will decrypt the chess-free app in iPad using clutch.
Once the application is cracked/patched, it will be stored in /User/Documents/
Cracked/<application>-cracker(version).ipa.

Loading up – Mobile Pentesting Tools

[150]

Class-dump-z
Class-dump-z is the most current tool that's used in order to enumerate Objective-C
interfaces. This tool can be installed directly to a jailbroken device with the Cydia
substrate. The following screenshot shows how the data is dumped with the class
along with the method information, which can potentially be very useful during
reverse engineering or client-side information leaks. This will not be the same case
for signed apps; in signed apps, you will find the encrypted class dump.

Instrumenting with Cycript
Cycript (http://www.cycript.org) is the best runtime tool that can be used to
instrument iOS apps; it uses JavaScript and Objective-C and it can be installed by
adding cydiasaurik.com to the repository.

http://www.cycript.org

Chapter 4

[151]

To use Cycript to inject into a running application, from the device, simply invoke
Cycript with the process ID or the name of the application, as shown in the following
screenshot:

By default, this tool can be programmed to instrument iOS apps during runtime
with an interactive console. Cycript can be extremely useful in breaking the logic of
authentication and information leakage, such as encrypted keys from the objects and
loading additional view controllers. The following screenshot demonstrates some
basic sample commands executed from the Cycript console, The UIApp class is the
central point control and coordination for apps in iOS, keyWindow holds the details
of the screen, and rootViewController provides the content view of the window
displayed on the device.

Loading up – Mobile Pentesting Tools

[152]

More Cycript tricks could be found at http://iphonedevwiki.
net/index.php/Cycript_Tricks and UIApp class details can
be found at https://developer.apple.com/library/ios/
documentation/UIKit/Reference/UIApplication_Class/.

Instrumentation using Frida
Frida (http://www.frida.re/) is standalone multiplatform (Windows, iOS, OS
X, and Linux) framework that can be used to instrument applications. Unlike
most of the instrumentation tools, such as Cycript, Frida is newly designed tool.
It is based on the client-server architecture; server binary (Frida-server) will be
run on the mobile device without any support files that can be controlled over
the USB or remote by modifying the Frida client running on your computer. The
client communication is a bidirectional channel using the Frida Python API. Most
importantly, debugging is done through JavaScripts.

To install Frida, add the repository (http://build.frida.re/) to the sources,
search Frida, and install it, as shown in the following screenshot:

To install Frida on the client side, use easy_install:

C:\hackbox\A-tools\easy_install Frida

This will install the Python scripts to the preceding location; it is recommended that
you add C:\Users\<username>\AppData\Roaming\Python\Scripts> to your
environment variables.

http://iphonedevwiki.net/index.php/Cycript_Tricks
http://iphonedevwiki.net/index.php/Cycript_Tricks
https://developer.apple.com/library/ios/documentation/UIKit/Reference/UIApplication_Class/
https://developer.apple.com/library/ios/documentation/UIKit/Reference/UIApplication_Class/
http://www.frida.re/
http://build.frida.re/

Chapter 4

[153]

After the installation of Frida on the device and the workstation, you can plug in the
iOS device to the workstation, establish the USB tunneling using iFunbox, and run
the Frida-ps -Uai command to view the list of apps installed and running on your
device, as shown in the following screenshot:

It is recommended that you familiarize yourself with JavaScript APIs before kick-
starting the Frida instrumentation in applications.

The advantage of Frida is due to the nature of Python bindings the tool is built upon,
and Frida provides the following client-side interactions to the Frida server:

•	 Frida-ps: This is primarily used to list the running and installed apps over
the USB.

•	 Frida-trace: This helps trace function calls dynamically.
•	 Frida-discover: This tool discovers the internal functions of a program.

Loading up – Mobile Pentesting Tools

[154]

•	 Frida: This is the real debugger, connecting and parsing the custom
JavaScripts. The following screenshot shows how a process is bounded
to Frida:

Hopper
Hopper is the ollydbg of Mac OS X. It is one of the greatest tool to be engaged
in reverse engineering an iOS application. It provides the ability to translate the
compiled code into an assembly level language in the assembler. Hopper comes with
a commercial and demo version for both Mac OS X and Linux.

It can be downloaded from http://www.hopperapp.com/.

http://www.hopperapp.com/

Chapter 4

[155]

Hopper can be used to debug the IPA binary iPhone application and determine the
stack structures, procedure calls, and total functionality of the applications, including
any hardcoded strings or URLS or passwords in the app.

The following figure represents the strings present for the attached binary iPhone
executable in Hopper, which can be used to analyze the strings for the app, including
any sensitive data, API keys, and so on.

Loading up – Mobile Pentesting Tools

[156]

You can also utilize idapro from hex-rays in case of nonavailability of Hopper
(https://www.hex-rays.com/products/ida/support/download_freeware.shtml).

In this section, we are using the professional version of Hopper
for the demonstration; there are limitations in demo versions,
such as them not being able to save the disassembled files and
other debug options.

Snoop-it
Snoop-it plays a crucial role during iOS app security assessments, and it provides
a lot of options to automate, such as adding moc locations and changing the binary
boolean values. It is considered one of the best toolkits for pentesting.

https://www.hex-rays.com/products/ida/support/download_freeware.shtml

Chapter 4

[157]

It can be installed directly by adding the http://repo.nesolabs.de repository
to the Cydia sources, searching for Snoop-it, and installing it, as shown in the
following screenshot:

Once Snoop-it is installed on the device, you can open the application and select the
application that you want to analyze, as shown in the following screenshot:

Loading up – Mobile Pentesting Tools

[158]

You will now be able to hook the application by clicking on either Select System/
Cydia Apps or Select App Store Apps.

After the app is selected, you will be able to access Snoop-it from any browser on
the same network. By default, Snoop-it runs as a web application on port 12345; you
may be able to change the settings by navigating to Settings and changing the port
number or adding authentication for this web application. Finally, you will be able to
see the following screenshot, confirming that you are able to access Snoop-it and the
app is ready to be analyzed.

Chapter 4

[159]

Once the app hooked to Snoop-it and is opened from your Apple device, Snoop-it
will automatically refresh the page and you will be able to see three categories, as
shown in the following figure. The advantage of Snoop-it over Cycript is the GUI
(short for Graphical User Interface) web interface, which will allow the users to
deduce the flow of the target app.

Snoop-it provides three main features: monitoring, analysis, and manipulation at
runtime. The following is the list of things that we can do using this tool:

•	 Filesystem details
•	 Network information
•	 Keychain data
•	 All the API access
•	 Jailbreak detection
•	 Allows you to inspect the runtime state and load classes and methods

during runtime
•	 Trace methods during runtime

Snoop-it works on 32-bit operating systems only.

Loading up – Mobile Pentesting Tools

[160]

Installing Burp CA certificate to an iOS device
Unlike Android, it is not possible to push the file to iOS devices and install it. We
will take a different approach, as demonstrated here:

1.	 The same cacert.pem file that we saved for the Android emulator can be
hosted using a simple HTTP file server (http://www.rejetto.com/hfs/),
as shown in the following screenshot:

2.	 Access the HTTP file server from the browser; Safari should redirect to the
certificate installation, as shown in the following screenshot:

http://www.rejetto.com/hfs/

Chapter 4

[161]

3.	 Click on Install. A warning will displayed as the certification cannot be
verified, as shown here:

4.	 Click on Install. Finally, you have the Burp CA certificate installed on
your device and set to intercept encrypted traffic flows between the device
and the network.

Loading up – Mobile Pentesting Tools

[162]

Summary
In this chapter, we loaded up all the required penetration testing tools into our
workstation and the supporting apps to the devices specific to the mobile platform. We
also learned how to debug apps in Android using JDB, iOS, and LLDB and installed
the different tools that can be utilized for automation, such as Androauto for Android
and Snoop-it for iOS. Now, we are ready to simulate real-time attacks on apps in
Android and iOS. Before attacking any application, it is always a best practice to look
at the application from an attacker's point of view and understand how the application
threat model could have been implemented. We will be discussing this in detail in
Chapter 5, Building Attack Paths – Threat Modeling an Application.

[163]

Building Attack
Paths – Threat Modeling

an Application
The nation's protection relies on how it has been modeled to protect itself from
probable threats.

In this chapter, we will discuss some basic principles of threat modeling a mobile
application and how it can benefit the organization. We will also discuss and define
the use cases for a given mobile application. The reader will walk away with the
understanding of why and how a threat model is important in order to identify
things such as the application's purpose and industry. We will cover:

•	 How to build a threat model around a mobile application
•	 How to build attack paths and attack trees for a given threat model

One thing we can learn from past and current trends is that it is not possible to
provide a 100% secure application against all attackers.

Before we go ahead and understand how to create a model, we need to understand
the basic terms that are crucial to defining a threat model. We will go ahead and
discuss the terms that are most often used in the information security space.

Building Attack Paths – Threat Modeling an Application

[164]

Assets
An asset is something that we are trying to protect. It can be property, information,
or even people:

•	 Property: This could be a tangible or intangible thing with a value. Example
tangible items include buildings, land, offices, and so on, while intangible
items include goodwill, brand recognition, and intellectual property.

•	 Information: This includes software source code, company records,
intellectual property, and so on.

•	 People: These include employees, contractors, and customers.

Threats
A threat is something that can harm an asset that we are trying to protect. In mobile
device security, a threat is a possible danger that might exploit a vulnerability to
compromise and cause potential harm to the device.

A threat can be defined by the motive, which can be one of the following:

•	 Intentional: An individual or a group with an aim to break the application
and steal the information

•	 Accidental: A device or application malfunctioning, leading to the potential
disclosure of sensitive information

•	 Others: People's capabilities, circumstantial causes, and so on

Threat agents
The term threat agent is used to indicate an individual or group that can manifest
a threat. Threat agents will be able to perform the following actions:

•	 Access
•	 Misuse
•	 Disclose
•	 Modify
•	 Deny access

Chapter 5

[165]

Vulnerabilities
A security weakness within the system that might allow attackers to exploit it and
break the security of the device is called a vulnerability.

For example, if a mobile device is stolen and it does not have a PIN or passcode
enabled, it is vulnerable to data theft.

Risk
The intersection between assets (A), threats (T), and vulnerabilities (V) is risk.
However, including risk along with the probability (P) of occurrence of the threats
might result in more value added to the business:

Risk = A T V P× × ×

These terms will help us understand the real risk to any given asset. The business
will benefit only if these risks are assessed accurately. Understanding threats,
vulnerabilities, and risks is the first step in threat modeling.

For a given application, if there are no vulnerabilities or there is a vulnerability with
no threats, it is considered to be low-risk. We will discuss more about the risk model
in a later section.

Approach to threat models
There is no scientific approach to a threat model. One can define their own threat
model, which will broadly look at two contexts. One is the security controls that have
been implemented while staying in line with the requirements and policy, and the
other is the potential attacks that might affect an asset in a threat model.

In general, there are three approaches to a threat model:

•	 Software-centric: This approach is also known as architecture-centric,
system-centric or design-centric. It always starts from the design of the
system and involves the complete data flow diagrams (DFDs), including the
elements and different components, and it looks for different types of attacks
against each of them.

Building Attack Paths – Threat Modeling an Application

[166]

•	 Asset-centric: The asset-centric approach involves assets that hold the
responsibility of any sensitive information, such as health data, financial
data, and so on. In order to prioritize, the risk assets are classified according
to their data sensitivity (What are your crown jewels?) and their value to a
potential attack.

•	 Attacker-centric: The name says it all: everything that a model is designed
for will be looked at from an attacker's point of view. The motivation of the
attacker will be considered throughout the model. For example, if you have
a mobile app installed on your device that has a feature to take a screenshot
of the current screen, will an attacker use this as an entry point to automate
it with malicious programs in order to use this feature of the app to act as a
malware source?

Threat modeling a mobile application
A structured task for identifying and evaluating the threats and vulnerabilities of an
application is called threat modeling; in simple terms, What could possibly go wrong
with my app? This becomes the problem statement for creating the threat model.

In our case, we will look at what could possibly go wrong with our mobile app.
There is no straightforward method of creating a model or a proven threat model,
particularly for mobile applications.

OWASP has created a sample threat model, which can be found
at https://www.owasp.org/index.php/Projects/
OWASP_Mobile_Security_Project_-_Mobile_Threat_
Model#Controls

In order to understand the possible threats to a mobile app, it is necessary to define
the information in the following sections.

Mobile application architecture
We discussed the iOS and Android architectures in Chapter 2, Snooping Around the
Architecture. Most apps are developed around these architectures and designed to
serve a purpose. Let's take an example of a social media application: it would require
access to hardware components (such as the camera), other applications (such as
contacts and media), and data transmission mediums (such as SMS and MMS).

https://www.owasp.org/index.php/Projects/OWASP_Mobile_Security_Project_-_Mobile_Threat_Model#Controls
https://www.owasp.org/index.php/Projects/OWASP_Mobile_Security_Project_-_Mobile_Threat_Model#Controls
https://www.owasp.org/index.php/Projects/OWASP_Mobile_Security_Project_-_Mobile_Threat_Model#Controls

Chapter 5

[167]

All the information regarding which components of the operating system will
be required by the application will be defined in the architecture document. This
information will help us lay out during the design what the potential threats within
the application architecture are. These include different components within the
architecture but are not limited to the following:

•	 Application components: The different components of the application,
whether it be an e-commerce or retail banking application and whether it
allows login, logout, search, access to settings on the device, and so on

•	 Deployment components: All the deployment components, such as SQLite3,
web services, and other databases

Mobile applications and device data
Device data includes the information processed and stored on the device and the
data that travels over the network using a mobile network or Wi-Fi. Data workflows
and business needs for these data traversals are important.

For example, an Internet banking mobile application can include a set of data
elements such as the PIN, password, username, and account details.

One should be able to identify the flow of data between the mobile app and the
banking server.

Identifying threat agents
It is very critical to have a list of both the threats to a mobile application and the
threat agents. This can be achieved by having a threat library that includes all the
potential threats, which can outline the process of how they apply to any given
mobile app.

Modes of attacks
Now, modes of attack can be classified by the OWASP top 10 risks and also by the
way a threat agent can potentially exploit those risks. These details will help us
create a set of security controls that can be developed to protect from such attacks.

Security controls
Once everything is documented and reviewed, it is time to create a set of controls
to prevent those attacks. This can be accomplished only when all the previous items
have been completed during the application development process.

Building Attack Paths – Threat Modeling an Application

[168]

How to create a threat model?
The approach plays a major role in coming up with a threat model for a given
application. One of the proven approaches is to use the DFDs so that it will be
possible to follow the data throughout the system, which will help in identifying
the critical processes and the threats associated with those.

The data flow approach can be as follows:

•	 The attacker view
•	 The device or system view
•	 Discovering potential threats

First, let's have a look at how attackers view applications.

The attacker view
Always view the application as an attacker. This will give you the benefit of the
doubt on exposed services, from which attackers could formulate attack scenarios
in order to gain the app's sensitive information.

The three main things from an attacker's view of a mobile app are:

•	 Entry and exit points: Entry and exit points are the places where the end
user's or the app user's data enters or exits the application.

•	 Asset identification: What are the most critical assets that an attacker
would likely compromise in the mobile app? For example, an attacker
might be motivated to completely compromise the mobile app and its
database on the backend.

•	 Roles and trust levels: Roles are set within the application and define
what role the user of the app has to play. Trust levels are set from the entry
and exit points. Now let's take an example of a mobile app in Android that
can read text messages: an attacker could potentially try to change the role
and also escalate the privilege to not just reading text messages but also
accessing photos, contacts, and other device files, therefore breaking the
trust level of the app.

Chapter 5

[169]

The device or system view
Device characterization is one of the most important pieces of information that will
help the developers or security teams focus and identify the specific areas that need
to be considered and kept in mind.

Creating a list of usage scenarios will help identify vulnerabilities for a given threat
model. This can help in creating a list of attack paths and also conducting a security
test. Typically, architects and end users of the application identify these scenarios.

Define all the external dependencies that are required for the application; failure to
understand the external dependencies will lead to a valid vulnerability. For example,
if the mobile app running on the device uses a vulnerable version of a library and
this is ignored during threat modeling, it is going to be an open vulnerability on the
app and the device.

In order to have a good threat model, it is very much required to look at the app
from an attacker's view of the device.

Discovering potential threats
In order to discover potential threats, we have to now create a DFD that can be used
to determine what data is sent to the application and what an attacker can do with it
in order to launch an attack.

Finally, all the entry and exit points will be followed with the data flow through the
device and the network medium.

Threat modeling methodologies
In this section, we will take a look at three models that have been playing a major
role in threat modeling in different ways. We will discuss the basics of STRIDE,
PASTA, and Trike and also model our mobile app against STRIDE to understand
what kind of potential threats are possible.

Building Attack Paths – Threat Modeling an Application

[170]

STRIDE
The STRIDE threat classification method was developed by Microsoft in January
2002. STRIDE stands for spoofing, tampering, repudiation, information disclosure,
denial of service, and elevation of privilege.

In order to meet the security principles of CIA (short for confidentiality, integrity,
and availability), Microsoft introduced STRIDE, which massively uses DFDs that
are graphically represented with a standard set of symbols. The DFD includes data
flows, stores, and processes, and it also includes trust boundaries. We will be using
this model to define the threats for a sample mobile app.

PASTA
PASTA (short for process for attack simulation and threat analysis) is a seven-
step method introduced by Marco Morana and Tony Ucedavelez. It begins with the
business definition followed by the technical definition, decomposing the app, threat
analysis, vulnerability detection, attack enumeration, and finally, risk and business
impact analysis.

Trike
Trike is a methodology based on risk management and is used to build threat
models. Trike comes with XLS and a standalone-based tool, which can be
downloaded from http://sourceforge.net/projects/trike/.

Using STRIDE to classify threats
Now that we have discussed STRIDE risk classification, we will take a look at the
different types of threats that might be applicable to a mobile app. The following
diagram gives a list of threats according to potential vulnerabilities:

http://sourceforge.net/projects/trike/

Chapter 5

[171]

Spoofing
Spoofing is pretending to be someone you are not by gaining illegitimate access
to data. Here are some of the ways in which one can potentially exploit this
vulnerability:

•	 Improper session handling: Session identifiers are the ones used to identify
if a user is what he claims to be; by changing session identifiers, an attacker
can impersonate a legitimate user.

•	 Social engineering: A user might be easily tricked by social engineering
exercises. For example, talking to customer care with someone else's
information from other social means, such as Facebook.

•	 Malicious code: A malicious piece of code could attach to your device
ID from your phone and send an SMS without your knowledge in the
background and spoof your identity.

•	 Untrusted peers: NFC and Bluetooth are some solid examples of
untrusted peers.

•	 Malicious apps: This could be malware that can capture keylogs from your
mobile device.

Building Attack Paths – Threat Modeling an Application

[172]

Tampering
Tampering is the process of modifying things that you are not authorized to, which
compromises the integrity of data. Here are some of the ways of tampering the data
on a device or network:

•	 Modifying local data: If a malicious user has access to the device's
filesystem, he might be able to change the data and therefore compromise
its integrity.

•	 Carrier network breach: One can connect to multiple carriers; if one connects
to a fake carrier and then transmits data, it can be tampered with.

•	 Insecure Wi-Fi networks: This could potentially be one of the issues if
a mobile user connects to public Wi-Fi controlled by an attacker. All the
requests and responses to and from the device can be easily tampered with.

Repudiation
Repudiation is telling a story and trying to avoid responsibility. Basically, it's
the denial of truth or validity. The following are different ways of performing
repudiation attacks:

•	 Missing devices: This is a greater threat when the device carries sensitive
and personally identifiable information.

•	 Toll Fraud: Toll fraud attacks are specifically designed to steal money
from compromised mobile devices by making them send text messages
to premium-rate SMS services owned by the cyber attackers, without the
knowledge of the user.

•	 Malware: The threat of mobile malware is one of the major concerns; it can
function the way it is designed by the attackers. For example, a piece of
malware can send all the photos in a user's gallery to a particular number or
web service without the user's interaction.

•	 Client-side injections: An adversary can inject any scripts or data from the
client side to perform an unwanted activity or block a necessary activity.

Chapter 5

[173]

Information disclosure
Information disclosure is access to information that is not meant for you. An
example would be an adversary being able to view valuable developer API keys by
accessing different databases on a jailbroken or rooted device, which is not meant to
happen. The following are potential methods of information disclosure:

•	 Malware: Mobile malware can pretty much send all the information from
your device anywhere depending on how it has been designed and built

•	 Lost devices: A device containing data is always a threat, and a lost device
without any encryption or protection will lead to massive information
disclosure by an app

•	 Reverse engineering: Lots and lots of information that makes attackers
able to release quick patched versions of mobile apps is acquired through
reverse engineering, which includes all the library details along with
developer comments

•	 Backend breach: If a mobile is breached from the backend, it can leak
sensitive information such as usernames and passwords, PINs, passcodes,
and so on

Denial of service (DoS)
DoS is a type of attack that prevents access to legitimate resources due to too much
load. An example is sending 50 students to a classroom that can accommodate only
30 at a time, considering 30 legitimate students cannot sit in the classroom because
of 20 more non-legitimate students.

The following is a list of potential attacks possible on a mobile device and
application:

•	 Crashing apps: We might have seen a text message in WhatsApp that can
crash another person's app if it is not updated. Crashing an app is making it
not responsive for a user.

•	 Push notification flooding: One can perform a man-in-the-middle (MiTM)
attack and keep pushing notifications to any user, making the device not
respond to any other usage.

•	 Excessive API usage: In this, the API is used multiple times to exhaust the
resources and application.

•	 Distributed denial of service (DDoS): This is done using multiple nodes to
attack a single device by any of the other means mentioned in this list.

Building Attack Paths – Threat Modeling an Application

[174]

Elevation of privilege
Elevation of privilege or privilege escalation is someone exceeding the
authorization granted to them. For example, you are allowed to access a user portal,
but you change yourself to an admin and are able to access sensitive information and
make changes to the system.

For a mobile device, the following is a list of potential ways to attack it:

•	 Sandbox escape: Once a device is rooted or jailbroken, it is possible to access
application details of one app from another without any issue. This can lead
to escaping the sandboxing technique, and potentially, a piece of malware
can read all the data and also send it to untrusted sources.

•	 Flawed authentication and authorization: If any application is flawed with
authentication and authorization, it is under a major critical threat. For
example, a user being able to log in without a password is an authentication
flaw in that it validates only the username and not the password. The same
user switching his name on the device and getting access to a different user's
information showcases the authorization issue.

•	 Compromised credentials: Credentials becoming public is the biggest threat,
considering someone posting usernames and passwords on a data dump site
such as Pastebin.

•	 Compromised devices: A device that responds to commands and is
controlled remotely by a server is very much likely to be top on threat lists.

Chapter 5

[175]

A typical mobile application threat model
The following diagram showcases a typical generic model that can be used for both
iOS and Android mobile apps:

It indicates a Normal User interacting with an application. It has to be looked at
from an attacker's point of view. All the red lines indicate the entry points and trust
boundaries for the app.

Usage scenario: The user is able to access the application and the mobile is already
running a malicious application with access to the device's filesystem.

The Mobile Application communicates with Enterprise web services to pull
information back to the device and display it on the screen to the user.

Building Attack Paths – Threat Modeling an Application

[176]

The following figure shows a simple illustration of a mobile app's login activity only:

Mobile App Login

Device Auth

User Account

Money transfer etc

Other options

Feedback (Text)

Contacts

Passcode

Account details

Once the mobile app is opened, the login activity starts running. It has challenge and
response using Device Authentication(Device Auth) and Passcode, and subsequently,
the app user will be able to view account details, transfer money, and perform other
activities, such as sending feedback and adding contacts to the phonebook.

The same login activity from an attacker's point of view, with the entry point to the
application from the login screen, is as shown in the following figure:

Mobile App Login

Device Auth

User Account

Money transfer etc

Other options

Feedback (Text)

Contacts

Passcode

Account details

Predictable passcode,

No or weak encryption

SQL injection, Tap hijacking,

Bypass the screen

SQL injection, misconfiguration,

Information disclosure

Threats are looked at from the entry point, for example, SQL injection to access user
data and other critical information and Tap hijacking to hijack a login session.

Chapter 5

[177]

Building attack plans and attack trees
After the previous session on modes of attacks, let's now take an example of a mobile
banking app that stores some sensitive information on the device and also sends this
data over the network.

The following figure provides a simple attack methodology:

The methodology's working consists of the following five steps:

1.	 Target App: Select the Target App, which is the asset that we are trying to
protect from attackers.

2.	 Information Gathering: This is the typical approach for identifying all the
information related to the app.

3.	 Attack Plan: Depending on the architecture and data flow, one must be able
to see and create multiple scenarios for the attack.

4.	 Execution: This is similar to the exploitation phase in any penetration
testing activity; it involves playing the attack to gain maximum privilege
on the device itself through the vulnerabilities identified in the app and
stealing data.

5.	 Document: Entire attack scenarios must be documented with all the findings
with respect to what the intended and unintended attacks were.

Building Attack Paths – Threat Modeling an Application

[178]

Attack scenarios
We can create multiple attack scenarios for the above attacking methodology.
Let's now walk through an attack scenario of a mobile application's sensitive data
from local storage and in transit that an attacker is trying to compromise.

Now, it is time to define the threats associated and classified according to the
data flow.

•	 Carrier-based methods: Can the carrier be used to perform an MitM attack
or hijack the wireless transmission by having the device connected to a
malicious signal booster?

•	 Endpoint-based methods: All the OWASP top risks are applicable here, such
as code injection, pushing malware from untraditional app stores, tampering
with the web services that communicate with the mobile app, cloud storage,
and malware.

•	 Wi-Fi methods: This includes stealing data in transit by spoofing the
network with attacker-controlled wirelessly.

•	 OS and app-level methods: This includes circumventing implemented
client-side security controls using different bypassing mechanisms,
exploiting vulnerabilities, manipulating during the runtime and so on.

•	 Other methods: This includes GPS-based attacks, Flash, exploiting
vulnerable components of the device, and control.

Chapter 5

[179]

A sample attack tree for a stolen or missing device
The following diagram showcases the typical attack tree for sensitive information
along with network-level attacks when a mobile device is stolen:

Device or
Application
Password Data Modified from

the User

Man-in-the-Middle
Attack

Un-Authorized Use
of Device

Encryption

Exploiting
unencrypted

Communications

Attack in network
Access to local
configuration

Physical Access to
device

Faking app in the
app store

Replacing app in
device manually Server-side attack

Reconfiguring
communication

routings

Modified
Application

The motivation of the attacker is to impersonate the victim and steal data. So, an
attacker can perform MitM attacks by various means, such as using a fake app serving
malware, manually replacing the app, performing server-side attacks, routing the
traffic in an unencrypted way, and also forcing the app to use unsecure protocols.

Building Attack Paths – Threat Modeling an Application

[180]

The following screenshot shows a sample attack tree created with one of the open
source tools that can be leveraged to create attack trees, which is ADTool (short for
Attack Defense Tool), which can be downloaded from http://satoss.uni.lu/
members/piotr/adtool/.

Mobile Bank Account

Native Client Login

Password

Eavesdrop Find Note Force

Session Identifier User Identity

Web Services

2nd Auth Factor

OTP SSN Malware

Browser Mobile OS
Memorize

A list of free tools
You can practice threat modeling for any application, not just limited to mobile apps,
by using the following tools:

•	 Microsoft SDL Threat Modeling Tool: This can be utilized during the
design phase of the SDL, and one can perform design analysis. It can be
downloaded from https://www.microsoft.com/en-us/download/
details.aspx?id=2955.

•	 Microsoft Threat Analysis and Modeling: Another tool from Microsoft, that
emphasizes application risk management more. It can be downloaded from
https://www.microsoft.com/en-us/download/details.aspx?id=14719.

•	 Trike: In the Threat modeling methodologies section of this chapter,
we discussed Trike, which is again a free tool and can be very handy to
practice with.

http://satoss.uni.lu/members/piotr/adtool/
http://satoss.uni.lu/members/piotr/adtool/
https://www.microsoft.com/en-us/download/details.aspx?id=2955
https://www.microsoft.com/en-us/download/details.aspx?id=2955
https://www.microsoft.com/en-us/download/details.aspx?id=2955
https://www.microsoft.com/en-us/download/details.aspx?id=14719
https://www.microsoft.com/en-us/download/details.aspx?id=14719
https://www.microsoft.com/en-us/download/details.aspx?id=14719

Chapter 5

[181]

A commercial tool
The threat modeler from MyAppSecurity is probably the only tool that has
automated threat modeling. It can be found at http://myappsecurity.com/
threatmodeler/.

Threat model outcomes
A threat model will be more effective during the design phase of the software
development lifecycle and can be used to identify the reasons and methods that an
attacker could potentially use to identify vulnerabilities and threats in the system.

Threat modeling should be able to:

•	 Define the current security posture of the given application
•	 Identify potential threats and vulnerabilities
•	 Justify security features on all levels (software and hardware) for identified

threats
•	 Achieve a logical and conceptual thought process in finding the right

approach and making decisions about the security of an application
•	 Formulate a process to identify architectural mistakes very early
•	 Achieve a reduction in vulnerabilities, reducing the effort required to fix

vulnerabilities in later stages

When developing a mobile application, the threat model must be documented,
reviewed, and discussed.

Risk assessment models
Once all the threats have been identified, how do you assess them to prioritize them
and decide which threat or vulnerability needs to be fixed first? The threat model
output requires a way of weighing the risk. One of the techniques used was DREAD,
introduced by Microsoft, and developers used it during threat modeling. DREAD
stands for damage, reproducibility, exploitability, affected users, and discoverability.
This model is considered to be out of date by Microsoft.

We will now define two different models to rate risks for a vulnerability, one on the
business standpoint and the other on the technical. This can help us prioritize in
order to address threats and risks to an acceptable level.

http://myappsecurity.com/threatmodeler/
http://myappsecurity.com/threatmodeler/
http://myappsecurity.com/threatmodeler/
http://myappsecurity.com/threatmodeler/

Building Attack Paths – Threat Modeling an Application

[182]

Risk rating is always subject to discussion and different viewpoints

Business risk
The following table describes the risk rating matrix for business goals; we can rate
risks based on criticality and severity:

Risk Rating Matrix

Te
ch

ni
ca

l R
is

k Critical(4)

High(3)

Medium(2)

Low(1)

Insignificant (1) Minor (2) Moderate (3) Major (4) Severe (5)

Business Impact

Medium (4x1)

Medium (3x1)

Low (2x1)

Low (1x1)

Medium (3x2)

Medium (2x2)

Low (1x2)

High (4x2)

High (3x3)

Medium (2x3)

Medium (1x3)

Critical (4x3) Critical (4x4)

Critical (3x4)
High (2x4)

Medium (1x4) High (1x5)
Critical (2x5)

Critical (3x5)

Critical (4x5)

Technical risk
This table describes the potential risk rating matrix for technical findings once the
threat has been confirmed to be a vulnerability. The logic depends on how likely it is
that the vulnerability can be exploited.

Risk Rating Matrix

Easy (5)

Likely(4)

Possible(3)

Unlikely(2)

Insignificant (1) Minor (2) Moderate (3) Major (4) Severe (5)

IMPACT

Medium (5x1)

Medium (4x1)

Low (3x1)

Low (2x1)

Medium (4x2)

Medium (3x2)

Low (2x2)

High (5x2)

High (4x3)

Medium (3x3)

Medium (2x3)

Critical (5x3) Critical (5x4)

Critical (4x4)
High (3x4)

Medium (2x4) High (2x5)
Critical (3x5)

Critical (4x5)

Critical (5x5)

Rare(1) Low (1x1) Low (1x2) Low (1x3) Medium (1x4)

LI
KE

LI
H

O
O

D

Medium (1x5)

Chapter 5

[183]

Summary
In this chapter, we learned that threat modeling is not just about the improved
security design of an application; it also depends on the approach and other key
terms. We built the required test environment, loaded the pentesting tools, and
we now know how to build an attack tree around the mobile app using different
techniques. We are now set to attack an application, which we will be discussing in
detail in the next chapter, Full Steam Ahead – Attacking Android Applications.

[185]

Full Steam Ahead – Attacking
Android Applications

The strategy of attacking is to allow your enemy to make mistakes.

In this chapter, we will be breaking down all of the facts that we need to start
attacking and penetration testing Android applications. Each tool that was
covered in the previous chapters will be put to good use by us referencing them
and what they can do for a given vulnerability. The chapter will discuss all the
top 10 OWASP mobile application vulnerabilities and how to attack Android apps
and their given weaknesses, with examples. The reader should walk away with
knowledge of the following:

•	 Attacking Android components
•	 Attacking Android WebViews
•	 Assessing implementation vulnerabilities
•	 Abusing web traffic for MitM attacks
•	 Reverse engineering subtle logic vulnerabilities
•	 Defeating binary protection

As discussed in the previous chapters, it would be a tough job for developers to
create an app that has no vulnerabilities. There are three types of scenarios that can
be faced by penetration testers in particular. They are as follows:

•	 The APK file provided directly by the customer
•	 The complete source code of the app that can be custom compiled and

then tested
•	 Complete black box assessment; the customer just provides the link to

Play Store

Full Steam Ahead – Attacking Android Applications

[186]

However, an attacker would primarily be concentrating on the following important
aspects of the app:

•	 The mobile app residing on the device
•	 Data in transit
•	 Data at rest
•	 The server communicating with the app

We will be using different applications as our target to find vulnerabilities and
exploit them. They are:

•	 OWASP's Goat Droidproject: This can be downloaded from https://
github.com/downloads/jackMannino/OWASP-GoatDroid-Project/OWASP-
GoatDroid-0.9.zip. It includes two applications, namely, FourGoats and
Herd Financial:

°° FourGoats is a simple location-based social networking app, where
you can share your location details and also perform check-ins at
different places. It also provides an API to other applications in order
to connect and share more activities.

°° Herd Financial is a simple mobile banking app that allows users to
check their balance, make transfers, and view their banking history.
We will not be using this app in this chapter; however, you can install
the app on your emulator and practice with it.

•	 OpenSecurityReasearch: This is a simple runtime app developed by
Naveen Rudrappa (Foundstone company), which takes a PIN input
and checks whether it is correct or wrong. It can be downloaded from
https://github.com/OpenSecurityResearch/AndroidDebugFun/raw/
master/runtime.apk.

•	 Sieve: Sieve is a simple password-manager application developed by
MWR Information Security and can be downloaded from https://www.
mwrinfosecurity.com/system/assets/380/original/sieve.apk.

•	 DIVA (short for Damn Insecure and Vulnerable App): This is a vulnerable
app designed and developed by Aseem Jakhar (http://www.payatu.
com/), which provides a set of vulnerabilities for the secure development of
Android apps. It can be downloaded from http://www.payatu.com/wp-
content/uploads/2016/01/diva-beta.tar.gz.

https://github.com/downloads/jackMannino/OWASP-GoatDroid-Project/OWASP-GoatDroid-0.9.zip
https://github.com/downloads/jackMannino/OWASP-GoatDroid-Project/OWASP-GoatDroid-0.9.zip
https://github.com/downloads/jackMannino/OWASP-GoatDroid-Project/OWASP-GoatDroid-0.9.zip
https://github.com/OpenSecurityResearch/AndroidDebugFun/raw/master/runtime.apk
https://github.com/OpenSecurityResearch/AndroidDebugFun/raw/master/runtime.apk
https://www.mwrinfosecurity.com/system/assets/380/original/sieve.apk
https://www.mwrinfosecurity.com/system/assets/380/original/sieve.apk
http://www.payatu.com/
http://www.payatu.com/
http://www.payatu.com/wp-content/uploads/2016/01/diva-beta.tar.gz
http://www.payatu.com/wp-content/uploads/2016/01/diva-beta.tar.gz

Chapter 6

[187]

Setting up the target app
It is important to have all our data stored in a single place. Let's go ahead
and download all the previously mentioned apps into the Target folder under
c:\Hackbox and install all of them to our Genymotion (Android Emulator) by
issuing the adb install command, as shown in this screenshot:

OWASP Herd Financial and Sieve do not work on Android Lollipop
or Marshmallow; we have used Android 4.3 for those examples.

Backend server setup
In order to make sure you have a fully operational app with a server environment,
you will have to do the following:

1.	 Unzip the downloaded file and locate to the folder OWASP-GoatDroid-0.9
and launch the .jar file from the command prompt using the java –jar
goatdroid-0.9.jar command, and you should be able to get your backend
server up and running, as shown in this screenshot:

Full Steam Ahead – Attacking Android Applications

[188]

2.	 Click on Start Web Service.
3.	 Click on Configure and then on Edit Configuration; here, you change the

port numbers. In our case, we leave it as 8888 for HTTP Port and 9888 for
HTTPS port, as shown in the following screenshot:

Next, we will set up the application in Genymotion to communicate with the server.

1.	 Open the app in Genymotion and click on Destination Info from the menu
bar in the FourGoats app.

2.	 Set up the IP address of your server as shown in the following screenshot
and then click Save:

Chapter 6

[189]

Let's now explore FourGoats. It is best practice to store all the data evidence that
you collect in the same folder so that for offline analysis, it will be easy to refer to
and produce a valid proof of concept (PoC). On a typical security assessment, every
single vulnerability that you find in the target application will be presented to the
application and business owners; providing them with the exact steps to reproduce
it with a valid PoC is going to help the bug-fixing (development) team reproduce the
issue and fix it.

Let's go ahead and follow some basic and simple steps to be done once we receive
the .apk file. The following are the primary steps for understanding the app on
the platform:

1.	 Disassemble the app using APKtool, as shown in the following screenshot,
using this command:
java –jar apktool_2.0.2.jar d "c:\<location to the apk>"

2.	 Understand the AndroidManifest file, which will give you the complete
details about the SDK version used, all the intents and components defined,
whether the app is debuggable or not, as well as app permissions. We will
cover more details in the coming section.

3.	 Convert the .apk file into a .jar file using dex2jar, as shown in the
following screenshot, using the following command:
dex2jar.bat "name of the apk"

Full Steam Ahead – Attacking Android Applications

[190]

4.	 Now we can load the dex2jar output into JD-GUI in order to understand the
source code class files, as shown in the following screenshot:

Analyzing the app using drozer
Drozer's inbuilt module app.package.manifest will give us presentable
information about the AndroidManifest.xml file and display it in the console,
as shown in the following screenshot:

Chapter 6

[191]

This output helps us understand the app's Process Name, Data Directory, APK Path,
UID and GID, Shared Libraries and Shared User ID (if any), and most importantly,
permission details.

Our target app, FourGoats, has permissions to send SMSes, make phone calls, and
access location data and the Internet on the mobile device.

These details can also be extracted using other tools, such as
APKTOOL and Androguard.

Android components
As we learned about Android components in Chapter 2, Snooping Around the
Architecture, every Android app is built upon one or more components. These
components are normally defined as public when the exported option is set to true
and also when the manifest file specifies an intent filter for the particular component.
Developers have the flexibility of setting components as private even without
intent filters by changing the exported option to false for every component in the
manifest file. Let's now see what different components are available on our target app,
FourGoats.

Attacking activities
An activity is nothing but a user interface that has a graphical representation.
Traditionally, an app will have one or more activities, for example, a social network
app has an activity for the user to log in and another to reset the password.

In order to determine the list of activities, we can run the drozer module app.
acitivity.info on the target app, or we can directly view the activities from the
Android manifest. The following screenshot demonstrates the command run app.
activity.info –a <nameofthepackage>, which lists exported activities:

Full Steam Ahead – Attacking Android Applications

[192]

From the previous screenshot, we can see that our target app has four different
activities. An activity being exported means that any app within the device will be
able to communicate and access it.

As you can see, none of the activities has any custom permissions set; let's go ahead
and pass an intent through drozer by issuing the command run app.activity.
start –component <nameofthepackage> <nameoftheactivity> to access these
activities, as shown in the following screenshot:

After this, you will see that FourGoats has been started with the default profile,
as shown in the following screenshot, and we can view the profile, which normally
should not be available without logging in to the app:

In this way, a majority of exported activities can be exploited by malicious apps on
the device, which can invoke activities that do not have any permissions set.

Attacking services
In this subsection, we will explore how to exploit security weaknesses around the
services components of Android; these components can be started and stopped
without user interaction. To determine the list of exported services, we can again use
the drozer module app.service.info, as shown in the following screenshot:

Chapter 6

[193]

The command run app.service.info –a <package name> will display all the
services associated with the package. Now we can understand that FourGoats uses
the location service without any permission for the check-in feature. However, for an
attacker, this is an additional entry point to exploit and access the location service.

Now, we will go ahead and start the service through the app (FourGoats in this
case) using drozer, with the command run app.service.start –-action
<nameoftheservice> –component <nameofthepackage> <nameoftheservice>,
as shown in the following screenshot:

You will see the FourGoats app crashing in your Genymotion (Android Emulator);
this is due to the drozer agent trying to invoke the location service as FourGoats.

Attacking broadcast receivers
Broadcast receivers are an important component of Android apps that have the duty
of answering system announcements and registering for a system or application event.
Having learnt how critical it could be for an app to have a broadcast receiver facility,
this could turn out to be a nightmare if it is vulnerable misused by adversaries. To get
the list of broadcast receivers, we can either go through AndroidManifest.xml or
use drozer.

The module app.broadcast.info –a <packagename> will list the broadcast
receivers, as shown in this screenshot:

Full Steam Ahead – Attacking Android Applications

[194]

Now we can see that FourGoats has exported SendSMSNowReceiver, which
means the application has the capability to send SMSes. Now let's look at the
AndroidManifest.xml file that we decompiled using APKTool:

….
 <receiver android:label="Send SMS"
 android:name=".broadcastreceivers.SendSMSNowReceiver">
 <intent-filter>
 <action
 android:name="org.owasp.goatdroid.FourGoats.SOCIAL_SMS"/>
 </intent-filter>>
 </receiver>
…..

From the previous code snippet, we can notice that org.owasp.goatdroid.
FourGoats.SOCIAL_SMS is the action and the component is .broadcastreceivers.
SendSMSNowReceiver.

Let's combine other tools' outputs and understand how it works; we will load the
.jar file that we decompiled using dex2jar into JD-GUI. This screenshot shows how
the class is defined and structured:

The OnRecieve function has paramContext.sendTextMessage(paramIntent.
getString("phoneNumber"), null, paramIntent.getString("message"),
null, null);. A quick review of the code provides us with an understanding
that the sendTextMessage() function expects phoneNumber and message as the
input when the intent is called. Let's now try to exploit this feature using the drozer
command run app.broadcast.send –-action <nameofthebroadcast> –
component <nameofthepackage> <nameofthebroadcastreciever> -–extra
string phonenumber <phonenumber> –-extra string message <anymessage>:

Chapter 6

[195]

The previous customized intent when called from drozer will try to send an SMS to
001029228745 with a message saying Premium SMS.

Now, this SMS will be sent without the user's consent and will be available in the
sent items, as shown in the following screenshot. This way, attackers can misuse
exported broadcasts in the app.

From Android 4.2 and above, some devices will alert the user
through a notification asking whether to send the SMS or block it.

Attacking content providers
Having understood the criticality of content providers in the previous chapters, we
know that this is one of the main areas attackers are focused on exploiting. In many
cases, the content providers have URIs with null permissions and GrantURI is set
to True; you may be able to extract the data using some modules within drozer. It
also depends on the way the permissions are set and enforced to protect the content
provider data.

Let's check what are the content providers that our target app, FourGoats, has.
The app does not have any content provider, as shown in the following screenshot:

Full Steam Ahead – Attacking Android Applications

[196]

In order to demonstrate this attack scenario, we will install the Sieve app by running
the adb install command in Genymotion. We will now run the drozer command
app.provider.info –a <nameofthepackage> against Sieve, as shown in the
following screenshot:

It gives a clear picture that Sieve has DBContentProvider with Grant Uri Permissions
set to False and read/write permissions set to null, which means any other app
installed on the device will be able to access these contents.

We will now explore a little bit more and find out what the different URIs available
on the Sieve app are by issuing the drozer command app.provider.finduri, as
displayed in this screenshot:

So, using the app.provider.finduri module, we have found some of the exported
content provider URIs. We can see that there are two identical URIs:

•	 content://com.mwr.example.sieve.DBContentProvider/keys

•	 content://com.mwr.example.sieve.DBContentProvider/keys/

Chapter 6

[197]

Let's try to query both of them and see whether the app works the way it is supposed
to. Querying the first URI results in Permission Denial; our drozer app does not
have sufficient permission to access the keys, as show in the following screenshot:

Querying the other URI results in the displaying of confidential information in
plaintext, which includes the Password and pin for the app:

What more can you do? Let's try to change the value of the password from
thisisthebiggestpassword to Againthebiggestpassword, as shown in the
following screenshot:

This is one of the ways in which content providers can be exploited to compromise
the app's features.

For demonstration purposes, the application Sieve was run
on Android 4.3. This app cannot be installed on the latest
versions of the APIs.

All attacks on Android components are under the OWASP category of M8 - Security
Decisions via Untrusted Input subsection of the OWASP mobile top 10 risks section
(Chapter 1, The Mobile Application Security Landscape).

Attacking WebViews
A WebView is a simple mobile app element that allows web pages to be rendered
within an app. Hybrid and native apps are applicable, which provides browser
functionality within the app. It started with Webkit (www.webkit.org) and later,
post Android 4.4 KitKat, moved on to Chromium (www.chromium.org).

www.webkit.org
www.chromium.org

Full Steam Ahead – Attacking Android Applications

[198]

The CVE-2012-6636 vulnerability, in which attackers are able to inject malicious
JavaScript into the app and take control of the device, has created sleepless nights
for developers.

The difference between WebView and a web browser is that WebView runs
within the context of a mobile app that is embedded. All the attacks on browsers
are applicable to WebView.

Let's now create a scenario of an attacker's hosted website sending a malicious link
inside WebView to the user of an app, similar to the cross-site scripting attack, and
the attacker is able to inject the code into the WebView and execute the JavaScript
code on the device level.

We have used Metasploit (http://www.metasploit.com/) to create the fake
website. The following screenshot demonstrates how attackers will be able to create
an exploit within seconds of using Metasploit:

Now the second step is to make the victim click on the link either through social
engineering or phishing-style attacks; when the victim opens the link in an Android
browser, as shown in this screenshot, nothing happens to him:

http://www.metasploit.com/

Chapter 6

[199]

In the background, attackers are able to take complete control of the mobile
device by adding custom JavaScript inside the device. The following screenshot
displays a list of activities that one can perform on the device, ranging from copying
images to dumping call and SMS details. More information about WebView can
be found at http://developer.android.com/reference/android/webkit/
WebSettings.html.

SQL injection
As we know, a majority of mobile apps run on HTML5 technology.
Client-side storage has been increasingly used for user-specific data. The impact
of SQL injection will be more if the application is designed to have more than one
account. In order to demonstrate this vulnerability, we will be using the DVIA
app that we downloaded, and we will install it to Genymotion by running the adb
install command.

http://developer.android.com/reference/android/webkit/WebSettings.html
http://developer.android.com/reference/android/webkit/WebSettings.html

Full Steam Ahead – Attacking Android Applications

[200]

Once the app is installed, select 7. Input Validation Issues – Part 1, as shown in the
following screen capture:

If you go ahead and inject the SQL injection query ' OR 1=1--, you can see all the
data inside the database is displayed, as shown in this screenshot:

Chapter 6

[201]

This attack is a local SQL injection on the lightweight mobile database SQLite.
Attacks against WebView and local storage are categorized under the M7- Client-Side
Injections subsection of the OWASP mobile top 10 risks section (Chapter 1, The Mobile
Application Security Landscape).

If the same SQL injection attack is used on the server side, then the OWASP category
will be the M1- Weak Server Side Controls subsection of the OWASP mobile top 10
risks section (Chapter 1, The Mobile Application Security Landscape).

Man-in-the-Middle (MitM) attacks
By default, for every SSL connection, when an Android app connects to a server,
it validates the server's certificate and checks whether it has a valid trusted root
certificate and also matches the reverse DNS (hostname). By defeating this feature,
one can perform an MitM attack.

Since we have all the setup required to perform an MitM attack from Chapter 4,
Loading up – Mobile Pentesting Tools, all we need to do now is turn on the proxy
and set the right IP and port number in the wireless or APN settings.

When we launch our target app (FourGoats) and submit the username and password,
we should be able to see the request in our proxy tool, as shown in the following
screenshot:

Full Steam Ahead – Attacking Android Applications

[202]

Now let's see what changes we can do to the app so that we can manipulate a
client-side request to the server. If you try to view your profile, you might receive
the request shown in the following screenshot:

Once the original request is forwarded, the profile of the test user must be displayed
on the screen by the app, as we see in the following screenshot:

Now, repeat the same activity again and alter the profile name to vijayvelu from
the request, as shown in the following screenshot:

Chapter 6

[203]

Improper authorization results in the successful loading of another user's profile, in
this case, the test user can view details about vijayvelu regarding where he checked
in as well as his location details, as shown in the following screenshot:

This attack can be leveraged for user enumeration as well as server-side unauthorized
access to sensitive data. This type of attack is classified under the M5- Poor
Authorization and Authentication subsection of the OWASP mobile top 10 risks section
(Chapter 1, The Mobile Application Security Landscape). Also, the case of a user logging out
of the app followed by a specific activity being invoked by a third-party application
and the app allowing access due to the server not invalidating the session identifier
would result in access to the app without any verification. This type of vulnerability
is categorized under the M9- Improper Session Handling subsection of the OWASP
mobile top 10 risks section (Chapter 1, The Mobile Application Security Landscape).

SSL pinning
An Android app that contains the certificate of a server and transmits data if the
certificate is produced follows a mechanism called certificate pinning. There are
plenty of apps that use customized protocols instead of HTTPS/HTTP for data
transmission.

The major social networking apps and other banking apps indeed apply certificate
pinning and encrypt the request body. This is pretty much straightforward once
you have configured your device or emulator with BurpProxy. With a custom CA
certificate, you should be able to intercept SSL traffic.

Full Steam Ahead – Attacking Android Applications

[204]

Vulnerabilities that are potentially possible in this scenario are passing through the
self-signed certificate, handshake negotiation with weaker cipher suites that can help
attackers decrypt the communication, and information leakage that will significantly
affect the privacy of the user. These issues are categorized under the M3- Insufficient
Transport Layer Protection subsection of the OWASP mobile top 10 risks section
(Chapter 1, The Mobile Application Security Landscape).

Cydia Substrate for Android is not stable for the latest version of
Android. You may not be able to use it to bypass SSL pinning.

Hardcoded credentials
One of the deadly sins of developers is to hardcode backdoor information
within a compiled application. The following screenshot discloses the backdoor
username and password left behind by the developers, either to diagnose an
issue or something similar.

Chapter 6

[205]

Now, if you use the username customerservice with the password Acc0uNTM@n@
g3mEnT, you will see an additional option to Manage Users:

If the customercare user is not available in the database, you
may log in as androidguy93 with the password goatdroid.

Encryption and decryption on the client
side
Developers are often forced to create custom encryption methods due to various
reasons, such as performance and efficiency issues. Broken cryptography happens
mainly due to the following three reasons:

•	 Using a weak, custom, or known algorithm (RC4, MD4, MD5, SHA1) that has
been proven to be vulnerable for the encryption and decryption process

•	 Poorly implementing strong algorithms
•	 The key management process being flawed

Full Steam Ahead – Attacking Android Applications

[206]

In this section, let's go ahead and explore the insecure usage of custom encryption
and its implementation. Since we downloaded the app Herd Financials, let's convert
the .apk file into a .jar file using dex2jar, as shown in the following code snippet:

C:\Hackbox\A-Tools\dex2jar-2.0>d2j-dex2jar.bat "OWASP GoatDroid- Herd
Financial Android App.apk"

dex2jar OWASP GoatDroid- Herd Financial Android App.apk -> .\OWASP
GoatDroid- Herd Financial Android App-dex2jar.jar

The next step is to load the .jar file into JD-GUI and locate StatementDBHelper.
class, as shown the following screenshot:

You should be able to see the following code snippet, from which we can understand
that havey0us33nmyb@seball is the key used to insert any statement that is stored
locally on the device to the SQLite database:

public StatementDBHelper(Context paramContext)
 {
 this.context = paramContext;
 StatementOpenHelper localStatementOpenHelper = new
 StatementOpenHelper(this.context);
 SQLiteDatabase.loadLibs(paramContext);
 this.db = localStatementOpenHelper.getWritableDatabase
 ("havey0us33nmyb@seball");
 this.insertStmt = this.db.compileStatement("insert into
 history (userName, date, amount, name, balance) values
 (?,?,?,?,?)");
 this.deleteStmt = this.db.compileStatement("delete from
 history where id = ?");
 }

Chapter 6

[207]

Similarly, if we locate UserInfoDBHelper.class, we notice that hammer is the
password that is used to encrypt any user message stored in the local storage:

public UserInfoDBHelper(Context paramContext)
 {
 this.context = paramContext;
 paramContext = new UserInfoOpenHelper(this.context);
 SQLiteDatabase.loadLibs(this.context);
 this.db = paramContext.getWritableDatabase("hammer");
 this.insertStmt = this.db.compileStatement("insert into info
 (sessionToken, userName, accountNumber) values (?,?,?)");
 this.deleteStmt = this.db.compileStatement("delete from
 info");
 this.updateAnswersStmt = this.db.compileStatement("update info
 SET answer1 = ?, answer2 = ?, answer3 = ? where id = 1");
 this.clearSessionStmt = this.db.compileStatement("update info
 SET sessionToken = 0 where id = 1");
 }

An adversary will be able to take advantage of the app to decrypt the messages
using these passwords, uncovered with just two steps. This type of vulnerability is
categorized under the M6- Broken Cryptography subsection of the OWASP mobile top
10 risks section (Chapter 1, The Mobile Application Security Landscape).

Runtime manipulation using JDWP
Recent apps in the market are designed to make their own decisions during
runtime. In this section, let's try and see what can be done to our target app
during runtime. For this attack demonstration, we will be using an app developed
by Open Security Research:

1.	 Download the runtime.apk file and install it to Genymotion.

Full Steam Ahead – Attacking Android Applications

[208]

2.	 The functionality of the app is that if you enter the correct PIN,
it responds with the message Correct PIN entered; if the value does not
match, it throws an error message Incorrect PIN please try again later,
as shown in this screenshot:

3.	 This technique can be bypassed during runtime. We will now use the Java
debugger to achieve this.

4.	 The following screenshot displays a list of the processes that are available on
the device:

Chapter 6

[209]

5.	 In order to make sure that the JVM is available for debugging, run adb
forward tcp:8000 jdwp:1709; this is the port-forwarding concept used
in drozer. This means that the process running on port 1709 will now
communicate on the localhost port 8000.

6.	 The next step is to connect to the process using jdb.exe –connect com.
sun.jdi.SocketAttach:hostname=localhost,port=8000, as shown in the
following screenshot:

7.	 Now we will analyze the app by adding a breakpoint to the app's main entry
point step by step, as shown in following screenshot:

Full Steam Ahead – Attacking Android Applications

[210]

Now, let's walk through the debugging process and manipulation. The only function
that is available in the app is called when the user clicks on Check.

1.	 Stop in com.FS.runtime1.MainActivity.onClick sets the breakpoint to
the main activity of the app.

2.	 When the application activity opens, the JDB will trigger the breakpoint. In
this case you click on Check.

3.	 Set success = true sets the next action to be true.
4.	 Print success to see what the current status of the activity is.
5.	 The command Next enables us to move to the next instruction.
6.	 We will, again, print success. Now we can see the output as success =

failure, so now we again set success = true, and that's it; continue.
7.	 The following screenshot displays a successful bypass, which is changed

during runtime:

Storage/archive analysis
The data at rest is a very critical part of the assessment. Our usual concern remains
that our application data is securely stored on our Android devices so that no one
can extract data from it in the case of theft or loss. Also, an application (malicious)
cannot access the data of another application (such as banking).

Chapter 6

[211]

Our target app is FourGoats. All the app data resides in /data/data/org.owasp.
goatdroid.FourGoats in an Android device. In this app folder, we can see that
there is a shared_prefs folder, a database folder, and several other folders
installed by the app. In the following screenshot, you can see that all the files
in the shared_prefs folder of the FourGoats app are world-readable:

This means that any app that is installed on the device will have access to read
these files even on non-rooted devices. Sometimes, developers also store credentials
including usernames, passwords, and PIN numbers in such files, which will lead
to a complete compromise of user accounts. The following screenshot displays the
contents of one of the locally stored databases:

There are two types of vulnerabilities that we can note in this case: the insecure
storage of credentials in the file, and unencrypted databases on the device, which
might potentially lead to sensitive information disclosure. These vulnerabilities
are categorized in OWASP under the M2- Insecure Data Storage subsection of
the OWASP mobile top 10 risks section (Chapter 1, The Mobile Application Security
Landscape).

Full Steam Ahead – Attacking Android Applications

[212]

Log analysis
It is often noted that developers do not intend to leak any sensitive information, but
there are chances that some confidential information could be stored in the device
log files, which means that an app installed on the device can read any information
that is passed by our target app.

The following screenshot from adb logcat demonstrates that the password of
Sieve is logged in plaintext. This information might include personally identifiable
information (PII), credit card details, and other confidential information. This type
of vulnerability in the app is classified under the M4-Unintended Data Leakage
subsection of the OWASP mobile top 10 risks section (Chapter 1, The Mobile Application
Security Landscape).

Assessing implementation vulnerabilities
With all the vulnerabilities that we are able to find with respect to Android apps, it is
important to understand what could potentially happen if attackers elevate privilege
on the device from the app. This section focuses on vulnerabilities on the device itself
rather than on an app.

Implementation vulnerabilities are of two types:

•	 Local: Local vulnerabilities include platform-based and default apps that
are installed

•	 Remote: These are remote vulnerabilities within the platform that might
allow remote access of the device

Let's take an example of packages that are running under the UID 1000. The
following screenshot shows how many apps are running under the same UID.
These shared IDs can be taken advantage of by malicious apps in order to control
the device, even if it is not rooted. The following command is used to show how
many apps are running under the same UID:

run app.package.list –u 1000

Chapter 6

[213]

One more example is system accounts being stored in plaintext, which can be
read and sent over to remote attackers by different intent injections or spoofing
attacks. The following screenshot shows a stored e-mail address along with a
password in plaintext:

ls –l /data/system/users/0/accounts.db

Binary patching
Patching an app with malware has become very handy and easy for all Android
apps with the ease of availability of tools, alternative app stores, and web hostings.
We learned throughout this chapter how to assess different types of vulnerabilities;
in this section, we will see the steps of how an app can be potentially decompiled
and built back with backdoors:

1.	 Download the app from Play Store or any marketplace to Genymotion or any
real device.

2.	 Decompile the app using APKTool (apktool d <anyfile.apk>).
3.	 Analyze the application for strings such as HTTP, HTTPS, FTP, and so on,

either using custom scripts or viewing it manually from the /res/ folder
after decompilation.

4.	 Convert the .apk file to a .jar file using dex2Jar to view the source code;
for a presentable format, you can load them into JD-GUI.

Full Steam Ahead – Attacking Android Applications

[214]

5.	 Change the source code or insert malicious code and then compile the
file back again using APKTool (apktool b <nameofthefolder>).

6.	 Sign the application using APKAnalyzer or jarsigner with a valid or
self-signed certificate.

With all the changes made to the app, you now have a new binary patched app,
which you can can install on a device.

Let's take an example of a banking app downloaded from Play Store. It can be
easily decompiled, and one can also modify hardcoded URLs in string values, add
malicious links with malware, recompile the app quickly, and upload it back to Play
Store or any other app stores under the bank's or developer's name, calling it version
1.1. However, Google may be able to drop the app from Play Store if any malicious
activity is reported, as per the Developer Content policy. This type of vulnerability
is categorized in OWASP under the M10-Lack of Binary protection subsection
of the OWASP mobile top 10 risks section (Chapter 1, The Mobile Application
Security Landscape).

Summary
In this chapter, we assessed different aspects of Android applications. We saw
different types of vulnerabilities in application permissions, components (activities,
services, content providers, and broadcast receivers), WebViews, broken cryptography,
local SQL injection, lack of binary protection, and other misconfigurations that could
be potentially exploited by cyber attackers. We also discussed some of the deadly sins
that developers make during the development, such as hardcoding passwords with
backdoors. Every aspect that we assessed could potentially be used by developers to
find vulnerabilities using the tools that we used in this chapter. We also learned about
potential entry points that cyber attackers could use in order to gain access to any
Android device. As an assessor or developer, it is very critical to understand and fix
them during the initial phases. Similarly, we will discuss how to attack iOS apps next,
in Chapter 7, Full Steam Ahead – Attacking iOS Applications.

[215]

Full Steam Ahead – Attacking
iOS Applications

To look at a system fault as a bug or vulnerability depends on the assessor's attitude.

This chapter will give you a step-by-step guide to analyzing, attacking, and reverse
engineering iOS apps in general. We will take what we have already set up with LLDB,
oTool, Hopper, and class-dump-z into a trifecta for simple reverse engineering tasks.
We will walk through how to use tools in order to instrument potentially sensitive and
vulnerable API calls. We will also look at how to exploit the lack of binary protections
with Cycript and Snoop-IT. Finally, the chapter will cover some obscure tasks, such
as performing heap dumps with debuggers in order to recover sensitive items such
as passwords and API keys from memory and also learn how to attack iOS IPC
mechanisms. You should walk away with the following learning:

•	 Using LLDB and tracing Objective-C messages remotely for a target app
•	 Leveraging oTool, Cycript, Hooper, and class-dump-z to reverse iOS binaries
•	 Attacking insecure web traffic
•	 Stealing sensitive data from the memory and storage
•	 Instrumentation of the Objective-C runtime with Cycript
•	 Attacking iOS IPC
•	 Using Snoop-IT for your assessments (32-bit only)

Full Steam Ahead – Attacking iOS Applications

[216]

The following screenshot, referenced from OWASP (https://www.owasp.org/
images/9/98/2-18-2013_4-47-36_AM.png), provides a glimpse of what we will be
looking for in an iOS app. In this chapter, we will walk through some of the attack
scenarios with our target app.

Setting up the target
Since we have covered most of the tools that we require with respect to the tools
in Chapter 4, Loading up – Mobile Pentesting Tools, let's directly jump into setting up
the target app. We will use two vulnerable apps that we learned about in Chapter
1, The Mobile Application Security Landscape, in the Vulnerable applications to practice
section and set these as our target apps to demonstrate the OWASP Mobile Top 10
vulnerabilities. The two apps are as follows:

•	 DVIA (short for Damn Vulnerable iOS App) can be directly downloaded
from http://damnvulnerableiosapp.com/?paiddownloads_id=11

•	 iGoat file for OWASP iGoat app can be downloaded from
https://github.com/vijayvkvelu/iGoat-IPA-Git/blob/master/iGoat.
ipa?raw=true

We will be using MacBook for some activities that require Xcode, Hopper
(available for Linux too), LLDB that can be run only on OS X. For the assessment,
we will create the folder in OS X as /Users/User/Desktop/iOSTarget/.

As we have done the majority of the assessment and setup using a Windows 7
workstation, we will go ahead and create the new folder with the same name
iOSTarget inside c:\Hackbox and download the .ipa files.

You can use either iFunbox or iPAinstaller to install the apps to the device, and the
following screenshot displays the apps that are installed using iFunbox:

https://www.owasp.org/images/9/98/2-18-2013_4-47-36_AM.png
https://www.owasp.org/images/9/98/2-18-2013_4-47-36_AM.png
http://damnvulnerableiosapp.com/?paiddownloads_id=11
https://github.com/vijayvkvelu/iGoat-IPA-Git/blob/master/iGoat.ipa?raw=true
https://github.com/vijayvkvelu/iGoat-IPA-Git/blob/master/iGoat.ipa?raw=true

Chapter 7

[217]

Once the apps are installed on the device, you must be able to open the app like any
other app by pressing on the icons. You must be able to see two icons on your device,
as shown in the following screen capture:

Full Steam Ahead – Attacking iOS Applications

[218]

We have used an iPad Air 2 running iOS 8.4(12H143) 64-bit,
iOS simulator, and iPhone 5 running 8.1 32-bit for all the attacks
demonstrated in this chapter.

Make sure you can access all the available options in both apps and insert the data
required by them.

Storage/archive analysis
Once we have inserted the data into the apps, is the data secure on the device?
The first focus is on what resides in the mobile device itself and how it can be
extracted. Many a time, developers make assumptions that user devices can never
be compromised and data in the device is always protected. One of the major threats
to application data is when the mobile device is stolen or lost. A majority of the
vulnerabilities found during penetration testing are discovered while performing
storage/archive analysis.

There are two primary folders that might potentially contain sensitive information.
Copy all the files to our iOSTarget folder (MAC and Windows) from the following
location for offline analysis:

•	 /private/var/mobile/Containers/Bundle/Application/<UUID>/

•	 /private/var/mobile/Containers/Data/Application/<UUID>/

A universally unique identifier (UUID), which is the way your iDevice recognizes
your installed app; this information will remain in the device until the app is
uninstalled, and when it's reinstalled, the UUID will change.

When you open the UUID folder, you will find the name of the app; in our case, we
should have two UUIDs. You can sort them by the date of installation, as shown in
the following screenshot:

The main difference between UDID and UUID is that
UDID is used for the identification of an iOS Device with
unique 40 hexadecimal characters, and UUID is used for the
identification of an iOS application.

Chapter 7

[219]

Plist files
We learned the importance of the property list file in Chapter 2, Snooping Around the
Architecture in the Property list section. Now, analyze all the plist files using plutil.
The following screen capture displays the secret value of the iGoat application stored
in the app plist file, which is stored in /private/var/mobile/Containers/Data/
Application/<UUID>/Library/Preferences/ com.krvw.iGoat.plist.

In a similar fashion, let's explore the DVIA app that we installed, assuming we have
entered the data by locating Insecure Data Storage and inserting the data in the
fields. We can notice two plist files located at /private/var/mobile/Containers/
Data/Application<UUID>/Documents/userInfo.plist and /private/var/
mobile/Containers/Data/Application/<UUID>/Library/Preferences/
com.highaltitudehacks.dvia.plist, respectively. The following code snippet
provides NSUserDetails:

Hackers-ipAD:/private/var/mobile/Containers/Data/Application/B49FD78A-
56B2-4D63-99E9-026AC4336318/Library/Preferences root# plutil com.
highaltitudehacks.dvia.plist

{

DemoValue = "Whatever the Data you entered was here";

}

Client-side data stores
Analyze all the .db files to see whether any confidential information can be potentially
stored locally. The following screenshot displays all the confidential information,
including the password stored in the iGoat app database that is not encrypted.

Full Steam Ahead – Attacking iOS Applications

[220]

The keychain data
Launch the keychain dumper that we have and look for any secret keychain
data. The DVIA app is storing secretkey, as shown in the following screen capture.
This is the data that is stored directly into the keychain and can be read by other
apps on the device.

HTTP response caching
While analyzing all the .db files in DVIA, we also find a file called cache.db, which
is located at /private/var/mobile/Containers/Data/Application/<UDID>/
Library/Caches/. Loading this file into SQLite3 displays the number of tables,
which includes all the lists of requested URLs and the response received from the
server, as shown in the following screenshot. This can also be considered one of the
implementation flaws in iOS:

Sqlite3 Cache.db

sqlite> .tables

sqlite> select * from cfurl_cache_response;

It is a possibility that sensitive information returned from the server may be cached
in this database; for example, a user account number, the date of birth, or a social
security number could be potentially cached in this database.

Chapter 7

[221]

Reverse engineering
The process of collecting the source code from a binary is called reverse engineering.
It is a combination of system analysis and static code analysis. It is the art of deducing
the app implementation and design details of a given target app. In this section, we
will walk through a step-by-step process for reverse engineering a given iOS app
by extracting the class information and understand any leakage through comments,
hardcoded message as well as memory protection.

Extracting the class information
In order to gain better understanding of the target app regarding any kind of
information that can be potentially exploited and also understand if there are any
vulnerable classes, we will use class-dump (32 bit) or class-dump-z (64 bit). This
will work only on unsigned apps and we will be able to extract complete class
information in a human-readable form. The following screenshot showcases the
running of the class-dump-z on iGoat app, which can be done even for a DVIA app:

Class-dump-z /private/var/mobile/Containers/Bundle/Application/<UUID>/
iGoat.app

Full Steam Ahead – Attacking iOS Applications

[222]

The output of this tool will provide us with an internal class structure, which we will
use in further attacks.

Unsigned apps are the only apps that can be decrypted using
class-dump-z; encrypted apps need to be unencrypted using
clutch2 or other tools.

Strings
Strings provide more information, and some of this could be valuable information
that might be potentially useful during assessment. This is the first step even in
malware analysis.

In DVIA, we have found a username and password in the string, as shown in the
following code snippet. We will have this information parked for future attacks:

strings DamnVulnerableIOSApp > Appstrings.txt

cat Appstrings.txt

….. truncated….

isActive

Tc,N,V_isActive

http://highaltitudehacks.com/2013/11/08/ios-application-security-part-21-
arm-and-gdb-basics

Admin

This!sA5Ecret

pushSuccessPage

Oops

Incorrect Username or Password

….. truncated….

Memory management
We learned about some of the memory-protection mechanism in iOS in Chapter
2, Snooping Around the Architecture. Some of the protections include Automatic
Reference Counting (ARC), position independent executable (PIE), and address
space layout randomization (ASLR). Let's go ahead and check whether our target
has any vulnerabilities in memory management.

Chapter 7

[223]

Let's go ahead and identify some dangerous functions on the target app using oTool:

otool -I -V iGoat | grep strc

0x00017ff4 98 _strcspn

0x00018098 98 _strcspn

0x000000010000faa0 97 _strcspn

0x00000001000141d8 97 _strcspn

The presence of malloc tells us that memory management is done by the app itself.
If these objects are freed, it can potentially lead to memory corruption vulnerabilities.
Some of the dangerous things to look for in any memory-based attack are printf,
malloc, strcpy, strcspn, and so on.

Stack smashing protection
We can also identify if the app has got the right stack-smashing protection (SSP)
using oTool by running otool –IVH appname | grep stack. If stack smashing
protection is enabled in the app, the two undefined symbols, stack_chk_fail
and ___stack_chk_guard, will be present, as shown here:

otool -I -V iGoat | grep stack

0x00017ff0 57 ___stack_chk_fail

0x00018094 57 ___stack_chk_fail

0x000180e8 58 ___stack_chk_guard

0x000000010000fa94 57 ___stack_chk_fail

0x0000000100014040 58 ___stack_chk_guard

0x00000001000141d0 57 ___stack_chk_fail

Static code analysis
As part of reverse engineering, performing static code analysis is not a simple
task as it requires fairly good understanding of the assembly language and the
app language by itself. However, one can use some of the available commercial
tools to perform this task.

Full Steam Ahead – Attacking iOS Applications

[224]

Loading the app into Hopper provides excellent details about the code and the app
itself, as shown in the following screen capture. Hopper provides the feature of
pseudo code and control flow graph (CFG).

You can view the assembly level using CFG; as shown in the following figure,
Hopper provides the option to export this into PDF:

Chapter 7

[225]

OpenURL schemes
In this section, let's take up the challenge of Security Decisions via Untrusted
Input (Chapter 1, The Mobile Application Security Landscape). This can be achieved by
following these simple steps:

1.	 Load the app executable into Hopper. Search for OpenURL in the labels.
2.	 Select AppDelegate Application:openURL and click on the Pseudo Code,

and you should be able to see the following screenshot:

3.	 After analyzing the preceding code, we can understand that this code
is being called without any source, but it looks at the formulation of the
"/call_number/" string and then looks for the phone parameter in the URL.

4.	 Let's go ahead and form a URL that can call our target app; we end at
dvia://www.somesite.com/call_number/?phone=1234567890.

Full Steam Ahead – Attacking iOS Applications

[226]

5.	 Now, open Safari or any browser and enter the URL that we formed;
we should now be able to see that its functionality is being exploited as
shown in the following screenshot:

App patching using Hopper
Any executable residing on the device can be modified, and you can understand and
apply a patch statically using tools such as Hopper, IDA pro, and so on to change the
behavior of the app permanently.

In this section, let's go ahead and patch the app with a simple example. The
following steps are involved in this challenge:

1.	 Open the target app and navigate to Menu | Binary Patching | start
challenge.

2.	 Upon clicking on the start challenge, there are three challenges:
°° The login method
°° Checking for jailbreak
°° The show alert

3.	 Let's pick the small challenge, which is the show alert. When you click on
the show alert, it will display the alert as I love Google, as shown in the
following screenshot:

Chapter 7

[227]

4.	 Load the app executable into Hopper and click on the Strings tab and type I
love google, as shown in the following screenshot:

5.	 Select the location, click on Modify from the menu, and then click on
Assemble instruction, and you will now be able to edit, as shown in the
following screenshot, and then click on Assemble and Go Next.

6.	 Now that we have changed the value of the target to alert I DID HACKIT,
we have to produce a new executable, which is patched. Navigate to File |
Produce New Executable within the same folder. You should receive the
following message, as displayed in the following screenshot:

Full Steam Ahead – Attacking iOS Applications

[228]

7.	 The current binary will be replaced with the new binary; if you are running
on the simulator, you can kill the app and reopen it. If you are running the
app on a real device, you will have to re-sign the app using the following
command:
ldid -S DamnVulnerableIOSApp

8.	 Finally, you have patched the application to show the alert permanently
as I DID HACKIT, as shown in the following screenshot:

Hardcoded username and password
There are potential possibilities that developers leave behind backdoors within apps.
In our case, this happens while we do a deep analysis of the class dump.

The following code snippet displays ApplicationPatchingDetailsVC, an
interesting interface that includes a username and password:

 @interface ApplicationPatchingDetailsVC : UIViewController
 <UITextFieldDelegate> {
 UITextField* _usernameTextField;
 UITextField* _passwordTextField;
 }

Chapter 7

[229]

Let's now load the app into Hopper, and in the labels, let's type
ApplicationPatchingDetailsVC, as shown in the following screenshot:

In the right pane, if you click on the Pseudo code, we should be able to see the
username and the password in plain text.

Full Steam Ahead – Attacking iOS Applications

[230]

In this case, let's now try and log in to the app using the username Admin and the
password This!sA5ecret, as shown in the following figure:

This proves that we are able to log in with the hardcoded username and password
without any issues; you should receive a successful login message, as shown in the
following screenshot:

Runtime manipulation using Cycript
An essential part of our application assessment methodology is to ensure that the
application is protected during runtime. This process of tracing, profiling, and
debugging the execution of an app during runtime is called Instrumentation.
It includes the following, but its not limited to them:

•	 Boolean bypass (jailbreak/piracy detection)
•	 Local authentication bypass
•	 Extracting sensitive data during runtime, such as private keys, passwords,

and so on
•	 Accessing hidden content by force-loading view controllers

Chapter 7

[231]

•	 Malware analysis
•	 Can be utilized during any custom encryption protocol

The Bypass login method
Let's now go ahead and exploit the vulnerabilities, which include local authentication
bypass in the DVIA app.

Open the app and navigate to Menu | Runtime Manipulation; you should able to
see the following screenshot:

Hook up the process to Cycript, as shown in the following code snippet:

ps -ef | grep Damn

 501 35572 1 0 0:00.00 ?? 0:01.03 /var/mobile/
Containers/Bundle/Application/AE934C8E-67D6-4F51-A158-6B10DA315FA8/
DamnVulnerableIOSApp.app/DamnVulnerableIOSApp

 0 35656 20903 0 0:00.00 ttys004 0:00.00 grep Damn

cycript -p 35572

Before we begin runtime manipulation, let's try and understand if there are any
references in the class-dump file that we have. By looking at the class-dump
information, we can look at the view controller's RuntimeManipulationDetailsVC:

@interface RuntimeManipulationDetailsVC : UIViewController {
 UITextField* _usernameTextField;
 UITextField* _passwordTextField;
 NSString* _urlToLoad;
}
@property(retain, nonatomic) NSString* urlToLoad;
@property(retain, nonatomic) UITextField* passwordTextField;
@property(retain, nonatomic) UITextField* usernameTextField;
-(void).cxx_destruct;
-(void)readTutorialTapped:(id)tapped;

Full Steam Ahead – Attacking iOS Applications

[232]

-(void)showLoginFailureAlert;
-(void)pushSuccessPage;
-(BOOL)isLoginValidated;
-(void)loginMethod2Tapped:(id)tapped;
-(void)loginMethod1Tapped:(id)tapped;
-(void)didReceiveMemoryWarning;
-(void)viewDidLoad;
-(id)initWithNibName:(id)nibName bundle:(id)bundle;
@end

It is now understood that login is validated based on a Boolean value; it is either
1 or 0 (true or false). Let's now manipulate the app by changing its value, as
demonstrated in the following screenshot:

The UIApp class provides a centralized point of control and coordination for
all the iOS apps. We looked at the root view controller by UIApp.keyWindow.
rootController, that is, ESCLidingViewController. Later, we checked for
topViewController, which is the UINavigation controller, and then finally, we
looked at visibleViewController, which is RuntimeManipulationDetailsVC.

We assigned this controller to a testthelogin variable and then validated it with
the isLoginValidated function. It returned false, so now, we manipulate the
value of testthelogin to true by returning value as 1; is a is the pointer to the class
structure and provides the method implementation.

Now once the value is set as true, it means that when you tap on the login button,
the value returned by the app should be true and you should be able to see the
following screenshot:

Chapter 7

[233]

Sensitive information in the memory
Now let's take another example of extracting information from the memory.

If we look at the code snippet from the class-dump information of the DVIA app, we
can understand the interface for sensitive information with UIViewController. We can
assume that some interesting information can potentially be stored in the memory:

__attribute__((visibility("hidden")))
@interface SensitiveInformationDetailsVC : UIViewController {
 NSString* _username;
 NSString* _password;
}

Let's do something in a similar fashion as what we did with the previous example:
open the DVIA app and click on Menu, navigate to Sensitive Information in
the memory, and then click on Start Challenge. In the background, hook up the
process to Cycript and set a single variable for the current visibleViewController
property. The following code snippet demonstrates the use of Cycript during the
runtime and extracts some valuable information from the memory:

cy# UIApp.keyWindow.rootViewController.topViewController.
visibleViewController

#"<SensitiveInformationDetailsVC: 0x127d7bac0>"

cy# harvestmemory = #0x127d7bac0

#"<SensitiveInformationDetailsVC: 0x127d7bac0>"

cy# harvestmemory.username

@"Bobby"

cy# harvestmemory.password

@"P2ssw0rd"

Dumpdecrypted
The iOS environment provides DYLD_INSERT_LIBRARIES as a variable to load the
libraries into a process dynamically. Sometimes, it may not be possible to class-
dump an executable that may be protected by different kinds of encryptions.
Dumpdecrypted, created by Stefan Esser, can be utilized in these situations.
It can be downloaded from https://github.com/stefanesser/dumpdecrypted.

https://github.com/stefanesser/dumpdecrypted

Full Steam Ahead – Attacking iOS Applications

[234]

This file from the GitHub needs to be compiled before pushing the library to the
device:

$ git clone git://github.com/stefanesser/dumpdecrypted/

$ make 'xcrun --sdk iphoneos --find gcc' -Os -Wimplicit -isysroot 'xcrun
--sdk iphoneos -- show-sdk-path' -F'xcrun --sdk iphoneos --show-sdk-
path'/System/Library/Frameworks – F 'xcrun --sdk iphoneos --show-sdk-
path'/System/Library/PrivateFrameworks -arch armv7 - arch armv7s -arch
arm64 -c -o dumpdecrypted.o dumpdecrypted.c 'xcrun --sdk iphoneos --find
gcc' -Os -Wimplicit -isysroot 'xcrun --sdk iphoneos -- show-sdk-path'
-F'xcrun --sdk iphoneos --show-sdk-path'/System/Library/Frameworks -
F'xcrun --sdk iphoneos --show-sdk-path'/System/Library/PrivateFrameworks
-arch armv7 - arch armv7s -arch arm64 -dynamiclib -o dumpdecrypted.dylib
dumpdecrypted.o

Now you should be able to see the additional file, dumpdecrypted.dylib, in
the same location where you compiled; in our case, this is /Users/Users/
Desktop/iOSTarget, which can now be transferred to the device using SCP
(SCP nameofthefile username@remotehost:/folder/). You can either copy the
dumpdecrypted.dylib into the app folder or point to the app that you would want
to decrypt. The usage is found in DYLD_INSERT_LIBRARIES=/dumpdecrypted.dylib
<Executable Path>.

The following screenshot shows that the example of our target app is not encrypted;
so, there's no need to decrypt the app:

However, for demonstration purposes, we run dumpdecrypted on the Subway
Surfers app, as shown in the following screenshot; we should now have a new app
named subwaysurfers.decrypted within the same folder. Now the app can be
used by class-dump-z to extract the information.

Chapter 7

[235]

Only vulnerable apps can be successfully decrypted by
dumpdecrypted; apps that are not vulnerable will still result
in the encrypted format when class-dump-z is run.

Client-side injections
Client-side injections are merely local data injections that can lead to unauthorized
access to data within the device. This includes SQL injection and UIWebView
injections. Let's look at how it can be exploited.

SQL injection
In this section, we will go ahead and exploit the local SQL injection vulnerability
in the iGoat app. Open the app, navigate to Categories, click on Injection Flaws,
and then click on Start Exercise. You should be able to view the search bar to read
articles, as shown in the following screenshot:

Full Steam Ahead – Attacking iOS Applications

[236]

If you search for a in the search bar, you will be able to see only the free articles,
as shown in the following screenshot:

The same feature can be exploited to view all the articles in the database by injecting
the malicious SQL query A ' OR 1=1—, making the statement true, just like the
classic web SQL injection. The following screenshot displays all the articles, which
involves the premium as well as the local database being disclosed; this is due to
no-input validation:

UIWebView injections
UIWebView in iOS is built based on WebKit (https://www.webkit.org/). It is
the rendering engine used to display web content inside the device; it also includes
multiple file types, such as HTML, PDF, SWF, RTF, and other office documents.
WebView in hybrid apps is merely a web browser that can be used to display the
remote contents sent by the server. These features can be utilized to perform cross-site
scripting attacks. We will now attack the DVIA app for a client-side injection.

Navigate to menu – Client Side Injection; it provides an option to the user to
insert text. If we go ahead and insert any malicious script to UIWebView, it will be
executed during the runtime, as shown in the following screenshot. In this case, the
malicious script is <script>alert(1)</script>:

https://www.webkit.org/

Chapter 7

[237]

This demonstrates the lack of data validation on the client side. This can be
potentially utilized in cross-talking with other available apps and options in the
device, such as making calls, cross -comments, sending messages from other apps,
sending SMSes, among others.

Man-in-the-Middle attacks
Set up the proxy and point it to your system IP, which is running the Burp proxy
either in wireless or the APN settings, which we discussed in Chapter 4, Loading
up – Mobile Pentesting Tools.

Now, open the DVIA app and navigate to Menu | Transport Layer Protection
| Enter Data | SEND OVER HTTP; you should be able to see the following
screenshot on your system that is running the proxy:

Full Steam Ahead – Attacking iOS Applications

[238]

Beating the SSL cert pinning
Following the preceding steps, if you try to hit SEND OVER HTTPS, you might
receive the following error, as shown in this screenshot:

Now, you have to navigate to Settings | SSL Kill Switch and turn on the option
for DVIA, as shown in the following screenshot. This will disable the cert pinning
on the app.

Now, your proxy should be able receive the SSL requests on your browser without
any further issues.

Chapter 7

[239]

This allows us to manipulate the encrypted traffic between the server and the mobile
app channel for more server-side attacks, such as the classic SQL injection, the XML
injection, cross-site scripting, request forgery, and other attacks.

Implementation vulnerabilities
Unlike Android, iOS apps can also leak sensitive information the way they are
implemented.

Pasteboard information leakage
A majority of the developers allow users to copy and paste data from different areas
of the app. This can potentially include some confidential information since these
features can be potentially exploited.

Full Steam Ahead – Attacking iOS Applications

[240]

We will now hook the iGoat app to Cycript by running cycript –p PID to look
at what has been copied from the apps and see whether we are able to extract that
information by running [UIPasteboard generalPasteboard].items in Cycript,
as shown in the following screenshot:

The preceding screenshot leaks the credit card number under public.utf8-plain-
text 4123456790456789; this information can be anything, such as the social security
number, e-mail ID, and so on.

Keyboard logs
Apple's features are aimed at increasing the user experience, such as autocorrect and
caching the input that is typed into the device's keyboard. This feature comes with
a security risk that almost all the nonnumeric words are cached on the filesystem in
plain text, located at /var/mobile/Library/Keyboard/dynamic-text.dat.

This might include more than one .dat file that can hold sensitive information. The
following screenshot displays some of the keywords that are being cached in the file:

Chapter 7

[241]

App state preservation
While we perform offline analysis, we have an interesting file at C:\Hackbox\
iOSTarget\<UUID>\Library\Caches\Snapshots\com.krvw.iGoat\com.krvw.
iGoat UIApplicationAutomaticSnapshotDefault-Portrait@2x.png. This file
discloses some sensitive information. This is because of the iOS transition effect
that stores the screenshot in image cache folder. State preservation records the
configuration of your app before it is suspended so that the configurations can be
restored on a subsequent app launch.

Returning an app to its previous configuration offers better user experience but
provides side channel attacks.

Full Steam Ahead – Attacking iOS Applications

[242]

Building a remote tracer using LLDB
As we learned in the previous chapters, the importance of Objective C's ability is to
make decisions during the runtime rather than using traditional function calls or
through vtables for dispatching dynamically. So, in this section, we will be building
a tracer to monitor objc_msgSend() just a like a proxy to understand what are the
different behaviors of our target app during runtime. The purpose of building a tracer
is to debug and disassemble an iOS app remotely using LLDB; this will help the testers
and app developers understand the remote behavior of the app assembly level.

The following steps are involved in tracing an iOS remotely:

1.	 We will be starting debugserver, which we set up, and listening on port
1234, as shown in the following figure:

2.	 Launch the lldb debugger from your MAC OS X and connect to the remote
process, as demonstrated in the following screenshot, by connecting through
process connect connect://remote-ip:port:

Chapter 7

[243]

3.	 Now we are all set to debug the application; let's go ahead and set up
breakpoint at the objc_msgSend function and continue the process,
as shown in the following screenshot:

Once the debugger is remotely attached to the process, the
target app will be in the frozen state until the debugger allows
the process to continue.

4.	 Registers are considered to be built-in CPU variables; we should be able
to read all the registers by issuing the register read command from the
lldb. As we can see from the following screenshot, we are able to read all the
general-purpose registers:

Full Steam Ahead – Attacking iOS Applications

[244]

5.	 The same debugger allows us to disassemble a specific portion of the address
or every break point that we set, as shown in the following screenshot; this
can be achieved by issuing the di –f command:

LLDB can be used as debugger and disassembler, and it can
also be used for monitoring purposes. More information on
how you can leverage the lldb, which is similar to gdb, can be
found at http://lldb.llvm.org/lldb-gdb.html.

Snoop-IT for assessment
Snoop-IT runs only on the 32-bit architecture. This has significantly limited the
tool to be utilized in latest mobile phones. However, a majority of the tasks that we
performed manually in the preceding sections can be performed by this single tool.
The following screen capture of Snoop-it displays the filesystem during the runtime
of this app.

http://lldb.llvm.org/lldb-gdb.html

Chapter 7

[245]

Typically, there are three sections:

•	 Monitoring: Monitor the filesystem, keychain, network, sensitive APIs, and
common cryptography used

•	 Analysis: This section displays all the objective-C classes, controllers, and
other URL schemes

•	 Runtime manipulation: Unlike Cycript, which we perform manually, this is
just a single-click manipulation that one can perform in the GUI environment

Once we have a 64-bit version of Snoop-IT available, it will be one of the best tools to
be used for any iOS app security assessment. Other tools, such as Appsec labs iNalyzer
(https://github.com/appsec-labs/iNalyzer) and Veracode's iRET (https://www.
veracode.com/sites/default/files/Resources/Tools/iRETTool.zip), can also
be utilized for the automated vulnerability assessment of iOS apps.

Summary
In this chapter, we have learned about the different types of vulnerabilities that are
merely a combination of implementation and coding mistakes. We learned about
the OWASP mobile Top 10 vulnerabilities, ranging from insecure storage, binary
patching, cryptographic flaws, and network flaws to different ways to circumvent
the security controls that are put in place by Apple. We also looked at some serious
mistakes that a developer can potentially make during the development of the app,
leaving backdoor information hardcoded and the disclosure of algorithms and other
app critical functions that can be exploited. We now know how to attack both Android
and iOS apps in general, from basic to medium level to identify vulnerabilities.
Developers have the real responsibility on their shoulders when it comes to creating
apps that have minimal security threats. We will discuss how we can achieve a
reduction in the risk to apps to an acceptable level in the next chapter, Securing Your
Android and iOS Applications.

https://github.com/appsec-labs/iNalyzer
https://www.veracode.com/sites/default/files/Resources/Tools/iRETTool.zip
https://www.veracode.com/sites/default/files/Resources/Tools/iRETTool.zip

[247]

Securing Your Android
and iOS Applications

Building Secure Apps is not an option, it is a necessity!

Developing mobile applications is not just developing a vision of what your app is
going to look like, what it is going to do, what needs it fulfills, and how it will be
created but also how secure it could be made. This chapter will cover straightforward
examples on how to securely develop both Android and iOS applications;
more importantly, it will also present resources that developers can use in their
everyday lives. We will go through practical ways of securing Android component
communications, and principles developers can stand by. We will precisely look at
how to properly secure an app with fine-tuned permissions and configuration on
both the platforms. The reader should walk away with knowledge of:

•	 Android permissions and secure configurations
•	 Securing Android application components
•	 Securing and protecting sensitive data on both Android and iOS
•	 Addressing OWASP top ten mobile risks within a given application
•	 Tools and resources that can help integrate security into an Android

or iOS app

We have already learned different techniques to identify and exploit the
vulnerabilities for a given mobile app running on iOS and Android. Always
remember that SDLC (short for Software Development Life Cycle) is not just
that your app meets the business' requirement but also how secure it is once it
is published for users. Let's take an example scenario of Company A, hiring a
third-party consultant to assess the application that is already developed, and the
consultant reported 'X' number of vulnerabilities.

Securing Your Android and iOS Applications

[248]

The project manager will be asking how much will it cost me now? In simple
terms, it would be third-party Assessment + Extra Developer Hours in fixing the
vulnerabilities + Operational Overheads + Re-testing Cost for third-party. This can
be rapidly reduced if the security application development is being followed from
the initial design phase, followed by development and continuous developer's
security awareness. The following screenshot displays the typical mobile app SDLC:

Let us now explore different phases and how security can be beneficial:

•	 Define: This is the initial phase for the entire app. It includes requirements,
research analysis, business analysis, and conceptualization of how the app
should be and what the purpose of the app is.

•	 Design: Once the define phase is complete and documented, the developers
enter the design phase, in which they will create the app layout. This phase
can significantly reduce the attack surface, which we will discuss in detail in a
coming section called Secure by design, utilizing what we learned in Chapter 5,
Building Attack Paths – Threat Modeling an Application.

•	 Develop: Developers start writing the code for all the defined functionality
of the app. One can utilize the secure coding guidelines during this phase,
which can significantly reduce the code-level vulnerabilities. Some of the
basic developer cheat sheets and useful resources will be discussed in the
section called Secure coding best practices.

Chapter 8

[249]

•	 Test: Developers perform user acceptance testing (UAT) to confirm the app
does exactly what it is designed for and serves the purpose. In this phase, one
can extend the hands for security testing along with QA testing, which will
simulate white-box security testing for known vulnerabilities or bugs. This
is where you can utilize all the skills that you acquired from Chapter 6, Full
Steam Ahead – Attacking Android Applications and Chapter 7, Full Steam
Ahead – Attacking iOS Applications.

•	 Deploy: Once the app has passed the test environment, the apps are
deployed to the platforms. In this case, iOS and Android are the two
platforms. Assuming that we develop the app to run on iOS, the deployment
should clearly be whether the app is for iPad or iPhone only. For Android,
is it designed for the older version of the devices? If yes, how do you protect
against the vulnerabilities that are left behind? We will explore platform-
specific countermeasures in the Platform (OS) level section.

•	 Manage: This last phase in the SDLC is the most difficult in any SDLC.
Once the app is in production, it is exposed to real-time attacks. Every single
change in the app code or configuration must go through the life cycle and
also watch for any zero-day exploits that might potentially weaken the
security of the app and expedite the security push to the app. We will discuss
how to manage apps securely after the app rollout in the Post-production
protection section.

Secure by design
The name says it all. Secure by design in software engineering means that software
has been designed thoroughly to be secure. This can be achieved by identifying the
categories, vulnerable areas and the facts to analyze. As we learned in Chapter 5,
Building Attack Paths – Threat Modeling an Application, this can reduce the number of
vulnerabilities. A basic design principle depends on several factors; you might want
to consider the following list during the design phase:

•	 Entry points: Determining all the entry points to the app in this stage can
significantly identify areas that are potentially the attack surface to infect the
app. This information helps us define what type of data needs to be entering
the app by building APT protection mechanisms to tighten the security and
also build attack trees and attack paths for all the entry points.

•	 Device local storage: Storage of any data on the client side is always risky.
If the app has the functionality of operating offline, it is must store the data
locally. As part of the design process, it is very crucial to define security
about the data that your app handles and also limit the storage of any
sensitive information – most importantly how and where the data is stored.

Securing Your Android and iOS Applications

[250]

•	 Access control for the binary on the device: Protection of the app binary
is also an important portion of the design. If you are building an app that
can perform any financial transactions or store and send any PII (short for
Personally identifiable information) or other confidential information,
then you have to implement authentication to the app either by setting up a
passcode or password and then making best use of the underlying platform.
For example, you might use local authentication framework or fingerprint
authentication in Android for all the latest supported devices (Marshmallow
API 22 and 23).

•	 App restrictions: During this phase, you can also define if the app is installed
on non-compliance devices (rooted or jail-broken) to limit the functionalities
of the app such as financial transactions or other important data transfers.

•	 Third-party libraries: Apps are also integrated with plenty of third-party
components during the development process to reduce time. These third-party
libraries could provide additional entry points and might have vulnerabilities.

Security mind map for developers
(iOS and Android)
A mind map is a graphical way to represent an idea or concept. We have probably
seen plenty of mind maps for pretty much every attack scenario on the Internet.
One of the best for securing home computers can be found at http://www.
amanhardikar.com/mindmaps/SHC.html. In this section, let us create a mind
map for securing a given mobile app that may potentially reduce the number of
vulnerabilities by simple code-level changes and configuration edits. The following
screenshot provides the mind map for all the potential elements involved in securing
a mobile app:

http://www.amanhardikar.com/mindmaps/SHC.html
http://www.amanhardikar.com/mindmaps/SHC.html

Chapter 8

[251]

The mind map in this section has been broadly classified into three main sub-levels
for any given mobile app:

•	 Device level: In this level, all the security features related to the device must
be addressed.

•	 Network level: Securing all the communications between the device
and the server.

•	 Server level: Protection of the server. A vulnerable server can expose all the
user data, which can result in major damage to your app's reputation.

Device level
The majority of security implementation is needed at the device level. This is
sub-categorized into two more levels:

•	 Platform level: In this level, developers must consider all the platform-specific
risks and know the countermeasures to protect the app

•	 Application level: Protection at the app level is the primary purpose of
developers in order to provide confidentiality, integrity and availability of
information to the user.

The following screenshot provides details of the device-level protection along
with the mapping with OWASP mobile top ten risks that we discussed in Chapter 1,
The Mobile Application Security Landscape:

Securing Your Android and iOS Applications

[252]

Platform (OS) level
At an operating system level, we can tighten mobile app security by doing the
following actions.

Screenshots/snapshots
By default, iOS provides the option of taking a snapshot of the current state, when
the app transitions its state from active to suspended. We learned from the previous
chapter how a screen capture can expose potential sensitive information. This can be
fixed by overriding the applicationDidEnterBackground method in a way that it
removes all the sensitive information before the app returns to the active state.

In Android, this can be fixed by using the FLAG_SECURE option in the windows
layout manager and also implementing intent.addFlags(Intent.FLAG_ACTIVITY_
EXCLUDE_FROM_RECENTS) in the code to prevent the task manager snooping attacks
through screenshots.

System caching and logs
Keyboard caching – by default, iOS logs what users type to form customized
auto-correct this will also disclose sensitive information leading to different side
channel attacks.

Disable the auto-correct feature for any sensitive information, not just for
password fields. Since the keyboard caches sensitive information, it may be
recoverable. For UITextField, look at setting the autocorrectionType property
to UITextAutocorrectionTypeNo to disable caching.

Android contains a user dictionary, where words entered by a user can be saved for
future auto-correction. This user dictionary is available to any app without special
permissions. For increased security, consider implementing a custom keyboard.

Prevent logs from NSLOGS function in iOS and Log.d function in Android.

Cut, copy, and paste
Android and iOS provide the option for users to cut, copy, and paste, which is
stored in the clipboard in clear text; it does not matter if the text is encrypted or not.
This data will be available to other apps that have access to the clipboard.

It is recommended to disable cut, copy, and paste, especially for sensitive data.

Chapter 8

[253]

In iOS, once the app enters the background mode, clear the entire pasteboard and if
the app handles any sensitive data then you should think about completely disabling
cut, copy, and paste; on UIWebView, you can use userInteractionEnabled = NO;

In Android, simply set setLongClickable(false) on sensitive pages.

iOS cookie and keychains
If we recall Chapter 7, Full Steam Ahead – Attacking iOS Applications, we clearly know
what type of data can be extracted from cookie and keychains. The following are
recommendations to countermeasure them. In short, if these are not required, simply
do not use them.

BinaryCookies
For a better user experience, the majority of iOS apps store a persistent cookie so
that the users need not log in to the app every time, This information can serve
as sensitive information leakage to any attackers who can decrypt it using simple
Python scripts such as BinaryCookie reader (http://securitylearn.net/
wp-content/uploads/tools/iOS/BinaryCookieReader.py). Do not store any
sensitive information in cookies.binarycookies.

Keychains
Utilize the different options provided by Apple, as we learned in the section Keychain
data protection in Chapter 2, Snooping Around the Architecture. You can also utilize
one of the simple wrapper PDKeyChainBindingController (https://github.
com/carlbrown/PDKeychainBindingsController) to secure the keychain data.
However, if the device is jailbroken then keychain information is not secure. It is
recommended to use custom encryption techniques to encrypt the string that is
stored in the keychain. Make the best use of the keychain services API (https://
developer.apple.com/library/mac/documentation/Security/Conceptual/key
chainServConcepts/01introduction/introduction.html).

Application level
The primary purpose of the app is to run securely and not compromise platform
integrity. This section provides some of the common security strategies that can be
incorporated during the development, specific to the app

Further, the app level is divided into three primary categories:

•	 App storage protection
•	 Binary protection
•	 Runtime protection

http://securitylearn.net/wp-content/uploads/tools/iOS/BinaryCookieReader.py
http://securitylearn.net/wp-content/uploads/tools/iOS/BinaryCookieReader.py
https://github.com/carlbrown/PDKeychainBindingsController
https://github.com/carlbrown/PDKeychainBindingsController
https://developer.apple.com/library/mac/documentation/Security/Conceptual/keychainServConcepts/01introduction/introduction.html
https://developer.apple.com/library/mac/documentation/Security/Conceptual/keychainServConcepts/01introduction/introduction.html
https://developer.apple.com/library/mac/documentation/Security/Conceptual/keychainServConcepts/01introduction/introduction.html

Securing Your Android and iOS Applications

[254]

App storage protection
There is no data that is secure that is left behind in the device local storage, even in
a sandbox environment. Assuming you have to store an ample amount of app data
on the device storage, ensure proper actions are taken accordingly. If no app data is
required to be on the device, just don't store it. This includes the data on the app's
private data directory or on the external storage.

Property lists/shared preferences
The majority of the app details are stored in the property list files in iOS and share
preferences in Android. Let us go ahead and see the countermeasures against
information leakages.

Property lists in iOS
Encrypt all the data using a primary key that is user-supplied. It is also
recommended to compile the settings in the code where possible; it will increase the
complexity for an attacker. We will learn how to use different encryption techniques
in the Encryption section.

Shared preferences in Android
Encrypt all the configuration files. Developers can use the secure-preferences
tool, which can be downloaded from https://github.com/scottyab/secure-
preferences. This helps with encrypting the shared preferences.

Database protection
In the previous chapters, we have seen how easy it is to extract details from
databases that are not encrypted from the jailbroken or rooted mobile devices. So
by default, we should encrypt all the local databases on the device. Many times,
developers assume if the database filename is renamed without the .db extension,
this will prevent other apps from accessing the data, but this is not the solution.

Developers can make use of SQLCipher, which is available for both Android
and iOS to encrypt the local database file. SQLCipher can be downloaded from
https://guardianproject.info/code/sqlcipher. It provides 256-bit AES
encryption for a database and it has both a commercial and community edition
under BSD License from Zetetic LLC.

https://github.com/scottyab/secure-preferences
https://github.com/scottyab/secure-preferences
https://guardianproject.info/code/sqlcipher

Chapter 8

[255]

Application permissions
We learned about the Android permission model and the Apple's iOS security model in
Chapter 2, Snooping Around the Architecture. An excellent understanding of how to
make use of the available options in defining the configuration can reduce the attack
surface of the app. Always employ principle of least privilege (PoLP) to minimize
the privileges on the device.

Let us take a deep dive into Android. The majority of issues arise due to poor
knowledge of each option and how to use them in configuring the Android manifest
file and the communications between components. In this section, we will discuss
some of the best practices and a quick list of things that a developer can utilize.

Backup settings
Threats regarding the backup settings are that attackers will be able to view the
application's data directory that normally includes the user, session, and other
sensitive app information. In order to make sure this is disabled, you have to set the
Android:allowBackup attribute to false; by default, this attribute is set to true,
which is not a security best practice.

Disable debug
In Chapter 6, Full Steam Ahead – Attacking Android Applications, in the section
Log analysis, we learned how simple debug information can provide sensitive
information through logs. This can put an application into easy prick due to the
simple mistake of enabling the debug facility and misconfiguration.

It is understandable during the development phase to have the debug option
enabled. But this feature should not be available for the apps in production.
This can be achieved by adding application Android:debuggable= False to
the AndroidManifest.xml file.

Use the latest API version
The majority of developers use a code base that is compatible with different versions
of Android running on old and new devices. Always use the latest version of the
API version in order to prevent any known vulnerabilities. This can be defined by
Android:minSdkVersion and Android:targetSdkVersion.

From Android 5.0 that has targetSDKVersion 21 and above, it has enforced the use of
Position Independent Executable (PIE) for all the binaries. This will restrict the apps
to the installed on the prior versions.

Securing Your Android and iOS Applications

[256]

Securing Android components
A major portion of an app can be secured by using the AndroidManifest.xml file
and the Android components, as well as by enforcing code-level permission checks:

•	 Enforce permissions using the Android:permission attribute in the
<application> tag in AndroidManifest.xml. That means all the app
components in the manifest have a defined permission.

•	 In order to make sure the app requesting permission is accessed only by the
app that is signed with the same certificate, use signature protection level
where necessary.

•	 Protection level of normal or dangerous should not be used.

Securing activities
Securing activities are pretty straightforward and includes who can start it. Add the
permission to start an activity. This can be achieved by adding a permission attribute
to the specific activity. The following code snippet provides an example:

<activity Android:name=".activities.Main">
 <intent-filter>
 <Android:permission="Android.intent.permission.MAIN"/>
 </intent-filter>
</activity>

Securing services
Always require permission to create or bind to a service. This can be done by adding
a permission attribute to the specific service details in the AndroidManifest.xml file.
The following code snippet provides the locationservice permission entry in the
AndroidManifest.xml file:

<service Android:name=".services.LocationService">
 <Android:permission="org.owasp.goatdroid.fourgoats.
 services.permission.LocationService" />
 Android:enabled="true" Android:exported="true">
 <intent-filter>
 <action Android:name="org.owasp.goatdroid.
 fourgoats.SOCIAL_SMS" />
 </intent-filter>
</service>

Chapter 8

[257]

Securing content providers
Ensure content provider is not exported for all the versions of Android. This can be
achieved by setting Android:exported=false in the AndroidManifest.xml file.
The following code snippet shows how it can be done:

<provider Android:name=".ContentProvider"
 Android:authorities="com.yourapp.ContentProvider"
 Android:exported="false">
</provider>

For a secure way to share the providers with other applications on the device,
always set grantUriPermissions to false when sharing any providers.

Securing broadcast receivers
Apply security permissions to receivers using the permission attribute. The purpose
of the broadcast is to accept the incoming intent; however, the sender of the
broadcast can also specific Android permission. The following example shows that
the broadcast receiver listens for SOCIAL_SMS broadcast intents and accepts only
from senders that have been granted SendSMSNowReceiver permission:

<receiver Android:label="Send SMS"
 Android:name=".broadcastreceivers.SendSMSNowReceiver"
 Android:permission="org.owasp.goatdroid.fourgoats.
 permission.SendSMSNowReceiver">
 <intent-filter>
 <action Android:name="org.owasp.goatdroid.
 fourgoats.SOCIAL_SMS"/>
 </intent-filter>
</receiver>

Verify exported components
A lower number of exported components reduces the attack surface. The following
code snippet shows only one main activity is exported, which means no exposure
of any other components. You can validate your app's attack surface by running the
drozer module after all the security parameters to ensure you have not left anything
in place that could be a potential entry point.

dz> run app.package.attacksurface com.your.app

Attack Surface:

1 activities exported

0 broadcast receivers exported

0 content providers exported

0 services exported

Securing Your Android and iOS Applications

[258]

For iOS, the SDK offers a list of APIs in order to ensure a high level of protection
by Data Protection Class. Data Protection is available for file and database APIs,
including NSFileManager, CoreData, NSData, and SQLite.

Encryption
Encryption is one of the key security controls in making sure your app data and files
are protected. Here are a few recommendations for both the platforms:

•	 Use AES 256 bit for symmetric key encryption. Specify AES-CBC
or AES-GCM with the key and a random IV generated by SecureRandom.

•	 If you are using asymmetric key encryption, then use 2048-bit RSA.
•	 For hashing techniques, use SHA-256 or SHA-512.
•	 In case of salting the password, use a randomly generated string. Note that

salt is not a password; it can be stored along with the encrypted information.

iOS
Make best use of the Apple security framework and crypto library that provides all
the preceding options for data protection.

This can be achieved by utilizing:

•	 Apple's Common Crypto API
•	 RNCryptor (https://github.com/RNCryptor/RNCryptor)
•	 OpenSSL

Android
To make it more difficult to extract the keys from the device, you can utilize
Android KeyStore (http://developer.Android.com/reference/java/security/
KeyStore.html) that lets you store the crypto keys in a container. It was included
in Android API level 18 and above. Or one can still utilize the javax.crypto API
(http://developer.android.com/reference/javax/crypto/package-summary.
html) for best practice. Developers can also utilize conceal (https://github.com/
facebook/conceal), developed by Facebook for faster encryption and also for
authentication using the API.

Key management
In a cryptosystem, the art of managing the cryptographic keys is called key
management. Encryption alone will not be able to solve the issue if the encryption
keys are insecurely handled. Attackers will be able to decrypt all the data if the
encryption keys are identified.

https://github.com/RNCryptor/RNCryptor
http://developer.Android.com/reference/java/security/KeyStore.html
http://developer.Android.com/reference/java/security/KeyStore.html
http://developer.android.com/reference/javax/crypto/package-summary.html
http://developer.android.com/reference/javax/crypto/package-summary.html
https://github.com/facebook/conceal
https://github.com/facebook/conceal

Chapter 8

[259]

Some of the best practices in mobile device key management include:

•	 Do not store keys on the device if possible
•	 If you are storing, make sure it is protected by the filesystem (Data Protection

API in iOS and Android Filesystem isolation)
•	 Use mobile device encryption as part of authentication
•	 In case of Android, always use internal storage only and the mode is set as

private for those files that include sensitive information (MODE_PRIVATE in
SharedPreferences)

Securing WebView
WebView plays a major role if your app is using it. We learned how easy it is to craft
a website and exploit the vulnerability of WebView and again access the full device
remotely in the section Attacking WebViews in Chapter 6, Full Steam Ahead – Attacking
Android Applications on the Android platform.

The following is a list of common recommendations for both platforms to reduce the
WebView attack surface:

•	 Disable JavaScript and plugin support if they are not needed
•	 Disable local file access, if any JavaScript is allowed

iOS
The following is considered best practice for iOS apps:

•	 Use the NSString class, for example you can use (NSString *)stringByEva
luatingJavaScriptFromString:(NSString *) script

•	 Use HTML Entity. Encode user input data prior to displaying in the
WebView component

Android
The following are recommended for Android:

•	 Disable JavaScript if not required by adding WebView.getSettings().
setJaveScriptEnabled(false);

•	 Disable any JavascriptInterface functionality
•	 Disable filesystem access from WebView by doing WebView.

getSettings().setAllowFileAccess(false); and WebView.
getSettings().setAllowFileAccessFromFileURLs(false);

•	 You can also find some hints and sample code for securing WebView in Java:
https://gist.github.com/scottyab/6f51bbd82a0ffb08ac7a

https://gist.github.com/scottyab/6f51bbd82a0ffb08ac7a

Securing Your Android and iOS Applications

[260]

App caches
Protection of app caches plays a crucial role in apps that perform online/offline
transactions and need to store the temporary data to reduce the bandwidth and for a
quick user experience. The following are some recommendations that one can follow
to protect this information:

•	 In iOS, disable default caching using NSUrlCaching by changing the
NSURLRequestReloadIgnoringLocalCacheData settings and also clear the
cache once the app is exited

•	 In case the app provides an offline access feature, make sure the entire app
cache data is encrypted

•	 In Android, the only solution is to encrypt by using conceal or other
mechanisms to all the files that contain sensitive cache data

Binary protection
Application binary resides on the mobile device. The concept of protecting the
binary was considered in OWASP top ten in January 2014. These protections does
not guarantee that the app is unbreakable but can significantly increase the time an
adversary tries to intrude. All the security controls have to be implemented within the
mobile app. The following are the outcomes of protecting the binary on the device:

•	 Can check for device non-compliance
•	 Reduce memory exploitation
•	 Increase the complexity of reverse engineering

We explored a number of exploitations that can potentially impact the integrity of
the app by exploiting the binary on the device before and after installation. Let us
now see what security measures can be put in place to prevent those exploitations.

Jailbreak detection
When a jailbroken or rooted state is detected, any functionality of your app that
involves sensitive information should be disabled. This will reduce the risk posed by
the malware on the infected device. One can employ different techniques to detect
jailbreak or root detection; the following are some examples.

Chapter 8

[261]

Filesystem-based detection
Implement a filesystem check controller during the app delegate initialization based
on the following file path discovery:

•	 /private/var/apt

•	 /private/var/lib/cydia
•	 /usr/sbin/sshd

Additional recommended detection options include, but are not limited to, the
aforementioned filesystem structure checks on a jailbroken device.

API-based detection
We can utilize multiple API calls such as fork(), system(), and dyld() functions
for jailbreak detection in any iOS devices.

•	 fork(): By using this API call, we can understand the behavior of the app.
The app sandbox will allow forking on a jailbroken device

•	 system(): By calling this API with NULL parameters, the device will return
a value of 0 on a non-jailbroken phone

•	 dyld(): This could be one of the effective way to detect a jailbreak since these
functions are part of dylibs. For example, you can use _dyld_get_image_
name() and _dyld_image_count() to list the loaded dylibs

Root detection
With respect to Android root detection, there are similar ways in which developers
can adhere to coding best practices based on.

Command detection method
There are also some basic command checks that can be deployed as part of the code
for the root-detection process, which includes checking:

•	 su (superuser) command, to check if the current user has UID 0 or if it
contains (root).

•	 If BusyBox is installed on the device, then most of the Linux commands are
an executable part of the binary. In this case, we can identify whether the
device is rooted.

The preceding recommendations differ from the choice of developers, but we are not
limited to them.

Securing Your Android and iOS Applications

[262]

Decompiling protection
We learned from the previous chapters how easy it was to decompile an Android
app using readily available tools such as APKTool.

Developers can utilize tools like ProGuard or DexGuard (https://www.
guardsquare.com/dexguard). Details of the app could be found at http://
developer.Android.com/tools/help/proguard.html for Android apps to
obfuscate your code, and make it harder to understand or read, if not impossible.

Code obfuscation
Obfuscation is used generally to make apps intentionally hard to understand. The
primary motive is to make reverse engineering difficult by code complexity. It is
quite evident from the previous chapters that without obfuscation it was very easy
to understand the code flow of the app just by viewing the source or disassembly,
for example we were able to completely understand the structure and code flow
by loading the DVIA iOS app into hopper. In order to protect the app from being
reverse engineered and pirated, code obfuscators can do the following:

•	 Add additional code
•	 Modify and flatten the control flow of the app
•	 Encrypt the strings
•	 Hide some of the methods and function

It is recommended to use any of the following obfuscators after development:

•	 Proguard (free and commercial): https://www.guardsquare.com/proguard
•	 Stringer Java obfuscator (commercial): https://jfxstore.com/stringer/
•	 DashO: Java/Android Enterprise Protection and Obfuscation (commercial):

https://www.preemptive.com/products/dasho/overview

Apps that are using LLVM (short for Low Level Virtual Machine) in iOS and
Android can utilize the obfuscation feature by the substitution of instructions
(-mllvm –sub), bogus control flow (-mllvm –bcf, -mllvm -perBCF=20,
-mllvm -boguscf-loop=3), and flattening (-mllvm –fla). The obfuscator can be
downloaded from https://github.com/obfuscator-llvm/obfuscator.

Developers can refer to the following OWASP
recommendation: https://www.owasp.org/index.
php/OWASP_Reverse_Engineering_and_Code_
Modification_Prevention_Project#tab=Overview.

https://www.guardsquare.com/dexguard
https://www.guardsquare.com/dexguard
http://developer.Android.com/tools/help/proguard.html
http://developer.Android.com/tools/help/proguard.html
https://www.guardsquare.com/proguard
https://jfxstore.com/stringer/
https://www.preemptive.com/products/dasho/overview
https://github.com/obfuscator-llvm/obfuscator
https://www.owasp.org/index.php/OWASP_Reverse_Engineering_and_Code_Modification_Prevention_Project#tab=Overview
https://www.owasp.org/index.php/OWASP_Reverse_Engineering_and_Code_Modification_Prevention_Project#tab=Overview
https://www.owasp.org/index.php/OWASP_Reverse_Engineering_and_Code_Modification_Prevention_Project#tab=Overview

Chapter 8

[263]

Decryption protection
For Android apps, it is recommended to encrypt the strings using java-aes-crypto
(https://github.com/tozny/java-aes-crypto). For iOS apps, make best use of
the data protection API.

ASLR/ARC
Automatic Reference Counting (ARC) (only for iOS), Position Independent
Executable (PIE) support, and Address Space Layout Randomization (ASLR)
are the three most important factors in memory management for iOS and Android.

•	 Enable ARC in the Xcode project, or migrate existing projects to ARC with
the Refactoring tool provided by Apple in Xcode as shown in the following
screenshot:

•	 ASLR depends on whether the app is compiled with the support of PIE or
not. If yes then all the app memory regions are randomized and in iOS the
PIE-enabled app binary will load on a random address each time.

https://github.com/tozny/java-aes-crypto

Securing Your Android and iOS Applications

[264]

•	 After API level 17, Android apps PIE was enabled to make sure full ASLR on
devices. The latest version after Lollipop 5.0 and later enforces PIE and full
ASLR by default as shown in the following screenshot:

Stack-smashing protection
In order to prevent stack-based corruptions, always specify the –fstackprotector-
all compiler flag using Xcode by navigating to Projects | Targets| Build Phases
and double-click on any compile sources and add –fstackprotector-all, as shown
in the following screenshot:

Runtime protection
From our previous chapters, we understood that tools like Cycript, Frida, and JDWP
are so easy and handy to manipulate an app during runtime. The instrumentation
becomes a straightforward process and can be potentially used to change the app
behavior and circumvent the security controls or steal sensitive data. That means
the app running on the device cannot trust its own runtime. It is recommended to
implement an additional security measure hook detection and verify the signature of
the app at runtime.

Chapter 8

[265]

URLSchemes protection
URLSchemes is normally used to call another app on the device. Everything that
we engage to protect a web app from unvalidated redirects to malicious sites is
applicable here too. These are crucial when your app is a hybrid/native app.

•	 Validate all the input and perform output escaping
•	 Always use parameterized queries even when you are calling the local

database (SQLite)
•	 Control of all UIWebView and prevent redirects
•	 Local/native capabilities of the app should be set to minimum

Client-side injection protection
Many times, developers use device identifier as the identity of a user or a session
from the device. It is not recommended to use any device-specific identifier such
as UDID, MAC address, IMEI number, or IP address and so on.

•	 Never trust any data from the client side; always validate the details on the
server side

•	 Authenticate all the API calls to the paid resources

Anti-debug implementation
Debugging allows us to completely understand and reverse engineer an app and
also modify the control flow. Assuming an adversary is able to get the cryptographic
key of an app, we can imagine the security consequences. By default, iOS debug is
normally done using the ptrace() system call. You can use the same ptrace() with
PT_DENY_ATTACH to prevent the reverse engineers from debugging your iOS app.

In Android, debugging is possible only if the manifest includes
Android:debuggable=true or is manipulated during runtime. You can utilize the
class Android.os.debug and use the is DebuggerConnected() method.

The preceding two techniques cannot completely stop the debugging but will slow
down the attacker's time to bypass.

Filesystem protection
We have seen many techniques and ways to bypass app sandboxing. The following
is a list of recommendations to protect the files on the device:

Securing Your Android and iOS Applications

[266]

Android:

•	 Do not create files with permissions of MODE_WORLD_READABLE
or MODE_WORLD_WRITABLE unless it is required

•	 Use Facebook's conceal for encryption of the local files

iOS:

•	 Use the NSFileProtection class
•	 You can utilize IOCipher to protect all the app files. IOCipher is a cousin of

SQLCipher, which can be downloaded from https://guardianproject.
info/code/iocipher/.

Anti-tamper implementation
No matter how much we encrypt the data, it will be unencrypted in the memory.
Making sure the app installed or going to be installed on the device is not tampered
will provide more security. One can utilize the following strategies:

For Android, use NDK to implement tamper detection.

•	 Always verify the app at runtime using the signature
•	 Verify the installer with the installer ID

One of the strongest tools that developers can utilize is DexGuard
(https://www.guardsquare.com/dexguard) for the majority of protection.

For iOS, use LLVM (short for Low-Level Virtual Machine) compiler and make
apps self-validate. The same technique can also be used as optimization, which uses
LLVM's JIT compiler.

Network level
Any data between the device and the server is over the network level. The following
screen capture provides the high-level mind map for network-level protection:

https://guardianproject.info/code/iocipher/
https://guardianproject.info/code/iocipher/
https://www.guardsquare.com/dexguard
https://www.guardsquare.com/dexguard
https://www.guardsquare.com/dexguard

Chapter 8

[267]

Certificate pinning
Certificate pinning is process of associating a host with expected X509 certificate or
public key; once exposed, this certificate will be pinned to a device. We also did the
Tweaks on how to bypass these techniques in Chapter 7, Full Steam Ahead – Attacking
iOS Applications in the section Beating the SSL certificate pinning. Certificate pinning is
the only solution to prevent MitM attacks.

In iOS, cert pinning is done through NSURLConnectionDelegate. This delegate
should implement the following:

connection:canAuthenticateAgainstProtectionSpace
connection:didReceiveAuthenticationChallenge

And within connection:didReceiveAuthenticationChallenge, the delegate
should call secTrustEvaluate to perform the traditional checks.

In Android, this technique can be done by the custom X509TrustManager class,
which will perform the normal routine checks and also perform the pinning.

Cipher suites
In order to make sure your encryption is not easily reversed, always use the high
cipher suites:

•	 Disable SSL and any export-level encryption cipher or ciphers less than 128
bit in strength

•	 Always use TLS v1.2
•	 Set the default Cipher suite and protocol version to prefer stronger

encryption
•	 You can utilize the cheat sheet from http://www.exploresecurity.com/

wp-content/uploads/custom/SSL_manual_cheatsheet.html, which
provides a list of commands to make sure all the SSL/TLS-related checks
are implemented correctly

CFNetwork usage
While performing the network diagnosis of the app, sometime developers tend
to leave CFNETWORK_DIAGNOSTICS, which is CFNetwork diagnostic logging that
completely decrypts even the TLS (short for Transport Layer Security) data.

http://www.exploresecurity.com/wp-content/uploads/custom/SSL_manual_cheatsheet.html
http://www.exploresecurity.com/wp-content/uploads/custom/SSL_manual_cheatsheet.html

Securing Your Android and iOS Applications

[268]

Ensure there are no default traces left when you compile
the final binary. Check all your unwanted environmental
variables are removed.

Secure caching
There are possibilities that HTTPS requests and responses are stored in the
network proxies.

Ensure no query parameters are sent in the Secure HTTP GET method; always use the
POST method to submit any sensitive information over the network. In this way, you
protect the information that is in the URL is not leaked over the network.

Server level
At the server level, the entire web server and web service communications
are applicable. The following figure gives the high-level mind map for the set
of important sections that have to be tightened before providing the backend
services to any given mobile app. It also has the mapping done with the OWASP
10 (https://www.owasp.org/index.php/Top_10_2013-Top_10), which are
applicable. The server will not be considered completely secure with the following
recommendations; however, developers have to refer to the OWASP Application
Security Verification Standards for web apps.

Authentication
The majority of apps in the app store have not implemented any form of encryption
to protect the authentication parameters. It is a best practice to implement any
confidential user input such as login, password reset, and password recovery only
through encrypted channels.

https://www.owasp.org/index.php/Top_10_2013-Top_10

Chapter 8

[269]

•	 All the validations are performed including the user identification with the
right password complexity

•	 Do not provide any specific error messages
•	 Implement CAPTCHA to prevent any brute-forcing attacks

Authorization
To prevent access control/authorization violations, use a Role-Based Access Matrix
(RBAC) in tandem with the session management of the application. The user ID, role
ID, and the resource ID must be mapped by creating a matrix in a database. When
a user logs in to his account, his user ID and role ID must be pushed to the session
object and whenever he requests for a resource, the resource ID must be validated a
with user ID and role ID against the matrix. If successful, the access to the resource
must be provided or else must be redirected to an error page.

Input/output validations
Any data that is passed on from the client side must not be trusted; the validations
must be performed on both input and output. The following are some ways of
implementing the solution:

•	 Escape all user-supplied data prior to output: Protect users from scripting
injection attacks by ensuring proper escaping of the data is performed prior
to writing it out. Particular attention should be paid to data that is being
written into JavaScript functions and strings within the HTML page, since
these values must have special characters for both HTML and JavaScript
properly escaped.

•	 Validate all user-originated data: Every user parameter must be tested
by the client-side and server-side code to ensure that it conforms to the
expected format.

In addition to correctly handling user input, output must also be properly handled.
Special characters, such as < and >, should be replaced by their HTML-escaped
equivalents. Doing this will greatly enhance the security of a mobile app with web
features (hybrid apps) because it will be much harder for attackers to execute any
script injection attacks such as cross-site scripting (XSS).

Injection flaws
Sanitize the malicious input on the server side; do not trust anything from the client
side. Use prepared statements and make sure parameterized queries are defined
beforehand and then the inputs are passed for execution.

Securing Your Android and iOS Applications

[270]

Whitelist-based input validation must be implemented, which ensures that only
expected values or data types are allowed into the web service/application.

Session management
Good session management on the server side increases the app's security in the
following manner:

•	 After successful authentication of a legitimate user, a new session token must
be generated at the server and the session token must be mapped to the user
in a session variable.

•	 The session token is transmitted between client and server through
non-persistent cookies. It is recommended that Secure Flag is set on all the
set cookies assuming the app is running on HTTPS; if this flag is not set on
the cookies then it is possible for the attackers to submit the message over an
unencrypted HTTP channel.

•	 Validate the session token throughout the session; any changes invalidate the
session and also terminate the token after a certain period of inactivity.

Information leakage
Information can be leaked by different means such as server response, including
every detail about the web server and its supporting software version details or
through error messages.

HTTP/1.1 200 OK

Cache-Control: no-store, must-revalidate

Keep-Alive: timeout=15, max=100

Content-Length: 3058

Content-Type: text/html; charset=utf-8

Vary: Accept-Encoding

Server: Microsoft-IIS/6.0

Set-Cookie: cookie1=abc1234; expires=Tue, 17-Jun-2014 09:37:27 GMT

X-Powered-By: ARR/2.5

X-Powered-By: ASP.NET

It is recommended to suppress these details where possible on the network and also
handle any exception or error messages and provide generic error messages. All the
OWASP top 10 web recommendations are applicable to the server level.

Chapter 8

[271]

OWASP mobile app security checklist
The OWASP community has been working on getting the latest risks incorporated.
The top 10 list might change in 2016 according to what we see as the top risk by
considering various factors. You should be able to see the yearly commentary by
visiting https://www.owasp.org/index.php/Mobile2015Commentary.

The checklist can be found at https://drive.google.com/file/
d/0BxOPagp1jPHWVnlzWGNVbFBMTW8/view.

Mobile app developers checklist
As we began this chapter with a security mind map, we will now go ahead and
create a new checklist for assessment of any iOS and Android apps as follows:

Network Level
Certificate
validation

Certificate validation is not performed

Certificate
pinning
implementation

No certificate pinning noted

Cipher suites
configuration

Weak cipher suites noted

CFNetwork
usage

CFNetwork API used to negotiate SSL/TLS connection

Side channel
leakage
prevention

Leaks information through other channels

Insecure caching
on network

Improper use of HTTP methods

Server Level
Authentication Authentication can be bypassed
Authorization Possible to impersonate another user/privilege escalation
Injection flaws SQL/XML injection possible
Input/output
validations

Vulnerable to script injection vulnerabilities (XSS, CSRF,
and so on)

Session
management

Improper session management or no session management

Information
leakage

Web server/OS banner fingerprinting possible

https://www.owasp.org/index.php/Mobile2015Commentary
https://drive.google.com/file/d/0BxOPagp1jPHWVnlzWGNVbFBMTW8/view
https://drive.google.com/file/d/0BxOPagp1jPHWVnlzWGNVbFBMTW8/view

Securing Your Android and iOS Applications

[272]

Device Level
Device Level | Platform Level

Screenshot/
snapshot

Backgrounding/screenshot/UI saving allowed

System caching Web cache, debug logs enabled
Cut, copy, and
paste

Pasteboard, keystrokes are cached

iOS cookie and
keychains

Usage of CookieBinary and sensitive information in
keychain

Device Level | App Level
Device Level | App Level | App storage

PropertyLists/
SharedPreferences

Hardcoded credentials/sensitive information

Database
protection

Unencrypted databases

App file
protection

App files are not protected

App caches Sensitive information leakage from app caching
App permissions Extensive permissions
Securing
WebViews

WebView vulnerable to script injection

Device Level | App Level | Binary protection
ASLR/ARC No ASLR/ARC protection noted
Decryption
protection

Possible to decrypt the application

Decompilation
protection

No decompilation protection noted

Code obfuscation Easily understandable code
Device Level | App Level | Runtime protection

URL schemes
protection

URL modification allowed

Client-side
injection
protection

App vulnerable to client-side injection

Anti-debug
implementation

No anti-debug protection noticed

Filesystem
protection

File can be altered during runtime

Chapter 8

[273]

Device Level | App Level | Binary protection
Anti-tampering
implementation

No anti-tamper protection noted

Memory
protection

No memory protection

Other Considerations
MDM capabilities Remote wipe can be misused

No passcode lock policy
Bluetooth/NFC vulnerabilities
Usage of camera, microphone
Application restrictions
SD card usage
Policy enforcement not sufficient

User privacy Access to contacts, photos, locations
IMSI, IMEI, device ID, push ID disclosure

Secure coding best practices
Secure coding is an art of writing programs that are immune to a variety of attacks. The
goal of mobile app security is to maintain the confidentiality, integrity, and availability
of the information. The goal can be accomplished only by setting up the right security
controls at code level. The following subsections provides a list of available resources
that can be utilized while writing the code.

Android
The following are the list of resources that you can utilize for Android best practices
in development:

•	 https://source.Android.com/security/overview/app-security.html

•	 http://developer.Android.com/training/articles/security-tips.
html

•	 http://www.jssec.org/dl/Android_securecoding_en.pdf

•	 https://www.securecoding.cert.org/confluence/pages/viewpage.
action?pageId=111509535

https://source.Android.com/security/overview/app-security.html
http://developer.Android.com/training/articles/security-tips.html
http://developer.Android.com/training/articles/security-tips.html
http://www.jssec.org/dl/Android_securecoding_en.pdf
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=111509535
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=111509535

Securing Your Android and iOS Applications

[274]

iOS
The following list provides the direct guide and best practices that can be utilized
during the development:

•	 https://developer.apple.com/library/mac/documentation/Security/
Conceptual/SecureCodingGuide/Introduction.html

•	 https://www.apple.com/business/docs/iOS_Security_Guide.pdf

Vendor-neutral advice
It is always good practice to consider any relevant materials that are vendor neutral:

•	 https://www.owasp.org/index.php/OWASP_Mobile_Security_
Project#tab=Secure_Mobile_Development

Developer cheat sheet
While you write the code, refer to the following URLs that can provide more
insights, especially on how your app would be made more secure:

•	 https://www.owasp.org/index.php/IOS_Developer_Cheat_Sheet

•	 https://github.com/project-imas/encrypted-core-data

•	 https://github.com/XSecurity

•	 https://www.owasp.org/index.php/OWASP_Proactive_Controls

•	 https://github.com/iSECPartners/ssl-conservatory

Developer policies
It is recommended that the developer of the app is fully aware of the guidelines
before kick starting the app design and also understands the policy and accepts
them. The Apple iOS guidelines are found at https://developer.apple.com/app-
store/review/guidelines/ and Android at https://play.google.com/about/
developer-content-policy.html.

Post-production protection
All the apps that are released to the app store must have sufficient protection
during the updates and changes being sent from the server to the client-side
native or hybrid app.

https://developer.apple.com/library/mac/documentation/Security/Conceptual/SecureCodingGuide/Introduction.html
https://developer.apple.com/library/mac/documentation/Security/Conceptual/SecureCodingGuide/Introduction.html
https://www.apple.com/business/docs/iOS_Security_Guide.pdf
https://www.owasp.org/index.php/OWASP_Mobile_Security_Project#tab=Secure_Mobile_Development
https://www.owasp.org/index.php/OWASP_Mobile_Security_Project#tab=Secure_Mobile_Development
https://www.owasp.org/index.php/IOS_Developer_Cheat_Sheet
https://github.com/project-imas/encrypted-core-data
https://github.com/XSecurity
https://www.owasp.org/index.php/OWASP_Proactive_Controls
https://github.com/iSECPartners/ssl-conservatory
https://developer.apple.com/app-store/review/guidelines/
https://developer.apple.com/app-store/review/guidelines/
https://play.google.com/about/developer-content-policy.html
https://play.google.com/about/developer-content-policy.html

Chapter 8

[275]

The following are the list of activities that one can do after the app rollout:

•	 Validate the app's signature for any updates done to the app are done only
through Play Store or App Store

•	 App user education awareness about the updates focusing on the security

Keeping up to date
Some of the important sites that can help us keep updated about new and formal
releases of new vulnerabilities/exploits and also patching details:

•	 http://Androidvulnerabilities.org/

•	 https://www.cvedetails.com/

•	 http://www.securityfocus.com/

•	 https://www.exploit-db.com/

Summary
Building secure apps is always a great challenge for the developer community due to
the plenty of considerations and attack surfaces with ever-growing platform versions
and device hardware changes. In this chapter, we have learned how to secure any
given mobile app on the device by protecting the binary, the data in transit, and the
data at rest. We have also learned how to make it difficult for attackers in tampering
the data within the app and device. We have taken a deep dive into different
considerations in securing the app on Android and iOS and learned how to utilize
the existing security features as a defense mechanism.

Finally, we have learned the common checklists for both Android and iOS based
on the OWASP top 10, which can be utilized by developers during the design and
development phases to reduce the risks to an acceptable level.

http://Androidvulnerabilities.org/
https://www.cvedetails.com/
http://www.securityfocus.com/
https://www.exploit-db.com/

[277]

Index
A
activity

about 36, 37
attacking 191, 192
create activity 38
destroy activity 38
launch activity 38
pause activity 38
restart activity 38
resume activity 38
stop activity 38

Address Space Layout Randomization
(ASLR) 66, 263

ADTool
URL 180

ahead-of-time (AOT) 28
American Encryption Standard (AES) 66
analysis/assessment, mobile application

penetration testing methodology
about 15
archive analysis 15
dynamic analysis 15
inter-process communication endpoint

analysis 15
local file analysis 15
network and web traffic 15
reverse engineering 15
static analysis 15

Androapkinfo 134
Androaxml 134
Androcsign 134
Androdd 134
Androdiff 134
Androdump 134

Androgexf 134
Androguard

about 133, 134
analysis of multiple files, automating 137
androlyze shell environment 135
download link 133

Android 3
Android application build process 46-48
Android application components

about 36
activity 36, 37
broadcast receivers 40
content providers 41
intents 36
services 38

Android application packages (APK) 32
Android architecture

about 23
Android application build process 46-48
Android Debug Bridge (adb) 41
Android permission model 45, 46
Android rooting 50
Android runtime 25, 26
application components 36
application framework 29
application sandboxing 42
application signing 43
applications layer 31
ART 28
core Java libraries 27
Dalvik virtual machine 26
java virtual machine 26
Linux kernel 24
native libraries 28
secure inter-process communication 43, 44

[278]

Android components
about 191
activities, attacking 191, 192
broadcast receivers, attacking 193-195
content providers, attacking 195-197
services, attacking 192

Android Debug Bridge
about 81
access, obtaining to device 83
application, installing to device 84
device, connecting 82, 83
files, extracting from device 84
files, storing to device 85
log information, viewing 85, 86
service, stopping 85
sideloading apps 86

Android device
burp CA certificate, installing to 139-142

Android Hooker
about 143
URL 143

Android KeyStore
reference link 258

AndroidManifest.xml
about 33
structure 34, 35

Android Native Development Kit (NDK) 28
Android permission model 45, 46
Android permissions

dangerous 46
normal 46
signature 46
signature or system 46

Android runtime 25
Android SDK

about 81
URL 31

Android security tools
about 122
Androguard 133
APKAnalyser 122-124
APKTool 128, 129
dex2jar API 132
drozer tool 124
Java Debugger (JDB) 137
JD-GUI 133

Android Studio
about 78-80
download link 79
Genymotion plugin, installing to 95-97
URL 78

Android Tammer
URL 143

Android Virtual Device (AVD) 87
Android virtual emulator

creating 90-93
Android vulnerabilities

about 7-9
references 9, 10

Androlyze 134
androlyze shell, Androguard

APK 135
DalvikVMFormat 135
show_paths(self) 135
static 135
VMAnalysis 135

Andromercury 134
Androrisk 134
Androsign 134
Androsim 134
Androwarn

about 142
URL 142

Androxgmml 134
anti-debug implementation 265
anti-tamper implementation 266
APKAnalyser

about 122
download link 122
setting up 122-124

APKinspector
about 142
URL 142

APKTool
about 128
download link 129

Apkviewer 134
app

analyzing, drozer tool used 190, 191
app caches 260
Appie

URL 143

[279]

Apple devices
HTTP proxy, configuring in 115

Apple's iOS security model
about 58, 59
data-level security 60
device-level security 59
system-level security 59

application
installing, to Genymotion emulator 93

application framework
about 29
key services 30

application level
about 251-253
app storage protection 254
binary protection 260

application permissions
about 255
activities, securing 256
Android components, securing 256
backup settings 255
broadcast receivers, securing 257
content providers, securing 257
debug, disabling 255
exported components, verifying 257
latest API version, using 255
services, securing 256

application programming interfaces
(APIs) 18

application sandboxing 42
application signing 43
applications layer

about 31
Android software development kit 31
native Android or system apps 31
user-installed or custom apps 31

application states, in iOS
active 58
background 58
inactive 58
not running 58
suspended 58

app patching
with Hopper 226, 227

approaches, threat models
asset-centric 166

attacker-centric 166
software-centric 165

Appsec labs iNalyzer
URL 245

app storage protection
about 254
app caches 260
application permissions 255
database protection 254
encryption 258
property lists 254
shared preferences 254
WebView, securing 259

Appuse
URL 143

architecture 22
archive analysis 210, 211
ARM apps, in Genymotion 97, 98
ARM translation

download link 97
ASLR/ARC

about 263
runtime protection 264
stack-smashing protection 264

assets
about 164
information 164
people 164
property 164

Attack Defense Tool. See ADTool
attacker view, mobile app

asset identification 168
entry and exit points 168
roles and trust levels 168

attack plans
building 177

attack scenarios
about 178
carrier-based methods 178
endpoint-based methods 178
OS and app-level methods 178
Wi-Fi methods 178

attack trees
building 177

Automatic Reference Counting
(ARC) 222, 263

[280]

B
backend server setup 187-189
Berkeley Software Distribution (BSD) 3
BigBoss tools

about 108
reference link 108

BinaryCookies
about 253
reference link 253

binary patching 213, 214
binary protection

about 260
anti-debug implementation 265
anti-tamper implementation 266
ASLR/ARC 263
client-side injection protection 265
code obfuscation 262
decryption protection 263
filesystem protection 265
jailbreak detection 260
protection, decompiling 262
root detection 261
URLSchemes protection 265

Binder process 44
Boot ROM 60
bound service 39
broadcast receiver 40
broadcast receivers

attacking 193-195
burp CA certificate

installing, to Android device 139-142
installing, to iOS device 160, 161

Burp Proxy
about 99
download link 99

C
changes, in iOS 8 and 9

application code signing 63
application-level security 63
iOS App sandbox 64
network-level security 63

Chromium
URL 197

class-dump 110

class-dump-z 150
client-side injection protection 265
client-side injections

about 235
SQL injection 235, 236
UIWebView injections 236, 237

client-side interactions, to Frida server
Frida 154
Frida-discover 153
Frida-ps 153
Frida-trace 153

Clutch
about 110, 148, 149
URL 148

Cocoa Touch layer 53
community edition, drozer tool

reference link 125
conceal

reference link 258
confidentiality, integrity, and availability

(CIA) 170
content providers

about 41
attacking 195-197

control flow graph (CFG) 224
core Java libraries

DVM-specific libraries 27
Java interoperability libraries 27

Core OS 55
core services layer 54
create activity 38
cross-site scripting (XSS) 269
Cycript

about 110, 150
URL 150

Cycript tricks
URL 152

Cydia
about 106, 143
iPhone/iPad, setting up with 106-108
URL 143

D
Dalvik virtual machine (DVM) 25, 26
Damn Vulnerable iOS Application (DVIA)

about 20

[281]

URL 20
Darwin foundation

reference link 51
Darwins CC tools 109
DashO

reference link 262
data flow diagrams (DFDs) 165
data-level security 60
data-protection classes

NSFileProtectionComplete 61
NSFileProtectionCompleteUnlessOpen 61
NSFileProtectionComplete

UntilFirstUserAuthentication 61
NSFileProtectionNone 61

decryption
on client side 205-207

Denial of service (DoS) 173
destroy activity 38
device

DVIA, installing to 114, 115
Device Authentication(Device Auth) 176
device data

and mobile application 167
device level

about 251
application level 251-253
platform (OS) level 251, 252

device-level security 59
device or system view, mobile app 169
dex2jar API

about 132
download link 132

Dex2oat 49
DexGuard

reference link 262
Dexopt 49
Digital Rights Management (DRM) 71
Direct Memory Access (DMA) 66
discovery, mobile application penetration

testing methodology
about 14
client side, versus server side scenarios 14
Open Source Intelligence 14
platform 14

Distributed denial of service (DDoS) 173

DIVA
about 186
download link 186

drozer protocol
reference link 125

drozer tool
about 124
community edition 125
download link, for application based on
installing, on Genymotion 126, 127
operating system 126
professional edition 125
reference link, for home page 125
used, for analyzing app 190, 191

Dumpdecrypted
about 233, 234
download link 233

DVIA
download link 114, 216
installing, to device 114, 115

DVM-specific libraries 27
dylib file

reference link 57

E
Eclipse

URL 31
elevation of privilege 174
ELF files 49
ELF header file format

ELF Header 50
program header table 50
section header table 50
segments 50

emulators
about 116, 117
cons 117
configuring, for HTTP Proxy 99
pros 117

encryption
about 258
for Android 258
for iOS 258
key management 258
on client side 205-207

evasi0n7
reference link 71

[282]

Executable and Linkable Format (ELF) 49
exploitation, mobile application penetration

testing methodology
attempt, to exploit vulnerability 16
privilege escalation 16

F
filesystem isolation 65
filesystem protection

for Android 266
for iOS 266

FourGoats 186
Freetype 29
Frida

about 152
advantage 153
URL 152

G
gapps-lp-20141109-signed.zip file

download link 98
Genymotion

about 87
drozer, installing on 126, 127
installing 87-90
URL 87
vulnerable app, installing to 94, 95

Genymotion emulator
application, installing to 93

Genymotion plugin
installing, to Android Studio 95-97
Go and Dart 57

GoatDroid
about 20
URL 20

Google Nexus 5 103
Group ID (GID) 66

H
hardcoded credentials 204, 205
hardcoded password 228-230
hardcoded username 228-230
hardware-level security 66
Herd Financial 186

Hopper
about 154
download link 154
used, for app patching 226, 227

HTTP proxy
configuring, in Apple devices 115
emulator, configuring for 99

hybrid apps 5, 6

I
iBeacon 3
iBoot 60
idapro, from hex-rays

reference link 156
iFunbox 111
iGoat

download link 216
URL 20

iMAS
about 20
URL 20

impact, of mobile application security
about 12
data at rest 12
data in motion 12
other considerations 13

implementation vulnerabilities
about 239
app state preservation 241
assessing 212, 213
keyboard logs 240
local 212
pasteboard information leakage 239
remote 212

information disclosure 173
installing

application, to Genymotion emulator 93
burp CA certificate, to Android

device 139-142
burp CA certificate, to iOS device 160, 161
drozer, on Genymotion 126, 127
Genymotion 87-90
Genymotion plugin, to Android

Studio 95-97
vulnerable app, to Genymotion 94, 95

[283]

integrated development environment
(IDE) 55, 78

intents 36
inter-process communication endpoint

analysis
activities 15
broadcast receivers 16
content providers 15
intents 15
services 16

inter-process communication (IPC) 15, 43
iOS 3
iOS 9.3 beta 4

download link 55
iOS application programming languages

about 56
Objective-C 56
Swift 57

iOS application structure 68, 69
iOS architecture

about 51
Cocoa Touch layer 53
Core OS 55
core services layer 54
media layer 53

iOS device
burp CA certificate, installing to 160, 161

iOS filesystem
exploring 74, 75

iOS isolation
about 64
Address Space Layout Randomization

(ASLR) 66
filesystem isolation 65
process isolation 65
stack protection 66

iOS Kernel 60
iOS permission model 66, 67
iOS SDK

and Xcode 55
iOS security tools

about 143
class-dump-z 150
Clutch 148, 149
Cycript 151
Frida 152, 153

Hopper 154, 155
keychain dumper 145
LLDB 146-148
oTool 143, 145
Snoop-it 156-159
SSL Kill Switch 145

iOS SSL kill-switch 110
iOS vulnerabilities

about 7-11
references 10

iPA Installer
about 109
download link 109

iPhone/iPad
setting up 106
setting up, with Cydia 106-108

iRET
URL 245

J
jailbreak detection

about 260
API-based detection 261
filesystem-based detection 261

jailbreakers
about 71
reference link 71

jailbreaking
about 50, 69
reasons 70

jailbreaking tools
evasi0n7 71
Pangu 71
Pangu8 71
Pangu9 71
PwnageTool 71
Redsnow 71
TaiG 71

jailbreaks
about 70
semi-tethered jailbreaks 70
tethered jailbreaks 70
untethered jailbreaks 70

java-aes-crypto
reference link 263

[284]

Java Debugger (JDB)
about 137
debugging 138
running process, attaching 138, 139

Java interoperability libraries 27
Java Native Interface (JNI) 3
Java SE Development Kit

download link 79
Java virtual machine (JVM) 26
javax.crypto API

reference link 258
JD-GUI

about 133
download link 133

JDWP
used, for performing runtime

manipulation 207-210
just-in-time (JIT) compilation 28, 49

K
keychain data protection

kSecAttrAccessibleAfterFirstUnlock 62
kSecAttrAccessibleAfterFirstUnlock

ThisDeviceOnly 62
kSecAttrAccessibleAlways 62
kSecAttrAccessibleAlwaysThis

DeviceOnly 62
kSecAttrAccessibleWhenPasscodeSet

ThisDeviceOnly 62
kSecAttrAccessibleWhenUnlocked 62

keychain dumper
about 145
download link 145

keychains 253
keychain services API

reference link 253
key challenges, in mobile application

security
about 11
data privacy 12
obscure assumptions by developers 12
outsourcing 12
third party code 12
Threat Model 12

key management 258

key services, application framework
Activity Manager 30
Content Providers 30
Location Manager 30
Notifications Manager 30
Package Manager 30
Resource Manager 30
Telephony Manager 30
View System 30
Window Manager 30

L
launch activity 38
libc 29
Linux 24
Linux kernel 24, 25
Linux UID 43
LLDB

about 146-148
building, remote tracer used 242-244
URL 146

log analysis 212
Low Level Bootloader (LLB) 60
Low Level Virtual Machine (LLVM) 262

M
Mach-O binary file format

about 71
Data region 73
Header region 72
Load commands region 72
reference link 72

Man-in-the-Middle (MitM) attacks
about 201-203
SSL pinning 203

media framework 29
media layer 53
Metasploit

URL 198
Microsoft SDL Threat Modeling Tool

URL 180
Microsoft Threat Analysis and Modeling

URL 180
mind map

about 250
device level 251

[285]

network level 251
reference link 250
server level 251

MITRE corporation
URL 20

mobile app developers checklist 271, 272
mobile application

and device data 167
application components 167
architecture 166
deployment components 167
modes of attacks 167
security controls 167
threat agents, identifying 167
threat modeling 166

mobile application penetration testing
current market reaction 13
need for 13

mobile application penetration testing
methodology

about 14
analysis/assessment 15
discovery 14
exploitation 16
final report 16
reporting 16

mobile application security
impact 12
key challenges 11, 12

mobile applications, types
about 3
hybrid apps 5, 6
mobile web apps 4, 5
native apps 4

mobile application threat model 175, 176
mobile application vulnerabilities

about 8, 9
client-side vulnerabilities 9
hard-coded passwords/keys 9
insecure data storage 8
insecure transmission of data 8
lack, of binary protections 9
leakage of private information 9

mobile app penetration testing
environment

setting up 77, 78

mobile carrier settings
proxy, setting up on 102

mobile device key management
best practices 259

mobile device management (MDM) 59
mobile web apps 4, 5
MobiSec

about 20
URL 20

monkeyrunner
about 86
reference link 86

MyAppSecurity
about 181
URL 181

N
native apps 4
native libraries

about 28
Freetype 29
libc 29
media framework 29
OpenGL ES 29
Scalable Graphics Library (SGL) 29
Secure Socket Layer (SSL) 29
SQLite 29
surface manager 29
WebKit 29

near field communication (NFC) 12
Network Address Translation (NAT) 125
network level

about 266
certificate pinning 267
CFNetwork usage 267
cipher suites 267
secure caching 268

No-eXecute (NX) 66

O
Objective-C

about 56
reference link 56

Objective-C runtime 57
ODEX files 49

[286]

OpenBinder
reference link 43

OpenGL ES 29
OpenSecurityReasearch

about 186
download link 186

Open Security Research 207
OpenSSL

URL 29
OpenURL schemes 225
Open Web Application Security

Project (OWASP)
about 2
URL 166
reference link 268

original equipment manufacturer (OEM) 29
oTool 143, 145
OWASP mobile

top risks 17
OWASP mobile app security checklist 271
OWASP mobile security project

about 16
reference link 16

OWASP ZAP
about 99
download link 99

P
Pangu

reference link 71
Pangu9

reference link 71
Paros Proxy

about 99
download link 99

Passcode 176
PASTA 170
pause activity 38
PDKeyChainBindingController

reference link 253
personally identifiable information

(PII) 212, 250
physical device

configuring 103
platform (OS) level

about 251, 252

cut, copy, and paste 252
iOS cookie and keychains 253
screenshots/snapshots 252
system caching and logs 252

Play Store, in Genymotion 97, 98
Position Independent Executable (PIE) 263
post-production protection 274
PP Jailbreak

reference link 71
principle of least privilege (PoLP) 255
process for attack simulation and threat

analysis. See PASTA
process isolation 65
professional edition, drozer tool 125
professional version, Genymotion

reference link 93
Proguard

reference link 262
proof of concept (PoC) 189
property lists

about 74
reference link 74

property lists, in Android 254
property lists, in iOS 254
proxy

setting up, in Wi-Fi settings 100, 101
setting up, on mobile carrier settings 102

PuTTy
about 110
download link 110

PwnageTool
reference link 71

R
real devices

about 116, 118
cons 118
pros 118

Redsnow
reference link 71

remote tracer
building, LLDB used 242-244

reporting, mobile application penetration
testing methodology

risk assessments, for findings 16

[287]

repudiation 172
restart activity 38
resume activity 38
reverse engineering

about 221
class information, extracting 221, 222
memory management 222
stack-smashing protection (SSP) 223
strings 222

risk 165
risk assessment models

about 181
business risk 182
technical risk 182

RNCryptor
URL 258

Role-Based Access Matrix (RBAC) 269
root detection

about 261
command detection method 261

rooted or Jailbroken phone, test
environment 78

rooting 9, 50
runtime manipulation

performing, JDWP used 207-210
runtime manipulation, with Cycript

about 230
Bypass login method 231, 232
information, extracting from memory 233

S
sample attack tree

for stolen or missing device 179
Santoku

URL 143
Sauriks telesphoreo project

reference link 108
Scalable Graphics Library (SGL) 29
SDK-only downloads, Google

reference link 79
secure boot chain 59
secure by design

about 249
access control, for binary on device 250
app restrictions 250
device local storage 249

entry points 249
third-party libraries 250

secure coding, best practices
about 273
Android 273
developer cheat sheet 274
developer policies 274
iOS 274
vendor-neutral advice 274

Secure Enclave
about 60
Touch ID 60

secure inter-process communication
about 43, 44
Binder process 44, 45

secure-preferences tool
download link 254

Secure Socket Layer (SSL) 29
security trade-off

versus usability 8
semi-tethered jailbreak 70
server level

about 268
authentication 268
authorization 269
information leakage 270
injection flaws 269
input/output validations 269
session management 270

service lifecycle, methods
onBind() 40
onCreate() 40
onDestroy() 40
onStartCommand() 40

services
about 38
attacking 192
bound service 39
unbound service 39

ShadowOS by HP
URL 143

Short Message Service (SMS) 12
Sieve

about 186
download link 186

[288]

simulators 116, 117
smartphone market share

about 2
Android operating system 3
iPhone operating system (iOS) 3

Snoop-it
about 156-159, 244
features 159
for assessment 245

Software Development Life Cycle
(SDLC) 247

spoofing 171
SQLCipher

download link 254, 266
SQL injection 176, 199-201, 235, 236
SQLite 29
SSH

accessing, without Wi-Fi 112
accessing, with Wi-Fi 113, 114

SSL cert pinning
beating 238, 239

SSL Kill Switch
about 145
URL 145

SSL pinning 203
stack protection 66
stack-smashing protection (SSP) 223
static code analysis

about 223
OpenURL schemes 225

Statisa
about 2
URL 2

stop activity 38
storage analysis 210, 211
storage/archive analysis

about 218
client-side data stores 219
HTTP response caching 220
keychain data 220
plist files 219

STRIDE
about 170
used, for classifying threats 170

Stringer Java obfuscator
reference link 262

surface manager 29
Swift

about 57
reference link 57

system-level security 59
system software authorization 60

T
TaiG

reference link 71
tampering 172
Tap hijacking 176
target

setting up 216-218
target app

setting up 187
tcpdump 110
tethered jailbreak 70
threat agent 164
threat model

attacker view 168
creating 168
device or system view 169
outcomes 181
potential threats, discovering 169

threat modeling methodologies
about 169
PASTA 170
STRIDE 170
Trike 170

threat models
approaches 165, 166

threats
about 164
accidental 164
classifying, STRIDE used 170
intentional 164
others 164

Thresher
about 142
URL 142

top risks, OWASP mobile
about 17
Broken Cryptography 18

[289]

Client Side Injection 19
Improper Session Handling 19
Insecure Data Storage 18
Insufficient Transport Layer Protection 18
lack ,of Binary Protections 19
Poor Authorization and Authentication 18
reference link 19
Security Decisions, via Untrusted Inputs 19
Unintended Data Leakage 18
Weak Server Side Controls 17

traditionally distributed system, drozer tool
Agent APK 125
drozer console 125
drozer server 125

Transport Layer Security (TLS) 267
Trike

about 170, 180
download link 170

typical mobile app SDLC
define 248
deploy 249
design 248
develop 248
manage 249
test 249

U
UIApp class

URL 152
UIWebView injections 236, 237
unbound service 39
universally unique identifier (UUID) 218
untethered jailbreak 70
URLSchemes protection 265
usability

versus security trade-off 8
user acceptance testing (UAT) 249

V
Vezir

URL 143
vulnerability 165
vulnerable app

download link 94
installing, to Genymotion 94, 95

vulnerable applications, to practice
about 20
Damn Vulnerable iOS Application

(DVIA) 20
GoatDroid 20
iGoat 20
iMAS 20
MobiSec 20

W
Weak Server Side Controls 19
WebKit

about 29
URL 29, 236

WebViews
attacking 197, 198
URL 199

WebView, securing
for Android 259
for iOS 259

Wi-Fi
SSH, accessing with 113, 114

Wi-Fi settings
proxy, setting up in 100, 101

Windows Secure Copy (WinSCP)
about 111
download link 111

X
Xcode

and iOS SDK 55

Z
Zygote 26, 27

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: The Mobile Application Security Landscape
	The smartphone market share
	The android operating system
	The iPhone operating system (iOS)

	Different types of mobile applications
	Native apps
	Mobile web apps
	Hybrid apps

	Public Android and iOS vulnerabilities
	Android vulnerabilities
	iOS vulnerabilities

	The key challenges in mobile application security
	The impact of mobile application security
	The need for mobile application penetration testing
	Current market reaction

	The mobile application penetration testing methodology
	Discovery
	Analysis/assessment
	Exploitation
	Reporting

	The OWASP mobile security project
	OWASP mobile top 10 risks
	Vulnerable applications to practice

	Summary

	Chapter 2: Snooping Around the Architecture
	The importance of architecture
	The Android architecture
	The Linux kernel
	Confusion between Linux and the Linux kernel

	Android runtime
	The java virtual machine
	The Dalvik virtual machine
	Zygote

	Core Java libraries
	ART
	Native libraries
	The application framework
	The applications layer
	Native Android or system apps
	User-installed or custom apps
	The Android software development kit
	Android application packages (APK)

	Android application components
	Intent
	Activity
	Services
	Broadcast receivers
	Content providers

	Android Debug Bridge
	Application sandboxing
	Application signing
	Secure inter-process communication
	The Binder process

	The Android permission model
	The Android application build process
	Android rooting

	iOS architecture
	Cocoa Touch
	Media
	Core services
	Core OS

	iOS SDK and Xcode
	iOS application programming languages
	Objective-C
	The Objective-C runtime

	Swift

	Understanding application states
	Apple's iOS security model
	Device-level security
	System-level security
	An introduction to the secure boot chain
	System software authorization
	Secure Enclave

	Data-level security
	Data-protection classes
	Keychain data protection

	Changes in iOS 8 and 9
	Network-level security
	Application-level security
	Application code signing

	The iOS app sandbox

	iOS isolation
	Process isolation
	Filesystem isolation
	ASLR
	Stack protection (non-executable stack
and heap)

	Hardware-level security
	iOS permissions
	The iOS application structure
	Jailbreaking
	Why jailbreak a device?
	Types of jailbreaks
	Untethered jailbreaks
	Tethered jailbreaks
	Semi-tethered jailbreaks

	Jailbreaking tools at a glance

	The Mach-O binary file format
	Inspecting a Mach-O binary

	Property lists
	Exploring the iOS filesystem
	Summary

	Chapter 3: Building a Test Environment
	Mobile app penetration testing environment setup
	Android Studio and SDK
	The Android SDK

	The Android Debug Bridge
	Connecting to the device
	Getting access to the device
	Installing an application to the device
	Extracting files from the device
	Storing files to the device
	Stopping the service
	Viewing the log information
	Sideloading apps
	Monkeyrunner

	Genymotion
	Creating an Android virtual emulator
	Installing an application to the Genymotion emulator
	Installing the vulnerable app to Genymotion
	Installing the Genymotion plugin to Android Studio
	ARM apps and Play Store in Genymotion

	Configuring the emulator for HTTP proxy
	Setting up the proxy in Wi-Fi settings
	Setting up the proxy on mobile carrier settings

	Google Nexus 5 – configuring the physical device
	The iOS SDK (Xcode)
	Setting up iPhone/iPad with necessary tools
	Cydia
	BigBoss tools
	Darwins CC tools
	iPA Installer
	Tcpdump
	iOS SSL kill-switch
	Cycript, Clutch, and class-dump

	SSH clients – PuTTy and WinSCP
	iFunbox at glance
	Accessing SSH without Wi-Fi
	Accessing SSH with Wi-Fi
	Installing DVIA to the device
	Configuring the HTTP proxy in Apple devices

	Emulator, simulators, and real devices
	Simulators
	Emulators
	Pros
	Cons

	Real devices
	Pros
	Cons

	Summary

	Chapter 4: Loading up – Mobile Pentesting Tools
	Android security tools
	APKAnalyser
	The drozer tool
	Installing drozer on Genymotion

	APKTool
	How to make apps debuggable?

	The dex2jar API
	JD-GUI
	Androguard
	Isn't Androguard only a malware analysis tool?
	Androguard's androlyze shell environment
	Automating the analysis of multiple files

	Introducing Java Debugger
	Debugging
	Attaching
	Installing Burp CA certificate to the device

	The list of other tools

	iOS security tools
	oTool
	SSL Kill Switch
	The keychain dumper
	LLDB
	Clutch
	Class-dump-z
	Instrumenting with Cycript
	Instrumentation using Frida
	Hopper
	Snoop-it
	Installing Burp CA certificate to an iOS device

	Summary

	Chapter 5: Building Attack
Paths – Threat Modeling
an Application
	Assets
	Threats
	Threat agents

	Vulnerabilities
	Risk
	Approach to threat models
	Threat modeling a mobile application
	Mobile application architecture
	Mobile applications and device data
	Identifying threat agents
	Modes of attacks
	Security controls

	How to create a threat model?
	The attacker view
	The device or system view
	Discovering potential threats

	Threat modeling methodologies
	STRIDE
	PASTA
	Trike

	Using STRIDE to classify threats
	Spoofing
	Tampering
	Repudiation
	Information disclosure
	Denial of service (DoS)
	Elevation of privilege

	A typical mobile application threat model
	Building attack plans and attack trees
	Attack scenarios
	A sample attack tree for a stolen or missing device
	A list of free tools
	A commercial tool

	Threat model outcomes
	Risk assessment models
	Business risk
	Technical risk

	Summary

	Chapter 6: Full Steam Ahead – Attacking Android Applications
	Setting up the target app
	Backend server setup

	Analyzing the app using drozer
	Android components
	Attacking activities
	Attacking services
	Attacking broadcast receivers
	Attacking content providers

	Attacking WebViews
	SQL injection
	Man-in-the-Middle (MitM) attacks
	SSL pinning

	Hardcoded credentials
	Encryption and decryption on the client side
	Runtime manipulation using JDWP
	Storage/archive analysis
	Log analysis
	Assessing implementation vulnerabilities
	Binary patching
	Summary

	Chapter 7: Full Steam Ahead – Attacking iOS Applications
	Setting up the target
	Storage/archive analysis
	Plist files
	Client-side data stores
	The keychain data
	HTTP response caching

	Reverse engineering
	Extracting the class information
	Strings
	Memory management
	Stack smashing protection

	Static code analysis
	OpenURL schemes

	App patching using Hopper
	Hardcoded username and password
	Runtime manipulation using Cycript
	The Bypass login method
	Sensitive information in the memory

	Dumpdecrypted
	Client-side injections
	SQL injection
	UIWebView injections

	Man-in-the-Middle attacks
	Beating the SSL cert pinning

	Implementation vulnerabilities
	Pasteboard information leakage
	Keyboard logs
	App state preservation

	Building a remote tracer using LLDB
	Snoop-IT for assessment
	Summary

	Chapter 8: Securing Your Android and iOS Applications
	Secure by design
	Security mind map for developers (iOS and Android)
	Device level
	Platform (OS) level
	Screenshots/snapshots
	System caching and logs
	Cut, copy, and paste
	iOS cookie and keychains

	Application level
	App storage protection
	Binary protection

	Network level
	Certificate pinning
	Cipher suites
	CFNetwork usage
	Secure caching

	Server level
	Authentication
	Authorization
	Input/output validations
	Injection flaws
	Session management
	Information leakage

	OWASP mobile app security checklist
	Mobile app developers checklist

	Secure coding best practices
	Android
	iOS
	Vendor-neutral advice
	Developer cheat sheet
	Developer policies

	Post-production protection
	Keeping up to date

	Summary

	Index

