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Preface
Welcome to the book you will want to have by your side when you cross the door of a new 
consulting gig or take on a new Natural Language Processing (NLP) problem. This book starts 
as a private repository of LingPipe recipes that Baldwin continually referred to when facing 
repeated but twitchy NLP problems with system building. We are an open source company  
but the code never merited sharing. Now they are shared.

Honestly, the LingPipe API is an intimidating and opaque edifice to code against like any rich 
and complex Java API. Add in the "black arts" quality needed to get NLP systems working and 
we have the perfect conditions to satisfy the need for a recipe book that minimizes theory  
and maximizes the practicality of getting the job done with best practices sprinkled in from  
20 years in the business.

This book is about getting the job done; damn the theory! Take this book and build the next 
generation of NLP systems and send us a note about what you did.

LingPipe is the best tool on the planet to build NLP systems with; this book is the way to use it.

What this book covers
Chapter 1, Simple Classifiers, explains that a huge percentage of NLP problems are actually 
classification problems. This chapter covers very simple but powerful classifiers based on 
character sequences and then brings in evaluation techniques such as cross-validation and 
metrics such as precision, recall, and the always-BS-resisting confusion matrix. You get to 
train yourself on your own and download data from Twitter. The chapter ends with a simple 
sentiment example.

Chapter 2, Finding and Working with Words, is exactly as boring as it sounds but there 
are some high points. The last recipe will show you how to tokenize Chinese/Japanese/
Vietnamese languages, which doesn't have whitespaces, to help define words. We will show 
you how to wrap Lucene tokenizers, which cover all kinds of fun languages such as Arabic. 
Almost everything later in the book relies on tokenization.
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Chapter 3, Advanced Classifiers, introduces the star of modern NLP systems—logistic 
regression classifiers. 20 years of hard-won experience lurks in this chapter. We will address 
the life cycle around building classifiers and how to create training data, cheat when creating 
training data with active learning, and how to tune and make the classifiers work faster.

Chapter 4, Tagging Words and Tokens, explains that language is about words. This chapter 
focuses on ways of applying categories to tokens, which in turn drives many of the high-end 
uses of LingPipe such as entity detection (people/places/orgs in text), part-of-speech tagging, 
and more. It starts with tag clouds, which have been described as "mullet of the Internet"  
and ends with a foundational recipe for conditional random fields (CRF), which can  
provide state-of-the-art performance for entity-detection tasks. In between, we will  
address confidence-tagged words, which is likely to be a very important dimension  
of more sophisticated systems.

Chapter 5, Finding Spans in Text – Chunking, shows that text is not words alone. It is 
collections of words, usually in spans. This chapter will advance from word tagging to span 
tagging, which brings in capabilities such as finding sentences, named entities, and basal  
NPs and VPs. The full power of CRFs are addressed with discussions on feature extraction  
and tuning. Dictionary approaches are discussed as they are ways of combining chunkings.

Chapter 6, String Comparison and Clustering, focuses on comparing text with each other, 
independent of a trained classifier. The technologies range from the hugely practical 
spellchecking to the hopeful but often frustrating Latent Dirichelet Allocation (LDA) clustering 
approach. Less presumptive technologies such as single-link and complete-link clustering 
have driven major commercial successes for us. Don't ignore this chapter.

Chapter 7, Finding Coreference Between Concepts/People, lays the future but unfortunately, 
you won't get the ultimate recipe, just our best efforts so far. This is one of the bleeding edges 
of industrial and academic NLP efforts that has tremendous potential. Potential is why we 
include our efforts to help grease the way to see this technology in use.

What you need for this book
You need some NLP problems and a solid foundation in Java, a computer, and a  
developer-savvy approach.

Who this book is for
If you have NLP problems or you want to educate yourself in comment NLP issues, this book  
is for you. With some creativity, you can train yourself into being a solid NLP developer, a beast 
so rare that they are seen about as often as unicorns, with the result of more interesting job 
prospects in hot technology areas such as Silicon Valley or New York City.
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Conventions
In this book, you will find a number of styles of text that distinguish between different kinds  
of information. Here are some examples of these styles and an explanation of their meaning.

Java is a pretty awful language to put into a recipe book with a 66-character limit on lines  
for code. The overriding convention is that the code is ugly and we apologize.

Code words in text, database table names, folder names, filenames, file extensions, 
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "Once the 
string is read in from the console, then classifier.classify(input) is called, which 
returns Classification."

A block of code is set as follows:

public static List<String[]> filterJaccard(List<String[]> texts, 
TokenizerFactory tokFactory, double cutoff) {
  JaccardDistance jaccardD = new JaccardDistance(tokFactory);

When we wish to draw your attention to a particular part of a code block, the relevant lines  
or items are set in bold:

public static void consoleInputBestCategory(
BaseClassifier<CharSequence> classifier) throws IOException {
  BufferedReader reader = new BufferedReader( 
    new InputStreamReader(System.in));
  while (true) {
    System.out.println("\nType a string to be classified. " + "  
      Empty string to quit.");
    String data = reader.readLine();
    if (data.equals("")) {
      return;
    }
    Classification classification = classifier.classify(data);
    System.out.println("Best Category: " +  
      classification.bestCategory());
  }
}

Any command-line input or output is written as follows:

tar –xvzf lingpipeCookbook.tgz
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New terms and important words are shown in bold. Words that you see on the screen,  
in menus or dialog boxes for example, appear in the text like this: "Click on Create a  
new application."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this  
book—what you liked or may have disliked. Reader feedback is important for us to develop 
titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,  
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing  
or contributing to a book, see our author guide on www.packtpub.com/authors.

Send hate/love/neutral e-mails to cookbook@lingpipe.com. We do care, we won't  
do your homework for you or prototype your startup for free, but do talk to us.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you  
to get the most from your purchase.

We do offer consulting services and even have a pro-bono (free) program as well as a start  
up support program. NLP is hard, this book is most of what we know but perhaps we can  
help more.

Downloading the example code
You can download the example code files for all Packt books you have purchased from your 
account at http://www.packtpub.com. If you purchased this book elsewhere, you can 
visit http://www.packtpub.com/support and register to have the files e-mailed directly 
to you.

All the source for the book is available at http://alias-i.com/book.html.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support
http://alias-i.com/book.html
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Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do 
happen. If you find a mistake in one of our books—maybe a mistake in the text or the  
code—we would be grateful if you would report this to us. By doing so, you can save other 
readers from frustration and help us improve subsequent versions of this book. If you find 
any errata, please report them by visiting http://www.packtpub.com/submit-errata, 
selecting your book, clicking on the errata submission form link, and entering the details of 
your errata. Once your errata are verified, your submission will be accepted and the errata will 
be uploaded on our website, or added to any list of existing errata, under the Errata section 
of that title. Any existing errata can be viewed by selecting your title from http://www.
packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt, 
we take the protection of our copyright and licenses very seriously. If you come across any 
illegal copies of our works, in any form, on the Internet, please provide us with the location 
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected  
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you  
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with  
any aspect of the book, and we will do our best to address it.

Hit http://lingpipe.com and go to our forum for the best place to get questions 
answered and see if you have a solution already.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/support
http://www.packtpub.com/support
http://lingpipe.com
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Simple Classifiers

In this chapter, we will cover the following recipes:

ff Deserializing and running a classifier

ff Getting confidence estimates from a classifier

ff Getting data from the Twitter API

ff Applying a classifier to a .csv file

ff Evaluation of classifiers – the confusion matrix

ff Training your own language model classifier

ff How to train and evaluate with cross validation

ff Viewing error categories – false positives

ff Understanding precision and recall

ff How to serialize a LingPipe object – classifier example

ff Eliminate near duplicates with the Jaccard distance

ff How to classify sentiment – simple version
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Introduction
This chapter introduces the LingPipe toolkit in the context of its competition and then dives 
straight into text classifiers. Text classifiers assign a category to text, for example, they assign 
the language to a sentence or tell us if a tweet is positive, negative, or neutral in sentiment. 
This chapter covers how to use, evaluate, and create text classifiers based on language models. 
These are the simplest machine learning-based classifiers in the LingPipe API. What makes 
them simple is that they operate over characters only—later, classifiers will have notions of 
words/tokens and even more. However, don't be fooled, character-language models are ideal 
for language identification, and they were the basis of some of the world's earliest commercial 
sentiment systems.

This chapter also covers crucial evaluation infrastructure—it turns out that almost everything 
we do turns out to be a classifier at some level of interpretation. So, do not skimp on the 
power of cross validation, definitions of precision/recall, and F-measure.

The best part is that you will learn how to programmatically access Twitter data to train up  
and evaluate your own classifiers. There is a boring bit concerning the mechanics of reading 
and writing LingPipe objects from/to disk, but other than that, this is a fun chapter. The goal  
of this chapter is to get you up and running quickly with the basic care and feeding of 
machine-learning techniques in the domain of natural language processing (NLP).

LingPipe is a Java toolkit for NLP-oriented applications. This book will show you how to solve 
common NLP problems with LingPipe in a problem/solution format that allows developers to 
quickly deploy solutions to common tasks.

LingPipe and its installation
LingPipe 1.0 was released in 2003 as a dual-licensed open source NLP Java library.  
At the time of writing this book, we are coming up on 2000 hits on Google Scholar and  
have thousands of commercial installs, ranging from universities to government agencies  
to Fortune 500 companies.

Current licensing is either AGPL (http://www.gnu.org/licenses/agpl-3.0.html)  
or our commercial license that offers more traditional features such as indemnification and 
non-sharing of code as well as support.

Projects similar to LingPipe
Nearly all NLP projects have awful acronyms so we will lay bare our own. LingPipe is the short 
form for linguistic pipeline, which was the name of the cvs directory in which Bob Carpenter 
put the initial code.

http://www.gnu.org/licenses/agpl-3.0.html
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LingPipe has lots of competition in the NLP space. The following are some of the more popular 
ones with a focus on Java:

ff NLTK: This is the dominant Python library for NLP processing.

ff OpenNLP: This is an Apache project built by a bunch of smart folks.

ff JavaNLP: This is a rebranding of Stanford NLP tools, again built by a bunch  
of smart folks.

ff ClearTK: This is a University of Boulder toolkit that wraps lots of popular machine 
learning frameworks.

ff DkPro: Technische Universität Darmstadt from Germany produced this UIMA-based 
project that wraps many common components in a useful manner. UIMA is a common 
framework for NLP.

ff GATE: GATE is really more of a framework than competition. In fact, LingPipe 
components are part of their standard distribution. It has a nice graphical "hook the 
components up" capability.

ff Learning Based Java (LBJ): LBJ is a special-purpose programming language based 
on Java, and it is geared toward machine learning and NLP. It was developed at the 
Cognitive Computation Group of the University of Illinois at Urbana Champaign.

ff Mallet: This name is the short form of MAchine Learning for LanguagE Toolkit. 
Apparently, reasonable acronym generation is short in supply these days. Smart  
folks built this too.

Here are some pure machine learning frameworks that have broader appeal but are not 
necessarily tailored for NLP tasks:

ff Vowpal Wabbit: This is very focused on scalability around Logistic Regression,  
Latent Dirichelet Allocation, and so on. Smart folks drive this.

ff Factorie: It is from UMass, Amherst and an alternative offering to Mallet. Initially it 
focused primarily on graphic models, but now it also supports NLP tasks.

ff Support Vector Machine (SVM): SVM light and libsvm are very popular SVM 
implementations. There is no SVM implementation in LingPipe, because logistic 
regression does this as well.

So, why use LingPipe?
It is very reasonable to ask why choose LingPipe with such outstanding free competition 
mentioned earlier. There are a few reasons:

ff Documentation: The class-level documentation in LingPipe is very thorough. If the 
work is based on academic work, that work is cited. Algorithms are laid out, the 
underlying math is explained, and explanations are precise. What the documentation 
lacks is a "how to get things done" perspective; however, this is covered in this book.



Simple Classifiers

10

ff Enterprise/server optimized: LingPipe is designed from the ground up for server 
applications, not for command-line usage (though we will be using the command line 
extensively throughout the book).

ff Coded in the Java dialect: LingPipe is a native Java API that is designed  
according to standard Java class design principles (Joshua Bloch's Effective Java, 
by Addison-Wesley), such as consistency checks on construction, immutability, type 
safety, backward-compatible serializability, and thread safety.

ff Error handling: Considerable attention is paid to error handling through exceptions 
and configurable message streams for long-running processes.

ff Support: LingPipe has paid employees whose job is to answer your questions and 
make sure that LingPipe is doing its job. The rare bug gets fixed in under 24 hours 
typically. They respond to questions very quickly and are very willing to help people.

ff Consulting: You can hire experts in LingPipe to build systems for you. Generally, they 
teach developers how to build NLP systems as a byproduct.

ff Consistency: The LingPipe API was designed by one person, Bob Carpenter, with an 
obsession of consistency. While it is not perfect, you will find a regularity and eye to 
design that can be missing in academic efforts. Graduate students come and go, and 
the resulting contributions to university toolkits can be quite varied.

ff Open source: There are many commercial providers, but their software is a black box. 
The open source nature of LingPipe provides transparency and confidence that the 
code is doing what we ask it to do. When the documentation fails, it is a huge relief  
to have access to code to understand it better.

Downloading the book code and data
You will need to download the source code for this cookbook, with supporting models  
and data from http://alias-i.com/book.html. Untar and uncompress it using the 
following command:

tar –xvzf lingpipeCookbook.tgz

Downloading the example code
You can download the example code files for all Packt books you have 
purchased from your account at http://www.packtpub.com. If you 
purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files e-mailed directly to you.

Alternatively, your operating system might provide other ways of extracting the archive.  
All recipes assume that you are running the commands in the resulting cookbook directory.

http://alias-i.com/book.html
http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
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Downloading LingPipe
Downloading LingPipe is not strictly necessary, but you will likely want to be able to look at the 
source and have a local copy of the Javadoc.

The download and installation instructions for LingPipe can be found at http://alias-i.
com/lingpipe/web/install.html.

The examples from this chapter use command-line invocation, but it is assumed that the 
reader has sufficient development skills to map the examples to their preferred IDE/ant  
or other environment.

Deserializing and running a classifier
This recipe does two things: introduces a very simple and effective language ID classifier 
and demonstrates how to deserialize a LingPipe class. If you find yourself here from a later 
chapter, trying to understand deserialization, I encourage you to run the example program 
anyway. It will take 5 minutes, and you might learn something useful.

Our language ID classifier is based on character language models. Each language model gives 
you the probability of the text, given that it is generated in that language. The model that is 
most familiar with the text is the first best fit. This one has already been built, but later in the 
chapter, you will learn to make your own.

How to do it...
Perform the following steps to deserialize and run a classifier:

1.	 Go to the cookbook directory for the book and run the command for OSX, Unix,  
and Linux:
java -cp lingpipe-cookbook.1.0.jar:lib/lingpipe-4.1.0.jar com.
lingpipe.cookbook.chapter1.RunClassifierFromDisk

For Windows invocation (quote the classpath and use ; instead of :):
java -cp "lingpipe-cookbook.1.0.jar;lib\lingpipe-4.1.0.jar" com.
lingpipe.cookbook.chapter1.RunClassifierFromDisk

We will use the Unix style command line in this book.

http://alias-i.com/lingpipe/web/install.html
http://alias-i.com/lingpipe/web/install.html
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2.	 The program reports the model being loaded and a default, and prompts for a 
sentence to classify:
Loading: models/3LangId.LMClassifier

Type a string to be classified. Empty string to quit.

The rain in Spain falls mainly on the plain.

english

Type a string to be classified. Empty string to quit.

la lluvia en España cae principalmente en el llano.

spanish

Type a string to be classified. Empty string to quit.

スペインの雨は主に平野に落ちる。

japanese

3.	 The classifier is trained on English, Spanish, and Japanese. We have entered an 
example of each—to get some Japanese, go to http://ja.wikipedia.org/
wiki/. These are the only languages it knows about, but it will guess on any text.  
So, let's try some Arabic:
Type a string to be classified. Empty string to quit.

.لهس ىلع اساسأ عقي اينابسا يف رطملا

japanese

4.	 It thinks it is Japanese because this language has more characters than English or 
Spanish. This in turn leads that model to expect more unknown characters. All the 
Arabic characters are unknown.

5.	 If you are working with a Windows terminal, you might encounter difficulty entering 
UTF-8 characters.

How it works...
The code in the jar is cookbook/src/com/lingpipe/cookbook/chapter1/ 
RunClassifierFromDisk.java. What is happening is that a pre-built model for language 
identification is deserialized and made available. It has been trained on English, Japanese, 
and Spanish. The training data came from Wikipedia pages for each language. You can see 
the data in data/3LangId.csv. The focus of this recipe is to show you how to deserialize 
the classifier and run it—training is handled in the Training your own language model classifier 
recipe in this chapter. The entire code for the RunClassifier FromDisk.java class starts 
with the package; then it imports the start of the RunClassifierFromDisk class and the 
start of main():

package com.lingpipe.cookbook.chapter1;
import java.io.File;

http://ja.wikipedia.org/wiki/
http://ja.wikipedia.org/wiki/
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import java.io.IOException;

import com.aliasi.classify.BaseClassifier;
import com.aliasi.util.AbstractExternalizable;
import com.lingpipe.cookbook.Util;
public class RunClassifierFromDisk {
  public static void main(String[] args) throws
  IOException, ClassNotFoundException {

The preceding code is a very standard Java code, and we present it without explanation.  
Next is a feature in most recipes that supplies a default value for a file if the command line 
does not contain one. This allows you to use your own data if you have it, otherwise it will 
run from files in the distribution. In this case, a default classifier is supplied if there is no 
argument on the command line:

String classifierPath = args.length > 0 ? args[0]  
:  "models/3LangId.LMClassifier";
System.out.println("Loading: " + classifierPath);

Next, we will see how to deserialize a classifier or another LingPipe object from disk:

File serializedClassifier = new File(classifierPath);
@SuppressWarnings("unchecked")
BaseClassifier<String> classifier
  = (BaseClassifier<String>)
  AbstractExternalizable.readObject(serializedClassifier);

The preceding code snippet is the first LingPipe-specific code, where the classifier is built 
using the static AbstractExternalizable.readObject method. 

This class is employed throughout LingPipe to carry out a compilation of classes for two 
reasons. First, it allows the compiled objects to have final variables set, which supports 
LingPipe's extensive use of immutables. Second, it avoids the messiness of exposing the 
I/O methods required for externalization and deserialization, most notably, the no-argument 
constructor. This class is used as the superclass of a private internal class that does the 
actual compilation. This private internal class implements the required no-arg constructor 
and stores the object required for rea�dResolve().

The reason we use Externalizable instead of Serializable 
is to avoid breaking backward compatibility when changing any 
method signatures or member variables. Externalizable extends 
Serializable and allows control of how the object is read or written. For 
more information on this, refer to the excellent chapter on serialization in 
Josh Bloch's book, Effective Java, 2nd Edition.
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BaseClassifier<E> is the foundational classifier interface, with E being the type of 
object being classified in LingPipe. Look at the Javadoc to see the range of classifiers that 
implements the interface—there are 10 of them. Deserializing to BaseClassifier<E>  
hides a good bit of complexity, which we will explore later in the How to serialize a LingPipe 
object – classifier example recipe in this chapter.

The last line calls a utility method, which we will use frequently in this book:

Util.consoleInputBestCategory(classifier);

This method handles interactions with the command line. The code is in src/com/
lingpipe/cookbook/Util.java:

public static void consoleInputBestCategory(
BaseClassifier<CharSequence> classifier) throws IOException {
  BufferedReader reader = new BufferedReader( 
    new InputStreamReader(System.in));
  while (true) {
    System.out.println("\nType a string to be classified. "  
      + " Empty string to quit.");
    String data = reader.readLine();
    if (data.equals("")) {
      return;
    }
    Classification classification = classifier.classify(data);
    System.out.println("Best Category: " +  
      classification.bestCategory());
  }
}

Once the string is read in from the console, then classifier.classify(input) is called, 
which returns Classification. This, in turn, provides a String label that is printed out. 
That's it! You have run a classifier.

Getting confidence estimates from a 
classifier

Classifiers tend to be a lot more useful if they give more information about how confident they 
are of the classification—this is usually a score or a probability. We often threshold classifiers 
to help fit the performance requirements of an installation. For example, if it was vital that 
the classifier never makes a mistake, then we could require that the classification be very 
confident before committing to a decision.
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LingPipe classifiers exist on a hierarchy based on the kinds of estimates they provide.  
The backbone is a series of interfaces—don't freak out; it is actually pretty simple. You don't 
need to understand it now, but we do need to write it down somewhere for future reference:

ff BaseClassifier<E>: This is just your basic classifier of objects of type E.  
It has a classify() method that returns a classification, which in turn has  
a bestCategory() method and a toString() method that is of some  
informative use.

ff RankedClassifier<E> extends BaseClassifier<E>: The classify() 
method returns RankedClassification, which extends Classification 
and adds methods for category(int rank) that says what the 1st to nth 
classifications are. There is also a size() method that indicates how many 
classifications there are.

ff ScoredClassifier<E> extends RankedClassifier<E>: The returned 
ScoredClassification adds a score(int rank) method.

ff ConditionalClassifier<E> extends RankedClassifier<E>: 
ConditionalClassification produced by this has the property 
that the sum of scores for all categories must sum to 1 as accessed 
via the conditionalProbability(int rank) method and 
conditionalProbability(String category). There's more; you can read the 
Javadoc for this. This classification will be the work horse of the book when things get 
fancy, and we want to know the confidence that the tweet is English versus the tweet 
is Japanese versus the tweet is Spanish. These estimates will have to sum to 1.

ff JointClassifier<E> extends ConditionalClassifier<E>: This provides 
JointClassification of the input and category in the space of all the possible 
inputs, and all such estimates sum to 1. This is a sparse space, so values are log 
based to avoid underflow errors. We don't see a lot of use of this estimate directly  
in production.

It is obvious that there has been a great deal of thought put into the classification stack 
presented. This is because huge numbers of industrial NLP problems are handled by a 
classification system in the end.

It turns out that our simplest classifier—in some arbitrary sense of simple—produces the 
richest estimates, which are joint classifications. Let's dive in.



Simple Classifiers

16

Getting ready
In the previous recipe, we blithely deserialized to BaseClassifier<String> that hid 
all the details of what was going on. The reality is a bit more complex than suggested by 
the hazy abstract class. Note that the file on disk that was loaded is named 3LangId.
LMClassifier. By convention, we name serialized models with the type of object it will 
deserialize to, which, in this case, is LMClassifier, and it extends BaseClassifier.  
The most specific typing for the classifier is:

LMClassifier<CompiledNGramBoundaryLM, 
      MultivariateDistribution> classifier  
   = (LMClassifier <CompiledNGramBoundaryLM, 
  MultivariateDistribution>) AbstractExternalizable.readObject(new 
File(args[0]));

The cast to LMClassifier<CompiledNGramBoundaryLM, 
MultivariateDistribution> specifies the type of distribution to be 
MultivariateDistribution. The Javadoc for com.aliasi.stats.
MultivariateDistribution is quite explicit and helpful in describing what this is.

MultivariateDistribution implements a discrete 
distribution over a finite set of outcomes, numbered 
consecutively from zero.

The Javadoc goes into a lot of detail about MultivariateDistribution, but it basically 
means that we can have an n-way assignment of probabilities that sum to 1. 

The next class in the cast is for CompiledNGramBoundaryLM, which is the "memory" of 
the LMClassifier. In fact, each language gets its own. This means that English will have a 
separate language model from Spanish and so on. There are eight different kinds of language 
models that could have been used as this part of the classifier—consult the Javadoc for the 
LanguageModel interface. Each language model (LM) has the following properties:

ff The LM will provide a probability that it generated the text provided. It is robust 
against data that it has not seen before, in the sense that it won't crash or give  
a zero probability. Arabic just comes across as a sequence of unknown characters  
for our example.

ff The sum of all the possible character sequence probabilities of any length is 1  
for boundary LMs. Process LMs sum the probability to 1 over all sequences of the 
same length. Look at the Javadoc for how this bit of math is done.

ff Each language model has no knowledge of data outside of its category.
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ff The classifier keeps track of the marginal probability of the category and factors this 
into the results for the category. Marginal probability is saying that we tend to see 
two-thirds English, one-sixth Spanish, and one-sixth Japanese in Disney tweets.  
This information is combined with the LM estimates.

ff The LM is a compiled version of LanguageModel.Dynamic that we will cover  
in the later recipes that discuss training.

LMClassifier that is constructed wraps these components into a classifier.

Luckily, the interface saves the day with a more aesthetic deserialization:

JointClassifier<String> classifier = (JointClassifier<String>) 
AbstractExternalizable.readObject(new File(classifierPath));

The interface hides the guts of the implementation nicely and this is what we are going with in 
the example program.

How to do it…
This recipe is the first time we start peeling away from what classifiers can do, but first,  
let's play with it a bit:

1.	 Get your magic shell genie to conjure a command prompt with a Java interpreter  
and type:
java -cp lingpipe-cookbook.1.0.jar:lib/lingpipe-4.1.0.jar: com.
lingpipe.cookbook.chapter1.RunClassifierJoint 

2.	 We will enter the same data as we did earlier:
Type a string to be classified. Empty string to quit.

The rain in Spain falls mainly on the plain.

Rank Categ Score   P(Category|Input) log2 P(Category,Input)

0=english -3.60092 0.9999999999         -165.64233893156052

1=spanish -4.50479 3.04549412621E-13    -207.2207276413206

2=japanese -14.369 7.6855682344E-150    -660.989401136873

As described, JointClassification carries through all the classification metrics in the 
hierarchy rooted at Classification. Each level of classification shown as follows adds to 
the classifiers preceding it:

ff Classification provides the first best category as the rank 0 category.

ff RankedClassification adds an ordering of all the possible categories with a 
lower rank corresponding to greater likelihood of the category. The rank column 
reflects this ordering.

www.allitebooks.com

http://www.allitebooks.org
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ff ScoredClassification adds a numeric score to the ranked output. Note that 
scores might or might not compare well against other strings being classified 
depending on the type of classifier. This is the column labeled Score. To understand 
the basis of this score, consult the relevant Javadoc.

ff ConditionalClassification further refines the score by making it a category 
probability conditioned on the input. The probabilities of all categories will sum up to 
1. This is the column labeled P(Category|Input), which is the traditional way to 
write probability of the category given the input.

ff JointClassification adds the log2 (log base 2) probability of the input and the 
category—this is the joint probability. The probabilities of all categories and inputs will 
sum up to 1, which is a very large space indeed with very low probabilities assigned 
to any pair of category and string. This is why log2 values are used to prevent 
numerical underflow. This is the column labeled log 2 P(Category, Input), 
which is translated as the log2 probability of the category and input.

Look at the Javadoc for the com.aliasi.classify package for more information on the 
metrics and classifiers that implement them.

How it works…
The code is in src/com/lingpipe/cookbook/chapter1/RunClassifierJoint.java, 
and it deserializes to a JointClassifier<CharSequence>:

public static void main(String[] args) throws IOException, 
  ClassNotFoundException {
  String classifierPath  = args.length > 0 ? args[0] : 
    "models/3LangId.LMClassifier";
  @SuppressWarnings("unchecked") 
    JointClassifier<CharSequence> classifier 
    = (JointClassifier<CharSequence>) 
    AbstractExternalizable.readObject(new File(classifierPath));
  Util.consoleInputPrintClassification(classifier);
}

It makes a call to Util.consoleInputPrintClassification(classifier), which 
minimally differs from Util.consoleInputBestCategory(classifier), in that it uses 
the toString() method of classification to print. The code is as follows:

public static void consoleInputPrintClassification(BaseClassifier<Cha
rSequence> 
classifier) throws IOException {
  BufferedReader reader = new BufferedReader(new 
    InputStreamReader(System.in));
  while (true) {



Chapter 1

19

    System.out.println("\nType a string to be classified." + Empty 
string to quit.");
    String data = reader.readLine();
    if (data.equals("")) {
      return;
    }
    Classification classification = classifier.classify(data);
    System.out.println(classification);
  }
}

We got a richer output than we expected, because the type is Classification, but the 
toString() method will be applied to the runtime type JointClassification.

See also
ff There is detailed information in Chapter 6, Character Language Models of Text  

Analysis with LingPipe 4, by Bob Carpenter and Breck Baldwin, LingPipe Publishing 
(http://alias-i.com/lingpipe-book/lingpipe-book-0.5.pdf) on 
language models.

Getting data from the Twitter API
We use the popular twitter4j package to invoke the Twitter Search API, and search for 
tweets and save them to disk. The Twitter API requires authentication as of Version 1.1, and 
we will need to get authentication tokens and save them in the twitter4j.properties file 
before we get started.

Getting ready
If you don't have a Twitter account, go to twitter.com/signup and create an account.  
You will also need to go to dev.twitter.com and sign in to enable yourself for the 
developer account. Once you have a Twitter login, we'll be on our way to creating the Twitter 
OAuth credentials. Be prepared for this process to be different from what we are presenting. 
In any case, we will supply example results in the data directory. Let's now create the Twitter 
OAuth credentials:

1.	 Log in to dev.twitter.com.

2.	 Find the little pull-down menu next to your icon on the top bar.

3.	 Choose My Applications.

4.	 Click on Create a new application.

5.	 Fill in the form and click on Create a Twitter application.

http://alias-i.com/lingpipe-book/lingpipe-book-0.5.pdf
twitter.com/signup
dev.twitter.com
dev.twitter.com
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6.	 The next page contains the OAuth settings.

7.	 Click on the Create my access token link.

8.	 You will need to copy Consumer key and Consumer secret.

9.	 You will also need to copy Access token and Access token secret.

10.	 These values should go into the twitter4j.properties file in the  
appropriate locations. The properties are as follows:
debug=false
oauth.consumerKey=ehUOExampleEwQLQpPQ
oauth.consumerSecret=aTHUGTBgExampleaW3yLvwdJYlhWY74
oauth.accessToken=1934528880-fiMQBJCBExamplegK6otBG3XXazLv
oauth.accessTokenSecret=y0XExampleGEHdhCQGcn46F8Vx2E

How to do it...
Now, we're ready to access Twitter and get some search data using the following steps:

1.	 Go to the directory of this chapter and run the following command:
java -cp lingpipe-cookbook.1.0.jar:lib/twitter4j-core-
4.0.1.jar:lib/opencsv-2.4.jar:lib/lingpipe-4.1.0.jar com.lingpipe.
cookbook.chapter1.TwitterSearch

2.	 The code displays the output file (in this case, a default value). Supplying a path as 
an argument will write to this file. Then, type in your query at the prompt:
Writing output to data/twitterSearch.csv

Enter Twitter Query:disney

3.	 The code then queries Twitter and reports every 100 tweets found (output truncated):
Tweets Accumulated: 100

Tweets Accumulated: 200

…

Tweets Accumulated: 1500

writing to disk 1500 tweets at data/twitterSearch.csv  

This program uses the search query, searches Twitter for the term, and writes the output 
(limited to 1500 tweets) to the .csv file name that you specified on the command line or  
uses a default.
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How it works...
The code uses the twitter4j library to instantiate TwitterFactory and searches Twitter 
using the user-entered query. The start of main() at src/com/lingpipe/cookbook/
chapter1/TwitterSearch.java is:

String outFilePath = args.length > 0 ? args[0] : "data/twitterSearch.
csv";
File outFile = new File(outFilePath);
System.out.println("Writing output to " + outFile);
BufferedReader reader = new BufferedReader(new 
InputStreamReader(System.in));
System.out.print("Enter Twitter Query:");
String queryString = reader.readLine();

The preceding code gets the outfile, supplying a default if none is provided, and takes the 
query from the command line.

The following code sets up the query according to the vision of the twitter4j developers. 
For more information on this process, read their Javadoc. However, it should be fairly 
straightforward. In order to make our result set more unique, you'll notice that when we create 
the query string, we will filter out retweets using the -filter:retweets option. This is only 
somewhat effective; see the Eliminate near duplicates with the Jaccard distance recipe later 
in this chapter for a more complete solution:

Twitter twitter = new TwitterFactory().getInstance();
Query query = new Query(queryString + " -filter:retweets");  
query.setLang("en");//English
query.setCount(TWEETS_PER_PAGE);
query.setResultType(Query.RECENT);

We will get the following result:

List<String[]> csvRows = new ArrayList<String[]>();
while(csvRows.size() < MAX_TWEETS) {
  QueryResult result = twitter.search(query);
  List<Status> resultTweets = result.getTweets();
  for (Status tweetStatus : resultTweets) {
    String row[] = new String[Util.ROW_LENGTH];
    row[Util.TEXT_OFFSET] = tweetStatus.getText();
    csvRows.add(row);
  }
  System.out.println("Tweets Accumulated: " + csvRows.size());
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  if ((query = result.nextQuery()) == null) {
    break;
  }
}

The preceding snippet is a pretty standard code slinging, albeit without the usual hardening 
for external facing code—try/catch, timeouts, and retries. One potentially confusing bit is the 
use of query to handle paging through the search results—it returns null when no more 
pages are available. The current Twitter API allows a maximum of 100 results per page, so in 
order to get 1500 results, we need to rerun the search until there are no more results, or until 
we get 1500 tweets. The next step involves a bit of reporting and writing:

System.out.println("writing to disk " + csvRows.size() 
  + " tweets at " + outFilePath);
Util.writeCsvAddHeader(csvRows, outFile);

The list of tweets is then written to a .csv file using the Util.writeCsvAddHeader method:

public static void writeCsvAddHeader(List<String[]> data, File file) 
throws IOException {
  CSVWriter csvWriter = new CSVWriter 
    (new OutputStreamWriter(new 
    FileOutputStream(file),Strings.UTF8));
  csvWriter.writeNext(ANNOTATION_HEADER_ROW);
  csvWriter.writeAll(data);
  csvWriter.close();
}

We will be using this .csv file to run the language ID test in the next section.

See also
For more details on using the Twitter API and twitter4j, please go to their documentation pages:

ff http://twitter4j.org/javadoc/

ff https://dev.twitter.com/docs

Applying a classifier to a .csv file
Now, we can test our language ID classifier on the data we downloaded from Twitter.  
This recipe will show you how to run the classifier on the .csv file and will set the stage  
for the evaluation step in the next recipe.

http://twitter4j.org/javadoc/
https://dev.twitter.com/docs
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How to do it...
Applying a classifier to the .csv file is straightforward! Just perform the following steps:

1.	 Get a command prompt and run:
java -cp lingpipe-cookbook.1.0.jar:lib/lingpipe-4.1.0.jar:lib/
twitter4j-core-4.0.1.jar:lib/opencsv-2.4.jar com.lingpipe.
cookbook.chapter1.ReadClassifierRunOnCsv

2.	 This will use the default CSV file from the data/disney.csv distribution, run 
over each line of the CSV file, and apply a language ID classifier from models/ 
3LangId.LMClassifier to it:
InputText: When all else fails #Disney

Best Classified Language: english

InputText: ES INSUPERABLE DISNEY !! QUIERO VOLVER:(

Best Classified Language: Spanish

3.	 You can also specify the input as the first argument and the classifier as the  
second one.

How it works…
We will deserialize a classifier from the externalized model that was described in the previous 
recipes. Then, we will iterate through each line of the .csv file and call the classify method of 
the classifier. The code in main() is:

String inputPath = args.length > 0 ? args[0] : "data/disney.csv";
String classifierPath = args.length > 1 ? args[1] : 
  "models/3LangId.LMClassifier";
@SuppressWarnings("unchecked") BaseClassifier<CharSequence> classifier 
= (BaseClassifier<CharSequence>) AbstractExternalizable.readObject(new 
File(classifierPath));
List<String[]> lines = Util.readCsvRemoveHeader(new File(inputPath));
for(String [] line: lines) {
  String text = line[Util.TEXT_OFFSET];
  Classification classified = classifier.classify(text);
  System.out.println("InputText: " + text);
  System.out.println("Best Classified Language: " + classified.
bestCategory());
}



Simple Classifiers

24

The preceding code builds on the previous recipes with nothing particularly new. Util.
readCsvRemoveHeader, shown as follows, just skips the first line of the .csv file before 
reading from disk and returning the rows that have non-null values and non-empty strings in 
the TEXT_OFFSET position:

public static List<String[]> readCsvRemoveHeader(File file) throws 
IOException {
  FileInputStream fileIn = new FileInputStream(file);
  InputStreamReader inputStreamReader = new 
    InputStreamReader(fileIn,Strings.UTF8);
  CSVReader csvReader = new CSVReader(inputStreamReader);
  csvReader.readNext();  //skip headers
  List<String[]> rows = new ArrayList<String[]>();
  String[] row;
  while ((row = csvReader.readNext()) != null) {
    if (row[TEXT_OFFSET] == null || row[TEXT_OFFSET].equals("")) {
      continue;
    }
    rows.add(row);
  }
  csvReader.close();
  return rows;
}

Evaluation of classifiers – the confusion 
matrix

Evaluation is incredibly important in building solid NLP systems. It allows developers 
and management to map a business need to system performance, which, in turn, helps 
communicate system improvement to vested parties. "Well, uh, the system seems to be doing 
better" does not hold the gravitas of "Recall has improved 20 percent, and the specificity is 
holding well with 50 percent more training data".

This recipe provides the steps for the creation of truth or gold standard data and tells us how 
to use this data to evaluate the performance of our precompiled classifier. It is as simple as it 
is powerful.



Chapter 1

25

Getting ready
You might have noticed the headers from the output of the CSV writer and the suspiciously 
labeled column, TRUTH. Now, we get to use it. Load up the tweets we provided earlier or 
convert your data into the format used in our .csv format. An easy way to get novel data is 
to run a query against Twitter with a multilingual friendly query such as Disney, which is our 
default supplied data.

Open the CSV file and annotate the language you think the tweet is in for at least 10  
examples each of e for English and n for non-English. There is a data/disney_e_n.csv file 
in the distribution; you can use this if you don't want to deal with annotating data. If you are 
not sure about a tweet, feel free to ignore it. Unannotated data is ignored. Have a look at the 
following screenshot:

Screenshot of the spreadsheet with human annotations for English 'e' and non-English 'n'. It is known as truth data or 
gold standard data because it represents the phenomenon correctly.

Often, this data is called gold standard data, because it represents the truth. The "gold" 
in "gold standard" is quite literal. Back it up and store it with longevity in mind—it is most 
likely that it is the single-most valuable collection of bytes on your hard drive, because it is 
expensive to produce in any quantity and the cleanest articulation of what is being done. 
Implementations come and go; evaluation data lives on forever. The John Smith corpus from 
the The John Smith problem recipe, in Chapter 7, Finding Coreference Between Concepts/
People, is the canonical evaluation corpus for that particular problem and lives on as the  
point of comparison for a line of research that started in 1997. The original implementation  
is long forgotten.
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How to do it...
Perform the following steps to evaluate the classifiers:

1.	 Enter the following in the command prompt; this will run the default classifier  
on the texts in the default gold standard data. Then, it will compare the classifier's  
best category against what was annotated in the TRUTH column:
java -cp lingpipe-cookbook.1.0.jar:lib/opencsv-2.4.jar:lib/
lingpipe-4.1.0.jar com.lingpipe.cookbook.chapter1.
RunConfusionMatrix

2.	 This class will then produce the confusion matrix:
reference\response

      \e,n,

      e 11,0,

      n 1,9,

The confusion matrix is aptly named since it confuses almost everyone initially, but it is, 
without a doubt, the best representation of classifier output, because it is very difficult to 
hide bad classifier performance with it. In other words, it is an excellent BS detector. It is the 
unambiguous view of what the classifier got right, what it got wrong, and what it thought was 
the right answer.

The sum of each row represents the items that are known by truth/reference/gold standard 
to belong to the category. For English (e) there were 11 tweets. Each column represents what 
the system thought was in the same labeled category. For English (e), the system thought 11 
tweets were English and none were non-English (n). For the non-English category (n), there 
are 10 cases in truth, of which the classifier thought 1 was English (incorrectly) and 9 were 
non-English (correctly). Perfect system performance will have zeros in all the cells that are not 
located diagonally, from the top-left corner to the bottom-right corner.

The real reason it is called a confusion matrix is that it is relatively easy to see categories that 
the classifier is confusing. For example, British English and American English would likely be 
highly confusable. Also, confusion matrices scale to multiple categories quite nicely, as will be 
seen later. Visit the Javadoc for a more detailed explanation of the confusion matrix—it is well 
worth mastering.
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How it works...
Building on the code from the previous recipes in this chapter, we will focus on what is novel in 
the evaluation setup. The entirety of the code is in the distribution at src/com/lingpipe/
cookbook/chapter1/RunConfusionMatrix.java. The start of main() is shown in the 
following code snippet. The code starts by reading from the arguments that look for non-default 
CSV data and serialized classifiers. Defaults, which this recipe uses, are shown here:

String inputPath = args.length > 0 ? args[0] : 
  "data/disney_e_n.csv";
String classifierPath = args.length > 1 ? args[1] : 
  "models/1LangId.LMClassifier";

Next, the language model and the .csv data will be loaded. The method differs slightly from 
the Util.CsvRemoveHeader explanation, in that it only accepts rows that have a value in 
the TRUTH column—see src/com/lingpipe/cookbook/Util.java if this is not clear:

@SuppressWarnings("unchecked")
BaseClassifier<CharSequence> classifier  
  = (BaseClassifier<CharSequence>) AbstractExternalizable.
readObject(new File(classifierPath));

List<String[]> rows = Util.readAnnotatedCsvRemoveHeader(new 
  File(inputPath));

Next, the categories will be found:

String[] categories = Util.getCategories(rows);

The method will accumulate all the category labels from the TRUTH column. The code is 
simple and is shown here:

public static String[] getCategories(List<String[]> data) {
  Set<String> categories = new HashSet<String>();
  for (String[] csvData : data) {
    if (!csvData[ANNOTATION_OFFSET].equals("")) {
      categories.add(csvData[ANNOTATION_OFFSET]);
    }
  }
  return categories.toArray(new String[0]);
}

The code will be useful when we run arbitrary data, where the labels are not known at  
compile time.
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Then, we will set up BaseClassfierEvaluator. This requires the classifier to be evaluated. 
The categories and a boolean value that controls whether inputs are stored in the classifier 
for construction will also be set up:

boolean storeInputs = false;
BaseClassifierEvaluator<CharSequence> evaluator = new 
  BaseClassifierEvaluator<CharSequence>(classifier, categories, 
  storeInputs);

Note that the classifier can be null and specified at a later time; the categories must exactly 
match those produced by the annotation and the classifier. We will not bother configuring the 
evaluator to store the inputs, because we are not going to use this capability in this recipe. 
See the Viewing error categories – false positives recipe for an example in which the inputs 
are stored and accessed.

Next, we will do the actual evaluation. The loop will iterate over each row of the information 
in the .csv file, build a Classified<CharSequence>, and pass it off to the evaluator's 
handle() method:

for (String[] row : rows) {
  String truth = row[Util.ANNOTATION_OFFSET];
  String text = row[Util.TEXT_OFFSET];
  Classification classification = new Classification(truth);
  Classified<CharSequence> classified  
    = new Classified<CharSequence>(text,classification);
  evaluator.handle(classified);
}

The fourth line will create a classification object with the value from the truth annotation—e 
or n in this case. This is the same type as  the one BaseClassifier<E> returns for the 
bestCategory() method. There is no special type for truth annotations. The next line adds in 
the text that the classification applies to and we get a Classified<CharSequence> object.

The last line of the loop will apply the handle method to the created classified object. The 
evaluator assumes that data supplied to its handle method is a truth annotation, which is 
handled by extracting the data being classified, applying the classifier to this data, getting the 
resulting firstBest() classification, and finally noting whether the classification matches 
that of what was just constructed with the truth. This happens for each row of the .csv file.

Outside the loop, we will print out the confusion matrix with Util.
createConfusionMatrix():

System.out.println(Util.confusionMatrixToString(evaluator.
confusionMatrix()));

Examining this code is left to the reader. That's it; we have evaluated our classifier and printed 
out the confusion matrix.
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There's more...
The evaluator has a complete toString() method that is a bit of a fire hose for information 
on just how well your classifier did. Those aspects of the output will be covered in later 
recipes. The Javadoc is quite extensive and well worth reading.

Training your own language model classifier
The world of NLP really opens up when classifiers are customized. This recipe provides details 
on how to customize a classifier by collecting examples for the classifier to learn from—this is 
called training data. It is also called gold standard data, truth, or ground truth. We have some 
from the previous recipe that we will use.

Getting ready
We will create a customized language ID classifier for English and other languages. Creation  
of training data involves getting access to text data and then annotating it for the categories  
of the classifier—in this case, annotation is the language. Training data can come from a range 
of sources. Some possibilities include:

ff Gold standard data such as the one created in the preceding evaluation recipe.

ff Data that is somehow already annotated for the categories you care about. For 
example, Wikipedia has language-specific versions, which make easy pickings to  
train up a language ID classifier. This is how we created the 3LangId.
LMClassifier model.

ff Be creative—where is the data that helps guide a classifier in the right direction?

Language ID doesn't require much data to work well, so 20 tweets per language will start to 
reliably distinguish strongly different languages. The amount of training data will be driven by 
evaluation—more data generally improves performance.

The example assumes that around 10 tweets of English and 10 non-English tweets have been 
annotated by people and put in data/disney_e_n.csv.

How to do it...
In order to train your own language model classifier, perform the following steps:

1.	 Fire up a terminal and type the following:
java -cp lingpipe-cookbook.1.0.jar:lib/opencsv-2.4.jar:lib/
lingpipe-4.1.0.jar com.lingpipe.cookbook.chapter1.
TrainAndRunLMClassifier
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2.	 Then, type some English in the command prompt, perhaps, a Kurt Vonnegut quotation, 
to see the resulting JointClassification. See the Getting confidence estimates 
from a classifier recipe for the explanation of the following output:
Type a string to be classified. Empty string to quit.

So it goes.

Rank Categ Score  P(Category|Input)  log2 P(Category,Input)

0=e -4.24592987919 0.9999933712053  -55.19708842949149

1=n -5.56922173547 6.62884502334E-6 -72.39988256112824

3.	 Type in some non-English, such as the Spanish title of Borge's The Garden of the 
Forking Paths:
Type a string to be classified. Empty string to quit.

El Jardín de senderos que se bifurcan 

Rank Categ Score  P(Category|Input)  log2 P(Category,Input)

0=n -5.6612148689 0.999989087229795 -226.44859475801326

1=e -6.0733050528 1.091277041753E-5 -242.93220211249715

How it works...
The program is in src/com/lingpipe/cookbook/chapter1/
TrainAndRunLMClassifier.java; the contents of the main() method start with:

String dataPath = args.length > 0 ? args[0] : 
  "data/disney_e_n.csv";
List<String[]> annotatedData = 
  Util.readAnnotatedCsvRemoveHeader(new File(dataPath));
String[] categories = Util.getCategories(annotatedData);

The preceding code gets the contents of the .csv file and then extracts the list of  
categories that were annotated; these categories will be all the non-empty strings in  
the annotation column.

The following DynamicLMClassifier is created using a static method that requires the 
array of categories and int, which is the order of the language models. With an order of 3, 
the language model will be trained on all 1 to 3 character sequences of the text training data. 
So "I luv Disney" will produce training instances of "I", "I ", "I l", " l", " lu", "u", "uv", "luv", and 
so on. The createNGramBoundary method appends a special token to the beginning and 
end of each text sequence; this token can help if the beginnings or ends are informative for 
classification. Most text data is sensitive to beginnings/ends, so we will choose this model:

int maxCharNGram = 3;
DynamicLMClassifier<NGramBoundaryLM> classifier = 
DynamicLMClassifier.createNGramBoundary(categories,maxCharNGram);
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The following code iterates over the rows of training data and creates 
Classified<CharSequence> in the same way as shown in the Evaluation of classifiers 
– the confusion matrix recipe for evaluation. However, instead of passing the Classified 
object to an evaluation handler, it is used to train the classifier.

for (String[] row: annotatedData) {
  String truth = row[Util.ANNOTATION_OFFSET];
  String text = row[Util.TEXT_OFFSET];
  Classification classification 
    = new Classification(truth);
  Classified<CharSequence> classified =  
    new Classified<CharSequence>(text,classification);
  classifier.handle(classified);
}

No further steps are necessary, and the classifier is ready for use by the console:

Util.consoleInputPrintClassification(classifier);

There's more...
Training and using the classifier can be interspersed for classifiers based on DynamicLM.  
This is generally not the case with other classifiers such as LogisticRegression, because 
they use all the data to compile a model that can carry out classifications.

There is another method for training the classifier that gives you more control over how the 
training goes. The following is the code snippet for this:

Classification classification = new Classification(truth);
Classified<CharSequence> classified = new 
  Classified<CharSequence>(text,classification);
classifier.handle(classified);

Alternatively, we can have the same effect with:

int count = 1;
classifier.train(truth,text,count);

The train() method allows an extra degree of control for training, because it allows  
for the count to be explicitly set. As we explore LingPipe classifiers, we will often see an 
alternate way of training that allows for some additional control beyond what the handle() 
method provides.

Character-language model-based classifiers work very well for tasks where character 
sequences are distinctive. Language identification is an ideal candidate for this, but it  
can also be used for tasks such as sentiment, topic assignment, and question answering.
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See also
The Javadoc for LingPipe's classifiers are quite extensive on the underlying math that drives 
the technology.

How to train and evaluate with cross 
validation

The earlier recipes have shown how to evaluate classifiers with truth data and how to train 
with truth data but how about doing both? This great idea is called cross validation, and it 
works as follows:

1.	 Split the data into n distinct sets or folds—the standard n is 10.

2.	 For i from 1 to n:

�� Train on the n - 1 folds defined by the exclusion of fold i

�� Evaluate on fold i

3.	 Report the evaluation results across all folds i.

This is how most machine-learning systems are tuned for performance. The work flow is  
as follows:

1.	 See what the cross validation performance is.

2.	 Look at the error as determined by an evaluation metric.

3.	 Look at the actual errors—yes, the data—for insights into how the system can  
be improved.

4.	 Make some changes

5.	 Evaluate it again.

Cross validation is an excellent way to compare different approaches to a problem, try 
different classifiers, motivate normalization approaches, explore feature enhancements, 
and so on. Generally, a system configuration that shows increased performance on cross 
validation will also show increased performance on new data. What cross validation does not 
do, particularly with active learning strategies discussed later, is reliably predict performance 
on new data. Always apply the classifier to new data before releasing production systems as a 
final sanity check. You have been warned.

Cross validation also imposes a negative bias compared to a classifier trained on all possible 
training data, because each fold is a slightly weaker classifier, in that it only has 90 percent of 
the data on 10 folds.

Rinse, lather, and repeat is the mantra of building state-of-the-art NLP systems.
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Getting ready
Note how different this approach is from other classic computer-engineering approaches  
that focus on developing against a functional specification driven by unit tests. This  
process is more about refining and adjusting the code to work better as determined by  
the evaluation metrics.

How to do it...
To run the code, perform the following steps:

1.	 Get to a command prompt and type:
java -cp lingpipe-cookbook.1.0.jar:lib/opencsv-2.4.jar:lib/
lingpipe-4.1.0.jar com.lingpipe.cookbook.chapter1.RunXValidate

2.	 The result will be:
Training data is: data/disney_e_n.csv
Training on fold 0
Testing on fold 0
Training on fold 1
Testing on fold 1
Training on fold 2
Testing on fold 2
Training on fold 3
Testing on fold 3
reference\response
    \e,n,
    e 10,1,
    n 6,4,

The preceding output will make more sense in the following section.

How it works…
This recipe introduces an XValidatingObjectCorpus object that manages cross 
validation. It is used heavily in training classifiers. Everything else should be familiar  
from the previous recipes. The main() method starts with:

String inputPath = args.length > 0 ? args[0] : "data/disney_e_n.csv";
System.out.println("Training data is: " + inputPath);
List<String[]> truthData = Util.readAnnotatedCsvRemoveHeader(new 
File(inputPath));
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The preceding code gets us the data from the default or a user-entered file. The next two lines 
introduce XValidatingObjectCorpus—the star of this recipe:

int numFolds = 4;
XValidatingObjectCorpus<Classified<CharSequence>> corpus = Util.
loadXValCorpus(truthData, numFolds);

The numFolds variable controls how the data that is just loaded will be partitioned—it will be 
in four partitions in this case. Now, we will look at the Util.loadXValCorpus(truthData, 
numfolds) subroutine:

public static XValidatingObjectCorpus<Classified<CharSequence>> 
loadXValCorpus(List<String[]> rows, int numFolds) throws IOException {
  XValidatingObjectCorpus<Classified<CharSequence>> corpus  
= new XValidatingObjectCorpus<Classified<CharSequence>>(numFolds);
  for (String[] row : rows) {
    Classification classification = new 
      Classification(row[ANNOTATION_OFFSET]);
    Classified<CharSequence> classified = new 
      Classified<CharSequence>(row[TEXT_OFFSET],classification);
    corpus.handle(classified);
  }
  return corpus;
}

XValidatingObjectCorpus<E> constructed will contain all the truth data in the form of 
Objects E. In this case, we are filling the corpus with the same object used to train and 
evaluate in the previous recipes in this chapter—Classified<CharSequence>. This will be 
handy, because we will be using the objects to both train and test our classifier. The numFolds 
parameter specifies how many partitions of the data to make. It can be changed later.

The following for loop should be familiar, in that, it should iterate over all the annotated 
data and creates the Classified<CharSequence> object before applying the corpus.
handle() method, which adds it to the corpus. Finally, we will return the corpus. It is worth 
taking a look at the Javadoc for XValidatingObjectCorpus<E> if you have any questions.

Returning to the body of main(), we will permute the corpus to mix the data, get the 
categories, and set up BaseClassifierEvaluator<CharSequence> with a null value 
where we supplied a classifier in a previous recipe:

corpus.permuteCorpus(new Random(123413));
String[] categories = Util.getCategories(truthData);
boolean storeInputs = false;
BaseClassifierEvaluator<CharSequence> evaluator  
= new BaseClassifierEvaluator<CharSequence>(null, categories, 
storeInputs);
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Now, we are ready to do the cross validation:

int maxCharNGram = 3;
for (int i = 0; i < numFolds; ++i) {
  corpus.setFold(i);
  DynamicLMClassifier<NGramBoundaryLM> classifier = 
    DynamicLMClassifier.createNGramBoundary(categories, 
    maxCharNGram);
  System.out.println("Training on fold " + i);
  corpus.visitTrain(classifier);
  evaluator.setClassifier(classifier);
  System.out.println("Testing on fold " + i);
  corpus.visitTest(evaluator);
}

On each iteration of the for loop, we will set which fold is being used, which, in turn, will 
select the training and testing partition. Then, we will construct DynamicLMClassifier and 
train it by supplying the classifier to corpus.visitTrain(classifier). Next, we will set 
the evaluator's classifier to the one we just trained. The evaluator is passed to the corpus.
visitTest(evaluator) method where the contained classifier is applied to the test data 
that it was not trained on. With four folds, 25 percent of the data will be test data at any given 
iteration, and 75 percent of the data will be training data. Data will be in the test partition 
exactly once and three times in the training. The training and test partitions will never contain 
the same data unless there are duplicates in the data.

Once the loop has finished all iterations, we will print a confusion matrix discussed in the 
Evaluation of classifiers – the confusion matrix recipe:

System.out.println(
  Util.confusionMatrixToString(evaluator.confusionMatrix()));

There's more…
This recipe introduces quite a few moving parts, namely, cross validation and a corpus object 
that supports it. The ObjectHandler<E> interface is also used a lot; this can be confusing 
to developers not familiar with the pattern. It is used to train and test the classifier. It can 
also be used to print the contents of the corpus. Change the contents of the for loop to 
visitTrain with Util.corpusPrinter:

System.out.println("Training on fold " + i);
corpus.visitTrain(Util.corpusPrinter());
corpus.visitTrain(classifier);
evaluator.setClassifier(classifier);
System.out.println("Testing on fold " + i);
corpus.visitTest(Util.corpusPrinter());
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Now, you will get an output that looks like:

Training on fold 0

Malis?mos los nuevos dibujitos de disney, nickelodeon, cartoon, 
etc, no me gustannn:n

@meeelp mas que venha um filhinho mais fofo que o pr?prio pai, com 
covinha e amando a Disney kkkkkkkkkkkkkkkkk:n

@HedyHAMIDI au quartier pas a Disney moi:n

I fully love the Disney Channel I do not care ?:e

The text is followed by : and the category. Printing the training/test folds is a good sanity 
check for whether the corpus is properly populated. It is also a nice glimpse into how the 
ObjectHandler<E> interface works—here, the source is from com/lingpipe/cookbook/
Util.java:

public static ObjectHandler<Classified<CharSequence>> corpusPrinter () 
{
  return new ObjectHandler<Classified<CharSequence>>() {
    @Override
    public void handle(Classified<CharSequence> e) {
      System.out.println(e.toString());
    }
  };
}

There is not much to the returned class. There is a single handle()method that just prints 
the toString() method of Classified<CharSequence>. In the context of this recipe,  
the classifier instead invokes train() on the text and classification, and the evaluator takes 
the text, runs it past the classifier, and compares the result to the truth.

Another good experiment to run is to report performance on each fold instead of all folds. 
For small datasets, you will see very large variations in performance. Another worthwhile 
experiment is to permute the corpus 10 times and see the variations in performance that 
come from different partitioning of the data.

Another issue is how data is selected for evaluation. To text process applications, it is 
important to not leak information between test data and training data. Cross validation over 
10 days of data will be much more realistic if each day is a fold rather than a 10-percent slice 
of all 10 days. The reason is that a day's data will likely be correlated, and this correlation 
will produce information about that day in training and testing, if days are allowed to be in 
both train and test. When evaluating the final performance, always select data from after the 
training data epoch if possible, to better emulate production environments where the future is 
not known.
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Viewing error categories – false positives
We can achieve the best possible classifier performance by examining the errors and making 
changes to the system. There is a very bad habit among developers and machine-learning 
folks to not look at errors, particularly as systems mature. Just to be clear, at the end of a 
project, the developers responsible for tuning the classifier should be very familiar with the 
domain being classified, if not expert in it, because they have looked at so much data while 
tuning the system. If the developer cannot do a reasonable job of emulating the classifiers 
that you are tuning, then you are not looking at enough data.

This recipe performs the most basic form of looking at what the system got wrong in the  
form of false positives, which are examples from training data that the classifier assigned  
to a category, but the correct category was something else.

How to do it...
Perform the following steps in order to view error categories using false positives:

1.	 This recipe extends the previous How to train and evaluate with cross validation 
recipe by accessing more of what the evaluation class provides. Get a command 
prompt and type:
java -cp lingpipe-cookbook.1.0.jar:lib/opencsv-2.4.jar:lib/
lingpipe-4.1.0.jar com.lingpipe.cookbook.chapter1.
ReportFalsePositivesOverXValidation

2.	 This will result in:
Training data is: data/disney_e_n.csv

reference\response

          \e,n,

         e 10,1,

         n 6,4,

False Positives for e

Malisímos los nuevos dibujitos de disney, nickelodeon, cartoon, 
etc, no me gustannn : n

@meeelp mas que venha um filhinho mais fofo que o próprio pai, com 
covinha e amando a Disney kkkkkkkkkkkkkkkkk : n

@HedyHAMIDI au quartier pas a Disney moi : n

@greenath_ t'as de la chance d'aller a Disney putain j'y ai jamais 
été moi. : n

www.allitebooks.com

http://www.allitebooks.org
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Prefiro gastar uma baba de dinheiro pra ir pra cancun doq pra 
Disney por exemplo : n

ES INSUPERABLE DISNEY !! QUIERO VOLVER:( : n

False Positives for n

request now "let's get tricky" by @bellathorne and @ROSHON on @
radiodisney!!! just call 1-877-870-5678 or at http://t.co/
cbne5yRKhQ!! <3 : e

3.	 The output starts with a confusion matrix. Then, we will see the actual six instances 
of false positives for p from the lower left-hand side cell of the confusion matrix 
labeled with the category that the classifier guessed. Then, we will see false positives 
for n, which is a single example. The true category is appended with :, which is 
helpful for classifiers that have more than two categories.

How it works…
This recipe is based on the previous one, but it has its own source in com/lingpipe/
cookbook/chapter1/ReportFalsePositivesOverXValidation.java. There are  
two differences. First, storeInputs is set to true for the evaluator:

boolean storeInputs = true;
BaseClassifierEvaluator<CharSequence> evaluator = new BaseClassifierEv
aluator<CharSequence>(null, categories, storeInputs);

Second, a Util method is added to print false positives:

for (String category : categories) {
  Util.printFalsePositives(category, evaluator, corpus);
}

The preceding code works by identifying a category of focus—e or English tweets—and 
extracting all the false positives from the classifier evaluator. For this category, false positives 
are tweets that are non-English in truth, but the classifier thought they were English. The 
referenced Util method is as follows:

public static <E> void printFalsePositives(String category, 
BaseClassifierEvaluator<E> evaluator, Corpus<ObjectHandler<Classified
<E>>> corpus) throws IOException {
  final Map<E,Classification> truthMap = new 
    HashMap<E,Classification>();
  corpus.visitCorpus(new ObjectHandler<Classified<E>>() {
    @Override
    public void handle(Classified<E> data) {
      truthMap.put(data.getObject(),data.getClassification());
    }
  });
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The preceding code takes the corpus that contains all the truth data and populates 
Map<E,Classification> to allow for lookup of the truth annotation, given the input.  
If the same input exists in two categories, then this method will not be robust but will  
record the last example seen:

List<Classified<E>> falsePositives = evaluator.
falsePositives(category);
System.out.println("False Positives for " + category);
for (Classified<E> classified : falsePositives) {
  E data = classified.getObject();
  Classification truthClassification = truthMap.get(data);
  System.out.println(data + " : " + 
    truthClassification.bestCategory());
  }
}

The code gets the false positives from the evaluator and then iterates over all them with a 
lookup into truthMap built in the preceding code and prints out the relevant information.  
There are also methods to get false negatives, true positives, and true negatives in evaluator.

The ability to identify mistakes is crucial to improving performance. The advice seems obvious, 
but it is very common for developers to not look at mistakes. They will look at system output 
and make a rough estimate of whether the system is good enough; this does not result in  
top-performing classifiers.

The next recipe works through more evaluation metrics and their definition.

Understanding precision and recall
The false positive from the preceding recipe is one of the four possible error categories.  
All the categories and their interpretations are as follows:

ff For a given category X:

�� True positive: The classifier guessed X, and the true category is X

�� False positive: The classifier guessed X, but the true category is a category 
that is different from X

�� True negative: The classifier guessed a category that is different from X,  
and the true category is different from X

�� False negative: The classifier guessed a category different from X, but the 
true category is X
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With these definitions in hand, we can define the additional common evaluation metrics  
as follows:

ff Precision for a category X is true positive / (false positive + true positive)

�� The degenerate case is to make one very confident guess for 100 percent 
precision. This minimizes the false positives but will have a horrible recall.

ff Recall or sensitivity for a category X is true positive / (false negative + true positive)

�� The degenerate case is to guess all the data as belonging to category  
X for 100 percent recall. This minimizes false negatives but will have  
horrible precision.

ff Specificity for a category X is true negative / (true negative + false positive)

�� The degenerate case is to guess that all data is not in category X.

The degenerate cases are provided to make clear what the metric is focused on. There 
are metrics such as f-measure that balance precision and recall, but even then, there is 
no inclusion of true negatives, which can be highly informative. See the Javadoc at com.
aliasi.classify.PrecisionRecallEvaluation for more details on evaluation.

ff In our experience, most business needs map to one of the three scenarios:

ff High precision / high recall: The language ID needs to have both good coverage 
and good accuracy; otherwise, lots of stuff will go wrong. Fortunately, for distinct 
languages where a mistake will be costly (such as Japanese versus English or English 
versus Spanish), the LM classifiers perform quite well.

ff High precision / usable recall: Most business use cases have this shape. For 
example, a search engine that automatically changes a query if it is misspelled better 
not make lots of mistakes. This means it looks pretty bad to change "Breck Baldwin" 
to "Brad Baldwin", but no one really notices if  "Bradd Baldwin" is not corrected.

ff High recall / usable precision: Intelligence analysis looking for a particular needle 
in a haystack will tolerate a lot of false positives in support of finding the intended 
target. This was an early lesson from our DARPA days.

How to serialize a LingPipe object – 
classifier example

In a deployment situation, trained classifiers, other Java objects with complex configuration,  
or training are best accessed by deserializing them from a disk. The first recipe did exactly this 
by reading in LMClassifier from the disk with AbstractExternalizable. This recipe 
shows how to get the language ID classifier written out to the disk for later use.
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Serializing DynamicLMClassifier and reading it back in results in a different class, which 
is an instance of LMClassifier that performs the same as the one just trained except 
that it can no longer accept training instances because counts have been converted to log 
probabilities and the backoff smoothing arcs are stored in suffix trees. The resulting classifier 
is much faster.

In general, most of the LingPipe classifiers, language models, and hidden Marcov models 
(HMM) implement both the Serializable and Compilable interfaces.

Getting ready
We will work with the same data as we did in the Viewing error categories – false  
positives recipe.

How to do it...
Perform the following steps to serialize a LingPipe object:

1.	 Go to the command prompt and convey:
java -cp lingpipe-cookbook.1.0.jar:lib/opencsv-2.4.jar:lib/
lingpipe-4.1.0.jar com.lingpipe.cookbook.chapter1.
TrainAndWriteClassifierToDisk

2.	 The program will respond with the default file values for input/output:
Training on data/disney_e_n.csv

Wrote model to models/my_disney_e_n.LMClassifier

3.	 Test if the model works by invoking the Deserializing and running a classifier recipe 
while specifying the classifier file to be read in:
java -cp lingpipe-cookbook.1.0.jar:lib/lingpipe-4.1.0.jar com.
lingpipe.cookbook.chapter1.LoadClassifierRunOnCommandLine models/
my_disney_e_n.LMClassifier

4.	 The usual interaction follows:
Type a string to be classified. Empty string to quit.

The rain in Spain

Best Category: e 

How it works…
The contents of main() from src/com/lingpipe/cookbook/chapter1/ 
TrainAndWriteClassifierToDisk.java start with the materials covered in the previous 
recipes of the chapter to read the .csv files, set up a classifier, and train it. Please refer back 
to it if any code is unclear.
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The new bit for this recipe happens when we invoke the AbtractExternalizable.
compileTo() method on DynamicLMClassifier, which compiles the model and 
writes it to a file. This method is used like the writeExternal method from Java's 
Externalizable interface:

AbstractExternalizable.compileTo(classifier,outFile);

This is all you need to know folks to write a classifier to a disk.

There's more…
There is an alternate way to serialize that is amenable to more variations of data sources for 
serializations that are not based on the File class. An alternate way to write a classifier is:

FileOutputStream fos = new FileOutputStream(outFile);
ObjectOutputStream oos = new ObjectOutputStream(fos);
classifier.compileTo(oos);
oos.close();
fos.close();

Additionally, DynamicLM can be compiled without involving the disk with a static 
AbstractExternalizable.compile() method. It will be used in the following fashion:

@SuppressWarnings("unchecked")
LMClassifier<LanguageModel, MultivariateDistribution> compiledLM 
= (LMClassifier<LanguageModel, MultivariateDistribution>) 
AbstractExternalizable.compile(classifier);

The compiled version is a lot faster but does not allow further training instances.

Eliminate near duplicates with the  
Jaccard distance

It often happens that the data has duplicates or near duplicates that should be filtered. 
Twitter data has lots of duplicates that can be quite frustrating to work with even with the 
-filter:retweets option available for the search API. A quick way to see this is to sort  
the text in the spreadsheet, and tweets with common prefixes will be neighbors:
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Duplicate tweets that share a prefix

This sort only reveals shared prefixes; there are many more that don't share a prefix.  
This recipe will allow you to find other sources of overlap and threshold, the point at  
which duplicates are removed.

How to do it…
Perform the following steps to eliminate near duplicates with the Jaccard distance:

1.	 Type in the command prompt:
java -cp lingpipe-cookbook.1.0.jar:lib/opencsv-2.4.jar:lib/
lingpipe-4.1.0.jar com.lingpipe.cookbook.chapter1.
DeduplicateCsvData

2.	 You will be overwhelmed with a torrent of text:
Tweets too close, proximity 1.00

   @britneyspears do you ever miss the Disney days? and iilysm   
please follow me. kiss from Turkey #AskBritneyJean ??

  @britneyspears do you ever miss the Disney days? and iilysm 
please follow me. kiss from Turkey #AskBritneyJean ??? 

Tweets too close, proximity 0.50

  Sooo, I want to have a Disney Princess movie night....

  I just want to be a Disney Princess

3.	 Two example outputs are shown—the first is a near-exact duplicate with only a 
difference in a final ?. It has a proximity of 1.0; the next example has proximity of 
0.50, and the tweets are different but have a good deal of word overlap. Note that 
the second case does not share a prefix. 

How it works…
This recipe jumps a bit ahead of the sequence, using a tokenizer to drive the deduplication 
process. It is here because the following recipe, for sentiment, really needs deduplicated data 
to work well. Chapter 2, Finding and Working with Words, covers tokenization in detail.
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The source for main() is:

String inputPath = args.length > 0 ? args[0] : "data/disney.csv";
String outputPath = args.length > 1 ? args[1] : "data/disneyDeduped.
csv";  
List<String[]> data = Util.readCsvRemoveHeader(new File(inputPath));
System.out.println(data.size());

There is nothing new in the preceding code snippet, but the following code snippet has 
TokenizerFactory:

TokenizerFactory tokenizerFactory = new RegExTokenizerFactory("\\w+");

Briefly, the tokenizer breaks the text into text sequences defined by matching the regular 
expression \w+ (the first \ escapes the second one in the preceding code—it is a Java thing). 
It matches contiguous word characters. The string "Hi, you here??" produces tokens "Hi", 
"you", and "here". The punctuation is ignored.

Next up, Util.filterJaccard is called with a cutoff of .5, which roughly eliminates tweets 
that overlap with half their words. Then, the filter data is written to disk:

double cutoff = .5;
List<String[]> dedupedData = Util.filterJaccard(data, 
tokenizerFactory, cutoff);
System.out.println(dedupedData.size());
Util.writeCsvAddHeader(dedupedData, new File(outputPath));
}

The Util.filterJaccard() method's source is as follows:

public static List<String[]> filterJaccard(List<String[]> texts, 
TokenizerFactory tokFactory, double cutoff) {
  JaccardDistance jaccardD = new JaccardDistance(tokFactory);

In the preceding snippet, a JaccardDistance class is constructed with a tokenizer factory. 
The Jaccard distance divides the intersection of tokens from the two strings over the union of 
tokens from both strings. Look at the Javadoc for more information.

The nested for loops in the following example explore each row with every other row until 
a higher threshold proximity is found or until all data has been looked at. Do not use this for 
large datasets because it is the O(n2)algorithm. If no row is above proximity, then the row is 
added to filteredTexts:

List<String[]> filteredTexts = new ArrayList<String[]>();
for (int i = 0; i < texts.size(); ++i) {
  String targetText = texts.get(i)[TEXT_OFFSET];
  boolean addText = true;
  for (int j = i + 1; j < texts.size(); ++j ) {
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    String comparisionText = texts.get(j)[TEXT_OFFSET];
    double proximity = 
      jaccardD.proximity(targetText,comparisionText);
    if (proximity >= cutoff) {
      addText = false;
      System.out.printf(" Tweets too close, proximity %.2f\n", 
proximity);
      System.out.println("\t" + targetText);
      System.out.println("\t" + comparisionText);
      break;
    }
  }
  if (addText) {
    filteredTexts.add(texts.get(i));
  }
}
return filteredTexts;
}

There are much better ways to efficiently filter the texts at a cost of extra complexity—a  
simple reverse-word lookup index to compute an initial covering set will be vastly more 
efficient—search for a shingling text lookup for O(n) to O(n log(n)) approaches.

Setting the threshold can be a bit tricky, but looking a bunch of data should make the 
appropriate cutoff fairly clear for your needs.

How to classify sentiment – simple version
Sentiment has become the classic business-oriented classification task—what executive 
can resist an ability to know on a constant basis what positive and negative things are being 
said about their business? Sentiment classifiers offer this capability by taking text data 
and classifying it into positive and negative categories. This recipe addresses the process 
of creating a simple sentiment classifier, but more generally, it addresses how to create 
classifiers for novel categories. It is also a 3-way classifier, unlike the 2-way classifiers  
we have been working with.

Our first sentiment system was built for BuzzMetrics in 2004 using language model classifiers. 
We tend to use logistic regression classifiers now, because they tend to perform better. 
Chapter 3, Advanced Classifiers, covers logistic regression classifiers.
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How to do it…
The previous recipes focused on language ID—how do we shift the classifier over to the very 
different task of sentiment? This will be much simpler than one might think—all that needs to 
change is the training data, believe it or not. The steps are as follows:

1.	 Use the Twitter search recipe to download tweets about a topic that  
has positive/negative tweets about it. A search on disney is our example,  
but feel free to branch out. This recipe will work with the supplied CSV file,  
data/disneySentiment_annot.csv.

2.	 Load the created data/disneySentiment_annot.csv file into your spreadsheet 
of choice. There are already some annotations done.

3.	 As in the Evaluation of classifiers – the confusion matrix recipe, annotate the true 
class column for one of the three categories:

�� The p annotation stands for positive. The example is "Oh well, I love Disney 
movies. #hateonit".

�� The n annotation stands for negative. The example is "Disney really messed 
me up yo, this is not the way things are suppose to be".

�� The o annotation stands for other. The example is "Update on Downtown 
Disney. http://t.co/SE39z73vnw".

�� Leave blank tweets that are not in English, irrelevant, both positive and 
negative, or you are unsure about.

4.	 Keep annotating until the smallest category has at least 10 examples.

5.	 Save the annotations.

6.	 Run the previous recipe for cross validation, providing the annotated file's name:
java -cp lingpipe-cookbook.1.0.jar:lib/lingpipe-4.1.0.jar:lib/
opencsv-2.4.jar com.lingpipe.cookbook.chapter1.RunXValidate data/
disneyDedupedSentiment.csv

7.	 The system will then run a four-fold cross validation and print a confusion matrix. 
Look at the How to train and evaluate with cross validation recipe if you need  
further explanation:

Training on fold 0

Testing on fold 0

Training on fold 1

Testing on fold 1

Training on fold 2

Testing on fold 2

Training on fold 3
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Testing on fold 3

reference\response

    \p,n,o,

    p 14,0,10,

    n 6,0,4,

    o 7,1,37,

That's it! Classifiers are entirely dependent on training data for what they classify. More 
sophisticated techniques will bring richer features into the mix than character ngrams,  
but ultimately, the labels imposed by training data are the knowledge being imparted to  
the classifier. Depending on your view, the underlying technology is magical or astoundingly  
simple minded.

How it works...
Most developers are surprised that the only difference between language ID and sentiment 
is the labeling applied to the data for training. The language model classifier is applying an 
individual language model for each category and also noting the marginal distribution of the 
categories in the estimates.

There's more…
Classifiers are pretty dumb but very useful if they are not expected to work outside their 
capabilities. Language ID works great as a classification problem because the observed 
events are tightly tied to the classification being done—the words and characters of a 
language. Sentiment is more difficult because the observed events, in this case, are exactly 
the same as the language ID and are less strongly associated with the end classification. For 
example, the phrase "I love" is a good predictor of the sentence being English but not as clear 
a predictor that the sentiment is positive, negative, or other. If the tweet is "I love Disney", then 
we have a positive statement. If the tweet is "I love Disney, not", then it is negative. Addressing 
the complexities of sentiment and other more complex phenomenon tends to be resolved in 
the following ways:

ff Create more training data. Even relatively dumb techniques such as language model 
classifiers can perform very well given enough data. Humanity is just not that creative 
in ways to gripe about, or praise, something. The Train a little, learn a little – active 
learning recipe of Chapter 3, Advanced Classifiers, presents a clever way to do this.

ff Use fancier classifiers that in turn use fancier features (observations) about the  
data to get the job done. Look at the logistic regression recipes for more information. 
For the negation case, a feature that looked for a negative phrase in the tweet might 
help. This could get arbitrarily sophisticated.
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Note that a more appropriate way to take on the sentiment problem can be to create a binary 
classifier for positive and not positive and a binary classifier for negative and not negative.  
The classifiers will have separate training data and will allow for a tweet to be both positive 
and negative.

Common problems as a classification problem
Classifiers form the foundations of many industrial NLP problems. This recipe goes through 
the process of encoding some common problems into a classification-based solution. We will 
pull from real-world examples that we have built whenever possible. You can think of them as 
mini recipes.

Topic detection
Problem: Take footnotes from financial documents (10Qs and 10Ks) and determine whether 
an eXtensible Business Reporting Language (XBRL) category is applied like "forward looking 
financial statements". Turns out that foot notes are where all the action happens. For example, 
is the footnote referring to retired debt? Performance needed to be greater than 90 percent 
precision with acceptable recall.

Solution: This problem closely mirrors how we approached language ID and sentiment. 
The actual solution involves a sentence recognizer that detects the footnotes—see Chapter 
5, Finding Spans in Text – Chunking—and then creates training data for each of the XBRL 
categories. We used the confusion matrix output to help refine the XBRL categories that  
the system was struggling to distinguish. Merging categories was a possibility, and we did 
merge them. This system is based on language model classifiers. If done now, we would use 
logistic regression.

Question answering
Problem: Identify FAQs in a large dataset of text-based customer support data and develop the 
answers and ability to automatically deliver answers with 90 percent precision.

Solution: Perform clustering analysis over logs to find FAQs—see Chapter 6, String Comparison 
and Clustering. This will result in a very large set of FAQs that are really Infrequently Asked 
Questions (IAQs); this means that the prevalence of an IAQ can be as low as 1/20000. 
Positive data is fairly easy to find for a classifier, but negative data is too expensive to create 
on any kind of balanced distribution—for every positive case, one will expect 19999 negative 
case. The solution is to assume that any random sample of a large size will contain very few 
positives and to just use this as negative data. A refinement is to run a trained classifier over 
the negatives to find high-scoring cases and annotate them to pull out the positives that might 
be found.
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Degree of sentiment
Problem: Classify a sentiment on a scale of 1 to 10 based on the degree of negativeness  
to positiveness.

Solution: Even though our classifiers provide a score that can be mapped on a 1-to-10 scale, 
this is not what the background computation is doing. To correctly map to a degree scale, one 
will have to annotate the distinction in training data—this tweet is a 1, this tweet is a 3, and so 
on. We will then train a 10-way classifier, and the first best category should, in theory, be the 
degree. We write in theory because despite regular customer requests for this, we have never 
found a customer that was willing to support the required annotation.

Non-exclusive category classification
Problem: The desired classifications are not mutually exclusive. A tweet can say both positive 
and negative things, for example, "Loved Mickey, hated Pluto". Our classifiers assume that 
categories are mutually exclusive.

Solution: We regularly use multiple binary classifiers in place of one n-way or multinomial 
classifiers. The classifiers will be trained for positive/non-positive and negative/non-negative. 
A tweet can then be annotated n and p.

Person/company/location detection
Problem: Detect mentions of people in text data.

Solution: Believe it or not, this breaks down into a word classification problem. See Chapter 6, 
String Comparison and Clustering.

It is generally fruitful to look at any novel problem as a classification problem, even if classifiers 
don't get used as the underlying technology. It can help clarify what the underlying technology 
actually needs to do.





2
Finding and Working 

with Words

In this chapter, we cover the following recipes:

ff Introduction to tokenizer factories – finding words in a character stream

ff Combining tokenizers – lowercase tokenizer

ff Combining tokenizers – stop word tokenizers

ff Using Lucene/Solr tokenizers

ff Using Lucene/Solr tokenizers with LingPipe

ff Evaluating tokenizers with unit tests

ff Modifying tokenizer factories

ff Finding words for languages without white spaces

Introduction
An important part of building NLP systems is to work with the appropriate unit for processing. 
This chapter addresses the abstraction layer associated with the word level of processing.  
This is called tokenization, which amounts to grouping adjacent characters into meaningful 
chunks in support of classification, entity finding, and the rest of NLP.

LingPipe provides a broad range of tokenizer needs, which are not covered in this book.  
Look at the Javadoc for tokenizers that do stemming, Soundex (tokens based on what  
English words sound like), and more.
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Introduction to tokenizer factories – finding 
words in a character stream

LingPipe tokenizers are built on a common pattern of a base tokenizer that can be used 
on its own, or can be as the source for subsequent filtering tokenizers. Filtering tokenizers 
manipulate the tokens/white spaces provided by the base tokenizer. This recipe covers our 
most commonly used tokenizer, IndoEuropeanTokenizerFactory, which is good for 
languages that use the Indo-European style of punctuation and word separators—examples 
include English, Spanish, and French. As always, the Javadoc has useful information.

IndoEuropeanTokenizerFactory creates tokenizers with built-in 
support for alpha-numerics, numbers, and other common constructs in 
Indo-European languages.
The tokenization rules are roughly based on those used in MUC-6 but 
are necessarily more fine grained, because the MUC tokenizers are 
based on lexical and semantic information, such as whether a string is 
an abbreviation.

MUC-6 refers to the Message Understanding Conference that originated the idea of 
government-sponsored competitions between contractors in 1995. The informal term was 
Bake off, in reference to the Pillsbury Bake-Off that started in 1949, and one of the authors 
was a participant as postdoc in MUC-6. MUC drove much of the innovation in the evaluation  
of NLP systems.

LingPipe tokenizers are built using the LingPipe TokenizerFactory interface, which 
provides a way of invoking different types of tokenizers using the same interface. This is  
very useful in creating filtered tokenizers, which are constructed as a chain of tokenizers  
and modify their output in some way. A TokenizerFactory instance might be created 
either as a basic tokenizer, which takes simple parameters in its construction, or as a 
filtered tokenizer, which takes other tokenizer factory objects as parameters. In either case, 
an instance of TokenizerFactory has a single tokenize() method, which takes input 
as a character array, a start index, and the number of characters to process and outputs a 
Tokenizer object. The Tokenizer object represents the state of tokenizing a particular 
slice of string and provides a stream of tokens. While TokenizerFactory is thread safe 
and/or serializable, tokenizer instances are typically neither thread safe nor serializable.  
The Tokenizer object provides methods to iterate over the tokens in the string and to 
provide token positions of the tokens in the underlying text.

Getting ready
Download the JAR file and source for the book if you have not already done so.
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How to do it...
It is all pretty simple. The following are the steps to get started with tokenization:

1.	 Go to the cookbook directory and invoke the following class:
java -cp "lingpipe-cookbook.1.0.jar:lib/lingpipe-4.1.0.jar" com.
lingpipe.cookbook.chapter2.RunBaseTokenizerFactory

This will lead us to a command prompt, which asks us to type in some text:
type a sentence to see tokens and white spaces

2.	 If we type a sentence such as: It's no use growing older if you only 
learn new ways of misbehaving yourself, we will get the following output:
It's no use growing older if you only learn new ways of 
misbehaving yourself. 

Token:'It'

WhiteSpace:''

Token:'''

WhiteSpace:''

Token:'s'

WhiteSpace:' '

Token:'no'

WhiteSpace:' '

Token:'use'

WhiteSpace:' '

Token:'growing'

WhiteSpace:' '

Token:'older'

WhiteSpace:' '

Token:'if'

WhiteSpace:' '

Token:'you'

WhiteSpace:' '

Token:'only'

WhiteSpace:' '

Token:'learn'

WhiteSpace:' '

Token:'new'

WhiteSpace:' '

Token:'ways'

WhiteSpace:' '



Finding and Working with Words

54

Token:'of'

WhiteSpace:' '

Token:'misbehaving'

WhiteSpace:' '

Token:'yourself'

WhiteSpace:''

Token:'.'

WhiteSpace:' '

3.	 Examine the output and note what the tokens and white spaces are. The text is from 
the short story, The Stampeding of Lady Bastable, by Saki.

How it works...
The code is so simple that it can be included in its entirety as follows:

package com.lingpipe.cookbook.chapter2;

import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;

import com.aliasi.tokenizer.IndoEuropeanTokenizerFactory;
import com.aliasi.tokenizer.Tokenizer;
import com.aliasi.tokenizer.TokenizerFactory;

public class RunBaseTokenizerFactory {

  public static void main(String[] args) throws IOException {
    TokenizerFactory tokFactory = 
      IndoEuropeanTokenizerFactory.INSTANCE;
    BufferedReader reader = new BufferedReader( 
      new InputStreamReader(System.in));

    while (true) {
      System.out.println("type a sentence to " + "see  
        the tokens and white spaces");
      String input = reader.readLine();
      Tokenizer tokenizer = tokFactory.tokenizer 
        (input.toCharArray(), 0, input.length());
      String token = null;
      while ((token = tokenizer.nextToken()) != null) {
        System.out.println("Token:'" + token + "'");
        System.out.println("WhiteSpace:'" +  
          tokenizer.nextWhitespace() + "'");
        
      }
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    }
  }
}

This recipe starts with the creation of TokenizerFactory tokFactory 
in the first statement of the main() method. Note that a singleton 
IndoEuropeanTokenizerFactory.INSTANCE is used. The factory will produce tokenizers 
for a given string, which is evident in the line, Tokenizer tokenizer = tokFactory.
tokenizer(input.toCharArray(), 0, input.length()). The entered string is 
converted to a character array with input.toCharArray() as the first argument to the 
tokenizer method and the start and finish offsets provided into the created character array.

The resulting tokenizer provides tokens for the provided slice of character array, and 
the white spaces and tokens are printed out in the while loop. Calling the tokenizer.
nextToken() method does a few things:

ff The method returns the next token or null if there is no next token. The null then ends 
the loop; otherwise, the loop continues.

ff The method also increments the corresponding white space. There is always a white 
space with a token, but it might be the empty string.

IndoEuropeanTokenizerFactory assumes a fairly standard abstraction over characters 
that break down as follows:

ff Characters from the beginning of the char array to the first token are ignored and not 
reported as white space

ff Characters from the end of the last token to the end of the char array are reported 
as the next white space

ff White spaces can be the empty string because of two adjoining tokens—note the 
apostrophe in the output and corresponding white spaces

This means that it is not possible to reconstruct the original string necessarily if the input  
does not start with a token. Fortunately, tokenizers are easily modified for customized needs. 
We will see this later in the chapter.

There's more…
Tokenization can be arbitrarily complex. The LingPipe tokenizers are intended to cover 
most common uses, but you might need to create your own tokenizer to have fine-grained 
control, for example, Victoria's Secret with "Victoria's" as the token. Consult the source for 
IndoEuropeanTokenizerFactory if such customization is needed, to see how arbitrary 
tokenization is done here.
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Combining tokenizers – lowercase tokenizer
We mentioned in the previous recipe that LingPipe tokenizers can be basic or filtered. Basic 
tokenizers, such as the Indo-European tokenizer, don't need much in terms of parameterization, 
none at all as a matter of fact. However, filtered tokenizers need a tokenizer as a parameter. 
What we're doing with filtered tokenizers is invoking multiple tokenizers where a base tokenizer 
is usually modified by a filter to produce a different tokenizer.

LingPipe provides several basic tokenizers, such as IndoEuropeanTokenizerFactory or 
CharacterTokenizerFactory. A complete list can be found in the Javadoc for LingPipe. 
In this section, we'll show you how to combine an Indo-European tokenizer with a lowercase 
tokenizer. This is a fairly common process that many search engines implement for Indo-
European languages.

Getting ready
You will need to download the JAR file for the book and have Java and Eclipse set up so that 
you can run the example.

How to do it...
This works just the same way as the previous recipe. Perform the following steps:

1.	 Invoke the RunLowerCaseTokenizerFactory class from the command line:
java -cp "lingpipe-cookbook.1.0.jar:lib/lingpipe-4.1.0.jar" com.
lingpipe.cookbook.chapter2.RunLowerCaseTokenizerFactory.

2.	 Then, in the command prompt, let's use the following example:
type a sentence below to see the tokens and white spaces are:

This is an UPPERCASE word and these are numbers 1 2 3 4.5.

Token:'this'

WhiteSpace:' '

Token:'is'

WhiteSpace:' '

Token:'an'

WhiteSpace:' '

Token:'uppercase'

WhiteSpace:' '

Token:'word'

WhiteSpace:' '

Token:'and'

WhiteSpace:' '
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Token:'these'

WhiteSpace:' '

Token:'are'

WhiteSpace:' '

Token:'numbers'

WhiteSpace:' '

Token:'1'

WhiteSpace:' '

Token:'2'

WhiteSpace:' '

Token:'3'

WhiteSpace:' '

Token:'4.5'

WhiteSpace:''

Token:'.'

WhiteSpace:''

How it works...
You can see in the preceding output that all the tokens are converted to lowercase, including 
the word UPPERCASE, which was typed in uppercase. As this example uses an Indo-European 
tokenizer as its base tokenizer, you can see that the number 4.5 is retained as 4.5 instead of 
being broken up into 4 and 5.

The way we put tokenizers together is very simple:

public static void main(String[] args) throws IOException {
  
  TokenizerFactory tokFactory = 
    IndoEuropeanTokenizerFactory.INSTANCE;
  tokFactory = new LowerCaseTokenizerFactory(tokFactory);
  tokFactory = new WhitespaceNormTokenizerFactory(tokFactory);
  
  BufferedReader reader = new BufferedReader(new  
    InputStreamReader(System.in));
  
  while (true) {
    System.out.println("type a sentence below to see  
      the tokens and white spaces are:");
    String input = reader.readLine();
    Tokenizer tokenizer = 
      tokFactory.tokenizer(input.toCharArray(), 0, 
      input.length());
    String token = null;
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    while ((token = tokenizer.nextToken()) != null) {
      System.out.println("Token:'" + token + "'");
      System.out.println("WhiteSpace:'" + 
        tokenizer.nextWhitespace() + "'");
    }
  }
}

Here, we created a tokenizer that returns case and white space normalized tokens produced 
using an Indo-European tokenizer. The tokenizer created from the tokenizer factory is a 
filtered tokenizer that starts with the Indo-European base tokenizer, which is then modified by 
LowerCaseTokenizer to produce the lowercase tokenizer. This is then once again modified 
by WhiteSpaceNormTokenizerFactory to produce a lowercase, white space-normalized 
Indo-European tokenizer.

Case normalization is applied where the case of words doesn't matter much; for example, 
search engines often store case-normalized words in their indexes. Now, we will use  
case-normalized tokens in the upcoming examples on classifiers.

See also
ff For more details on how filtered tokenizers are built, see the Javadoc for the abstract 

class, ModifiedTokenizerFactory.

Combining tokenizers – stop word tokenizers
Similarly to the way in which we put together a lowercase and white space normalized tokenizer, 
we can use a filtered tokenizer to create a tokenizer that filters out stop words. Once again, using 
search engines as our example, we can remove commonly occurring words from our input set so 
as to normalize the text. The stop words that are typically removed convey very little information 
by themselves, although they might convey information in context.

The input is tokenized using whatever base tokenizer is set up, and then, the resulting tokens 
are filtered out by the stop tokenizer to produce a token stream that is free of the stop words 
specified when the stop tokenizer is initialized.

Getting ready
You will need to download the JAR file for the book and have Java and Eclipse set up so that 
you can run the example.
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How to do it...
As we did earlier, we will go through the steps of interacting with the tokenizer:

1.	 Invoke the RunStopTokenizerFactory class from the command line:
java -cp "lingpipe-cookbook.1.0.jar:lib/lingpipe-4.1.0.jar" com.
lingpipe.cookbook.chapter2.RunStopTokenizerFactory

2.	 Then, in the prompt, let's use the following example:
type a sentence below to see the tokens and white spaces:

the quick brown fox is jumping

Token:'quick'

WhiteSpace:' '

Token:'brown'

WhiteSpace:' '

Token:'fox'

WhiteSpace:' '

Token:'jumping'

WhiteSpace:''

3.	 Note that we lose adjacency information. In the input, we have fox is jumping, 
but the tokens came out as fox followed by jumping, because is was filtered. 
This can be a problem for token-based processes that need accurate adjacency 
information. In the Foreground- or background-driven interesting phrase detection 
recipe of Chapter 4, Tagging Words and Tokens, we will show a length-based filtering 
tokenizer that preserves adjacency.

How it works...
The stop words used in this StopTokenizerFactory filter are just a very short list of  
words, is, of, the, and to. Obviously, this list can be much longer if required. As you saw in 
the preceding output, the words the and is have been removed from the tokenized output. 
This is done with a very simple step: we instantiate StopTokenizerFactory in src/com/
lingpipe/cookbook/chapter2/RunStopTokenizerFactory.java. The relevant  
code is:

TokenizerFactory tokFactory = 
  IndoEuropeanTokenizerFactory.INSTANCE;
tokFactory = new LowerCaseTokenizerFactory(tokFactory);
Set<String> stopWords = new HashSet<String>();
stopWords.add("the");
stopWords.add("of");
stopWords.add("to");
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stopWords.add("is");

tokFactory = new StopTokenizerFactory(tokFactory, stopWords);

As we're using LowerCaseTokenizerFactory as one of the filters in the tokenizer factory, 
we can get away with the stop words that contain only lowercase words. If we want to preserve 
the case of the input tokens and continue to remove the stop words, we will need to add 
uppercase or mixed-case versions as well.

See also
ff The complete list of filtered tokenizers provided by LingPipe can be found on the 

Javadoc page at http://alias-i.com/lingpipe/docs/api/com/aliasi/
tokenizer/ModifyTokenTokenizerFactory.html

Using Lucene/Solr tokenizers
The very popular search engine, Lucene, includes many analysis modules, which provide 
general purpose tokenizers as well as language-specific tokenizers from Arabic to Thai. As of 
Lucene 4, most of these different analyzers can be found in separate JAR files. We will cover 
Lucene tokenizers, because they can be used as LingPipe tokenizers, as you will see in the 
next recipe.

Much like the LingPipe tokenizers, Lucene tokenizers also can be split into basic tokenizers 
and filtered tokenizers. Basic tokenizers take a reader as input, and filtered tokenizers take 
other tokenizers as input. We will look at an example of using a standard Lucene analyzer 
along with a lowercase-filtered tokenizer. A Lucene analyzer essentially maps a field to a token 
stream. So, if you have an existing Lucene index, you can use the analyzer with the field name 
instead of the raw tokenizer, as we will show in the later part of this chapter.

Getting ready
You will need to download the JAR file for the book and have Java and Eclipse set up so that 
you can run the example. Some of the Lucene analyzers used in the examples are part of the 
lib directory. However, if you'd like to experiment with other language analyzers, download 
them from the Apache Lucene website at https://lucene.apache.org.

http://alias-i.com/lingpipe/docs/api/com/aliasi/tokenizer/ModifyTokenTokenizerFactory.html
http://alias-i.com/lingpipe/docs/api/com/aliasi/tokenizer/ModifyTokenTokenizerFactory.html
https://lucene.apache.org
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How to do it...
Remember that we are not using a LingPipe tokenizer in this recipe but introducing the 
Lucene tokenizer classes:

1.	 Invoke the RunLuceneTokenizer class from the command line:
java -cp lingpipe-cookbook.1.0.jar:lib/lucene-analyzers-common-
4.6.0.jar:lib/lucene-core-4.6.0.jar com.lingpipe.cookbook.
chapter2.RunLuceneTokenize

2.	 Then, in the prompt, let's use the following example:
the quick BROWN fox jumped

type a sentence below to see the tokens and white spaces:

The rain in Spain.

Token:'the' Start: 0 End:3

Token:'rain' Start: 4 End:8

Token:'in' Start: 9 End:11

Token:'spain' Start: 12 End:17

How it works...
Let's review the following code to see how the Lucene tokenizers differ in invocation from the 
previous examples—the relevant part of the code from src/com/lingpipe/cookbook/
chapter2/RunLuceneTokenizer.java is:

BufferedReader reader = new BufferedReader(new  
  InputStreamReader(System.in));

while (true) {

The preceding snippet sets up BufferedReader from the command line and starts a 
perpetual while() loop. Next, the prompt is provided, the input is read, and it is used  
to construct a Reader object:

System.out.println("type a sentence below to 
  see the tokens and white spaces:");
String input = reader.readLine();
Reader stringReader = new StringReader(input);

All the input is now wrapped up, and it is time to construct the actual tokenizer:

TokenStream tokenStream = new StandardTokenizer(Version.
LUCENE_46,stringReader);

tokenStream = new LowerCaseFilter(Version.LUCENE_46,tokenStream);
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The input text is used to construct StandardTokenizer with Lucene's versioning system 
supplied—this produces an instance of TokenStream. Then, we used LowerCaseFilter  
to create the final filtered tokenStream with the base tokenStream as an argument.

In Lucene, we need to attach the attributes we're interested in from the token stream; this is 
done by the addAttribute method:

CharTermAttribute terms = 
  tokenStream.addAttribute(CharTermAttribute.class);
OffsetAttribute offset = 
  tokenStream.addAttribute(OffsetAttribute.class);
tokenStream.reset();

Note that in Lucene 4, once the tokenizer has been instantiated, the reset() method must 
be called before using the tokenizer:

while (tokenStream.incrementToken()) {
  String token = terms.toString();
  int start = offset.startOffset();
  int end = offset.endOffset();
  System.out.println("Token:'" + token + "'" 
    + " Start: " + start + " End:" + end);
}

The tokenStream is wrapped up with the following:

tokenStream.end();
tokenStream.close();

See also
An excellent introduction to Lucene is in Text Processing with Java, Mitzi Morris, Colloquial 
Media Corporation, where the guts of what we explained earlier are made clearer than what 
we can provide in a recipe.

Using Lucene/Solr tokenizers with LingPipe
We can use these Lucene tokenizers with LingPipe; this is useful because Lucene has  
such a rich set of them. We are going to show how to wrap a Lucene TokenStream into  
a LingPipe TokenizerFactory by extending the Tokenizer abstract class.
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How to do it...
We will shake things up a bit and have a recipe that is not interactive. Perform the  
following steps:

1.	 Invoke the LuceneAnalyzerTokenizerFactory class from the command line:
java -cp lingpipe-cookbook.1.0.jar:lib/lucene-analyzers-common-
4.6.0.jar:lib/lucene-core-4.6.0.jar:lib/lingpipe-4.1.0.jar com.
lingpipe.cookbook.chapter2.LuceneAnalyzerTokenizerFactory

2.	 The main() method in the class specifies the input:
String text = "Hi how are you? " + "Are the numbers  
  1 2 3 4.5 all integers?";
Analyzer analyzer = new StandardAnalyzer(Version.LUCENE_46);
TokenizerFactory tokFactory = new 
  LuceneAnalyzerTokenizerFactory 
(analyzer, "DEFAULT");
Tokenizer tokenizer = 
  tokFactory.tokenizer(text.toCharArray(), 0, 
  text.length());

String token = null;
while ((token = tokenizer.nextToken()) != null) {
  String ws = tokenizer.nextWhitespace();
  System.out.println("Token:'" + token + "'");
  System.out.println("WhiteSpace:'" + ws + "'");
}

3.	 The preceding snippet creates a Lucene StandardAnalyzer and uses it 
to construct a LingPipe TokenizerFactory. The output is as follows—the 
StandardAnalyzer filters stop words, so the token are is filtered:
Token:'hi'

WhiteSpace:'default'

Token:'how'

WhiteSpace:'default'

Token:'you'

WhiteSpace:'default'

Token:'numbers'

WhiteSpace:'default'

4.	 The white spaces report as default because the implementation does not 
accurately provide white spaces but goes with a default. We will discuss this 
limitation in the How it works… section.
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How it works...
Let's take a look at the LuceneAnalyzerTokenizerFactory class. This class 
implements the LingPipe TokenizerFactory interface by wrapping a Lucene analyzer. 
We will start with the class definition from src/com/lingpipe/cookbook/chapter2/
LuceneAnalyzerTokenizerFactory.java:

public class LuceneAnalyzerTokenizerFactory 
  implements TokenizerFactory, Serializable {
  
  private static final long serialVersionUID = 
    8376017491713196935L;
  private Analyzer analyzer;
  private String field;
  public LuceneAnalyzerTokenizerFactory 
    (Analyzer analyzer, String field) {
    super();
    this.analyzer = analyzer;
    this.field = field;
  }

The constructor stores the analyzer and the name of the field as private variables.  
As this class implements the TokenizerFactory interface, we need to implement  
the tokenizer() method:

public Tokenizer tokenizer(char[] charSeq , int start, int length) {
  Reader reader = new CharArrayReader(charSeq,start,length);
  TokenStream tokenStream = analyzer.tokenStream(field,reader);
  return new LuceneTokenStreamTokenizer(tokenStream);
}

The tokenizer() method creates a new character-array reader and passes it to the Lucene 
analyzer to convert it to a TokenStream. An instance of LuceneTokenStreamTokenizer 
is created based on the token stream. LuceneTokenStreamTokenizer is a nested static 
class that extends LingPipe's Tokenizer class:

static class LuceneTokenStreamTokenizer extends Tokenizer {
  private TokenStream tokenStream;
  private CharTermAttribute termAttribute;
  private OffsetAttribute offsetAttribute;
    
  private int lastTokenStartPosition = -1;
  private int lastTokenEndPosition = -1;
    
  public LuceneTokenStreamTokenizer(TokenStream ts) {
    tokenStream = ts;
    termAttribute = tokenStream.addAttribute(
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      CharTermAttribute.class);
    offsetAttribute = 
      tokenStream.addAttribute(OffsetAttribute.class);
  }

The constructor stores TokenStream and attaches the term and the offset attributes. In the 
previous recipe, we saw that the term and the offset attributes contain the token string, and 
the token start and end offsets into the input text. The token offsets are also initialized to -1 
before any tokens are found:

@Override
public String nextToken() {
  try {
    if (tokenStream.incrementToken()){
      lastTokenStartPosition = 
        offsetAttribute.startOffset();
      lastTokenEndPosition =  
        offsetAttribute.endOffset();
      return termAttribute.toString();
    } else {
      endAndClose();
      return null;
    }
  } catch (IOException e) {
    endAndClose();
    return null;
  }
}

We will implement the nextToken() method and use the incrementToken() method  
of the token stream to retrieve any tokens from the token stream. We will set the token  
start and end offsets using OffsetAttribute. If the token stream is finished or  
the incrementToken() method throws an I/O exception, we will end and close  
the TokenStream.

The nextWhitespace() method has some limitations, because offsetAttribute is 
focused on the current token where LingPipe tokenizers quantize the input into the next token 
and next offset. A general solution here will be quite challenging, because there might not 
be any well-defined white spaces between tokens—think character ngrams. So, the default 
string is supplied just to make it clear. The method is:

@Override
public String nextWhitespace() {
  return "default";
}

The code also covers how to serialize the tokenizer, but we will not cover this in the recipe.
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Evaluating tokenizers with unit tests
We will not evaluate Indo-European tokenizers like the other components of LingPipe  
with measures such as precision and recall. Instead, we will develop them with unit tests, 
because our tokenizers are heuristically constructed and expected to perform perfectly on 
example data—if a tokenizer fails to tokenize a known case, then it is a bug, not a reduction  
in performance. Why is this? There are a few reasons:

ff Many tokenizers are very "mechanistic" and are amenable to the rigidity of the  
unit test framework. For example, the RegExTokenizerFactory is obviously  
a candidate to unit test rather than an evaluation harness.

ff The heuristic rules that drive most tokenizers are very general, and there is no issue 
of over-fitting training data at the expense of a deployed system. If you have a known 
bad case, you can just go and fix the tokenizer and add a unit test.

ff Tokens and white spaces are assumed to be semantically neutral, which means  
that tokens don't change depending on context. This is not totally true with our  
Indo-European tokenizer, because it treats . differently if it is part of a decimal  
or at the end of a sentence, for example, 3.14 is pi.:
Token:'3.14'

WhiteSpace:' '

Token:'is'

WhiteSpace:' '

Token:'pi'

WhiteSpace:''

Token:'.'

WhiteSpace:''.

It might be appropriate to use an evaluation metric for statistics-based tokenizers; this is 
discussed in the Finding words for languages without white spaces recipe in this chapter.  
See the Evaluation of sentence detection recipe in Chapter 5, Finding Spans in  
Text – Chunking, for appropriate span-based evaluation techniques.

How to do it...
We will forgo running the code step and just get right into the source to put 
together a tokenizer evaluator. The source is in src/com/lingpipe/chapter2/
TestTokenizerFactory.java. Perform the following steps:

1.	 The following code sets up a base tokenizer factory with a regular expression—look  
at the Javadoc for the class if you are not clear about what is being constructed:
public static void main(String[] args) {
  String pattern = "[a-zA-Z]+|[0-9]+|\\S";
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  TokenizerFactory tokFactory = new  
    RegExTokenizerFactory(pattern);
  String[] tokens = 
    {"Tokenizers","need","unit","tests","."};
  String text = "Tokenizers need unit tests.";
  checkTokens(tokFactory,text,tokens);
  String[] whiteSpaces = {" "," "," ","",""};
  checkTokensAndWhiteSpaces 
    (tokFactory,text,tokens,whiteSpaces);
  System.out.println("All tests passed!");
}

2.	 The checkTokens method takes TokenizerFactory, an array of String that is 
the desired tokenization, and String that is to be tokenized. It follows:
static void checkTokens(TokenizerFactory 
  tokFactory, String string, 
  String[] correctTokens) {
  Tokenizer tokenizer = 
    tokFactory.tokenizer(input.toCharArray(),0, 
    input.length());
  String[] tokens = tokenizer.tokenize();
  if (tokens.length != correctTokens.length) {
    System.out.println("Token list lengths do not match");
    System.exit(-1);
  }
  for (int i = 0; i < tokens.length; ++i) {
    if (!correctTokens[i].equals(tokens[i])) {
      System.out.println("Token mismatch: 
        got |" + tokens[i] + "|");
      System.out.println(" expected |" 
        + correctTokens[i] + "|" );
      System.exit(-1);
    }
  }

3.	 The method is quite intolerant of errors, because it exits the program if the token 
arrays are not of the same length or if any of the tokens are not equal. A proper unit 
test framework such as JUnit will be a better framework, but that is beyond the scope 
of the book. You can look at the LingPipe unit tests in lingpipe.4.1.0/src/com/
aliasi/test for how JUnit is used.

4.	 The checkTokensAndWhiteSpaces() method checks white spaces as well  
as tokens. It follows the same basic ideas of checkTokens(), so we leave  
it unexplained.
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Modifying tokenizer factories
In this recipe, we will describe a tokenizer that modifies the tokens in the token stream. We 
will extend the ModifyTokenTokenizerFactory class to return text that is rotated by 13 
places in the English alphabet, also known as rot-13. Rot-13 is a very simple substitution cipher, 
which replaces a letter with the letter that follows after 13 places. For example, the letter a will 
be replaced by the letter n, and the letter z will be replaced by the letter m. This is a reciprocal 
cypher, which means that applying the same cypher twice recovers the original text.

How to do it...
We will invoke the Rot13TokenizerFactory class from the command line:

java -cp "lingpipe-cookbook.1.0.jar:lib/lingpipe-4.1.0.jar" com.
lingpipe.cookbook.chapter2.Rot13TokenizerFactory

type a sentence below to see the tokens and white spaces:

Move along, nothing to see here.

Token:'zbir'

Token:'nybat'

Token:','

Token:'abguvat'

Token:'gb'

Token:'frr'

Token:'urer'

Token:'.'

Modified Output: zbir nybat, abguvat gb frr urer.

type a sentence below to see the tokens and white spaces:

zbir nybat, abguvat gb frr urer.

Token:'move'

Token:'along'

Token:','

Token:'nothing'

Token:'to'

Token:'see'

Token:'here'

Token:'.'

Modified Output: move along, nothing to see here.
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You can see that the input text, which was mixed case and in normal English, has been 
transformed into its Rot-13 equivalent. You can see that the second time around, we passed  
the Rot-13 modified text as input and got the original text back, except that it was  
all lowercase.

How it works...
Rot13TokenizerFactory extends the ModifyTokenTokenizerFactory class. We will 
override the modifyToken() method, which operates a token at a time and, in this case, 
converts the token to its Rot-13 equivalent. There is a similar modifyWhiteSpace (String) 
method, which modifies the white spaces if required:

public class Rot13TokenizerFactory 
  extends ModifyTokenTokenizerFactory{

  public Rot13TokenizerFactory(TokenizerFactory f) {
    super(f);
  }
  
  @Override
  public String modifyToken(String tok) {
    return rot13(tok);
  }

  public static void main(String[] args) throws IOException {

  TokenizerFactory tokFactory = 
    IndoEuropeanTokenizerFactory.INSTANCE;
  tokFactory = new LowerCaseTokenizerFactory(tokFactory);
  tokFactory = new Rot13TokenizerFactory(tokFactory);

The start and end offsets of the tokens themselves remain the same as that of the underlying 
tokenizer. Here, we will use an Indo-European tokenizer as our base tokenizer. Filter it once 
through LowerCaseTokenizer and then through Rot13Tokenizer.

The rot13 method is:

public static String rot13(String input) {
  StringBuilder sb = new StringBuilder();
  for (int i = 0; i < input.length(); i++) {
    char c = input.charAt(i);
    if       (c >= 'a' && c <= 'm') c += 13;
    else if  (c >= 'A' && c <= 'M') c += 13;
    else if  (c >= 'n' && c <= 'z') c -= 13;
    else if  (c >= 'N' && c <= 'Z') c -= 13;
    sb.append(c);
  }
  return sb.toString();
}
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Finding words for languages without white 
spaces

Languages such as Chinese do not have word boundaries. For example, 木卫三是围绕木星
运转的一颗卫星，公转周期约为7天  from Wikipedia is a sentence in Chinese that translates 
roughly into "Ganymede is running around Jupiter's moons, orbital period of about seven days" 
as done by the machine translation service at https://translate.google.com. Notice 
the absence of white spaces.

Finding tokens in this sort of data requires a very different approach that is based on  
character-language models and our spell-checking class. This recipe encodes finding words 
by treating untokenized text as misspelled text, where the correction inserts a space to delimit 
tokens. Of course, there is nothing misspelled about Chinese, Japanese, Vietnamese, and other 
non-word delimiting orthographies, but we have encoded it in our spelling-correction class.

Getting ready
We will approximate non-word delimiting orthographies with de-white spaced English. This is 
sufficient to understand the recipe and can be easily modified to the actual language when 
needed. Get a 100,000 or so words of English and get them to the disk in UTF-8 encoding. 
The reason for fixing the encoding is that the input is assumed to be UTF-8—you can change it 
by changing the encoding and recompiling the recipe.

We used A Connecticut Yankee in King Arthur's Court by Mark Twain, downloaded from Project 
Gutenberg (http://www.gutenberg.org/). Project Gutenberg is an excellent source of 
texts that are in the public domain, and Mark Twain is fine writer—we highly recommend the 
book. Place your selected text in the cookbook directory or work with our default.

How to do it...
We will run a program, play with it a bit, and explain what it does and how it does it, using the 
following steps:

1.	 Type the following command:
java -cp lingpipe-cookbook.1.0.jar:lib/lingpipe-4.1.0.jar com.
lingpipe.cookbook.chapter2.TokenizeWithoutWhiteSpaces

Type an Englese sentence (English without spaces like Chinese):

TheraininSpainfallsmainlyontheplain

2.	 The following is the output:
The rain in Spain falls mainly on the plain

https://translate.google.com
http://www.gutenberg.org/
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3.	 You might not get the perfect output. How good is Mark Twain at recovering proper 
white space from the Java program that generated it? Let's find out:
type an Englese sentence (English without spaces like Chinese)

NGramProcessLMlm=newNGramProcessLM(nGram);

NGram Process L Mlm=new NGram Process L M(n Gram);

4.	 The preceding way was not very good, but we are not being very fair; let's use the 
concatenated source of LingPipe as training data:
java -cp lingpipe-cookbook.1.0.jar:lib/lingpipe-4.1.0.jar com.
lingpipe.cookbook.chapter2.TokenizeWithoutWhiteSpaces data/
cookbookSource.txt

Compiling Spell Checker

type an Englese sentence (English without spaces like Chinese)

NGramProcessLMlm=newNGramProcessLM(nGram);

NGramProcessLM lm = new NGramProcessLM(nGram);

5.	 This is the perfect space insertion.

How it works...
For all the fun and games, there is very little code involved. The cool thing is that we are 
building on the character-language models from Chapter 1, Simple Classifiers. The source  
is in src/com/lingpipe/chapter2/TokenizeWithoutWhiteSpaces.java:

public static void main (String[] args) throws IOException, 
ClassNotFoundException {
  int nGram = 5;
  NGramProcessLM lm = new NGramProcessLM(nGram);
  WeightedEditDistance spaceInsertingEditDistance
    = CompiledSpellChecker.TOKENIZING;
  TrainSpellChecker trainer = new TrainSpellChecker(lm, 
spaceInsertingEditDistance);

The main() method starts up with the creation of NgramProcessLM. Next up, we will access 
a class for edit distance that is designed to only add spaces to a character stream. That's it. 
Editdistance is typically a fairly crude measure of string similarity that scores how many 
edits need to happen to to string1 to make it the same as string2. A lot of information on 
this is Javadoc com.aliasi.spell. For example, com.aliasi.spell.EditDistance 
has an excellent discussion of the basics.

The EditDistance class implements the standard notion of edit 
distance, with or without transposition. The distance without transposition 
is known as the Levenshtein distance, and with transposition, it is known 
as the Damerau-Levenstein distance.
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Read the Javadoc with LingPipe; it has a lot of useful of information that we don't have space 
for in this book.

So far we configured and constructed a TrainSpellChecker class. The next step is to 
naturally train it:

File trainingFile = new File(args[0]);
String training = Files.readFromFile(trainingFile, Strings.UTF8);
training = training.replaceAll("\\s+", " ");
trainer.handle(training);

We slurped up a text file, assuming it is UTF-8; if not, correct the character encoding and 
recompile. Then, we replaced all the multiple white spaces with a single one. This might not 
be the best move if multiple white spaces have meaning. This is followed by training, just like 
we trained language models in Chapter 1, Simple Classifiers.

Next up, we will compile and configure the spell checker:

System.out.println("Compiling Spell Checker");
CompiledSpellChecker spellChecker = (CompiledSpellChecker) 
  AbstractExternalizable.compile(trainer);

spellChecker.setAllowInsert(true);
spellChecker.setAllowMatch(true);
spellChecker.setAllowDelete(false);
spellChecker.setAllowSubstitute(false);
spellChecker.setAllowTranspose(false);
spellChecker.setNumConsecutiveInsertionsAllowed(1);

The next interesting line compiles spellChecker, which translates all the counts in 
the underlying language model to precomputed probabilities, which is much faster. The 
compilation step can write to a disk, so it can be used later without training; however, visit 
the Javadoc for AbstractExternalizable on how to do this. The next lines configure 
CompiledSpellChecker to only consider the edits that insert characters and to check for 
the exact string matches, but it forbids deletions, substitutions, and transpositions. Finally, 
only one insert is allowed. It should be clear that we are using a very limited portion of the 
capabilities of CompiledSpellChecker, but this is exactly what is called for—insert a  
space or don't.
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Last up is our standard I/O routine:

BufferedReader reader = new BufferedReader(new 
InputStreamReader(System.in));
while (true) {
  System.out.println("type an Englese sentence 
    (English " + "without spaces like Chinese)"));
  String input = reader.readLine();
  String result = spellChecker.didYouMean(input);
  System.out.println(result);
}

The mechanics of the CompiledSpellChecker and WeightedEditDistance classes are 
better described in either the Javadoc or the Using edit distance and language models for 
spelling correction recipe in Chapter 6, String Comparison and Clustering. However, the basic 
idea is that the string entered is compared to the language model just trained, resulting in a 
score that shows how good a fit this string is to the model. This string is going to be one huge 
word without any white spaces—but note that there is no tokenizer at work here, so the spell 
checker starts inserting spaces and reassessing the score of the resulting sequence. It keeps 
these sequences where insertion of spaces increases the score of the sequence.

Remember that the language model was trained on text with white spaces. The spell checker 
tries to insert a space everywhere it can and keeps a set of "best so far" insertions of white 
spaces. In the end, it returns the best scoring series of edits.

Note that to complete the tokenizer, the appropriate TokenizerFactory needs to be 
applied to the white space-modified text, but this is left as an exercise for the reader.

There's more...
CompiledSpellChecker allows for an n-best output as well; this allows for multiple possible 
analyses of the text. In a high-coverage/recall situation such as a research search engine, 
it might serve to allow the application of multiple tokenizations. Also, the edit costs can be 
manipulated by extending the WeightedEditDistance class directly to tune the system.

See also
It will be unhelpful to not actually provide non-English resources for this recipe. We built 
and evaluated a Chinese tokenizer using resources available on the web for research use. 
Our tutorial on Chinese word segmentation covers this in detail. You can find the Chinese 
word segmentation tutorial at http://alias-i.com/lingpipe/demos/tutorial/
chineseTokens/read-me.html.

http://alias-i.com/lingpipe/demos/tutorial/chineseTokens/read-me.html
http://alias-i.com/lingpipe/demos/tutorial/chineseTokens/read-me.html




Advanced Classifiers

In this chapter, we will cover the following recipes:

ff A simple classifier

ff Language model classifier with tokens

ff Naïve Bayes

ff Feature extractors

ff Logistic regression

ff Multithreaded cross validation

ff Tuning parameters in logistic regression

ff Customizing feature extraction

ff Combining feature extractors

ff Classifier-building life cycle

ff Linguistic tuning

ff Thresholding classifiers

ff Train a little, learn a little – active learning

ff Annotation

Introduction
This chapter introduces more sophisticated classifiers that use different learning techniques 
as well as richer observations about the data (features). We will also address the best 
practices for building machine-learning systems as well as data annotation and approaches 
that minimize the amount of training data needed.

3
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A simple classifier
This recipe is a thought experiment that should help make clear what machine learning does. 
Recall the Training your own language model classifier recipe in Chapter 1, Simple Classifiers, 
to train your own sentiment classifier in the recipe. Consider what a conservative approach 
to the same problem might be—build Map<String,String> from the inputs to the correct 
class. This recipe will explore how this might work and what its consequences might be.

How to do it...
Brace yourself; this will be spectacularly stupid but hopefully informative.

1.	 Enter the following in the command line:
java -cp lingpipe-cookbook.1.0.jar:lib/lingpipe-
4.1.0.jar:lib/opencsv-2.4.jar com.lingpipe.cookbook.chapter3.
OverfittingClassifier

2.	 The usual anemic prompt appears, with some user input:
Training
Type a string to be classified. Empty string to quit.
When all else fails #Disney
Category is: e

3.	 It correctly gets the language as e or English. However, everything else is about to fail. 
Next, we will use the following code:
Type a string to be classified. Empty string to quit.
When all else fails #Disne
Category is: n

We just dropped the final y on #Disney, and as a result, we got a big confused 
classifier. What happened?

How it works...
This section should really be called How it doesn't work, but let's dive into the details anyway.

Just to be clear, this recipe is not recommended as an actual solution to a classification 
problem that requires any flexibility at all. However, it introduces a minimal example of how to 
work with LingPipe's Classification class as well as makes clear what an extreme case 
of overfitting looks like; this in turn, helps demonstrate how machine learning is different from 
most of standard computer engineering.
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Starting with the main() method, we will get into standard code slinging that should be 
familiar to you from Chapter 1, Simple Classifiers:

String dataPath = args.length > 0 ? args[0] : 
"data/disney_e_n.csv";
List<String[]> annotatedData =  
  Util.readAnnotatedCsvRemoveHeader(new File(dataPath));

OverfittingClassifier classifier = new OverfittingClassifier();
System.out.println("Training");
for (String[] row: annotatedData) {
  String truth = row[Util.ANNOTATION_OFFSET];
  String text = row[Util.TEXT_OFFSET];
  classifier.handle(text,new Classification(truth));
}
Util.consoleInputBestCategory(classifier);

Nothing novel is going on here—we are just training up a classifier, as shown in 
Chapter 1, Simple Classifiers, and then supplying the classifier to the Util.
consoleInputBestCategory() method. Looking at the class code reveals  
what is going on:

public class OverfittingClassifier implements 
   BaseClassifier<CharSequence> {

  Map<String,Classification> mMap 
         = new HashMap<String,Classification>();  

   public void handle(String text, 
                      Classification classification) {
    mMap.put(text, classification);
  }

So, the handle() method takes the text and classification pair and stuffs them  
in HashMap. The classifier does nothing else to learn from the data so training amounts  
to memorization of the data:

@Override
public Classification classify(CharSequence text) {
  if (mMap.containsKey(text)) {
    return mMap.get(text);
  }
  return new Classification("n");
}
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The classify() method just does a lookup into Map and returns the value if there is one, 
otherwise, we will get the category n as the return classification.

What is good about the preceding code is that you have a minimalist example of a 
BaseClassifier implementation, and you can see how the handle() method adds  
data to the classifier.

What is bad about the preceding code is the utter rigidity of the mapping from training data to 
categories. If the exact example is not seen in training, then the n category is assumed.

This is an extreme example of overfitting, but it essentially conveys what it means to have an 
overfit model. An overfit model is tailored too close to the training data and cannot generalize 
well to new data.

Let's think a bit more about what is so wrong about the preceding classifier for language 
identification—the issue is that entire sentences/tweets are the wrong unit of processing. 
Words/tokens are a much better measure of what language is being used. Some 
improvements that will be borne out in the later recipes are:

ff Break the text into words/tokens.

ff Instead of a match/no-match decision, consider a more nuanced approach.  
A simple which language matches more words will be a huge improvement.

ff As languages get closer, for example, British versus American English, probabilities 
can be called for that. Pay attention to likely discriminating words.

While this recipe might be comically inappropriate for the task at hand, consider trying a 
sentiment for an even more ludicrous example. It embodies a core assumption of much of 
computer science that the world of inputs is discrete and finite. Machine learning can be 
viewed as a response to a world where this is not the case.

There's more…
Oddly enough, we often have a need for such a classifier in commercial systems—we call it 
the management classifier; it runs preemptively on data. It has happened that a senior VP is 
unhappy with the system output for some example. This classifier then can be trained with the 
exact case that allows for immediate system fixing and satisfaction of the VP.

Language model classifier with tokens
Chapter 1, Simple Classifiers, covered classification without knowing what tokens/words were, 
with a language model per category—we used character slices or ngrams to model the text. 
Chapter 2, Finding and Working with Words, discussed at length the process of finding tokens 
in text, and now we can use them to build a classifier. Most of the time, we use tokenized 
input to classifiers, so this recipe is an important introduction to the concept.
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How to do it...
This recipe will tell us how to train and use a tokenized language model classifier, but it will 
ignore issues such as evaluation, serialization, deserialization, and so on. You can refer to 
the recipes in Chapter 1, Simple Classifiers, for examples. This code of this recipe is in com.
lingpipe.cookbook.chapter3.TrainAndRunTokenizedLMClassifier:

1.	 The exception of the following code is the same as found in the Training your 
own language model classifier recipe in Chapter 1, Simple Classifiers. The 
DynamicLMClassifier class provides a static method for the creation of a tokenized 
LM classifier. Some setup is required. The maxTokenNgram variable sets the largest 
size of token sequences used in the classifier—smaller datasets usually benefit from 
lower order (number of tokens) ngrams. Next, we will set up a tokenizerFactory 
method, selecting the workhorse tokenizer from Chapter 2, Finding and Working with 
Words. Finally, we will specify the categories that the classifier uses:
int maxTokenNGram = 2;
TokenizerFactory tokenizerFactory =  
  IndoEuropeanTokenizerFactory.INSTANCE;
String[] categories = Util.getCategories(annotatedData);

2.	 Next, the classifier is constructed:
DynamicLMClassifier<TokenizedLM> classifier =  
  DynamicLMClassifier.createTokenized 
  (categories,tokenizerFactory,maxTokenNGram);

3.	 Run the code from the command line or your IDE:
java -cp lingpipe-cookbook.1.0.jar:lib/lingpipe-
4.1.0.jar:lib/opencsv-2.4.jar com.lingpipe.cookbook.chapter3.
TrainAndRunTokenizedLMClassifier

There's more...
In application, the DynamicLMClassifier classifier does not see a great deal of use in 
commercial application. This classifier might be a good choice for an author-identification 
classifier (that is, one that classifies whether a given piece of text is written by an author  
or by someone else) that was highly sensitive to turns of phrase and exact word usage.  
The Javadoc is well worth consulting to better understand what this class does.

Naïve Bayes
Naïve Bayes is probably the world's most famous classification technology, and just to keep 
you on your toes, we provide two separate implementations with lots of configurability.  
One of the most well-known applications of a naïve Bayes classifier is for spam filtering in  
an e-mail. 
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The reason the word naïve is used is that the classifier assumes that words (features)  
occur independent of one another—this is clearly a naïve assumption, but lots of useful  
and not-so-useful technologies have been based on the approach. Some notable features  
of the traditional naïve Bayes include:

ff Character sequences are converted to bags of tokens with counts. No whitespaces 
are considered, and the order of the tokens does not matter.

ff Naïve Bayes classifiers require two or more categories into which input texts are 
categorized. These categories must be both exhaustive and mutually exclusive.  
This indicates that a document used for training must only belong to one category.

ff The math is very simple: p(category|tokens) = p(category,tokens)/
p(tokens).

ff The class is configurable for various kinds of unknown token models.

A naïve Bayes classifier estimates two things. First, it estimates the probability of each 
category, independent of any tokens. This is carried out based on the number of training 
examples presented for each category. Second, for each category, it estimates the probability 
of seeing each token in that category. Naïve Bayes is so useful and important that we will 
show you exactly how it works and plug through the formulas. The example we have is to 
classify hot and cold weather based on the text.

First, we will work out the math to calculate the probability of a category given a word 
sequence. Second, we will plug in an example and then verify it using the classifier we build.

Getting ready
Let's lay out the basic formula to calculate the probability of a category given a text input.  
A token-based naïve Bayes classifier computes the joint token count and category probabilities 
as follows:

p(tokens,cat) = p(tokens|cat) * p(cat)

1.	 Conditional probabilities are derived by applying Bayes's rule to invert the  
probability calculation:
p(cat|tokens) = p(tokens,cat) / p(tokens)
               = p(tokens|cat) * p(cat) / p(tokens)

2.	 Now, we will get to expand all these terms. If we look at p(tokens|cat),  
this is where the naïve assumption comes into play. We assume that each  
token is independent, and thus, the probability of all the tokens is the product  
of the probability of each token:
p(tokens|cat) = p(tokens[0]|cat) * p(tokens[1]|cat) * . . .  
  * p(tokens[n]|cat)
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The probability of the tokens themselves, that is, p(tokens), the denominator in the 
preceding equation. This is just the sum of their probability in each category weighted 
by the probability of the category itself:

p(tokens) = p(tokens|cat1) * p(cat1) + p(tokens|cat2)  
  * p(cat2) + . . . + p(tokens|catN) * p(catN)

When building a naïve Bayes classifier, p(tokens) doesn't need to be 
explicitly calculated. Instead, we can use p(tokens|cat) * p(cat) 
and assign the tokens to the category with the higher product.

3.	 Now that we have laid out each element of our equation, we can look at how  
these probabilities are calculated. We can calculate both these probabilities  
using simple frequencies.

The probability of a category is calculated by counting the number of times  
the category showed up in the training instances divided by the total number of 
training instances. As we know that Naïve Bayes classifiers have exhaustive and 
mutually-exclusive categories, the sum of the frequency of each category must  
equal the total number of training instances:
p(cat) = frequency(cat) / (frequency(cat1) +  
  frequency(cat2) + . . . + frequency(catN))

The probability of a token in a category is computed by counting the number of times 
the token appeared in a category divided by the number of times all the other tokens 
appeared in this category:
p(token|cat) = frequency(token,cat)/(frequency(token1,cat)  
  + frequency(token2,cat) + . . . + frequency(tokenN,cat)

These probabilities are calculated to provide what is called the maximum likelihood 
estimate of the model. Unfortunately, these estimates provide zero probability 
for tokens that were not seen during the training. You can see this very easily in 
the calculation of an unseen token probability. Since it wasn't seen, it will have a 
frequency count of 0, and the numerator of our original equation goes to 0.

In order to overcome this, we will use a technique known as smoothing that 
assigns a prior and then computes a maximum a posteriori estimate rather than a 
maximum likelihood estimate. A very common smoothing technique is called additive 
smoothing, and it just involves adding a prior count to every count in the training 
data. Two sets of counts are added: the first is a token count added to all the token 
frequency calculations, and the second is a category count, which is added to all the 
category count calculations. 
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This obviously changes the p(cat) and the p(token|cat) values. Let's call the 
alpha prior that is added to the category count and the beta prior that is added  
to the token count. When we call the alpha prior, our previous calculations will 
change to:
p(cat) = frequency(cat) + alpha / [(frequency(cat1) +  
  alpha) + (frequency(cat2)+alpha) + . . . +  
    (frequency(catN) + alpha)]

When we call the beta prior, the calculations will change to:

p(token|cat) = (frequency(token,cat)+beta) /  
  [(frequency(token1,cat)+beta) + frequency(token2,cat)+beta) + . 
. .  
  + (frequency(tokenN,cat) + beta)]

4.	 Now that we have set up our equations, let's look at a concrete example.

We'll build a classifier to classify whether the forecast calls for hot or cold weather 
based on a set of phrases:
hot : super steamy today
hot : boiling out
hot : steamy out

cold : freezing out
cold : icy

There are a total of seven tokens in these five training items:

�� super

�� steamy

�� today

�� boiling

�� out

�� freezing

�� icy

Of these, all the tokens appear once, except steamy, which appears twice in the hot 
category and out, which appears once in each category. This is our training data. 
Now, let's calculate the probability of an input text being in the hot or cold category . 
Let's say our input is the word super. Let's set the category prior alpha to 1 and the 
token prior beta also to 1.

5.	 So, we will calculate the probabilities of p(hot|super) and p(cold|super):
p(hot|super) = p(super|hot) * p(hot)/ p(super)

p(super|hot) = (freq(super,hot) + beta) /  
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  [(freq(super|hot)+beta) + (freq(steamy|hot) + beta) +  
    . . . + (freq(freezing|hot)+beta)

We will take into consideration all the tokens, including the ones that haven't been 
seen in the hot category:
freq(super|hot) + beta = 1 + 1 = 2
freq(steamy|hot) + beta = 2 + 1 = 3
freq(today|hot) + beta = 1 + 1 = 2
freq(boiling|hot) + beta = 1 + 1 = 2
freq(out|hot) + beta = 1 + 1 = 2
freq(freezing|hot) + beta = 0 + 1 = 1
freq(icy|hot) + beta = 0 + 1 = 1

This will give us a denominator equal to a sum of these inputs:

2+3+2+2+2+1+1 = 13

6.	 Now, p(super|hot) = 2/13 is one part of the equation. We still need to calculate 
p(hot) and p (super):

p(hot) = (freq(hot) + alpha) / 
                    ((freq(hot) + alpha) +  
                      freq(cold)+alpha)) 

For the hot category, we have three documents or cases, and for the cold category, 
we have two documents in our training data. So, freq(hot) = 3 and freq(cold) 
= 2:
p(hot) = (3 + 1) / (3 + 1) + (2 +1) = 4/7
Similarly p(cold) = (2 + 1) / (3 + 1) + (2 +1) = 3/7
Please note that p(hot) = 1 – p(cold)

p(super) = p(super|hot) * p(hot) + p(super|cold) + p(cold)

To calculate p(super|cold), we need to repeat the same steps:
p(super|cold) = (freq(super,cold) + beta) / 
[(freq(super|cold)+beta) + (freq(steamy|cold) + beta) + . . . + 
(freq(freezing|cold)+beta) 

freq(super|cold) + beta = 0 + 1 = 1
freq(steamy|cold) + beta = 0 + 1 = 1
freq(today|cold) + beta = 0 + 1 = 1
freq(boiling|cold) + beta = 0 + 1 = 1
freq(out|cold) + beta = 1 + 1 = 2
freq(freezing|cold) + beta = 1 + 1 = 2
freq(icy|cold) + beta = 1 + 1 = 2
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p(super|cold) = freq(super|cold)+beta/sum of all terms above

              = 0 + 1 / (1+1+1+1+2+2+2) = 1/10

This gives us the probability of the token super:
P(super) = p(super|hot) * p(hot) + p(super|cold) * p(cold)
         = 2/13 * 4/7 + 1/10 * 3/7

We now have all the pieces together to calculate p(hot|super) and 
p(cold|super):
p(hot|super) = p(super|hot) * p(hot) / p(super)
             = (2/13 * 4/7) / (2/13 * 4/7 + 1/10 * 3/7)

             = 0.6722
p(cold|super) = p(super|cold) * p(cold) /p(super)
             = (1/10 * 3/7) / (2/13 * 4/7 + 1/10 * 3/7)
             = 0.3277

Obviously, p(hot|super) = 1 – p(cold|super)

If we want to repeat this for the input stream super super, the following 
calculations can be used:
p(hot|super super) = p(super super|hot) * p(hot) / p(super super)
             = (2/13 * 2/13 * 4/7) / (2/13 * 2/13 * 4/7 + 1/10 * 
1/10 * 3/7) 
             = 0.7593
p(cold|super super) = p(super super|cold) * p(cold) /p(super 
super)
             = (1/10 * 1/10 * 3/7) / (2/13 * 2/13 * 4/7 + 1/10 * 
1/10 * 3/7)
             = 0.2406

Remember our naïve assumption: the probability of the tokens is the product of the 
probabilities, since we assume that they are independent of each other.

Let's verify our calculations by training up the naïve Bayes classifier and using the same input.

How to do it...
Let's verify some of these calculations in code:

1.	 In your IDE, run the TrainAndRunNaiveBayesClassifier class in the code 
package of this chapter, or using the command line, type the following command:
java -cp lingpipe-cookbook.1.0.jar:lib/lingpipe-
4.1.0.jar:lib/opencsv-2.4.jar com.lingpipe.cookbook.chapter3.
TrainAndRunNaiveBayesClassifier
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2.	 In the prompt, let's use our first example, super:
Type a string to be classified
super
h 0.67   
c 0.33   

3.	 As we can see, our calculations were correct. For the case of a word, hello, that 
doesn't exist in our training; we will fall back to the prevalence of the categories 
modified by the category's prior counts:
Type a string to be classified
hello
h 0.57   
c 0.43

4.	 Again, for the case of super super, our calculations were correct.
Type a string to be classified
super super

h 0.76   
c 0.24    

5.	 The source that generates the preceding output is in src/com/lingpipe/
chapter3/TrainAndRunNaiveBays.java. The code should be straightforward, 
so we will not covering it in this recipe.

See also
ff For more details on configuring naïve Bayes, including length normalizing, refer to the 

Javadoc at http://alias-i.com/lingpipe/docs/api/index.html?com/
aliasi/classify/TradNaiveBayesClassifier.html

ff You can refer to the expectation maximization tutorial at http://alias-i.com/
lingpipe/demos/tutorial/em/read-me.html

Feature extractors
Up until now, we have been using characters and words to train our models. We are about to 
introduce a classifier (logistic regression) that allows for other observations about the data 
to inform the classifier—for example, whether a word is actually a date. Feature extractors 
are used in CRF taggers and K-means clustering. This recipe will introduce feature extractors 
independent of any technology that uses them.

http://alias-i.com/lingpipe/docs/api/index.html?com/aliasi/classify/TradNaiveBayesClassifier.html
http://alias-i.com/lingpipe/docs/api/index.html?com/aliasi/classify/TradNaiveBayesClassifier.html
http://alias-i.com/lingpipe/demos/tutorial/em/read-me.html
http://alias-i.com/lingpipe/demos/tutorial/em/read-me.html


Advanced Classifiers

86

How to do it...
There is not much to this recipe, but the upcoming Logistic regression recipe has many 
moving parts, and this is one of them.

1.	 Fire up your IDE or type in the command line:
java -cp lingpipe-cookbook.1.0.jar:lib/lingpipe-4.1.0.jar com.
lingpipe.cookbook.chapter3.SimpleFeatureExtractor

2.	 Type a string into our standard I/O loop:
Type a string to see its features
My first feature extraction!

3.	 Features are then produced:
!=1
My=1
extraction=1
feature=1
first=1

4.	 Note that there is no order information here. Does it keep a count or not?
Type a string to see its features
My my my what a nice feature extractor.
my=2
.=1
My=1
a=1
extractor=1
feature=1
nice=1
what=1

5.	 The feature extractor keeps count with my=2, and it does not normalize the case 
(My is different from my). Refer to the later recipes in this chapter on how to modify 
feature extractors—they are very flexible.

How it works…
LingPipe provides solid infrastructure for the creation of feature extractors. The code for  
this recipe is in src/com/lingipe/chapter3/SimpleFeatureExtractor.java:

public static void main(String[] args) throws IOException {
  TokenizerFactory tokFact 
    = IndoEuropeanTokenizerFactory.INSTANCE;
  FeatureExtractor<CharSequence> tokenFeatureExtractor 
    = new TokenFeatureExtractor(tokFact);
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The preceding code constructs TokenFeatureExtractor with TokenizerFactory.  
It is one of the 13 FeatureExtractor implementations provided in LingPipe.

Next, we will apply the I/O loop and print out the feature, which is Map<String, ? extends 
Number>. The String element is the feature name. In this case, the actual token is the 
name. The second element of the map is a value that extends Number, in this case, the count 
of how many times the token was seen in the text.

BufferedReader reader 
  = new BufferedReader(new   InputStreamReader(System.in));
while (true) {
  System.out.println("\nType a string to see its features");
  String text = reader.readLine();
  Map<String, ? extends Number > features 
    = tokenFeatureExtractor.features(text);
  System.out.println(features);
}

The feature name needs to only be a unique name—we could have prepended each feature 
name with SimpleFeatExt_ to keep track of where the feature came from, which is helpful 
in complex feature-extraction scenarios.

Logistic regression
Logistic regression is probably responsible for the majority of industrial classifiers, with the 
possible exception of naïve Bayes classifiers. It almost certainly is one of the best performing 
classifiers available, albeit at the cost of slow training and considerable complexity in 
configuration and tuning.

Logistic regression is also known as maximum entropy, neural network classification with 
a single neuron, and others. So far in this book, the classifiers have been based on the 
underlying characters or tokens, but logistic regression uses unrestricted feature extraction, 
which allows for arbitrary observations of the situation to be encoded in the classifier.

This recipe closely follows a more complete tutorial at http://alias-i.com/lingpipe/
demos/tutorial/logistic-regression/read-me.html.

How logistic regression works
All that logistic regression does is take a vector of feature weights over the data, apply a 
vector of coefficients, and do some simple math, which results in a probability for each class 
encountered in training. The complicated bit is in determining what the coefficients should be.

www.allitebooks.com

http://alias-i.com/lingpipe/demos/tutorial/logistic-regression/read-me.html
http://alias-i.com/lingpipe/demos/tutorial/logistic-regression/read-me.html
http://www.allitebooks.org
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The following are some of the features produced by our training recipe for 21 tweets 
annotated for English e and non-English n. There are relatively few features because feature 
weights are being pushed to 0.0 by our prior, and once a weight is 0.0, then the feature is 
removed. Note that one category, n, is set to 0.0 for all the features of the n-1 category—this 
is a property of the logistic regression process that fixes once categories features to 0.0 and 
adjust all other categories features with respect to that:

FEATURE    e          n
I :   0.37    0.0
! :   0.30    0.0
Disney :   0.15    0.0
" :   0.08    0.0
to :   0.07    0.0
anymore : 0.06    0.0
isn :   0.06    0.0
' :   0.06    0.0
t :   0.04    0.0
for :   0.03    0.0
que :   -0.01    0.0
moi :   -0.01    0.0
_ :   -0.02    0.0
, :   -0.08    0.0
pra :   -0.09    0.0
? :   -0.09    0.0

Take the string, I luv Disney, which will only have two non-zero features: I=0.37 and 
Disney=0.15 for e and zeros for n. Since there is no feature that matches luv, it is ignored. 
The probability that the tweet is English breaks down to:

vectorMultiply(e,[I,Disney]) =  exp(.37*1 + .15*1) = 1.68

vectorMultiply(n,[I,Disney]) =  exp(0*1 + 0*1) = 1

We will rescale to a probability by summing the outcomes and dividing it:

p(e|,[I,Disney]) = 1.68/(1.68 +1) = 0.62

p(e|,[I,Disney]) = 1/(1.68 +1) = 0.38

This is how the math works on running a logistic regression model. Training is another  
issue entirely.

Getting ready
This recipe assumes the same framework that we have been using all along to get training 
data from .csv files, train the classifier, and run it from the command line.
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Setting up to train the classifier is a bit complex because of the number of parameters and 
objects used in training. We will discuss all the 10 arguments to the training method as found 
in com.lingpipe.cookbook.chapter3.TrainAndRunLogReg.

The main() method starts with what should be familiar classes and methods—if they are 
not familiar, have a look at How to train and evaluate with cross validation and Introduction 
to Introduction to tokenizer Factories – finding words in a character stream, recipes from 
Chapter 1, Simple Classifiers, and Chapter 2, Finding and Working with Words, respectively:

public static void main(String[] args) throws IOException {
  String trainingFile = args.length > 0 ? args[0] 
           : "data/disney_e_n.csv";
  List<String[]> training 
    = Util.readAnnotatedCsvRemoveHeader(new File(trainingFile));

  int numFolds = 0;
  XValidatingObjectCorpus<Classified<CharSequence>> corpus 
    = Util.loadXValCorpus(training,numFolds);

  TokenizerFactory tokenizerFactory 
    = IndoEuropeanTokenizerFactory.INSTANCE;

Note that we are using XValidatingObjectCorpus when a simpler implementation  
such as ListCorpus will do. We will not take advantage of any of its cross-validation 
features, because the numFolds param as 0 will have training visit the entire corpus.  
We are trying to keep the number of novel classes to a minimum, and we tend to always  
use this implementation in real-world gigs anyway.

Now, we will start to build the configuration for our classifier. The FeatureExtractor<E> 
interface provides a mapping from data to features; this will be used to train and run the 
classifier. In this case, we are using a TokenFeatureExtractor() method, which creates 
features based on the tokens found by the tokenizer supplied during construction. This is 
similar to what naïve Bayes reasons over. The previous recipe goes into more detail about 
what the feature extractor is doing if this is not clear:

FeatureExtractor<CharSequence> featureExtractor
  = new TokenFeatureExtractor(tokenizerFactory);

The minFeatureCount item is usually set to a number higher than 1, but with small training 
sets, this is needed to get any performance. The thought behind filtering feature counts is 
that logistic regression tends to overfit low-count features that, just by chance, exist in one 
category of training data. As training data grows, the minFeatureCount value is adjusted 
usually by paying attention to cross-validation performance:

int minFeatureCount = 1;
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The addInterceptFeature Boolean controls whether a category feature exists that 
models the prevalence of the category in training. The default name of the intercept feature 
is *&^INTERCEPT%$^&**, and you will see it in the weight vector output if it is being used. 
By convention, the intercept feature is set to 1.0 for all inputs. The idea is that if a category 
is just very common or very rare, there should be a feature that captures just this fact, 
independent of other features that might not be as cleanly distributed. This models the 
category probability in naïve Bayes in some way, but the logistic regression algorithm will 
decide how useful it is as it does with all other features:

boolean addInterceptFeature = true;
boolean noninformativeIntercept = true;

These Booleans control what happens to the intercept feature if it is used. Priors, in the 
following code, are typically not applied to the intercept feature; this is the result if this 
parameter is true. Set the Boolean to false, and the prior will be applied to the intercept.

Next is the RegressionPrior instance, which controls how the model is fit. What you 
need to know is that priors help prevent logistic regression from overfitting the data by 
pushing coefficients towards 0. There is a non-informative prior that does not do this with 
the consequence that if there is a feature that applies to just one category it will be scaled to 
infinity, because the model keeps fitting better as the coefficient is increased in the numeric 
estimation. Priors, in this context, function as a way to not be over confident in observations 
about the world.

Another dimension in the RegressionPrior instance is the expected variance of the 
features. Low variance will push coefficients to zero more aggressively. The prior returned by 
the static laplace() method tends to work well for NLP problems. For more information 
on what is going on here, consult the relevant Javadoc and the logistic regression tutorial 
referenced at the beginning of the recipe—there is a lot going on, but it can be managed 
without a deep theoretical understanding. Also, see the Tuning parameters in logistic 
regression recipe in this chapter.

double priorVariance = 2;
RegressionPrior prior 
  = RegressionPrior.laplace(priorVariance,
          noninformativeIntercept);

Next, we will control how the algorithm searches for an answer.

AnnealingSchedule annealingSchedule
  = AnnealingSchedule.exponential(0.00025,0.999);
double minImprovement = 0.000000001;
int minEpochs = 100;
int maxEpochs = 2000;
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AnnealingSchedule is best understood by consulting the Javadoc, but what it does 
is change how much the coefficients are allowed to vary when fitting the model. The 
minImprovement parameter sets the amount the model fit has to improve to not terminate 
the search, because the algorithm has converged. The minEpochs parameter sets a minimal 
number of iterations, and maxEpochs sets an upper limit if the search does not converge as 
determined by minImprovement.

Next is some code that allows for basic reporting/logging. LogLevel.INFO will report a great 
deal of information about the progress of the classifier as it tries to converge:

PrintWriter progressWriter = new PrintWriter(System.out,true);
progressWriter.println("Reading data.");
Reporter reporter = Reporters.writer(progressWriter);
reporter.setLevel(LogLevel.INFO);  

Here ends the Getting ready section of one of our most complex classes—next, we will train 
and run the classifier.

How to do it...
It has been a bit of work setting up to train and run this class. We will just go through the 
steps to get it up and running; the upcoming recipes will address its tuning and evaluation:

1.	 Note that there is a more complex 14-argument train method as well the one that 
extends configurability. This is the 10-argument version:
LogisticRegressionClassifier<CharSequence> classifier
    = LogisticRegressionClassifier.
        <CharSequence>train(corpus,
        featureExtractor,
        minFeatureCount,
        addInterceptFeature,
        prior,
        annealingSchedule,
        minImprovement,
        minEpochs,
        maxEpochs,
        reporter);

2.	 The train() method, depending on the LogLevel constant, will produce from 
nothing with LogLevel.NONE to the prodigious output with LogLevel.ALL.
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3.	 While we are not going to use it, we show how to serialize the trained model to disk. 
The How to serialize a LingPipe object – classifier example recipe in Chapter 1, 
Simple Classifiers, explains what is going on:
AbstractExternalizable.compileTo(classifier,
  new File("models/myModel.LogisticRegression"));

4.	 Once trained, we will apply the standard classification loop with:
Util.consoleInputPrintClassification(classifier);

5.	 Run the preceding code in the IDE of your choice or use the command-line command:
java -cp lingpipe-cookbook.1.0.jar:lib/lingpipe-4.1.0.jar:lib/
opencsv-2.4.jar com.lingpipe.cookbook.chapter3.TrainAndRunLogReg

6.	 The result is a big dump of information about the training:
Reading data.
:00 Feature Extractor class=class com.aliasi.tokenizer.
TokenFeatureExtractor
:00 min feature count=1
:00 Extracting Training Data
:00 Cold start
:00 Regression callback handler=null
:00 Logistic Regression Estimation
:00 Monitoring convergence=true
:00 Number of dimensions=233
:00 Number of Outcomes=2
:00 Number of Parameters=233
:00 Number of Training Instances=21
:00 Prior=LaplaceRegressionPrior(Variance=2.0,  
  noninformativeIntercept=true)
:00 Annealing Schedule=Exponential(initialLearningRate=2.5E-4,  
  base=0.999)
:00 Minimum Epochs=100
:00 Maximum Epochs=2000
:00 Minimum Improvement Per Period=1.0E-9
:00 Has Informative Prior=true
:00 epoch=    0 lr=0.000250000 ll=   -20.9648 lp=   
  -232.0139 llp=  -252.9787 llp*=  -252.9787
:00 epoch=    1 lr=0.000249750 ll=   -20.9406 lp=   
  -232.0195 llp=  -252.9602 llp*=  -252.9602

7.	 The epoch reporting goes on until either the number of epochs is met or the search 
converges. In the following case, the number of epochs was met:
:00 epoch= 1998 lr=0.000033868 ll=   -15.4568 lp=   
  -233.8125 llp=  -249.2693 llp*=  -249.2693
:00 epoch= 1999 lr=0.000033834 ll=   -15.4565 lp=   
  -233.8127 llp=  -249.2692 llp*=  -249.2692
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8.	 Now, we can play with the classifier a bit:
Type a string to be classified. Empty string to quit.
I luv Disney
Rank  Category  Score  P(Category|Input)
0=e 0.626898085027528 0.626898085027528
1=n 0.373101914972472 0.373101914972472

9.	 This should look familiar; it is exactly the same result as the worked example at the 
start of the recipe.

That's it! You have trained up and used the world's most relevant industrial classifier.  
However, there's a lot more to harnessing the power of this beast. 

Multithreaded cross validation
Cross validation (refer to the How to train and evaluate with cross validation recipe in Chapter 
1, Simple Classifiers) can be very slow, which interferes with tuning systems. This recipe will 
show you a simple but effective way to access all the available cores on your system to more 
quickly process each fold.

How to do it...
This recipe explains multi-threaded cross validation in the context of the next recipe, so don't 
be confused by the fact that the same class is repeated.

1.	 Engage your IDE or type in the command line:
java -cp lingpipe-cookbook.1.0.jar:lib/lingpipe-4.1.0.jar:lib/
opencsv-2.4.jar com.lingpipe.cookbook.chapter3.TuneLogRegParams

2.	 The system then responds with the following output (you might have to scroll to the 
top of the window):
Reading data.
RUNNING thread Fold 5 (1 of 10)
RUNNING thread Fold 9 (2 of 10)
RUNNING thread Fold 3 (3 of 10)
RUNNING thread Fold 4 (4 of 10)
RUNNING thread Fold 0 (5 of 10)
RUNNING thread Fold 2 (6 of 10)
RUNNING thread Fold 8 (7 of 10)
RUNNING thread Fold 6 (8 of 10)
RUNNING thread Fold 7 (9 of 10)
RUNNING thread Fold 1 (10 of 10)
reference\response
          \e,n,
         e 11,0,
         n 6,4,
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3.	 The default training data is 21 tweets annotated for English e and non-English n. 
In the preceding output, we saw a report of each fold that runs as a thread and the 
resulting confusion matrix. That's it! We just did multithreaded cross validation. Let's 
see how this works.

How it works…
All the action happens in the Util.xvalLogRegMultiThread() method, which we invoke 
from src/com/lingpipe/cookbook/chapter3/TuneLogRegParams.java. The details of 
TuneLogRegParams are covered in the next recipe. This recipe will focus on the Util method:

int numThreads = 2;
int numFolds = 10;
Util.xvalLogRegMultiThread(corpus,
        featureExtractor,
        minFeatureCount,
        addInterceptFeature,
        prior,
        annealingSchedule,
        minImprovement,
        minEpochs,
        maxEpochs,
        reporter,
        numFolds,
        numThreads,
        categories);

All 10 parameters used to configure logistic regression are controllable (you can refer to the 
previous recipe for explanation), with the addition of numFolds, which controls how many 
folds there will be, numThreads, which controls how many threads can be run at the same 
time, and finally, categories.

If we look at the relevant method in src/com/lingpipe/cookbook/Util.java, we see:

public static <E> ConditionalClassifierEvaluator<E> 
xvalLogRegMultiThread(
    final XValidatingObjectCorpus<Classified<E>> corpus,
    final FeatureExtractor<E> featureExtractor,
    final int minFeatureCount, 
    final boolean addInterceptFeature,
    final RegressionPrior prior, 
    final AnnealingSchedule annealingSchedule,
    final double minImprovement, 
    final int minEpochs, final int maxEpochs,
    final Reporter reporter, 
    final int numFolds, 



Chapter 3

95

    final int numThreads, 
    final String[] categories) {

1.	 The method starts with the matching arguments for configuration information of 
logistic regression and running cross validation. Since cross validation is most often 
used in system tuning, all the relevant bits are exposed to modification. Everything  
is final because we are using an anonymous inner class to create threads.

2.	 Next, we will set up crossFoldEvaluator that will collect the results from  
each thread:
corpus.setNumFolds(numFolds);
corpus.permuteCorpus(new Random(11211));
final boolean storeInputs = true;
final ConditionalClassifierEvaluator<E> crossFoldEvaluator
  = new ConditionalClassifierEvaluator<E>(null, categories,                   
storeInputs);

3.	 Now, we will get down to the business of creating threads for each fold, i:
List<Thread> threads = new ArrayList<Thread>();
for (int i = 0; i < numFolds; ++i) {
  final XValidatingObjectCorpus<Classified<E>> fold 
    = corpus.itemView();
  fold.setFold(i);

The XValidatingObjectCorpus class is set up for multithreaded access by 
creating a thread-safe version of the corpus for reads with the itemView() method. 
This method returns a corpus that can have the fold set, but no data can be added.

Each thread is a runnable object, where the actual work of training and evaluating 
the fold is handled in the run() method:
Runnable runnable 
  = new Runnable() {
    @Override
    public void run() {
    try {
      LogisticRegressionClassifier<E> classifier
        = LogisticRegressionClassifier.<E>train(fold,
                featureExtractor,
                minFeatureCount,
                addInterceptFeature,
                prior,
                annealingSchedule,
                minImprovement,
                minEpochs,
                maxEpochs,
                reporter);
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In this code, we started with training the classifier, which, in turn, 
requires a try/catch statement to handle IOException thrown by the 
LogisticRegressionClassifier.train() method. Next, we will create 
withinFoldEvaluator that will be populated within the thread without a 
synchronization issue:
ConditionalClassifierEvaluator<E> withinFoldEvaluator 
  = new ConditionalClassifierEvaluator<E>(classifier,                   
categories, storeInputs);
fold.visitTest(withinFoldEvaluator);

It is important that storeInputs be true so that the fold results can be added  
to crossFoldEvaluator:
addToEvaluator(withinFoldEvaluator,crossFoldEvaluator);

This method, also in Util, iterates over all the true positives and false negatives 
for each category and adds them to crossFoldEvaluator. Note that this is 
synchronized: this means that only one thread can access the method at a time, but 
given that classification has already been done, it should not be much of a bottleneck:
public synchronized static <E> void addToEvaluator(BaseClassifierE
valuator<E> foldEval, ScoredClassifierEvaluator<E> crossFoldEval) 
{
  for (String category : foldEval.categories()) {
   for (Classified<E> classified : foldEval.
truePositives(category)) {
    crossFoldEval.addClassification(category,classified.
getClassification(),classified.getObject());
   }
   for (Classified<E> classified : foldEval.
falseNegatives(category)) {
    crossFoldEval.addClassification(category,classified.
getClassification(),classified.getObject());
   }
  }
 }

The method takes the true positives and false negatives from each category and 
adds them to the crossFoldEval evaluator. These are essentially copy operations 
that do not take long to compute.

4.	 Returning to xvalLogRegMultiThread, we will handle the exception and add the 
completed Runnable to our list of Thread:
    catch (Exception e) {
      e.printStackTrace();
    }
  }
};
threads.add(new Thread(runnable,"Fold " + i));
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5.	 With all the threads set up, we will invoke runThreads() as well as  
print the confusion matrix that results. We will not go into the source of  
runThreads(), because it is a straightforward Java management of threads,  
and printConfusionMatrix has been covered in Chapter 1, Simple Classifiers:
    
  runThreads(threads,numThreads);     
printConfusionMatrix(crossFoldEvaluator.confusionMatrix());
}

That's it for really speeding up cross validation on multicore machines. It can make a big 
difference when tuning systems.

Tuning parameters in logistic regression
Logistic regression presents an intimidating array of parameters to tweak for better 
performance, and working with it is a bit of black art. Having built thousands of these 
classifiers, we are still learning how to do it better. This recipe will point you in the general 
right direction, but the topic probably deserves its own book.

How to do it...
This recipe involves extensive changes to the source of src/com/lingpipe/chapter3/
TuneLogRegParams.java. We will just run one configuration of it here, with most of the 
exposition in the How it works… section.

1.	 Engage your IDE or type the following in the command line:
java -cp lingpipe-cookbook.1.0.jar:lib/lingpipe-4.1.0.jar:lib/
opencsv-2.4.jar com.lingpipe.cookbook.chapter3.TuneLogRegParams

2.	 The system then responds with cross-validation output confusion matrix for our 
default data in data/disney_e_n.csv:
reference\response
          \e,n,
         e 11,0,
         n 6,4,

3.	 Next, we will report on false positives for each category—this will cover all the 
mistakes made:
False Positives for e
ES INSUPERABLE DISNEY !! QUIERO VOLVER:( : n
@greenath_ t'as de la chance d'aller a Disney putain : n 
jamais été moi. : n
@HedyHAMIDI au quartier pas a Disney moi: n
…
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4.	 This output is followed by the features, their coefficients, and a count—remember that 
we will see n-1 categories, because one of the category's features is set to 0.0 for 
all features:
Feature coefficients for category e
I : 0.36688604
! : 0.29588525
Disney : 0.14954419
" : 0.07897427
to : 0.07378086
…
Got feature count: 113

5.	 Finally, we have our standard I/O that allows for examples to be tested:
Type a string to be classified
I luv disney
Rank  Category  Score  P(Category|Input)
0=e 0.5907060507161321 0.5907060507161321
1=n 0.40929394928386786 0.40929394928386786

6.	 This is the basic structure that we will work with. In the upcoming sections,  
we will explore the impact of varying parameters more closely.

How it works…
This recipe assumes that you are familiar with logistic regression training and configuration 
from two recipes back and cross validation, which is the previous recipe. The overall structure 
of the code is presented in an outline form, with the tuning parameters retained. Modifying 
each parameter will be discussed later in the recipe—below we start with the main() method 
ignoring some code as indicated by '...' and the tunable code shown for tokenization and 
feature extraction:

public static void main(String[] args) throws IOException {
    …
  TokenizerFactory tokenizerFactory 
     = IndoEuropeanTokenizerFactory.INSTANCE;
  FeatureExtractor<CharSequence> featureExtractor
     = new TokenFeatureExtractor(tokenizerFactory);
  int minFeatureCount = 1;
  boolean addInterceptFeature = false;

Next the priors are set up:

  boolean noninformativeIntercept = true;
  double priorVariance = 2 ;
  RegressionPrior prior 
    = RegressionPrior.laplace(priorVariance,
            noninformativeIntercept);
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Priors have a strong influence on the behavior coefficient assignment:

  AnnealingSchedule annealingSchedule
    = AnnealingSchedule.exponential(0.00025,0.999);
  double minImprovement = 0.000000001;
  int minEpochs = 10;
  int maxEpochs = 20;

The preceding code controls the search space of logistic regression:

Util.xvalLogRegMultiThread(corpus,…);

The preceding code runs cross validation to see how the system is doing—note the elided 
parameters with ....

In the following code, we will set the number of folds to 0, which will have the train method 
visit the entire corpus:

corpus.setNumFolds(0);
LogisticRegressionClassifier<CharSequence> classifier
  = LogisticRegressionClassifier.<CharSequence>train(corpus,…

Then, for each category, we will print out the features and their coefficients for the just  
trained classifier:

int featureCount = 0;
for (String category : categories) {
  ObjectToDoubleMap<String> featureCoeff 
    = classifier.featureValues(category);
  System.out.println("Feature coefficients for category " 
        + category);
  for (String feature : featureCoeff.keysOrderedByValueList()) {
    System.out.print(feature);
    System.out.printf(" :%.8f\n",featureCoeff.getValue(feature));
    ++featureCount;
  }
}
System.out.println("Got feature count: " + featureCount);

Finally, we will have the usual console classifier I/O:

Util.consoleInputPrintClassification(classifier);    
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Tuning feature extraction
The features that are fed into logistic regression have a huge impact on the performance 
of the system. We will cover feature extraction in greater detail in the later recipes, but we 
will bring to bear one of the most useful and somewhat counter-intuitive approaches here, 
because it is very easy to execute—use character ngrams instead of words/tokens. Let's look 
at an example:

Type a string to be classified. Empty string to quit.
The rain in Spain
Rank  Category  Score  P(Category|Input)
0=e 0.5 0.5
1=n 0.5 0.5

This output indicates that the classifier is tied between e English and n non-English as a 
decision. Scrolling back through the features, we will see that there are no matches for 
any of the words in the input. There are some substring matches on the English side. The 
has the substring he for the feature word the. For language ID, it makes sense to consider 
subsequences, but as a matter of experience, it can be a big help for sentiment and other 
problems as well.

Modifying the tokenizer to be two-to-four-character ngrams is done as follows:

int min = 2;
int max = 4;
TokenizerFactory tokenizerFactory 
  = new NGramTokenizerFactory(min,max);

This results in the proper distinction being made:

Type a string to be classified. Empty string to quit.
The rain in Spain
Rank  Category  Score  P(Category|Input)
0=e 0.5113903651380305 0.5113903651380305
1=n 0.4886096348619695 0.4886096348619695

The overall performance on cross validation drops a bit. For very small training sets, such 
as 21 tweets, this is not unexpected. Generally, the cross-validation performance with a 
consultation of what the mistakes look like and a look at the false positives will help guide  
this process.

In looking at the false positives, it is clear that Disney is a source of problems, because the 
coefficients on features show it to be evidence for English. Some of the false positives are:

False Positives for e
@greenath_ t'as de la chance d'aller a Disney putain j'y ai jamais été 
moi. : n
@HedyHAMIDI au quartier pas a Disney moi : n
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Prefiro gastar uma baba de dinheiro pra ir pra cancun doq pra Disney 
por exemplo : n

The following are the features for e:

Feature coefficients for category e
I : 0.36688604
! : 0.29588525
Disney : 0.14954419
" : 0.07897427
to : 0.07378086

In the absence of more training data, the features !, Disney, and " should be removed to 
help this classifier perform better, because none of these features are language specific, 
whereas I and to are, although not unique to English. This can be done by filtering the data 
or creating the appropriate tokenizer factory, but the best move is to probably get more data.

The minFeature count becomes useful when there is much more data, and you don't  
want logistic regression focusing on a very-low-count phenomenon because it tends to lead  
to overfitting.

Setting the addInterceptFeature parameter to true will add a feature that always fires. 
This will allow logistic regression to have a feature sensitive to the number of examples for 
each category. It is not the marginal likelihood of the category, as logistic regression will adjust 
the weight like any other feature—but the following priors show how it can be further tuned:

de : -0.08864114
( : -0.10818647
*&^INTERCEPT%$^&** : -0.17089337

The intercept is the strongest feature for n in the end, and the overall cross-validation 
performance suffered in this case.

Priors
The role of priors is to restrict the tendency of logistic regression to perfectly fit the training 
data. The ones we use try in varying degrees to push coefficients to zero. We will start with the 
nonInformativeIntercept prior, which controls whether the intercept feature is subject 
to the normalizing influences of the prior—if true, then the intercept is not subject to the prior, 
which was the case in the preceding example. Setting it to false moved it much closer to 
zero from -0.17:

*&^INTERCEPT%$^&** : -0.03874782
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Next, we will adjust the variance of the prior. This sets an expected variation for the weights. 
A low variance means that coefficients are expected not to vary much from zero. In the 
preceding code, the variance was set to 2. This is the result of setting it to .01:

Feature coefficients for category e
' : -0.00003809
Feature coefficients for category n

This is a drop from 104 features with variance 2 to one feature for variance .01,  
because once a feature has dropped to 0, it is removed.

Increasing the variance changes our top e features from 2 to 4:

Feature coefficients for category e
I : 0.36688604
! : 0.29588525
Disney : 0.14954419

I : 0.40189501
! : 0.31387376
Disney : 0.18255271

This is a total of 119 features.

Consider a variance of 2 and a gaussian prior:

boolean noninformativeIntercept = false;
double priorVariance = 2;
RegressionPrior prior 
  = RegressionPrior.gaussian(priorVariance,
    noninformativeIntercept);

We will get the following output:

I : 0.38866670
! : 0.27367013
Disney : 0.22699340

Oddly, we spend very little time worrying about which prior we use, but variance has a big role 
in performance, because it can cut down the feature space quickly. Laplace is a commonly 
accepted prior for NLP applications.

Consult the Javadoc and logistic regression tutorial for more information.
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Annealing schedule and epochs
As logistic regression converges, the annealing schedule controls how the search space is 
explored and terminated:

AnnealingSchedule annealingSchedule
    = AnnealingSchedule.exponential(0.00025,0.999);
  double minImprovement = 0.000000001;
  int minEpochs = 10;
  int maxEpochs = 20;

When tuning, we will increase the first parameter to the annealing schedule by order of 
magnitude (.0025,.025,..) if the search is taking too long—often, we can increase 
the training speed without impacting the cross-validation performance. Also, the 
minImprovement value can be increased to have the convergence end earlier, which 
can both increase the training speed and prevent the model from overfitting—this is called 
early stopping. Again, your guiding light in this situation is to look at the cross-validation 
performance when making changes.

The epochs required to achieve convergence can get quite high, so if the classifier is iterating 
to maxEpochs -1, this means that more epochs are required to converge. Be sure to set the 
reporter.setLevel(LogLevel.INFO); property or a more informative level to get the 
convergence report. This is another way to additionally force early stopping.

Parameter tuning is a black art that can only be learned through practice. The quality and 
quantity of training data is probably the dominant factor in classifier performance, but tuning 
can make a big difference as well.

Customizing feature extraction
Logistic regression allows for arbitrary features to be used. Features are any observations that 
can be made about data being classified. Some examples are as follows:

ff Words/tokens from the text.

ff We found that character ngrams work very well in lieu of words or stemmed words. 
For small data sets of less than 10,000 words of training, we will use 2-4 grams. 
Bigger training data can merit a longer gram, but we have never had good results 
above 8-gram characters.

ff Output from another component can be a feature, for example, a part-of-speech tagger.

ff Metadata known about the text, for example, the location of a tweet or time of the 
day it was created.

ff Recognition of dates and numbers abstracted from the actual value.
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How to do it…
The source for this recipe is in src/com/lingpipe/cookbook/chapter3/
ContainsNumberFeatureExtractor.java.

1.	 Feature extractors are straightforward to build. The following is a feature extractor 
that returns a CONTAINS_NUMBER feature with weight 1:
public class ContainsNumberFeatureExtractor implements 
FeatureExtractor<CharSequence> {
  @Override
  public Map<String,Counter> features(CharSequence text) {
         ObjectToCounterMap<String> featureMap 
         = new ObjectToCounterMap<String>();
    if (text.toString().matches(".*\\d.*")) {
      featureMap.set("CONTAINS_NUMBER", 1);
    }
    return featureMap;  }

2.	 By adding a main() method, we can test the feature extractor:
public static void main(String[] args) {
  FeatureExtractor<CharSequence> featureExtractor 
         = new ContainsNumberFeatureExtractor();
  System.out.println(featureExtractor.features("I have a number 
1"));
}

3.	 Now run the following command:
java -cp lingpipe-cookbook.1.0.jar:lib/lingpipe-
4.1.0.jar:lib/opencsv-2.4.jar com.lingpipe.cookbook.chapter3.
ContainsNumberFeatureExtractor

4.	 The preceding code yields the following output:
CONTAINS_NUMBER=1

 That's it. The next recipe will show you how to combine feature extractors.

There's more…
Designing features is a bit of an art. Logistic regression is supposed to be robust in the  
face of irrelevant features, but overwhelming it with really dumb features will likely detract 
from performance.

One way to think about what features you need is to wonder what evidence from the text  
or environment helps you, the human, decide what the correct classification is. Try and  
ignore your world knowledge when looking at the text. If world knowledge, that is, France  
is a country, is important, then try and model this world knowledge with a gazetteer to  
generate CONTAINS_COUNTRY_MENTION.
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Be aware that features are strings, and the only notion of equivalence is the exact string 
match. The 12:01pm feature is completely distinct from 12:02pm, although, to a human, 
these strings are very close, because we understand time. To get the similarity of these two 
features, you must have something like a LUNCH_TIME feature that is computed using time.

Combining feature extractors
Feature extractors can be combined in much the same way as tokenizers in Chapter 2, 
Finding and Working with Words.

How to do it…
This recipe will show you how to combine the feature extractor from the previous recipe  
with a very common feature extractor over character ngrams.

1.	 We will start with a main() method in src/com/lingpipe/cookbook/chapter3/
CombinedFeatureExtractor.java that we will use to run the feature extractor.  
The following lines set up features that result from the tokenizer using the  
LingPipe class, TokenFeatureExtractor:
public static void main(String[] args) {
   int min = 2;
  int max = 4;
  TokenizerFactory tokenizerFactory 
     = new NGramTokenizerFactory(min,max);
  FeatureExtractor<CharSequence> tokenFeatures 
= new TokenFeatureExtractor(tokenizerFactory);

2.	 Then, we will construct the feature extractor from the previous recipe.
FeatureExtractor<CharSequence> numberFeatures 
= new ContainsNumberFeatureExtractor();

3.	 Next, the LingPipe class joining feature extractors, AddFeatureExtractor,  
joins the two into a third:
FeatureExtractor<CharSequence> joinedFeatureExtractors 
  = new AddFeatureExtractor<CharSequence>(
          tokenFeatures,numberFeatures);

4.	 The remaining code gets the features and prints them out:
String input = "show me 1!";
Map<String,? extends Number> features 
   = joinedFeatureExtractors.features(input);
System.out.println(features);
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5.	 Run the following command
java -cp lingpipe-cookbook.1.0.jar:lib/lingpipe-
4.1.0.jar:lib/opencsv-2.4.jar com.lingpipe.cookbook.chapter3.
CombinedFeatureExtractor

6.	 The output looks like this:
{me =1.0,  m=1.0, me 1=1.0, e =1.0, show=1.0,  me =1.0, ho=1.0, 
ow =1.0, e 1!=1.0, sho=1.0,  1=1.0, me=1.0, how =1.0, CONTAINS_
NUMBER=1.0, w me=1.0,  me=1.0, how=1.0,  1!=1.0, sh=1.0, ow=1.0, e 
1=1.0, w m=1.0, ow m=1.0, w =1.0, 1!=1.0}

There's more…
The Javadoc references a broad range of feature extractors and combiners/filters to help 
manage the task of feature extraction. One slightly confusing aspect of the class is that the 
FeatureExtractor interface is in the com.aliasi.util package, and the implementing 
classes are all in com.aliasi.features.

Classifier-building life cycle
At the top-level building, a classifier usually proceeds as follows:

1.	 Create training data—refer to the following recipe for more about this.

2.	 Build training and evaluation infrastructure with sanity check.

3.	 Establish baseline performance.

4.	 Select optimization metric for classifier—this is what the classifier is trying to do  
and will guide tuning.

5.	 Optimize classifier via techniques such as:

�� Parameter tuning
�� Thresholding
�� Linguistic tuning
�� Adding training data
�� Refining classifier definition

This recipe will present the first four steps in concrete terms, and there are recipes in this 
chapter for the optimization step.
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Getting ready
Nothing happens without training data for classifiers. Look at the Annotation recipe at the 
end of the chapter for tips on creating training data. You can also use an active learning 
framework to incrementally generate a training corpus (covered later in this chapter), which is 
the data used in this recipe.

Next, reduce the risk by starting with the dumbest possible implementation to make sure that 
the problem being solved is scoped correctly, and that the overall architecture makes sense. 
Connect the assumed inputs to assumed outputs with simple code. We promise that most of 
the time, one or the other will not be what you thought it would be.

This recipe assumes that you are familiar with the evaluation concepts in Chapter 1, Simple 
Classifiers, such as cross validation and confusion matrices, in addition to the logistic 
regression recipes covered so far.

The entire source is at src/com/lingpipe/cookbook/chapter3/
ClassifierBuilder.java.

This recipe also assumes that you can compile and run the code within your preferred 
development environment. The result of all the changes we are making is in src/com/
lingpipe/cookbook/chapter3/ClassifierBuilderFinal.java.

Big caveat in this recipe—we are using a tiny dataset to make basic 
points on classifier building. The sentiment classifier we are trying to 
build would benefit from 10 times more data.

How to do it…
We start with a collection of tweets that have been deduplicated and are the result of the 
Train a little, learn a little – active learning recipe that will follow this recipe. The starting  
point of the recipe is the following code:

public static void main(String[] args) throws IOException {
  String trainingFile = args.length > 0 ? args[0] 
    : "data/activeLearningCompleted/"
    + "disneySentimentDedupe.2.csv";
  int numFolds = 10;
  List<String[]> training 
    = Util.readAnnotatedCsvRemoveHeader(new File(trainingFile));
  String[] categories = Util.getCategories(training);
  XValidatingObjectCorpus<Classified<CharSequence>> corpus 
  = Util.loadXValCorpus(training,numFolds);
TokenizerFactory tokenizerFactory 
  = IndoEuropeanTokenizerFactory.INSTANCE;
PrintWriter progressWriter = new PrintWriter(System.out,true);
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Reporter reporter = Reporters.writer(progressWriter);
reporter.setLevel(LogLevel.WARN);
boolean storeInputs = true;
ConditionalClassifierEvaluator<CharSequence> evaluator 
    = new ConditionalClassifierEvaluator<CharSequence>(null,  
    categories, storeInputs);
corpus.setNumFolds(0);
LogisticRegressionClassifier<CharSequence> classifier = Util.
trainLogReg(corpus, tokenizerFactory, progressWriter);
evaluator.setClassifier(classifier);
System.out.println("!!!Testing on training!!!");
Util.printConfusionMatrix(evaluator.confusionMatrix());
}

Sanity check – test on training data
The first thing to do is get the system running and test on training data:

1.	 We have left a print statement that advertises what is going on:
System.out.println("!!!Testing on training!!!");
corpus.visitTrain(evaluator);

2.	 Running ClassifierBuilder will yield the following:
!!!Testing on training!!!
reference\response
          \p,n,o,
         p 67,0,3,
         n 0,30,2,
         o 2,1,106,

3.	 The preceding confusion matrix is nearly a perfect system output, which validates 
that the system is basically working. This is the best system output you will ever see; 
never let management see it, or they will think this level of performance is either 
doable or done.

Establishing a baseline with cross validation and metrics
Now it is time to see what is really going on.

1.	  If you have small data, then set the number of folds to 10 so that 90 percent of the 
data is used for training. If you have large data or are in a huge rush, then set it to 2:
static int NUM_FOLDS = 10;

2.	 Comment out or remove the training on test code:
//System.out.println("!!!Testing on training!!!");
//corpus.visitTrain(evaluator);
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3.	 Plumb in a cross-validation loop or just uncomment the loop in our source:
corpus.setNumFolds(numFolds);
for (int i = 0; i < numFolds; ++i) {
  corpus.setFold(i);
  LogisticRegressionClassifier<CharSequence> classifier 
     = Util.trainLogReg(corpus, tokenizerFactory,              
progressWriter);
  evaluator.setClassifier(classifier);
  corpus.visitTest(evaluator);
}

4.	 Recompiling and running the code will give us the following output:
reference\response
          \p,n,o,
         p 45,8,17,
         n 16,13,3,
         o 18,3,88,

5.	 The classifier labels mean p=positiveSentiment, n=negativeSentiment, and 
o=other, which covered other languages or neutral sentiment. The first row of the 
confusion matrix indicates that the system gets 45 true positives, 8 false negatives 
that it thinks are n, and 17 false negatives that it thinks are o:
reference\response
      \p,n,o,
    p 45,8,17,

6.	 To get the false positives for p, we need to look at the first column. We see that the 
system thought that 16 n annotations were p and 18 o annotations were p:
reference\response
          \p,
         p 45
         n 16
         o 18

The confusion matrix is the most honest and straightforward way to view/
present results for classifiers. Performance metrics such as precision, recall, 
F-measure, and accuracy are all very slippery and often used incorrectly. 
When presenting results, always have a confusion matrix handy, because if 
we are in the audience or someone like us is, we will ask to see it.

7.	 Perform the same analysis for the other categories, and you will have an assessment 
of system performance.
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Picking a single metric to optimize against
Perform the following steps:

1.	 While the confusion matrix establishes the overall performance of the classifier, it 
is too complex to use as a tuning guide. You don't want to have to digest the entire 
matrix every time you adjust a feature. You and your team must agree on a single 
number that, if it goes up, the system is considered better. The following metrics 
apply to binary classifiers; if there are more than two categories, then you will have  
to sum them somehow. Some common metrics we see are:

�� F-measure: F-measure is an attempt to reward reductions in false negatives 
and false positives at the same time: 

F-measure = 2*TP / (2*TP + FP + FN)

It is mainly an academic measure to declare that one system is better than 
another. It sees little use in industry.

�� Recall at 90 percent precision: The goal is to provide as much coverage 
as possible while not making more than 10 percent false positives. This is 
when the system does not want to look bad very often; this applies to spell 
checkers, question answering systems, and sentiment dashboards.

�� Precision at 99.9 percent recall: This metric supports needle in the 
haystack or needle in the needle stack kind of problems. The user cannot 
afford to miss anything and is willing to perhaps slog through lots of false 
positives as long as they don't miss anything. The system is better if the  
false positive rate is lower. Use cases are intelligence analysts and  
medical researchers.

2.	 Determining this metric comes from a mixture of business/research needs, technical 
capability, available resources, and willpower. If a customer wants a high recall 
and high-precision system, our first question will be to ask what the budget is per 
document. If it is high enough, we will suggest hiring experts to correct system output, 
which is the best combination of what computers are good at (exhaustiveness) and 
what humans are good at (discrimination). Generally, budgets don't support this, so 
the balancing act begins, but we have deployed systems in just this way.

3.	 For this recipe, we will pick a maximizing recall at 50-percent precision for n 
(negative), because we want to be sure to intercept any negative sentiment and  
will tolerate false positives. We will choose 65 percent for a p positive, because  
the good news is less actionable, and who doesn't love Disney? We don't care  
what o (other performance) is—the category exists for linguistic reasons, independent 
of the business use. This metric a likely metric for a sentiment-dashboard application. 
This means that the system will produce one mistake for every two guesses of a 
negative-sentiment category and 13 out of 20 for positive sentiment.
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Implementing the evaluation metric
Perform the following steps to implement the evaluation metric:

1.	 We will start with reporting precision/recall for all categories with the Util.
printPrecRecall method after printing out the confusion matrix:
Util.printConfusionMatrix(evaluator.confusionMatrix());
Util.printPrecRecall(evaluator);

2.	 The output will now look like this:
reference\response
          \p,n,o,
         p 45,8,17,
         n 16,13,3,
         o 18,3,88,
Category p
Recall: 0.64
Prec  : 0.57
Category n
Recall: 0.41
Prec  : 0.54
Category o
Recall: 0.81
Prec  : 0.81

3.	 The precision for n exceeds our objective of .5–since we want to maximize recall at 
.5, we can make a few more mistakes before we get to the limit. You can refer to the 
Thresholding classifiers recipe to find out how to do this.

4.	 The precision for p is 57 percent, and this is too low for our business objective. Logistic 
regression classifiers, however, provide a conditional probability that might allow us to 
meet the precision needs just by paying attention to the probability. Adding the following 
line of code will allow us to see the results sorted by conditional probability:
Util.printPRcurve(evaluator);

5.	 The preceding line of code starts by getting a 
ScoredPrecisionRecallEvaluation value from the evaluator. A double-scored 
curve ([][]) is gotten from that object with the Boolean interpolate set to false, 
because we want the curve to be unadulterated. You can look at the Javadoc for what 
is going on. Then, we will use a print route from the same class to print out the curve. 
The output will look like this:
reference\response
          \p,n,o,
         p 45,8,17,
         n 16,13,3,
         o 18,3,88,
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Category p
Recall: 0.64
Prec  : 0.57
Category n
Recall: 0.41
Prec  : 0.54
Category o
Recall: 0.81
Prec  : 0.81
PR Curve for Category: p
  PRECI.   RECALL    SCORE
0.000000 0.000000 0.988542
0.500000 0.014286 0.979390
0.666667 0.028571 0.975054
0.750000 0.042857 0.967286
0.600000 0.042857 0.953539
0.666667 0.057143 0.942158
0.571429 0.057143 0.927563
0.625000 0.071429 0.922381
0.555556 0.071429 0.902579
0.600000 0.085714 0.901597
0.636364 0.100000 0.895898
0.666667 0.114286 0.891566
0.615385 0.114286 0.888831
0.642857 0.128571 0.884803
0.666667 0.142857 0.877658
0.687500 0.157143 0.874135
0.647059 0.157143 0.874016
0.611111 0.157143 0.871183
0.631579 0.171429 0.858999
0.650000 0.185714 0.849296
0.619048 0.185714 0.845691
0.636364 0.200000 0.810079
0.652174 0.214286 0.807661
0.666667 0.228571 0.807339
0.640000 0.228571 0.799474
0.653846 0.242857 0.753967
0.666667 0.257143 0.753169
0.678571 0.271429 0.751815
0.655172 0.271429 0.747515
0.633333 0.271429 0.745660
0.645161 0.285714 0.744455
0.656250 0.300000 0.738555
0.636364 0.300000 0.736310
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0.647059 0.314286 0.705090
0.628571 0.314286 0.694125

6.	 The output is sorted by score, in the third column, which in this case, happens to be a 
conditional probability, so the max value is 1 and min value is 0. Notice that the recall 
grows as correct cases are found (the second line), and it never goes down. However, 
when a mistake is made like in the fourth line, precision drops to .6, because 3 out 
of 5 cases are correct so far. The precision actually goes below .65 before the last 
value is found—in bold, with a score of .73.

7.	 So, without any tuning, we can report that we can achieve 30 percent recall for p 
at our accepted precision limit of 65 percent. This requires that we threshold the 
classifier at .73 for the category, which means if we reject scores less than .73  
for p, some comments are:

�� We got lucky. Usually, the first classifier runs do not reveal an immediately 
useful threshold with default values.

�� Logistic regression classifiers have a very nice property that they provide; 
they also provide conditional probability estimates for thresholding. Not all 
classifiers have this property—language models and naïve Bayes classifiers 
tend to push scores towards 0 or 1, making thresholding difficult.

�� As the training data is highly biased (this is from the Train a little, learn a 
little – active learning recipe that follows), we cannot trust this threshold.  
The classifier will have to be pointed at fresh data to set the threshold.  
Refer to the Thresholding classifiers recipe to see how this is done.

�� This classifier has seen very little data and will not be a good candidate 
for deployment despite the supporting evaluation. We would be more 
comfortable with at least 1,000 tweets from a diverse set of dates.

At this point in the process, we either accept the results by verifying that the performance is 
acceptable on fresh data or turn to improving the classifier by techniques covered by other 
recipes in this chapter. The final step of the recipe is to train up the classifier on all training 
data and write to disk:

corpus.setNumFolds(0);
LogisticRegressionClassifier<CharSequence> classifier 
  = Util.trainLogReg(corpus, tokenizerFactory, progressWriter);
AbstractExternalizable.compileTo(classifier, 
  new File("models/ClassifierBuilder.LogisticRegression"));

We will use the resulting model in the Thresholding classifiers recipe.
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Linguistic tuning
This recipe will address issues around tuning the classifier by paying attention to the mistakes 
made by the system and making linguistic adjustments by adjusting parameters and features. 
We will continue with the sentiment use case from the previous recipe and work with the 
same data. We will start with a fresh class at src/com/lingpipe/cookbook/chapter3/
LinguisticTuning.java.

We have very little data. In the real world, we will insist on more training data—at least 100 of 
the smallest category, negative, are needed with a natural distribution of positives and others.

How to do it…
We will jump right in and run some data—the default is data/activeLearningCompleted/
disneySentimentDedupe.2.csv, but you can specify your own file in the command line.

1.	 Run the following in your command line or IDE equivalent: 
java -cp lingpipe-cookbook.1.0.jar:lib/lingpipe-4.1.0.jar:lib/
opencsv-2.4.jar com.lingpipe.cookbook.chapter3.LinguisticTuning

2.	 For each fold, the features for the classifier will be printed. The output will look like 
the following for each category (just the first few features for each):
Training on fold 0
######################Printing features for category p NON_ZERO 
?: 0.52
!: 0.41
love: 0.37
can: 0.36
my: 0.36
is: 0.34
in: 0.29
of: 0.28
I: 0.28
old: 0.26
me: 0.25
My: 0.25
?: 0.25
wait: 0.24
?: 0.23
an: 0.22
out: 0.22
movie: 0.22
?: 0.21
movies: 0.21
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shirt: 0.21
t: 0.20
again: 0.20
Princess: 0.19
i: 0.19 
…
######################Printing features for category o NON_ZERO 
:: 0.69
/: 0.52
*&^INTERCEPT%$^&**: 0.48
@: 0.41
*: 0.36
(: 0.35
…
######################Printing features for category n ZERO

3.	 Starting with the n category, note that there are no features. It is a property of logistic 
regression that one category's features are all set to 0.0, and the remaining n-1 
category's features are offset accordingly. This cannot be controlled, which is a bit 
annoying because the n or negative category can be the focus of linguistic tuning 
given how badly it performs in the example. Not to be deterred, we will move on.

4.	 Note that the output is intended to make it easy to use a find command to 
locate feature output in the extensive reporting output. To find a feature search 
on category <feature name> to see if there is a nonzeroed report, search on 
category <feature name> NON_ZERO.

5.	 We are looking for a few things in these features. First of all, there are apparently odd 
features that are getting big scores—the output is ranked in positive to negative for 
the category. What we want to look for is some signal in the feature weights—so love 
makes sense as being associated with a positive sentiment. Looking at features like 
this can really be surprising and counter intuitive. The uppercase I and lowercase i 
suggest that the text should be downcased. We will make this change and see if it 
helps. Our current performance is:
Category p
Recall: 0.64
Prec  : 0.57

6.	 The code change is to add a LowerCaseTokenizerFactory item to the current 
IndoEuropeanTokenizerFactory class:
TokenizerFactory tokenizerFactory 
  = IndoEuropeanTokenizerFactory.INSTANCE;
tokenizerFactory = new   LowerCaseTokenizerFactory(tokenizerFacto
ry);
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7.	 Run the code, and we will pick up some precision and recall:
Category p
Recall: 0.69
Prec  : 0.59

8.	 The features are as follows:
Training on fold 0
######################Printing features for category p NON_ZERO 
?: 0.53
my: 0.49
love: 0.43
can: 0.41
!: 0.39
i: 0.35
is: 0.31
of: 0.28
wait: 0.27
old: 0.25
♥: 0.24
an: 0.22

9.	 What's the next move? The minFeature count is very low at 1. Let's raise it to 2  
and see what happens:
Category p
Recall: 0.67
Prec  : 0.58

10.	 This hurts performance by a few cases, so we will return to 1. However, experience 
dictates that the minimum count goes up as more data is found to prevent overfitting.

11.	 It is time for the secret sauce—change the tokenizer to NGramTokenizer; it tends to 
work better than standard tokenizers—we are now rolling with the following code:
TokenizerFactory tokenizerFactory 
  = new NGramTokenizerFactory(2,4);
tokenizerFactory 
= new LowerCaseTokenizerFactory(tokenizerFactory);

12.	 This worked. We will pick up a few more cases:
Category p
Recall: 0.71
Prec  : 0.64
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13.	 However, the features are now pretty hard to scan:
#########Printing features for category p NON_ZERO 
ea: 0.20
!!: 0.20
ov: 0.17
n : 0.16
ne: 0.15
 ?: 0.14
al: 0.13
rs: 0.13
ca: 0.13
! : 0.13
ol: 0.13
lo: 0.13
 m: 0.13
re : 0.12
so: 0.12
i : 0.12
f : 0.12
 lov: 0.12 

14.	 We have found over the course of time that character ngrams are the features of 
choice for text-classifier problems. They seem to nearly always help, and they helped 
here. Look at the features, and you can recover that love is still contributing but in 
little bits, such as lov, ov, and lo.

15.	 There is another approach that deserves a mention, which is some of the tokens 
produced by IndoEuropeanTokenizerFactory are most likely useless, and 
they are just confusing the issue. Using a stop-word list, focusing on more useful 
tokenization, and perhaps applying a stemmer such as the Porter stemmer might 
work as well. This has been the traditional approach to these kinds of problems—we 
have never had that much luck with them.

16.	 It is a good time to check on the performance of the n category; we have been 
messing about with the model and should check it:
Category n
Recall: 0.41
Prec  : 0.72

17.	 The output also reports false positives for p and n. We really don't care much about 
o, except when it shows up as a false positive for the other categories:
False Positives for p
*<category> is truth category

I was really excited for Disney next week until I just read that 
it's "New Jersey" week. #noooooooooo
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 p 0.8434727204351016
 o 0.08488521562829848
*n 0.07164206393660003

"Why worry? If you've done the best you can, worrying won't make 
anything better." ~Walt Disney
 p 0.4791823543407749
*o 0.3278392260935065
 n 0.19297841956571868

18.	 Looking at false positives, we can suggest changes to feature extraction. Recognizing 
quotes from ~Walt Disney might help the classifier with IS_DISNEY_QUOTE.

19.	 Also, looking at errors can point out errors in annotation, one can argue that the 
following is actually positive:
Cant sleep so im watching.. Beverley Hills Chihuahua.. Yep thats 
right, I'm watching a Disney film about talking dogs.. FML!!!
 p 0.6045997587907997
 o 0.3113342571409484
*n 0.08406598406825164

At this point, the system is somewhat tuned. The configuration should be saved 
someplace and the next steps are considered. They include the following:

�� Declare victory and deploy. Before deploying, be sure to test on novel data 
using all training data to train. The Thresholding classifiers recipe will be  
very useful.

�� Annotate more data. Use the active learning framework in the following 
recipe to help identify high-confidence cases that are wrong and right.  
This will likely help more than anything with performance, especially with  
low-count data such as the kind we have been working with.

�� Looking at the epoch report, the system is never converging on its own. 
Increase the limit to 10,000 and see if this helps things.

The result of our tuning efforts was to improve the performance from:
reference\response
          \p,n,o,
         p 45,8,17,
         n 16,13,3,
         o 18,3,88,
Category p
Recall: 0.64
Prec  : 0.57
Category n
Recall: 0.41
Prec  : 0.54
Category o
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Recall: 0.81
Prec  : 0.81
To the following:
reference\response
          \p,n,o,
         p 50,3,17,
         n 14,13,5,
         o 14,2,93,
Category p
Recall: 0.71
Prec  : 0.64
Category n
Recall: 0.41
Prec  : 0.72
Category o
Recall: 0.85
Prec  : 0.81

This is not a bad uptick in performance in exchange for looking at some data and 
thinking a bit about how to help the classifier do its job.

Thresholding classifiers
Logistic regression classifiers are often deployed with a threshold rather than the provided 
classifier.bestCategory() method. This method picks the category with the highest 
conditional probability, which, in a 3-way classifier, can be just above one-third. This recipe will 
show you how to adjust classifier performance by explicitly controlling how the best category  
is determined.

This recipe will consider the 3-way case with the p, n, and o labels and work with the classifier 
produced by the Classifier-building life cycle recipe earlier in this chapter. The cross-validation 
evaluation produced is:

Category p
Recall: 0.64
Prec  : 0.57
Category n
Recall: 0.41
Prec  : 0.54
Category o
Recall: 0.81
Prec  : 0.81

We will run novel data to set thresholds.
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How to do it...
Our business use case is that recall be maximized while p has .65 precision and n has .5 
precision for reasons discussed in the Classifier-building life cycle recipe. The o category is not 
important in this case. The p category appears to be too low with .57, and the n category can 
increase recall as the precision is above .5.

1.	 We cannot use the cross-validation results unless care has been taken to produce 
a proper distribution of annotations—the active learning approach used tends to not 
produce such distributions. Even with a good distribution, the fact that the classifier 
was likely tuned with cross validation means that it is most likely overfit to that 
dataset because tuning decisions were made to maximize performance of those  
sets that are not general to new data.

2.	 We need to point the trained classifier at new data—the rule of thumb is to train by 
hook or crook but always threshold on fresh. We followed the Getting data from the 
Twitter API recipe in Chapter 1, Simple Classifiers, and downloaded new data from 
Twitter with the disney query. Nearly a year has passed since our initial search, so 
the tweets are most likely non-overlapping. The resulting 1,500 tweets were put into 
data/freshDisney.csv.

3.	 Ensure that you don't run this code on data that is not backed up. The I/O is simple 
rather than robust. The code overwrites the input file.

4.	 Invoke RunClassifier on your IDE or run the following command:
java -cp lingpipe-cookbook.1.0.jar:lib/lingpipe-4.1.0.jar:lib/
opencsv-2.4.jar com.lingpipe.cookbook.chapter3/RunClassifier

Data is: data/freshDisney.csv model is: models/ClassifierBuilder.
LogisticRegression

No annotations found, not evaluating

writing scored output to data/freshDisney.csv

5.	 Open the .csv file in your favorite spreadsheet. All tweets should have a score  
and a guessed category in the standard annotation format.

6.	 Sort with the primary sort on the GUESS column in the ascending or descending  
order and then sort on SCORE in the descending order. The result should be each 
category with higher scores descending to lower scores. This is how we set up  
top-down annotations.
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Setting up sort of data for top-down annotation. All categories are grouped together, and a descending sort of the 
score is established.

7.	 For the categories that you care about, in this case, p and n, annotate truth from 
the highest score to the lowest scores until it is likely that the precision goal has 
been broached. For example, annotate n until you either run out of n guesses, or 
you have enough mistakes that you have .50 precision. A mistake is when the 
truth is o or p. Do the same for p until you have a precision  of .65, or you run out 
of number of p. For our canned example, we have put the annotations in data/
freshDisneyAnnotated.csv.

8.	 Run the following command or the equivalent in your IDE (note that we are supplying 
the input file and not using the default):
java -cp lingpipe-cookbook.1.0.jar:lib/lingpipe-4.1.0.jar:lib/
opencsv-2.4.jar com.lingpipe.cookbook.chapter3/RunClassifier data/
freshDisneyAnnotated.csv

9.	 This command will produce the following output:
Data is: data/freshDisneyAnnotated.csv model is: models/
ClassifierBuilder.LogisticRegression

reference\response

          \p,n,o,

         p 141,25,0,

         n 39,37,0,

         o 51,28,0,

Category p

Recall: 0.85

Prec  : 0.61

Category n

Recall: 0.49

Prec  : 0.41
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Category o

Recall: 0.00

Prec  : NaN

10.	 First off, this is a surprisingly good system performance for our minimally trained 
classifier. p is very close to the target precision of .65 without thresholding, and 
coverage is not bad: it is found as 141 true positives out of 1,500 tweets. As we have 
not annotated all 1,500 tweets, we cannot truly say what the recall of the classifier is, 
so the term is overloaded in common use. The n category is not doing as well, but it is 
still pretty good. Our annotation did no annotations for the o category, so the system 
column is all zeros.

11.	 Next, we will look at the precision/recall/score curve for thresholding guidance:
PR Curve for Category: p
  PRECI.   RECALL    SCORE
1.000000 0.006024 0.976872
1.000000 0.012048 0.965248
1.000000 0.018072 0.958461
1.000000 0.024096 0.947749
1.000000 0.030120 0.938152
1.000000 0.036145 0.930893
1.000000 0.042169 0.928653
…
0.829268 0.204819 0.781308
0.833333 0.210843 0.777209
0.837209 0.216867 0.776252
0.840909 0.222892 0.771287
0.822222 0.222892 0.766425
0.804348 0.222892 0.766132
0.808511 0.228916 0.764918
0.791667 0.228916 0.761848
0.795918 0.234940 0.758419
0.780000 0.234940 0.755753
0.784314 0.240964 0.755314
…
0.649746 0.771084 0.531612
0.651515 0.777108 0.529871
0.653266 0.783133 0.529396
0.650000 0.783133 0.528988
0.651741 0.789157 0.526603
0.648515 0.789157 0.526153
0.650246 0.795181 0.525740
0.651961 0.801205 0.525636
0.648780 0.801205 0.524874



Chapter 3

123

12.	 Most values have been elided to save space in the preceding output. We saw that the 
point at which the classifier passes .65 precision has a score of .525. This means that 
we can expect 65-percent precision if we threshold at .525 with a bunch of caveats:

�� This is a single-point sample without a confidence estimate. There are  
more sophisticated ways to arrive at a threshold that is beyond the scope  
of this recipe.

�� Time is a big contributor to variance in performance.

�� 10-percent variance in performance for well-developed classifiers is  
not uncommon in practice. Factor this into performance requirements.

13.	 The nice thing about the preceding curve is that it looks like we can provide a .80 
precision classifier at a threshold of .76 with nearly 30 percent of the coverage of 
the .65 precision classifier if we decide that higher precision is called for.

14.	 The n case has a curve that looks like this:
PR Curve for Category: n
  PRECI.   RECALL    SCORE
1.000000 0.013158 0.981217
0.500000 0.013158 0.862016
0.666667 0.026316 0.844607
0.500000 0.026316 0.796797
0.600000 0.039474 0.775489
0.500000 0.039474 0.768295
…
0.468750 0.197368 0.571442
0.454545 0.197368 0.571117
0.470588 0.210526 0.567976
0.485714 0.223684 0.563354
0.500000 0.236842 0.552538
0.486486 0.236842 0.549950
0.500000 0.250000 0.549910
0.487179 0.250000 0.547843
0.475000 0.250000 0.540650
0.463415 0.250000 0.529589

15.	 It looks like a threshold of .549 gets the job done. The rest of the recipe will show 
how you to set up the thresholded classifier now that we have the thresholds.

The code behind RunClassifier.java offers nothing of novelty in the context of this 
chapter, so it is left to you to work through.
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How it works…
The goal is to create a classifier that will assign p to a tweet if it scores above .525 for 
that category and n if scores above .549 for that category; otherwise, it gets o. Wrong….
management saw the p/r curve and now insists that p must be 80-percent precise, which 
means that the threshold will be .76.

The solution is very simple. If a score for p is below .76, then it will be rescored down to 0.0. 
Likewise, if a score for n is below .54, then it will be rescored down to 0.0. The effect of this 
is that o will be the best category for all below-threshold cases, because .75 p can at best be 
.25 n, which remains below the n threshold, and .53 n can at most be .47 p, which is below 
that category's threshold. This can get complicated if all categories are thresholded,  
or the thresholds are low.

Stepping back, we are taking a conditional classifier where all the category scores must sum 
to 1 and breaking this contract, because we will take any estimate for p that is below .76 
and bust it down to 0.0. It is a similar story for n. The resulting classifier will now have to be 
ScoredClassifier because this is the next most specific contract in the LingPipe API that 
we can uphold.

The code for this class is in src/com/lingpipe/cookbook/chapter3/
ThresholdedClassifier. At the top level, we have the class, relevant member  
variable, and constructor:

public class ThresholdedClassifier<E> implements         
ScoredClassifier<E> {
  
  ConditionalClassifier<E> mNonThresholdedClassifier;

  public ThresholdedClassifier (ConditionalClassifier<E>                      
classifier) {
    mNonThresholdedClassifier = classifier;
  }

Next, we will implement the only required method for ScoredClassification, and this is 
where the magic happens:

@Override
public ScoredClassification classify(E input) {
  ConditionalClassification classification 
    = mNonThresholdedClassifier.classify(input);
  List<ScoredObject<String>> scores 
      = new ArrayList<ScoredObject<String>>();
  for (int i = 0; i < classification.size(); ++i) {
    String category = classification.category(i);
    Double score = classification.score(i);
     if (category.equals("p") && score < .76d) {
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       score = 0.0;
     }
    if (category.equals("n") && score < .549d) {
       score = 0.0;
     }
     ScoredObject<String> scored 
      = new ScoredObject<String>(category,score);
    scores.add(scored);
  }
  ScoredClassification thresholded 
    = ScoredClassification.create(scores);
  return thresholded;
}

The complicated bit about scored classifications is that scores have to be assigned to all 
categories even if the score is 0.0. The mapping from a conditional classification, where all 
scores sum to 1.0, does not lend itself to a generic solution, which is why the preceding ad 
hoc implementation is used.

There is also a main() method that spools up the relevant bits for 
ThresholdedClassifier and applies them:

java -cp lingpipe-cookbook.1.0.jar:lib/lingpipe-4.1.0.jar:lib/opencsv-
2.4.jar com.lingpipe.cookbook.chapter3/ThresholdedClassifier data/
freshDisneyAnnotated.csv 

Data is: data/freshDisneyAnnotated.csv model is: models/
ClassifierBuilder.LogisticRegression

reference\response

          \p,n,o,

         p 38,14,114,

         n 5,19,52,

         o 5,5,69,

Category p

Recall: 0.23

Prec  : 0.79

Category n

Recall: 0.25

Prec  : 0.50

Category o

Recall: 0.87

Prec  : 0.29
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The thresholds are doing exactly as designed; p is .79 precision, which is close enough for 
consulting, and n is spot on. The source for the main() method should be straightforward 
given the context of this chapter.

That's it. Almost never do we release a nonthresholded classifier, and best practices require 
that thresholds be set on held-out data, preferably from later epochs than the training 
data. Logistic regression is quite robust against skewed training data, but the ointment that 
cleanses the flaws of skewed data is novel data annotated top down to precision objectives. 
Yes, it is possible to threshold with cross validation, but it suffers from the flaws that overfit 
due to tuning, and you would screw up your distributions. Recall-oriented objectives are 
another matter.

Train a little, learn a little – active learning
Active learning is a super power to quickly develop classifiers. It has saved many a project in 
the real world. The idea is very simple and can be broken down as follows:

1.	 Assemble a packet of raw data that is way bigger than you can annotate manually.

2.	 Annotate an embarrassingly small amount of the raw data.

3.	 Train the classifier on the embarrassingly small amount of training data.

4.	 Run the trained classifier on all the data.

5.	 Put the classifier output into a .csv file ranked by confidence of best category.

6.	 Correct another embarrassingly small amount of data, starting with the most 
confident classifications.

7.	 Evaluate the performance.

8.	 Repeat the process until the performance is acceptable, or you run out of data.

9.	 If successful, be sure to evaluate/threshold on fresh data, because the active 
learning process can introduce biases to the evaluation.

What this process does is help the classifier distinguish the cases where it is making higher 
confidence mistakes and correcting it. It also works as a classification-driven search engine 
of sorts, where the positive training data functions as the query, and the remaining data 
functions as the index being searched.

Traditionally, active learning is applied to the near-miss cases where the classifier is 
unsure of the correct class. In this case, the corrections will apply to the lowest confidence 
classifications. We came up with the high-confidence correction approach because we  
were under pressure to increase precision with a thresholded classifier that only accepted 
high-confidence decisions.
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Getting ready
What is going on here is that we are using the classifier to find more data that looks like  
what it knows about. For problems where the target classes are rare in the unannotated  
data, it can very quickly help the system identify more examples of the class. For example,  
in a binary-classification task with marginal probability of 1 percent for the target class in the 
raw data, this is almost certainly the way to go. You cannot ask annotators to reliably mark a 
1-in-100 phenomenon over time. While this is the right way to do it, the end result is that it will 
not be done because of the effort involved.

Like most cheats, shortcuts, and super powers, the question to ask is what is the price paid. 
In the duality of precision and recall, recall suffers with this approach. This is because the 
approach biases annotation towards known cases. Cases that have very different wording are 
unlikely to be found, so coverage can suffer.

How to do it…
Let's get started with active learning:

1.	 Collect some training data in our .csv format from Chapter 1, Simple Classifiers,  
or use our example data in data/activeLearning/disneyDedupe.0.csv.  
Our data builds on the Disney tweets from Chapter 1, Simple Classifiers. Sentiment 
is a good candidate for active learning, because it benefits from quality training data 
and creating quality training data can be difficult. Use the .csv file format from the 
Twitter search downloader if you are using your own data.

2.	 Run the .csv deduplication routine from the Eliminate near duplicates with Jaccard 
distance recipe of Chapter 1, Simple Classifiers to get rid of near-duplicate tweets. 
We have already done this with our example data. We went from 1,500 tweets to 
1,343.

3.	 If you have your own data, annotate around 25 examples in the TRUTH 
column according to the standard annotation:

�� p stands for positive sentiment

�� n stands for negative sentiment

�� o stands for other, which means that no sentiment is expressed, or the tweet 
is not in English

�� Be sure to get a few examples of each category
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Our example data is already annotated for this step. If you are using your own data, 
be sure to use the format of the first file (that has the 0.csv format), with no other . 
in the path.

Examples of tweets annotated. Note that all categories have examples.

4.	 Run the following command. Do not do this on your own annotated data without 
backing up the file. Our I/O routine is written for simplicity, not robustness. You have 
been warned:
java -cp lingpipe-cookbook.1.0.jar:lib/lingpipe-4.1.0.jar:lib/
opencsv-2.4.jar: com.lingpipe.cookbook.chapter3.ActiveLearner 

5.	 Pointed at the supplied annotated data, this will print the following to the console 
with a final suggestion:
reference\response
          \p,n,o,
         p 7,0,1,
         n 1,0,3,
         o 2,0,11,
Category p
Recall: 0.88
Prec  : 0.70
Category n
Recall: 0.00
Prec  : NaN
Category o
Recall: 0.85



Chapter 3

129

Prec  : 0.73
Writing to file: data/activeLearning/disneySentimentDedupe.1.csv
Done, now go annotate and save with same file name

6.	 This recipe will show you how to make it better, mainly by making it bigger in smart 
ways. Let's see where we stand:

�� The data has been annotated a bit for three categories

�� Of 1,343 tweets, there have been 25 annotated, 13 of which are o, which we 
don't particularly care about given the use case, but they still are important 
because they are not p or n

�� This is not nearly enough annotated data to build a reliable classifier with, 
but we can use it to help annotate more data

�� The last line encourages more annotation and the name of a file to annotate

7.	 The precision and recall are reported for each category, that is, the result of cross 
validation over the training data. There is also a confusion matrix. At this point, we are 
not expecting very good performance, but p and o are doing quite well. The n category 
is not doing well at all.

Next, fire up a spreadsheet, and import and view the indicated .csv file using a  
UTF-8 encoding. OpenOffice shows us the following:

Initial output of the active learning approach

8.	 Reading from the left-hand side to the right-hand side, we will see the SCORE column, 
which reflects the classifier's confidence; its most likely category, shown in the GUESS 
column, is correct. The next column is the TRUTH class as determined by a human. 
The last TEXT column is the tweet being classified.
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9.	 All 1,343 tweets have been classified in one of two ways:

�� If the tweet had an annotation, that is, an entry in the TRUTH column, then 
the annotation was made when the tweet was in the test fold of a 10-fold 
cross validation. Line 13 is just such a case. In this case, the classification 
was o, but the truth was p, so it would be a false negative for p.

�� If the tweet was not annotated, that is, no entry in the TRUTH column, then it 
was classified using all the available training data. All other examples in the 
shown spreadsheet are handled this way. They don't inform the evaluation at 
all. We will annotate these tweets to help improve classifier performance.

10.	 Next, we will annotate high-confidence tweets irrespective of category, as shown in 
the following screenshot:

Corrected output for active learning output. Note the dominance of the o category.

11.	 Annotating down to line 19, we will notice that most of the tweets are o and  
are dominating the process. There are only three p and no n. We need to get  
some n annotations.

12.	 We can focus on likely candidate n annotations by selecting the entire sheet, except 
for the headers, and sorting by column B or GUESS. Scrolling to the n guesses, we 
should see the highest confidence examples. In the following screenshot, we have 
annotated all the n guesses because the category needs data. Our annotations 
are in data/activeLearningCompleted/disneySentimentDedupe.1.csv. 
If you want to exactly duplicate the recipe, you will have to copy this file to the 
activeLearning directory.
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Annotations sorted by category with very few n or negative categories.

13.	 Scrolling to the p guesses, we annotated a bunch as well.

Positive labels with corrections and surprising number of negatives

14.	 There are eight negative cases that we found in the p guesses mixed in with lots of p 
and some o annotations.
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15.	 We will  save the file without changing the filename and run the same program as we 
did earlier:
java -cp lingpipe-cookbook.1.0.jar:lib/lingpipe-4.1.0.jar:lib/
opencsv-2.4.jar: com.lingpipe.cookbook.chapter3.ActiveLearner 

16.	 The output will be as follows:
First file: data/activeLearning2/disneySentimentDedupe.0.csv
Reading from file data/activeLearning2/disneySentimentDedupe.1.csv
reference\response
          \p,n,o,
         p 17,1,20,
         n 9,1,5,
         o 9,1,51,
Category p
Recall: 0.45
Prec  : 0.49
Category n
Recall: 0.07
Prec  : 0.33
Category o
Recall: 0.84
Prec  : 0.67
Corpus is: 114
Writing to file: data/activeLearning2/disneySentimentDedupe.2.csv
Done, now go annotate and save with same file name

17.	 This is a fairly typical output early in the annotation process. Positive p, 
the easy category, is dragging along at 49-percent precision and 45-percent recall. 
Negative n is even worse. Undaunted, we will do another round of annotation on the 
output file indicating focus on n guesses to help that category improve performance. 
We will save and rerun the file:
First file:  data/activeLearning2/disneySentimentDedupe.0.csv
Reading from file data/activeLearning2/disneySentimentDedupe.2.csv
reference\response
          \p,n,o,
         p 45,8,17,
         n 16,13,3,
         o 18,3,88,
Category p
Recall: 0.64
Prec  : 0.57
Category n
Recall: 0.41
Prec  : 0.54
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Category o
Recall: 0.81
Prec  : 0.81

18.	 This last round of annotation got us over the edge (remember to copy over our 
annotation from activeLearningCompleted/disneySentimentDedupe.2.csv 
if you are mirroring the recipe exactly). We annotated high-confidence examples from 
both p and n, adding nearly 100 examples. The first best annotation for n is above 
50-percent precision with 41-percent recall. We assume that there will be a tunable 
threshold that meets our 80-percent requirement for p and declares victory in 211 
moves, which is much less than the total 1,343 annotations.

19.	 That's it. This is a real-world example and the first example we have tried for the book, 
so the data is not cooked. The approach tends to work, although no promises; some 
data resists even the most focused efforts of a well-equipped computational linguist.

20.	 Be sure to store the final .csv file some place safe. It would be a shame to lose all 
that directed annotation.

21.	 Before releasing this classifier we would want to run the classifier, which trains 
on all annotated data, on new text to verify performance and set thresholds. This 
annotation process introduces biases over the data that will not be reflected in the 
real world. In particular, we have biased annotation for n and p and added o as we 
saw them. This is not the actual distribution.

How it works...
This recipe has some subtlety because of the simultaneous evaluation and creation of ranked 
output for annotation. The code starts with constructs that should be familiar to you:

public static void main(String[] args) throws IOException {
  String fileName = args.length > 0 ? args[0] 
    : "data/activeLearning/disneySentimentDedupe.0.csv"; 
  System.out.println("First file:  " + fileName);
  String latestFile = getLatestEpochFile(fileName);

The getLatestEpochFile method looks for the highest numbered file that ends with csv, 
shares the root with the filename, and returns it. On no account will we use this routine for 
anything serious. The method is standard Java, so we won't cover it.
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Once we have the latest file, we will do some reporting, read it in our standard .csv 
annotated files, and load a cross-validating corpus. All these routines are explained elsewhere 
in locations specified in the Util source. Finally, we will get the categories that were found in 
the .csv annotated file:

List<String[]> data 
  = Util.readCsvRemoveHeader(new File(latestFile));
int numFolds = 10;
XValidatingObjectCorpus<Classified<CharSequence>> corpus 
  = Util.loadXValCorpus(data,numFolds);
String[] categories = Util.getCategoryArray(corpus);

Next, we will configure some standard logistic-regression-training parameters and create the 
evaluator for cross-fold evaluation. Note that the Boolean for storeInputs is true, which 
will facilitate recording results. The How to train and evaluate with cross validation recipe in 
Chapter 1, Simple Classifiers, has a complete explanation:

PrintWriter progressWriter = new PrintWriter(System.out,true);
boolean storeInputs = true;
ConditionalClassifierEvaluator<CharSequence> evaluator 
  = new ConditionalClassifierEvaluator<CharSequence>(null,               
categories, storeInputs);
TokenizerFactory tokFactory 
  = IndoEuropeanTokenizerFactory.INSTANCE;

Then, we will execute standard cross validation:

for (int i = 0; i < numFolds; ++i) {
  corpus.setFold(i);
  final LogisticRegressionClassifier<CharSequence> classifier 
    = Util.trainLogReg(corpus,tokFactory, progressWriter);
  evaluator.setClassifier(classifier);
  corpus.visitTest(evaluator);
}

At the end of cross validation, the evaluator has all the classifications stored in visitTest(). 
Next, we will transfer this data to an accumulator, which creates and stores rows that will be put 
into the output spreadsheet and redundantly stores the score; this score will be used in a sort to 
control the order of annotations printed out:

final ObjectToDoubleMap<String[]> accumulator 
  = new ObjectToDoubleMap<String[]>();

Then, we will iterate over each category and create a list of the false negatives and true 
positives for the category—these are the cases that the truth category is the category label:

for (String category : categories) {
List<Classified<CharSequence>> inCategory
   = evaluator.truePositives(category);    
inCategory.addAll(evaluator.falseNegatives(category));
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Next, all the in-category test cases are used to create rows for the accumulator:

for (Classified<CharSequence> testCase : inCategory) {
   CharSequence text = testCase.getObject();
  ConditionalClassification classification 
    = (ConditionalClassification)                  testCase.
getClassification();
  double score = classification.conditionalProbability(0);
  String[] xFoldRow = new String[Util.TEXT_OFFSET + 1];
  xFoldRow[Util.SCORE] = String.valueOf(score);
  xFoldRow[Util.GUESSED_CLASS] = classification.bestCategory();
  xFoldRow[Util.ANNOTATION_OFFSET] = category;
  xFoldRow[Util.TEXT_OFFSET] = text.toString();
  accumulator.set(xFoldRow,score);
}

Next, the code will print out some standard evaluator output:

Util.printConfusionMatrix(evaluator.confusionMatrix());
Util.printPrecRecall(evaluator);  

All the mentioned steps only apply to annotated data. We will now turn to getting best category 
and scores for all the unannotated data in the .csv file.

First, we will set the number of folds on the cross-validating corpus to 0, which means that 
vistTrain() will visit the entire corpus of annotations—unannotated data is not contained 
in the corpus. The logistic regression classifier is trained in the usual way:

corpus.setNumFolds(0);
final LogisticRegressionClassifier<CharSequence> classifier
  = Util.trainLogReg(corpus,tokFactory,progressWriter);

Armed with a classifier, the code iterates over all the data items, one row at a time. The first 
step is to check for an annotation. If the value is not the empty string, then the data was in the 
aforementioned corpus and used as training data so that the loop skips to the next row:

for (String[] csvData : data) {
   if (!csvData[Util.ANNOTATION_OFFSET].equals("")) {
    continue;
   }
   ScoredClassification classification = classifier.
classify(csvData[Util.TEXT_OFFSET]);
   csvData[Util.GUESSED_CLASS] = classification.category(0);
   double estimate = classification.score(0);
   csvData[Util.SCORE] = String.valueOf(estimate);
   accumulator.set(csvData,estimate);
  }
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If the row is unannotated, then the score and bestCategory() method is added at the 
appropriate points, and the row is added to the accumulator with the score.

The rest of the code increments the index of the filename and writes out the accumulator data 
with a bit of reporting:

String outfile = incrementFileName(latestFile);
Util.writeCsvAddHeader(accumulator.keysOrderedByValueList(), 
        new File(outfile));    
System.out.println("Corpus size: " + corpus.size());
System.out.println("Writing to file: " + outfile);
System.out.println("Done, now go annotate and save with same" 
          + " file name");

This is how it works. Remember that the biases that can be introduced by this approach 
invalidate evaluation numbers. Always run on fresh held-out data to get a proper sense  
of the classifier's performance.

Annotation
One of the most valuable services we provide is teaching our customers how to create  
gold-standard data, also known as training data. Nearly every successful-driven NLP project 
we have done has involved a good deal of customer-driven annotation. The quality of the 
NLP is entirely dependent on the quality of the training data. Creating training data is a 
fairly straightforward process, but it requires attention to detail and significant resources. 
From a budget perspective, you can expect to spend as much as the development team on 
annotation, if not more.

How to do it...
We will use sentiment over tweets as our example, and we will assume a business context, 
but even academic efforts will have similar dimensions.

1.	 Get 10 examples of what you expect the system to do. For our example, this means 
getting 10 tweets that reflect the scope of what the system is expected to do.

2.	 Make some effort to pick from the range of what you expect as inputs/outputs.  
Feel free to cherry-pick strong examples, but do not make up examples. Humans  
are terrible at creating example data. Seriously, don't do it.

3.	 Annotate these tweets for the expected categories.
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4.	 Have a meeting with all the stakeholders in the annotation. This includes user-
experience designers, business folks, developers, and end users. The goal of this 
meeting is to expose all the relevant parties to what the system will actually do—the 
system will take the 10 examples and produce the category label. You will be amazed 
at how much clarity this step establishes. Here are the kinds of clarity:

�� Upstream/downstream users of the classifier will have a clear idea of 
what they are expected to produce or consume. For example, the system 
consumes UTF-8-encoded English tweets and produces an ASCII single 
character of p, n, or u.

�� For a sentiment, people tend to want a severity score, which is very hard to get. 
You can expect annotation costs to double at least. Is it worth it? A score of 
confidence can be provided, but that is confidence that the category is correct 
not the severity of the sentiment. This meeting will force the discussion.

�� During this meeting explain that each category will likely need at least 100 
examples, if not 500, to do a reasonable job. Also explain that switching 
domains might require new annotations. NLP is extremely easy for your 
human colleagues, and as a result, they tend to underestimate what it takes 
to build systems.

�� Don't neglect to include whoever is paying for all this. I suppose you should 
not have your parents involved if this is your undergraduate thesis.

5.	 Write down an annotation standard that explains the intention behind each category. 
It doesn't need to be very complex, but it needs to exist. The annotation standard 
should be circulated around the stakeholders. Bonus points if you have one at the 
mentioned meetings; if so, it will likely be different at the end, but this is fine. An 
example is:

�� A tweet is positive p if the sentiment is unambiguously positive about Disney. 
A positive sentiment that applies to a non-Disney tweet is not p but u. An 
example is the n tweet indicates clearly negative intent towards Disney. 
Examples include that all other tweets are u.

�� Examples in the annotation standard do the best job of communicating the 
intent. Humans do a better job with examples rather than descriptions in  
our experience.

6.	 Create your collection of unannotated data. The best practice here is for the data to 
be random from the expected source. This works fine for categories with noticeable 
prevalence in data, say 10 percent or more, but we have built classifiers that occur 
at a rate of 1/2,000,000 for question-answering systems. For rare categories, you 
can use a search engine to help find instances of the category—for example, search 
for luv to find positive tweets. Alternatively, you can use a classifier trained on a few 
examples, run it on data, and look at the high-scoring positives—we covered this in 
the previous recipe.
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7.	 Recruit at least two annotators to annotate data. The reason we need at least two is 
that the task has to be shown to be reproducible by humans. If people can't reliably 
do the task, then you can't expect a computer to do it. This is where we execute some 
code. Type in the following command in the command line or invoke your annotators 
in you IDE—this will run with our default files:
java -cp lingpipe-cookbook.1.0.jar:lib/lingpipe-
4.1.0.jar:lib/opencsv-2.4.jar com.lingpipe.cookbook.chapter3.
InterAnnotatorAgreement

data/disney_e_n.csv treated as truth 

data/disney1_e_n.csv treated as response

Disagreement: n x e for: When all else fails #Disney

Disagreement: e x n for: 昨日の幸せな気持ちのまま今日はLANDにいっ

reference\response

          \e,n,

         e 10,1,

         n 1,9, 

Category: e Precision: 0.91, Recall: 0.91 

Category: n Precision: 0.90, Recall: 0.90

8.	 The code reports disagreements and prints out a confusion matrix. Precision  
and recall are useful metrics as well.

How it works…
There is little novel data in the code in src/com/lingpipe/cookbook/
chapter3/InterAnnotatorAgreement.java. One slight twist is that we used 
BaseClassifierEvaluator to do the evaluation work without a classifier ever being 
specified—the creation is as follows:

BaseClassifierEvaluator<CharSequence> evaluator 
  = new BaseClassifierEvaluator<CharSequence>(null, 

                categories, storeInputs);

The evaluator is populated with classifications directly rather than the usual Corpus.
visitTest() method, as done elsewhere in the book:

evaluator.addClassification(truthCategory, 
          responseClassification, text);

If the recipe requires further explanation, consult the Evaluation of classifiers—the confusion 
matrix recipe in Chapter 1, Simple Classifiers.
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There's more…
Annotation is a very complex area that deserves its own book, and fortunately, there is a good 
one, Natural Language Annotation for Machine Learning, James Pustejovsky and Amber 
Stubbs, O'Reilly Media. To get annotations done, there is Amazon's Mechanical Turk service 
as well as companies that specialize in the creation of training data such as CrowdFlower. 
However, be careful of outsourcing because classifiers are very dependent on the quality  
of data.

Conflict resolution between annotators is a challenging area. Many errors will be due to 
attention lapses, but some will persist as legitimate areas of disagreement. Two easy 
resolution strategies are either to throw out the data or keep both annotations.





Tagging Words  
and Tokens

In this chapter, we will cover the following recipes:

ff Interesting phrase detection

ff Foreground- or background-driven interesting phrase detection

ff Hidden Markov Models (HMM) – part-of-speech

ff N-best word tagging

ff Confidence-based tagging

ff Training word tagging

ff Word-tagging evaluation

ff Conditional random f﻿ields (CRF) for word/token tagging

ff Modifying CRFs

Introduction
Words and tokens are the focus of this chapter. The more common extraction technologies, 
such as named entity recognition, are actually encoded into the concepts presented here,  
but this will have to wait until Chapter 5, Finding Spans in Text – Chunking. We will start easy 
with finding interesting sets of tokens. Then, we will move on to HMM and finish with one 
of the most complex components of LingPipe—CRF. As usual, we show you how to evaluate 
tagging and train your own taggers.

4
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Interesting phrase detection
Imagine that a program can take a bunch of text data and automatically find the interesting 
parts, where "interesting" means that the word or phrase occurs more often than expected.  
It has a very nice property—no training data is needed, and it works for any language that  
we have tokens for. You have seen this most often in tag clouds such as the one in the 
following figure:

The preceding figure shows a tag cloud generated for the lingpipe.com home page. 
However, be aware that tag clouds are considered to be the "mullets of the Internet" as noted 
by Jeffery Zeldman in http://www.zeldman.com/daily/0405d.shtml, so you will be on 
shaky ground if you deploy such a feature on a website.

How to do it...
To get the interesting phrases from a small dataset with tweets about Disney, perform the 
following steps:

1.	 Fire up the command line and type:
java -cp lingpipe-cookbook.1.0.jar:lib/lingpipe-4.1.0.jar:lib/
opencsv-2.4.jar com.lingpipe.cookbook.chapter4.InterestingPhrases

2.	 The program should respond with something like:
Score 42768.0 : Crayola Color 

Score 42768.0 : Bing Rewards 

Score 42768.0 : PassPorter Moms 

Score 42768.0 : PRINCESS BATMAN 

Score 42768.0 : Vinylmation NIB 

Score 42768.0 : York City 

Score 42768.0 : eternal damnation 

Score 42768.0 : ncipes azules 

Score 42768.0 : diventare realt 

Score 42768.0 : possono diventare 

….

lingpipe.com
http://www.zeldman.com/daily/0405d.shtml
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Score 42768.0 : Pictures Releases 

Score 42768.0 : SPACE MOUNTAIN 

Score 42768.0 : DEVANT MOI 

Score 42768.0 : QUOI DEVANT 

Score 42768.0 : Lindsay Lohan 

Score 42768.0 : EPISODE VII 

Score 42768.0 : STAR WARS 

Score 42768.0 : Indiana Jones 

Score 42768.0 : Steve Jobs 

Score 42768.0 : Smash Mouth

3.	 You can also supply a .csv file in our standard format as an argument to see 
different data.

The output tends to be tantalizingly useless. Tantalizingly useless means that some useful 
phrases show up, but with a bunch of less interesting phrases that you will never want in your 
summary of what is interesting in the data. On the interesting side, we can see Crayola 
Color, Lindsey Lohan, Episode VII, and so on. On the junk side, we can see ncipes 
azules, pictures releases, and so on. There are lots of ways to address the junk 
output—the obvious first step will be to use a language ID classifier to throw out non-English.

How it works...
Here, we will go through the source in its entirety, broken by explanatory text:

package com.lingpipe.cookbook.chapter4;

import java.io.FileReader;
import java.io.IOException;
import java.util.List;
import java.util.SortedSet;
import au.com.bytecode.opencsv.CSVReader;
import com.aliasi.lm.TokenizedLM;
import com.aliasi.tokenizer.IndoEuropeanTokenizerFactory;
import com.aliasi.util.ScoredObject;

public class InterestingPhrases {
  static int TEXT_INDEX = 3;
  public static void main(String[] args) throws IOException {
    String inputCsv = args.length > 0 ? args[0] 
      : "data/disney.csv";
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Here, we see the path, imports, and the main() method. Our ternary operator that supplies  
a default file name or reads from the command line is the last line:

List<String[]> lines = Util.readCsv(new File(inputCsv));
int ngramSize = 3;
TokenizedLM languageModel = new 
  TokenizedLM(IndoEuropeanTokenizerFactory.INSTANCE, 
  ngramSize);

After collecting the input data, the first interesting code constructs a tokenized language 
model which differs in significant ways from the character language models used in  
Chapter 1, Simple Classifiers. A tokenized language model operates over tokens created  
by TokenizerFactory, and the ngram parameter dictates the number of tokens used 
instead of the number of characters. A subtlety of TokenizedLM is that it can also use 
character language models to make predictions for tokens it has not seen before. See the 
Foreground- or background-driven interesting phrase detection recipe to understand how this 
works in practice; don't use the preceding constructor unless there are no unknown tokens 
when estimating. Also, the relevant Javadoc provides more details on this. In the following 
code snippet, the language model is trained:

for (String [] line: lines) {
  languageModel.train(line[TEXT_INDEX]);
}

The next relevant step is the creation of collocations:

int phraseLength = 2;
int minCount = 2;
int maxReturned = 100;
SortedSet<ScoredObject<String[]>> collocations = 
  languageModel.collocationSet(phraseLength, 
  minCount, maxReturned);

The parameterization controls the phrase length in tokens; it also sets a minimum count of 
how often the phrase can be seen and how many phrases to return. We can look at phrases  
of length 3 as we have a language model that stores 3 grams. Next, we will visit the results:

for (ScoredObject<String[]> scoredTokens : collocations) {
  double score = scoredTokens.score();
  StringBuilder sb = new StringBuilder();
  for (String token : scoredTokens.getObject()) {
    sb.append(token + " ");
  }
  System.out.printf("Score %.1f : ", score);
  System.out.println(sb);
}
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The SortedSet<ScoredObject<String[]>> collocation is sorted from a high score to 
a low score. The intuition behind the score is that a higher score is given when the tokens 
are seen together more than one would expect, given their singleton frequency in the 
training data. In other words, phrases are scored depending on how much they vary from the 
independence assumption based on the tokens. See the Javadoc at http://alias-i.com/
lingpipe/docs/api/com/aliasi/lm/TokenizedLM.html for the exact definitions—an  
interesting exercise will be to create your own score and compare it with what is done  
in LingPipe.

There's more...
Given that this code is close to being usable on a website, it is worth discussing tuning.  
Tuning is the process of looking at system output and making changes based on the  
mistakes the system makes. Some changes that we would immediately consider include:

ff A language ID classifier that will be handy to filter out non-English texts

ff Some thought around how to better tokenize the data

ff Varying token lengths to include 3 grams and unigrams in the summary

ff Using named entity recognition to highlight proper nouns

Foreground- or background-driven 
interesting phrase detection

Like the previous recipe, this recipe finds interesting phrases, but it uses another language 
model to determine what is interesting. Amazon's statistically improbable phrases (SIP) work 
this way. You can get a clear view from their website at http://www.amazon.com/gp/
search-inside/sipshelp.html:

"Amazon.com's Statistically Improbable Phrases, or "SIPs", are the most distinctive 
phrases in the text of books in the Search Inside!™ program. To identify SIPs, our 
computers scan the text of all books in the Search Inside! program. If they find 
a phrase that occurs a large number of times in a particular book relative to all 
Search Inside! books, that phrase is a SIP in that book.

SIPs are not necessarily improbable within a particular book, but they are 
improbable relative to all books in Search Inside!."

The foreground model will be the book being processed, and the background model will be all 
the other books in Amazon's Search Inside!™ program. While Amazon has probably introduced 
tweaks that differ, it is the same basic idea.

http://alias-i.com/lingpipe/docs/api/com/aliasi/lm/TokenizedLM.html
http://alias-i.com/lingpipe/docs/api/com/aliasi/lm/TokenizedLM.html
http://www.amazon.com/gp/search-inside/sipshelp.html
http://www.amazon.com/gp/search-inside/sipshelp.html
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Getting ready
There are a few sources of data worth looking at to get interesting phrases with two separate 
language models. The key is you want the background model to function as the source 
of expected word/phrase distributions that will help highlight interesting phrases in the 
foreground model. Some examples include:

ff Time-separated Twitter data: The examples of time-separated Twitter data are  
as follows:

�� Background model: This refers to a year worth of tweets about Disney World 
up to yesterday.

�� Foreground model: Tweets for today.

�� Interesting phrases: What's new in Disney World today on Twitter.

ff Topic-separated Twitter data: The examples of topic-separated Twitter data are  
as follows:

�� Background model: Tweets about Disneyland

�� Foreground model: Tweets about Disney World

�� Interesting phrases: What is said about Disney World that is not said about 
Disneyland

ff Books on very similar topics: The examples of books on similar topics are as follows:

�� Background model: A pile of early sci-fi novels

�� Foreground model: Jules Verne's War of the Worlds

�� Interesting phrases: The unique phrases and concepts of "War of  
the Worlds"

How to do it...
Here are the steps to run a foreground or background model on tweets about Disneyland 
versus tweets about Disney World:

1.	 In the command line, type:
java -cp  lingpipe-cookbook.1.0.jar:lib/lingpipe-
4.1.0.jar:lib/opencsv-2.4.jar com.lingpipe.cookbook.chapter4.
InterestingPhrasesForegroundBackground

2.	 The output will look something like:
Score 989.621859 : [sleeping, beauty]

Score 989.621859 : [california, adventure]

Score 521.568529 : [winter, dreams]

Score 367.309361 : [disneyland, resort]
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Score 339.429700 : [talking, about]
Score 256.473825 : [disneyland, during]

3.	 The foreground model consists of tweets for the search term, disneyland, and the 
background model consists of tweets for the search term, disneyworld.

4.	 The top tied results are for unique features of California-based Disneyland, namely, 
the name of the castle, Sleeping Beauty's Castle, and a theme park built in the 
parking lot of Disneyland, California Adventure.

5.	 The next bigram is for Winter Dreams, which refers to a premier for a film.
6.	 Overall, not a bad output to distinguish between the tweets of the two resorts.

How it works...
The code is in src/com/lingpipe/cookbook/chapter4/
InterestingPhrasesForegroundBackground.java. The exposition starts after we 
loaded the raw .csv data for the foreground and background models:

TokenizerFactory tokenizerFactory  
  = IndoEuropeanTokenizerFactory.INSTANCE;
tokenizerFactory  
  = new LowerCaseTokenizerFactory(tokenizerFactory);
int minLength = 5;
tokenizerFactory  
  = new LengthFilterTokenizerFactoryPreserveToken(tokenizerFactory, 
  minLength);

One can be excused for wondering why we dedicated all of Chapter 2, Finding and Working 
with Words, to tokenization, but it turns out that most NLP systems are very sensitive to how 
the character stream is broken up into words or tokens. In the preceding code snippet, we 
saw a stack of three tokenizer factories doing useful violence to the character sequence. 
The first two are covered adequately in Chapter 2, Finding and Working with Words, but 
the third one is a customized factory that bears some examination. The intent behind the 
LengthFilterTokenizerFactoryPreserveToken class is to filter short tokens but at 
the same time not lose adjacency information. The goal is to take the phrase, "Disney is my 
favorite resort", and produce tokens (disney, _234, _235, favorite, resort), because we 
don't want short words in our interesting phrases—they tend to sneak past simple statistical 
models and mess up the output. Please refer to src/come/lingpipe/cookbook/
chapter4/LengthFilterTokenizerFactoryPreserveToken.java for the source of 
the third tokenizer. Also, refer to Chapter 2, Finding and Working with Words for exposition. 
Next is the background model:

int nGramOrder = 3;
TokenizedLM backgroundLanguageModel = new 
TokenizedLM(tokenizerFactory, nGramOrder);
for (String [] line: backgroundData) {
  backgroundLanguageModel.train(line[Util.TEXT_OFFSET]);
}
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What is being built here is the model that is used to judge the novelty of phrases in the 
foreground model. Then, we will create and train the foreground model:

TokenizedLM foregroundLanguageModel = new TokenizedLM 
(tokenizerFactory,nGramOrder);
for (String [] line: foregroundData) {
  foregroundLanguageModel.train(line[Util.TEXT_OFFSET]);
}

Next, we will access the newTermSet() method from the foreground model. The parameters 
and phraseSize determine how long the token sequences are; minCount specifies a 
minimum number of instances of the phrase to be considered, and maxReturned controls 
how many results to return:

int phraseSize = 2;
int minCount = 3;
int maxReturned = 100;
SortedSet<ScoredObject<String[]>> suprisinglyNewPhrases
    = foregroundLanguageModel.newTermSet(phraseSize, minCount,  
maxReturned,backgroundLanguageModel);
for (ScoredObject<String[]> scoredTokens : suprisinglyNewPhrases) {
    double score = scoredTokens.score();
    String[] tokens = scoredTokens.getObject();
    System.out.printf("Score %f : ", score);
    System.out.println(java.util.Arrays.asList(tokens));
}

The preceding for loop prints out the phrases in order of the most surprising phrase to the 
least surprising one.

The details of what is going on here are beyond the scope of the recipe, but the Javadoc again 
starts us down the road to enlightenment.

The exact scoring used is the z-score, as defined in BinomialDistribution.z(double
,int,int), with the success probability defined by the n-grams probability estimate in the 
background model, the number of successes being the count of the n-gram in this model,  
and the number of trials being the total count in this model.

There's more...
This recipe is the first place where we have faced unknown tokens, which can have very bad 
properties if not handled correctly. It is easy to see why this is a problem with a maximum 
likelihood of a token-based language model, which is a fancy name for a language model  
that provides an estimate of some unseen tokens by multiplying the likelihoods of each  
token. Each likelihood is the number of times the token was seen in training divided by the 
number of tokens seen in data. For example, consider training on the following data from  
A Connecticut Yankee in King Arthur's Court:
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"The ungentle laws and customs touched upon in this tale are historical, and the 
episodes which are used to illustrate them are also historical."

This is very little training data, but it is sufficient for the point being made. Consider how we will 
get an estimate for the phrase, "The ungentle inlaws" using our language model. There are 24 
words with "The" occurring once; we will assign a probability of 1/24 to this. We will assign a 
probability of 1/24 to "ungentle" as well. If we stop here, we can say that the likelihood of "The 
ungentle" is 1/24 * 1/24. However, the next word is "inlaws", which does not exist in the training 
data. If this token is assigned a value of 0/24, it will make the likelihood of the entire string 
0 (1/24 * 1/24 * 0/20). This means that whenever there is an unseen token for which the 
estimate is likely going to be zero, this is generally an unhelpful property.

The standard response to this issue is to substitute and approximate the value to stand in for 
data that has not been seen in training. There are a few approaches to solving this problem:

ff Provide a low but non-zero estimate for unknown tokens. This is a very  
common approach.

ff Use character language models with the unknown token. There are provisions for  
this in the class—refer to the Javadoc.

ff There are lots of other approaches and substantial research literature. Good search 
terms are "back off" and "smoothing".

Hidden Markov Models (HMM) – part-of-
speech

This recipe brings in the first hard-core linguistic capability of LingPipe; it refers to the 
grammatical category for words or part-of-speech (POS). What are the verbs, nouns, 
adjectives, and so on in text?

How to do it...
Let's jump right in and drag ourselves back to those awkward middle-school years in English 
class or our equivalent:

1.	 As always, head over to your friendly command prompt and type the following:
java -cp lingpipe-cookbook.1.0.jar:lib/lingpipe-4.1.0.jar: com.
lingpipe.cookbook.chapter9.PosTagger 

2.	 The system will respond with a prompt to which we will add a Jorge Luis  
Borges quote:
INPUT> Reality is not always probable, or likely.
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3.	 The system will respond delightfully to this quote with:
Reality_nn is_bez not_* always_rb probable_jj ,_, or_cc likely_jj 
._. 

Appended to each token is _ with a part-of-speech tag; nn is noun, rb is adverb, and so on. 
The complete tag set and description of the corpus of the tagger can be found at http://
en.wikipedia.org/wiki/Brown_Corpus. Play around with it a bit. POS tagger was one 
of the first breakthrough machine-learning applications in NLP back in the '90s. You can 
expect this one to perform at better than 90-percent accuracy, although it might suffer a bit 
on Twitter data given that that the underlying corpus was collected in 1961.

How it works...
As appropriate for a recipe book, we are not revealing the fundamentals of how part-of-speech 
taggers are built. There is Javadoc, the Web, and the research literature to help you understand 
the underlying technology—in the recipe for training an HMM, there is a brief discussion of the 
underlying HMM. This is about how to use the API as presented:

public static void main(String[] args) throws ClassNotFoundException, 
IOException {
  TokenizerFactory tokFactory = IndoEuropeanTokenizerFactory.INSTANCE;
  String hmmModelPath = args.length > 0 ? args[0]  
    : "models/pos-en-general-brown.HiddenMarkovModel";
  HiddenMarkovModel hmm = (HiddenMarkovModel) AbstractExternalizable.
readObject(new File(hmmModelPath));
  HmmDecoder decoder  
    = new HmmDecoder(hmm);
  BufferedReader bufReader  
    = new BufferedReader(new InputStreamReader(System.in));
  while (true) {
    System.out.print("\n\nINPUT> ");
    System.out.flush();
    String input =  
bufReader.readLine();
    Tokenizer tokenizer = 
      tokFactory.tokenizer(input.toCharArray(),0,input.length());
    String[] tokens = tokenizer.tokenize();
    List<String> tokenList = Arrays.asList(tokens);
    firstBest(tokenList,decoder);
  }
}

The code starts by setting up TokenizerFactory, which makes sense because we need 
to know what the words that are going to get the parts of speech are. The next line reads in 
a previously trained part-of-speech tagger as HiddenMarkovModel. We will not go into too 
much detail; you just need to know that an HMM assigns a part-of-speech tag for token n as  
a function of the tag assignments that preceded it. 

http://en.wikipedia.org/wiki/Brown_Corpus
http://en.wikipedia.org/wiki/Brown_Corpus
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The fact that these tags are not directly observed in data makes the Markov model hidden. 
Usually, one or two tokens back are looked at. There is a lot going on with HMMs that is  
worth understanding.

The next line with HmmDecoder decoder wraps the HMM in code to tag provided tokens. 
Our standard interactive while loop is up next with all the interesting bits happening in the 
firstBest(tokenList,decoder) method at the end. The method is as follows:

static void firstBest(List<String> tokenList, HmmDecoder decoder) {
  Tagging<String> tagging = decoder.tag(tokenList);
    System.out.println("\nFIRST BEST");
    for (int i = 0; i < tagging.size(); ++i){
      System.out.print(tagging.token(i) + "_" +  
        tagging.tag(i) + " ");
    }
  System.out.println();
}

Note the decoder.tag(tokenList) call that produces a Tagging<String> tagging. 
Tagging does not have an iterator or useful encapsulation of the tag/token pair, so the 
information is accessed by incrementing an index i.

N-best word tagging
The certainty-driven nature of Computer Science is not reflected in the vagaries of linguistics 
where reasonable PhDs can agree or disagree at least until Chomsky's henchmen show up. 
This recipe uses the same HMM trained in the preceding recipe but provides a ranked list of 
possible tags for each word.

Where might this be helpful? Imaging a search engine that searched for words and a tag—not 
necessarily part-of-speech. The search engine can index the word and the top n-best tags that 
will allow a match into a non-first best tag. This can help increase recall.

How to do it...
N-best analyses push the sophistication boundaries of NLP developers. What used to be a 
singleton is now a ranked list, but it is where the next level of performance occurs. Let's get 
started by performing the following steps:

1.	 Put away your copy of Syntactic Structures face down and type out the following:
java -cp lingpipe-cookbook.1.0.jar:lib/lingpipe-4.1.0.jar: com.
lingpipe.cookbook.chapter4.NbestPosTagger 
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2.	 Then, enter the following:
INPUT> Colorless green ideas sleep furiously.

3.	 It yields the following output:
N BEST
#   JointLogProb         Analysis
0     -91.141  Colorless_jj   green_jj   ideas_nns  sleep_vb   
furiously_rb   ._.    
1     -93.916  Colorless_jj   green_nn   ideas_nns  sleep_vb   
furiously_rb   ._.    
2     -95.494  Colorless_jj   green_jj   ideas_nns  sleep_rb   
furiously_rb   ._.    
3     -96.266  Colorless_jj   green_jj   ideas_nns  sleep_nn   
furiously_rb   ._.    
4     -98.268  Colorless_jj   green_nn   ideas_nns  sleep_rb   
furiously_rb   ._.

The output lists from most likely to least likely the estimate of the entire sequence of tokens 
given the estimates from the HMM. Remember that the joint probabilities are log 2 based.  
To compare joint probabilities subtract -93.9 from -91.1 for a difference of 2.8. So, the tagger 
thinks that option 1 is 2 ^ 2.8 = 7 times less likely to occur than option 0. The source of this 
difference is in assigning green to noun rather than adjective.

How it works...
The code to load the model and command I/O is the same as that of the previous recipe.  
The difference is in the method used to get and display the tagging:

static void nBest(List<String> tokenList, HmmDecoder decoder, int 
maxNBest) {
  System.out.println("\nN BEST");
  System.out.println("#   JointLogProb         Analysis");
  Iterator<ScoredTagging<String>> nBestIt = 
    decoder.tagNBest(tokenList,maxNBest);
  for (int n = 0; nBestIt.hasNext(); ++n) {
    ScoredTagging<String> scoredTagging = nBestIt.next();
    System.out.printf(n + "   %9.3f  ",scoredTagging.score());
    for (int i = 0; i < tokenList.size(); ++i){
      System.out.print(scoredTagging.token(i) + "_" + 
        pad(scoredTagging.tag(i),5));
    }
    System.out.println();
  }

There is nothing much to it other than working out the formatting issues as the taggings are 
being iterated over.
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Confidence-based tagging
There is another view into the tagging probabilities; this reflects the probability assignments 
at the level of word. The code reflects the underlying TagLattice and offers insights into 
whether the tagger is confident or not.

How to do it...
This recipe will focus the probability estimates on the individual token. Perform the  
following steps:

1.	 Type in the following on the command line or IDE equivalent:
java -cp lingpipe-cookbook.1.0.jar:lib/lingpipe-4.1.0.jar: com.
lingpipe.cookbook.chapter4.ConfidenceBasedTagger

2.	 Then, enter the following:
INPUT> Colorless green ideas sleep furiously.

3.	 It yields the following output:
CONFIDENCE

#   Token          (Prob:Tag)*

0   Colorless           0.991:jj       0.006:np$      0.002:np  

1   green               0.788:jj       0.208:nn       0.002:nns 

2   ideas               1.000:nns      0.000:rb       0.000:jj  

3   sleep               0.821:vb       0.101:rb       0.070:nn  

4   furiously           1.000:rb       0.000:ql       0.000:jjr 

5   .                   1.000:.        0.000:np       0.000:nn  

This view of the data distributes the joint probabilities of the tag and word. We can see that 
there is .208 chance that green should be tagged as nn or a singular noun, but the correct 
analysis is still .788 with adjective jj.

How it works…
We are still using the same old HMM from the Hidden Markov Models (HMM) – part-of-speech 
recipe but using different parts of it. The code to read in the model is exactly the same, with 
a major difference in how we report results. src/com/lingpipe/cookbook/chapter4/
ConfidenceBasedTagger.java the method:

static void confidence(List<String> tokenList, HmmDecoder decoder) {
  System.out.println("\nCONFIDENCE");
  System.out.println("#   Token          (Prob:Tag)*");
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  TagLattice<String> lattice = decoder.tagMarginal(tokenList);

  for (int tokenIndex = 0; tokenIndex < tokenList.size(); 
    ++tokenIndex) {
    ConditionalClassification tagScores = 
      lattice.tokenClassification(tokenIndex);
    System.out.print(pad(Integer.toString(tokenIndex),4));
    System.out.print(pad(tokenList.get(tokenIndex),15));

    for (int i = 0; i < 3; ++i) {
      double conditionalProb = tagScores.score(i);
      String tag = tagScores.category(i);
      System.out.printf(" %9.3f:" + pad(tag,4),conditionalProb);

    }
    System.out.println();
  }
}

The method demonstrates the underlying lattice of tokens to the probabilities explicitly, which 
is at the heart of the HMM. Change the termination condition on the for loop to see more or 
fewer tags.

Training word tagging
Word tagging gets much more interesting when you can create your own models. The realm of 
annotating part-of-speech tagging corpora is a bit too much for a mere recipe book—annotation 
of the part-of-speech data is very difficult because it requires considerable linguistic knowledge 
to do well. This recipe will directly address the machine-learning component of the HMM-based 
sentence detector.

As this is a recipe book, we will minimally explain what an HMM is. The token language 
models that we have been working with do their previous context calculations on some 
number of words/tokens that precede the current word being estimated. HMMs take into 
account some length of the previous tags while calculating estimates for the current token's 
tag. This allows for seemingly disparate neighbors such as of and in to be similar, because 
they are both prepositions.

In the Sentence detection recipe, from Chapter 5, Finding Spans in Text – Chunking, a useful but 
not very flexible sentence detector is based on the HeuristicSentenceModel in LingPipe. 
Rather than mucking about with modifying/extending the HeuristicSentenceModel, we will 
build a machine-learning-based sentence system with the data that we annotate.
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How to do it...
The steps here describe how to run the program in src/com/lingpipe/cookbook/
chapter4/HMMTrainer.java:

1.	 Either create a new corpus of the sentence-annotated data or use the following 
default data, which is in data/connecticut_yankee_EOS.txt. If you are 
rolling your own data, simply edit some text with [' and '] to mark the sentence 
boundaries. Our example looks like the following:
[The ungentle laws and customs touched upon in this tale are
historical, and the episodes which are used to illustrate them
are also historical.] [It is not pretended that these laws and
customs existed in England in the sixth century; no, it is only
pretended that inasmuch as they existed in the English and other
civilizations of far later times, it is safe to consider that it 
is
no libel upon the sixth century to suppose them to have been in
practice in that day also.] [One is quite justified in inferring
that whatever one of these laws or customs was lacking in that
remote time, its place was competently filled by a worse one.]

2.	 Go to the command prompt and run the program with the following command:
java -cp lingpipe-cookbook.1.0.jar:lib/lingpipe-4.1.0.jar com.
lingpipe.cookbook.chapter4.HmmTrainer

3.	 It will give the following output:
Training The/BOS ungentle/WORD laws/WORD and/WORD customs/WORD 
touched/WORD… 
done training, token count: 123

Enter text followed by new line

> The cat in the hat. The dog in a bog.

The/BOS cat/WORD in/WORD the/WORD hat/WORD ./EOS The/BOS dog/WORD 
in/WORD a/WORD bog/WORD ./EOS

4.	 The output is a tokenized text with one of the three tags: BOS for the beginning of a 
sentence, EOS for the end of a sentence, and WORD for all other tokens.
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How it works…
Like many span-based markups, the span annotation is translated into a token-level 
annotation, as shown earlier in the recipe's output. So, the first order of business is to  
collect the annotated text, set up TokenizerFactory, and then call a parsing subroutine  
to add to List<Tagging<String>>:

public static void main(String[] args) throws IOException {
  String inputFile = args.length > 0 ? args[0] : 
    "data/connecticut_yankee_EOS.txt";
  char[] text = Files.readCharsFromFile(new File(inputFile), 
    Strings.UTF8);
  TokenizerFactory tokenizerFactory = 
    IndoEuropeanTokenizerFactory.INSTANCE;
  List<Tagging<String>> taggingList = new 
    ArrayList<Tagging<String>>();
  addTagging(tokenizerFactory,taggingList,text);

The subroutine to parse the preceding format works by first tokenizing the text with 
IndoEuropeanTokenizer, which has the desirable property of treating the [' and '] 
sentence delimiters as separate tokens. It does not check whether the sentence delimiters 
are well formed—a more robust solution will be needed to do this. The tricky bit is that we want 
to ignore this markup in the resulting token stream, but we want to use it to have the token 
following [' be a BOS and the token preceding '] be EOS. Other tokens are just 
WORD. The subroutine builds a parallel Lists<String> instance for tags and tokens, which 
is then used to create Tagging<String> and is added to taggingList. The tokenization 
recipes in Chapter 2, Finding and Working with Words, cover what is going on with the 
tokenizer. Have a look at the following code snippet:

static void addTagging(TokenizerFactory tokenizerFactory, 
List<Tagging<String>> taggingList, char[] text) {
  Tokenizer tokenizer =  
    tokenizerFactory.tokenizer(text, 0, text.length);
  List<String> tokens = new ArrayList<String>();
  List<String> tags = new ArrayList<String>();
  boolean bosFound = false;
  for (String token : tokenizer.tokenize()) {
    if (token.equals("[")) {
      bosFound = true;
    }
    else if (token.equals("]")) {
      tags.set(tags.size() - 1,"EOS");
    }
    else {
      tokens.add(token);
      if (bosFound) {
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        tags.add("BOS");
        bosFound = false;
      }
      else {
        tags.add("WORD");
      }
    }
  }
  if (tokens.size() > 0) {
    taggingList.add(new Tagging<String>(tokens,tags));
  }
}

There is a subtlety with the preceding code. The training data is treated as a single  
tagging—this will emulate what the input will look like when we use the sentence detector  
on novel data. If more than one document/chapter/paragraph is being used for training,  
then we will call this subroutine for each block of text.

Returning to the main() method, we will set up ListCorpus and add the tagging to 
the training side of the corpus, one tagging at a time. There is an addTest() method as 
well, but this recipe is not concerned with evaluation; if it was, we would most likely use 
XValidatingCorpus anyway:

ListCorpus<Tagging<String>> corpus =  
  new ListCorpus<Tagging<String>> ();
for (Tagging<String> tagging : taggingList) {
  System.out.println("Training " + tagging);
  corpus.addTrain(tagging);
}

Next, we will create HmmCharLmEstimator, which is our HMM. Note that there are 
constructors that allow for customized parameters that affect performance—see the Javadoc. 
Next, the estimator is trained against the corpus, and HmmDecoder is created, which will 
actually tag tokens, as shown in the following code snippet:

HmmCharLmEstimator estimator = new HmmCharLmEstimator();
corpus.visitTrain(estimator);
System.out.println("done training, token count: " + 
  estimator.numTrainingTokens());
HmmDecoder decoder = new HmmDecoder(estimator);

In the following code snippet, our standard I/O loop gets invoked for some user feedback. 
Once we get some text from the user, it is tokenized with the same tokenizer we used for 
training, and the decoder is presented with the resulting tokens. 
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Note that there is no requirement that the training tokenizer be the same as the production 
tokenizer, but one must be careful to not tokenize in a radically different way; otherwise, the 
HMM will not be seeing the tokens it was trained with. The back-off model will then be used, 
which will likely degrade performance. Have a look at the following code snippet:

BufferedReader reader = new BufferedReader(new 
InputStreamReader(System.in));
while (true) {
  System.out.print("Enter text followed by new line\n>");
  String evalText = reader.readLine();
  Tokenizer tokenizer = tokenizerFactory.tokenizer(evalText.
toCharArray(),0,evalText.length());
  List<String> evalTokens = Arrays.asList(tokenizer.tokenize());
  Tagging<String> evalTagging = decoder.tag(evalTokens);
  System.out.println(evalTagging);
}

That's it! To truly wrap this as a proper sentence detector, we will need to map back to the 
character offsets in the original text, but this is covered in Chapter 5, Finding Spans in Text 
– Chunking. This is sufficient to show how to work with HMMs. A more full-featured approach 
will make sure that each BOS has a matching EOS and the other way around. The HMM has 
no such requirement.

There's more…
We have a small and easy-to-use corpus of the part-of-speech tags; this allows us to show 
how training the HMM for a very different problem works out to be the same thing. It is like 
our How to classify a sentiment – simple version recipe, in Chapter 1, Simple Classifiers; the 
only difference between the language ID and sentiment is the training data. We will start with 
a hard-coded corpus for simplicity—it is in src/com/lingpipe/cookbook/chapter4/
TinyPosCorus.java:

public class TinyPosCorpus extends Corpus<ObjectHandler<Tagging< 
String>>> {

  public void visitTrain(ObjectHandler<Tagging<String>> handler) {
    for (String[][] wordsTags : WORDS_TAGSS) {
      String[] words = wordsTags[0];
      String[] tags = wordsTags[1];
      Tagging<String> tagging = new 
        Tagging<String>(Arrays.asList(words), 
        Arrays.asList(tags));
      handler.handle(tagging);
    }
  }
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  public void visitTest(ObjectHandler<Tagging<String>> handler) {
    /* no op */
  }

  static final String[][][] WORDS_TAGSS = new String[][][] {
    { { "John", "ran", "." },{ "PN", "IV", "EOS" } },
    { { "Mary", "ran", "." },{ "PN", "IV", "EOS" } },
    { { "John", "jumped", "!" },{ "PN", "IV", "EOS" } },
    { { "The", "dog", "jumped", "!" },{ "DET", "N", "IV", "EOS" } },
    { { "The", "dog", "sat", "." },{ "DET", "N", "IV", "EOS" } },
    { { "Mary", "sat", "!" },{ "PN", "IV", "EOS" } },
    { { "Mary", "likes", "John", "." },{ "PN", "TV", "PN", "EOS" } },
    { { "The", "dog", "likes", "Mary", "." }, { "DET", "N", "TV", 
"PN", "EOS" } },
    { { "John", "likes", "the", "dog", "." }, { "PN", "TV", "DET", 
"N", "EOS" } },
    { { "The", "dog", "ran", "." },{ "DET", "N", "IV", "EOS", } },
    { { "The", "dog", "ran", "." },{ "DET", "N", "IV", "EOS", } }
  };

The corpus manually creates tokens as well as the tags for the tokens in the static WORDS_TAGS 
and creates Tagging<String> for each sentence; Tagging<String> consists of two aligned 
List<String> instances in this case. The taggings are then sent to the handle() method for 
the Corpus superclass. Swapping in this corpus looks like the following:

/*
List<Tagging<String>> taggingList = new 
  ArrayList<Tagging<String>>();
addTagging(tokenizerFactory,taggingList,text);
ListCorpus<Tagging<String>> corpus = new 
  ListCorpus<Tagging<String>> ();
for (Tagging<String> tagging : taggingList) {
  System.out.println("Training " + tagging);
  corpus.addTrain(tagging);
}
*/

Corpus<ObjectHandler<Tagging<String>>> corpus = new TinyPosCorpus();
HmmCharLmEstimator estimator = new HmmCharLmEstimator();
corpus.visitTrain(estimator);
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We just commented out the code that loads the corpus with sentence detection and features 
in TinyPosCorpus in its place. It doesn't need data to be added so we will just train the 
HMM with it. To avoid confusion we have created a separate class HmmTrainerPos.java. 
Running it results in the following:

java -cp lingpipe-cookbook.1.0.jar:lib/lingpipe-4.1.0.jar 

done training, token count: 42

Enter text followed by new line

> The cat in the hat is back.

The/DET cat/N in/TV the/DET hat/N is/TV back/PN ./EOS

The only mistake is that in is a transitive verb TV. The training data is very small so mistakes 
are to be expected. Like the difference in language ID and sentiment classification in Chapter 
1, Simple Classifiers, the HMM is used to learn a very different phenomenon just by changing 
what the training data is.

Word-tagging evaluation
Word tagging evaluation drives developments in downstream technologies such as named 
entity detection, which, in turn, drives high-end applications such as coreference. You will 
notice that much of the evaluation resembles the evaluation from our classifiers except that 
each tag is evaluated like its own classifier category.

This recipe should serve to get you started on evaluation, but be aware that there is a very 
good tutorial on tagging evaluation on our website at http://alias-i.com/lingpipe/
demos/tutorial/posTags/read-me.html; this recipe goes into greater detail on how  
to best understand tagger performance.

This recipe is short and easy to use, so you have no excuses to not evaluate your tagger.

Getting ready
The following is the class source for our evaluator located at src/com/lingpipe/
cookbook/chapter4/TagEvaluator.java:

public class TagEvaluator {
  public static void main(String[] args) throws 
    ClassNotFoundException, IOException {
    HmmDecoder decoder = null;
    boolean storeTokens = true;
    TaggerEvaluator<String> evaluator = new 
      TaggerEvaluator<String>(decoder,storeTokens);
    Corpus<ObjectHandler<Tagging<String>>> 
      smallCorpus = new TinyPosCorpus();

http://alias-i.com/lingpipe/demos/tutorial/posTags/read-me.html
http://alias-i.com/lingpipe/demos/tutorial/posTags/read-me.html
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    int numFolds = 10;
    XValidatingObjectCorpus<Tagging<String>> xValCorpus = 
      new XValidatingObjectCorpus<Tagging<String>>(numFolds);
    smallCorpus.visitCorpus(xValCorpus);
    for (int i = 0; i < numFolds; ++i) {
      xValCorpus.setFold(i);
      HmmCharLmEstimator estimator = new HmmCharLmEstimator();
      xValCorpus.visitTrain(estimator);
      System.out.println("done training " + 
        estimator.numTrainingTokens());
      decoder = new HmmDecoder(estimator);
      evaluator.setTagger(decoder);
      xValCorpus.visitTest(evaluator);
    }
    BaseClassifierEvaluator<String> classifierEval = 
      evaluator.tokenEval();
    System.out.println(classifierEval);
  }
}

How to do it…
We will call out the interesting bits of the preceding code:

1.	 First off, we will set up TaggerEvaluator with a null HmmDecoder and boolean 
that controls whether the tokens are stored or not. The HmmDecoder object will be 
set in the cross-validation code later in the code:
HmmDecoder decoder = null;
boolean storeTokens = true;
TaggerEvaluator<String> evaluator = new TaggerEvaluator<String> 
(decoder,storeTokens);

2.	 Next, we will load TinyPosCorpus from the previous recipe and use it to populate 
XValididatingObjectCorpus—a pretty neat trick that allows for easy conversion 
between corpus types. Note that we pick 10 folds—the corpus only has 11 training 
examples, so we want to maximize the amount of training data per fold. See the How 
to train and evaluate with cross validation recipe in Chapter 1, Simple Classifiers,  
if you are new to this concept. Have a look at the following code snippet:
Corpus<ObjectHandler<Tagging<String>>> smallCorpus  
  = new TinyPosCorpus();
int numFolds = 10;
XValidatingObjectCorpus<Tagging<String>> xValCorpus  
  = new XValidatingObjectCorpus<Tagging<String>>(numFolds);
smallCorpus.visitCorpus(xValCorpus);
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3.	 The following code snippet is a for() loop that iterates over the number of folds.  
The first half of the loop handles training:
for (int i = 0; i < numFolds; ++i) {
  xValCorpus.setFold(i);
  HmmCharLmEstimator estimator = new HmmCharLmEstimator();
  xValCorpus.visitTrain(estimator);
  System.out.println("done training " + 
    estimator.numTrainingTokens());

4.	 The rest of the loop first creates a decoder for the HMM, sets the evaluator to use this 
decoder, and then applies the appropriately configured evaluator to the test portion of 
the corpus:
decoder = new HmmDecoder(estimator);
evaluator.setTagger(decoder);
xValCorpus.visitTest(evaluator);

5.	 The last lines apply after all folds of the corpus have been used for training and 
testing. Notice that the evaluator is BaseClassifierEvaluator! It reports on 
each tag as a category:
BaseClassifierEvaluator<String> classifierEval = 
  evaluator.tokenEval();
System.out.println(classifierEval);

6.	 Brace yourself for the torrent of evaluation. The following is a small bit of it, namely,  
the confusion matrix that you should be familiar with from Chapter 1, Simple Classifiers:
Confusion Matrix
reference \ response
  ,DET,PN,N,IV,TV,EOS
  DET,4,2,0,0,0,0
  PN,0,7,0,1,0,0
  N,0,0,4,1,1,0
  IV,0,0,0,8,0,0
  TV,0,1,0,0,2,0
  EOS,0,0,0,0,0,11

That's it. You have an evaluation setup that is strongly related to the classifier evaluation from 
Chapter 1, Simple Classifiers.

There's more…
There are evaluation classes for the n-best word tagging, that is, NBestTaggerEvaluator 
and MarginalTaggerEvaluator, for the confidence ranked. Again, look at the more 
detailed tutorial on part-of-speech tagging for a quite thorough presentation on evaluation 
metrics and some example software to help tune the HMM.
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Conditional random fields (CRF) for word/
token tagging

Conditional random fields (CRF) are an extension of the Logistic regression recipe in  
Chapter 3, Advanced Classifiers, but are applied to word tagging. At the end of Chapter 1, 
Simple Classifiers, we discussed various ways to encode a problem into a classification 
problem. CRFs treat the sequence tagging problem as finding the best category where  
each category (C) is one of the C*T tag (T) assignments to tokens.

For example, if we have the tokens The and rain and tag d for determiner and n for noun, 
then the set of categories for the CRF classifier are:

ff Category 1: d d
ff Category 2: n d
ff Category 3: n n
ff Category 4: d d

Various optimizations are applied to keep this combinatoric nightmare computable, but this is 
the general idea. Crazy, but it works.

Additionally, CRFs allow random features to be used in training in the exact same way that 
logistic regression does for classification. Additionally, it has data structures optimized for 
HMM style observations against context. Its use for part-of-speech tagging is not very exciting, 
because our current HMMs are pretty close to state of the art. Where CRFs really make a 
difference is in use cases like named entity detection which are covered in Chapter 5, Finding 
Spans in Text – Chunking, but we wanted to address the pure CRF implementation before 
complicating the presentation with a chunking interface. 

There is an excellent detailed tutorial on CRFs at http://alias-i.com/lingpipe/
demos/tutorial/crf/read-me.html; this recipe follows this tutorial fairly closely.  
You will find more information and proper references there.

How to do it...
All of the technologies we have been presenting up to now were invented in the previous 
millennium; this is a technology from the new millennium. Perform the following steps:

1.	 In the command line, type:
java -cp lingpipe-cookbook.1.0.jar:lib/lingpipe-4.1.0.jar: com.
lingpipe.cookbook.chapter4.CRFTagger

2.	 The console continues with the convergence results that should be familiar from the 
Logistic regression recipe of Chapter 3, Advanced Classifiers, and we will get the 
standard command prompt: 
Enter text followed by new line
>The rain in Spain falls mainly on the plain.

http://alias-i.com/lingpipe/demos/tutorial/crf/read-me.html
http://alias-i.com/lingpipe/demos/tutorial/crf/read-me.html
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3.	 In response to this, we will get some fairly confused output:
The/DET rain/N in/TV Spain/PN falls/IV mainly/EOS on/DET the/N 
plain/IV ./EOS

4.	 This is an awful output, but the CRF has been trained on 11 sentences. So, let's 
not be too harsh—particularly since this technology mostly reigns supreme for word 
tagging and span tagging when given sufficient training data to do its work.

How it works…
Like logistic regression, there are many configuration-related tasks that we need to perform  
to get this class up and running. This recipe will address the CRF-specific aspects of the  
code and refer to the Logistic regression recipe of Chapter 3, Advanced Classifiers for the 
logistic-regression aspects of the configuration.

Starting at the top of the main() method, we will get our corpus, which was discussed in the 
earlier three recipes:

Corpus<ObjectHandler<Tagging<String>>> corpus  
  = new TinyPosCorpus();

Next up is the feature extractor, which is the actual input to the CRF trainer. The only reason it 
is final is that an anonymous inner class will access it to demonstrate how feature extraction 
works in the next recipe:

final ChainCrfFeatureExtractor<String> featureExtractor
  = new SimpleCrfFeatureExtractor();

We will address how this class works later in the recipe.

The next block of configuration is for the underlying logistic-regression algorithm. Refer to the 
logistic regression recipe in Chapter 3, Advanced Classifiers, for more information on this. 
Have a look at the following code snippet:

boolean addIntercept = true;
int minFeatureCount = 1;
boolean cacheFeatures = false;
boolean allowUnseenTransitions = true;
double priorVariance = 4.0;
boolean uninformativeIntercept = true;
RegressionPrior prior = RegressionPrior.gaussian(priorVariance, 
  uninformativeIntercept);
int priorBlockSize = 3;
double initialLearningRate = 0.05;
double learningRateDecay = 0.995;
AnnealingSchedule annealingSchedule = 
  AnnealingSchedule.exponential(initialLearningRate,



Chapter 4

165

  learningRateDecay);
double minImprovement = 0.00001;
int minEpochs = 2;
int maxEpochs = 2000;
Reporter reporter = Reporters.stdOut().setLevel(LogLevel.INFO);

Next up, the CRF is trained with:

System.out.println("\nEstimating");
ChainCrf<String> crf = ChainCrf.estimate(corpus, 
  featureExtractor, 
  addIntercept, 
  minFeatureCount, 
  cacheFeatures, 
  allowUnseenTransitions, 
  prior, 
  priorBlockSize, 
  annealingSchedule, 
  minImprovement, 
  minEpochs, 
  maxEpochs, 
  reporter);

The rest of the code just uses the standard I/O loop. Refer to Chapter 2, Finding and Working 
with Words, for how the tokenizerFactory works:

TokenizerFactory tokenizerFactory = IndoEuropeanTokenizerFactory.
INSTANCE;
BufferedReader reader = new BufferedReader(new 
  InputStreamReader(System.in));
while (true) {
  System.out.print("Enter text followed by new line\n>");
  System.out.flush();
  String text = reader.readLine();
  Tokenizer tokenizer = tokenizerFactory.tokenizer( 
    text.toCharArray(),0,text.length());
  List<String> evalTokens = Arrays.asList(tokenizer.tokenize());
  Tagging<String> evalTagging = crf.tag(evalTokens);
  System.out.println(evalTagging);

SimpleCrfFeatureExtractor
Now, we will get to the feature extractor. The provided implementation closely mimics 
the features of a standard HMM. The class at com/lingpipe/cookbook/chapter4/
SimpleCrfFeatureExtractor.java starts with:

public class SimpleCrfFeatureExtractor implements ChainCrfFeatureExtra
ctor<String> {



Tagging Words and Tokens

166

  public ChainCrfFeatures<String> extract(List<String> tokens, 
    List<String> tags) {
    return new SimpleChainCrfFeatures(tokens,tags);
  }

The ChainCrfFeatureExtractor interface requires an extract() method with the 
tokens and associated tags that get converted into ChainCrfFeatures<String> in this 
case. This is handled by an inner class below SimpleChainCrfFeatures; this inner class 
extends ChainCrfFeatures and provides implementations of the abstract methods, 
nodeFeatures() and edgeFeatures():

static class SimpleChainCrfFeatures extends ChainCrfFeatures<String> {

The following constructor access passes the tokens and tags to the super class, which will do 
the bookkeeping to support looking up tags and tokens:

public SimpleChainCrfFeatures(List<String> tokens, List<String> tags) 
{
  super(tokens,tags);
}

The node features are computed as follows:

public Map<String,Double> nodeFeatures(int n) {
  ObjectToDoubleMap<String> features = 
    new ObjectToDoubleMap<String>();
  features.increment("TOK_" + token(n),1.0);
  return features;
}

The tokens are indexed by their position in the sentence. The node feature for the word/
token in position n is the String value returned by the base class method token(n) from 
ChainCrfFeatures with the prefix TOK_. The value here is 1.0. Feature values can be 
usefully adjusted to values other than 1.0, which is handy for more sophisticated approaches 
to CRFs, such as using the confidence estimates of other classifiers. Take a look at the 
following recipe for an example of this.

Like HMMs, there are features that are dependent on other positions in the input—these  
are called edge features. The edge features take two arguments: one for the position  
that features are being generated for n and k, which will apply to all other positions in  
the sentence:

public Map<String,Double> edgeFeatures(int n, int k) {
  ObjectToDoubleMap<String> features = new 
    ObjectToDoubleMap<String>();
  features.increment("TAG_" + tag(k),1.0);
  return features;
}

The next recipe will address how to modify feature extraction.
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There's more…
There is an extensive research literature referenced in the Javadoc and a much more 
exhaustive tutorial on the LingPipe website.

Modifying CRFs
The power and appeal of CRFs comes from rich feature extraction—proceed with an evaluation 
harness that provides feedback on your explorations. This recipe will detail how to create 
more complex features.

How to do it...
We will not train and run a CRF; instead, we will print out the features. Substitute this feature 
extractor for the one in the previous recipe to see them at work. Perform the following steps:

1.	 Go to a command line and type:
java -cp lingpipe-cookbook.1.0.jar:lib/lingpipe-4.1.0.jar: com.
lingpipe.cookbook.chapter4.ModifiedCrfFeatureExtractor

2.	 The feature extractor class outputs for each token in the training data the truth 
tagging that is being used to learn:
-------------------

Tagging:  John/PN

3.	 This reflects the training tagging for the token John as determined by src/com/
lingpipe/cookbook/chapter4/TinyPosCorpus.java.

4.	 The node features follow the top-three POS tags from our Brown corpus HMM tagger 
and the TOK_John feature:
Node Feats:{nps=2.0251355582754984E-4, np=0.9994337160349874, 
nn=2.994165140854113E-4, TOK_John=1.0}

5.	 Next, the edge features are displayed for the other tokens in the sentence,  
"John ran":
Edge Feats:{TOKEN_SHAPE_LET-CAP=1.0, TAG_PN=1.0}
Edge Feats:{TAG_IV=1.0, TOKEN_SHAPE_LET-CAP=1.0}
Edge Feats:{TOKEN_SHAPE_LET-CAP=1.0, TAG_EOS=1.0}

6.	 The rest of the output are the features for the remaining tokens in the sentence  
and then the remaining sentences in TinyPosCorpus.
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How it works…
Our feature extraction code occurs in src/com/lingpipe/cookbook/chapter4/
ModifiedCrfFeatureExtractor.java. We will start with the main() method that  
loads a corpus, runs the contents past the feature extractor, and prints it out:

public static void main(String[] args) throws IOException, 
ClassNotFoundException {

  Corpus <ObjectHandler<Tagging<String>>> corpus  
    = new TinyPosCorpus();
  final ChainCrfFeatureExtractor<String> featureExtractor  
    = new ModifiedCrfFeatureExtractor();

We will tee up TinyPosCorpus from the previous recipe as our corpus, and then, we 
will create a feature extractor from the containing class. The use of final is required by 
referencing the variable in the anonymous inner class that follows.

Apologies for the anonymous inner class, but it is just the easiest way to access what is  
stored in the corpus for various reasons such as copying and printing. In this case, we are  
just generating and printing the features found for the training data:

corpus.visitCorpus(new ObjectHandler<Tagging<String>>() {
  @Override
  public void handle(Tagging<String> tagging) {
    ChainCrfFeatures<String> features = 
      featureExtractor.extract(tagging.tokens(), tagging.tags());

The corpus contains Tagging objects, and they, in turn, contain a List<String> of tokens 
and tags. Then, this information is used to create a ChainCrfFeatures<String> object 
by applying the featureExtractor.extract() method to the tokens and tags. This will 
involve substantial computation, as will be shown.

Next, we will do reporting of the training data with tokens and the expected tagging:

for (int i = 0; i < tagging.size(); ++i) {
  System.out.println("---------");
  System.out.println("Tagging:  " + tagging.token(i) + "/" + tagging.
tag(i));

Then, we will follow with the features that will be used to inform the CRF model in attempting 
to produce the preceding tagging for nodes:

System.out.println("Node Feats:" + features.nodeFeatures(i));
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Then, the edge features are produced by the following iteration of relative positions to the 
source node i:

for (int j = 0; j < tagging.size(); ++j) {
  System.out.println("Edge Feats:" 
        + features.edgeFeatures(i, j));
}

This is it to print out the features. Now, we will address how the feature extractor is constructed. 
We assume that you are familiar with the previous recipe. First, the constructor that brings in the 
Brown corpus POS tagger:

HmmDecoder mDecoder;

public ModifiedCrfFeatureExtractor() throws IOException, 
  ClassNotFoundException {
  File hmmFile = new File("models/pos-en-general-" 
    + "brown.HiddenMarkovModel");
  HiddenMarkovModel hmm  
    = (HiddenMarkovModel) 
    AbstractExternalizable.readObject(hmmFile);
  mDecoder = new HmmDecoder(hmm);
}

The constructor brings in some external resources for feature generation, namely, a POS 
tagger trained on the Brown corpus. Why involve another POS tagger for a POS tagger? We will 
call the role of the Brown POS tagger a "feature tagger" to distinguish it from the tagger we are 
trying to build. A few reasons to use the feature tagger are:

ff We are using a stupidly small corpus for training, and a more robust generalized POS 
feature tagger will help things out. TinyPosCorpus is too small for even this benefit, 
but with a bit more data, the fact that there is a feature at that unifies the, a, and 
some will help the CRF recognize that some dog is 'DET' 'N', even though it has 
never seen some in training.

ff We have had to work with tag sets that are not aligned with POS feature taggers.  
The CRF can use these observations in the foreign tag set to better reason about  
the desired tagging. The simplest case is that at, from the Brown corpus tag set, 
maps cleanly onto DET in this tag set.

ff There can be performance improvements to run multiple taggers that are either 
trained on different data or use different technologies to tag. The CRF can then, 
hopefully, recognize contexts where one tagger outperforms others and use this 
information to guide the analysis. Back in the day, our MUC-6 system featured 3  
POS taggers that voted for the best output. Letting the CRF sort it out will be a 
superior approach.
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The guts of feature extraction are accessed with the extract method:

public ChainCrfFeatures<String> 
  extract(List<String> tokens, List<String> tags) {
  return new ModChainCrfFeatures(tokens,tags);
}

ModChainCrfFeatures is created as an inner class just to keep the proliferation of classes 
to a minimum, and the enclosing class is very lightweight:

class ModChainCrfFeatures extends ChainCrfFeatures<String> {
  
  TagLattice<String> mBrownTaggingLattice;
  
  public ModChainCrfFeatures(List<String> tokens, 
    List<String> tags) {
    super(tokens,tags);
    mBrownTaggingLattice =  
      mDecoder.tagMarginal(tokens);
  }

The preceding constructor hands off the tokens and tags to the super class, which handles 
bookkeeping of this data. Then, the "feature tagger" is applied to the tokens, and the resulting 
output is assigned to the member variable, mBrownTaggingLattice. The code will access 
the tagging, one token at a time, so it must be computed now. 

The feature creation step happens with two methods: nodeFeatures and edgeFeatures. 
We will start with a simple enhancement of edgeFeatures from the previous recipe:

public Map<String,? extends Number> edgeFeatures(int n, int k) {
  ObjectToDoubleMap<String> features = new 
    ObjectToDoubleMap<String>();
  features.set("TAG_" + tag(k), 1.0d);
  String category = IndoEuropeanTokenCategorizer 
    .CATEGORIZER 
    .categorize(token(n));
  features.set("TOKEN_SHAPE_" + category,1.0d);
  return features;
}

The code adds a token-shaped feature that generalizes 12 and 34 into 2-DIG and many other 
generalizations. To CRF, the similarity of 12 and 34 as two-digit numbers is non-existent unless 
feature extraction says otherwise. Refer to the Javadoc for the complete categorizer output.
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Candidate-edge features
CRFs allow random features to be applied, so the question is what features make sense to 
use. Edge features are used in conjunction with node features, so another issue is whether 
a feature should be applied to edges or nodes. Edge features will be used to reason about 
relationships between the current word/token to those around it. Some possible edge 
features are:

ff The token shape (all caps, starts with a number, and so on) of the previous token  
as done earlier.

ff Recognition of iambic pentameter that requires a correct ordering of stressed and 
unstressed syllables. This will require a syllable-stress tokenizer as well.

ff It often happens that text contains one or more languages—this is called code 
switching. It is a common occurrence in tweets. A reasonable edge feature will be the 
language of surrounding tokens; this language will better model that the next word is 
likely to be of the same language as the previous word.

Node features
The node features tend to be where the action is in CRFs, and they can get very rich.  
The Named entity recognition using CRFs with better features recipe in Chapter 5, Finding 
Spans in Text – Chunking, is an example. We will add part-of-speech tags in this recipe to  
the token feature of the previous recipe:

public Map<String,? extends Number> nodeFeatures(int n) {
  ObjectToDoubleMap<String> features  
    = new ObjectToDoubleMap<String>();
  features.set("TOK_" + token(n), 1);
  ConditionalClassification tagScores  
    = mBrownTaggingLattice.tokenClassification(n);
  for (int i = 0; i < 3; ++ i) {
    double conditionalProb = tagScores.score(i);
    String tag = tagScores.category(i);
    features.increment(tag, conditionalProb);
  }
  return features;
}

Then as in the previous recipe the token feature is added with:

features.set("TOK_" + token(n), 1); 

This results in the token string being prepended with TOK_ and a count of 1. Note that while 
tag(n) is available in training, it doesn't make sense to use this information, as that is what 
the CRF is trying to predict.
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Next, the top-three tags are extracted from the POS feature tagger and added with  
the associated conditional probability. CRFs will be able to work with the varying  
weights productively.

There's more…
When generating new features, some thought about the sparseness of data is worth 
considering. If dates were likely to be an important feature for the CRF, it would probably 
not be a good idea to do the standard Computer Science thing and convert the date to 
milliseconds since Jan 1, 1970 GMT. The reason is that the MILLI_1000000000 feature  
will be treated as completely different from MILLI_1000000001. There are a few reasons:

ff The underlying classifier does not know that the two values are nearly the same

ff The classifier does not know that the MILLI_ prefix is the same—the common prefix 
is only there for human convenience

ff The feature is unlikely to occur in training more than once and will likely be pruned by 
a minimum feature count

Instead of normalizing dates to milliseconds, consider an abstraction over the dates that will 
likely have many instances in training data, such as the has_date feature that ignores the 
actual date but notes the existence of the date. If the date is important, then compute all 
the important information about the date. If it is a day of the week, then map to days of the 
week. If temporal order matters, then map to coarser measurement that is likely to have many 
measurements. Generally speaking, CRFs and the underlying logistic regression classifier 
are robust against ineffective features, so feel free to be creative—you are unlikely to make 
accuracy worse by adding features.
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This chapter covers the following recipes:

ff Sentence detection

ff Evaluation of sentence detection

ff Tuning sentence detection

ff Marking embedded chunks in a string – sentence chunk example

ff Paragraph detection

ff Simple noun phrases and verb phrases

ff Regular expression-based chunking for NER

ff Dictionary-based chunking for NER

ff Translating between word tagging and chunks – BIO codec

ff HMM-based NER

ff Mixing the NER sources

ff CRFs for chunking

ff NER using CRFs with better features

5
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Introduction
This chapter will tell us how to work with spans of text that typically cover one or more words/
tokens. The LingPipe API represents this unit of text as a chunk with corresponding chunkers 
that produce chunkings. The following is some text with character offsets indicated:

LingPipe is an API. It is written in Java.
012345678901234567890123456789012345678901
          1         2         3         4           

Chunking the preceding text into sentences will give us the following output:

Sentence start=0, end=18
Sentence start =20, end=41

Adding in a chunking for named entities adds entities for LingPipe and Java:

Organization start=0, end=7
Organization start=37, end=40

We can define the named-entity chunkings with respect to their offsets from the sentences 
that contain them; this will make no difference to LingPipe, but Java will be:

Organization start=17, end=20

This is the basic idea of chunks. There are lots of ways to make them.

Sentence detection
Sentences in written text roughly correspond to a spoken utterance. They are the standard 
unit of processing words in industrial applications. In almost all mature NLP applications, 
sentence detection is a part of the processing pipeline even in the case of tweets, which  
can have more than one sentence in the allotted 140 characters.

How to do it...
1.	 As usual, we will play with some data first. Enter the following command in  

the console:
java -cp lingpipe-cookbook.1.0.jar:lib/lingpipe-4.1.0.jar: com.
lingpipe.cookbook.chapter5.SentenceDetection

2.	 The program will provide a prompt for your sentence-detection experimentation.  
A new line / return terminates the text to be analyzed:
Enter text followed by new line

>A sentence. Another sentence.
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SENTENCE 1:

A sentence.

SENTENCE 2:

Another sentence.

3.	 It is worth playing around a bit with different inputs. The following are some examples 
that explore the properties of the sentence detector. Drop the capitalized beginning of 
a sentence; this will prevent the detection of the second sentence:
>A sentence. another sentence.

SENTENCE 1:

A sentence. another sentence.

4.	 The detector does not require a final period—this is configurable:
>A sentence. Another sentence without a final period

SENTENCE 1:A sentence.

SENTENCE 2:Another sentence without a final period

5.	 The detector balances parentheses, which will not allow sentences to break inside 
parentheses—this is also configurable:
>(A sentence. Another sentence.)

SENTENCE 1: (A sentence. Another sentence.)

How it works...
This sentence detector is a heuristic-based or rule-based sentence detector. A statistical 
sentence detector would be a reasonable approach as well. We will get through the entire  
source to run the detector, and later, we will discuss the modifications:

package com.lingpipe.cookbook.chapter5;

import com.aliasi.chunk.Chunk;
import com.aliasi.chunk.Chunker;
import com.aliasi.chunk.Chunking;
import com.aliasi.sentences.IndoEuropeanSentenceModel;
import com.aliasi.sentences.SentenceChunker;
import com.aliasi.sentences.SentenceModel;
import com.aliasi.tokenizer.IndoEuropeanTokenizerFactory;
import com.aliasi.tokenizer.TokenizerFactory;
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.Set;
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public class SentenceDetection {

public static void main(String[] args) throws IOException {
  boolean endSent = true;
  boolean parenS = true;
  SentenceModel sentenceModel = new 
    IndoEuropeanSentenceModel(endSent,parenS);

Working from the top of the main class, the Boolean endSent parameter controls whether 
the string that is sentence detected is assumed to end with a sentence, no matter what—this 
means that the last character is a sentence boundary always—it does not need to be a period 
or other typical sentence-ending mark. Change it and try a sentence without a final period, 
and the result will be that no sentence is detected.

The next Boolean parenS declaration gives priority to parentheses over sentence makers 
when finding sentences. Next, the actual sentence chunker will be set up:

TokenizerFactory tokFactory = 
  IndoEuropeanTokenizerFactory.INSTANCE;
Chunker sentenceChunker = 
  new SentenceChunker(tokFactory,sentenceModel);

The tokFactory should be familiar to you from Chapter 2, Finding and Working with Words. 
The sentenceChunker then can be constructed. Following is the standard I/O code for 
command-line interaction:

BufferedReader reader = 
  new BufferedReader(new InputStreamReader(System.in));
while (true) {
  System.out.print("Enter text followed by new line\n>");
  String text = reader.readLine();

Once we have the text, then the sentence detector is applied:

Chunking chunking = sentenceChunker.chunk(text);
Set<Chunk> sentences = chunking.chunkSet();

The chunking provides a Set<Chunk> parameter, which will noncontractually provide an 
appropriate ordering of Chunks; they will be added as per the ChunkingImpl Javadoc.  
The truly paranoid programmer might impose the proper sort order, which we will cover  
later in the chapter when we have to handle overlapping chunks.

Next, we will check to see if any sentences were found, and if we don't find them, we will 
report to the console:

if (sentences.size() < 1) {
  System.out.println("No sentence chunks found.");
  return;
}
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The following is the first exposure to the Chunker interface in the book, and a few comments 
are in order. The Chunker interface generates the Chunk objects, which are typed and scored 
contiguous-character sequences over CharSequence—usually, String. Chunks can overlap. 
The Chunk objects are stored in Chunking:

String textStored = chunking.charSequence().toString();
for (Chunk sentence : sentences) {
  int start = sentence.start();
  int end = sentence.end();
  System.out.println("SENTENCE :" 
    + textStored.substring(start,end));
  }
}

First, we recovered the underlying text string textStored that the chunks are based on.  
It is the same string as text, but we wanted to illustrate this potentially useful method of the 
Chunking class, which can come up in recursive or other contexts when the chunking is far 
removed from where CharSequence that it uses is unavailable.

The remaining for loop iterates over the sentences and prints them out with the 
substring() method of String.

There's more...
Before moving on to how to roll your own sentence detector, it is worth mentioning that 
LingPipe has MedlineSentenceModel, which is oriented towards the kind of sentences 
found in the medical research literature. It has seen a lot of data and should be a starting 
place for your own sentence-detection efforts over these kinds of data.

Nested sentences
Sentences, particularly in literature, can contain nested sentences. Consider the following:

John said "this is a nested sentence" and then shut up.

The preceding sentence will be marked up properly as:

[John said "[this is a nested sentence]" and then shut up.]

This sort of nesting is different from a linguist's concept of a nested sentence, which is based 
on grammatical role. Consider the following example:

[[John ate the gorilla] and [Mary ate the burger]].

This sentence consists of two linguistically complete sentences joined by and. The difference 
between the two is that the former is determined by punctuation and the latter by a grammatical 
function. Whether this distinction is significant or not can be debated. However, the former case 
is much easier to recognize programmatically.
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However, we have rarely needed to model nested sentences in industrial contexts, but we  
took it on in our MUC-6 system and various coreference resolution systems in research 
contexts. This is beyond the scope of a recipe book, but be aware of the issue. LingPipe  
has no out-of-the-box capabilities for nested sentence detection.

Evaluation of sentence detection
Like most of the things we do, we want to be able to evaluate the performance of our 
components. Sentence detection is no different. Sentence detection is a span annotation that 
differs from our previous evaluations for classifiers and tokenization. As text can have characters 
that are not in any sentence, there is a notion of sentence start and sentence end. An example 
of characters that don't belong in a sentence will be JavaScript from an HTML page.

The following recipe will take you through the steps of creating evaluation data and running it 
past an evaluation class.

How to do it...
Perform the following steps to evaluate sentence detection:

1.	 Open a text editor and copy and paste some literary gem that you want to evaluate 
sentence detection with, or you can go with our supplied default text, which is used if 
you don't provide your own data. It is easiest if you stick to plain text.

2.	 Insert balanced [ and ] to indicate the beginnings and ends of sentences in the text. 
If the text already contains either [ or ], pick another character that is not in the 
text as a sentence delimiter—curly brackets or slashes are a good choice. If you use 
different delimiters, you will have to modify the source appropriately and recreate 
the JAR file. The code assumes a single-character text delimiter. An example of a 
sentence-annotated text from The Hitchhiker's Guide to the Galaxy is as follows—note 
that not every character is in a sentence; some whitespaces are between sentences:
[The Guide says that the best drink in existence is the Pan 
Galactic Gargle Blaster.] [It says that the effect of a Pan 
Galactic Gargle Blaster is like having your brains smashed out by 
a slice of lemon wrapped round a large gold brick.]

3.	 Get yourself a command line and run the following command:
java -cp lingpipe-cookbook.1.0.jar:lib/lingpipe-4.1.0.jar: com.
lingpipe.cookbook.chapter5.EvaluateAnnotatedSentences

TruePos: 0-83/The Guide says that the best drink in existence is 
the Pan Galactic Gargle Blaster.:S

TruePos: 84-233/It says that the effect of a Pan Galactic Gargle 
Blaster is like having your brains smashed out by a slice of lemon 
wrapped round a large gold brick.:S
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4.	 For this data, the code will display two sentences that match perfectly with the 
sentences annotated with [], as indicated by the TruePos label.

5.	 A good exercise is to modify the annotation a bit to force errors. We will move the first 
sentence boundary one character in:
T[he Guide says that the best drink in existence is the Pan 
Galactic Gargle Blaster.] [It says that the effect of a Pan 
Galactic Gargle Blaster is like having your brains smashed out by 
a slice of lemon wrapped round a large gold brick.]

6.	 Rerunning the modified annotation file after saving it yields:
TruePos: 84-233/It says that the effect of a Pan Galactic Gargle 
Blaster is like having your brains smashed out by a slice of lemon 
wrapped round a large gold brick.:S

FalsePos: 0-83/The Guide says that the best drink in existence is 
the Pan Galactic Gargle Blaster.:S

FalseNeg: 1-83/he Guide says that the best drink in existence is 
the Pan Galactic Gargle Blaster.:S

By changing the truth annotation, a false negative is produced, because the sentence 
span was missed by one character. In addition, a false positive is created by the 
sentence detector that recognizes the 0-83 character sequence.

7.	 It is a good idea to play around with the annotation and various kinds of data to get  
a feel of how evaluation works and the capabilities of the sentence detector.

How it works...
The class starts by digesting the annotated text and storing the sentence chunks in an 
evaluation object. Then, the sentence detector is created, just as we did in the previous 
recipe. The code finishes by applying the created sentence detector to the text, and the  
results are printed.

Parsing annotated data
Given text annotated with [] for sentence boundaries means that the correct offsets of the 
sentences have to be recovered, and the original unannotated text must be created, that 
is, without any []. Span parsers can be a bit tricky to code, and the following is offered for 
simplicity rather than efficiency or proper coding technique:

String path = args.length > 0 ? args[0] 
             : "data/hitchHikersGuide.sentDetected";
char[] chars 
  = Files.readCharsFromFile(new File(path), Strings.UTF8);
StringBuilder rawChars = new StringBuilder();
int start = -1;
int end = 0;
Set<Chunk> sentChunks = new HashSet<Chunk>();
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The preceding code reads in the entire file as a single char[] array with an appropriate 
character encoding. Also, note that for large files, a streaming approach will be more memory 
friendly. Next, an accumulator for unannotated chars is setup as a StringBuilder object 
with the rawChars variable. All characters encountered that are not either a [ or ] will be 
appended to the object. The remaining code sets up counters for sentence starts and ends 
that are indexed into the unannotated character array and an accumulator for Set<Chunk> 
for annotated sentence segments.

The following for loop advances one character at a time over the annotated  
character sequence:

for (int i=0; i < chars.length; ++i) {
  if (chars[i] == '[') {
    start = rawChars.length();
  }
  else if (chars[i] == ']') {
    end = rawChars.length();
    
    Chunk chunk = ChunkFactory.createChunk(start,end, 
      SentenceChunker.SENTENCE_CHUNK_TYPE);
    sentChunks.add(chunk);}
  else {
    rawChars.append(chars[i]);
  }
}
String originalText = rawChars.toString();

The first if (chars[i] == '[') tests for starts of sentences in the annotation and sets 
the start variable to the length of rawChars. The iteration variable i includes the length 
added by the annotations. The corresponding else if (chars[i] == ']') statement 
handles the end of sentence case. Note that there are no error checks for this parser—this is 
a very bad idea because annotation errors are very likely if entered with a text editor. However, 
this is motivated by keeping the code as simple as possible. Later in the recipe, we will provide 
an example with some minimal error checking. Once the end of a sentence is found, a chunk 
is created for the sentence with ChunkFactory.createChunk with offsets and for the 
standard LingPipe sentence type SentenceChunker.SENTENCE_CHUNK_TYPE, which is 
required for the upcoming evaluation classes to work properly.

The remaining else statement applies for all the characters that are not sentence 
boundaries, and it simply adds the character to the rawChars accumulator. The result of this 
accumulator can be seen outside the for loop when String unannotatedText is created. 
Now, we have sentence chunks indexed correctly into a text string. Next, we will create a 
proper Chunking object:

ChunkingImpl sentChunking = new ChunkingImpl(unannotatedText);
for (Chunk chunk : sentChunks) {
  sentChunking.add(chunk);
}
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The ChunkingImpl implementing class (Chunking is an interface) requires the underlying 
text on construction, which is why we didn't just populate it in the preceding loop. LingPipe 
generally tries to make object construction complete. If Chunkings can be created without the 
underlying CharSequence method, then what will be returned when the charSequence() 
method is called? An empty string is actively misleading. Alternatively, returning null needs 
to be caught and dealt with. Better to just force the object to make sense of construction.

Moving on, we will see the standard configuration of the sentence chunker from the  
previous recipe:

boolean eosIsSentBoundary = false;
boolean balanceParens = true;
SentenceModel sentenceModel = new 
  IndoEuropeanSentenceModel(eosIsSentBoundary, balanceParens);
TokenizerFactory tokFactory = 
  IndoEuropeanTokenizerFactory.INSTANCE;
SentenceChunker sentenceChunker = 
  new SentenceChunker(tokFactory,sentenceModel);

The interesting stuff follows with an evaluator that takes sentenceChunker as being 
evaluated as a parameter:

SentenceEvaluator evaluator = 
  new SentenceEvaluator(sentenceChunker);

Next up, the handle(sentChunking) method will take the text we just parsed into 
Chunking and run the sentence detector on CharSequence supplied in sentChunking 
and set up the evaluation:

evaluator.handle(sentChunking);

Then, we will just get the evaluation data and work our way through the differences between 
the truth sentence detection and what the system did:

SentenceEvaluation eval = evaluator.evaluation();
ChunkingEvaluation chunkEval = eval.chunkingEvaluation();
for (ChunkAndCharSeq truePos : chunkEval.truePositiveSet()) {
  System.out.println("TruePos: " + truePos);
}
for (ChunkAndCharSeq falsePos : chunkEval.falsePositiveSet()) {
  System.out.println("FalsePos: " + falsePos);
}
for (ChunkAndCharSeq falseNeg : chunkEval.falseNegativeSet()){
  System.out.println("FalseNeg: " + falseNeg);
}
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This recipe does not cover all the evaluation methods—check out the Javadoc—but it  
does provide what a sentence detection tuner will likely be most in need of; this is a listing  
of what the sentence detector got right (true positives), sentences it found but were wrong 
(false positives), and sentences it missed (false negatives). Note that true negatives don't 
make much sense in span annotations, because they will be the set of all the possible spans 
that are not in the truth sentence detection.

Tuning sentence detection
Lots of data will resist the charms of IndoEuropeanSentenceModel, so this recipe will 
provide a starting place to modify sentence detection to meet new kinds of sentences. 
Unfortunately, this is a very open-ended area of system building, so we will focus on 
techniques rather than likely formats for sentences.

How to do it...
This recipe will follow a well-worn pattern: create evaluation data, set up evaluation, and start 
hacking. Here we go:

1.	 Haul out your favorite text editor and mark up some data—we will stick to the [ and 
] markup approach. The following is an example that runs afoul of our standard 
IndoEuropeanSentenceModel:
[All decent people live beyond their incomes nowadays, and those 
who aren't respectable live beyond other people's.]  [A few gifted 
individuals manage to do both.]

2.	 We will put the preceding sentence in data/saki.sentDetected.txt and run it:
java -cp lingpipe-cookbook.1.0.jar:lib/lingpipe-4.1.0.jar: com.
lingpipe.cookbook.chapter5.EvaluateAnnotatedSentences data/saki.
sentDetected 

FalsePos: 0-159/All decent people live beyond their incomes 
nowadays, and those who aren't respectable live beyond other 
people's.  A few gifted individuals manage to do both.:S

FalseNeg: 0-114/All decent people live beyond their incomes 
nowadays, and those who aren't respectable live beyond other 
people's.:S

FalseNeg: 116-159/A few gifted individuals manage to do both.:S

There's more...
The single false positive corresponds to the one sentence found, and the two false negatives 
are the two sentences not found that we annotated here. What happened? The sentence 
model missed people's. as a sentence end. If the apostrophe is removed, the sentence  
is detected properly—what is going on?
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First, let's look at the code running in the background. IndoEuropeanSentenceModel 
extends HeuristicSentenceModel by configuring several categories of tokens from the 
Javadoc for HeuristicSentenceModel:

ff Possible stops: These are tokens that are allowed to be the final ones in a sentence. 
This set typically includes sentence-final punctuation tokens, such as periods (.) and 
double quotes (").

ff Impossible penultimates: These are tokens that might not be the penultimate 
(second-to-last) token in a sentence. This set is typically made up of abbreviations  
or acronyms, such as Mr.

ff Impossible starts: These are tokens that might not be the first ones in a sentence. 
This set typically includes punctuation characters that should be attached to the 
previous sentence, such as end quotes ('').

IndoEuropeanSentenceModel is not configurable, but from the Javadoc, it is clear that all 
single characters are considered impossible penultimates. The words people's is tokenized 
into people, ', s, and .. The single character s is penultimate to the . and is thus blocked. 
How to fix this?

A few options present themselves:

ff Ignore the mistake assuming that it won't happen frequently

ff Fix by creating a custom sentence model

ff Fix by modifying the tokenizer to not separate apostrophes

ff Write a complete sentence-detection model for the interface

The second option, create a custom sentence model, is handled most easily by copying  
the source from IndoEuropeanSentenceModel into a new class and modifying it,  
as the relevant data structures are private. This is done to simplify the serialization of the  
class—very little configuration needs to be written to disk. In the example classes, there  
is a MySentenceModel.java file that differs by obvious changes in the package name  
and imports:

IMPOSSIBLE_PENULTIMATES.add("R");
//IMPOSSIBLE_PENULTIMATES.add("S"); breaks on "people's."
//IMPOSSIBLE_PENULTIMATES.add("T"); breaks on "didn't."
IMPOSSIBLE_PENULTIMATES.add("U");

The preceding code just comments out two of the likely single-letter cases of penultimate 
tokens that are a single-word character. To see it at work, change the sentence model 
to SentenceModel sentenceModel = new MySentenceModel(); in the 
EvaluateAnnotatedSentences.java class and recompile and run it. 
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If you see the preceding code as a reasonable balancing of finding sentences that end in likely 
contractions versus non-sentence cases such as [Hunter S. Thompson is a famous 
fellow.], which will detect S. as a sentence boundary.

Extending HeuristicSentenceModel can work well for many sorts of data. Mitzi Morris 
built MedlineSentenceModel.java, which is designed to work well with the abstracts 
provided in the MEDLINE research index.

One way to look at the preceding problem is that contractions should not be broken up 
into tokens for the purpose of sentence detection. IndoEuropeanTokenizerFactory 
should be tuned up to keep "people's" and other contractions together. While it initially 
seems slightly better that the first solution, it might well run afoul of the fact that 
IndoEuropeanSentenceModel was tuned with a particular tokenization in mind, and the 
consequences of the change are unknown in the absence of an evaluation corpus.

The other option is to write a completely novel sentence-detection class that supports the 
SentenceModel interface. Faced with a highly novel data collection such as Twitter feeds,  
we will consider using a machine-learning-driven span-annotation technique such as HMMs  
or CRFs covered in Chapter 4, Tagging Words and Tokens, and at the end of this chapter.

Marking embedded chunks in a  
string – sentence chunk example

The method of displaying chunkings in the previous recipes is not well suited for applications 
that need to modify the underlying string. For example, a sentiment analyzer might want to 
highlight only sentences that are strongly positive and not mark up the remaining sentences 
while still displaying the entire text. The slight complication in producing the marked-up text 
is that adding markups changes the underlying string. This recipe provides working code to 
insert the chunking by adding chunks in reverse.

How to do it...
While this recipe may not be technically complex it is useful to get span annotations into a text 
without out having to invent the code from whole cloth. The src/com/lingpipe/coobook/
chapter5/WriteSentDetectedChunks class has the referenced code:

1.	 The sentence chunking is created as per the first sentence-detection recipe. The 
following code extracts the chunks as Set<Chunk> and then sorts them by Chunk.
LONGEST_MATCH_ORDER_COMPARITOR. In the Javadoc, the comparator is defined as:

Compares two chunks based on their text position. A chunk is great-
er if it starts later than another chunk, or if it starts at the same 
position and ends earlier.
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There is also TEXT_ORDER_COMPARITOR, which is as follows:
String textStored = chunking.charSequence().toString();
Set<Chunk> chunkSet = chunking.chunkSet();
System.out.println("size: " + chunkSet.size());
Chunk[] chunkArray = chunkSet.toArray(new Chunk[0]);
Arrays.sort(chunkArray,Chunk.LONGEST_MATCH_ORDER_COMPARATOR);

2.	 Next, we will iterate over the chunks in the reverse order, which eliminates having  
to keep an offset variable for the changing length of the StringBuilder object. 
Offset variables are a common source of bugs, so this recipe avoids them as much  
as possible but does non-standard reverse loop iteration, which might be worse:
StringBuilder output = new StringBuilder(textStored);
int sentBoundOffset = 0;
for (int i = chunkArray.length -1; i >= 0; --i) {
  Chunk chunk = chunkArray[i];
  String sentence = textStored.substring(chunk.start(), chunk.
end());
  if (sentence.contains("like")) {
    output.insert(chunk.end(),"}");
    output.insert(chunk.start(),"{");
  }
}
System.out.println(output.toString());

3.	 The preceding code does a very simple sentiment analysis by looking for the string 
like in the sentence and marking that sentence if true. Note that this code cannot 
handle overlapping chunks or nested chunks. It assumes a single, non-overlapping 
chunk set. Some example output is:
java -cp lingpipe-cookbook.1.0.jar:lib/lingpipe-4.1.0.jar: com.
lingpipe.cookbook.chapter5.WriteSentDetectedChunks

Enter text followed by new line

>People like to ski. But sometimes it is terrifying. 

size: 2

{People like to ski.} But sometimes it is terrifying. 

4.	 To print nested chunks, look at the Paragraph detection recipe that follows.
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Paragraph detection
The typical containing structure of a set of sentences is a paragraph. It can be set off explicitly 
in a markup language such as <p> in HTML or with two or more new lines, which is how 
paragraphs are usually rendered. We are in the part of NLP where no hard-and-fast rules 
apply, so we apologize for the hedging. We will handle some common examples in this  
chapter and leave it to you to generalize.

How to do it...
We have never set up an evaluation harness for paragraph detection, but it can be  
done in ways similar to sentence detection. This recipe, instead, will illustrate a simple 
paragraph-detection routine that does something very important—maintain offsets into the 
original document with embedded sentence detection. This attention to detail will serve you 
well if you ever need to mark up the document in a way that is sensitive to sentences or other 
subspans of the document, such as named entities. Consider the following example:

Sentence 1. Sentence 2
Sentence 3. Sentence 4.

It gets transformed into the following:

{[Sentence 1.] [Sentence 2]}

{[Sentence 3.] [Sentence 4.]
}

In the preceding snippet, []designates sentences, and {} designates paragraphs. We will 
jump right into the code on this recipe from src/com/lingpipe/cookbook/chapter5/
ParagraphSentenceDetection.java:

1.	 The example code has little to offer in paragraph-detection techniques. It is an  
open-ended problem, and you will have to use your wiles to solve it. Our paragraph 
detector is a pathetic split("\n\n") that, in a more sophisticated approach, will 
take into account context, characters, and other features that are far too idiosyncratic 
for us to cover. Here is the beginning of the code that reads the entire document as a 
string and splits it into an array. Note that paraSeperatorLength is the number of 
characters that form the basis of the paragraph split—if the length of the split varies, 
then that length will have to be associated with the corresponding paragraph:
public static void main(String[] args) throws IOException {
  String document = Files.readFromFile(new File(args[0]), 
    Strings.UTF8);
  String[] paragraphs = document.split("\n\n");
  int paraSeparatorLength = 2;
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2.	 The real point of the recipe is to help with the mechanics of maintaining character 
offsets into the original document and show embedded processing. This will be done 
by keeping two separate chunkings: one for paragraphs and one for sentences:
ChunkingImpl paraChunking = new 
  ChunkingImpl(document.toCharArray(),0,document.length());
ChunkingImpl sentChunking = new 
  ChunkingImpl(paraChunking.charSequence());

3.	 Next, the sentence detector will be set up in the same way as one in the  
previous recipe:
boolean eosIsSentBoundary = true;
boolean balanceParens = false;
SentenceModel sentenceModel = new 
  IndoEuropeanSentenceModel(eosIsSentBoundary, balanceParens);
SentenceChunker sentenceChunker = new 
  SentenceChunker(IndoEuropeanTokenizerFactory.INSTANCE, 
  sentenceModel);

4.	 The chunking iterates over the array of paragraphs and builds a sentence chunking 
for each paragraph. The somewhat-complicated part of this approach is that the 
sentence chunk offsets are with respect to the paragraph string, not the entire 
document. So, the variables' starts and ends are updated with document offsets in 
the code. Chunks have no methods to adjust starts and ends, so a new chunk must 
be created, adjustedSentChunk, with appropriate offsets into the paragraph start 
and must be added to sentChunking:
int paraStart = 0;
for (String paragraph : paragraphs) {
  for (Chunk sentChunk : 
    sentenceChunker.chunk(paragraph).chunkSet()) {
    Chunk adjustedSentChunk = 
      ChunkFactory.createChunk(sentChunk.start() + 
      paraStart,sentChunk.end() + paraStart, "S");
    sentChunking.add(adjustedSentChunk);
  }

5.	 The rest of the loop adds the paragraph chunk and then updates the start of 
the paragraph with the length of the paragraph plus the length of the paragraph 
separator. This will complete the creation of correctly offset sentences and 
paragraphs into the original document string:
paraChunking.add(ChunkFactory.createChunk(paraStart, paraStart + 
paragraph.length(),"P"));
paraStart += paragraph.length() + paraSeparatorLength;
}
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6.	 The rest of the program is concerned with printing out the paragraphs and sentences 
with some markup. First, we will create a chunking that has both sentence and 
paragraph chunks:
String underlyingString = 
  paraChunking.charSequence().toString();
ChunkingImpl displayChunking = new 
  ChunkingImpl(paraChunking.charSequence());
displayChunking.addAll(sentChunking.chunkSet());
displayChunking.addAll(paraChunking.chunkSet());

7.	 Next, displayChunking will be sorted by recovering chunkSet, converting it into 
an array of chunks and the application of the static comparator:
Set<Chunk> chunkSet = displayChunking.chunkSet();
Chunk[] chunkArray = chunkSet.toArray(new Chunk[0]);
Arrays.sort(chunkArray, 
  Chunk.LONGEST_MATCH_ORDER_COMPARATOR);

8.	 We will use the same trick as we did in the Marking embedded chunks in a  
string – sentence chunk example recipe, which is to insert the markup backwards 
into the string. We will have to keep an offset counter, because nested sentences  
will extend the finishing paragraph mark placement. The approach assumes that  
no chunks overlap and that sentences are contained within paragraphs always:
StringBuilder output = new StringBuilder(underlyingString);
int sentBoundOffset = 0;
for (int i = chunkArray.length -1; i >= 0; --i) {
  Chunk chunk = chunkArray[i];
  if (chunk.type().equals("P")) {
    output.insert(chunk.end() + sentBoundOffset,"}");
    output.insert(chunk.start(),"{");
    sentBoundOffset = 0;
  }
  if (chunk.type().equals("S")) {
    output.insert(chunk.end(),"]");
    output.insert(chunk.start(),"[");
    sentBoundOffset += 2;
  }
}
System.out.println(output.toString());

9.	 That's it for the recipe.
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Simple noun phrases and verb phrases
This recipe will show you how to find simple noun phrases (NP) and verb phrases (VP).  
By "simple", we mean that there is no complex structure within the phrases. For example,  
the complex NP "The rain in Spain" will be broken into two simple NP chunks "The rain"  
and "Spain". These phrases are also called "basal".

This recipe will not go into the details of how the basal NPs/VPs are calculated but rather how 
to use the class—it can come in handy, and the source can be included if you want to sort out 
how it works.

How to do it…
Like many of the recipes, we will provide a command-line-interactive interface here:

1.	 Haul up the command line and type:
java -cp lingpipe-cookbook.1.0.jar:lib/lingpipe-4.1.0.jar: com.
lingpipe.cookbook.chapter5.PhraseChunker

INPUT> The rain in Spain falls mainly on the plain.

The/at rain/nn in/in Spain/np falls/vbz mainly/rb on/in the/at 
plain/jj ./. 

  noun(0,8) The rain

  noun(12,17) Spain

  verb(18,30) falls mainly

  noun(34,43) the plain

How it works…
The main() method starts by deserializing a part-of-speech tagger and then creating 
tokenizerFactory:

public static void main(String[] args) throws IOException, 
ClassNotFoundException {
  File hmmFile =  
new File("models/pos-en-general-brown.HiddenMarkovModel");
  HiddenMarkovModel posHmm = 
    (HiddenMarkovModel) AbstractExternalizable.readObject(hmmFile);
  HmmDecoder posTagger  = new HmmDecoder(posHmm);
  TokenizerFactory tokenizerFactory = 
    IndoEuropeanTokenizerFactory.INSTANCE;
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Next, PhraseChunker is constructed, which is a heuristic approach to the problem. Look at 
the source to see how it works—it scans the input left to right for NP/VP starts and attempts to 
add to the phrase incrementally:

PhraseChunker chunker = 
  new PhraseChunker(posTagger,tokenizerFactory);

Our standard console I/O code is next:

BufferedReader bufReader = new BufferedReader(new 
InputStreamReader(System.in));
while (true) {
  System.out.print("\n\nINPUT> ");
  String input = bufReader.readLine();

Then, the input is tokenized, POS is tagged, and the tokens and tags are printed out:

Tokenizer tokenizer = 
  tokenizerFactory.tokenizer(input.toCharArray(), 
  0,input.length());
String[] tokens = tokenizer.tokenize();
List<String> tokenList = Arrays.asList(tokens);
Tagging<String> tagging = posTagger.tag(tokenList);
for (int j = 0; j < tokenList.size(); ++j) {
  System.out.print(tokens[j] + "/" + tagging.tag(j) + " ");
}
System.out.println();

The NP/VP chunkings are then calculated and printed out:

Chunking chunking = chunker.chunk(input);
CharSequence cs = chunking.charSequence();
for (Chunk chunk : chunking.chunkSet()) {
  String type = chunk.type();
  int start = chunk.start();
  int end = chunk.end();
  CharSequence text = cs.subSequence(start,end);
  System.out.println("  " + type + "(" + start + "," 
    + end + ") " + text);
  }

There is a more comprehensive tutorial at http://alias-i.com/lingpipe/demos/
tutorial/posTags/read-me.html.

http://alias-i.com/lingpipe/demos/tutorial/posTags/read-me.html
http://alias-i.com/lingpipe/demos/tutorial/posTags/read-me.html
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Regular expression-based chunking for NER
Named Entity Recognition (NER) is the process of finding mentions of specific things in text. 
Consider a simple name; location-named entity recognizer might find Ford Prefect and 
Guildford as the name and location mentions, respectively, in the following text:

Ford Prefect used to live in Guildford before he needed to move.

We will start by building rule-based NER systems and move up to machine-learning methods. 
Here, we'll take a look at building an NER system that can extract e-mail addresses from text.

How to do it…
1.	 Enter the following command into the command prompt:

java –cp lingpipe-cookbook.1.0.jar:lib/lingpipe-4.1.0.jar com.
lingpipe.cookbook.chapter5.RegexNer

2.	 Interaction with the program proceeds as follows:
Enter text, . to quit:

>Hello,my name is Foo and my email is foo@bar.com or you can also 
contact me at foo.bar@gmail.com.

input=Hello,my name is Foo and my email is foo@bar.com or you can 
also contact me at foo.bar@gmail.com.

chunking=Hello,my name is Foo and my email is foo@bar.com or you 
can also contact me at foo.bar@gmail.com. : [37-48:email@0.0, 
79-96:email@0.0]

     chunk=37-48:email@0.0  text=foo@bar.com

     chunk=79-96:email@0.0  text=foo.bar@gmail.com

3.	 You can see that both foo@bar.com as well as foo.bar@gmail.com were 
returned as valid e-mail type chunks. Also, note that the final period in the  
sentence is not part of the second e-mail.
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How it works…
A regular expression chunker finds chunks that match the given regular expression. 
Essentially, the java.util.regex.Matcher.find() method is used to iteratively 
find matching text segments, and these are then converted into the Chunk objects. The 
RegExChunker class wraps these steps. The code of src/com/lingpipe/cookbook/
chapter5/RegExNer.java is described as follows:

public static void main(String[] args) throws IOException {
  String emailRegex = "[A-Za-z0-9](([_\\.\\-]?[a-zA-Z0-9]+)*)" +  
    + "@([A-Za-z0-9]+)" + 
    "(([\\.\\-]?[a-zA-Z0-9]+)*)\\.([A-Za-z]{2,})";
  String chunkType = "email";
  double score = 1.0;
  Chunker chunker = new RegExChunker(emailRegex,chunkType,score);

All the interesting work was done in the preceding lines of code. The emailRegex is pulled 
off of the Internet—see the following for the source, and the remaining bits are setting up 
chunkType and score.

The rest of the code reads in the input and prints out the chunking:

BufferedReader reader = new BufferedReader(new 
  InputStreamReader(System.in));
  String input = "";
  while (true) {
    System.out.println("Enter text, . to quit:");
    input = reader.readLine();
    if(input.equals(".")){
      break;
    }
    Chunking chunking = chunker.chunk(input);
    System.out.println("input=" + input);
    System.out.println("chunking=" + chunking);
    Set<Chunk> chunkSet = chunking.chunkSet();
    Iterator<Chunk> it = chunkSet.iterator();
    while (it.hasNext()) {
      Chunk chunk = it.next();
      int start = chunk.start();
      int end = chunk.end();
      String text = input.substring(start,end);
      System.out.println("     chunk=" + chunk + " 
        text=" + text);
    }
  }
}
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See also
ff The regular expression for the e-mail address match is from 

regexlib.com at http://regexlib.com/DisplayPatterns.
aspx?cattabindex=0&categoryId=1

Dictionary-based chunking for NER
In many websites and blogs and certainly on web forums, you might see keyword highlighting 
that links pages you can buy a product from. Similarly, news websites also provide topic pages 
for people, places, and trending events, such as the one at http://www.nytimes.com/
pages/topics/.

A lot of this is fully automated and is easy to do with a dictionary-based Chunker. It is 
straightforward to compile lists of names for entities and their types. An exact dictionary 
chunker extracts chunks based on exact matches of tokenized dictionary entries.

The implementation of the dictionary-based chunker in LingPipe is based on the Aho-Corasick 
algorithm which finds all matches against a dictionary in linear time independent of the 
number of matches or size of the dictionary. This makes it much more efficient than the  
naïve approach of doing substring searches or using regular expressions.

How to do it…
1.	 In the IDE of your choice run the DictionaryChunker class in the chapter5 

package or type the following using the command line:
java –cp lingpipe-cookbook.1.0.jar:lib/lingpipe-4.1.0.jar com.
lingpipe.cookbook.chapter5.DictionaryChunker

2.	 Since this particular chunker example is biased (very heavily) towards the Hitchhikers 
Guide, let's use a sentence that involves some of the characters:
Enter text, . to quit:

Ford and Arthur went up the bridge of the Heart of Gold with 
Marvin

CHUNKER overlapping, case sensitive

    phrase=|Ford| start=0 end=4 type=PERSON score=1.0

    phrase=|Arthur| start=9 end=15 type=PERSON score=1.0

    phrase=|Heart| start=42 end=47 type=ORGAN score=1.0

   phrase=|Heart of Gold| start=42 end=55 type=SPACECRAFT 
score=1.0

    phrase=|Marvin| start=61 end=67 type=ROBOT score=1.0

3.	 Note that we have overlapping chunks from Heart and Heart of Gold. As we will 
see, this can be configured to behave differently.

regexlib.com
http://regexlib.com/DisplayPatterns.aspx?cattabindex=0&categoryId=1
http://regexlib.com/DisplayPatterns.aspx?cattabindex=0&categoryId=1
http://www.nytimes.com/pages/topics/
http://www.nytimes.com/pages/topics/
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How it works…
Dictionary-based NER drives a great deal of automatic linking against unstructured text  
data. We can build one using the following steps.

The first step of the code will create MapDictionary<String> to store the  
dictionary entries:

static final double CHUNK_SCORE = 1.0;

public static void main(String[] args) throws IOException {
  MapDictionary<String> dictionary = new MapDictionary<String>();
  MapDictionary<String> dictionary = new MapDictionary<String>();

Next, we will populate the dictionary with DictionaryEntry<String>, which includes type 
information and a score that will be used to create chunks:

dictionary.addEntry(new 
  DictionaryEntry<String>("Arthur","PERSON",CHUNK_SCORE));
dictionary.addEntry(new 
  DictionaryEntry<String>("Ford","PERSON",CHUNK_SCORE));
dictionary.addEntry(new 
  DictionaryEntry<String>("Trillian","PERSON",CHUNK_SCORE));
dictionary.addEntry(new 
  DictionaryEntry<String>("Zaphod","PERSON",CHUNK_SCORE));
dictionary.addEntry(new 
  DictionaryEntry<String>("Marvin","ROBOT",CHUNK_SCORE));
dictionary.addEntry(new DictionaryEntry<String>("Heart of Gold", 
  "SPACECRAFT",CHUNK_SCORE));
dictionary.addEntry(new DictionaryEntry<String>("Hitchhikers 
  Guide", "PRODUCT",CHUNK_SCORE));

In the DictionaryEntry constructor, the first argument is the phrase, the second string 
argument is the type, and the final double argument is the score for the chunk. Dictionary 
entries are always case sensitive. There is no limit to the number of different entity  
types in a dictionary. The scores will simply be passed along as chunk scores in the  
dictionary-based chunker.

Next, we will build Chunker:

boolean returnAllMatches = true;
boolean caseSensitive = true;
ExactDictionaryChunker dictionaryChunker = 
  new ExactDictionaryChunker(dictionary, 
  IndoEuropeanTokenizerFactory.INSTANCE, 
  returnAllMatches,caseSensitive);
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An exact dictionary chunker might be configured either to extract all the matching chunks to 
restrict the results to a consistent set of non-overlapping chunks via the returnAllMatches 
boolean. Look at the Javadoc to understand the exact criteria. There is also a caseSensitive 
boolean. The chunker requires a tokenizer, as it matches tokens as symbols, and whitespaces 
are ignored in the matching process.

Next is our standard I/O code for console interaction:

BufferedReader reader = new BufferedReader(new 
  InputStreamReader(System.in));
String text = "";
while (true) {
  System.out.println("Enter text, . to quit:");
  text = reader.readLine();
  if(text.equals(".")){
    break;
  }

The remaining code creates a chunking, goes through the chunks, and prints them out:

System.out.println("\nCHUNKER overlapping, case sensitive");
Chunking chunking = dictionaryChunker.chunk(text);
  for (Chunk chunk : chunking.chunkSet()) {
    int start = chunk.start();
    int end = chunk.end();
    String type = chunk.type();
    double score = chunk.score();
    String phrase = text.substring(start,end);
    System.out.println("     phrase=|" + phrase + "|" 
      + " start=" + start + " end=" + end 
      + " type=" + type + " score=" + score);

Dictionary chunkers are very useful even in machine-learning-based systems. There tends 
to always be a class of entities that are best identified this way. The Mixing the NER sources 
recipe addresses how to work with multiple sources of named entities.

Translating between word tagging and 
chunks – BIO codec

In Chapter 4, Tagging Words and Tokens, we used HMMs and CRFs to apply tags to words/
tokens. This recipe addresses the case of creating chunks from taggings that use the Begin, 
In, and Out (BIO) tags to encode chunkings that can span multiple words/tokens. This, in turn, 
is the basis of modern named-entity detection systems.



Finding Spans in Text – Chunking

196

Getting ready
The standard BIO-tagging scheme has the first token in a chunk of type X tagged B-X (begin), 
with all the subsequent tokens in the same chunk tagged I-X (in). All the tokens that are not  
in chunks are tagged O (out). For example, the string with character counts:

John Jones Mary and Mr. Jones
01234567890123456789012345678
0         1         2         

It can be tagged as:

John  B_PERSON
Jones  I_PERSON
Mary  B_PERSON
and  O
Mr    B_PERSON
.    I_PERSON
Jones  I_PERSON

The corresponding chunks will be:

0-10 "John Jones" PERSON
11-15 "Mary" PERSON
20-29 "Mr. Jones" PERSON

How to do it…
The program will show the simplest mapping between taggings and chunkings and the other 
way around:

1.	 Run the following:
java -cp lingpipe-cookbook.1.0.jar:lib/lingpipe-4.1.0.jar: com.
lingpipe.cookbook.chapter5.BioCodec

2.	 The program first prints out the string that will be tagged with a tagging:
Tagging for :The rain in Spain.

The/B_Weather

rain/I_Weather

in/O

Spain/B_Place

./O
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3.	 Next, the chunking is printed:
Chunking from StringTagging

0-8:Weather@-Infinity

12-17:Place@-Infinity

4.	 Then, the tagging is created from the chunking just displayed:
StringTagging from Chunking

The/B_Weather

rain/I_Weather

in/O

Spain/B_Place

./O

How it works…
The code starts by manually constructing StringTagging—we will see HMMs and 
CRFs do the same programmatically, but here it is explicit. It then prints out the created 
StringTagging:

public static void main(String[] args) {
  List<String> tokens = new ArrayList<String>();
  tokens.add("The");
  tokens.add("rain");
  tokens.add("in");
  tokens.add("Spain");
  tokens.add(".");
  List<String> tags = new ArrayList<String>();
  tags.add("B_Weather");
  tags.add("I_Weather");
  tags.add("O");
  tags.add("B_Place");
  tags.add("O");
  CharSequence cs = "The rain in Spain.";
  //012345678901234567
  int[] tokenStarts = {0,4,9,12,17};
  int[] tokenEnds = {3,8,11,17,17};
  StringTagging tagging = 
    new StringTagging(tokens, tags, cs,  
    tokenStarts, tokenEnds);
  System.out.println("Tagging for :" + cs);
  for (int i = 0; i < tagging.size(); ++i) {
    System.out.println(tagging.token(i) + "/" 
      + tagging.tag(i));
  }



Finding Spans in Text – Chunking

198

Next, it will construct BioTagChunkCodec and convert the tagging just printed out to a 
chunking followed by printing the chunking:

BioTagChunkCodec codec = new BioTagChunkCodec();
Chunking chunking = codec.toChunking(tagging);
System.out.println("Chunking from StringTagging");
for (Chunk chunk : chunking.chunkSet()) {
  System.out.println(chunk);
}

The remaining code reverses the process. First, a different BioTagChunkCodec is created 
with boolean enforceConsistency, which, if true, checks that the tokens created by the 
supplied tokenizer align exactly with the chunk begins and ends. Without the alignment we 
end up with a perhaps untenable relationship between chunks and tokens depending on the 
use case:

boolean enforceConsistency = true;
BioTagChunkCodec codec2 = 
  new BioTagChunkCodec(IndoEuropeanTokenizerFactory.INSTANCE, 
  enforceConsistency);
StringTagging tagging2 = codec2.toStringTagging(chunking);
System.out.println("StringTagging from Chunking");
for (int i = 0; i < tagging2.size(); ++i) {
  System.out.println(tagging2.token(i) + "/" + tagging2.tag(i));
}

The last for loop simply prints out the tagging returned by the codec2.
toStringTagging() method.

There's more…
The recipe works through the simplest example of mapping between taggings and chunkings. 
BioTagChunkCodec also takes the TagLattice<String> objects to produce n-best output, 
as will be shown in the HMM and CRF chunkers to follow.

HMM-based NER
HmmChunker uses an HMM to perform chunking over tokenized character sequences. 
Instances contain an HMM decoder for the model and tokenizer factory. The chunker requires 
the states of the HMM to conform to a token-by-token encoding of a chunking. It uses the 
tokenizer factory to break the chunks down into sequences of tokens and tags. Refer to the 
Hidden Markov Models (HMM) – part of speech recipe in Chapter 4, Tagging Words and Tokens.

We'll look at training HmmChunker and using it for the CoNLL2002 Spanish task. You can 
and should use your own data, but this recipe assumes that training data will be in the 
CoNLL2002 format.
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Training is done using an ObjectHandler which supplies the training instances.

Getting ready
As we want to train this chunker, we need to either label some data using the Computational 
Natural Language Learning (CoNLL) schema or use the one that's publicly available. For speed, 
we'll choose to get a corpus that is available in the CoNLL 2002 task.

The ConNLL is an annual meeting that sponsors a bakeoff. In 2002, 
the bakeoff involved Spanish and Dutch NER.

The data can be downloaded from http://www.cnts.ua.ac.be/conll2002/ner.tgz.

Similar to what we showed in the preceding recipe; let's take a look at what this data  
looks like:

El       O 
Abogado     B-PER 
General     I-PER 
del     I-PER 
Estado     I-PER 
,       O 
Daryl     B-PER 
Williams     I-PER 
,       O

With this encoding scheme, the phrases El Abogado General del Estado and Daryl Williams 
are coded as persons, with their beginning and continuing tokens picked out with tags B-PER 
and I-PER, respectively.

There are a few formatting errors in the data that must be fixed before our 
parsers can handle them. After unpacking ner.tgz in the data directory 
you will have to go to data/ner/data, unzip the following files, and 
modify as indicated:
esp.train, line 221619, change I-LOC to B-LOC
esp.testa, line 30882, change I-LOC to B-LOC
esp.testb, line 9291, change I-LOC to B-LOC

How to do it…
1.	 Using the command line, type the following:

java –cp lingpipe-cookbook.1.0.jar:lib/lingpipe-4.1.0.jar com.
lingpipe.cookbook.chapter5.HmmNeChunker
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2.	 It will run the training on the CoNLL training data if the model doesn't exist.  
It might take a while, so be patient. The output of the training will be:
Training HMM Chunker on data from: data/ner/data/esp.train

Output written to : models/Conll2002_ESP.RescoringChunker

Enter text, . to quit:

3.	 Once the prompt to enter the text is presented, type in some Spanish text from the 
CoNLL test set:
La empresa también tiene participación en Tele Leste Celular 
, operadora móvil de los estados de Bahía y Sergipe y que es 
controlada por la española Iberdrola , y además es socia de 
Portugal Telecom en Telesp Celular , la operadora móvil de Sao 
Paulo .

Rank   Conf      Span         Type     Phrase

0      1.0000   (105, 112)    LOC      Sergipe

1      1.0000   (149, 158)    ORG      Iberdrola

2      1.0000   (202, 216)    ORG      Telesp Celular

3      1.0000   (182, 198)    ORG      Portugal Telecom

4      1.0000   (97, 102)     LOC      Bahía

5      1.0000   (241, 250)    LOC      Sao Paulo

6      0.9907   (163, 169)    PER      además

7      0.9736   (11, 18)      ORG      también

8      0.9736   (39, 60)      ORG      en Tele Leste Celular

9      0.0264   (42, 60)      ORG      Tele Leste Celular

4.	 What we will see is a number of entities, their confidence score, the span in the 
original sentence, the type of entity, and the phrase that represents this entity.

5.	 To find out the correct tags, take a look at the annotated esp.testa file,  
which contains the following tags for this sentence:
Tele B-ORG

Leste I-ORG

Celular I-ORG

Bahía B-LOC

Sergipe B-LOC

Iberdrola B-ORG

Portugal B-ORG

Telecom I-ORG

Telesp B-ORG

Celular I-ORG

Sao B-LOC

Paulo I-LOC
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6.	 This can be read as follows:
Tele Leste Celular      ORG

Bahía                   LOC

Sergipe                 LOC

Iberdrola               ORG

Portugal Telecom        ORG

Telesp Celular          ORG

Sao Paulo               LOC

7.	 So, we got all the ones with 1.000 confidence correct and the rest wrong. This can 
help us set up a threshold in production.

How it works…
The CharLmRescoringChunker provides a long-distance character language model-based 
chunker that operates by rescoring the output of a contained character language model HMM 
chunker. The underlying chunker is an instance of CharLmHmmChunker, which is configured 
with the specified tokenizer factory, n-gram length, number of characters, and interpolation 
ratio provided in the constructor.

Let's start with the main() method; here, we will set up the chunker, train it if it doesn't exist, 
and then allow for some input to get the named entities out:

String modelFilename = "models/Conll2002_ESP.RescoringChunker";
String trainFilename = "data/ner/data/esp.train";

The training file will be in the correct place if you unpack the CoNLL data (tar –xvzf ner.
tgz) in the data directory. Remember to correct the annotation on line 221619 of esp.
train. If you use other data, then modify and recompile the class.

The next bit of code trains the model if it doesn't exist and then loads the serialized version of 
the chunker. If you have questions about deserialization, see the Deserializing and running a 
classifier recipe in Chapter 1, Simple Classifiers. Consider the following code snippet:

File modelFile = new File(modelFilename);
if(!modelFile.exists()){
  System.out.println("Training HMM Chunker on data 
    from: " + trainFilename);
  trainHMMChunker(modelFilename, trainFilename);
  System.out.println("Output written to : " 
    + modelFilename);
}

@SuppressWarnings("unchecked")
RescoringChunker<CharLmRescoringChunker> chunker  
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  = (RescoringChunker<CharLmRescoringChunker>) 
  AbstractExternalizable.readObject(modelFile);

The trainHMMChunker() method starts with some File bookkeeping before setting up 
configuration parameters for CharLmRescoringChunker:

static void trainHMMChunker(String modelFilename, String 
trainFilename) throws IOException{
  File modelFile = new File(modelFilename);
  File trainFile = new File(trainFilename);
  
  int numChunkingsRescored = 64;
  int maxNgram = 12;
  int numChars = 256;
  double lmInterpolation = maxNgram; 
  TokenizerFactory factory
    = IndoEuropeanTokenizerFactory.INSTANCE;

CharLmRescoringChunker chunkerEstimator
  = new CharLmRescoringChunker(factory,numChunkingsRescored,
          maxNgram,numChars,
          lmInterpolation);

Starting with the first parameter, numChunkingsRescored sets the number of chunkings 
from the embedded Chunker that will be rescored in an effort to improve performance.  
The implementation of this rescoring can vary, but generally, less-localized information is 
used to improve on the basic HMM output, which is contextually limited. The maxNgram sets 
the maximum character size for the rescoring-bounded character language model per chunk 
type, and lmInterpolation dictates how the models are interpolated. A good value is the 
character n-gram size. Finally, a tokenizer factory is created. There is a lot going on in this 
class; consult Javadoc for more information.

Next in the method, we will get a parser to be discussed in the following code snippet,  
that takes chunkerEstimator with the setHandler() method, and then, the parser.
parse() method does the actual training. The last bit of code serializes the model to  
disk—see the How to serialize a LingPipe object – classifier example recipe in Chapter 1, 
Simple Classifiers, to read about what is going on:

Conll2002ChunkTagParser parser  
  = new Conll2002ChunkTagParser();
parser.setHandler(chunkerEstimator);
parser.parse(trainFile);
AbstractExternalizable.compileTo(chunkerEstimator,modelFile);
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Now, let's take a look at parsing the CoNLL data. The source for this class is src/com/
lingpipe/cookbook/chapter5/Conll2002ChunkTagParser:

public class Conll2002ChunkTagParser extends StringParser<ObjectHandl
er<Chunking>>
{

  static final String TOKEN_TAG_LINE_REGEX = 
    "(\\S+)\\s(\\S+\\s)?(O|[B|I]-\\S+)";
  static final int TOKEN_GROUP = 1;
  static final int TAG_GROUP = 3;
  static final String IGNORE_LINE_REGEX = 
    "-DOCSTART(.*)";
  static final String EOS_REGEX = 
    "\\A\\Z";
  static final String BEGIN_TAG_PREFIX = "B-";
  static final String IN_TAG_PREFIX = "I-";
  static final String OUT_TAG = "O";

The statics set up the configuration of the com.aliasi.tag.LineTaggingParser 
LingPipe class. CoNLL, like many available data sets, uses a token/tag per line format,  
which is meant to be very easy to parse:

private final LineTaggingParser mParser = 
  new LineTaggingParser(TOKEN_TAG_LINE_REGEX, 
  TOKEN_GROUP, TAG_GROUP, IGNORE_LINE_REGEX, EOS_REGEX);

The LineTaggingParser constructor requires a regular expression that identifies the token 
and tag strings via grouping. There is additionally a regular expression for lines to ignore and 
finally, a regular expression for sentence ends.

Next, we set up TagChunkCodec; this will handle the mapping from tagged tokens in the 
BIO format to proper chunks. See the previous recipe, Translating between word tagging 
and chunks – BIO codec, for more about what is going on here. The remaining parameters 
customize the tags to match those of the CoNLL training data:

private final TagChunkCodec mCodec = 
  new BioTagChunkCodec(null, false,  
  BEGIN_TAG_PREFIX, IN_TAG_PREFIX, OUT_TAG);

The rest of the class provides methods for parseString(), which is immediately sent to the 
LineTaggingParser class:

public void parseString(char[] cs, int start, int end) {
  mParser.parseString(cs,start,end);
}
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Next, the ObjectHandler parser is properly configured with the codec and supplied handler:

public void setHandler(ObjectHandler<Chunking> handler) {

  ObjectHandler<Tagging<String>> taggingHandler 
    = TagChunkCodecAdapters.chunkingToTagging(mCodec, handler);
  mParser.setHandler(taggingHandler);
}

public TagChunkCodec getTagChunkCodec(){
  return mCodec;
}

It's a lot of odd-looking code, but all this does is set up a parser to read the lines from the 
input file and extract chunkings out of them.

Finally, let's go back to the main method and look at the output loop. We will set up the  
MAX_NBEST chunkings value as 10 and then invoke the nBestChunkings method on 
the chunker. This provides the top 10 chunks and their probabilistic scores. Based on an 
evaluation, we can choose to cut off at a particular score:

char[] cs = text.toCharArray();
Iterator<Chunk> it = 
  chunker.nBestChunks(cs,0,cs.length, 
  MAX_N_BEST_CHUNKS);
System.out.println(text);
System.out.println("Rank          Conf      Span"    + "    Type     
Phrase");
DecimalFormat df = new DecimalFormat("0.0000");

for (int n = 0; it.hasNext(); ++n) {

Chunk chunk = it.next();
double conf = chunk.score();
int start = chunk.start();
int end = chunk.end();
String phrase = text.substring(start,end);
System.out.println(n + " "       + "            "   + df.format(conf)     
+ "       (" + start  + ", " + end  + ")    " + chunk.type()      + "         
" + phrase);
}

There's more…
For more details on running a complete evaluation, refer to the evaluation section of the 
tutorial at http://alias-i.com/lingpipe/demos/tutorial/ne/read-me.html.

http://alias-i.com/lingpipe/demos/tutorial/ne/read-me.html
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See also
For more details on CharLmRescoringChunker and HmmChunker, refer to:

ff http://alias-i.com/lingpipe/docs/api/com/aliasi/chunk/
AbstractCharLmRescoringChunker.html

ff http://alias-i.com/lingpipe/docs/api/com/aliasi/chunk/
HmmChunker.html

Mixing the NER sources
Now that we've seen how to build a few different types of NERs, we can look at how to 
combine them. In this recipe, we will take a regular expression chunker, a dictionary-based 
chunker, and an HMM-based chunker and combine their outputs and look at overlaps.

We will just initialize a few chunkers in the same way we did in the past few recipes and then 
pass the same text through these chunkers. The easiest possibility is that each chunker 
returns a unique output. For example, let's consider a sentence such as "President Obama 
was scheduled to give a speech at the G-8 conference this evening". If we have a person 
chunker and an organization chunker, we might only get two unique chunks out. However, if 
we add a Presidents of USA chunker, we will get three chunks: PERSON, ORGANIZATION, 
and PRESIDENT. This very simple recipe will show us one way to handle these cases.

How to do it…
1.	 Using the command line or equivalent in your IDE, type the following:

java –cp lingpipe-cookbook.1.0.jar:lib/lingpipe-4.1.0.jar com.
lingpipe.cookbook.chapter5.MultipleNer

2.	 The usual interactive prompt follows:
Enter text, . to quit:

President Obama is scheduled to arrive in London this evening. He 
will address the G-8 summit.

neChunking: [10-15:PERSON@-Infinity, 42-48:LOCATION@-Infinity, 
83-86:ORGANIZATION@-Infinity]

pChunking: [62-66:MALE_PRONOUN@1.0]

dChunking: [10-15:PRESIDENT@1.0]

----Overlaps Allowed

 Combined Chunks:

[83-86:ORGANIZATION@-Infinity, 10-15:PERSON@-Infinity, 
10-15:PRESIDENT@1.0, 42-48:LOCATION@-Infinity, 62-66:MALE_

http://alias-i.com/lingpipe/docs/api/com/aliasi/chunk/AbstractCharLmRescoringChunker.html
http://alias-i.com/lingpipe/docs/api/com/aliasi/chunk/AbstractCharLmRescoringChunker.html
http://alias-i.com/lingpipe/docs/api/com/aliasi/chunk/HmmChunker.html
http://alias-i.com/lingpipe/docs/api/com/aliasi/chunk/HmmChunker.html
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PRONOUN@1.0]

----Overlaps Not Allowed

 Unique Chunks:

[83-86:ORGANIZATION@-Infinity, 42-48:LOCATION@-Infinity, 62-
66:MALE_PRONOUN@1.0]

 OverLapped Chunks:

[10-15:PERSON@-Infinity, 10-15:PRESIDENT@1.0]

3.	 We see the output from the three chunkers: neChunking is the output of an HMM 
chunker that is trained to return the MUC-6 entities, pChunking is a simple regular 
expression that recognizes male pronouns, and dChunking is a dictionary chunker 
that recognizes US Presidents.

4.	 With overlaps allowed, we will see the chunks for PRESIDENT as well as PERSON  
in the merged output.

5.	 With overlaps disallowed, they will be added to the set overlapped chunks and 
removed from the unique chunks.

How it works…
We initialized three chunkers that should be familiar to you from the previous recipes  
in this chapter:

Chunker pronounChunker = 
  new RegExChunker(" He | he | Him | him", 
  "MALE_PRONOUN",1.0);
File MODEL_FILE = 
  new File("models/ne-en-news.muc6." 
  + "AbstractCharLmRescoringChunker");
Chunker neChunker = 
  (Chunker) AbstractExternalizable.readObject(MODEL_FILE);

MapDictionary<String> dictionary = new MapDictionary<String>();
dictionary.addEntry(
  new DictionaryEntry<String>("Obama","PRESIDENT",CHUNK_SCORE));
dictionary.addEntry(
  new DictionaryEntry<String>("Bush","PRESIDENT",CHUNK_SCORE));
ExactDictionaryChunker dictionaryChunker = 
  new ExactDictionaryChunker(dictionary,  
  IndoEuropeanTokenizerFactory.INSTANCE);
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Now, we will just chunk our input text via all three chunkers, combine the chunks into one set, 
and pass our getCombinedChunks method to it:

Set<Chunk> neChunking = neChunker.chunk(text).chunkSet();
Set<Chunk> pChunking = pronounChunker.chunk(text).chunkSet();
Set<Chunk> dChunking = dictionaryChunker.chunk(text).chunkSet();
Set<Chunk> allChunks = new HashSet<Chunk>();
allChunks.addAll(neChunking);
allChunks.addAll(pChunking);
allChunks.addAll(dChunking);
getCombinedChunks(allChunks,true);//allow overlaps
getCombinedChunks(allChunks,false);//no overlaps

The meat of this recipe is in the getCombinedChunks method. We will just loop through all 
the chunks and check each pair if they overlap in their starts and ends. If they overlap and 
overlaps are not allowed, they are added to an overlapped set; otherwise, they are added to  
a combined set:

static void getCombinedChunks(Set<Chunk> chunkSet, 
  boolean allowOverlap){
  Set<Chunk> combinedChunks = new HashSet<Chunk>();
  Set<Chunk>overLappedChunks = new HashSet<Chunk>();
  for(Chunk c : chunkSet){
    combinedChunks.add(c);
    for(Chunk x : chunkSet){
      if (c.equals(x)){
        continue;
      }
      if (ChunkingImpl.overlap(c,x)) {
        if (allowOverlap){
          combinedChunks.add(x);
        } else {
          overLappedChunks.add(x);
          combinedChunks.remove(c);
        }
      }
    }
  }
}
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Here is the place to add more rules for overlapping chunks. For example, you can make it 
score based, so if the PRESIDENT chunk type has a higher score than the HMM-based one, 
you can choose it instead.

CRFs for chunking
CRFs are best known to provide close to state-of-the-art performance for named-entity 
tagging. This recipe will tell us how to build one of these systems. The recipe assumes that 
you have read, understood, and played with the Conditional random fields – CRF for word/
token tagging recipe in Chapter 4, Tagging Words and Tokens, which addresses the underlying 
technology. Like HMMs, CRFs treat named entity detection as a word-tagging problem, with 
an interpretation layer that provides chunkings. Unlike HMMs, CRFs use a logistic-regression-
based classification approach, which, in turn, allows for random features to be included. Also, 
there is an excellent tutorial on CRFs that this recipe follows closely (but omits details) at 
http://alias-i.com/lingpipe/demos/tutorial/crf/read-me.html. There is also 
a lot of information in the Javadoc.

Getting ready
Just as we did earlier, we will use a small hand-coded corpus to serve as training data.  
The corpus is in src/com/lingpipe/cookbook/chapter5/TinyEntityCorpus.java. 
It starts with:

public class TinyEntityCorpus extends Corpus<ObjectHandler<Chunking>> 
{

  public void visitTrain(ObjectHandler<Chunking> handler) {
    for (Chunking chunking : CHUNKINGS) handler.handle(chunking);
  }

  public void visitTest(ObjectHandler<Chunking> handler) {
    /* no op */
  }

Since we are only using this corpus to train, the visitTest() method does nothing. 
However, the visitTrain() method exposes the handler to all the chunkings stored  
in the CHUNKINGS constant. This, in turn, looks like the following:

static final Chunking[] CHUNKINGS = new Chunking[] {
  chunking(""), chunking("The"), 
  chunking("John ran.", chunk(0,4,"PER")), 
  chunking("Mary ran.", chunk(0,4,"PER")), 
  chunking("The kid ran."), chunking("John likes Mary.", 
  chunk(0,4,"PER"), chunk(11,15,"PER")), 
  chunking("Tim lives in Washington", chunk(0,3,"PER"), 
  chunk(13,23,"LOC")), chunking("Mary Smith is in New York City", 

http://alias-i.com/lingpipe/demos/tutorial/crf/read-me.html
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  chunk(0,10,"PER"), chunk(17,30,"LOC")), 
  chunking("New York City is fun", chunk(0,13,"LOC")), 
  chunking("Chicago is not like Washington", 
  chunk(0,7,"LOC"), chunk(20,30,"LOC"))
};

We are still not done. Given that the creation of Chunking is fairly verbose, there are static 
methods to help dynamically create the requisite objects:

static Chunking chunking(String s, Chunk... chunks) {
  ChunkingImpl chunking = new ChunkingImpl(s);
  for (Chunk chunk : chunks) chunking.add(chunk);
  return chunking;
}

static Chunk chunk(int start, int end, String type) {
  return ChunkFactory.createChunk(start,end,type);
}

This is all the setup; next, we will train and run a CRF on the preceding data.

How to do it...
1.	 Type the TrainAndRunSimplCrf class in the command line or run the equivalent in 

your IDE:
java -cp lingpipe-cookbook.1.0.jar:lib/lingpipe-4.1.0.jar: com.
lingpipe.cookbook.chapter5.TrainAndRunSimpleCrf

2.	 This results in loads of screen output that report on the health and progress of the 
CRF, it is mostly information from the underlying logistic-regression classifier that 
drives the whole show. The fun bit is that we will get an invitation to play with the  
new CRF:
Enter text followed by new line

>John Smith went to New York.

3.	 The chunker reports the first best output:
FIRST BEST

John Smith went to New York. : [0-10:PER@-Infinity, 19-27:LOC@-
Infinity]
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4.	 The preceding output is the first best analysis by the CRF of what sorts of entities are 
in the sentence. It thinks that John Smith is PER with the 0-10:PER@-Infinity 
output. We know that it applies to the John Smith string by taking the substring 
from 0 to 10 in the input text. Ignore –Infinity, which is supplied for chunks that 
have no score. The first best chunking does not have scores. The other entity that it 
thinks is in the text is New York as an LOC.

5.	 Immediately, the conditional probabilities follow:
10 BEST CONDITIONAL

Rank log p(tags|tokens)  Tagging

0    -1.66335590 [0-10:PER@-Infinity, 19-27:LOC@-Infinity]

1    -2.38671498 [0-10:PER@-Infinity, 19-28:LOC@-Infinity]

2    -2.77341747 [0-10:PER@-Infinity]

3    -2.85908677 [0-4:PER@-Infinity, 19-27:LOC@-Infinity]

4    -3.00398856 [0-10:PER@-Infinity, 19-22:LOC@-Infinity]

5    -3.23050827 [0-10:PER@-Infinity, 16-27:LOC@-Infinity]

6    -3.49773765 [0-10:PER@-Infinity, 23-27:PER@-Infinity]

7    -3.58244582 [0-4:PER@-Infinity, 19-28:LOC@-Infinity]

8    -3.72315571 [0-10:PER@-Infinity, 19-22:PER@-Infinity]

9    -3.95386735 [0-10:PER@-Infinity, 16-28:LOC@-Infinity]

6.	 The preceding output provides the 10 best analyses of the whole phrase, along 
with their conditional (natural log) probabilities. In this case, we will see that the 
system isn't particularly confident of any of its analyses. For instance, the estimated 
probability of the first best analysis being correct is exp(-1.66)=0.19.

7.	 Next, in the output, we see probabilities for individual chunks:
MARGINAL CHUNK PROBABILITIES

Rank Chunk Phrase

0 0-10:PER@-0.49306887565189683 John Smith

1 19-27:LOC@-1.1957935770408703 New York

2 0-4:PER@-1.3270942262839682 John

3 19-22:LOC@-2.484463373596263 New

4 23-27:PER@-2.6919267821139776 York

5 16-27:LOC@-2.881057607295971 to New York

6 11-15:PER@-3.0868632773744222 went

7 16-18:PER@-3.1583044940140192 to

8 19-22:PER@-3.2036305275847825 New

9 23-27:LOC@-3.536294896211011 York
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8.	 As with the previous conditional output, the probabilities are logs, so we can see that 
the John Smith chunk has estimated probability exp(-0.49) = 0.61, which 
makes sense because in training the CRF saw John at the beginning of PER and 
Smith at the end of another, but not John Smith directly.

9.	 The preceding kind of probability distributions can really improve systems if there are 
sufficient resources to consider a broad range of analyses and ways of combining 
evidence to allow for improbable outcomes to be selected. First best analyses tend to 
be over committed to conservative outcomes that fit what training data looks like.

How it works…
The code in src/com/lingpipe/cookbook/chapter5/TrainAndRunSimpleCRF.java 
resembles our classifier and HMM recipes with a few differences. These differences are  
addressed as follows:

public static void main(String[] args) throws IOException {
  Corpus<ObjectHandler<Chunking>> corpus = 
  new TinyEntityCorpus();

  TokenizerFactory tokenizerFactory = 
    IndoEuropeanTokenizerFactory.INSTANCE;
  boolean enforceConsistency = true;
  TagChunkCodec tagChunkCodec = 
    new BioTagChunkCodec(tokenizerFactory, 
    enforceConsistency);

When we previously played with CRFs, the inputs were of the Tagging<String> type. 
Looking back at TinyEntityCorpus.java, the types are of the Chunking type. The 
preceding BioTagChunkCodec facilitates the translation of Chunking into Tagging 
via the efforts of a supplied TokenizerFactory and boolean that raise an exception if 
TokenizerFactory does not exactly agree with the Chunk starts and ends. Look back to 
the Translating between word tagging and chunks–BIO codec recipe better understand the 
role of this class.

Let's take a look at the following:

John Smith went to New York City. : [0-10:PER@-Infinity, 19-32:LOC@-
Infinity]
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This codec will translate into a tagging:

Tok    Tag
John   B_PER
Smith  I_PER
went  O
to     O
New    B_LOC
York  I_LOC
City  I_LOC
.    O

The codec will do the reverse operation as well. The Javadoc is worth a visit. Once this 
mapping is established, the rest of the CRF is the same as the word tagging case behind 
the scenes, as shown by the fact that we use the same feature extractor in the Conditional 
random fields – CRF for word/token tagging recipe, in Chapter 4, Tagging Words and Tokens. 
Consider the following code snippet:

ChainCrfFeatureExtractor<String> featureExtractor = 
  new SimpleCrfFeatureExtractor();

All the mechanics are hidden inside a new ChainCrfChunker class, and it is initialized  
in a manner similar to logistic regression, which is the underlying technology. Refer to the 
Logistic regression recipe of Chapter 3, Advanced Classifiers, for more information on  
the configuration:

int minFeatureCount = 1;
boolean cacheFeatures = true;
boolean addIntercept = true;
double priorVariance = 4.0;
boolean uninformativeIntercept = true;
RegressionPrior prior = 
  RegressionPrior.gaussian(priorVariance, 
  uninformativeIntercept);
int priorBlockSize = 3;
double initialLearningRate = 0.05;
double learningRateDecay = 0.995;
AnnealingSchedule annealingSchedule = 
  AnnealingSchedule.exponential(initialLearningRate, 
  learningRateDecay);
double minImprovement = 0.00001;
int minEpochs = 10;
int maxEpochs = 5000;
Reporter reporter = 
  Reporters.stdOut().setLevel(LogLevel.DEBUG);
System.out.println("\nEstimating");
ChainCrfChunker crfChunker = 
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  ChainCrfChunker.estimate(corpus, 
  tagChunkCodec, tokenizerFactory, 
  featureExtractor, addIntercept, 
  minFeatureCount, cacheFeatures, 
  prior, priorBlockSize, annealingSchedule, 
 minImprovement, minEpochs, maxEpochs, reporter);

The only new thing here is the tagChunkCodec parameter, which we just described.

Once the training is over, we will access the chunker for first best with the following code:

System.out.println("\nFIRST BEST");
Chunking chunking = crfChunker.chunk(evalText);
System.out.println(chunking);

Conditional chunkings are delivered by:

int maxNBest = 10;
System.out.println("\n" + maxNBest + " BEST CONDITIONAL");
System.out.println("Rank log p(tags|tokens)  Tagging");
Iterator<ScoredObject<Chunking>> it = 
  crfChunker.nBestConditional(evalTextChars,0, 
  evalTextChars.length,maxNBest);

  for (int rank = 0; rank < maxNBest && it.hasNext(); ++rank) {
    ScoredObject<Chunking> scoredChunking = it.next();
    System.out.println(rank + "    " + 
      scoredChunking.score() + " " + 
      scoredChunking.getObject().chunkSet());
  }

The individual chunks are accessed with:

System.out.println("\nMARGINAL CHUNK PROBABILITIES");
System.out.println("Rank Chunk Phrase");
int maxNBestChunks = 10;
Iterator<Chunk> nBestIt  = crfChunker.nBestChunks 
  (evalTextChars,0, evalTextChars.length,maxNBestChunks);
for (int n = 0; n < maxNBestChunks && nBestIt.hasNext(); ++n) {
  Chunk chunk = nBestChunkIt.next();
  System.out.println(n + " " + chunk + " " + 
    evalText.substring(chunk.start(),chunk.end()));
}

That's it. You have access to one of the world's finest chunking technologies. Next, we will 
show you how to make it better.
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NER using CRFs with better features
In this recipe, we'll show you how to create a realistic, though not quite state-of-the-art, 
set of features for CRFs. The features will include normalized tokens, part-of-speech tags, 
word-shape features, position features, and token prefixes and suffixes. Substitute it for the 
SimpleCrfFeatureExtractor in the CRFs for chunking recipe to use it. 

How to do it…
The source for this recipe is in src/com/lingpipe/cookbook/chapter5/
FancyCrfFeatureExtractor.java:

1.	 Open up your IDE or command prompt and type:
java -cp lingpipe-cookbook.1.0.jar:lib/lingpipe-4.1.0.jar: com.
lingpipe.cookbook.chapter5.FancyCrfFeatureExtractor

2.	 Brace yourself for an explosion of features from the console. The data being used for 
feature extraction is TinyEntityCorpus of the previous recipe. Luckily, the first bit 
of data is just the node features for the "John" in the sentence John ran.:
Tagging:  John/PN

Node Feats:{PREF_NEXT_ra=1.0, PREF_Jo=1.0, POS_np=1.0, TOK_CAT_
LET-CAP=1.0, SUFF_NEXT_an=1.0, PREF_Joh=1.0, PREF_NEXT_r=1.0, 
SUFF_John=1.0, TOK_John=1.0, PREF_NEXT_ran=1.0, BOS=1.0, TOK_NEXT_
ran=1.0, SUFF_NEXT_n=1.0, SUFF_NEXT_ran=1.0, SUFF_ohn=1.0, PREF_
J=1.0, POS_NEXT_vbd=1.0, SUFF_hn=1.0, SUFF_n=1.0, TOK_CAT_NEXT_
ran=1.0, PREF_John=1.0}

3.	 The next word in the sequence adds edge features—we won't bother showing you the 
node features:
Edge Feats:{PREV_TAG_TOKEN_CAT_PN_LET-CAP=1.0, PREV_TAG_PN=1.0}

How it works…
As with other recipes, we won't bother discussing parts that are very similar to previous 
recipes—the relevant previous recipe here is the Modifying CRFs recipe in Chapter 4, Tagging 
Words and Tokens. This is exactly the same, except for the fact that we will add in a lot more 
features—perhaps, from unexpected sources.
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The tutorial for CRFs covers how to serialize/deserialize this class. 
This implementation does not cover it.

Object construction is similar to the Modifying CRFs recipe in Chapter 4, Tagging Words 
and Tokens:

public FancyCrfFeatureExtractor()
  throws ClassNotFoundException, IOException {
  File posHmmFile = new File("models/pos-en-general" 
    + "brown.HiddenMarkovModel");
  @SuppressWarnings("unchecked") HiddenMarkovModel posHmm = 
    (HiddenMarkovModel)
  AbstractExternalizable.readObject(posHmmFile);

  FastCache<String,double[]> emissionCache = 
    new FastCache<String,double[]>(100000);
  mPosTagger = new HmmDecoder(posHmm,null,emissionCache);
}

The constructor sets up a part-of-speech tagger with a cache and shoves it into the 
mPosTagger member variable.

The following method does very little, except supplying an inner ChunkerFeatures class:

public ChainCrfFeatures<String> extract(List<String> tokens, 
List<String> tags) {
  return new ChunkerFeatures(tokens,tags);
}

The ChunkerFeatures class is where things get more interesting:

class ChunkerFeatures extends ChainCrfFeatures<String> {
  private final Tagging<String> mPosTagging;

  public ChunkerFeatures(List<String> tokens, 
    List<String> tags) {
    super(tokens,tags);
    mPosTagging = mPosTagger.tag(tokens);
  }

The mPosTagger function is used to set up Tagging<String> for the tokens presented on 
class creation. This will be aligned with the tag() and token() superclass methods and be 
the source of part-of-speech tags as a node feature.
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Now, we can get on with the feature extraction. We will start with edge features, as they are 
the simplest:

public Map<String,? extends Number> edgeFeatures(int n, int k) {
  ObjectToDoubleMap<String> feats =  
    new ObjectToDoubleMap<String>();
  feats.set("PREV_TAG_" + tag(k),1.0);
  feats.set("PREV_TAG_TOKEN_CAT_"  + tag(k) 
    + "_" + tokenCat(n-1), 1.0);
  return feats;
}

The new feature is prefixed with PREV_TAG_TOKEN_CAT_, and the example is  
PREV_TAG_TOKEN_CAT_PN_LET-CAP=1.0. The tokenCat() method looks at  
the word shape feature for the previous token and returns it as a string. Look at the  
Javadoc for IndoEuropeanTokenCategorizer to see what is going on.

Next comes the node features. There are many of these; each will be presented in turn:

public Map<String,? extends Number> nodeFeatures(int n) {
  ObjectToDoubleMap<String> feats = 
    new ObjectToDoubleMap<String>();

The preceding code sets up the method with the appropriate return type. The next two lines 
set up some state to know where the feature extractor is in the string:

boolean bos = n == 0;
boolean eos = (n + 1) >= numTokens();

Next, we will compute the token categories, tokens, and part-of-speech tags for the current 
position, previous position, and the next position of the input:

String tokenCat = tokenCat(n);
String prevTokenCat = bos ? null : tokenCat(n-1);
String nextTokenCat = eos ? null : tokenCat(n+1);

String token = normedToken(n);
String prevToken = bos ? null : normedToken(n-1);
String nextToken = eos ? null : normedToken(n+1);

String posTag = mPosTagging.tag(n);
String prevPosTag = bos ? null : mPosTagging.tag(n-1);
String nextPosTag = eos ? null : mPosTagging.tag(n+1);

The previous and next methods check if we're at the begin or end of the sentence and return 
null accordingly. The part-of-speech tagging is taken from the saved part-of-speech taggings 
computed in the constructor.
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The token methods provide some normalization of tokens to compress all numbers to the 
same kind of value. This method is as follows:

public String normedToken(int n) {
  return token(n).replaceAll("\\d+","*$0*") 
    .replaceAll("\\d","D");
}

This just takes every sequence of numbers and replaces it with *D...D*. For instance, 
12/3/08 is converted to *DD*/*D*/*DD*.

We will then set feature values for the preceding, current, and following tokens. First, a flag 
indicates whether it begins or ends a sentence or an internal node:

if (bos) {
  feats.set("BOS",1.0);
}
if (eos) {
  feats.set("EOS",1.0);
}
if (!bos && !eos) {
  feats.set("!BOS!EOS",1.0);
}

Next, we will include the tokens, token categories, and their parts of speech:

feats.set("TOK_" + token, 1.0);
if (!bos) {
  feats.set("TOK_PREV_" + prevToken,1.0);
}
if (!eos) {
  feats.set("TOK_NEXT_" + nextToken,1.0);
}
feats.set("TOK_CAT_" + tokenCat, 1.0);
if (!bos) {
  feats.set("TOK_CAT_PREV_" + prevTokenCat, 1.0);
}
if (!eos) {
  feats.set("TOK_CAT_NEXT_" + nextToken, 1.0);
}
feats.set("POS_" + posTag,1.0);
if (!bos) {
  feats.set("POS_PREV_" + prevPosTag,1.0);
}
if (!eos) {
  feats.set("POS_NEXT_" + nextPosTag,1.0);
}
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Finally, we will add the prefix and suffix features, which add features for each suffix and prefix 
(up to a prespecified length):

for (String suffix : suffixes(token)) {
  feats.set("SUFF_" + suffix,1.0);
}
if (!bos) {
  for (String suffix : suffixes(prevToken)) {
    feats.set("SUFF_PREV_" + suffix,1.0);
    if (!eos) {
      for (String suffix : suffixes(nextToken)) {
        feats.set("SUFF_NEXT_" + suffix,1.0);
      }
      for (String prefix : prefixes(token)) {
        feats.set("PREF_" + prefix,1.0);
      }
      if (!bos) {
        for (String prefix : prefixes(prevToken)) {
          feats.set("PREF_PREV_" + prefix,1.0);
      }
      if (!eos) {
        for (String prefix : prefixes(nextToken)) {
          feats.set("PREF_NEXT_" + prefix,1.0);
        }
      }
      return feats;
    }

After this, we will just return the feature mapping generated.

The prefix or suffix function is simply implemented with a list:

static int MAX_PREFIX_LENGTH = 4;
  static List<String> prefixes(String s) {
    int numPrefixes = Math.min(MAX_PREFIX_LENGTH,s.length());
    if (numPrefixes == 0) {
      return Collections.emptyList();
    }
    if (numPrefixes == 1) {
      return Collections.singletonList(s);
    }
    List<String> result = new ArrayList<String>(numPrefixes);
    for (int i = 1; i <= Math.min(MAX_PREFIX_LENGTH,s.length()); ++i) 
{
      result.add(s.substring(0,i));
    }
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    return result;
  }

  static int MAX_SUFFIX_LENGTH = 4;
  static List<String> suffixes(String s) {
    int numSuffixes = Math.min(s.length(), MAX_SUFFIX_LENGTH);
    if (numSuffixes <= 0) {
      return Collections.emptyList();
    }
    if (numSuffixes == 1) {
      return Collections.singletonList(s);
    }
    List<String> result = new ArrayList<String>(numSuffixes);
    for (int i = s.length() - numSuffixes; i < s.length(); ++i) {
      result.add(s.substring(i));
    }
    return result;
  }

That's a nice feature set for your named-entity detector.





String Comparison  
and Clustering

In this chapter, we will cover the following recipes:

ff Distance and proximity – simple edit distance

ff Weighted edit distance

ff The Jaccard distance

ff The Tf-Idf distance

ff Using edit distance and language models for spelling correction

ff The case restoring corrector

ff Automatic phrase completion

ff Single-link and complete-link clustering using edit distance

ff Latent Dirichlet allocation (LDA) for multitopic clustering

Introduction
This chapter starts off by comparing strings using standard language neutral techniques. 
Then, we will use these techniques to build some commonly used applications. We will also 
look at clustering techniques based on distances between strings.

For a string, we use the canonical definition that a string is a sequence of characters.  
So, clearly, these techniques apply to words, phrases, sentences, paragraphs, and so on,  
all of which you have learnt to extract in the previous chapters.

6
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Distance and proximity – simple edit 
distance

String comparison refers to techniques used to measure the similarity between two strings. 
We will use distance and proximity to specify how similar any two strings are. The more similar 
any two strings are, the lesser the distance between them, so the distance from a string to 
itself is 0. An inverse measure is proximity, which means that the more similar any two strings 
are, the greater their proximity.

We will take a look at simple edit distance first. Simple edit distance measures distance in 
terms of how many edits are required to convert one string to the other. A common distance 
measure proposed by Levenshtien in 1965 allows deletion, insertion, and substitution as basic 
operations. Adding in transposition is called Damerau-Levenshtien distance. For example, the 
distance between foo and boo is 1, as we're looking at a substitution of f with b.

For more on distance metrics, refer to the Wikipedia article on distance 
at http://en.wikipedia.org/wiki/Distance.

Let's look at some more examples of editable operations:

ff Deletion: Bart and Bar

ff Insertion: Bar and Bart

ff Substitution: Bar and Car

ff Transposition: Bart and Brat

How to do it...
Now, we will run a simple example on edit distance:

1.	 Run the SimpleEditDistance class using the command line or your IDE:
java –cp lingpipe-cookbook.1.0.jar:lib/lingpipe-4.1.0.jar com.
lingpipe.cookbook.chapter6.SimpleEditDistance

2.	 In the command prompt, you will be prompted for two strings:
Enter the first string:

ab

Enter the second string:

ba

Allowing Transposition Distance between: ab and ba is 1.0

No Transposition Distance between: ab and ba is 2.0

http://en.wikipedia.org/wiki/Distance
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3.	 You will see the distance between the two strings with transposition allowed and with 
transposition not allowed.

4.	 Play with some more examples to get a sense of how it works—try them first by hand 
and then verify that you got the optimal case.

How it works...
This is a very simple piece of code, and all it does is create two instances of the 
EditDistance class: one that allows transpositions, and the other that does not  
allow transpositions:

public static void main(String[] args) throws IOException {
  
  EditDistance dmAllowTrans = new EditDistance(true);
  EditDistance dmNoTrans = new EditDistance(false);

The remaining code will set up an I/O routing, apply the edit distances, and print them out:

BufferedReader reader = new BufferedReader(new  
  InputStreamReader(System.in));
while (true) {
  System.out.println("Enter the first string:");
  String text1 = reader.readLine();
  System.out.println("Enter the second string:");
  String text2 = reader.readLine();
  double allowTransDist = dmAllowTrans.distance(text1, text2);
  double noTransDist = dmNoTrans.distance(text1, text2);
  System.out.println("Allowing Transposition Distance " 
    +" between: " + text1 + " and " + text2 + 
    " is " + allowTransDist);
  System.out.println("No Transposition Distance  
    between: " + text1 + " and " + text2 + 
    " is " + noTransDist);
}
}

If we wanted the proximity instead of distance, we would just use the proximity method 
instead of the distance method.

In simple EditDistance, all the editable operations have a fixed cost of 1.0, that is, each 
editable operation (deletion, substitution, insertion, and, if allowed, transposition) is counted 
with a cost of 1.0 each. So, in the example where we find the distance between ab and ba, 
there is one deletion and one insertion, both of which have a cost of 1.0. Therefore, this 
makes the distance between ab and ba 2.0 if transposition is not allowed and 1.0 if it is.  
Note that typically, there will be more than one way to edit one string into the other.
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While EditDistance is quite simple to use, it is not simple to 
implement. This is what the Javadoc has to say about this class:
Implementation note: This class implements edit distance using 
dynamic programming in time O(n * m) where n and m are the 
length of the sequences being compared. Using a sliding window of 
three lattice slices rather than allocating the entire lattice at once, 
the space required is that for three arrays of integers as long as the 
shorter of the two character sequences being compared.

In the following sections, we will see how to assign varying costs to each edit operation.

See also
ff Refer to the LingPipe Javadoc on EditDistance at http://alias-i.com/

lingpipe/docs/api/com/aliasi/spell/EditDistance.html for more 
details

ff For more details on distance, refer to the Javadoc at http://alias-i.com/
lingpipe/docs/api/com/aliasi/util/Distance.html

ff For more details on proximity, refer to the Javadoc at http://alias-i.com/
lingpipe/docs/api/com/aliasi/util/Proximity.html

Weighted edit distance
Weighted edit distance is essentially a simple edit distance, except that the edits allow different 
costs to be associated with each kind of edit operation. The edit operations we identified in 
the previous recipe are substitution, insertion, deletion, and transposition. Additionally, there 
can be a cost associated with the exact matches to increase the weight for matching – this 
might be used when edits are required, such as a string-variation generator. Edit weights are 
generally scaled as log probabilities so that you can assign likelihood to an edit operation. The 
larger the weight, the more likely that edit operation is. As probabilities are between 0 and 1, 
log probabilities, or weights, will be between negative infinity and zero. For more on this refer to 
the Javadoc on the WeightedEditDistance class at http://alias-i.com/lingpipe/
docs/api/com/aliasi/spell/WeightedEditDistance.html.

On the log scale, weighted edit distance can be generalized to produce exactly the same 
results as simple edit distance did in the previous recipe by setting the match weight to 0  
and substituting, deleting, and inserting weights to -1 and transposition weights to either -1  
or negative infinity, if we want to turn transposition off.

We will look at weighted edit distance for spell checking and Chinese word segmentation in 
other recipes.

http://alias-i.com/lingpipe/docs/api/com/aliasi/spell/EditDistance.html
http://alias-i.com/lingpipe/docs/api/com/aliasi/spell/EditDistance.html
http://alias-i.com/lingpipe/docs/api/com/aliasi/util/Distance.html
http://alias-i.com/lingpipe/docs/api/com/aliasi/util/Distance.html
http://alias-i.com/lingpipe/docs/api/com/aliasi/util/Proximity.html
http://alias-i.com/lingpipe/docs/api/com/aliasi/util/Proximity.html
http://alias-i.com/lingpipe/docs/api/com/aliasi/spell/WeightedEditDistance.html
http://alias-i.com/lingpipe/docs/api/com/aliasi/spell/WeightedEditDistance.html
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In this section, we will use the FixedWeightEditDistance instance and create the 
CustomWeightEditDistance class that extends the WeightedEditDistance abstract 
class. The FixedWeightEditDistance class is initialized with weights for each edit 
operation. The CustomWeightEditDistance class extends WeightedEditDistance and 
has rules for each edit operation weights. The weight for deleting alphanumeric characters is 
-1, and for all other characters, that is, punctuation and spaces, it is is 0. We will set insertion 
weights to be the same as deletion weights.

How to do it...
Let's expand on our previous example and look at a version that runs the simple edit distance 
as well as our weighted edit distance:

1.	 In your IDE run the SimpleWeightedEditDistance class, or in the command 
line, type:
java -cp lingpipe-cookbook.1.0.jar:lib/lingpipe-4.1.0.jar com.
lingpipe.cookbook.chapter6.SimpleWeightedEditDistance

2.	 In the command line, you will be prompted for two strings: enter the examples shown 
here or choose your own:

3.	 As you can see, there are two other distance measures being shown here:  
a fixed weight edit distance and a custom weight edit distance.

4.	 Play around with other examples, including punctuation and spaces.
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How it works...
We will instantiate a FixedWeightEditDistance class with some weights that are, 
arbitrarily chosen:

double matchWeight = 0;
double deleteWeight = -2;
double insertWeight = -2;
double substituteWeight = -2;
double transposeWeight = Double.NEGATIVE_INFINITY;
WeightedEditDistance wed = new FixedWeightEditDistance(matchWeight,del
eteWeight,insertWeight,substituteWeight,transposeWeight);
System.out.println("Fixed Weight Edit Distance: "+ wed.toString());

In this example, we set the delete, substitute, and insert weights to be equal. This is very 
similar to the standard edit distance, except that we modified the weights associated with the 
edit operations from 1 to 2. Setting the transpose weight to negative infinity effectively turns 
off transpositions completely. Obviously, it's not necessary that the delete, substitute, and 
insert weights should be equal.

We will also create a CustomWeightEditDistance class, which treats punctuations and 
whitespaces as matches, that is, zero cost for the insert and delete operations (for letters or 
digits, the cost remains -1). For substitutions, if the character is different only in case, the cost 
is zero; for all other cases, the cost is -1. We will also turn off transposition by setting its cost 
to negative infinity. This will result in Abc+ matching abc-:

public static class CustomWeightedEditDistance extends 
WeightedEditDistance{

  @Override
  public double deleteWeight(char arg0) {
    return (Character.isDigit(arg0)||Character.isLetter(arg0))  
      ? -1 : 0;
    
  }

  @Override
  public double insertWeight(char arg0) {
    return deleteWeight(arg0);
  }

  @Override
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  public double matchWeight(char arg0) {
    return 0;
  }

  @Override
  public double substituteWeight(char cDeleted, char cInserted) {
    return Character.toLowerCase(cDeleted) == 
      Character.toLowerCase(cInserted) ? 0 :-1;
    
  }

  @Override
  public double transposeWeight(char arg0, char arg1) {
    return Double.NEGATIVE_INFINITY;
  }

}

This sort of custom weighted edit distance is particularly useful in comparing strings where 
minor formatting changes are encountered, such as gene/protein names that vary from 
Serpin A3 to serpina3 but refer to the same thing.

See also
ff There is a T&T (Tsuruoka and Tsujii) specification for edit distance to compare protein 

names, refer to http://alias-i.com/lingpipe/docs/api/com/aliasi/
dict/ApproxDictionaryChunker.html#TT_DISTANCE

ff More details on the WeightedEditDistance class can be found on the Javadoc 
page at http://alias-i.com/lingpipe/docs/api/com/aliasi/spell/
WeightedEditDistance.html

The Jaccard distance
The Jaccard distance is a very popular and efficient way of comparing strings. The Jaccard 
distance operates at a token level and compares two strings by first tokenizing them and then 
dividing the number of common tokens by the total number of tokens. In the Eliminate near 
duplicates with the Jaccard distance recipe in Chapter 1, Simple Classifiers, we applied the 
distance to eliminate near-duplicate tweets. This recipe will go into a bit more detail and show 
you how it is computed.

http://alias-i.com/lingpipe/docs/api/com/aliasi/dict/ApproxDictionaryChunker.html#TT_DISTANCE
http://alias-i.com/lingpipe/docs/api/com/aliasi/dict/ApproxDictionaryChunker.html#TT_DISTANCE
http://alias-i.com/lingpipe/docs/api/com/aliasi/spell/WeightedEditDistance.html
http://alias-i.com/lingpipe/docs/api/com/aliasi/spell/WeightedEditDistance.html
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A distance of 0 is a perfect match, that is, the strings share all their terms, and a distance of 1 
is a perfect mismatch, that is, the strings have no terms in common. Remember that proximity 
and distance are additive inverses, so proximity also ranges from 1 to 0. Proximity of 1 is a 
perfect match, and proximity of 0 is a perfect mismatch:

proximity  = count(common tokens)/count(total tokens)
distance = 1 – proximity

The tokens are generated by TokenizerFactory, which is passed in during construction. 
For example, let's use IndoEuropeanTokenizerFactory and take a look at a concrete 
example. If string1 is fruit flies like a banana and string2 is time flies 
like an arrow, then the token set for string1 would be {'fruit', 'flies', 
'like', 'a', 'banana'}, and the token set for string2 would be {'time', 
'flies', 'like', 'an', 'arrow'}. The common terms (or the intersection) 
between these two token sets are {'flies', 'like'}, and the union of these terms 
is {'fruit',' flies', 'like', 'a', 'banana', 'time', 'an', 'arrow'}. 
Now, we can calculate the Jaccard proximity by dividing the number of common terms by the 
total number of terms, that is, 2/8, which equals 0.25. Thus, the distance is 0.75 (1 - 0.25).
Obviously, the Jaccard distance is eminently tunable by modifying the tokenizer that the class 
is initialized with. For example, one could use a case-normalizing tokenizer so that Abc and 
abc would be considered equivalent. Similarly, a stemming tokenizer would consider the 
words runs and run to be equivalent. We will see a similar ability in the next distance metric, 
the Tf-Idf distance, as well.

How to do it...
Here's how to run the JaccardDistance example:

1.	 In Eclipse, run the JaccardDistanceSample class, or in the command line, type:
java -cp lingpipe-cookbook.1.0.jar:lib/lingpipe-4.1.0.jar com.
lingpipe.cookbook.chapter6.JaccardDistanceSample

2.	 As in the previous recipes, you will be prompted for two strings. The first string that we 
will use is Mimsey Were the Borogroves, which is an excellent sci-fi short-story 
title, and the second string All mimsy were the borogoves, is the actual line 
from Jabberwocky that inspired it:
Enter the first string:

Mimsey Were the Borogroves

Enter the second string:

All mimsy were the borogoves,

IndoEuropean Tokenizer

Text1 Tokens: {'Mimsey''Were''the'}
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Text2 Tokens: {'All''mimsy''were''the''borogoves'}

IndoEuropean Jaccard Distance is 0.8888888888888888

Character Tokenizer

Text1 Tokens: {'M''i''m''s''e''y''W''e''r''e''t''h''e''B''o''r''o'
'g''r''o''v''e'}

Text2 Tokens: {'A''l''l''m''i''m''s''y''w''e''r''e''t''h''e''b''o'
'r''o''g''o''v''e''s'}

Character Jaccard Distance between is 0.42105263157894735

EnglishStopWord Tokenizer

Text1 Tokens: {'Mimsey''Were'}

Text2 Tokens: {'All''mimsy''borogoves'}

English Stopword Jaccard Distance between is 1.0

3.	 The output contains the tokens and the distances using three different tokenizers. 
The IndoEuropean and EnglishStopWord tokenizers are pretty close and show 
that these two lines are far apart. Remember that the closer two strings are, the 
lesser is the distance between them. The character tokenizer, however, shows that 
these lines are closer to each other with characters as the basis of comparison. 
Tokenizers can make a big difference in calculating the distance between strings.

How it works...
The code is straightforward, and we will just cover the creation of the JaccardDistance 
objects. We will start with three tokenizer factories:

TokenizerFactory indoEuropeanTf = 
  IndoEuropeanTokenizerFactory.INSTANCE;

TokenizerFactory characterTf = 
  CharacterTokenizerFactory.INSTANCE;

TokenizerFactory englishStopWordTf = 
  new EnglishStopTokenizerFactory(indoEuropeanTf);

Note that englishStopWordTf uses a base tokenizer factory to construct itself. Refer to 
Chapter 2, Finding and Working with Words, if there are questions on what is going on here.
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Next, the Jaccard distance classes are constructed, given a tokenizer factory as an argument:

JaccardDistance jaccardIndoEuropean = 
  new JaccardDistance(indoEuropeanTf);
JaccardDistance jaccardCharacter = 
  new JaccardDistance(characterTf);

JaccardDistance jaccardEnglishStopWord = 
  new JaccardDistance(englishStopWordTf);

The rest of the code is just our standard I/O loop and some print statements. That's it! On to 
more sophisticated measures of string distance.

The Tf-Idf distance
A very useful distance metric between strings is provided by the TfIdfDistance class.  
It is, in fact, closely related to the distance metric from the popular open source search 
engine, Lucene/SOLR/Elastic Search, where the strings being compared are the query  
against documents in the index. Tf-Idf stands for the core formula that is term frequency (TF) 
times inverse document frequency (IDF) for terms shared by the query and the document. 
A very cool thing about this approach is that common terms (for example, the) that are very 
frequent in documents are downweighted, while rare terms are upweighted in the distance 
comparison. This can help focus the distance on terms that are actually discriminating in the 
document collection.

Not only does TfIdfDistance come in handy for search-engine-like applications, it can 
be very useful for clustering and for any problem that calls for document similarity without 
supervised training data. It has a desirable property; scores are normalized to a score 
between 0 and 1, and for a fixed document d1 and varying length documents d2, do not 
overwhelm the assigned score. In our experience, the scores for different pairs of documents 
are fairly robust if you were trying to rank the quality of match for a pair of documents.

Note that there are a range of different distances called 
Tf-Idf distances. The one in this class is defined to be 
symmetric, unlike typical Tf-Idf distances that are defined 
for information-retrieval purposes.

There is a lot of information in the Javadoc that is well worth a good look. However, for the 
purposes of these recipes, all you need to know is that the Tf-Idf distance is useful for finding 
similar documents on a word-by-word basis.
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How to do it...
In the quest to keep things a little interesting, we will use our TfIdfDistance class to build 
a really simple search engine over tweets. We will perform the following steps:

1.	 If you have not done it already, run the TwitterSearch class from Chapter 1, 
Simple Classifiers, and get some tweets to play with, or go with our provided data.  
We will use the tweets found by running the Disney World query, and they are 
already in the data directory.

2.	 Type the following in the command line—this uses our defaults:
java -cp lingpipe-cookbook.1.0.jar:lib/lingpipe-4.1.0.jar:lib/
opencsv-2.4.jar com.lingpipe.cookbook.chapter6.TfIdfSearch

Reading search index from data/disney.csv

Getting IDF data from data/connecticut_yankee_king_arthur.txt

enter a query:

3.	 Enter a query that has some likely word matches:
I want to go to disney world

0.86 : I want to go to Disneyworld

0.86 : I want to go to disneyworld

0.75 : I just want to go to DisneyWorld...

0.75 : I just want to go to Disneyworld ???

0.65 : Cause I wanna go to Disneyworld.

0.56 : I wanna go to disneyworld with Demi

0.50 : I wanna go back to disneyworld

0.50 : I so want to go to Disneyland I've never been. I've been to 
Disneyworld in Florida.

0.47 : I want to go to #DisneyWorld again... It's so magical!!

0.45 : I want to go to DisneyWorld.. Never been there :( 
#jadedchildhood

4.	 That's it. Try different queries and play around with the scores. Then, have a look at 
the source.
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How it works...
This code is a very simple way to build a search engine rather than a good way to build one. 
However, it is a decent way to explore how the concept of string distance works in the search 
context. Later in the book, we will perform clustering based on the same distance metric. Start 
with the main() class in src/com/lingpipe/cookbook/chapter6/TfIdfSearch.java:

public static void main(String[] args) throws IOException {
  String searchableDocs = args.length > 0 
    ? args[0] : "data/disneyWorld.csv";
  System.out.println("Reading search index 
    from " + searchableDocs);

  String idfFile = args.length > 1  
? args[1] : "data/connecticut_yankee_king_arthur.txt";
  System.out.println("Getting IDF data from " + idfFile);

This program can take command-line-supplied files for the searched data in the .csv format 
and a text file for use as the source of training data. Next, we will set up a tokenizer factory 
and TfIdfDistance. If you are not familiar with tokenizer factories, then refer to the 
Modifying tokenizer factories recipe in Chapter 2, Modifying Tokenizer Factories,  
for an explanation:

TokenizerFactory tokFact = IndoEuropeanTokenizerFactory.INSTANCE;
TfIdfDistance tfIdfDist = new TfIdfDistance(tokFact);

Then, we will get the data that will be the IDF component by splitting the training text on ".", 
which approximates sentence detection—we could have done a proper sentence detection  
like we did in the Sentence detection recipe in Chapter 5, Finding Spans in Text – Chunking, 
but we chose to keep the example as simple as possible:

String training = 
  Files.readFromFile(new File(idfFile), Strings.UTF8);
for (String line: training.split("\\.")) {
  tfIdfDist.handle(line);
}

Inside the for loop, there is handle(), which trains the class with knowledge of the token 
distributions in the corpus, with sentences being the document. It often happens that the 
concept of document is either smaller (sentence, paragraph, and word) or larger than what 
is typically termed document. In this case, the document frequency will be the number of 
sentences the token is in.

Next, the documents that we are searching are loaded:

List<String[]> docsToSearch = 
  Util.readCsvRemoveHeader(new File(searchableDocs));
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The console is set up to read in the query:

BufferedReader reader = 
  new BufferedReader(new InputStreamReader(System.in));
while (true) {
  System.out.println("enter a query: ");
  String query = reader.readLine();

Next, each document is scored against the query with TfIdfDistance and put into 
ObjectToDoubleMap, which keeps track of the proximity:

ObjectToDoubleMap<String> scoredMatches = 
  new ObjectToDoubleMap<String>();
for (String [] line : docsToSearch) {
  scoredMatches.put(line[Util.TEXT_OFFSET], 
    tfIdfDist.proximity(line[Util.TEXT_OFFSET], 
    query));
}

Finally, scoredMatches is retrieved in the proximity order, and the first 10 examples are 
printed out:

List<String> rankedDocs = scoredMatches.keysOrderedByValueList();
for (int i = 0; i < 10; ++i) {
  System.out.printf("%.2f : ", 
    scoredMatches.get(rankedDocs.get(i)));
  System.out.println(rankedDocs.get(i));
}
}

While this approach is very inefficient, in that, each query iterates over all the training data, 
does an explicit TfIdfDistance comparison, and stores it, it is not a bad way to play around 
with small datasets and comparison metrics.

There's more...
There are some subtleties worth highlighting about TfIdfDistance.

Difference between supervised and unsupervised trainings
When we train TfIdfDistance, there are some important differences in the use of  
training from the ones used in the rest of the book. The training done here is unsupervised, 
which means that no human or other external source has marked up the data for the 
expected outcome. Most of the recipes in this book that train use human annotated,  
or supervised, data.
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Training on test data is OK
As this is unsupervised data, there is no requirement that the training data should be be 
distinct from the evaluation or production data.

Using edit distance and language models for 
spelling correction

Spelling correction takes a user input text and provides a corrected form. Most of us are 
familiar with automatic spelling correction via our smart phones or editors such as Microsoft 
Word. There are obviously quite a few amusing examples of these on the Web where the 
spelling correction fails. In this example, we'll build our own spelling-correction engine and 
look at how to tune it.

LingPipe's spelling correction is based on a noisy-channel model which models user  
mistakes and expected user input (based on the data). Expected user input is modeled by  
a character-language model, and mistakes (or noise) is modeled by weighted edit distance. 
The spelling correction is done using the CompiledSpellChecker class. This class 
implements the noisy-channel model and provides an estimate of the most likely message, 
given that the message actually received. We can express this through a formula in the 
following manner:

didYouMean(received) = ArgMaxintended P(intended | received) 
= ArgMaxintended P(intended,received) / P(received) 
= ArgMaxintended P(intended,received) 
= ArgMaxintended P(intended) * P(received | intended)

In other words, we will first create a model of the intended message by creating an n-gram 
character-language model. The language model stores the statistics of seen phrases, that 
is, essentially, it stores counts of how many times the n-grams occurred. This gives us 
P(intended). For example, P(intended) is how likely is the character sequence the. 
Next, we will create the channel model, which is a weighted edit distance and gives us the 
probability that the error was typed for that intended text. Again, for example, how likely is 
the error teh when the user intended to type the. In our case, we will model the likeliness 
using weighted edit distance where the weights are scaled as log probabilities. Refer to the 
Weighted edit distance recipe earlier in the chapter.

The usual way of creating a compiled spell checker is through an instance of 
TrainSpellChecker. The result of compiling the spell-checker-training class and reading 
it back in is a compiled spell checker. TrainSpellChecker creates the basic models, 
weighted edit distance, and token set through the compilation process. We will then need  
to set various parameters on the CompiledSpellChecker object.
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A tokenizer factory can be optionally specified to train token-sensitive spell checkers. With 
tokenization, input is further normalized to insert a single whitespace between all the tokens 
that are not already separated by a space in the input. The tokens are then output during 
compilation and read back into the compiled spell checker. The output of set of tokens may 
be pruned to remove any below a given count threshold. The thresholding doesn't make sense 
in the absence of tokens because we only have characters to count in the absence of tokens. 
Additionally, the set of known tokens can be used to constrain the set of alternative spellings 
suggested during spelling correction to include only tokens in the observed token set.

This approach to spell check has several advantages over a pure dictionary-based solution:

ff The context is usefully modeled. Frod can be corrected to Ford if the next word is 
dealership and to Frodo if the next word is Baggins—a character from The Lord 
of the Rings trilogy.

ff Spell checking can be sensitive to domains. Another big advantage of this approach 
over dictionary-based spell checking is that the corrections are motivated by data in 
the training corpus. So, trt will be corrected to tort in a legal domain, tart in a 
cooking domain, and TRt in a bioinformatics domain.

How to do it...
Let's look at the steps involved in running spell checking:

1.	 In your IDE, run the SpellCheck class, or in the command line, type the  
following—note that we are allocating 1 gigabyte of heap space with the –Xmx1g flag:
java -Xmx1g -cp lingpipe-cookbook.1.0.jar:lib/lingpipe-
4.1.0.jar:lib/opencsv-2.4.jar com.lingpipe.cookbook.chapter6.
SpellCheck 

2.	 Be patient; the spell checker takes a minute or two to train.

3.	 Now, let's enter some misspelled words such as beleive:
Enter word, . to quit:

>beleive

Query Text: beleive

Best Alternative: believe

Nbest: 0: believe Score:-13.97322991490364

Nbest: 1: believed Score:-17.326215342327487

Nbest: 2: believes Score:-20.8595682233572

Nbest: 3: because Score:-21.468056442099623

4.	 As you can see, we got the best alternative to the input text as well as some other 
alternatives. They are sorted by the likelihood of being the best alternative.
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5.	 Now, we can play around with different input and see how well this spell checker 
does. Try multiple words in the input and see how it performs:
The rain in Spani falls mainly on the plain.

Query Text: The rain in Spani falls mainly on the plain.

Best Alternative: the rain in spain falls mainly on the plain .

Nbest: 0: the rain in spain falls mainly on the plain . 
Score:-96.30435947472415

Nbest: 1: the rain in spain falls mainly on the plan . 
Score:-100.55447634639404

Nbest: 2: the rain in spain falls mainly on the place . 
Score:-101.32592701496742

Nbest: 3: the rain in spain falls mainly on the plain , 
Score:-101.81294112237359

6.	 Also, try inputting some proper names to see how they get evaluated.

How it works...
Now, let's look at what makes all this tick. We will start off by setting up 
TrainSpellChecker, which requires a NGramProcessLM instance, TokenizerFactory, 
and an EditDistance object that sets up weights for edit operations such as deletion, 
insertion, substitution, and so on:

public static void main(String[] args) throws IOException, 
  ClassNotFoundException {
  double matchWeight = -0.0;
  double deleteWeight = -4.0;
  double insertWeight = -2.5;
  double substituteWeight = -2.5;
  double transposeWeight = -1.0;
  
  FixedWeightEditDistance fixedEdit = 
    new FixedWeightEditDistance(matchWeight, 
    deleteWeight, 
    insertWeight, 
    substituteWeight, 
    transposeWeight);
  int NGRAM_LENGTH = 6;
  NGramProcessLM lm = new NGramProcessLM(NGRAM_LENGTH);
  
  TokenizerFactory tokenizerFactory = 
    IndoEuropeanTokenizerFactory.INSTANCE;
  tokenizerFactory = 
    new com.aliasi.tokenizer.LowerCaseTokenizerFactory(tokenizerFacto
ry);
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NGramProcessLM needs to know the number of characters to sample in its modeling of the 
data. Reasonable values have been supplied in this example for the weighted edit distance, 
but they can be played with to help with variations due to particular datasets:

TrainSpellChecker sc = 
  new TrainSpellChecker(lm,fixedEdit,tokenizerFactory);

TrainSpellChecker can now be constructed, and next, we will load 150,000 lines of books 
from Project Gutenberg. In a search-engine context, this data will be the data in your index:

File inFile = new File("data/project_gutenberg_books.txt");
String bigEnglish = 
  Files.readFromFile(inFile,Strings.UTF8);
sc.handle(bigEnglish);

Next, we will add entries from a dictionary to help with rare words:

File dict = new File("data/websters_words.txt");
String webster = 
  Files.readFromFile(dict, Strings.UTF8);
sc.handle(webster);

Next, we will compile TrainSpellChecker so that we can instantiate 
CompiledSpellChecker. Typically, the output of the compileTo() operation is  
written to disk, and CompiledSpellChecker is read and instantiated from the disk,  
but the in-memory option is being used here:

CompiledSpellChecker csc = 
  (CompiledSpellChecker) AbstractExternalizable.compile(sc);

Note that there is also a way to deserialize to TrainSpellChecker in cases where  
more data might be added later. CompiledSpellChecker will not accept further  
training instances.

CompiledSpellChecker admits many fine-tuning methods that are not relevant  
during training but are relevant in use. For example, it can take a set of strings that  
are not to be edited; in this case, the single value is lingpipe:

Set<String> dontEdit = new HashSet<String>();
dontEdit.add("lingpipe");
csc.setDoNotEditTokens(dontEdit);

If these tokens are seen in the input, they will not be considered for edits. This can have a 
huge impact on the run time. The larger this set is, the faster the decoder will run. Configure 
the set of do-not-edit tokens to be as large as possible if execution speed is important. 
Usually, this is done by taking the object to counter-map from the compiled spell checker  
and saving tokens with high counts.
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During training, the tokenizer factory was used to normalize data into tokens separated by a 
single whitespace. It is not serialized in the compile step, so if token sensitivity is needed in 
do-not-edit tokens, then it must be supplied:

csc.setTokenizerFactory(tokenizerFactory);
int nBest = 3;
csc.setNBest(64);

The nBest parameter is set for the number of hypotheses that will be considered in modifying 
inputs. Even though the nBest size in the output is set to 3, it is advisable to allow for a 
larger hypothesis space in the left-to-right exploration of best performing edits. Also, the class 
has methods to control what edits are allowed and how they are scored. See the tutorial and 
Javadoc for more about them.

Finally, we will do a console I/O loop to generate spelling variations:

BufferedReader reader = 
  new BufferedReader(new InputStreamReader(System.in));
String query = "";
while (true) {
  System.out.println("Enter word, . to quit:");
  query = reader.readLine();
  if (query.equals(".")){
    break;
  }
  String bestAlternative = csc.didYouMean(query);
  System.out.println("Best Alternative: " 
    + bestAlternative);
  int i = 0;
  Iterator<ScoredObject<String>> iterator = 
    csc.didYouMeanNBest(query);
  while (i < nBest) {
    ScoredObject<String> so = iterator.next();
    System.out.println("Nbest: " + i + ": " 
      + so.getObject() + " Score:" + so.score());
    i++;
  }
}

We have included a dictionary in this model, and we will just feed the 
dictionary entries into the trainer like any other data.
It might be worthwhile to boost the dictionary by training each word in the 
dictionary more than once. Depending on the count of the dictionary, it 
might dominate or be dominated by the source training data.
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See also
ff The spelling-correction tutorial is more complete and covers evaluation at http://

alias-i.com/lingpipe/demos/tutorial/querySpellChecker/read-me.
html

ff The Javadoc for CompiledSpellChecker can be found at http://alias-i.
com/lingpipe/docs/api/com/aliasi/spell/CompiledSpellChecker.
html

ff More information on how spell checkers work is given in the textbook,  Speech and 
Language Processing, Jurafsky, Dan, and James H. Martin, 2000, Prentice-Hall

The case restoring corrector
A case-restoring spell corrector, also called a truecasing corrector, only restores the case and 
does not change anything else, that is, it does not correct spelling errors. This is very useful 
when dealing with low-quality text from transcriptions, automatic speech-recognition output, 
chat logs, and so on, which contain a variety of case challenges. We typically want to enhance 
this text to build better rule-based or machine-learning systems. For example, news and video 
transcriptions (such as closed captions) typically have errors, and this makes it harder to use 
this data to train NER. Case restoration can be used as a normalization tool across different 
data sources to ensure that all the data is consistent.

How to do it...
1.	 In your IDE, run the CaseRestore class, or in the command line, type the following:

java -cp lingpipe-cookbook.1.0.jar:lib/lingpipe-4.1.0.jar com.
lingpipe.cookbook.chapter6.CaseRestore 

2.	 Now, let's type in some mangled-case or single-case input:
Enter input, . to quit:

george washington was the first president of the u.s.a

Best Alternative: George Washington was the first President of the 
U.S.A

Enter input, . to quit:

ITS RUDE TO SHOUT ON THE WEB

Best Alternative: its rude to shout on the Web

3.	 As you can see, the mangled case gets corrected. If we use more modern text, such 
as current newspaper data or something similar, this would be directly applicable to 
case-normalizing broadcast news transcripts or closed captions.

http://alias-i.com/lingpipe/demos/tutorial/querySpellChecker/read-me.html
http://alias-i.com/lingpipe/demos/tutorial/querySpellChecker/read-me.html
http://alias-i.com/lingpipe/demos/tutorial/querySpellChecker/read-me.html
http://alias-i.com/lingpipe/docs/api/com/aliasi/spell/CompiledSpellChecker.html
http://alias-i.com/lingpipe/docs/api/com/aliasi/spell/CompiledSpellChecker.html
http://alias-i.com/lingpipe/docs/api/com/aliasi/spell/CompiledSpellChecker.html
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How it works...
The class works in a manner similar to the spelling correction in which we have a model 
specified by the language model and a channel model specified by the edit distance metric. 
The distance metric, however, only allows case changes, that is, case variants are zero cost, 
and all other edit costs are set to Double.NEGATIVE_INFINITY:

We will focus on what is different from the previous recipe rather than going over all the 
source. We will train the spell checker with some English text from Project Gutenberg and  
use the CASE_RESTORING edit distance from the CompiledSpellChecker class:

int NGRAM_LENGTH = 5;
NGramProcessLM lm = new NGramProcessLM(NGRAM_LENGTH);
TrainSpellChecker sc = new  
  TrainSpellChecker(lm,CompiledSpellChecker.CASE_RESTORING);

Once again, by invoking the bestAlternative method, we will get the best estimate  
of case-restored text:

String bestAlternative = csc.didYouMean(query);

That's it. Case restoration is made easy.

See also
ff The paper by Lucian Vlad Lita et al., 2003, at http://acl.ldc.upenn.edu/P/

P03/P03-1020.pdf is a good reference on truecasing

Automatic phrase completion
Automatic phrase completion is different from spelling correction, in that, it finds the most 
likely completion among a set of fixed phrases for the text entered so far by a user.

Obviously, automatic phrase completion is ubiquitous on the Web, for instance, on  
https://google.com. For example, if I type anaz as a query, Google pops up the  
following suggestions:

http://acl.ldc.upenn.edu/P/P03/P03-1020.pdf
http://acl.ldc.upenn.edu/P/P03/P03-1020.pdf
https://google.com
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Note that the application is performing spelling checking at the same time as completion. 
For instance, the top suggestion is amazon, even though the query so far is anaz. This is not 
surprising, given that the number of results reported for the phrases that start with anaz is 
probably very small.

Next, note that it's not doing word suggestion but phrase suggestion. Some of the results, 
such as amazon prime are two words.

One important difference between autocompletion and spell checking is that autocompletion 
typically operates over a fixed set of phrases that must match the beginning to be completed. 
What this means is that if I type a query I want to find anaz, there are no suggested 
completions. The source of phrases for a web search is typically high-frequency queries from 
the query logs.

In LingPipe, we use the AutoCompleter class, which maintains a dictionary of phrases 
with counts and provides suggested completions based on prefix matching by weighted edit 
distance and phrase likelihood.

The autocompleter finds the best scoring phrases for a given prefix. The score of a phrase 
versus a prefix is the sum of the score of the phrase and the maximum score of the prefix 
against any prefix of the phrase. The score for a phrase is just its maximum likelihood 
probability estimate, that is, the log of its count divided by the sum of all counts.

Google and other search engines most likely use their query counts as the data for the best 
scoring phrases. As we don't have query logs here, we'll use US census data about cities in the 
US with populations greater than 100,000. The phrases are the city names, and their counts 
are their populations.

How to do it...
1.	 In your IDE, run the AutoComplete class, or in the command line, type the  

following command:
java -cp lingpipe-cookbook.1.0.jar:lib/lingpipe-4.1.0.jar com.
lingpipe.cookbook.chapter6.AutoComplete 

2.	 Enter some US city names and look at the output. For example, typing new will result 
in the following output:
Enter word, . to quit:

new

|new|

-13.39 New York,New York

-17.89 New Orleans,Louisiana

-18.30 Newark,New Jersey

-18.92 Newport News,Virginia
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-19.39 New Haven,Connecticut

If we misspell 'new' and type 'mew' instead, 

Enter word, . to quit:

mew 

|mew |

-13.39 New York,New York

-17.89 New Orleans,Louisiana

-19.39 New Haven,Connecticut

3.	 Typing city names that don't exist in our initial list will not return any output:
Enter word, . to quit:

Alta,Wyoming

|Alta,Wyoming|

How it works...
Configuring an autocompleter is very similar to configuring spelling, except that instead of 
training a language model, we will supply it with a fixed list of phrases and counts, an edit 
distance metric, and some configuration parameters. The initial portion of this code just  
reads a file and sets up a map of phrases to counts:

File wordsFile = new File("data/city_populations_2012.csv");
String[] lines =  
  FileLineReader.readLineArray(wordsFile,"ISO-8859-1");
ObjectToCounterMap<String> cityPopMap = new 
ObjectToCounterMap<String>();
int lineCount = 0;
for (String line : lines) {
if(lineCount++ <1) continue;
  int i = line.lastIndexOf(',');
  if (i < 0) continue;
  String phrase = line.substring(0,i);
  String countString = line.substring(i+1);
  Integer count = Integer.valueOf(countString);
  
  cityPopMap.set(phrase,count);
}
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The next step is to configure the edit distance. This will measure how close a prefix of a target 
phrase is to the query prefix. This class uses a fixed weight edit distance, but any edit distance 
might be used in general:

double matchWeight = 0.0;
double insertWeight = -10.0;
double substituteWeight = -10.0;
double deleteWeight = -10.0;
double transposeWeight = Double.NEGATIVE_INFINITY;
FixedWeightEditDistance editDistance = 
  new FixedWeightEditDistance(matchWeight, 
  deleteWeight, 
  insertWeight, 
  substituteWeight, 
  transposeWeight);

There are a few parameters to tune autocompletion: the edit distance and search parameters. 
The edit distance is tuned in exactly the same way as it is for spelling. The maximum number 
of results to return is more of an application's decision than a tuning's decision. Having said 
this, smaller result sets are faster to compute. The maximum queue size indicates how big the 
set of hypotheses can get inside the autocompleter before being pruned. Set maxQueueSize 
as low as possible while still performing adequately to increase speed:

int maxResults = 5;
int maxQueueSize = 10000;
double minScore = -25.0;
AutoCompleter completer = 
  new AutoCompleter(cityPopMap, editDistance, 
  maxResults, maxQueueSize, minScore);

See also
ff Review the Javadoc for the AutoCompleter class at http://alias-i.com/

lingpipe/docs/api/com/aliasi/spell/AutoCompleter.html

Single-link and complete-link clustering 
using edit distance

Clustering is the process of grouping a collection of objects by their similarities, that is, using 
some sort of distance measure. The idea behind clustering is that objects within a cluster are 
located close to each other, but objects in different clusters are farther away from each other. 
We can divide clustering techniques very broadly into hierarchical (or agglomerative) and 
divisional techniques. Hierarchical techniques start by assuming that every object is its own 
cluster and merge clusters together until a stopping criterion has been met. 

http://alias-i.com/lingpipe/docs/api/com/aliasi/spell/AutoCompleter.html
http://alias-i.com/lingpipe/docs/api/com/aliasi/spell/AutoCompleter.html
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For example, a stopping criterion can be a fixed distance between every cluster. Divisional 
techniques go the other way and start by grouping all the objects into one cluster and split it 
until a stopping criterion has been met, such as the number of clusters.

We will review hierarchical techniques in the next few recipes. The two clustering 
implementations we will provide in LingPipe are single-link clustering and complete-link 
clustering; the resulting clusters form what is known as a partition of the input set. A set of 
sets is a partition of another set if each element of the set is a member of exactly one set of 
the partition. In mathematical terms, the sets that make up a partition are pair-wise disjoint, 
and the union is the original set.

A clusterer takes a set of objects as input and returns a set of sets of objects as output, that 
is, in code, Clusterer<String> has a cluster method, which operates on Set<String> 
and returns Set<Set<String>>.

A hierarchical clusterer extends the Clusterer interface and also operates on a set of 
objects, but it returns Dendrogram instead of a set of sets of objects. A dendrogram is a 
binary tree over the elements being clustered, with distances attached to each branch, which 
indicates the distance between the two sub-branches. For the aa, aaa, aaaaa, bbb, bbbb 
strings, the single-link based dendrogram with EditDistance as the metric looks like this:

3.0

    2.0

        1.0

            aaa

            aa

        aaaaa

    1.0

        bbbb

        bbb

The preceding dendrogram is based on single-link clustering, which takes the minimum 
distance between any two elements as the measure of similarity. So, when {'aa','aaa'} 
is merged with {'aaaa'}, the score is 2.0 by adding two a to aaa. Complete-link clustering 
takes the maximum distance between any two elements, which would be 3.0, with an addition 
of three a to aa. Single-link clustering tends to create highly separated clusters, whereas 
complete-link clustering tends to create more tightly centered clusters.

There are two ways to extract clusterings from dendrograms. The simplest way is to set  
a distance bound and maintain every cluster formed at less than or equal to this bound.  
The other way to construct a clustering is to continue cutting the highest distance cluster  
until a specified number of clusters is obtained.

In this example, we will look at single-link and complete-link clustering with edit distance as 
the distance metric. We will try to cluster city names by EditDistance, where the maximum 
distance is 4.



Chapter 6

245

How to do it…
1.	 In your IDE, run the HierarchicalClustering class, or in the command line, 

type the following:
java -cp lingpipe-cookbook.1.0.jar:lib/lingpipe-4.1.0.jar com.
lingpipe.cookbook.chapter6.HierarchicalClustering

2.	 The output is various clustering approaches to the same underlying set of Strings. 
In this recipe, we will intersperse the source and output. First, we will create our set 
of strings:
public static void main(String[] args) throws 
UnsupportedEncodingException, IOException {
  
  Set<String> inputSet = new HashSet<String>();
  String [] input = 
    { "aa", "aaa", "aaaaa", "bbb", "bbbb" };
  inputSet.addAll(Arrays.asList(input));

3.	 Next, we will set up a single-link instance with EditDistance and create the 
dendrogram for the preceding set and print it out:
boolean allowTranspositions = false;
Distance<CharSequence> editDistance = 
  new EditDistance(allowTranspositions);

AbstractHierarchicalClusterer<String> slClusterer = 
  new SingleLinkClusterer<String>(editDistance);

Dendrogram<String> slDendrogram = 
  slClusterer.hierarchicalCluster(inputSet);

System.out.println("\nSingle Link Dendrogram");
System.out.println(slDendrogram.prettyPrint());

4.	 The output will be as follows:
Single Link Dendrogram

3.0

    2.0

        1.0

            aaa

            aa

        aaaaa

    1.0

        bbbb

        bbb
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5.	 Next up, we will create and print out the complete-link treatment of the same set:
AbstractHierarchicalClusterer<String> clClusterer = 
  new CompleteLinkClusterer<String>(editDistance);

Dendrogram<String> clDendrogram = 
  clClusterer.hierarchicalCluster(inputSet);

System.out.println("\nComplete Link Dendrogram");
System.out.println(clDendrogram.prettyPrint());

6.	 This will produce the same dendrogram, but with different scores:
Complete Link Dendrogram

5.0

    3.0

        1.0

            aaa

            aa

        aaaaa

    1.0

        bbbb

        bbb

7.	 Next, we will produce the clusters where the number of clusters is being controlled for 
the single-link case:
System.out.println("\nSingle Link Clusterings with k Clusters");
for (int k = 1; k < 6; ++k ) {
  Set<Set<String>> slKClustering = 
    slDendrogram.partitionK(k);
  System.out.println(k + "  " + slKClustering);
}

8.	 This will produce the following—it will be the same for the complete link, given the 
input set:
Single Link Clusterings with k Clusters

1  [[bbbb, aaa, aa, aaaaa, bbb]]

2  [[aaa, aa, aaaaa], [bbbb, bbb]]

3  [[aaaaa], [bbbb, bbb], [aaa, aa]]

4  [[bbbb, bbb], [aa], [aaa], [aaaaa]]

5  [[bbbb], [aa], [aaa], [aaaaa], [bbb]]
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9.	 The following code snippet is the complete-link clustering without a max distance:
Set<Set<String>> slClustering = slClusterer.cluster(inputSet);
System.out.println("\nComplete Link Clustering No "  
  + "Max Distance");
System.out.println(slClustering + "\n");

10.	 The output will be:
Complete Link Clustering No Max Distance

[[bbbb, aaa, aa, aaaaa, bbb]]

11.	 Next, we will control the max distance:
for(int k = 1; k < 6; ++k ){
  clClusterer.setMaxDistance(k);
  System.out.println("Complete Link Clustering at " + 
    "Max Distance= " + k);
  
  Set<Set<String>> slClusteringMd = 
    clClusterer.cluster(inputSet);
  System.out.println(slClusteringMd);
}

12.	 The following is the effects of clustering limited by maximum distance for the 
complete-link case. Note that the single-link input here will have all elements  
in the same cluster at 3:
Complete Link Clustering at Max Distance= 1

[[bbbb, bbb], [aaa, aa], [aaaaa]]

Complete Link Clustering at Max Distance= 2

[[bbbb, bbb], [aaa, aa], [aaaaa]]

Complete Link Clustering at Max Distance= 3

[[bbbb, bbb], [aaa, aa, aaaaa]]

Complete Link Clustering at Max Distance= 4

[[bbbb, bbb], [aaa, aa, aaaaa]]

Complete Link Clustering at Max Distance= 5

[[bbbb, aaa, aa, aaaaa, bbb]] 

13.	 That's it! We have exercised a good portion of LingPipe's clustering API.
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There's more…
Clustering is very sensitive to Distance that is used for the comparison of clusters. Consult 
the Javadoc for the 10 implementing classes for possible variations. TfIdfDistance can 
come in very handy to cluster language data.

K-means (++) clustering is a feature-extractor-based clustering. This is what Javadoc says 
about it:

K-means clustering may be viewed as an iterative approach to the minimization  
of the average square distance between items and their cluster centers…

See also…
ff For a detailed tutorial including details on evaluations, go over to http://alias-i.

com/lingpipe/demos/tutorial/cluster/read-me.html

Latent Dirichlet allocation (LDA) for 
multitopic clustering

Latent Dirichlet allocation (LDA) is a statistical technique to document clustering based 
on the tokens or words that are present in the document. Clustering such as classification 
generally assumes that categories are mutually exclusive. The neat thing about LDA is that it 
allows for documents to be in multiple topics at the same time, instead of just one category. 
This better reflects the fact that a tweet can be about Disney and Wally World, among  
other topics.

The other neat thing about LDA, like many clustering techniques, is that it is unsupervised, 
which means that no supervised training data is required! The closest thing to training data  
is that the number of topics must be specified before hand.

LDA can be a great way to explore a dataset where you don't know what you don't know.  
It can also be difficult to tune, but generally, it does something interesting. Let's get a  
system working.

For each document, LDA assigns a probability of belonging to a topic based on the words  
in that document. We will start with documents that are converted to sequences of tokens. 
LDA uses the count of the tokens and does not care about the context or order in which those 
words appear. The model that LDA operates on for each document is called "a bag of words" 
to denote that the order is not important.

http://alias-i.com/lingpipe/demos/tutorial/cluster/read-me.html
http://alias-i.com/lingpipe/demos/tutorial/cluster/read-me.html
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The LDA model consists of a fixed number of topics, each of which is modeled as a 
distribution over words. A document under LDA is modeled as a distribution over topics.  
There is a Dirichlet prior on both the topic distributions over words and the document 
distributions over topics. Check out the Javadoc, referenced tutorial, and research literature  
if you want to know more about what is going on behind the scenes.

Getting ready
We will continue to work with the .csv data from tweets. Refer to Chapter 1, Simple 
Classifiers, to know how to get tweets, or use the example data from the book. The recipe 
uses data/gravity_tweets.csv.

This recipe closely follows the tutorial at http://alias-i.com/lingpipe/demos/
tutorial/cluster/read-me.html, which goes into much more detail than we do in the 
recipe. The LDA portion is at the end of the tutorial.

How to do it…
This section will be a source code review for src/com/lingpipe/cookbook/chapter6/
Lda.java with some references to the src/com/lingpipe/cookbook/chapter6/
LdaReportingHandler.java helping class that will get discussed as we use parts of it:

1.	 The top of the main() method gets data from a standard csv reader:
File corpusFile = new File(args[0]);
 List<String[]> tweets = Util.readCsvRemoveHeader(corpusFile);

2.	 Next up is a pile of configuration that we will address line by line. The minTokenCount 
filters all tokens that are seen less than five times in the algorithm. As datasets get 
bigger, this number can get larger. For 1100 tweets, we are assuming that at least five 
mentions will help reduce the overall noisiness of Twitter data:
int minTokenCount = 5;

3.	 The numTopics parameter is probably the most critical configuration value, because 
it informs the algorithm about how many topics to find. Changes to this number can 
produce very different topics. You can experiment with it. By choosing 10, we are 
saying that the 1100 tweets talk about 10 things overall. This is clearly wrong; maybe, 
100 is closer to the mark. It is possible that the 1100 tweets had more than 1100 
topics, since a tweet can be in more than one topic. Play around with it:
short numTopics = 10;

http://alias-i.com/lingpipe/demos/tutorial/cluster/read-me.html
http://alias-i.com/lingpipe/demos/tutorial/cluster/read-me.html
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4.	 According to the Javadoc, a rule of thumb for documentTopicPrior is to set it to  
5 divided by the number of topics (or less if there are very few topics; 0.1 is typically 
the maximum value used):
double documentTopicPrior = 0.1;

5.	 A generally useful value for the topicWordPrior is as follows:
double topicWordPrior = 0.01;

6.	 The burninEpochs parameter sets how many epochs to run before sampling. 
Setting this to greater than 0 has desirable properties, in that, it avoids correlation in 
the samples. The sampleLag controls how often the sample is taken after burning 
is complete, and numSamples controls how many samples to take. Currently, 2000 
samples will be taken. If burninEpochs were 1000, then 3000 samples would be 
taken with a sample lag of 1 (every time). If sampleLag was 2, then there would 
be 5000 iterations (1000 burnin, 2000 samples taken every 2 epochs for a total of 
4000 epochs). Consult the Javadoc and tutorial for more about what is going on here:
int burninEpochs = 0;
int sampleLag = 1;
int numSamples = 2000;

7.	 Finally, randomSeed initializes the random process in GibbsSampler:
long randomSeed = 6474835;

8.	 SymbolTable is constructed; this will store the mapping from strings to integers for 
efficient processing:
SymbolTable symbolTable = new MapSymbolTable();

9.	 A tokenizer is next with our standard one:
TokenzierFactory tokFactory = IndoEuropeanTokenizerFactory.
INSTANCE;

10.	 Next, the configuration of LDA is printed out:
System.out.println("Input file=" + corpusFile);
System.out.println("Minimum token count=" + minTokenCount);
System.out.println("Number of topics=" + numTopics);
System.out.println("Topic prior in docs=" + documenttopicPrior);
System.out.println("Word prior in topics=" + wordPrior);
System.out.println("Burnin epochs=" + burninEpochs);
System.out.println("Sample lag=" + sampleLag);
System.out.println("Number of samples=" + numSamples);
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11.	 Then, we will create a matrix of documents and tokens that will be input to LDA and  
a report on how many tokens are present:
int[][] docTokens = LatentDirichletAllocation.tokenizeDocuments(Id
aTexts,tokFactory,symbolTable, minTokenCount);
System.out.println("Number of unique words above count"  
  + " threshold=" + symbolTable.numSymbols());

12.	 A sanity check will follow by reporting a total token count:
int numTokens = 0;
for (int[] tokens : docTokens){
  numTokens += tokens.length;
}
System.out.println("Tokenized.  #Tokens After Pruning=" + 
numTokens);

13.	 In order to get progress reports on the epochs/samples, a handler is created to 
deliver the desired news. It takes symbolTable as an argument to be able to 
recreate the tokens in reporting:
LdaReportingHandler handler = new LdaReportingHandler(symbolTab
le);

14.	 The method that the search accesses in LdaReportingHandler follows:
public void handle(LatentDirichletAllocation.GibbsSample sample) {
  System.out.printf("Epoch=%3d   elapsed time=%s\n", 
    sample.epoch(), 
    Strings.msToString(System.currentTimeMillis()  
    - mStartTime));

  if ((sample.epoch() % 10) == 0) {
    double corpusLog2Prob = sample.corpusLog2Probability();
    System.out.println("      log2 p(corpus|phi,theta)=" 
      + corpusLog2Prob + "   token cross" + 
      entropy rate=" + 
      (-corpusLog2Prob/sample.numTokens()));
  }
}

15.	 After all this setup, we will get to run LDA:
LatentDirichletAllocation.GibbsSample sample = 
  LatentDirichletAllocation.gibbsSampler(docTokens, 
  numTopics, 
  documentTopicPrior, 
  wordPrior, 
  burninEpochs, 
  sampleLag, 
  numSamples, 
  new Random(randomSeed), 
  handler);
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16.	 Wait, there's more! However, we are almost done. We just need a final report:
int maxWordsPerTopic = 20;
int maxTopicsPerDoc = 10;
boolean reportTokens = true;
handler.reportTopics(sample,maxWordsPerTopic, 
  maxTopicsPerDoc,reportTokens);

17.	 Finally, we will get to run this code. Type the following command:
java -cp lingpipe-cookbook.1.0.jar:lib/lingpipe-4.1.0.jar:lib/
opencsv-2.4.jar com.lingpipe.cookbook.chapter6.LDA

18.	 Have a look at a sample of the resulting output that confirms the configuration and 
the early reports from the search epochs:
Input file=data/gravity_tweets.csv

Minimum token count=1

Number of topics=10

Topic prior in docs=0.1

Word prior in topics=0.01

Burnin epochs=0

Sample lag=1

Number of samples=2000

Number of unique words above count threshold=1652

Tokenized.  #Tokens After Pruning=10101

Epoch=  0   elapsed time=:00

      log2 p(corpus|phi,theta)=-76895.71967475882     

  token cross-entropy rate=7.612683860484983

Epoch=  1   elapsed time=:00

19.	 After the epochs are done, we will get a report on the topics found. The first topic 
starts with a listing of words ordered by count. Note that the topic does not have 
a title. The topic meaning can be gleaned by scanning the words that have high 
counts and a high Z score. In this case, there is a word movie with a Z score of 4.0, 
a gets 6.0, and looking down the list, we see good with a score of 5.6. The Z score 
reflects how nonindependent the word is from the topic with a higher score; this 
means that the word is more tightly associated with the topic. Look at the source for 
LdaReportingHandler to get the exact definition:
TOPIC 0  (total count=1033)
           WORD    COUNT        Z
--------------------------------------------------
          movie      109       4.0
        Gravity       73       1.9
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              a       72       6.0
             is       57       4.9
              !       52       3.2
            was       45       6.0
              .       42      -0.4
              ?       41       5.8
           good       39       5.6

20.	 The preceding output is pretty awful, and the other topics don't look any better.  
The next topic shows no more potential, but some obvious problems are arising 
because of tokenization:
TOPIC 1  (total count=1334)

           WORD    COUNT        Z

--------------------------------------------------

              /      144       2.2

              .      117       2.5

              #       91       3.5

              @       73       4.2

              :       72       1.0

              !       50       2.7

             co       49       1.3

              t       47       0.8

           http       47       1.2

21.	 Donning our system tuner's hats, we will adjust the tokenizer to be the new  
RegExTokenizerFactory("[^\\s]+") tokenizer, which really cleans up the 
clusters, increases clusters to 25, and applies Util.filterJaccard(tweets, 
tokFactory, .5) to remove duplicates (1100 to 301). These steps were not 
performed one at a time, but this is a recipe, so we present the results of some 
experimentation. There was no evaluation harness, so this was a process that was 
made up of making a change, seeing if the output looks better and so on. Clusters 
are notoriously difficult to evaluate and tune on such an open-ended problem.  
The output looks a bit better.

22.	 On scanning the topics, we get to know that there are still lots of low-value words that 
crap up the topics, but Topic 18 looks somewhat promising, with a high Z score for 
best and ever:
OPIC 18  (total count=115)

           WORD    COUNT        Z

--------------------------------------------------

          movie       24       1.0

            the       24       1.3
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             of       15       1.7

           best       10       3.0

           ever        9       2.8

            one        9       2.8

           I've        8       2.7

           seen        7       1.8

           most        4       1.4

           it's        3       0.9

            had        1       0.2

            can        1       0.2

23.	 Looking further into the output, we will see some documents that score high  
for Topic 18:
DOC 34

TOPIC    COUNT    PROB

----------------------

   18        3   0.270

    4        2   0.183

    3        1   0.096

    6        1   0.096

    8        1   0.096

   19        1   0.096

Gravity(4) is(6) the(8) best(18) movie(19) I've(18) seen(18) in(3) 
a(4)

DOC 50

TOPIC    COUNT    PROB

----------------------

   18        6   0.394

   17        4   0.265

    5        2   0.135

    7        1   0.071

The(17) movie(18) Gravity(7) has(17) to(17) be(5) one(18) of(18) 
the(18) best(18) of(18) all(17) time(5)
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24.	 Both seem reasonable for a best movie ever topic. However, be warned that the 
other topics/document assignments are fairly bad.

We can't really claim victory over this dataset in all honesty, but we have laid out the 
mechanics of how LDA works and its configuration. LDA has not been a huge commercial 
success, but it has produced interesting concept-level implementations for National Institutes 
of Health and other customers. LDA is a tuner's paradise with many ways to play with the 
resulting clustering. Check out the tutorial and Javadoc, and send us your success stories.





7
Finding Coreference 
Between Concepts/

People

In this chapter, we will cover the following recipes:

ff Named entity coreference with a document

ff Adding pronouns to coreference

ff Cross-document coreference

ff The John Smith problem

Introduction
Coreference is a basic mechanism in human language that allows two sentences to  
be about the same thing. It's a big deal for human communication—it functions much in 
the same way as variable names do in programming languages, with the additional subtly 
that scope is defined by very different rules than blocks. Coreference is less important 
commercially—maybe this chapter will help change that. Here is an example:

Alice walked into the garden. She was surprised.

Coreference exists between Alice and She; the phrases talk about the same thing. It all  
gets very interesting when we start asking whether Alice in one document is the same as  
Alice in another.
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Coreference, like word-sense disambiguation, is a next-generation industrial capacity. The 
challenges of coreference contribute to the insistence of the IRS to have a social security 
number that unambiguously identifies persons independent of their names. Many of the 
techniques discussed were developed to help track persons and organizations in text data 
with varying degrees of success.

Named entity coreference with a document
As seen in Chapter 5, Finding Spans in Text – Chunking, LingPipe can use a variety of 
techniques to recognize proper nouns that correspond to persons, places, things, genes, and 
so on. However, chunking doesn't quite finish the job, because it doesn't help with finding an 
entity when two named entities are the same. Being able to say that John Smith is the same 
entity as Mr. Smith, John or even an exact repeat, John Smith, can be very useful—so useful 
that the idea was the basis of our company when we were a baby-defense contractor. Our 
novel contribution was the generation of sentences indexed by what entities they mentioned, 
which turned out to be an excellent way to summarize what was being said about that entity, 
particularly if the mapping spanned languages—we call it entity-based summarization.

The idea for entity-based summarization came about as a result of a talk 
Baldwin gave at the University of Pennsylvania at a graduate student 
seminar. Mitch Marcus, the then department chair, thought that showing all 
sentences that mentioned an entity—including pronouns—will be an excellent 
summary of that entity. In some sense, this comment is why LingPipe exists. 
It led to Baldwin leading a UPenn DARPA project and then the creation of 
Alias-i. Lesson learned—talk to everybody about your ideas and research.

This recipe will take you through the basics of computing coreferences.

Getting ready
Lay your hands on some narrative text; we will use a simple example that we know  
works—coreference systems usually need a lot of tuning to the domain. Feel free to  
pick something else, but it will need to be in English.

How to do it…
As usual, we will take you through running code from the command line and then dive into 
what the code actually does. Off we go.

1.	 We will start with a simple text to illustrate coreference. The file is in data/
simpleCoref.txt, and it contains:
John Smith went to Washington. Mr. Smith is a business man.
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2.	 Get thee to a command line and a Java interpreter and reproduce the following:
java -cp lingpipe-cookbook.1.0.jar:lib/lingpipe-4.1.0.jar: com.
lingpipe.cookbook.chapter7.NamedEntityCoreference

3.	 This results in:
Reading in file :data/simpleCoref.txt 
Sentence Text=John Smith went to Washington.
     mention text=John Smith type=PERSON id=0
     mention text=Washington type=LOCATION id=1
Sentence Text=Mr. Smith is a business man.
     mention text=Mr. Smith type=PERSON id=0

4.	 There are three named entities found. Note that there is an ID field in the output.  
The John Smith and Mr. Smith entities have the same ID, id=0. This means 
that the phrases are considered to be coreferent. The remaining entity Washington 
has a different ID, id=1, and is not coreferent with John Smith / Mr. Smith.

5.	 Create your own text file, supply it as an argument on the command line, and see 
what gets computed.

How it works…
The coreference code in LingPipe is a heuristic system built on top of sentence detection and 
named-entity recognition. The overall flow is as follows:

1.	 Tokenize the text.

2.	 Detect sentences in the document, for each sentence, detect named entities  
in the sentence in the left-to-right order, and for each named entity, perform  
the following tasks:

1.	 Create a mention. A mention is a single instance of a named entity.

2.	 Mentions can be added to the existing mention chains, or they can start  
their own mention chains.

3.	 Try to resolve the mention to a mention chain that is already created.  
If a unique match is found, then add the mention to the mention chain; 
otherwise, create a new mention chain.

The code is in src/com/lingpipe/cookbook/chapter7/NamedEntityCoreference.
java. The main() method starts by setting up the parts of this recipe, starting with a 
tokenizer factory, sentence chunker, and finally, a named-entity chunker:

public static void main(String[] args) 
    throws ClassNotFoundException, IOException {
  String inputDoc = args.length > 0 ? args[0] 
        : "data/simpleCoref.txt";
  System.out.println("Reading in file :" 
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      + inputDoc);
  TokenizerFactory mTokenizerFactory
    = IndoEuropeanTokenizerFactory.INSTANCE;
  SentenceModel sentenceModel
    = new IndoEuropeanSentenceModel();
  Chunker sentenceChunker 
    = new SentenceChunker(mTokenizerFactory,sentenceModel);
   File modelFile  
    = new File("models/ne-en-news-"
      + "muc6.AbstractCharLmRescoringChunker");
  Chunker namedEntChunker
    = (Chunker) AbstractExternalizable.readObject(modelFile);

Now, we have set up the basic infrastructure for the recipe. Next is a coreference-specific class:

MentionFactory mf = new EnglishMentionFactory();

The MentionFactory class creates mentions from phrases and types—the current  
source is named entities. Next, the coreference class is created with MentionFactory  
as a parameter:

WithinDocCoref coref = new WithinDocCoref(mf);

The WithinDocCoref class wraps all the mechanics of computing coreference. From 
Chapter 5, Finding Spans in Text - Chunking, you should be familiar with the code to get the 
document text, detect sentences, and iterate over the sentences that apply a named-entity 
chunker to each sentence:

File doc = new File(inputDoc);
String text = Files.readFromFile(doc,Strings.UTF8);
Chunking sentenceChunking
  = sentenceChunker.chunk(text);
Iterator sentenceIt 
  = sentenceChunking.chunkSet().iterator();

for (int sentenceNum = 0; sentenceIt.hasNext(); ++sentenceNum) {
  Chunk sentenceChunk = (Chunk) sentenceIt.next();
  String sentenceText 
    = text.substring(sentenceChunk.start(),
          sentenceChunk.end());
  System.out.println("Sentence Text=" + sentenceText);

  Chunking neChunking = namedEntChunker.chunk(sentenceText);
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In the context of the current sentence, the named entities from the sentence are iterated over 
in the left-to-right order as they would be read. We know this because the ChunkingImpl 
class returns chunks in the order that they were added, and our HMMChunker adds them in 
the left-to-right order:

Chunking neChunking = namedEntChunker.chunk(sentenceText);
for (Chunk neChunk : neChunking.chunkSet()) {

The following code takes the information from the chunk—type and phrase, but not the offset 
information, and creates a mention:

String mentionText
  = sentenceText.substring(neChunk.start(),
          neChunk.end());
String mentionType = neChunk.type();
Mention mention = mf.create(mentionText,mentionType);

The next line runs coreference with the mention and what sentence it is in and returns its ID:

int mentionId = coref.resolveMention(mention,sentenceNum);

System.out.println("     mention text=" + mentionText
            + " type=" + mentionType
            + " id=" + mentionId);

If the mention was resolved to an existing entity, it will have that ID, as we saw with  
Mr. Smith. Otherwise, it will get a distinct ID and itself be available as an antecedent  
for subsequent mentions.

This covers the mechanics of running within a document coreference. The upcoming recipes will 
cover the modification of this class. The next recipe will add pronouns and provide references.

Adding pronouns to coreference
The preceding recipe handled coreference between named entities. This recipe will add 
pronouns to the mix.
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How to do it…
This recipe will use an interactive version to help you explore the properties of the coreference 
algorithm. The system is very dependent on the quality of the named-entity detection, so use 
examples that the HMM is likely to get right. This was trained on Wall Street Journal articles 
from the '90s.

1.	 Saddle up your console and type the following command:
java -cp lingpipe-cookbook.1.0.jar:lib/lingpipe-4.1.0.jar: com.
lingpipe.cookbook.chapter7.Coreference

2.	 In the resulting command prompt, type this:
Enter text followed by new line
>John Smith went to Washington. He was a senator.
Sentence Text=John Smith went to Washington.
mention text=John Smith type=PERSON id=0
mention text=Washington type=LOCATION id=1
Sentence Text= He was a senator.
mention text=He type=MALE_PRONOUN id=0

3.	 The shared ID between He and John Smith indicates the coreference between the 
two. More examples will follow, with comments. Note that each input is considered a 
distinct document with separate ID spaces.

4.	 If pronouns are not resolved to a named entity, they get the index -1 as shown here:
>He went to Washington.
Sentence Text= He went to Washington.
mention text=He type=MALE_PRONOUN id=-1
mention text=Washington type=LOCATION id=0

5.	 The following case also results in a -1 value for id, because there is not one unique 
person in the prior context but two. This is called a failed uniqueness presupposition:
>Jay Smith and Jim Jones went to Washington. He was a senator.
Sentence Text=Jay Smith and Jim Jones went to Washington.
mention text=Jay Smith type=PERSON id=0
mention text=Jim Jones type=PERSON id=1
mention text=Washington type=LOCATION id=2
Sentence Text= He was a senator.
mention text=He type=MALE_PRONOUN id=-1

6.	 The following code shows that John Smith can be resolved to a female pronoun as 
well. This is because there is no data about what names indicate which genders. It 
can be added, but generally, the context will disambiguate. John could be a female 
name. The key here is that the pronoun will disambiguate the gender, and a following 
male pronoun will fail to match:
Frank Smith went to Washington. She was a senator. 
Sentence Text=Frank Smith went to Washington.
     mention text=Frank Smith type=PERSON id=0
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     mention text=Washington type=LOCATION id=1
Sentence Text=She was a senator.
     mention text=She type=FEMALE_PRONOUN id=0

7.	 The gender assignment will block reference by an incorrect gender. The He pronoun 
in the following code is resolved to ID -1, because the only person is resolved to a 
female pronoun:
John Smith went to Washington. She was a senator. He is now a 
lobbyist.
Sentence Text=John Smith went to Washington.
     mention text=John Smith type=PERSON id=0
     mention text=Washington type=LOCATION id=1
Sentence Text=She was a senator.
     mention text=She type=FEMALE_PRONOUN id=0
Sentence Text=He is now a lobbyist.
     mention text=He type=MALE_PRONOUN id=-1

8.	 Coreference can happen inside a sentence as well:
>Jane Smith knows her future.
Sentence Text=Jane Smith knows her future.
     mention text=Jane Smith type=PERSON id=0
     mention text=her type=FEMALE_PRONOUN id=0

9.	 The order of the mentions (ordered by the most recent mention) matters when 
resolving mentions. In the following code, He is resolved to James, not John:
John is in this sentence. Another sentence about nothing. James is 
in this sentence. He is here.
Sentence Text=John is in this sentence.
     mention text=John type=PERSON id=0
Sentence Text=Another sentence about nothing.
Sentence Text=James is in this sentence.
     mention text=James type=PERSON id=1
Sentence Text=He is here.
     mention text=He type=MALE_PRONOUN id=1

10.	 The same effect takes place with named-entity mentions. The Mr. Smith entity 
resolves to the last mention:
John Smith is in this sentence. Random sentence. James Smith is in 
this sentence. Mr. Smith is mention again here.
Sentence Text=John Smith is in this sentence.
     mention text=John Smith type=PERSON id=0
Sentence Text=Random sentence.
     mention text=Random type=ORGANIZATION id=1
Sentence Text=James Smith is in this sentence.
     mention text=James Smith type=PERSON id=2
Sentence Text=Mr. Smith is mention again here.
     mention text=Mr. Smith type=PERSON id=2
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11.	 The distinction between John and James goes away if there are too many  
intervening sentences:
John Smith is in this sentence. Random sentence. James Smith is 
in this sentence. Random sentence. Random sentence. Mr. Smith is 
here.
Sentence Text=John Smith is in this sentence.
     mention text=John Smith type=PERSON id=0
Sentence Text=Random sentence.
     mention text=Random type=ORGANIZATION id=1
Sentence Text=James Smith is in this sentence.
     mention text=James Smith type=PERSON id=2
Sentence Text=Random sentence.
     mention text=Random type=ORGANIZATION id=1
Sentence Text=Random sentence.
     mention text=Random type=ORGANIZATION id=1
Sentence Text=Mr. Smith is here.
     mention text=Mr. Smith type=PERSON id=3 

The preceding examples are meant to demonstrate the properties of the within-document 
coreference system.

How it works…
The code changes to add pronouns are straightforward. The code for this recipe is in  
src/com/lingpipe/cookbook/chapter7/Coreference.java. The recipe assumes 
that you understood the previous recipe, so it just covers the addition of pronoun mentions:

Chunking mentionChunking
  = neChunker.chunk(sentenceText);
Set<Chunk> chunkSet = new TreeSet<Chunk> (Chunk.TEXT_ORDER_
COMPARATOR);
chunkSet.addAll(mentionChunking.chunkSet());

We added the Mention objects from multiple sources, so there are no order guarantees on 
the order of elements anymore. Correspondingly, we created TreeSet and the appropriate 
comparator and added all the chunkings from the neChunker.

Next, we will add the male and female pronouns:

addRegexMatchingChunks(MALE_EN_PRONOUNS,"MALE_PRONOUN",
        sentenceText,chunkSet);
addRegexMatchingChunks(FEMALE_EN_PRONOUNS,"FEMALE_PRONOUN",
        sentenceText,chunkSet);
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The MALE_EN_PRONOUNS constant is a regular expression, Pattern:

static Pattern MALE_EN_PRONOUNS =   Pattern.compile("\\
b(He|he|Him|him)\\b");

The following lines of code show the addRegExMatchingChunks subroutine. It adds  
chunks based on regular expression matches and removes the overlapping, existing  
HMM-derived chunks:

static void addRegexMatchingChunks(Pattern pattern, String type,             
String text, Set<Chunk> chunkSet) {
  
  java.util.regex.Matcher matcher = pattern.matcher(text);
  
  while (matcher.find()) {
    Chunk regexChunk 
    = ChunkFactory.createChunk(matcher.start(),
            matcher.end(),
            type);
    for (Chunk chunk : chunkSet) {
    if (ChunkingImpl.overlap(chunk,regexChunk)) {
      chunkSet.remove(chunk);
    }
    }
  chunkSet.add(regexChunk);
  }

The one complex bit is that the type for the MALE_PRONOUN and FEMALE_PRONOUN pronouns 
will be used to match against PERSON entities, with the consequence that the resolution sets 
the gender of the resolved-to entity. 

Other than that, the code should look very familiar with our standard I/O loop running the 
interaction in the command prompt.

See also
The algorithm behind the system is based on the PhD. thesis of Baldwin. The system was 
called CogNIAC, and the work is from the mid '90s and is not a current state-of-the-art 
coreference system. A more modern approach would most likely use a machine-learning 
framework to take the features generated by Baldwin's approach and many other features 
and use it to develop a better performing system. A paper on the system is at http://www.
aclweb.org/anthology/W/W97/W97-1306.pdf.
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Cross-document coreference
Cross-document coreference (XDoc) takes the id space of an individual document and makes 
it global to a larger universe. This universe typically includes other processed documents and 
databases of known entities. While the annotation is trivial, all that one needs to do is swap the 
document-scope IDs for the universe-scope IDs. The calculation of XDoc can be quite difficult.

This recipe will tell us how to use a lightweight implementation of XDoc developed over  
the course of deploying such systems over the years. We will provide a code overview for  
those who might want to extend/modify the code—but there is a lot going on, and the recipe  
is quite dense.

The input is in the XML format where each file can contain multiple documents:

<doc id="1">
<title/>
<content>
Breck Baldwin and Krishna Dayanidhi wrote a book about LingPipe. 
</content>
</doc>

<doc id="2">
<title/>
<content>
Krishna Dayanidhi is a developer. Breck Baldwin is too. 
</content>
</doc>

<doc id="3">
<title/>
<content>
K-dog likes to cook as does Breckles.
</content>
</doc>

The goal is to produce annotations where the mentions of Breck Baldwin share the same  
ID across documents as for Krishna. Note that both are mentioned by their nicknames in the 
last document.

A very common elaboration of XDoc is linking a database (DB) of known entities to text 
mentions of these entities. This bridges the divide between structured DB and unstructured 
data (text), which many consider to be the next big thing in business intelligence / voice of  
the customer / enterprise-knowledge management. We have built systems that linked DBs  
of genes/proteins to MEDLINE abstracts and persons-of-interest lists to free text, and so on. 
DBs also provide a natural way for human editors to control how XDoc behaves.



Chapter 7

267

How to do it...
All the code for this recipe is in the com.lingpipe.cookbook.chapter7.tracker 
package.

1.	 Gain access to your IDE and run RunTracker or type the following command in the 
command line:
java -cp lingpipe-cookbook.1.0.jar:lib/lingpipe-4.1.0.jar: com.
lingpipe.cookbook.chapter7.tracker.RunTracker

2.	 The screen will scroll by with the analysis of documents, but we will go to the 
designated output file and examine it. Open cookbook/data/xDoc/output/
docs1.xml in your favorite text editor. You will see a poorly formatted version of the 
example output, unless your editor automatically formats XML usefully—the Firefox 
web browser does a decent job of rendering XML. The output should look like this:
<docs>
<doc id="1">
<title/>
<content>
<s index="0">
<entity id="1000000001" type="OTHER">Breck Baldwin</
entity> and <entity id="1000000002" type="OTHER">Krishna 
Dayanidhi</entity> wrote a book about <entity id="1000000003" 
type="OTHER">LingPipe.</entity>
</s>
</content>
</doc>
<doc id="2">
<title/>
<content><s index="0">
<entity id="1000000002" type="OTHER">Krishna Dayanidhi</entity> is 
a developer.
</s>
<s index="1"><entity id="1000000001" type="OTHER">Breck Baldwin</
entity> is too.
</s>
</content>
</doc>
<doc id="3"><title/><content><s index="0">K-dog likes to cook as 
does <entity id="1000000004" start="28" type="OTHER">Breckles</
entity>.</s></content></doc>
</docs>
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3.	 Krishna is recognized in the first two documents with the shared ID, 1000000002, 
but the nickname, K-dog, is not recognized at all. Breck is recognized in all three 
documents, but since the ID on the third mention, Breckles, is different from the one 
in the first two mentions, the system does not consider them to be the same entity.

4.	 Next, we will use a DB in the form of a dictionary to improve the recognition of the 
authors when they are mentioned via nicknames. There is a dictionary at data/
xDoc/author-dictionary.xml; it looks like this:
<dictionary>
<entity canonical="Breck Baldwin" id="1" speculativeAliases="0" 
type="MALE">
  <alias xdc="1">Breck Baldwin</alias>
  <alias xdc="1">Breckles</alias>
  <alias xdc="0">Breck</alias>
</entity>

<entity canonical="Krishna Dayanidhi" id="2" 
speculativeAliases="0" type="MALE">
  <alias xdc="1">Krishna Dayanidhi</alias>
  <alias xdc="1">K-Dog</alias>
  <alias xdc="0">Krishna</alias> 
</entity>

5.	 The aforementioned dictionary contains nicknames for both authors, in addition 
to their first names. Aliases that have the xdc=1 value will be used to link entities 
across documents. The xdc=0 value will only apply within a document. All aliases  
will be used to identify named entities via a dictionary lookup.

6.	 Run the following command, which specifies the entity dictionary or IDE equivalent:
java -cp lingpipe-cookbook.1.0.jar:lib/lingpipe-4.1.0.jar: com.
lingpipe.cookbook.chapter7.tracker.RunTracker data/xDoc/author-
dictionary.xml

7.	 The output in xDoc/output/docs1.xml is very different from that of the previous 
run. First, note that the IDs for us are now the same as specified in the dictionary 
file: 1 for Breck and 2 for Krishna. This is a link between the structured DB, such 
as the nature of the dictionary and unstructured text. Second, notice that both our 
nicknames have been correctly identified and assigned to the correct IDs. Third, note 
that the types are now MALE instead of OTHER:
<docs>
<doc id="1">
<title/>
<content>
<s index="0">
<entity id="1" type="MALE">Breck Baldwin</entity> and <entity 
id="2" type="MALE">Krishna Dayanidhi</entity> wrote a book about 
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<entity id="1000000001" type="OTHER">LingPipe.</entity>
</s>
</content>
</doc>
<doc id="2">
<title/>
<content>
<s index="0">
<entity id="2" start="0" type="MALE">K-dog</entity> likes to cook 
as does <entity id="1" start="28" type="MALE">Breckles</entity>.
</s>
</content>
</doc>
</docs>

This was a very quick introduction to how to run XDoc. In the next section, we will see  
how it works.

How it works…
Up until this recipe, we have attempted to keep code simple, straightforward, and 
understandable without a deep dive into piles of source. This recipe is more complicated. 
The code that backs this recipe is not going to fit into the allocated space for complete 
explanation. The exposition assumes that you will explore entire classes on your own and that 
you will refer to other recipes in this book for explanation. We offer this recipe because XDoc 
coreference is a very interesting problem, and our existing infrastructure might help others 
explore the phenomenon. Welcome to the deep end of the pool.

The batch process life cycle
The entire process is controlled by the RunTracker.java class. The overall flow of the 
main() method is as follows:

1.	 Read the DB of known entities that will be a source of named-entity recognition via 
Dictionary and a known mapping from aliases to dictionary entries. Aliases come 
with instructions regarding whether they should be used for matching entities across 
documents via the xdc=1 or xdc=0 flag.

2.	 Set up EnitityUniverse, which is the global data structure of IDs for what is found 
in the texts and from the mentioned dictionary of known entities.

3.	 Set up what is needed for within-document coreference—things such as a tokenizer, 
sentence detector, and named-entity detector. It gets a bit fancy with a POS tagger 
and some word counts.
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4.	 There is a Boolean that controls whether speculative entities will be added. If this 
Boolean is true, it means that we will update our universe of cross-document 
entities with the ones that we have never seen before. It is a much tougher task to 
reliably compute with this set to true.

5.	 All the mentioned configuration goes into creating a Tracker object.

6.	 Then, the main() method reads in documents to process, hands them off to the 
Tracker object for processing, and writes them to disk. The major steps of the 
Tracker.processDocuments() method are as follows:

1.	 Take a set of documents in the XML format and get the individual documents.

2.	 For each document, apply the processDocument() method, which runs 
within-document coreference using the dictionary to help find entities as 
well as the named-entity detector and returns MentionChain[]. Then, 
resolve the individual mentions' chains against the entity universe to update 
document-level IDs to entity universe IDs. The last step is to write the 
document to disk with the entity universe IDs.

That is all that we will say about RunTracker; there is nothing in there that you should not 
be able to handle in the context of this book. In the following sections, we will address the 
individual components that RunTracker uses.

Setting up the entity universe
The entity universe EntityUniverse.java, is an in-memory representation of the global 
entities mentioned in a document/database collection. The entity universe also contains 
various indexes into these entities, which support computing XDoc on individual documents.

The dictionary seeds the EntityUniverse file with known entities, and the documents 
processed subsequently are sensitive to these entities. The XDoc algorithm tries to merge with 
existing entities before creating new ones, so the dictionary entities are strong attractors for 
mentions of these entities.

Each entity consists of a unique long ID, a set of aliases partitioned into four separate lists 
and a type (person, location, and so on). Whether the entity is in the user-defined dictionary 
and whether speculative mentions are allowed to be added to the entity are also mentioned. 
The toString() method lists an entity as:

id=556 type=ORGANIZATION userDefined=true allowSpec=false user  
  XDC=[Nokia Corp., Nokia] user non-XDC=[] spec XDC=[] spec non-XDC
=[]
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The global data structures are as follows:

    private long mLastId = FIRST_SYSTEM_ID;

Entities need unique IDs, and we have a convention that the FIRST_SYSTEM_ID value is a 
large integer, such as 1,000,000. This provides a space (IDs < 1,000,000) for users to add 
new entities without collisions with entities found by the system.

We will instantiate a tokenizer for use across the tracker:

    private final TokenizerFactory mTokenizerFactory;

There is a global mapping from unique entity IDs to the entities:

    private final Map<Long,Entity> mIdToEntity
        = new HashMap<Long,Entity>();

Another important data structure is a mapping from aliases (phrases) to entities that have 
the alias—mXdcPhraseToEntitySet. Only phrases that are candidates for finding likely 
matches for cross-document coreference get added here. From the dictionary, the aliases  
that are xdc=1 are added:

private final ObjectToSet<String,Entity> mXdcPhraseToEntitySet
        = new ObjectToSet<String,Entity>();

For speculatively found aliases, if the alias has at least two tokens and is not already on 
another entity, it is added to this set. This reflects a heuristic that tries hard to not split the 
entities apart. The logic of this is quite twisted and beyond the scope of this tutorial. You 
can refer to EntityUniverse.createEntitySpeculative and EntityUniverse.
addPhraseToEntity for the code.

Why are some aliases not used in finding candidate entities? Consider that George has very 
little descriptive content to discriminate entities in EntityUniverse, but George H.W. 
Bush has much more information to work with.

ProcessDocuments() and ProcessDocument()
The interesting bits start to happen in the Tracker.processDocuments() method, which 
calls the XML parsing of each document and then incrementally calls the processDocument() 
method. The code is straightforward for the former, so we will move on to where the more task-
specific work happens with the processDocument() method called:

public synchronized OutputDocument processDocument(
            InputDocument document) {
 
       WithinDocCoref coref
            = new WithinDocCoref(mMentionFactory);

        String title = document.title();
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        String content = document.content();

        List<String> sentenceTextList = new ArrayList<String>();
        List<Mention[]> sentenceMentionList 
        = new ArrayList<Mention[]>();

        List<int[]> mentionStartList = new ArrayList<int[]>();
        List<int[]> mentionEndList = new ArrayList<int[]>();

        int firstContentSentenceIndex
            = processBlock(title,0,
                           sentenceTextList,
                           sentenceMentionList,
                           mentionStartList,mentionEndList,
                           coref);

        processBlock(content,firstContentSentenceIndex,
                     sentenceTextList,
                     sentenceMentionList,
                     mentionStartList,mentionEndList,
                     coref);

        MentionChain[] chains = coref.mentionChains();

We used a document format that supports distinguishing the title from the body of the 
document. This is a good idea if title case is distinct from body case, as is usual with 
newswire. The chains variable will have chains from the title and body of the text, with 
possible coreference between them. The mentionStartList and mentionEndList  
arrays will make it possible to realign the document scoped IDs with the entity universe 
scoped IDs later in the method:

Entity[] entities  = mXDocCoref.xdocCoref(chains);

Computing XDoc
The XDoc code is the result of many hours of hand-tuning the algorithm to work well on  
news-style data. It has been run on datasets in the 20,000 document range and is designed 
to support dictionary entries very aggressively. The code also attempts to prevent short 
circuits, which occur when obviously different entities have been merged together. If you 
mistakenly make Barbara Bush and George Bush coreferent in your global database,  
then you will have embarrassingly bad results that users will see.

The other sort of error is having two entities in the global store when one will do. This is a sort 
of Superman/Clark Kent problem that can also apply to multiple mentions of the same name.
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We will begin with the top-level code:

    public Entity[] xdocCoref(MentionChain[] chains) { Entity[]
        entities = new Entity[chains.length];
     
        Map<MentionChain,Entity> chainToEntity
            = new HashMap<MentionChain,Entity>();
        ObjectToSet<Entity,MentionChain> entityToChainSet
            = new ObjectToSet<Entity,MentionChain>();

        
        for (MentionChain chain : chains)
            resolveMentionChain((TTMentionChain) chain,
                                chainToEntity, entityToChainSet);

        for (int i = 0; i < chains.length; ++i) {
            TTMentionChain chain = (TTMentionChain) chains[i];
            Entity entity = chainToEntity.get(chain);

            if (entity != null) {
                if (Tracker.DEBUG) {
                    System.out.println("XDOC: resolved to" + entity);
         Set chainSetForEntity = entityToChainSet.get(entity);
                    if (chainSetForEntity.size() > 1) 
                        System.out.println("XDOC: multiple chains 
resolved to same entity " + entity.id());
                }
                entities[i] = entity;
                if (entity.addSpeculativeAliases()) 
                    addMentionChainToEntity(chain,entity);
            } else {
                Entity newEntity = promote(chain);
                entities[i] = newEntity;
            }
        }
        return entities;
    }

A document has a list of mention chains, and each mention chain will be either added to an 
existing entity, or the mention chain will be promoted to being a new entity. Mention chains 
must contain a mention that is not pronominal, which is handled at the within-document 
coreference level.
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Three data structures are updated as each mention chain is processed:

ff The Entity[] entities are returned by the xdocCoref method to support the inline 
annotation of the documents.

ff Map<MentionChain,Entity> chainToEntity maps from mention chains  
to entities.

ff ObjectToSet<Entity,MentionChain> entityToChainSet is the converse 
of chainToEntity. It is possible that multiple chains in the same document get 
mapped to the same entity, so this data structure is sensitive to this possibility. This 
version of the code allows this to happen—in effect, XDoc is setting up a within-doc 
resolution as a side effect.

Simple enough, if an entity is found, then the addMentionChainToEntity() method 
adds any new information from the mention chain to the entity. New information can include 
new aliases and type changes (that is, a person is moved to being male or female in virtue 
of a disambiguating pronoun reference). If no entity is found, then the mention chain goes to 
promote(), which creates a new entity in the entity universe. We will start with promote().

The promote() method
The entity universe is a minimalist data structure that just keeps track of phrases, types,  
and IDs. The TTMentionChain class is a more complex representation of the mentions  
of a particular document:

private Entity promote(TTMentionChain chain) {
    Entity entity
        = mEntityUniverse.createEntitySpeculative(
          chain.normalPhrases(),
                            chain.entityType());
        if (Tracker.DEBUG)
            System.out.println("XDOC: promoted " + entity);
        return entity;
    }

The call to mEntityUniverse.createEntitySpeculative only requires the phrases 
for the chain (in this case, normalized phrases that have been lowercased and in which all 
sequences of whitespaces converted into a single space) and the type of the entity. No record 
is kept of the document from which the mention chain came, counts, or other potentially useful 
information. This is to keep the memory representation as small as possible. If there is a need 
to find all the sentences or documents that an entity is mentioned in (a common task), then that 
mapping from entity IDs has to be stored elsewhere. The XML representation produced for the 
document after XDoc is run is a natural place to start addressing these needs.
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The createEntitySpeculative() method
Creation of a speculatively found new entity only requires determining which of its aliases 
are the good candidates to link mention chains. Those that are good for cross-document 
coreference go into the xdcPhrases set, and the others go into the nonXdc phrases:

    public Entity createEntitySpeculative(Set<String> phrases,
                                          String entityType) {
        Set<String> nonXdcPhrases = new HashSet<String>();
        Set<String> xdcPhrases = new HashSet<String>();
        for (String phrase : phrases) {
            if (isXdcPhrase(phrase,hasMultiWordPhrases)) 
                xdcPhrases.add(phrase);
            else
                nonXdcPhrases.add(phrase);
        }
        while (mIdToEntity.containsKey(++mLastId)) ; // move up to 
next untaken ID
        Entity entity = new Entity(mLastId,entityType,
                                  null,null,xdcPhrases,nonXdcPhrases);
        add(entity);
        return entity;
    }

The boolean method, XdcPhrase(), plays a critical role in the XDoc process. The current 
approach supports a very conservative notion of what a good XDoc phrase is. Intuitively, in 
the domain of newswire, phrases such as he, Bob, and John Smith are poor indicators of 
a unique individual being talked about. Good phrases might be Breckenridge Baldwin, 
because that is likely a unique name. There are lots of fancy theories for what is going on 
here, see rigid designators (http://en.wikipedia.org/wiki/Rigid_designator). 
The next few lines of code run roughshod over 2,000 years of philosophical thought:

public boolean isXdcPhrase(String phrase,
          boolean hasMultiWordPhrase) {

    if (mXdcPhraseToEntitySet.containsKey(phrase)) {
        return false;
    }  
    if (phrase.indexOf(' ') == -1 && hasMultiWordPhrase) {
        return false;
    }
    if (PronounChunker.isPronominal(phrase)) {
        return false;
   }
    return true;
}

http://en.wikipedia.org/wiki/Rigid_designator
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This approach attempts to identify the bad phrases for XDoc rather than the good ones.  
The reasoning is as follows:

ff There is already an entity associated with the phrase: This enforces an  
assumption that there is only one John Smith in the world. This worked very well  
for intelligence-gathering applications, where the analysts had little trouble teasing 
apart the John Smith cases. You can refer to the The John Smith problem recipe  
at the end of this chapter for more about this.

ff The phrase is only one word, and there are multiword phrases associated with the 
mention chain or entity: This assumes that longer words are better for XDoc. Note 
that different orders of entity creation can result in one-word phrases having xdc to 
be true on entities with multiword aliases.

ff The phrase is a pronoun: This is a fairly safe assumption, unless we are in  
religious texts where He or Him capitalized in the middle of a sentence indicate 
reference to God.

Once the sets of xdc and nonXdc phrases are known, then the entity is created. Refer to the 
source code for Entity.java to understand how entities are created.

Then, the entity is created, and an add method updates a mapping in the EntityUniverse 
file of xdc phrases to entity IDs:

public void add(Entity e) {
        if (e.id() > mLastId)
            mLastId = e.id();
        mIdToEntity.put(new Long(e.id()),e);
        for (String phrase : e.xdcPhrases()) {
            mXdcPhraseToEntitySet.addMember(phrase,e);
        }
    }

The EntityUniverse file's global mXdcPhraseToEntitySet variable is the key to finding 
candidate entities for XDoc as used in xdcEntitiesToPhrase().

The XDocCoref.addMentionChainToEntity() entity
Returning to the XDocCoref.xdocCoref() method, we have covered how to create a new 
entity via XDocCoref.promote(). The next option to cover is what happens when a mention 
chain is resolved to an existing entity, namely XDocCoref.addMentionChainToEntity(). 
For the speculative mentions to be added, the entity must allow speculatively found mentions 
as provided by the Entity.allowSpeculativeAliases() method. This is a feature of the 
user-defined dictionary entities discussed in user-defined entities. If speculative entities are 
allowed, then the mention chains are added to the entity with a sensitivity to whether they are 
xdc phrases or not:

private void addMentionChainToEntity(TTMentionChain chain, 
                Entity entity) {
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    for (String phrase : chain.normalPhrases()) {
             mEntityUniverse.addPhraseToEntity(normalPhrase,
                entity);
        }
    }

The only change that adding a mention chain can add to an entity is the addition of a new 
phrase. The additional phrases are classified for whether they are xdc or not in the same way 
as was done in the promotion of a mention chain.

At this point, we have gone over the basics of how mention chains from documents are either 
promoted to speculative entities or are merged with existing entities in EntityUniverse.  
Next, we will take a look at how resolution occurs in XDocCoref.resolveMentionChain().

The XDocCoref.resolveMentionChain() entity
The XDocCoref.resolveMentionChain() method assembles a covering set of entities 
that can possibly match the mention chain being resolved and then attempt to find a unique 
entity via a call to XDocCoref.resolveCandates():

private void resolveMentionChain(TTMentionChain chain,
                           Map<MentionChain,Entity> chainToEntity,                                      
ObjectToSet<Entity,MentionChain> entityToChainSet) {
        if (Tracker.DEBUG)
            System.out.println("XDOC: resolving mention chain " 
          + chain);
        int maxLengthAliasOnMentionChain = 0;
        int maxLengthAliasResolvedToEntityFromMentionChain = -1;
        Set<String> tokens = new HashSet<String>();
        Set<Entity> candidateEntities = new HashSet<Entity>();
        for (String phrase : chain.normalPhrases()) {
        String[] phraseTokens = mEntityUniverse.normalTokens(phrase);
         String normalPhrase 
      = mEntityUniverse.concatenateNormalTokens(phraseTokens);
         for (int i = 0; i < phraseTokens.length; ++i) {
                    tokens.add(phraseTokens[i]);
    }
         int length = phraseTokens.length;       
         if (length > maxLengthAliasOnMentionChain) {
                maxLengthAliasOnMentionChain = length;
        }
         Set<Entity> matchingEntities
           = mEntityUniverse.xdcEntitiesWithPhrase(phrase);
         for (Entity entity : matchingEntities) {
           if (null != TTMatchers.unifyEntityTypes(
            chain.entityType(),
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            entity.type())) {
               if (maxLengthAliasResolvedToEntityFromMentionChain           
< length) 
                        maxLengthAliasResolvedToEntityFromMentionChain 
= length;
  candidateEntities.add(entity);
}
}
}   
resolveCandidates(chain,
                  tokens,
                  candidateEntities,
                          
maxLengthAliasResolvedToEntityFromMentionChain == 
maxLengthAliasOnMentionChain,
                          chainToEntity,
                          entityToChainSet);}

The code assembles a set of entities by doing a lookup into the entity universe with 
EntityUniverse.xdcEntitiesWithPhrase(). All aliases for the mention chain are tried 
without consideration of whether they are good XDoc aliases. Before the entities are added 
to candidateEntities, the type returned must be consistent with the type of the mention 
chain as determined by TTMatchers.unifyEntityTypes. This way, Washington, 
a location is not resolved to Washington, a person. A bit of record keeping is done to 
determine whether the longest alias on the mention chain has matched an entity.

The resolveCandidates() method
The resolveCandidates() method captures a key assumption that holds both for within-
document and XDoc coreferences—this unambiguous reference is the only basis of resolution. 
In the within-document case, an example where humans have this problem is the sentence, 
Bob and Joe were working together. He fell into the threshing machine. 
Who is he referring to? The linguistic expectation that a singular referring term have a unique 
antecedent is called a uniqueness presupposition. An example XDoc case is as follows:

ff Doc1: John Smith is a character from Pocohontas

ff Doc2: John Smith is the chairman or GM

ff Doc3: John Smith is admired

Which John Smith does the John Smith from Doc3 go with? Perhaps, neither.  
The algorithm in this software requires that there should be a single possible entity that 
survives the matching criteria. If there is more than one or zero, then a new entity is created. 
The implementation is as follows:

        private void resolveCandidates(TTMentionChain chain,
                                   Set<String> tokens,
                                   Set<Entity> candidateEntities,
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                               boolean resolvedAtMaxLength,
                               Map<MentionChain,Entity> chainToEntity,
                               ObjectToSet<Entity,MentionChain> 
entityToChainSet) {
        filterCandidates(chain,tokens,candidateEntities,resolvedAtMax
Length);
        if (candidateEntities.size() == 0)
            return;
        if (candidateEntities.size() == 1) {
            Entity entity = Collections.<Entity>getFirst(candidateEnt
ities);
            chainToEntity.put(chain,entity);
            entityToChainSet.addMember(entity,chain);
            return;
        }
        // BLOWN Uniqueness Presupposition; candidateEntities.size() > 
1
        if (Tracker.DEBUG)
            System.out.println("Blown UP; candidateEntities.size()=" + 
candidateEntities.size());
    }

The filterCandidates method eliminates all the candidate entities that fail for various 
semantic reasons. Coreference with an entity in the entity universe only happens if there is 
a single possible solution. There is not a distinction between too many candidate entities 
(more than one) or too few (zero). In a more advanced system, one could try and further 
disambiguate if there are too many entities via context.

This is the heart of the XDoc code. The rest of the code marks up the document  
with entity-universe-relevant indices as returned by the xdocCoref method, which  
we just covered:

Entity[] entities  = mXDocCoref.xdocCoref(chains);

The following for loop iterates over the mention chains, which are aligned with Entities[] 
returned by xdocCoref. For each mention chain, the mention is mapped to its cross-
document entity:

Map<Mention,Entity> mentionToEntityMap
     = new HashMap<Mention,Entity>();
for (int i = 0; i < chains.length; ++i){ 
  for (Mention mention : chains[i].mentions()) {
         mentionToEntityMap.put(mention,entities[i]);
  }
}
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Next, the code will set up a bunch of mappings to create chunks that reflect the entity 
universe IDs:

String[] sentenceTexts
        = sentenceTextList
            .<String>toArray(new String[sentenceTextList.size()])
Mention[][] sentenceMentions
            = sentenceMentionList
            .<Mention[]>toArray(new Mention[sentenceMentionList.
size()][]);
int[][] mentionStarts
         = mentionStartList
            .<int[]>toArray(new int[mentionStartList.size()][]);

int[][] mentionEnds
            = mentionEndList
            .<int[]>toArray(new int[mentionEndList.size()][]);

The actual creation of the chunks happens next:

Chunking[] chunkings = new Chunking[sentenceTexts.length];
  for (int i = 0; i < chunkings.length; ++i) {
   ChunkingImpl chunking = new ChunkingImpl(sentenceTexts[i]);
   chunkings[i] = chunking;
   for (int j = 0; j < sentenceMentions[i].length; ++j) {
    Mention mention = sentenceMentions[i][j];
    Entity entity = mentionToEntityMap.get(mention);
    if (entity == null) {
     Chunk chunk = ChunkFactory.createChunk(mentionStarts[i][j],
       mentionEnds[i][j],
       mention.entityType()
       + ":-1");
     //chunking.add(chunk); //uncomment to get unresolved ents as -1 
indexed.
    } else {
     Chunk chunk = ChunkFactory.createChunk(mentionStarts[i][j],
       mentionEnds[i][j],
       entity.type()
       + ":" + entity.id());
     chunking.add(chunk);
    }
   }
  }
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The chunkings are then used to create the relevant portions of the document, and 
OutputDocument is returned:

        // needless allocation here and last, but simple
        Chunking[] titleChunkings = new Chunking[firstContentSentence
Index];
        for (int i = 0; i < titleChunkings.length; ++i)
            titleChunkings[i] = chunkings[i];

        Chunking[] bodyChunkings = new Chunking[chunkings.length - 
firstContentSentenceIndex];
        for (int i = 0; i < bodyChunkings.length; ++i)
            bodyChunkings[i] = chunkings[firstContentSentenceIndex+i];

        String id = document.id();

        OutputDocument result = new OutputDocument(id,titleChunkings, 
bodyChunkings);
        return result;
    }

So, this is what we have to offer as a starting place for XDoc coreference. Hopefully, we have 
explained the intentions behind the more opaque methods. Good luck!

The John Smith problem
Different people, locations, and concepts can have the same orthographic representation 
but be distinct. There are multiple instances of "John Smith", "Paris", and "bank" in the world, 
and a proper cross-document coreference system should be able to handle it. For the case of 
concepts such as "bank" (a river bank versus a financial bank), the term of art is word-sense 
disambiguation. This recipe will demonstrate one approach to the problem that Baldwin 
developed back in the day with Amit Bagga for person disambiguation.

Getting ready
The code for this recipe closely follows the clustering tutorial at http://alias-i.com/
lingpipe/demos/tutorial/cluster/read-me.html but changes it to more closely fit 
the original Bagga-Baldwin work. There is a fair amount of code but nothing very complicated. 
The source is in src/com/lingpipe/cookbook/chapter7/JohnSmith.java.

http://alias-i.com/lingpipe/demos/tutorial/cluster/read-me.html
http://alias-i.com/lingpipe/demos/tutorial/cluster/read-me.html
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The class starts with the standard panoply of NLP tools for tokenization, sentence detection, 
and named-entity detection. Refer to the previous recipes if this stack is unfamiliar:

public static void main(String[] args) 
      throws ClassNotFoundException, IOException {
    TokenizerFactory tokenizerFactory = IndoEuropeanTokenizerFactory.
INSTANCE;
    SentenceModel sentenceModel
    = new IndoEuropeanSentenceModel();
    SENTENCE_CHUNKER 
    = new SentenceChunker(tokenizerFactory,sentenceModel);
    File modelFile
    = new File("models/ne-en-news-muc6.
AbstractCharLmRescoringChunker");
    NAMED_ENTITY_CHUNKER 
    = (Chunker) AbstractExternalizable.readObject(modelFile);

Next up, we will revisit TfIdfDistance. However, the task requires that we wrap the class to 
operate over Documents rather than CharSequences, because we would like to retain the 
filename and be able to manipulate what text is used for the calculations to come:

TfIdfDocumentDistance tfIdfDist = new TfIdfDocumentDistance(tokenizer
Factory);

Dropping to the referenced class, we have the following code:

public class TfIdfDocumentDistance implements Distance<Document> {
  TfIdfDistance mTfIdfDistance;
  public TfIdfDocumentDistance (TokenizerFactory tokenizerFactory) {
  mTfIdfDistance = new TfIdfDistance(tokenizerFactory);
  }
        
   public void train(CharSequence text) {
      mTfIdfDistance.handle(text);
   }

  @Override
  public double distance(Document doc1, Document doc2) {
    return mTfIdfDistance.distance(doc1.mCoreferentText,
              doc2.mCoreferentText);
  }
  
}
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The train method interfaces with the TfIdfDistance.handle() method and provides 
an implementation of a distance(Document doc1, Document doc2) method that will 
drive the clustering code discussed below. All that the train method does is pull out the 
relevant text and hand it off to the TfIdfDistance class for the relevant value.

The reference class, Document, is an inner class in JohnSmith, and it is quite simple. It gets 
sentences that have entities which match the .*John Smith.* pattern and puts them in 
the mCoreferentText variable:

static class Document {
        final File mFile;
        final CharSequence mText; 
        final CharSequence mCoreferentText;
        Document(File file) throws IOException {
            mFile = file; // includes name
            mText = Files.readFromFile(file,Strings.UTF8);
            Set<String> coreferentSents 
      = getCoreferentSents(".*John "                        + 
"Smith.*",mText.toString());
            StringBuilder sb = new StringBuilder();
            for (String sentence : coreferentSents) {
              sb.append(sentence);
            }
            mCoreferentText = sb.toString();
        }

        public String toString() {
            return mFile.getParentFile().getName() + "/"  
            + mFile.getName();
        }
    }

Going deeper into the code, we will now visit the getCoreferentSents() method:

static final Set<String> getCoreferentSents(String targetPhrase, 
String text) {
     Chunking sentenceChunking
    = SENTENCE_CHUNKER.chunk(text);
  Iterator<Chunk> sentenceIt 
    = sentenceChunking.chunkSet().iterator();
  int targetId = -2;
  MentionFactory mentionFactory = new EnglishMentionFactory();
  WithinDocCoref coref = new WithinDocCoref(mentionFactory);
  Set<String> matchingSentenceAccumulator 
  = new HashSet<String>();
for (int sentenceNum = 0; sentenceIt.hasNext(); ++sentenceNum) {
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  Chunk sentenceChunk = sentenceIt.next();
  String sentenceText 
    = text.substring(sentenceChunk.start(),
          sentenceChunk.end());
  Chunking neChunking
    = NAMED_ENTITY_CHUNKER.chunk(sentenceText);
  Set<Chunk> chunkSet 
    = new TreeSet<Chunk>(Chunk.TEXT_ORDER_COMPARATOR);
  chunkSet.addAll(neChunking.chunkSet());      Coreference.
addRegexMatchingChunks(
    Pattern.compile("\\bJohn Smith\\b"),
            "PERSON",sentenceText,chunkSet);
  Iterator<Chunk> neChunkIt = chunkSet.iterator();
  while (neChunkIt.hasNext()) {
    Chunk neChunk = neChunkIt.next();
    String mentionText
        = sentenceText.substring(neChunk.start(),
            neChunk.end());
    String mentionType = neChunk.type();
    Mention mention 
    = mentionFactory.create(mentionText,mentionType);
    int mentionId 
    = coref.resolveMention(mention,sentenceNum);
    if (targetId == -2 && mentionText.matches(targetPhrase)) {
    targetId = mentionId;
    }
    if (mentionId == targetId) {                          
matchingSentenceAccumulator.add(sentenceText);
     System.out.println("Adding " + sentenceText);      
     System.out.println("     mention text=" + mentionText
            + " type=" + mentionType
            + " id=" + mentionId);
     }
  }
}
if (targetId == -2) {
  System.out.println("!!!Missed target doc " + text);
}
return matchingSentenceAccumulator;
}
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Look at the Cross-document coreference recipe for most of the moving parts of the preceding 
method. We will call out a few notable bits. We are cheating in some sense by using a regular 
expression chunker to find any string that has as a John Smith substring and adding it in  
as a PERSON entity. Like most kinds of cheating, this is quite useful if your sole purpose in 
life is tracking John Smith. The cheating we did in reality was to use dictionary matching to 
find all variations of high-value intelligence targets such as Osama bin Laden. In the end, 
we had over 40 versions of his name scouring openly available news sources as a part of the 
MiTAP project.

Further, as each sentence is processed, we will check all the mentions for a matching pattern 
for John Smith, and if so, we will collect any sentence that has a mention of this ID. This 
means that a sentence that refers back to John Smith with a pronoun will be included, as 
will the Mr. Smith cases if coreference is doing its job. Note that we need to see a match 
for John Smith before we start collecting contextual information, so we will miss the first 
sentence of He awoke. John Smith was a giant cockroach. Also note that if a 
second John Smith shows up with a different ID, it will be ignored—this can happen.

Finally, note that there is some error checking, in that if John Smith is not found, then an 
error is reported to System.out.

If we pop back to mundane I/O slinging in our main() method after setting up 
TfIdfDocumentDistance, we would have:

File dir = new File(args[0]);
       Set<Set<Document>> referencePartition
            = new HashSet<Set<Document>>();
        for (File catDir : dir.listFiles()) {
            System.out.println("Category from file=" + catDir);
            Set<Document> docsForCat = new HashSet<Document>();
            referencePartition.add(docsForCat);
            for (File file : catDir.listFiles()) {
                Document doc = new Document(file);
                tfIdfDist.train(doc.mText);
                docsForCat.add(doc);
            }
        }

We have not discussed this, but the truth annotation of which document references which 
Mr. Smith is encoded in the directory structure of the data. Each subdirectory in the top 
johnSmith directory is treated as the truth cluster. So, referencePartition contains 
the truth. We could have wrapped this as a classification problem with each subdirectory, the 
correct classification. We will leave it as an exercise to you to stuff this into a cross-validating 
corpus with a logistic regression solution. 
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Moving on, we will construct the test set by flattening our previous categories into a single 
set of Documents. We could have done this in the previous step, but mixing tasks tends to 
produce bugs, and the extra for loop does very little damage to the execution speed:

        Set<Document> docSet = new HashSet<Document>();
        for (Set<Document> cluster : referencePartition) {
            docSet.addAll(cluster);
        }

Next, we will tee up the clustering algorithms. We will do both CompleteLink and 
SingleLink driven by TfIdfDocumentDistance that runs the show:

        
        HierarchicalClusterer<Document> clClusterer
            = new CompleteLinkClusterer<Document>(tfIdfDist);
        Dendrogram<Document> completeLinkDendrogram
            = clClusterer.hierarchicalCluster(docSet);

        HierarchicalClusterer<Document> slClusterer
            = new SingleLinkClusterer<Document>(tfIdfDist);
        Dendrogram<Document> singleLinkDendrogram
            = slClusterer.hierarchicalCluster(docSet);

The details of the clustering algorithms are covered in Chapter 5, Finding Spans in 
Texts – Chunking. Now, we will report performance based on the number of clusters 
varied from 1 to the number of inputs. The one fancy bit is that the Cross category uses 
SingleLinkClusterer as the reference and CompleteLinkClusterer as the response:

System.out.println();
System.out.println(" -------------------------------------------"
        + "-------------");
System.out.println("|  K  |  Complete      |  Single        | "
        + " Cross         |");
System.out.println("|     |  P    R    F   |  P    R    F   |  P"
        + "     R    F   |");
System.out.println(" -------------------------------------------"
        +"-------------");
for (int k = 1; k <= docSet.size(); ++k) {
   Set<Set<Document>> clResponsePartition
       = completeLinkDendrogram.partitionK(k);
   Set<Set<Document>> slResponsePartition
       = singleLinkDendrogram.partitionK(k);

   ClusterScore<Document> scoreCL
       = new ClusterScore<Document>(referencePartition,
                                    clResponsePartition)          
PrecisionRecallEvaluation clPrEval 
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      = scoreCL.equivalenceEvaluation();
   ClusterScore<Document> scoreSL
       = new ClusterScore<Document>(referencePartition,
                                     slResponsePartition);
PrecisionRecallEvaluation slPrEval 
  = scoreSL.equivalenceEvaluation();

ClusterScore<Document> scoreX
    = new ClusterScore<Document>(clResponsePartition
                                 slResponsePartition);
PrecisionRecallEvaluation xPrEval 
  = scoreX.equivalenceEvaluation();

System.out.printf("| %3d | %3.2f %3.2f %3.2f | %3.2f %3.2f %3.2f" 
      + " | %3.2f %3.2f %3.2f |\n",
                   k,
                   clPrEval.precision(),
                   clPrEval.recall(),
                   clPrEval.fMeasure(),
                   slPrEval.precision(),
                   slPrEval.recall(),
                   slPrEval.fMeasure(),
                   xPrEval.precision(),
                   xPrEval.recall(),
                   xPrEval.fMeasure());
 }
System.out.println(" --------------------------------------------"
         + "------------");
}

That's all that we need to do to get ready for this recipe. This is a rare phenomenon to be 
computed, and this is a toy implementation, but the key concepts should be evident.

How to do it...
We will just run this code and then mess with it a bit:

1.	 Get yourself to a terminal and type:
java -cp lingpipe-cookbook.1.0.jar:lib/lingpipe-4.1.0.jar: com.
lingpipe.cookbook.chapter7.JohnSmith

2.	 The result will be piles of information that indicate what sentences are being extracted 
for use in the clustering—remember that the truth annotation is determined by the 
directory that the files are in. The first cluster is 0:
Category from file=data/johnSmith/0
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3.	 The code reports sentences that contain references to John Smith:
Adding I thought John Smith marries Pocahontas.''
     mention text=John Smith type=PERSON id=5
Adding He's bullets , she's arrows.''
     mention text=He type=MALE_PRONOUN id=5

4.	 The pronominal reference to John Smith is the basis of inclusion of the  
second sentence.

5.	 The system output goes on, and finally, we will get the results for a single-link 
clustering against the truth and a complete link against the truth. The K column 
indicates how many clusters the algorithm was allowed with precision, recall, and 
F-measure reported. The first row is in this case that there is only one cluster that will 
allow for 100 percent recall and 23 percent precision for both complete and single 
links. Looking down at the scores, we can see that the complete link reports the best 
F-measure with 11 clusters at 0.60—in truth, there are 35 clusters. The single-link 
approach maxes out F-measure at 68 clusters with 0.78 and shows much greater 
robustness on varying numbers of clusters. The cross case shows that single link 
and complete link are quite different in direct comparison as well. Note that some K 
values have been eliminated for readability:
--------------------------------------------------------
|  K  |  Complete      |  Single        
|     |  P    R    F   |  P    R    F   
 --------------------------------------------------------
|   1 | 0.23 1.00 0.38 | 0.23 1.00 0.38 
|   2 | 0.28 0.64 0.39 | 0.24 1.00 0.38 
|   3 | 0.29 0.64 0.40 | 0.24 1.00 0.39 
|   4 | 0.30 0.64 0.41 | 0.24 1.00 0.39 
|   5 | 0.44 0.63 0.52 | 0.24 0.99 0.39 
|   6 | 0.45 0.63 0.52 | 0.25 0.99 0.39 
|   7 | 0.45 0.63 0.52 | 0.25 0.99 0.40 
|   8 | 0.49 0.62 0.55 | 0.25 0.99 0.40 
|   9 | 0.55 0.61 0.58 | 0.25 0.99 0.40 
|  10 | 0.55 0.61 0.58 | 0.25 0.99 0.41 
|  11 | 0.59 0.61 0.60 | 0.27 0.99 0.42 
|  12 | 0.59 0.61 0.60 | 0.27 0.98 0.42 
|  13 | 0.56 0.41 0.48 | 0.27 0.98 0.43 
|  14 | 0.71 0.41 0.52 | 0.27 0.98 0.43 
|  15 | 0.71 0.41 0.52 | 0.28 0.98 0.43 
|  16 | 0.68 0.34 0.46 | 0.28 0.98 0.44 
|  17 | 0.68 0.34 0.46 | 0.28 0.98 0.44 
|  18 | 0.69 0.34 0.46 | 0.29 0.98 0.44 
|  19 | 0.67 0.32 0.43 | 0.29 0.98 0.45 
|  20 | 0.69 0.29 0.41 | 0.29 0.98 0.45 
|  30 | 0.84 0.22 0.35 | 0.33 0.96 0.49 
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|  40 | 0.88 0.18 0.30 | 0.61 0.88 0.72 
|  50 | 0.89 0.16 0.28 | 0.64 0.86 0.73 
|  60 | 0.91 0.14 0.24 | 0.66 0.77 0.71 
|  61 | 0.91 0.14 0.24 | 0.66 0.75 0.70 
|  62 | 0.93 0.14 0.24 | 0.87 0.75 0.81 
|  63 | 0.94 0.13 0.23 | 0.87 0.69 0.77 
|  64 | 0.94 0.13 0.23 | 0.87 0.69 0.77 
|  65 | 0.94 0.13 0.23 | 0.87 0.68 0.77 
|  66 | 0.94 0.13 0.23 | 0.87 0.66 0.75 
|  67 | 0.95 0.13 0.23 | 0.87 0.66 0.75 
|  68 | 0.95 0.13 0.22 | 0.95 0.66 0.78 
|  69 | 0.94 0.11 0.20 | 0.95 0.66 0.78 
|  70 | 0.94 0.11 0.20 | 0.95 0.65 0.77 
|  80 | 0.98 0.11 0.19 | 0.97 0.43 0.59 
|  90 | 0.99 0.10 0.17 | 0.97 0.30 0.46 
| 100 | 0.99 0.08 0.16 | 0.96 0.20 0.34 
| 110 | 0.99 0.07 0.14 | 1.00 0.11 0.19 
| 120 | 1.00 0.07 0.12 | 1.00 0.08 0.14 
| 130 | 1.00 0.06 0.11 | 1.00 0.06 0.12 
| 140 | 1.00 0.05 0.09 | 1.00 0.05 0.10 
| 150 | 1.00 0.04 0.08 | 1.00 0.04 0.08 
| 160 | 1.00 0.04 0.07 | 1.00 0.04 0.07 
| 170 | 1.00 0.03 0.07 | 1.00 0.03 0.07 
| 180 | 1.00 0.03 0.06 | 1.00 0.03 0.06 
| 190 | 1.00 0.02 0.05 | 1.00 0.02 0.05 
| 197 | 1.00 0.02 0.04 | 1.00 0.02 0.04 
 --------------------------------------------------------

6.	 The following output constrains clustering not by cluster size but by the max distance 
threshold. The output is for the single-link cluster with .05 increases the distance 
and the evaluation is the B-cubed metric. The output is the distance, precision,  
recall, and the size of the resulting cluster. The performance at .80 and .9 is quite 
good, but beware of setting production thresholds in this after the fact fashion.  
In a production environment, we will want to see much more data before setting  
the threshold:
B-cubed eval
Dist: 0.00 P: 1.00 R: 0.77 size:189
Dist: 0.05 P: 1.00 R: 0.80 size:171
Dist: 0.10 P: 1.00 R: 0.80 size:164
Dist: 0.15 P: 1.00 R: 0.81 size:157
Dist: 0.20 P: 1.00 R: 0.81 size:153
Dist: 0.25 P: 1.00 R: 0.82 size:148
Dist: 0.30 P: 1.00 R: 0.82 size:144
Dist: 0.35 P: 1.00 R: 0.83 size:142
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Dist: 0.40 P: 1.00 R: 0.83 size:141
Dist: 0.45 P: 1.00 R: 0.83 size:141
Dist: 0.50 P: 1.00 R: 0.83 size:138
Dist: 0.55 P: 1.00 R: 0.83 size:136
Dist: 0.60 P: 1.00 R: 0.84 size:128
Dist: 0.65 P: 1.00 R: 0.84 size:119
Dist: 0.70 P: 1.00 R: 0.86 size:108
Dist: 0.75 P: 0.99 R: 0.88 size: 90
Dist: 0.80 P: 0.99 R: 0.94 size: 60
Dist: 0.85 P: 0.95 R: 0.97 size: 26
Dist: 0.90 P: 0.91 R: 0.99 size:  8
Dist: 0.95 P: 0.23 R: 1.00 size:  1
Dist: 1.00 P: 0.23 R: 1.00 size:  1

7.	 The B-cubed (Bagga, Bierman, and Baldwin) evaluation was created to heavily 
penalize pushing large clusters together. It assumes that it is more of a problem to 
push lots of documents about George W. Bush together with George H. W. Bush, both 
large clusters, than to mistake George Bush, the mechanic who got mentioned once 
in the dataset. Other scoring metrics will count both the mistakes as equally bad. It is 
the standard scoring metric used in the literature for this phenomenon.

See also
There is a fair amount of work in the research literature on this exact problem. We were not 
the first ones to think about this, but we came up with the dominant evaluation metric, and 
we released a corpus for other groups to compare themselves with us and each other. Our 
contribution is Entity-based cross-document coreferencing using the Vector Space Model by 
Bagga and Baldwin in ACL '98 Proceedings of the 36th Annual Meeting of the Association for 
Computational Linguistics and 17th International Conference on Computational Linguistics. 
There has been much progress since—there are more than 400 citations to this model on 
Google Scholar; they are worth a look if this problem is of importance to you.
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