
www.allitebooks.com

http://www.allitebooks.org

Monitoring Hadoop

Get to grips with the intricacies of Hadoop monitoring
using the power of Ganglia and Nagios

Gurmukh Singh

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

[FM-2]

Monitoring Hadoop

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: April 2015

Production reference: 1240415

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78328-155-8

www.packtpub.com

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

[FM-3]

Credits

Author
Gurmukh Singh

Reviewers
David Greco

Randal Scott King

Yousuf Qureshi

Acquisition Editor
Meeta Rajani

Content Development Editor
Siddhesh Salvi

Technical Editor
Parag Topre

Copy Editors
Hiral Bhat

Sarang Chari

Tani Kothari

Trishla Singh

Project Coordinator
Nidhi Joshi

Proofreaders
Safis Editing

Paul Hindle

Indexer
Hemangini Bari

Graphics
Disha Haria

Production Coordinator
Melwyn D'sa

Cover Work
Melwyn D'sa

www.allitebooks.com

http://www.allitebooks.org

[FM-4]

About the Author

Gurmukh Singh has been an infrastructure engineer for over 10 years and has
worked on big data platforms in the past 5 years. He started his career as a field
engineer, setting up lease lines and radio links. He has vast experience in enterprise
servers and network design and in scaling infrastructures and tuning them for
performance. He is the founder of a small start-up called Netxillon Technologies,
which is into big data training and consultancy. He talks at various technical
meetings and is an active participant in the open source community's activities.
He writes at http://linuxaddict.org and maintains his Github account at
https://github.com/gdhillon.

www.allitebooks.com

http://linuxaddict.org
https://github.com/gdhillon
http://www.allitebooks.org

[FM-5]

About the Reviewers

David Greco is a software architect with more than 27 years of experience.
He started his career as a researcher in the field of high-performance computing;
thereafter, he moved to the business world, where he worked for different enterprise
software vendors and two start-ups he helped create. He played different roles, those
of a consultant and software architect and even a CTO. He's an enthusiastic explorer
of new technologies, and he likes to introduce new technologies into enterprises
to improve their businesses. In the past 5 years, he has fallen in love with big data
technologies and typed functional programming—Scala and Haskell. When not
working or hacking, he likes to practice karate and listen to jazz and classical music.

Randal Scott King is the managing partner of Brilliant Data, a global consultancy
specializing in big data, analytics, and network architecture. He has done work for
industry-leading clients, such as Sprint, Lowe's Home Improvement, Gulfstream
Aerospace, and AT&T. In addition to the current book, he was previously a reviewer
for Hadoop MapReduce v2 Cookbook, Second Edition, Packt Publishing.

Scott lives with his children on the outskirts of Atlanta, GA. You can visit his blog
at www.randalscottking.com.

www.allitebooks.com

www.randalscottking.com
http://www.allitebooks.org

[FM-6]

Yousuf Qureshi is an early adopter of technology and gadgets, has a lot of
experience in the e-commerce, social media, analytics, and mobile apps sectors,
and is a Cloudera Certified Developer for Apache Hadoop (CCDH).

His expertise includes development, technology turnaround, consultancy, and
architecture. He is an experienced developer of Android, iOS, Blackberry, ASP.NET
MVC, Java, MapReduce, Distributed Search and Inverted Index algorithms, Hadoop,
Hive, Apache Pig, Media API integration, and multiplatform applications. He has
also reviewed Instant jQuery Drag-and-Drop Grids How-to, Packt Publishing, earlier.

Special thanks go to my, wife Shakira Yousuf, and daughter,
Inaaya Yousuf.

www.allitebooks.com

http://www.allitebooks.org

[FM-7]

www.PacktPub.com

Support files, eBooks, discount offers,
and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and
as a print book customer, you are entitled to a discount on the eBook copy. Get in touch
with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.com

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com
http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

[i]

Table of Contents
Preface v
Chapter 1: Introduction to Monitoring 1

The need for monitoring 2
The monitoring tools available in the market 2

Nagios 3
Nagios architecture 3
Prerequisites for installing and configuring Nagios 3
Installing Nagios 4
Web interface configuration 5
Nagios plugins 7
Verification 7
Configuration files 7
Setting up monitoring for clients 8

Ganglia 11
Ganglia components 11
Ganglia installation 12

System logging 14
Collection 14
Transportation 14
Storage 14
Alerting and analysis 14
The syslogd and rsyslogd daemons 15

Summary 16
Chapter 2: Hadoop Daemons and Services 17

Hadoop daemons 18
NameNode 18
DataNode and TaskTracker 19
Secondary NameNode 20
JobTracker and YARN daemons 20
The communication between daemons 21

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

YARN framework 23
Common issues faced on Hadoop cluster 24
Host-level checks 25
Nagios server 26
Configuring Hadoop nodes for monitoring 27

Summary 28
Chapter 3: Hadoop Logging 29

The need for logging events 30
System logging 30
Logging levels 31
Logging in Hadoop 32

Hadoop logs 33
Hadoop log level 34
Hadoop audit 35

Summary 36
Chapter 4: HDFS Checks 37

HDFS overview 38
Nagios master configuration 39
The Nagios client configuration 43
Summary 44

Chapter 5: MapReduce Checks 45
MapReduce overview 46
MapReduce control commands 46
MapReduce health checks 48
Nagios master configuration 48
Nagios client configuration 52
Summary 52

Chapter 6: Hadoop Metrics and Visualization Using Ganglia 53
Hadoop metrics 54
Metrics contexts 54

Named contexts 54
Metrics system design 55
Metrics configuration 56
Configuring Metrics2 57
Exploring the metrics contexts 59
Hadoop Ganglia integration 59

Hadoop metrics configuration for Ganglia 60
Setting up Ganglia nodes 61

Table of Contents

[iii]

Hadoop configuration 62
Metrics1 62
Metrics2 63

Ganglia graphs 64
Metrics APIs 64

The org.apache.hadoop.metrics package 64
The org.apache.hadoop.metrics2 package 65

Summary 65
Chapter 7: Hive, HBase, and Monitoring Best Practices 67

Hive monitoring 67
Hive metrics 68

HBase monitoring 69
HBase Nagios monitoring 69
HBase metrics 71
Monitoring best practices 73
The Filter class 74
Nagios and Ganglia best practices 74
Summary 75

Index 77

[v]

Preface
Many organizations are implementing Hadoop in production environments, storing
critical data on it, and making sure everything is in place and running as desired as
it is crucial for the business. If something breaks down, how quickly you can detect
it and remediate it is very important. In order to have early detection of any failures,
there is a need to have monitoring in place and capture events that let you peep
into the internal workings of a Hadoop cluster. The goal of this book is to enable
monitoring and capture events to make sure that the Hadoop clusters are up and
running to the optimal capacity.

What this book covers
Chapter 1, Introduction to Monitoring, discusses the need for monitoring and the tools
available in the market for that. This chapter also provides details about installing
Nagios and Ganglia, which are the tools to monitor and capture metrics for a
Hadoop cluster.

Chapter 2, Hadoop Daemons and Services, discusses the Hadoop services and daemons
and how they communicate. Before implementing monitoring, one must understand
how Hadoop components talk to each other and what ports the services run on.

Chapter 3, Hadoop Logging, discusses how system logging works and how that
extends to logging in Hadoop clusters. This chapter also covers the logging details
for various Hadoop daemons.

Chapter 4, HDFS Checks, explores the HDFS checks, which can be implemented for
Hadoop File System and its components, such as NameNode, DataNode, and so on.

Chapter 5, MapReduce Checks, discusses configuring checks for MapReduce
components, such as JobTracker, TaskTracker, ResourceManager, and other
YARN components.

Preface

[vi]

Chapter 6, Hadoop Metrics and Visualization Using Ganglia, provides a step-by-step
guide to configuring a Hadoop metrics collection and its visualization using Ganglia.

Chapter 7, Hive, HBase, and Monitoring Best Practices, provides an introduction to
metrics collection and monitoring for the Hive and HBase components of the
Hadoop framework. It also talks about the best practices for monitoring on a
large scale and how to keep the utilization of the monitoring servers optimized.

What you need for this book
To practice the examples provided in this book, you will need a working Hadoop
cluster. It is recommended that you use Cent OS 6.0 at the minimum and Apache
Hadoop 1.2.1 and Hadoop 2.6.0 for the Hadoop version 1 and Hadoop version 2
examples, respectively.

Who this book is for
Monitoring Hadoop is ideal for Hadoop administrators who need to monitor their
Hadoop clusters and make sure they are running optimally. This book acts as a
reference to set up Hadoop monitoring and visualization using Ganglia.

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"This is the port for ResourceManager scheduler; the default is 8030."

A block of code is set as follows:

log4j.appender.DRFAAUDIT=org.apache.log4j.DailyRollingFileAppender
log4j.appender.DRFAAUDIT.File=/var/log/audit.log
log4j.appender.DRFAAUDIT.DatePattern=.yyyy-MM-dd
log4j.appender.DRFAAUDIT.layout=org.apache.log4j.PatternLayout

Preface

[vii]

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

log4j.appender.DRFAAUDIT=org.apache.log4j.DailyRollingFileAppender
log4j.appender.DRFAAUDIT.File=/var/log/audit.log
log4j.appender.DRFAAUDIT.DatePattern=.yyyy-MM-dd
log4j.appender.DRFAAUDIT.layout=org.apache.log4j.PatternLayout

Any command-line input or output is written as follows:

$ sudo /usr/local/nagios/bin/nagios -v /usr/local/nagios/etc/nagios.cfg

New terms and important words are shown in bold. Words that you see on the
screen, for example, in menus or dialog boxes, appear in the text like this: "If you see
a message, such as Return code of 127 is out of bounds – plugin may be missing on
the right panel, then this means that your configuration is correct as of now."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things
to help you to get the most from your purchase.

www.packtpub.com/authors

Preface

[viii]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Chapter 1

[1]

Introduction to Monitoring
In any enterprise, no matter how big or small, it is very important to monitor the
health of all its components such as servers, network devices, databases, and so on,
and make sure that things are working as intended. Monitoring is a critical part
for any business that is dependent upon infrastructure. This can be done by giving
signals to enable the necessary actions in case of any failures.

In a real production environment, monitoring can be very complex with many
components and configurations. There might be different security zones, different
ways in which servers are set up, or the same database might have been used in
many different ways with servers listening to various service ports.

Before diving into setting up monitoring and logging for Hadoop, it is very
important to understand the basics of monitoring, how it works, and some
commonly used tools in the market. In Hadoop, we can monitor the resources,
services, and also collect the metrics of various Hadoop counters. In this book,
we will be looking at monitoring and metrics collection.

In this chapter, we will begin our journey by exploring the open source monitoring
tools that we use in enterprises, and learn how to configure them.

The following topics will be covered in this chapter:

• Some of the widely used monitoring tools
• Installing and configuring Nagios
• Installing and configuring Ganglia
• Understanding how system logging works

Introduction to Monitoring

[2]

The need for monitoring
If we have tested our code and found that the functionality and everything else is
fine, then why do we need monitoring?

The production load might be different from what we tested and found, there could
be human errors while conducting the day-to-days operations, someone could have
executed a wrong command or added a wrong configuration. There could also be
hardware/network failures that could make your application unavailable. How long
can you afford to keep the application down? Maybe for a few minutes or for a few
hours, but what about the revenue loss, or what if it is a critical application for carrying
out financial transactions? We need to respond to the failures as soon as possible, and
this can be done only if we perform early detections and send out notifications.

The monitoring tools available in the
market
In the market, there are many tools are available for monitoring, but the important
things to keep in mind are as follows:

• How easy it is to deploy and maintain the tool
• The license costs, but more importantly the TCO (Total Cost of Ownership)
• Can it perform standard checks, and how easy is to write custom plugins
• Overhead in terms of CPU and memory usage
• User interface

Some of the monitoring tools available in the market are BandwidthD,
EasyNetMonitor, Zenoss, NetXMS, Splunk, and many more.

Of the many tools available, Nagios and Ganglia are most widely deployed for
monitoring the Hadoop clusters. Many Hadoop vendors, such as Cloudera and
Hortonworks use Nagios and Ganglia for monitoring their clusters.

Chapter 1

[3]

Nagios
Nagios is a powerful monitoring system that provides you with instant awareness
about your organization's mission-critical IT infrastructure.

By using Nagios, you can do the following:

• Plan the release cycle and the rollouts, before things are outdated
• Early detection, before it causes an outage
• Have automation and a better response across the organization
• Find hindrances in the infrastructure, which could impact the SLAs

Nagios architecture
The Nagios architecture was designed keeping in mind flexibility and scalability.
It consists of a central server, which is referred to as the Monitoring Server and the
clients are the Nagios agents, that run on each node that needs to be monitored.

The checks can be performed for service, port, memory, disk, and so on, by using
either active checks or passive checks. The active checks are initiated by the Nagios
server and the passive checks are initiated by the client. Its flexibility allows us to
have programmable APIs and customizable plugins for monitoring.

Prerequisites for installing and configuring Nagios
Nagios is an enterprise class monitoring solution, which can manage a large number
of nodes. It can be scaled easily, and it has the ability to write custom plugins for
your applications. Nagios is quite flexible and powerful, and it supports many
configurations and components.

Nagios is such a vast and extensive product that this chapter is in
no way a reference manual for it. This chapter is written with the
primary aim of setting up monitoring, as quickly as possible, and
familiarizing the readers with it.

Introduction to Monitoring

[4]

Prerequisites
Always set up a separate host as the monitoring node/server and do not install other
critical services on it. The number of hosts that are monitored can be a few thousand,
with each host having from 15 to 20 checks that can be either active or passive.

Before starting with the installation of Nagios, make sure that Apache HTTP Server
version 2.0 is running and gcc and gd have been installed. Make sure that you are
logged in as root or as with sudo privileges. Nagios runs on many platforms, such
as RHEL, Fedora, Windows, CentOS; however, in this book we will use the CentOS
6.5 platform.

$ ps -ef | grep httpd

$ service httpd status

$ rpm -qa | grep gcc

$ rpm -qa | grep gd

Installing Nagios
Let's look at the installation of Nagios, and how we can set it up. The following steps
are for Rhel, CentOS, Fedora, and Ubuntu:

• Download Nagios and the Nagios plugin from the Nagios repository,
which can be found at http://www.nagios.org/download/.

• The latest stable version of Naigos at the time of writing this chapter was
nagios-4.0.8.tar.gz.

• Create a Nagios user to manage the Nagios interface. You have to execute the
commands as either root or with sudo privileges.

• You can download it either from http://sourceforge.net/ or from any
other commercial site, but a few sites might ask for registration.
$ sudo /usr/sbin/useradd -m nagios

$ passwd nagios

• Create a new nagcmd group so that external commands can be submitted
through the web interface.

• If you prefer, you can download the file directly into the user's
home directory.

http://www.nagios.org/download/
http://sourceforge.net/

Chapter 1

[5]

• Create a Nagios user and an Apache user, as a part of the group.
$ sudo /usr/sbin/groupadd nagcmd

$ sudo /usr/sbin/usermod -a -G nagcmd nagios

$ sudo /usr/sbin/usermod -a -G nagcmd apache

Let's start with the configuration.

Navigate to the directory, where the package was downloaded. The downloaded
package could be either in the Downloads folder or in the present working directory.

$ tar zxvf nagios-4.0.8.tar.gz

$ cd nagios-4.0.8/

$./configure –with-command-group=nagcmd

On Red Hat, the . /configure command might not work and might
hang while displaying the message. So, add –enable-redhat-
pthread-workaround to the . /configure command as a work-
around for the preceding problem, as follows:
$ make all; sudo make install; sudo make install-init

$ sudo make install-config; sudo make install-commandmode

Web interface configuration
• After installing Nagios, we need to do a minimal level of configuration.

Explore the /usr/local/nagios/etc directory for a few samples.
• Update /usr/local/nagios/etc/objects/contacts.cfg, with the e-mail

address on which you want to receive the alerts.
• Secondly, we need to configure the web interface through which we will

monitor and manage the services. Install the Nagios web configuration file
in the Apache configuration directory using the following command:
$ sudo make install-webconf

• The preceding command will work only in the extracted directory of the
Nagios. Make sure that you have extracted Nagios from the TAR file and
are in that directory.

Introduction to Monitoring

[6]

• Create an nagadm account for logging into the Nagios web interface using the
following command:
$ sudo htpasswd -c /usr/local/nagios/etc/htpasswd.users nagadm

• Reload apache, to read the changes, using the following command:
$ sudo service httpd restart

$ sudo /etc/init.d/nagios restart

• Open http://localhost/nagios/ in any browser on your machine.

If you see a message, such as Return code of 127 is out of bounds – plugin may be
missing on the right panel, then this means that your configuration is correct as of
now. This message indicates that the Nagios plugins are missing, and we will show
you how to install these plugins in the next step.

Chapter 1

[7]

Nagios plugins
Nagios provides many useful plug-ins to get us started with monitoring all the
basics. We can write our custom checks and integrate it with other plug-ins, such as
check_disk, check_load, and many more. Download the latest stable version of the
plugins and then extract them. The following command lines help you in extracting
and installing Nagios plugins:

$ tar zxvf nagios-plugins-2.x.x.tar.gz

$ cd nagios-plugins-2.x.x/

$./configure -–with-nagios-user=nagios -–with-nagios- group=nagios

$ make ; sudo make install

After the installation of the core and the plug-in packages, we will be ready to
start nagios.

Verification
Before starting the Nagios service, make sure that there are no configuration errors
by using the following command:

$ sudo /usr/local/nagios/bin/nagios -v /usr/local/nagios/etc/nagios.cfg

Start the nagios service by using the following command:

$ sudo service nagios start

$ sudo chkconfig --–add nagios; sudo chkconfig nagios on

Configuration files
There are many configuration files in Nagios, but the major ones are located under
the /usr/local/nagios/etc directory:

Configuration File Description
nagios.cfg This controls the nagios behavior and contains the

global directives.
cgi.cfg This is the user interface configuration file.
resource.cfg To safeguard any sensitive information, such as

passwords, this file has been made in such a way that it
is readable only by the nagios user.

Introduction to Monitoring

[8]

The other configuration files under the /usr/local/nagios/etc/objects directory
are described as follows:

Configuration File Description

contacts.cfg This contains a list of the users who need to be notified by
the alerts.

commands.cfg All the commands to check the services are defined here.
Use Macros for command substitution.

localhost.cfg This is a baseline file to define the other hosts whom you
would like to monitor.

The nagios.conf file under /usr/local/nagios/etc/ is the main configuration
file with various directives that define what all the files include. For example,
cfg_dir=<directory_name>.

Nagios will recursively process all the configuration files in the subdirectories of the
directory that you specify with this directive as follows:

cfg_dir=/usr/local/nagios/etc/commands

cfg_dir=/usr/local/nagios/etc/services

cfg_dir=/usr/local/nagios/etc/hosts

Setting up monitoring for clients
The Nagios server can do an active or a passive check. If the Nagios server proactively
initiates a check, then it is an active check. Otherwise, it is a passive check.

The following are the steps for setting up monitoring for clients:

1. Download NRPE addon from http://www.nagios.org and then install
check_nrpe.

2. Create a host and a service definition for the host to be monitored by
creating a new configuration file, /usr/local/nagios/etc/objects/
clusterhosts.cfg for that particular group of nodes.

http://www.nagios.org

Chapter 1

[9]

Configuring a disk check
define host {

 use linux-server

 host_name remotehost

 alias Remote

 Host address 192.168.0.1

 contact_groups admins

}

Service definition sample:

define service {

 use generic-service

 service_description Root Partition

 contact_groups admins

 check_command check_nrpe!check_disk

}

Nagios Master Nagios Clients

check_disk

check_cpu

check_http

NRPENRPE

Introduction to Monitoring

[10]

Communication among NRPE components:

• The NRPE on the server (check_nrpe) executes the check on the
remote NRPE

• The check is returned to the Nagios server through the NRPE on the
remote host

On each of the client hosts, perform the following steps:

1. Install the Nagios Plugins and the NRPE addon, as explained earlier.
2. Create an account to run nagios from, which can be under any username.

[client] # useradd nagios; passwd nagios

3. Install nagios-plugin with the LD flags:
[client] # tar xvfz nagios-plugins-2.x.x.tar.gz; cd nagios-
plugins-2.x.x/

[client]# export LDFLAGS=-ldl

[client]# ./configure –with-nagios-user=nagios –with- nagios-
group=nagios –enable-redhat-pthread-workaround

[client]# make; make install

4. Change the ownership of the directories, where nagios was installed by the
nagios user:
[client]# chown nagios.nagios /usr/local/nagios

[client]# chown -R nagios.nagios /usr/local/nagios/libexec/

5. Install NRPE and run it as daemon:
[client]# tar xvfz nrpe-2.x.tar.gz; cd nrpe-2.x

[client]# ./configure; make all ;make install-plugin; make
install-daemon; make install-daemon-config; make install-xinetd

6. Start the service, after creating the /et/xinet.d/nrpe file with the IP of
the server:
[client#] service xinetd restart

Chapter 1

[11]

7. Modify the /usr/local/nagios/etc/nrpe.cfg configuration file:
 command[check_disk]=/usr/local/nagios/libexec/check_disk -w 20%
-c 10% -p /dev/hda1

After getting a good insight into Nagios, we are ready to understand its deployment
in the Hadoop clusters.

The second tool that we will look into is Ganglia. It is a beautiful tool for aggregating
stats and plotting them nicely. Nagios gives the events and alerts, Ganglia aggregates
and presents them in a meaningful way. What if you want to look for the total CPU,
memory per cluster of 2000 nodes or total free disk space on 1000 nodes? Plotting the CPU
memory for one node is easy, but aggregating it for a group on a node requires a tool
that can do this.

Ganglia
Ganglia is an open source, distributed monitoring platform for collecting metrics
across the cluster. It can do aggregation on CPU, memory, disk I/O, and many more
components across a group of nodes. There are alternate tools, such as Cacti and
Munin, but Ganglia scales very well for large enterprises.

Some of the key features of Ganglia are as follows:

• You can view historical and real time metrics of a single node or for an
entire cluster

• You can use the data to make decisions on the cluster sizing and
the performance

Ganglia components
We will now discuss some components of Ganglia.

• Ganglia Monitoring Daemon (gmond): It runs on the nodes that need to be
monitored, and it captures the state change and sends updates to a central
daemon by using XDR.

Introduction to Monitoring

[12]

• Ganglia Meta Daemon (gmetad): It collects data from gmond and the other
gmetad daemons. The data is indexed and stored on the disk in a round robin
fashion. There is also a Ganglia front-end for a meaningful display of the
information collected.

gmetad fortend/
Web server

gmelad
node1

node2

gmond cluster

node1

node2

node3

Ganglia installation
Let's begin by setting up Ganglia, and see what the important parameters that
need to be taken care of are. Ganglia can be downloaded from http://ganglia.
sourceforge.net/. Perform the following steps to install Ganglia:

1. Install gmond on the nodes that need to be monitored:
$ sudo apt-get install ganglia-monitor
Configure /etc/ganglia/gmond.conf
globals {
 daemonize = yes
 setuid = yes
 user = ganglia
 debug_level = 0
 max_udp_msg_len = 1472
 mute = no
 deaf = no
 host_dmax = 0
 cleanup_threshold = 600
 gexec = no
send_metadata_interval = 0

http://ganglia.sourceforge.net/
http://ganglia.sourceforge.net/

Chapter 1

[13]

}
udp_send_channel {
 host = gmetad.cluster1.com
 port = 8649
}
udp_recv_channel {
 port = 8649
}
tcp_accept_channel {
 port = 8649
}

2. Restart the Ganglia service:
$ service ganglia-monitor restart

XDR over UDP

gmelad

RRD
gmetad
fortend

gmetad -
polling XML over TCP

gmond gmond

3. Install gmetad on the master node. It can be downloaded from
http://ganglia.sourceforge.net/:
$ sudo apt-get install gmetad

4. Update the gmetad.conf file, which tells you where it will collect the data
from along with the data source:
vi /etc/ganglia/gmetad.conf

data_source "my cluster" 120 localhost

5. Update the gmond.conf file on all the nodes so that they point to the master
node, which has the same cluster name.

www.allitebooks.com

http://ganglia.sourceforge.net/
http://www.allitebooks.org

Introduction to Monitoring

[14]

System logging
Logging is an important part of any application or a system, as it tells you about the
progress, errors, states of services, security breaches, and repeated user failures, and
this helps you in troubleshooting and analyzing these events. The important features
about logs are collecting, transporting, storing, alerting, and analyzing the events.

Collection
Logs can be generated in many ways. They can be generated either through system
facilities, such as syslog or through applications that can directly write their logs.
In either case, the collection of the logs must be organized so that they can be easily
retrieved when needed.

Transportation
The logs can be transferred from multiple nodes to a central location, so that instead
of parsing logs on hundreds of servers individually, you can maintain them in an
easy way by central logging. The size of the logs transferred across the network, and
how often we need to transfer them, are also matters of concern.

Storage
The storage needs will depend upon the retention policy of the logs, and the cost
will also vary according to the storage media or the location of storage, such as cloud
storage or local storage.

Alerting and analysis
The logs collected need to be parsed and the alerts should be sent for any errors.
The errors need to be detected in a speculated time frame and remediation should
be provided.

Analyzing the logs to identify the traffic patterns of a website is important. The
apache web server hosting a website and its logs needs to be analyzed, which IPs
were visited, using which user agent or operating system. All of this information can
be used to target advertisements at various sections of the internet user base.

Chapter 1

[15]

The syslogd and rsyslogd daemons
The logging into the Linux system is controlled by the syslogd daemons and
recently by rsyslogd daemons. There is one more logger called klogd, which logs
kernel messages.

The syslogd is configured by /etc/syslogd.conf and the format of the file is
defined as facility.priority log_location.

The logging facility and priority is described in the tables as follows:

Facility Description
authpriv These are the security / authorization messages.
cron These are the clock daemons (atd and crond).
kern These are the kernel messages.
local[0-7] These are reserved for local use.
mail This is the e-mail system.

The table shown here describes the priority:

Priority Description
debug This displays the debugging information.
info This displays the general informative messages.
warning This displays the warning messages.
err This displays an error condition.
crit This displays the critical condition.
alert This displays an immediate action that is required.
emerg This displays that the system is no longer available.

For example, the logging events for an e-mail event can be configured as follows:

mail.* /var/log/mail

This command logs all the e-mail messages to the /var/log/messages file.

Introduction to Monitoring

[16]

Here's another example; start the logging daemon and it will start capturing the logs
from the various daemons and applications. Use the following command to perform
this action:

$ service syslogd/rsyslog restart

In the versions released after RHEL 5 or Centos 5, syslog has
been replaced by rsyslogd.

syslogd

/var/log/messages
/var/log/mall

/var/log/secure

ssh

httpd
klogd

kernel

APP1 APP2

Summary
This chapter has built the base for monitoring, logging, and log collection. In this
chapter, we talked about the monitoring concepts, and how we can setup Nagios and
Ganglia for monitoring. We also discussed how the structure of the configuration
files is, and how they can be segregated into various sections for the ease of use.

Using this as a baseline, we will move on to understand the Hadoop services, the
ports used by Hadoop, and then configure monitoring for them in the upcoming
chapters of this book.

In the next chapter, we will deal with the Hadoop daemons and services.

Chapter 2

[17]

Hadoop Daemons
and Services

In this chapter, we'll look at Hadoop services and try to understand how and
on what ports they communicate. The aim of this chapter is not to configure
the Hadoop cluster, but to understand it from the perspective of monitoring.
Hadoop is a distributed platform with various services running across the cluster.
The coordination between services and the way they communicate plays a very
important role in the working of the cluster. The communication can be done using
TCP/IP or RPC over TCP, or it could be simply done using HTTP.

In this chapter, we will look at the communication between Hadoop components.

The following topics will be covered in this chapter:

• Important services, ports used by Hadoop and how they communicate
• Common issues faced by various daemons
• Host level checks

Hadoop is highly configurable, and we can configure it to work optimally. Each of
the Hadoop components has configuration files with which we can control service
ports, data directories, and performance parameters.

Hadoop Daemons and Services

[18]

Hadoop daemons
Hadoop is a distributed framework with two important components: HDFS and
MapReduce. Hadoop has two main versions: Hadoop 1.0 and Hadoop 2.0. The
original Hadoop 1.0 has NameNode, DataNode, JobTracker, and TaskTracker.
In Hadoop 2.0, a new YARN framework has come into picture, which replaces
JobTracker and TaskTracker with ResourceManager and NodeManager
respectively. HDFS is the File System or the storage layer, and MapReduce is
the programming model.

Each layer has a master and a slave to handle the communication and coordination
between them. In order to set up monitoring, it is important to take into account the
services and ports used by each node.

NameNode
NameNode is the master node that takes care of the HDFS File System. There are
many important things to take care in NameNode in terms of services and ports.
The following table lists parameters which need to be monitored:

Parameter Description
dfs.name.dir

dfs.namenode.name.dir

This is the parameter in hdfs-site.xml and defines
the location of NameNode metadata store. This location
must be monitored for disk usage and disk failures,
if any.

fs.default.name or
fs.defaultFS

This parameter defines the hostname and port on which
the NameNode will listen. By default, it is 8020. This is
important to monitor in order to maintain the state
of NameNode.

dfs.http.address This is the WebUI port for the NameNode. This port is
important for any kind of HTTP communication, such
as between secondary and primary NameNode.

dfs.namenode.handler.
count

This parameter controls the number of NameNode
handler count. By default it is set to 10; you need to
monitor the logs to adjust the value accordingly.

Chapter 2

[19]

It is very important to monitor the key aspects of NameNode to ensure a smooth
running cluster. Other important things to keep track of are:

• The NameNode boot up time
• Heap size configuration and its usage
• Disk I/O statistics and performance

DataNode and TaskTracker
DataNode is the slave node of the HDFS layer that stores the actual data. DataNode
can have many disks for data storage, which need to be monitored for failures or
could impact the I/O performance. Hadoop is designed keeping in mind that some
DataNodes will fail. But, it is important to measure and keep track of what percentage
of the nodes are up to better plan and utilize the cluster. Some of the important
parameters to keep track of this, through monitoring and logs are listed here:

Parameter Description
dfs.data.dir

dfs.datanode.data.dir

This is the parameter in hdfs-site.xml on the
DataNode and defines the location of actual data.
This location must be monitored for disk usage
and disk failures, if any.

dfs.datanode.http.address This is the WebUI port for the DataNode. This port
is important for any HTTP Communication and
other Rest API calls.

dfs.datanode.address This is the DataNode communication port, 50010.
dfs.datanode.ipc.address This is the DataNode IPC Port, 50020.
dfs.datanode.handler.
count

This parameter controls the number of DataNode
handler count. By default it is set to 3; you need to
monitor the logs to adjust the value accordingly.

tasktracker.http.threads This parameter controls the threads for the
TaskTracker. This can be increased to adjust for the
load on the TaskTracker.

mapred.child.java.opts This parameter controls the memory for the child
JVMs. It needs to be adjusted according to the total
memory on the system and the number of slots.

TaskTracker runs on DataNode and needs to be monitored for the memory,
the temporary space they consume.

Hadoop Daemons and Services

[20]

Secondary NameNode
Secondary NameNode is critical in the production environment as it performs check
pointing. It is important to make sure that the checkpoints happen and the data is
consistent. Monitoring must be in place for secondary NameNode to detect any
misconfigurations or other errors as soon as possible in order to ensure that if need
arises, we can restore the metadata from this node.

Parameter Description
dfs.namenode.checkpoint.
period

How often the secondary NameNode should do the
check pointing; the default is 3600 seconds.

dfs.secondary.http.
address

This is the port where the secondary NameNode
listens; the default is 50090. A Rest API call is
done using web servers on both the primary and
secondary NameNode for the check pointing.

fs.checkpoint.dir This parameter defines the checkpoint directory,
where the secondary NameNode will write the
metadata. The disk must be monitored for space.

fs.checkpoint.edits.dir This is the directory for pulling the edits from the
primary NameNode and writing it here. The disk
must be monitored for space.

JobTracker and YARN daemons
The master handles the job submitted to the Hadoop cluster; it could either be
JobTracker or ResourceManager, depending upon the Hadoop version. The master
needs to take care of the coordination with the slave daemons like TaskTracker for
scheduling, resource management, failures, and so on. It is important to keep an eye
on the usage and working of these daemons to ensure that the MapReduce layer is
healthy. The following table describes the parameters that need to be monitored
for this:

Parameter Description
mapred.job.tracker.
handler.count

This is the number of threads that the JobTracker
runs to handle the requests.

yarn.resourcemanager.
address

This is the port for the WebUI of the JobTracker;
the default is 50030

yarn.resourcemanager.
scheduler.address

This is the port for ResourceManager; the default
is 8032.

yarn.resourcemanager.
webapp.address

This is the port for ResourceManager scheduler;
the default is 8030.

Chapter 2

[21]

Parameter Description
yarn.nodemanager.address This is the ResourceManager WebUI port; the

default is 8088.
${yarn.nodemanager.hostname}:0

yarn.nodemanager.
container-manager.thread-
count

This tells you about the number of threads; the
default is 20.

In addition to all the parameters listed in the preceding table, it is important to
configure monitoring for the hosts on which each of these services run. There is no
point in keeping the services healthy if the underlying hardware fails or runs out of
resources. We will look at the important monitoring checks to do at the host level at a
later stage in the chapter.

The communication between daemons
There are lots of ports used in Hadoop; some are for internal communication, such as
for scheduling jobs and replication, while others are for user interactions. They may
be exposed using TCP or HTTP. Hadoop daemons provide information over HTTP
about logs, stacks, and metrics that could be used for troubleshooting. NameNode
can expose information about the File System and live or dead nodes, or it can block
reports by DataNode or JobTracker to track the running jobs.

Hadoop uses TCP, HTTP, IPC, or Socket for communication among the nodes
or daemons. Some of the important communication channels are captured in the
following table:

Protocol Description
HTTP The communication between primary and secondary NameNode

takes over HTTP. Also, the transfer between mappers and reducers
is done over HTTP. In addition to this, there are a lot of Rest APIs
exposed for File System operations using WebHDFS and others.

Raw sockets This is used for copying data across DataNodes like replication
and others.

RPC over TCP This is used for communication between NameNode and
DataNodes.

Other APIs For example: Connecting to RM from client uses a protocol
implemented using the (AsM) Application Manager interface.
HDFS also provides APIs to the client to talk to it. This can be a
simple java.io.

Hadoop Daemons and Services

[22]

The client can talk to the NameNode using ClientProtocol. The connection is
established over TCP by using the RPC call. Using this protocol, the client can
create, delete, append, or add block.

• The channel between DataNode and client is a streaming channel and not
RPC due to performance concerns. The data transfer from the client is sent
directly to the DataNodes.

• DataNode always initiates the communication between NameNode and
DataNode; keep in mind that NameNode never initiates a connection. The
DataNode can register, de-register, and send block reports and heartbeat at
defined intervals. This is depicted in the the following diagram:

All these ports are configurable
in the configuration files

Communication
port: 0

TaskTracker
IPC port: 50020

DataNode

dfs.datanode.address
port: 50010

Communication
port: 0

Web Port: 50075 Communication
port: 8012

JobTracker

Web Port: 50030 Web Port: 50060

NameNode Secondary NameNode

Web Port: 50090Web Port: 50070

Communication
port: 8020

Chapter 2

[23]

YARN framework
The YARN (Yet Another Resource Negotiator) is the new MapReduce framework.
It is designed to scale for large clusters and performs much better as compared to
the old framework. There are new sets of daemons in the new framework, and it is
good to understand how they communicate with each other. The following diagram
explains the daemons and ports on which they talk:

Important YARN PORTS

Resource Manager
Scheduler RPC

IPC:8031
ResourceManager Resource

tracker RPC

REST API

Resource Manager

WebUI: 8088

IPC: 8030

IPC: B032
Resource Manager

Client RPC

Node Manager

WebUI:50060

Localized
RCPl 8040

IPC: 0

Hadoop Daemons and Services

[24]

Common issues faced on Hadoop cluster
With a distributed framework of the scale of Hadoop, many things can go wrong.
It is not possible to capture all the issues that could occur, but from a monitoring
perspective, we can list the things that are common and can be monitored easily.
The following table tries to capture the common issues faced in Hadoop:

Issue Description and steps that could help
High CPU utilization This could be due to high query rate or faulty job. Use

top command to find the offending processes. On
NameNode, it could be due to a large number of handlers
or DataNodes sending block reports at the same time.
Explore the initDelay parameter.

High memory utilization This is a misconfiguration of HEAP_SIZE; more
MapReduce tasks are configured to run with large memory
setting. It's running non-Hadoop jobs on the nodes.

Disk space utilization If you do not have a right retention policy in place and
have unnecessary data, the solution is to delete scratch
spaces and add DataNodes or more disks per node.

Data block corruptions These are node failures and disk failures. Make sure you
have the replication set to at least 3.

NameNode metadata
directory location alerts.

Make sure all the edits' locations are accessible to the
NameNode. Check for permissions or reachability if it's
over NFS.

Process down The daemons could be down due to crash; make sure all
the daemons are up and responding to health checks.

NameNode response time Too many operations are being performed by NameNode,
network load, faulty NIC or other hardware components.

Cluster low on total storage The number of live DataNodes in the cluster might have
gone down.

Slow on read/write This could be due to wrong settings on HDFS and other
buffer parameters. Make sure you do benchmarking,
before using the cluster in production.

Network congestion In addition to the issues local to the node, there can be
network issues like congestion on devices due to high
traffic or a faulty NIC (Network Interface Card).

Speed of network devices As in Hadoop, we deal with a large amount of data, so
it's important to make sure the devices that carry data can
handle jumbo frames and withstand high throughput.

Chapter 2

[25]

All the checks mentioned in the preceding table and the way nodes communicate
will help us in setting the monitoring in the right manner. In the upcoming chapters,
we'll look at the process of configuring alerts for the parameters mentioned in the
preceding table.

Host-level checks
Irrespective of how well the Hadoop daemons are configured and optimized, the
underlying hardware is critical for proper functioning of the cluster. There are some
standard checks in Nagios, which must be configured on every host in the cluster.
Let's look at the host level checks in Nagios and how we will configure them, which
is shown in the following diagram:

Host Level Monitoring on each node in the cluster

check_disk: Check
the disk usageDisks

RAM
check_mom: Check
the memory usage

check_Interface:
Check the Interface

mode/speed
NIC NIC

check_cpu: Check
lond, the number

of cores
CPU CPU CPU

Hadoop Daemons and Services

[26]

Nagios server
As discussed in the Chapter 1, Introduction to Monitoring, this is the master of the
Nagios monitoring system and will contain the main configuration files for each
service. Firstly, we define checks for each service. Create a services.conf file at the
base of the Nagios server with the following configuration:

Service SSH:

define service {
 hostgroup_name hadoop
 service_description SSH
 check_command check_ssh
 use generic-service
 notification_interval 0
}

Service Disk Space:

define service {
 hostgroup_name hadoop
 service_description Disk
 check_command check_disk
 use generic-service
 notification_interval 0
}

Service Processes:

define service {
 hostgroup_name hadoops
 service_description Processes
 check_command check_procs
 use generic-service
 notification_interval 0
}

Service Load:

define service {
 hostgroup_name hadoop
 service_description Load
 check_command check_load
 use generic-service
 notification_interval 0
}

Chapter 2

[27]

Similarly, we can add this for all the checks we need for a host. Now, we need to
configure remote execution for each of the above services using the following script:

define service {
 hostgroup_name generic-servers
 service_description Current Load
 check_command check_nrpe_1arg!check_load
 use generic-service
 notification_interval 0
}

And host definition for each host is shown in the following code:

define host {
 host_name dn1
 alias dn1.cluster1.com
 hostgroups general-servers
 address dn1.cluster1.com
 use generic-host
}

Please refer to Chapter 1, Introduction to Monitoring, for details of the preceding sections.

Configuring Hadoop nodes for monitoring
On the nodes running Hadoop, we need to put the checks for the respective services
along with the libraries. After the installation of the NRPE plugins on each of the
hosts, there will be a configuration file /usr/local/nagios/etc/nrpe.conf,
which actually executes the checks on being invoked by the server, as shown in the
following script:

command[check_users]=/usr/lib/nagios/plugins/check_users -w 5 -c 10
command[check_load]=/usr/lib/nagios/plugins/check_load -w 15,10,5 -c
30,25,20
command[check_all_disks]=/usr/lib/nagios/plugins/check_disk -w 20% -c
10%
command[check_zombie_procs]=/usr/lib/nagios/plugins/check_procs -w 5
-c 10 -s Z
command[check_total_procs]=/usr/lib/nagios/plugins/check_procs -w 150
-c 200
command[check_swap]=/usr/lib/nagios/plugins/check_swap -w 50% -c 25%

Hadoop Daemons and Services

[28]

After restarting the Nagios service, hit http://nagiosserver, we will start seeing
the graphs as shown in the following screenshot. The following screenshot displays
the generic checks per host:

Similarly, for CPU load, the graph will be as shown in the following screenshot:

Summary
In this chapter, we discussed important Hadoop daemons and the ports on which
they listen. Each daemon listens on a specific port and communicates with the
respective daemons using a specific protocol. We looked at the ports for NameNode,
DataNodes, and JobTracker and how they talk to each other.

Then we set up monitoring for each of the Hadoop nodes to enable host level checks
such as disk quota, CPU usage, memory usage, and so on. In the upcoming chapters,
we will talk about configuring checks for Hadoop services. In the next chapter, we
will deal with Hadoop logging.

Chapter 3

[29]

Hadoop Logging
In any enterprise, how ever big or small it could be, logging is very important for
security and improvement of services. With more and more systems going online,
not just logging data but also reviewing the logs is very important.

Systems today are generating millions of lines of data, which could be simple web
events, some database query logs, network logs, or any audit logs. Dealing with such
large logs manually is neither practical nor viable in terms of time; there must be
centralized logging and analysis tools to quickly extract the useful information.

In this chapter, we begin our journey by exploring the concepts of logging at both the
system level and Hadoop level.

We'll cover the following topics in this chapter:

• Different log levels
• Logs written by various Hadoop daemons
• Understanding audit logs and how they could be useful

Hadoop Logging

[30]

The need for logging events
The events can be generated by system daemons, applications, or other services
running on it. To keep a track of the functionality, errors, performance and security,
it is important to capture events and analyze them to find the cause of failure and/or
intrusion. Logging is done for:

• Accountability: On any system there are multiple users and what they do
must be tracked, and if needed, the events should be linked to user accounts
for accountability.

• Intrusion detection: Any unusual or unauthorized activity can be traced
using logs. Unusual login attempts, access from suspicious IPs, modification
of system binaries, installation of backdoors, and so on can be tracked
using logs.

• Problem detection: Application failures and resource constraints, such as out
of memory errors, write events into logs, which can help in narrowing down
the issue.

The logs provide a proactive approach in terms of finding any security holes and
help in plugging them on time. By collecting and analyzing logs, we can understand
what goes within the infrastructure. Each log contains important information about
a service or a user, which can be used to analyze important events and helps in
troubleshooting issues.

The data generated by log collection could be huge, so it is important to understand
what to log. The intent should be to log important things, but sometimes identifying
what is important is a challenge. Let's start with understanding logging system at the
system level and then move on to Hadoop.

System logging
In Linux, the daemon responsible for logging is syslogd or recently the newer
version rsyslogd. Applications or daemons write various logs in different files
under /var/log using syslogd daemon, which is controlled by the syslog.conf
configuration file. The logs can be collected on independent nodes or at a central
location using Apache Flume and can be analyzed by using tools such as Flume,
Splunk, Logstash, and so on.

There are different logging levels according to how the verbosity of the information
logged into files is decided. Each application calls syslog() using an internal
function, the log_level, and writes events to appropriate files.

Chapter 3

[31]

Logging levels
Every rule consists of two fields—selector field and action field. The selector field
specifies a pattern of facilities and priority. Facility and priority is separated by a .;
facility specifies the subsystem that produced the message. Table 1 lists out facilities
and Table 2 lists out priorities:

Table 1: Facility

Facility Description
Kernel Kernel messages
User User level messages

Mail Mail messages
Daemon System messages
FTP FTP server messages

The log severity can be controlled using the priority option, and we can make it as
verbose as we like. The trade off is always between size of logs and what to log.

Table 2: Priorities

Severity Description
0 Emergency, system unstable
1 Alert: Immediate action
2 Critical: The state of the system/application is critical
3 Error condition: The system is throwing errors
4 Warning
7 Debug. Verbose logging of information

Log kernel-related messages to a separate file, with the pattern as kernel subsystem
and all priority, to be logged to a file, as shown here:

Kern.* /var/log/kern.log

Logs related to mail messages, as shown here:

Mail.* /var/log/maillog

Hadoop Logging

[32]

The syslog architecture is very robust and well-designed. The protocol provides
a transportation to allow a device to send notifications across networks to event
collectors. The syslog message size is limited to 1024 bytes and carries information
such as facility, severity, and timestamp. The following diagram depicts the Syslog
Architecture, which can feed to other distributed log management systems:

Logging in Hadoop
In Hadoop, each daemon writes its own logs and the severity of logging is
configurable. The logs in Hadoop can be related to the daemons or the jobs
submitted. They are useful to troubleshoot slowness, issues with MapReduce tasks,
connectivity issues, and platform bugs. The logs generated can be user level like task
tracker logs on each node or can be related to master daemons such as NameNode
and JobTracker.

In the newer YARN platform, there is a feature to move the logs to HDFS after initial
logging. In Hadoop 1.x, the user log management is done using UserLogManager,
which cleans and truncates logs according to retention and size parameters such as
mapred.userlog.retain.hours and mapreduce.cluster.map.userlog.retain-
size respectively. The tasks standard out and error are piped to the Unix tail
program, so it retains the required size only.

These are some of the challenges of log management in Hadoop:

• Excessive logging: The truncation of logs is not done till the tasks finish; this
is because many jobs could cause disk space issues as the amount of data
written is quite large.

• Truncation: We can't always say what to log and how much is good enough.
For some users, 500 KB of logs might be good, but for some 10 MB might
not suffice.

Chapter 3

[33]

• Retention: How long you need to retain logs: one month or six months?
There is no standard rule, but there are best practices or governance issues
for retention. In many countries, there is regulation in place to keep data
for one year. The best practice for any organization is to keep it for at least
six months.

• Analysis: What should be done if we want to look at historical data, how to
aggregate logs onto a central system, and do analyses? In Hadoop, logs are
served, by default, over HTTP for a single node.

Some of the preceding issues have been addressed in the YARN framework. Rather
then truncating logs specially on individual nodes, the logs can be moved to HDFS
and processed using other tools. The logs are written at the per application level into
directories per application. The user can access these logs through the command line
or web UI. For example, $HADOOP_YARN_HOME/bin/yarn logs.

Hadoop logs
In addition to the logs generated by each daemon whether they're NameNode,
DataNode, JobTracker, or secondary NameNode, there are other logs such as
configuration logs, statistic, and error logs. In Hadoop, the logs can be classified into
the following categories:

• Hadoop daemon logs: These are the logs related to the Hadoop daemons,
and there will be one log file for each daemon on a host. If we are run a
pseudo mode of Hadoop, which means running NameNode, JobTracker,
DataNode, TaskTracker, and secondary NameNode all on the same node,
there will be five log files for each with extension .log.

• Logging format: hadoop-$(user-running-hadoop)-$(daemon)-hostname.
log.

• Job logs: There are two type of job logs in Hadoop; one is the job
configuration log for each job submitted to JobTracker and the other is the
statistics log for the tasks attempts, shuffle, and so on. The JobTracker creates
an XML file for each job, which will be stored at the $HADOOP_HOME/log
location. The naming convention for these jobs is job_<jobid>_config.xml.

• Log4j: The jobs have many sub parts called tasks, and their logs are written
by log4j. It provides an interface to the developer to hook map and reduce
jobs to logs. These logs can be very intensive, depending upon the number of
calls done to the logging system.

• Error logs: The TaskTracker writes errors to standard out and standard error
of any task attempts.

www.allitebooks.com

http://www.allitebooks.org

Hadoop Logging

[34]

There are many variables which control logging for the daemons in Hadoop.
The following table captures some of these variables:

Table 3:

Parameter Description
HADOOP_LOG_DIR This is defined in the file hadoop-env.sh and it

defines the location where the logs are written.
mapreduce.jobtracker.
jobhistory.location

This stores the job history and by default it is
${hadoop.log.dir}/history. It is defined in
the mapred-site.xml file.

mapreduce.map.log.level This is the logging level for map tasks, such as
INFO, ERROR, OFF, DEBUG, and ALL. It is defined
in mapred-site.xml.

mapreduce.reduce.log.
level

This is the logging level for MapReduce tasks
such as INFO, ERROR, OFF, DEBUG, and ALL. It is
defined in mapred-site.xml.

mapreduce.task.userlog.
limit.kb

This is the size of the task logs and it is defined in
mapred-site.xml.

yarn.app.mapreduce.
am.container.log.limit.kb

This is the size of the MRAppMaster logs.

mapreduce.job.userlog.
retain.hours

These are the hours for which the logs must be
retained.

dfs.namenode.logging.
level

This is the logging level for NameNode. The
default is INFO; it is configured in the hdfs-
site.xml file.

dfs.namenode.audit.
loggers

This is the default Hadoop audit logger.

Hadoop log level
In Hadoop, we can control the verbosity of the information logged into the logs in
a similar manner to how we do with the syslog log level. In Hadoop, the log level is
defined by the parameter HADOOP_ROOT_LOGGER in hadoop-env.sh.

The default configuration for this looks like the one shown as follows:

export HADOOP_ROOT_LOGGER="INFO,CONSOLE"

The preceding configuration is specified in the file hadoop-env.sh, and it states that
the logging level is INFO and the destination is tied to the console.

Chapter 3

[35]

This configuration could create a lot of noise as it is logging a lot of information. This
can be modified by using the DRFA (Daily Rolling File Appender) and by reducing
the log level, shown as follows:

export HADOOP_ROOT_LOGGER="WARN,DRFA"

DRFA allows the logs to go to a file appender rather then the standard out or error.

Another important configuration file is the conf/log4j.properties file, which can
also be used to configure logging and auditing in Hadoop. The logging level can be
changed as shown here, by configuring it in the file conf/log4j.properties:

hadoop.root.logger=WARN,DRFA

hadoop.log.dir=.

hadoop.log.file=hadoop.log

The hadoop.log will be in the directory defined by $HADOOP_LOG_DIR.

The following diagram shows the Hadoop Logging Architecture:

Hadoop audit
We can enable auditing for NameNode and track the user activity such as which
user executed what command and who did what. By default, audit logs are sent to
NameNode, but this could be overwhelming due to other information written to
the logs. We can configure the audit logs to be handled by the syslog facility of the
Linux system. For this we need to enable DRFAADUIT. Similarly, MapReduce and
YARN can also be audited and logged with wealth of information such as username,
application ID, job queue, duration, and memory allocated.

Hadoop Logging

[36]

Log4j.properties:

First disable the audit to be written to namenode:
log4j.additivity.org.apache.hadoop.hdfs.server.namenode.FSNamesystem.
audit=false
Redirect it to the syslog appender:
log4j.logger.org.apache.hadoop.hdfs.server.namenode.FSNamesystem.
audit=INFO,DRFAAUDIT,SYSLOG
Configure local appender:
log4j.appender.DRFAAUDIT=org.apache.log4j.DailyRollingFileAppender
log4j.appender.DRFAAUDIT.File=/var/log/audit.log
log4j.appender.DRFAAUDIT.DatePattern=.yyyy-MM-dd
log4j.appender.DRFAAUDIT.layout=org.apache.log4j.PatternLayout
log4j.appender.DRFAAUDIT.layout.ConversionPattern=%d{ISO8601} %p %c:
%m%n

Configure syslog appender:
log4j.appender.SYSLOG=org.apache.log4j.net.SyslogAppender
log4j.appender.SYSLOG.syslogHost=loghost
log4j.appender.SYSLOG.layout=org.apache.log4j.PatternLayout
log4j.appender.SYSLOG.layout.ConversionPattern=%d{ISO8601} %p %c: %m%n
log4j.appender.SYSLOG.Facility=LOCAL1

Summary
In this chapter, you learned about the Hadoop logging process, daemons, jobs write
logs and their locations, and how you can control the log level. You also looked at
the log4j log appender and how you can enable audit for Hadoop events. In the next
chapter, you'll look at the HDFS checks and how to set up Nagios checks for that.

Chapter 4

[37]

HDFS Checks
The Hadoop distributed File System is an important component of the cluster.
The state of the File System must be clean at all stages and the components related
to it must be healthy.

In this chapter, we will look at the HDFS checks by using the Hadoop commands,
and we will also discuss how to set up the Nagios monitoring for them.

The following topics will be covered in this chapter:

• Replication consistency
• Space utilization
• CPU utilization
• NameNode health checks
• Number of DataNodes in a cluster

HDFS Checks

[38]

HDFS overview
HDFS is a distributed File System that has been designed for robustness by having
multiple copies of blocks across the File System. The metadata for the File System
is stored on NameNode and the actual data blocks are stored on DataNodes. For
a healthy File System, the metadata must be consistent, DataNode blocks must be
clean, and replication must be consistent. Let's look at each of these one by one and
learn how they can be monitored. The protocol used for communication between
NameNode and DataNodes is RPC, and the protocol used for data transfer is HDFS
over HTTP.

• HDFS checks: Hadoop natively provides the commands to verify the File
System. The commands must be run by the user, with whom the HDFS is
running. This is mostly HDFS, or you can have any other user. But do not
run it as root. To run these commands, the PATH variable must be set and it
must include the path to the Hadoop binaries.

 ° hadoop dfsadmin –report: This command provides an exclusive
report of the HDFS state, the number of DataNodes, and the
replication state

• hadoop fsck /: This command is similar to the fsck command of the Linux
file system. It does checks for bad blocks and it also has options for extensive
checks of the files for the block location, replication, and so on. hadoop fsck
/ -files –blocks –locations

 ° hadoop fs –dus and hadoop fs –count –q /: The above
commands give the information about disk usage and the quotas for
the File System.

 ° jps: This command tells us about the daemons running on Nodes,
such as NameNode, DataNode, JobTracker, and so on.

Chapter 4

[39]

Nagios master configuration
As discussed in Chapter 1, Introduction to Monitoring, Nagios is a monitoring platform,
and it works very well for the Hadoop monitoring needs. Let's see how to configure
Nagios for the Hadoop service checks.

On the Nagios server, called mnode, we need to set up the service definitions, the
command definitions, and the host definitions as defined here. These definitions will
enable checks, and by using these we can gather the status of a service or a node.
The plugin needs to be downloaded and installed from http://www.nagios.org/
download.

• HDFS space check: Check the HDFS space usage on the cluster.
define command{
 command_name check_hadoop_space
 command_line $PATH$/check_hadoop_namenode.pl -H $HOSTADDRESS$ -u
$USER8$ -P $PORT$ -s $ARG2$ -w $ARG3$ -c $ARG4$
}

define host {

 use hadoop-server
 host_name hadoopnode1
 alias Remote
 Host address 192.168.0.1
 contact_groups admins
}
Service definition:

define service {

 use generic-service
 service_description space
 contact_groups admins

 check_command check_hadoop_space
}

For further information, refer to:
http://exchange.nagios.org/directory/Plugins/
Clustering-and-High-2DAvailability/check_hadoop_
namenode-2Epl-%28Advanced-Nagios-Plugins-
Collection%29/details

http://www.nagios.org/download
http://www.nagios.org/download
http://exchange.nagios.org/directory/Plugins/Clustering-and-High-2DAvailability/check_hadoop_namenode-2Epl-%28Advanced-Nagios-Plugins-Collection%29/details
http://exchange.nagios.org/directory/Plugins/Clustering-and-High-2DAvailability/check_hadoop_namenode-2Epl-%28Advanced-Nagios-Plugins-Collection%29/details
http://exchange.nagios.org/directory/Plugins/Clustering-and-High-2DAvailability/check_hadoop_namenode-2Epl-%28Advanced-Nagios-Plugins-Collection%29/details
http://exchange.nagios.org/directory/Plugins/Clustering-and-High-2DAvailability/check_hadoop_namenode-2Epl-%28Advanced-Nagios-Plugins-Collection%29/details

HDFS Checks

[40]

• Checking the HDFS replication: Check the HDFS replication on the File
System by using the following commands:
define command{
 command_name check_replication
 command_line $PATH$/check_hadoop_namenode.pl -H $HOSTADDRESS$ -u
$USER8$ -P $PORT$ -r $ARG2$ -w $ARG3$ -c $ARG4$
}

define host {

 use hadoop-server
 host_name hadoopnode1
 alias Remote
 Host address 192.168.0.1
 contact_groups admins
}
Service definition:

define service {

 use generic-service
 service_description replication
 contact_groups admins

 check_command check_replication
}

Reports under replicated, corrupt replicas, missing blocks

• Checking the HDFS balancer: Check for the balance of the cluster in
terms of the usage across different DataNodes. Report the DataNodes
that are imbalanced.
define command{
 command_name check_balance
 command_line $PATH$/check_hadoop_namenode.pl -H $HOSTADDRESS$ -u
$USER8$ -P $PORT$ -b $ARG2$
}

define host {

 use hadoop-server

Chapter 4

[41]

 host_name hadoopnode1
 alias Remote
 Host address 192.168.0.1
 contact_groups admins
}
Service definition:

define service {

 use generic-service
 service_description balance
 contact_groups admins

 check_command check_balance
}

• Counting the HDFS DataNode: Use the following commands to check
for the number of DataNodes against a threshold:
define command{
 command_name check_node_count
 command_line $PATH$/check_hadoop_namenode.pl -H $HOSTADDRESS$ -u
$USER8$ -P $PORT$ -m $ARG2$ -w $ARG3$ -c $ARG4$
}

define host {

 use hadoop-server
 host_name hadoopnode1
 alias Remote
 Host address 192.168.0.1
 contact_groups admins
}
Service definition:

define service {

 use generic-service
 service_description datanode_count
 contact_groups admins

 check_command check_node_count
}

HDFS Checks

[42]

• Checking the NameNode heap usage: Use the commands given as follows
for checking the heap utilization of the NameNode. The threshold is specified
in terms of percentile:
define command{
 command_name check_namenode_heap
 command_line $PATH$/check_hadoop_namenode.pl -H $HOSTADDRESS$ -u
$USER8$ -P $PORT$ --heap-usage $ARG2$ -w $ARG3$ -c $ARG4$
}

define host {

 use hadoop-server
 host_name hadoopnode1
 alias Remote
 Host address 192.168.0.1
 contact_groups admins
}
Service definition:

define service {

 use generic-service
 service_description namenode_heap
 contact_groups admins

 check_command check_namenode_heap
}

• Checking Zookeeper: The following commands can be used for checking the
zookeeper state with the Zookeeper hosts specified in a comma separated list
of hosts.

define command{
 command_name check_zookeeper
 command_line $PATH$/ check_zookeeper_znode.pl -H $HOSTADDRESS$
-u $USER8$ -P $PORT$ --heap-usage $ARG2$ -w $ARG3$ -c $ARG4$
}

define host {

 use hadoop-server
 host_name hadoopnode1

Chapter 4

[43]

 alias Remote
 Host address 192.168.0.1
 contact_groups admins
}
Service definition:

define service {

 use generic-service
 service_description zookeeper
 contact_groups admins

 check_command check_zookeeper
}

The Nagios client configuration
Every Hadoop node, whether NameNode, DataNode, or Zookeeper is a client node
of the Nagios Server. Each node must have the NRPE plugin installed with the
checks described under /usr/local/nagios/libexec and the commands specified
under /usr/local/nagios/etc/nrpe.cfg as shown here:

command[check_balancer]=/usr/local/nagios/libexec/check_hadoop_namenode.
pl -H $HOSTADDRESS$ -u $USER8$ -P $PORT$ -b $ARG2$

command[check_zkp]=/usr/local/nagios/libexec/check_zkpd

Similarly, entries need to be made for each check that is executed on the nodes.

In addition to the aforementioned plugins, checks must be in place for hardware,
disk, CPU, and memory. You should check the number of processes running on a
system by using the check_procs plugin, check the open ports by using check_tcp.
Make sure that all the nodes have ntp running and that the time is synced by using
check_ntp. All of these are provided as the standard Nagios system plugins, and
they must be placed on each node.

HDFS Checks

[44]

Summary
In this chapter, we looked at how to set up monitoring for the HDFS components,
such as the HDFS space utilization, the number of DataNodes in a cluster, heap
usage, replication, and the Zookeeper state. In the next chapter, we will look at
checks and monitoring for the map reducing components, such as the JobTracker,
the TaskTracker, and the various utilization parameters.

Chapter 5

[45]

MapReduce Checks
The Hadoop cluster might have many jobs running on it at any given time, making
it extremely important to monitor and make sure that it is running perfectly. The
Hadoop clusters are multi-tenant clusters, which mean that multiple users with
different use cases and data sizes run jobs on it. How do we make sure that each
user or job is getting what it is configured for on the cluster?

In this chapter, we will look at the checks related to MapReduce and its related
components. The following topics will be covered in this chapter:

• MapReduce checks
• JobTracker and related health checks
• CPU utilization of MapReduce jobs
• Memory utilization of MapReduce jobs
• YARN component checks
• Total cluster capacity in terms of memory and CPU

MapReduce Checks

[46]

MapReduce overview
MapReduce is the programming model designed to leverage the advantages of a
distributed framework in a better way. It is a framework that takes care of various
phases a job goes through like initialization, submission, execution, and failure
recovery. In addition, there are intermediate stages, such as the map, combiner,
shuffle, sort, compression, and reducer stage. Each affects the performance of a
job or task and must be monitored for the resource utilization at each stage. Both
Hadoop version 1 and version 2 can be monitored using Nagios. In YARN, we have
ResourceManager, NodeManager, Application Manager, and few other components,
all of which can be monitored using Nagios.

Before going to Nagios checks, there are some important commands and logs,
which give us a good idea about the current state of the cluster in terms of the
MapReduce operations.

Hadoop natively provides commands to verify the jobs and its
related information.

MapReduce control commands
Hadoop provides a job command to interact with map reducers, using which the
administrator can control the jobs or tasks submitted to the cluster.

• The <options> part of hadoop job <options> is explained in the
following table:

Option Description
-list This command lists all the running jobs in a cluster.

This is for MapReduce version 1.
-list all This command lists all the jobs in a cluster.
-status <job-id> This gives information about the job counter and the

MapReduce completion percentage.
-kill <job-id> Using this command, we can kill the long-running or

stuck jobs.
-history Gives details about the job, in terms of failed or

successful tasks.

Chapter 5

[47]

• hadoop jobtracker -dumpConfiguration: This command is used to dump
the JobTracker configuration along with all the queue information. This can
be really helpful in doing a quick review of the configuration or as a backup.

• hadoop queue <options>: The jobs submitted can be sub-divided or
organized into job queues. Each queue is assigned a capacity and the users
who could submit jobs to it.
We can use -list to see the list of queues and scheduling information
associated with it.

In the new MapReduce version MRv2, we have YARN, which controls the jobs
submitted to the cluster. It manages the resources in a much better and intelligent
way. The commands for the job control in the YARN framework are given as follows:

yarn application <options>

The <options> part of yarn application <options> is explained in the
following table:

Option Description
-list Here, we talk in terms of applications and not jobs,

which are controlled by the RM (which stands for
Resource Manager). The beauty of this new command
is that we can filter out applications according to type
and state.

-appStates States States can be running, Finished, ALL, Killed, and
so on.

-status <app-id> This gives information about the application.
-kill <app-id Using this command, we can kill the long-running or

stuck jobs.

In the new version MRv2, in addition to information about applications (jobs),
we can list the nodes, their states, and the application logs as follows:

• yarn node <options>: This command lists the nodes, which are up in
terms of the communication with the RM. In simple terms, the nodes that
are running. The node list can be filtered according to the state of the nodes
as well.

• yarn logs –applicationId <app Id> <options>: This command spits
out logs for the specific application with the option to pull information
specific to the owner or the node of execution. The best thing in the new
framework is that we do not need to go to the specific node of execution to
see the logs. All the logs can be pulled from a central command line interface.

MapReduce Checks

[48]

In addition to the above, there are a few administration commands to check the
health of the RM and set the log level at each node. The commands that can help to
do this are as follows:

• yarn rmadmin –checkHealth <serviceId>: This command is used to
check the state of RM, whether it is active or standby, and is used in high
availability (HA).

• yarn daemonlog -setlevel <host:port> <name> <level>: This
command is used to set the log level of each daemon on a particular host.
This is an easy way to control the log level across different nodes in a cluster.

MapReduce health checks
There are many factors that impact the performance of a job or application submitted
to the cluster. The important checks, which can help narrow down the bottlenecks
and help in improving the performance, can be many, but the few important ones are
as follows:

• Health of JobTracker or the RM
• Backlog of tasks in the cluster; make sure that the number of tasks does not

cross the upper limit of the maximum tasks supported in the cluster
• Localities of the tasks run to make sure that there is minimal across-rack traffic
• Health of TaskTracker and other components like NodeManager depending

upon the MR version

The above checks are very well-documented and talked about at the Cloudera
website. Please read them for further understanding.

Nagios master configuration
As discussed in earlier chapters, Nagios is a monitoring platform and works very
well for the Hadoop monitoring needs. Let's see how to configure Nagios for
Hadoop service checks.

Chapter 5

[49]

On the Nagios server, called mnode, we need to set up service definitions, command
definitions, and the host definition. All these plugins are available at the Nagios
website and can be downloaded from there.

• JobTracker health check: This is used to check the JobTracker status:
define command{
 command_name check_jobtracker_health
 command_line $PATH$/check_hadoop_mapreduce_nodes.pl -H
$HOSTADDRESS$ -P $PORT$
}

define host {

 use hadoop-server
 host_name jt1
 alias Remote
 Host address 192.168.0.1
 contact_groups admins
}
Service definition:

define service {

 use generic-service
 service_description jobtracker
 contact_groups admins

 check_command check_jobtracker_health
}

For further information, refer to
http://exchange.nagios.org/directory/Plugins/
Clustering-and-High-2DAvailability/check_hadoop_
mapreduce_nodes-2Epl-%28Advanced-Nagios-Plugins-
Collection%29/details.

http://exchange.nagios.org/directory/Plugins/Clustering-and-High-2DAvailability/check_hadoop_mapreduce_nodes-2Epl-%28Advanced-Nagios-Plugins-Collection%29/details
http://exchange.nagios.org/directory/Plugins/Clustering-and-High-2DAvailability/check_hadoop_mapreduce_nodes-2Epl-%28Advanced-Nagios-Plugins-Collection%29/details
http://exchange.nagios.org/directory/Plugins/Clustering-and-High-2DAvailability/check_hadoop_mapreduce_nodes-2Epl-%28Advanced-Nagios-Plugins-Collection%29/details
http://exchange.nagios.org/directory/Plugins/Clustering-and-High-2DAvailability/check_hadoop_mapreduce_nodes-2Epl-%28Advanced-Nagios-Plugins-Collection%29/details

MapReduce Checks

[50]

• Number of alive nodes: This is used to check the number of nodes that are
alive and talking to JobTracker:
define command{
 command_name check_alive_nodes
 command_line $PATH$/check_hadoop_mapreduce_nodes.pl -H
$HOSTADDRESS$ -P $PORT$ -n $ARG2$ -w $ARG3$ -c $ARG4$
}

define host {

 use hadoop-server
 host_name jt1
 alias Remote
 Host address 192.168.0.1
 contact_groups admins
}
Service definition:

define service {

 use generic-service
 service_description mrnode_count
 contact_groups admins

 check_command check_alive_nodes
}

• Heap size of JobTracker: Checks for the heap size used by JobTracker:
define command{
 command_name check_jt_heap
 command_line $PATH$/check_hadoop_mapreduce_nodes.pl -H
$HOSTADDRESS$ -P $PORT$ --heap-usage -w $ARG3$ -c $ARG4$
}

define host {

 use hadoop-server
 host_name jt1
 alias Remote
 Host address 192.168.0.1
 contact_groups admins
}

Chapter 5

[51]

Service definition:

define service {

 use generic-service
 service_description jt_heap
 contact_groups admins

 check_command check_jt_heap
}

• TaskTracker check: Checks the health of TaskTracker:

define command{
 command_name check_tasktracker
 command_line $PATH$/check_hadoop_tasktracker.pl $HOSTADDRESS$
$ARG1$ $ARG1$
}

define host {

 use hadoop-server
 host_name tt1
 alias Remote
 Host address 192.168.0.11
 contact_groups admins
}
Service definition:

define service {

 use generic-service
 service_description tasktracker
 contact_groups admins

 check_command check_tasktracker!100!90
}

For further reference, refer to http://exchange.nagios.
org/directory/Plugins/Others/check-Hadoop-
tasktrackers/details.

Similarly, we can add checks for memory, CPU, and other components. You can refer
to Chapter 4, HDFS Checks, for CPU and memory checks.

http://exchange.nagios.org/directory/Plugins/Others/check-Hadoop-tasktrackers/details
http://exchange.nagios.org/directory/Plugins/Others/check-Hadoop-tasktrackers/details
http://exchange.nagios.org/directory/Plugins/Others/check-Hadoop-tasktrackers/details

MapReduce Checks

[52]

Nagios client configuration
Each node must have an NRPE plugin installed with the checks described earlier in /
usr/local/nagios/libexec and the commands specified in /usr/local/nagios/
etc/nrpe.cfg, shown as follows:

command[check_jt_heap]=/usr/local/nagios/libexec/check_hadoop_namenode.pl
-H $HOSTADDRESS$ -u $USER8$ -P $PORT$ -b $ARG2$

command[check_tasktracker]=/usr/local/nagios/libexec/check_tasktracker

Similarly, entries need to be made for each of the checks to be executed on
the nodes.

Summary
In this chapter, we looked at how to set up monitoring for MapReduce components
like JobTracker, TaskTracker, number of active nodes for running jobs, and heap
usage. In the next chapter, we will look at Hadoop metrics and visualizations
with Ganglia.

Chapter 6

[53]

Hadoop Metrics and
Visualization Using Ganglia

In this chapter, we will look at the Hadoop metrics and visualization of various
components like CPU, memory, and disk, by using Ganglia. This chapter is a build
from the initial chapters on the monitoring and installation of Ganglia. Hadoop is a
distributed platform with various services running across the cluster, which provides
many metrics to tap into the Hadoop counters and other functional parameters.

In this chapter, we will look at the metrics for various Hadoop components.

The following topics will be covered in this chapter:

• Hadoop metrics contexts
• Metrics collection under DFS context
• Metrics collection under mapred context
• Metrics collection under RPC, JVM, and other contexts
• Visualizing the metrics with Ganglia

Hadoop Metrics and Visualization Using Ganglia

[54]

Hadoop metrics
In Hadoop, there are many daemons running, such as DataNode, NameNode, and
JobTracker; each of these daemons captures a lot of information about the components
they work on. Similarly, in the YARN framework, we have ResourceManager,
NodeManager, and ApplicationManager, each of which exposes metrics, explained in
the following sections under Metrics2. For example, DataNode collects metrics such as
the number of blocks it has for advertising to the NameNode, the number of replicated
blocks, and metrics about read/writes from clients. In addition to this, there could be
metrics related to events, and so on. Hence, it is very important to gather them for the
working of the Hadoop cluster and for debugging, if something goes wrong.

Therefore, Hadoop has a metrics system for collecting all this information. There are
two versions of the metrics system, metrics and Metrics2 for Hadoop 1.x and Hadoop
2.x, respectively. The hadoop-metrics.properties and hadoop-metrics2.
properties files for each Hadoop version can be configured.

Metrics contexts
Metrics are more relevant to the maintainers of the Hadoop clusters than its
users. There might be many users who run MapReduce jobs on a cluster; they are
concerned about MapReduce Counters and not the metrics, which are daemon
specific. MapReduce counters talk about the number of mappers or reducers,
number of bytes read or written to the HDFS and non-HDFS File System, how many
spills happened, information about the shuffle phase, etc. However, for Hadoop
administrators, metrics about the daemons are of more concern, in order to better
understand the cluster.

Named contexts
Each of the daemons has a group of contexts for it. Some of the contexts, which are
supported or rather available, are listed in the following table:

Hadoop 1.x Hadoop 2.x
jvm: for Java Virtual Machine yarn: for the YARN components

dfs: for Distributed File System jvm: for Java Virtual Machine
mapred: for JobTracker and TaskTracker dfs: for Distributed File System
rpc: for Remote Procedure Calls mapred: for ResourceManager and

NodeManager
rpc: for Remote Procedure Calls

Chapter 6

[55]

The metrics are collected by many Hadoop daemons in various metrics contexts.
The daemons, which support metrics collection, are listed in the following table:

Hadoop 1.x daemons Hadoop 2.x daemons
namenode namenode
datanode secondarynamenode
jobtracker datanode
tasktracker resourcemanager
maptask nodemanager
reducetask mrappmaster

maptask
reducetask

Metrics system design
Hadoop provides a framework to collect internal events and metrics and report them
to the external system. The external system could be simply writing to a file or a tool
like Ganglia. The new Hadoop Metrics2 framework has been revamped to integrate
better with Ganglia.

The best things about the framework are the pluggable output plugins and the ability
to reconfigure it without the need to restart the daemons.

The metrics have three main parts:

• Producer: The producer is the source of metrics generation and produces
metrics for the upstream

• Consumers: They are basically the sinks of the framework, as they consume
the metrics generated by the producers

Hadoop Metrics and Visualization Using Ganglia

[56]

• Pollers: They poll the sources and deliver data to the sink or consumers

Metrics configuration
The Hadoop daemons expose runtime metrics, which can be collected using plugins.
The old Metrics1 system has been replaced by the new Metrics2 system, which
supports the following:

• Metrics collection using multiple plugins
• Better integration with JMX
• Better filters for cutting out noise

Before configuring metrics, it is important to understand which metrics and servlets
are supported by each Hadoop version. For example, the servlet at /metrics works only
with Metrics1 and the new servlet at /jmx works with both Metrics1 and Metrics2.

We need to configure a source, consumer, and poller for the framework:

• Source or producer: A metric source class must implement the following
interface:
org.apache.hadoop.metrics2.MetricsSource

• Consumer or sink: A consumer or sink must be implemented with the
following line of code:
org.apache.hadoop.metrics2.MetricsSink

Chapter 6

[57]

For example, the configuration for JobTracker sink and filter is as follows:
jobtracker.sink.file.class=org.apache.hadoop.metrics2.sink.
FileSink

jobtracker.sink.file.filename=jobtracker-metrics.out

We can filter based on source, context, and tags:

test.sink.file1.class=org.apache.hadoop.metrics2.sink.FileSink

test.sink.file0.context=foo:

Configuring Metrics2
For Hadoop version 2, which uses the YARN framework, the metrics can be
configured using hadoop-metrics2.properties, in the $HADOOP_HOME folder:

*.sink.file.class=org.apache.hadoop.metrics2.sink.FileSink
*.period=10
namenode.sink.file.filename=namenode-metrics.out
datanode.sink.file.filename=datanode-metrics.out
jobtracker.sink.file.filename=jobtracker-metrics.out
tasktracker.sink.file.filename=tasktracker-metrics.out
maptask.sink.file.filename=maptask-metrics.out
reducetask.sink.file.filename=reducetask-metrics.out

We can also script it out and use it for metrics generation, shown as follows:

namenode
[script://./bin/hadoop_metrics.sh http://192.168.1.70:50070/jmx]
disabled = 0
interval = 10
sourcetype = hadoop_metrics
index = hadoop_metrics

datanode
[script://./bin/hadoop_metrics.sh http://192.168.1.70:50075/jmx]
disabled = 0
interval = 10
sourcetype = hadoop_metrics
index = hadoop_metrics

jobtracker
[script://./bin/hadoop_metrics.sh http://192.168.1.70:50030/jmx]

Hadoop Metrics and Visualization Using Ganglia

[58]

disabled = 0
interval = 10
sourcetype = hadoop_metrics
index = hadoop_metrics

We can also use a file-based source input as follows:

[monitor://<absolute_path_to_namenode_metrics_output_file>]
disabled = 0
sourcetype=hadoop_metrics
index=hadoop_metrics

[monitor://<absolute_path_to_datanode_metrics_output_file>]
disabled = 0
sourcetype=hadoop_metrics
index=hadoop_metrics

Before using the file-based source, as mentioned previously, data must be dumped
into a file so that it can be a consumer. We can do this by simply configuring
hadoop-metrics.properties to use FileContext, as follows:

Configuration of the "dfs" context for file
dfs.class=org.apache.hadoop.metrics.file.FileContext
dfs.period=10
You'll want to change the path
dfs.fileName=/tmp/hdfsmetrics.log
Configuration of the "mapred" context for file
mapred.class=org.apache.hadoop.metrics.file.FileContext
mapred.period=10
mapred.fileName=/tmp/map_reducemetrics.log
Configuration of the "jvm" context for file
jvm.class=org.apache.hadoop.metrics.file.FileContext
jvm.period=10
jvm.fileName=/tmp/jvm_metrics.log
Configuration of the "rpc" context for file
rpc.class=org.apache.hadoop.metrics.file.FileContext
rpc.period=10
rpc.fileName=/tmp/rpc_metrics.log

The files written previously, such as rpc_metrics.log and mapreduce_metrics.
log, can act as the source for consumption by any system.

All the above discussed metrics can be a source for Ganglia or Splunk, which is
another enterprise tool for collecting metrics and logs and scales very well for
large datasets.

Chapter 6

[59]

Exploring the metrics contexts
Till now, we have seen that there are various metrics contexts such as JVM, DFS,
and RPC. Let's look at them and explore some of the examples, depicting what each
context looks like and what it logs:

• JVM context: The JVM context contains stats about JVM memory, threads,
heap memory, and so on:
jvm.metrics: hostName=dn1.cluster1.com, processName=DataNode, ses
sionId=,logError=0,logFatal=0,logInfo=159,logWarn=0, memHeapCommi
ttedM=9.4,memHeapUsedM=12.63,memNonHeapCommittedM=28.75,memNonHea
pUsedM=19.7356,threadsBlocked=0, threadsNew=0, threadsRunnable=3,
threadsTerminated=0, threadsTimedWaiting=2, threadsWaiting=1

• DFS context: The DFS context stats talk about the namenode files, capacity,
blocks, and so on:
dfs.FSNamesystem: hostName=nn1.cluster1.com, sessionId=,
BlocksTotal=440, CapacityRemainingGB=100, CapacityTotalGB=254,
CapacityUsedGB=0, FilesTotal=160, PendingReplicationBlocks=0,
ScheduledReplicationBlocks=0, TotalLoad=1,
UnderReplicatedBlocks=20

• Mapred context: This context talks about the stats for JobTracker and
TaskTracker, such as the number of jobs submitted and the number of the
tasks completed:
mapred.jobtracker: hostName=jt.cluster1.com, sessionId=,
jobs_completed=0, jobs_submitted=10, maps_completed=24, maps_
launched=26, reduces_completed=4, reduces_launched=8
mapred.tasktracker: hostName=dn1.cluster1.com, sessionId=,
mapTaskSlots=6, maps_running=2, reduceTaskSlots=2, reduces_
running=1, tasks_completed=24, tasks_failed_ping=0, tasks_failed_
timeout=0

Hadoop Ganglia integration
Ganglia is a metrics collection and a visualization tool for the enterprise and works
very well with Nagios and Hadoop. In addition to just collecting stats about CPU,
memory, and disk, other finely tuned metrics are required, which can be provided by
this framework.

Until now, we have seen that the metrics collection can be done to a file or to any
other tool like Splunk, depending upon the class interface. We can configure which
class handles the metrics update.

Hadoop Metrics and Visualization Using Ganglia

[60]

For Ganglia, we use GangliaContext, which is an implementation of
MetricsContext. Ganglia versions higher than 3.0 provide this integration
and work very well for collecting the Hadoop metrics.

In Ganglia, the metrics can be collected for NameNode, JobTracker, MapReduce
tasks, JVM, RPC, DataNodes, and the new YARN framework.

Hadoop metrics configuration for Ganglia
Firstly, we need to define a sink class, as per Ganglia version 3.1:

*.sink.ganglia.class=org.apache.hadoop.metrics2.sink.ganglia.
GangliaSink31

Secondly, we need to define the frequency of how often the source should be polled
for data. We will poll every 30 seconds as follows:

*.sink.ganglia.period=30

Define retention for the metrics:

*.sink.ganglia.dmax=jvm.metrics.threadsBlocked=70,jvm.metrics.
memHeapUsedM=40

Define the servers for various Hadoop daemons:

namenode.sink.ganglia.servers= gang.cluster1.com:8661
datanode.sink.ganglia.servers= gang.cluster1.com:8660
jobtracker.sink.ganglia.servers= gang.cluster1.com:8662
tasktracker.sink.ganglia.servers= gang.cluster1.com:8660
maptask.sink.ganglia.servers= gang.cluster1.com:8660
reducetask.sink.ganglia.servers= gang.cluster1.com:8660

Another important thing is to define the slope of Ganglia. It can take values such as
zero, positive, negative, or both positive and negative.

*.sink.ganglia.slope=jvm.metrics.gcCount=zero,jvm.metrics.
memHeapUsedM=both

The following table shows the values for the slope of the graphs:

Value Description

Zero The metrics value will always remain the same
Positive The metrics value can only increase
Negative The metrics value can only decrease
Both The metrics value can both increase and decrease

Chapter 6

[61]

Setting up Ganglia nodes
Now, let's configure Ganglia to talk to the Hadoop cluster, which spits out metrics,
by using any of the methods mentioned previously.

We have already discussed the installation of Ganglia and its important components
in Chapter 1, Introduction to Monitoring. Please refer to it if you need further details on
configuration and architecture.

Ganglia mainly has gmetad as the main daemon and gmond runs on each node in the
cluster and sends the stats to a collector as shown in the following diagram:

1. On the monitoring server: Configure the /etc/ganglia/gmetad.conf file
to include the following line:
data_source "Hadoop" 192.168.1.10

where 192.168.1.10 is the IP address of Data Collector

2. On the Data Collector node: Configure the /etc/ganglia/gmond.conf file
to include the following lines:
cluster {
 name = "Hadoop"
 owner = "unspecified"
 latlong = "unspecified"

Hadoop Metrics and Visualization Using Ganglia

[62]

 url = "unspecified"
}

udp_recv_channel {
 port = 8649
 bind = 192.168.1.10
}

3. On all nodes in the Hadoop cluster: Configure the /etc/ganglia/gmond.
conf file to contain the following lines:

cluster {
 name = "Hadoop"
 owner = "unspecified"
 latlong = "unspecified"
 url = "unspecified"
}

udp_send_channel {
 host = 192.168.1.10
 port = 8649
}

Hadoop configuration
Now, we must set up the Hadoop Configuration file to point to the Ganglia servers.

Metrics1
Update the hadoop-metrics.properties file with the following lines:

dfs.class=org.apache.hadoop.metrics.ganglia.GangliaContext31
dfs.period=10
dfs.servers=192.168.1.10:8649

mapred.class=org.apache.hadoop.metrics.ganglia.GangliaContext31
mapred.period=10
mapred.servers=192.168.1.10:8649

jvm.class=org.apache.hadoop.metrics.ganglia.GangliaContext31
jvm.period=10

Chapter 6

[63]

jvm.servers=192.168.1.10:8649

rpc.class=org.apache.hadoop.metrics.ganglia.GangliaContext31
rpc.period=10
rpc.servers=192.168.1.10:8649

ugi.class=org.apache.hadoop.metrics.ganglia.GangliaContext31
ugi.period=10
ugi.servers=192.168.1.10:8649

Metrics2
Update the hadoop-metrics2.properties file with the following lines:

namenode.sink.ganglia.class=org.apache.hadoop.metrics2.sink.ganglia.
GangliaSink31
namenode.sink.ganglia.period=30
namenode.sink.ganglia.servers=192.168.1.10:8649

datanode.sink.ganglia.class=org.apache.hadoop.metrics2.sink.ganglia.
GangliaSink31
datanode.sink.ganglia.period=30
datanode.sink.ganglia.servers=192.168.1.10:8649

jobtracker.sink.ganglia.class=org.apache.hadoop.metrics2.sink.ganglia.
GangliaSink31
jobtracker.sink.ganglia.period=30
jobtracker.sink.ganglia.servers=192.168.1.10:8649

tasktracker.sink.ganglia.class=org.apache.hadoop.metrics2.sink.
ganglia.GangliaSink31
tasktracker.sink.ganglia.period=30
tasktracker.sink.ganglia.servers=192.168.1.10:8649

maptask.sink.ganglia.class=org.apache.hadoop.metrics2.sink.ganglia.
GangliaSink31
maptask.sink.ganglia.period=30
maptask.sink.ganglia.servers=192.168.1.10:8649

reducetask.sink.ganglia.class=org.apache.hadoop.metrics2.sink.ganglia.
GangliaSink31
reducetask.sink.ganglia.period=30
reducetask.sink.ganglia.servers=192.168.1.10:8649

Hadoop Metrics and Visualization Using Ganglia

[64]

Ganglia graphs
Once the configuration is in place and the services have started, we can see the
metrics being collected and plotted by using the Ganglia web interface, as shown in
the following screenshot:

Let's have a look at the next screenshot:

Metrics APIs
For reporting metrics, we have a package that provides APIs for both Metrics1 and
Metrics2. It provides the flexibility to use client libraries and different modules from
within an application.

The org.apache.hadoop.metrics package
This package provides sub-packages to do the specified task:

org.apache.hadoop.metrics.spi

The abstract Server Provider Interface package. Those wishing to integrate the
metrics API with a particular metrics client library should extend this package:

org.apache.hadoop.metrics.file

Chapter 6

[65]

An implementation package that writes the metric data to a file or sends it to the
standard output stream:

org.apache.hadoop.metrics.ganglia

An implementation package that sends metrics data to Ganglia.

The new Metrics2 provides a lot more packages for the implementation.

The org.apache.hadoop.metrics2 package
• org.apache.hadoop.metrics2.annotation: This is the public annotation

that interfaces for simpler metrics instrumentation.
• org.apache.hadoop.metrics2.filter: This is the built-in metrics filter that

includes implementations such as GlobFilter and RegexFilter.
• org.apache.hadoop.metrics2.source: These are the built-in metrics that

include source implementations such as JvmMetrics.
• org.apache.hadoop.metrics2.sink: These are the built-in metrics that

include sink implementations such as FileSink.
• org.apache.hadoop.metrics2.util: These are the general utilities for

implementing metrics sinks and so on, including the MetricsCache.

Summary
In this chapter, we looked at how to do metrics collections, the different metrics
contexts and their groups, and the package APIs for integration with Ganglia for
graphing the metrics. In the next chapter, we will look at the monitoring of some of
the other components of Hadoop, such as Hive and HBase, and some performance
improvement tips and tuning.

[67]

Hive, HBase, and Monitoring
Best Practices

In this chapter, we will look at the monitoring and metrics collection for Hive, HBase,
and many more. In addition to this, we will look at best practices for tuning Nagios
and other improvements, which will be really helpful in large enterprise setups.

The chapter is a build from the previous chapter on metrics collection and
monitoring covered in the initial chapters.

The following topics will be covered in this chapter:

• Hive monitoring
• HBase monitoring
• Metrics collections
• Tuning and improvements for large setups of clusters

Hive monitoring
In Hadoop, Apache Hive is a data warehousing tool, similar to SQL. It provides
a query layer on top of Hadoop, thus easing out the learning curve between the
traditional DBAs using SQL and the Hadoop framework.

In Apache Hive, the query language is referred to as HiveQL; it contains Metastore,
which can be embedded, implying that it is internal and stored in the default
database called derby, or stored externally in an RDMS such as MySQL. External
storage is considered a best practice, as it lets multiple users connect to Hive. In the
embedded mode, only one user can connect to the Hive prompt.

Hive, HBase, and Monitoring Best Practices

[68]

It is very important to make sure that Hive components such as Metastore or host
health are constantly monitored. There are few important things that need to be kept
track of in Hive such as the following:

• Hive Metastore health checks: Irrespective of whether Metastore is local or
remote, it is important to monitor the health of Metastore. Important things
to keep track of are as follows:

 ° Number of open file descriptors
 ° Basic checks such as client connectivity to Metastore; operations such

as create database, create table, and create partitions; dropping tables
and databases

• Hive server health check: The hosts hosting both the Hive clients and
Metastores must have basic Nagios host checks in place as discussed in
the earlier chapters. Metastore usually on MySQL must be monitored with
MySQL Nagios checks. Also, make sure to check for the high availability of
the Hive instances.

• Hive log and scratch free space: During the execution of Hive queries,
a lot of logs are generated and a lot of temporary space is consumed for
intermediate operations, which is usually referred to as temporary space; it
must be monitored using the Nagios disk space check and cleaned regularly.

Hive metrics
Apache Hive provides very basic metrics for JVM profiling, which could be handy
from the monitoring and performance aspects.

It makes sense to enable JMX when running the Hive thrift server by using the
following code snippet:

JMX_OPTS="-Dcom.sun.management.jmxremote -Dcom.sun.management.
jmxremote.authenticate=false -Dcom.sun.management.jmxremote.ssl=false
-Dcom.sun.management.jmxremote.port=8008"

With the thrift server, it actually executes hadoop jar and passes the option to JVM;
$HIVE_OPTS must be set in the hive-env.sh file.

The Java package called org.apache.hadoop.hive.common.metrics can be tapped
for Hive metrics collection.

Chapter 7

[69]

HBase monitoring
HBase is a NoSQL database designed to work very well on a distributed framework
such as Hadoop. It has the concept of master and slave servers (region servers) much
like the Hadoop architecture. Being a database and holding large amounts of data
makes its state consistent and performance optimal.

Knowing what's happening at a given time can help spot problems, diagnose
failures, and plan for expansion if needed. This can be achieved only if we have
monitoring in place and are collecting metrics, which gives us an insight into what's
going on with the system.

HBase Nagios monitoring
To monitor HBase master and region servers, there are Nagios plugins that can be
downloaded from the exchange.nagios.org website and configured to monitor the
HBase components. The plugins can be downloaded from https://github.com/
harisekhon/nagios-plugins. As discussed in the earlier chapters, each check needs
to be defined with a service on the Nagios master and a corresponding NRPE check
must be configured on the client hosts. For example, the check_hbase_tables_jsp.
pl check can be used to check for HBase connectivity and table states by using the
JSP interface of the HBase server.

In addition to this, HBase comes with a tool called hbase hbck, which provides
a lot of useful information about the state of the master and each region server.
This command lists a lot of information about the tables; we can filter out the ROOT
and META tables by using a custom plugin and use it to pull the status to Nagios.

Hive, HBase, and Monitoring Best Practices

[70]

As usual, first define a service for this in the Nagios server as follows and then
configure an NRPE check on the client side:

define service {
 use generic-service
 host_name HBase nodes
 service_description Hbase check
 check_command check_nrpe_1arg!check_hbase_state
}

On the HBase nodes, set up NRPE in the /usr/local/nagios/etc/nrpe.conf
folder, and check as follows:

command[check_hbase_state]=/usr/lib/nagios/plugins/check_hbase_state

Copy the plugin from the usr/local/nagios/libexec folder on each of the
HBase nodes.

The following screenshot shows the Nagios plugin output:

All other checks will be standard, such as checks for memory, CPU, disk, and system
load. There is a tool called Chukwa, which is a data collection system for monitoring
distributed systems. It is built on top of HDFS and MapReduce and scales very
well. It falls under the Apache Software Foundation and can be used for analyzing
and displaying data as shown in the next screenshot of load from a Chukwa graph.
Chukwa is not in included in any distribution, but it can be downloaded and
installed from https://chukwa.apache.org/.

https://chukwa.apache.org/

Chapter 7

[71]

HBase metrics
HBase provides an interface to tap into the various metrics that it provides. The
new improved Metrics2 system has a lot of metrics for looking into how the HBase
components perform. The main motivation behind any metrics collection is to
understand the behavior of the system, debug any issues, or give us a forecast
for our requirements.

The HBase master, region server has a Metrics2 system to tap into and look for
minute details in terms of its memory, CPU, and I/O parameters.

We can get metrics from many components in the case of HBase, as shown in the
following diagram:

The collection method could be as simple as writing to a file or web UI or JMX or
Ganglia. To collect metrics in any of the given forms, HBase must generate them first
by using hadoop-metrics.properties by enabling the contexts per plugin.

Hive, HBase, and Monitoring Best Practices

[72]

These contexts could be RPC, region server-based, or JVM contexts; accordingly,
the metrics will be generated either to a file or to the Ganglia gmetd daemon.

For region servers, it will show count on regions and store files and MemStore size.
On Masters, it will show the cluster counts. The RPC and JVM contexts are useful for
invocations, memory, number of threads, and so on.

The HBase stats can be collected by enabling JMX in the metrics properties file
as discussed in the earlier chapters. For HBase, we can add the following lines to
enable contexts:

hbase.class=org.apache.hadoop.metrics.spi.NullContextWithUpdateThread
hbase.period=60
hbase.class=org.apache.hadoop.metrics.ganglia.GangliaContext31
hbase.servers=hadoop-master.IP.address:8649

The IP address above will be of the gmetad server, which has been explained in the
previous chapter. Secondly, we need to enable the JMX support in the hbase-env.sh
file and restart HBase.

HBASE_JMX_OPTS="-Dcom.sun.management.jmxremote -Dcom.sun.management.
jmxremote.ssl=false"
export HBASE_MASTER_OPTS="$HBASE_JMX_OPTS -Dcom.sun.management.
jmxremote.port=10101"
export HBASE_REGIONSERVER_OPTS="$HBASE_JMX_OPTS -Dcom.sun.management.
jmxremote.port=10102"

There are various metrics collection packages for each of the components. For example,
the following table shows a few of the metrics available for a region server.

Region server metrics Description

hbase.regionserver.
compactionQueueSize

Size of the compaction queue

hbase.regionserver.
memstoreSizeMB

Total memory storage size

hbase.regionserver.regions Number of regions served by a region
server

hbase.regionserver.stores Number of stores on a region server

hbase.regionserver.storeFiles Number of open HFile files per region
server

Chapter 7

[73]

Out of the many metrics available, the most important ones are requests and
compaction queues for HBase; I/O wait and user CPU for OS; and Garbage
Collection (GC) for Java. In addition to the slow query log, there are metrics for the
slow query in the JMX context using hadoop.regionserver_rpc_slowResponse
and hadoop.regionserver_rpc_methodName.aboveOneSec, which reflect the
duration of responses that lasted for more than 1 second.

The following diagram shows the metrics collection system and the interface to the
Java packages for it.

Monitoring best practices
Until now, we have talked about monitoring and metrics collection for Hadoop
components, HBase, Hive, and many more. But, it is very important to understand
what should be collected, else we might find it difficult to manage the data collected
and extract any meaningful information from it.

It is good to enable logging, but at what level? Are we fine to log every event that is
generated? Will that be helpful to us in any way? These are the questions we need to
ask ourselves while designing a monitoring and logging system.

Some of the key points to keep in mind while designing a monitoring and metrics
collection system are as follows:

• How easily it can be scaled
• How easily we can extract information from the system
• What we should log and collect
• How long should we keep the data

Hive, HBase, and Monitoring Best Practices

[74]

We cannot log or collect all the metrics; for example, let's say we have a 200-node
cluster with HBase region servers. Let's say we collect 20 metrics per region, 500
regions live at a time, and we have around 2 million metrics emissions. If we are
capturing them in Ganglia, many RRD files will be generated. This is a waste of
resources, and until a feasible way of collecting data is developed, your Ganglia
servers will have many files to plot.

The Filter class
To address the issue discussed above, Hadoop provides a filter class, which
provides regular expressions to filter the metrics and make it more compact and
meaningful as follows:

*.source.filter.class=org.apache.hadoop.metrics2.filter.GlobFilter
.record.filter.class=${.source.filter.class}
.metric.filter.class=${.source.filter.class}

The syntax of the filter class is explained as follows:

subsystem.[sink|source].sink_name.[sources|record|metric].filter.
[include|exclude]
subsystem – daemon: hbase, yarn, hdfs, etc
sink|source – sink or source for feed
sink_name – name of sink used
sources|record|metric – level of filter to operate
include|exclude – will filter exclude or include metrics.

The filters can be applied at the level of source, record, or metrics and constructed
with regex for trimming the information generated by the metrics system.

Nagios and Ganglia best practices
To make sure that the monitoring and metrics collection system is working at the
optimal performance, it must be designed and tuned for it.

• In the case of Nagios, make sure to have a right mix of active and passive
checks for services.

• The performance of the total number of checks deployed as active checks
and the number of nodes on which they will be executed, depends upon the
resources that the Nagios server has in terms of memory and CPU cores.

• Also, the network plays an important role, as it important to understand how
bandwidth monitoring will take place.

Chapter 7

[75]

• Other best practice is to always have a hierarchy of the Nagios configuration
layouts. Make use of host groups, service, and templates and having groups
for everything makes adding nodes very easy.

• Define smart check rather than doing checks every minute. For example,
doing a disk check every minute might not make sense, as it does not grow
that often.

• Optimize plugins so as to reduce the load on the system. Use binary plugins
wherever possible or use an embedded Perl interpreter. For customer
plugins, try to provide command line arguments rather than having the
plugin fetch it during runtime.

• Use RAM disks for maintaining the state of active checks and other
temporary data, rather than writing to disk.

• Similarly for Ganglia, make sure what metrics are collected. Ganglia will
capture all the metrics thrown at it, but this does not mean that we need all
the metrics.

• The gmond daemons on each node can consume a lot of memory, so it is
important to tune all our checks and data collections.

• For Ganglia, every hostname is a new machine, therefore make sure that the
DNS resolution is fine and IP addresses do not change for machines.

Summary
In this chapter, we looked at how to monitor Hive, HBase, and their metrics
collection. We also looked at the best monitoring practices for the enterprise,
in addition to the filtering of alerts.

[77]

Index
A
Apache Hive. See Hive
Apache HTTP Server version 2.0 4

C
Chukwa

about 70
URL 70

configuration files, Nagios
cgi.cfg 7
commands.cfg 8
contacts.cfg 8
localhost.cfg 8
resource.cfg 7
nagios.cfg 7

control commands, MapReduce
about 46, 47
hadoop jobtracker -dumpConfiguration 47
hadoop queue <options> 47
yarn daemonlog -setlevel <host:port>

<name> <level> 48
yarn logs -applicationId <app Id>

<options> 47
yarn node <options> 47
yarn rmadmin -checkHealth <serviceId> 48

D
DataNode

about 19
parameters 19

derby 67
DFS context 59
DRFA (Daily Rolling File Appender) 35

F
filter class 74

G
Ganglia

about 11, 59
best practices 74, 75
components 11
download link 12
features 11
graphs 64
installing 12, 13

Ganglia Meta Daemon (gmetad) 12
Ganglia Monitoring Daemon (gmond) 11
Ganglia nodes

configuring 61
configuring, on Hadoop cluster

nodes 62
configuring, on Data Collector node 61
configuring, on monitoring server 61

Garbage Collection (GC) 73

H
Hadoop 1.0 18
Hadoop 2.0 18
Hadoop configuration

Metrics1 62
Metrics2 63
performing 62

Hadoop daemons
about 18
communication, between daemons 21, 22
DataNode 19

[78]

JobTracker 20
NameNode 18
secondary NameNode 20
TaskTracker 19
YARN daemons 20

hadoop dfsadmin -report command 38
hadoop fsck / command 38
hadoop fs -count -q / command 38
hadoop fs -dus command 38
Hadoop Ganglia integration

about 59
Ganglia nodes, setting up 61
Hadoop metrics configuration 60

Hadoop logs
about 33
error logs 33
Hadoop daemon logs 33
job logs 33
Log4j 33
logging format 33
parameters 34

Hadoop metrics 54
Hadoop metrics configuration, for Ganglia

performing 60
retention for metrics, defining 60
servers for Hadoop daemons, defining 60

HBase metrics
about 71, 72
region server metrics 72

HBase Nagios monitoring 69, 70
HDFS 38
HDFS checks

about 37, 38
Nagios client configuration 43
Nagios master configuration 39

HDFS space check 39
high availability (HA) 48
Hive

about 67
HBase monitoring 69
metrics 68
monitoring 67

Hive log and scratch free space 68
Hive Metastore health checks 68
Hive server health check 68

J
JobTracker

about 20
parameters 20

jps command 38
JVM context 59

L
logging. See system logging
logging events

accountability 30
intrusion detection 30
need for 30
problem detection 30

logging, Hadoop
about 32
audit 35
Log4j.properties 35
log level 34, 35

logging levels
about 31, 32
facilities 31
priorities 31

log management challenges, Hadoop
analysis 33
excessive logging 32
retention 33
truncation 32

M
Mapred context 59
MapReduce

control commands 46, 47
health checks 48
overview 46

MapReduce checks
about 45
Nagios client configuration 52
Nagios master configuration 48

metrics
configuring 56
consumer, configuring 56
producer, configuring 56

[79]

sink, configuring 56
source, configuring 56

Metrics2
configuring 57, 58

Metrics APIs
about 64
org.apache.hadoop.metrics2 package 65
org.apache.hadoop.metrics package 64

metrics contexts
about 54
DFS context 59
exploring 59
JVM context 59
Mapred context 59
named contexts 54

metrics system design
about 55
consumers 55
pollers 56
producer 55

mnode 39
monitoring

about 1
best practices 73, 74
need for 2

monitoring tools
BandwidthD 2
EasyNetMonitor 2
Ganglia 11
Nagios 3
NetXMS 2
Splunk 2
Zenoss 2

MRv2 47

N
Nagios

about 3
architecture 3
best practices 74, 75
configuration files 7, 8
configuring 3
download link, for plugin 39
features 3
installing 3, 4

monitoring, setting up for clients 8-11
plugins 7
URL 4
verification 7
web interface configuration 5, 6

Nagios client configuration, HDFS
checks 43

Nagios client configuration, MapReduce
checks 52

Nagios master configuration, HDFS checks
HDFS balancer, checking 40
HDFS DataNode, counting 41
HDFS replication, checking 40
HDFS space check 39
NameNode heap usage, checking 42
Zookeeper, checking 42

Nagios master configuration, MapReduce
checks

about 48, 49
heap size of JobTracker 50
JobTracker health check 49
number of alive nodes 50
TaskTracker check 51

NameNode
about 18
parameters 18

NRPE addon
URL 8

O
org.apache.hadoop.metrics2 package

about 65
org.apache.hadoop.metrics2.annotation 65
org.apache.hadoop.metrics2.filter 65
org.apache.hadoop.metrics2.sink 65
org.apache.hadoop.metrics2.source 65
org.apache.hadoop.metrics2.util 65

org.apache.hadoop.metrics package 64

S
secondary NameNode

about 20
parameters 20

[80]

system logging
about 14, 30
alerting 14
analysis 14
collection 14
facility 15
priority 15
rsyslogd daemons 15
storage 14
syslogd daemons 15
transportation 14

T
TaskTracker 19
TCO (Total Cost of Ownership) 2

Y
YARN (Yet Another Resource Negotiator)

about 23
common issues, on Hadoop cluster 24, 25
Hadoop nodes, configuring for

monitoring 27, 28
host level checks 25
Nagios server 26, 27

www.allitebooks.com

http://www.allitebooks.org

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Introduction to Monitoring
	The need for monitoring
	The monitoring tools available in the market
	Nagios
	Nagios architecture
	Installing and configuring Nagios
	Installing Nagios
	Web interface configuration
	Nagios plugins
	Verification
	Configuration files
	Set up monitoring for clients

	Ganglia
	Ganglia components
	Ganglia installation

	System logging
	Collection
	Transportation
	Storage
	Alerting and analysis
	The syslogd and rsyslogd daemons

	Summary

	Chapter 2: Hadoop Daemons
and Services
	Hadoop daemons
	NameNode
	DataNode and TaskTracker
	Secondary NameNode
	JobTracker and YARN daemons
	The communication between daemons

	YARN framework
	Common issues faced on Hadoop cluster
	Host level checks
	Nagios server
	Configuring Hadoop nodes for monitoring

	Summary

	Chapter 3: Hadoop Logging
	The need for logging events
	System logging
	Logging levels
	Logging in Hadoop
	Hadoop logs
	Hadoop log level
	Hadoop audit

	Summary

	Chapter 4: HDFS Checks
	HDFS overview
	Nagios master configuration
	The Nagios client configuration
	Summary

	Chapter 5: MapReduce Checks
	MapReduce overview
	MapReduce control commands
	MapReduce health checks
	Nagios master configuration
	Nagios client configuration
	Summary

	Chapter 6: Hadoop Metrics and Visualization Using Ganglia
	Hadoop metrics
	Metrics contexts
	Named contexts

	Metrics system design
	Metrics configuration
	Configuring Metrics2
	Exploring the metrics contexts
	Hadoop Ganglia integration
	Hadoop metrics configuration for Ganglia
	Setting up Ganglia nodes

	Hadoop configuration
	Metrics1
	Metrics2

	Ganglia graphs
	Metrics APIs
	The org.apache.hadoop.metrics package
	The org.apache.hadoop.metrics2 package

	Summary

	Chapter 7: Hive, HBase, and Monitoring Best Practices
	Hive monitoring
	Hive metrics
	HBase monitoring

	HBase Nagios monitoring
	HBase metrics
	Monitoring best practices
	The Filter class
	Nagios and Ganglia best practices
	Summary

	Index

