

OpenShift Cookbook

Over 100 hands-on recipes that will help you create,
deploy, manage, and scale OpenShift applications

Shekhar Gulati

BIRMINGHAM - MUMBAI

OpenShift Cookbook

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly
or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

First published: October 2014

Production reference: 1221014

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78398-120-5

www.packtpub.com

Cover image by Gagandeep Sharma (er.gagansharma@gmail.com)

www.packtpub.com

Credits

Author
Shekhar Gulati

Reviewers
Troy Dawson

Andrea Mostosi

Rahul Sharma

Acquisition Editor
Richard Harvey

Content Development Editor
Neil Alexander

Technical Editors
Sebastian Rodrigues

Gaurav Thingalaya

Copy Editors
Sarang Chari

Deepa Nambiar

Adithi Shetty

Project Coordinator
Sageer Parkar

Proofreaders
Maria Gould

Lauren E. Harkins

Jonathan Todd

Indexer
Tejal Soni

Production Coordinators
Aparna Bhagat

Shantanu N. Zagade

Cover Work
Aparna Bhagat

About the Author

Shekhar Gulati is a developer and OpenShift evangelist working with Red Hat. He has been
evangelizing about OpenShift for the last 2 years. He regularly speaks at various conferences
and user groups around the world to spread the goodness of OpenShift. He regularly blogs
on the OpenShift official blog and has written more than 50 blogs on OpenShift. Shekhar has
also written many technical articles for IBM developerWorks, Developer.com, and Javalobby.

About the Reviewers

Troy Dawson is most famous as one of the two original developers of Scientific Linux. His
work on Scientific Linux first began during his 18 years at Fermilab. He started out at Fermilab
running and operating the Tevatron accelerator, but has shifted to computers for the last 12
years. Troy not only worked as a system administrator, but also helped create the operating
systems he administered. He was half of the team that built and maintained Fermi Linux.
That same team later created Scientific Linux for labs and universities outside of Fermilab.

In 2011, Troy stepped out of the Scientific Linux spotlight and started working behind the
scenes on the OpenShift project. He began work on OpenShift during the first year of its
creation. Troy is currently on the OpenShift Online Operations team, but his packaging and
debugging work spans the entire project.

Andrea Mostosi is a technology enthusiast. He has been an innovation lover since he was
a child. He began his professional career in 2003 and worked on several projects, playing
almost every role in the computer science environment. He is currently the CTO of The Fool,
a company that tries to make sense of web and social data.

I would like to thank my geek friends: Simone M., Daniele V., Luca T., Luigi
P., Michele N., Luca O., Luca B., Diego C., and Fabio B. They are the smartest
people I know, and comparing myself to them has always pushed me to
do better.

Rahul Sharma is a senior developer with Mettl. He has 9 years of experience in building
and designing applications on Java/J2EE platforms. He loves to develop open source projects,
and has contributed to a variety of them, such as HDT, Crunch, Provisionr, and so on. He often
shares his knowledge at http://devlearnings.wordpress.com/.

http://devlearnings.wordpress.com/

www.PacktPub.com

Support files, eBooks, discount offers, and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
ff Fully searchable across every book published by Packt

ff Copy and paste, print and bookmark content

ff On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://PacktLib.PacktPub.com
http://www.packtpub.com/

Table of Contents
Preface	 1
Chapter 1: Getting Started with OpenShift	 7

A brief introduction into OpenShift	 8
Creating an OpenShift Online account	 11
Creating OpenShift domains using the web console	 12
Creating a WordPress application using the web console	 14
Uploading SSH keys using the web console	 18
Working with the SSH key passphrases	 25
Cloning the application to the local machine	 28
Deploying your first change	 30
Checking the application's gear quota and limits	 33
Installing the OpenShift rhc command-line client	 34
Setting up an OpenShift account using rhc	 36
Enabling the autocomplete feature in an rhc command-line client	 38
Viewing the account details using rhc	 40
Specifying a different OpenShift server hostname	 41
Updating rhc	 42

Chapter 2: Managing Domains	 45
Introduction	 46
Creating a domain using rhc	 46
Renaming a domain using rhc	 48
Viewing domain details using rhc	 50
Adding viewer members to a domain using rhc	 53
Adding an editor member to a domain using rhc	 57
Adding an admin member to a domain using rhc	 59
Viewing all the members in a domain using rhc	 60
Removing members from a domain using rhc	 62
Restricting gear sizes for a domain using rhc	 63

ii

Table of Contents

Leaving a domain using rhc	 64
Deleting a domain using rhc	 65

Chapter 3: Creating and Managing Applications	 67
Introduction	 68
Creating an OpenShift application using the rhc command-line client	 71
Specifying your own template Git repository URL	 75
Starting/stopping/restarting an application	 76
Adding and managing add-on cartridges	 78
Adding a cron cartridge to an application	 81
Using downloadable cartridges with OpenShift applications	 83
Viewing application details	 84
Cloning the application Git repository using rhc	 86
SSH into the application gear using rhc	 87
Running a command in the application's SSH session using rhc	 89
Setting application-specific environment variables	 90
Taking and restoring application backups	 94
Tracking and rolling back application deployments	 97
Configuring the default Git branch for deployment	 99
Doing manual deployments	 103
Configuring and doing binary deployments	 105
Using your own custom domain name	 108
Cleaning up the application	 110
Deleting the application	 111

Chapter 4: Using MySQL with OpenShift Applications	 113
Introduction	 114
Adding a MySQL cartridge to your application	 115
Adding a phpMyAdmin cartridge to your application	 120
Accessing a MySQL database from your local machine	 122
Connecting to a MySQL cartridge from your local machine
using MySQL Workbench	 124
Updating the MySQL max connections setting	 128
Updating the MySQL configuration settings	 130
Performing scheduled MySQL database backups	 131
Using an Amazon RDS MySQL DB instance with OpenShift	 134

Chapter 5: Using PostgreSQL with OpenShift Applications	 143
Introduction	 143
Adding the PostgreSQL cartridge to your application	 144
Accessing the PostgreSQL cartridge from your local machine	 150
Connecting to the PostgreSQL cartridge using pgAdmin from your
local machine	 152

iii

Table of Contents

Updating the PostgreSQL max_connections setting	 155
Using the .psqlrc configuration file to configure the OpenShift
application psql shell	 157
Performing scheduled PostgreSQL database backups	 159
Using EnterpriseDB PostgreSQL Cloud Database with OpenShift	 162
Installing PostgreSQL extensions	 164

Chapter 6: Using MongoDB and Third-party Database Cartridges
with OpenShift Applications	 167

Introduction	 168
Adding a MongoDB cartridge to your application	 168
Adding a RockMongo cartridge to your application	 171
Accessing a MongoDB cartridge from your local machine	 172
Connecting to a MongoDB cartridge using Robomongo from
your local machine	 174
Enabling the MongoDB cartridge REST interface	 178
Performing scheduled MongoDB database backups	 180
Using MongoLab MongoDB-as-a-Service with OpenShift	 183
Adding a MariaDB cartridge to your application	 187
Adding a Redis cartridge to your application	 189

Chapter 7: OpenShift for Java Developers	 193
Introduction	 194
Creating and deploying Java EE 6 applications using the JBoss EAP and
PostgreSQL 9.2 cartridges	 195
Configuring application security by defining the database
login module in standalone.xml	 204
Installing modules with JBoss cartridges	 209
Managing JBoss cartridges using the management
web interface and CLI	 212
Creating and deploying Spring applications using the Tomcat 7 cartridge	 217
Taking thread dumps of Java cartridges	 222
Choosing between Java 6 and Java 7	 224
Enabling hot deployment for Java applications	 226
Skipping the Maven build	 227
Forcing a clean Maven build	 229
Overriding the default Maven build command	 230
Installing the JAR file not present in the Maven central repository	 231
Developing OpenShift Java applications using Eclipse	 233
Using Eclipse System Explorer to SSH into the application gear	 247
Debugging Java applications in the Cloud	 252

iv

Table of Contents

Chapter 8: OpenShift for Python Developers	 259
Introduction	 259
Creating your first Python application	 261
Managing Python application dependencies	 264
Creating and deploying Flask web applications using Python and
PostgreSQL cartridges	 270
Enabling hot deployment for Python applications	 277
Forcing a clean Python virtual environment	 279
Accessing an application's Python virtual environment	 280
Using Gevent with Python applications	 281
Installing a custom Python package	 285
Using the .htaccess file to configure Apache	 289

Chapter 9: OpenShift for Node.js Developers	 293
Introduction	 293
Creating your first Node.js application	 295
Configuring Node supervisor options	 301
Managing Node.js application dependencies	 303
Using the use_npm marker	 307
Enabling hot deployment for Node.js applications	 309
Creating and deploying Express web applications using Node.js and
MongoDB cartridges	 311
Working with Web Sockets	 321
Using CoffeeScript with OpenShift Node.js applications	 326

Chapter 10: Continuous Integration for OpenShift Applications	 329
Introduction	 329
Adding Jenkins CI to your application	 331
Increasing the slave idle timeout	 340
Installing Jenkins plugins	 342
Using Jenkins to build projects hosted on GitHub	 346
Creating a Jenkins workflow for your OpenShift applications	 353
Upgrading Jenkins to the latest version	 357

Chapter 11: Logging and Scaling Your OpenShift Applications	 363
Introduction	 363
Viewing application logs	 364
Working with JBoss application logs	 368
Enabling JBoss access logs	 376
Working with Tomcat application logs	 378
Working with Python application logs	 382
Creating scalable applications	 385

v

Table of Contents

Configuring a different health check URL for HAProxy	 388
Configuring HAProxy to use a different balance algorithm	 390
Creating scalable apps from nonscalable apps	 393
Enabling manual scaling with marker files	 394

Appendix: Running OpenShift on a Virtual Machine	 397
Index	 405

Preface
OpenShift is an open source, polyglot, and scalable Platform as a Service (PaaS) from Red
Hat. At the time of writing this, OpenShift officially supports the Java, Ruby, Python, Node.
js, PHP, and Perl programming language runtimes, along with the MySQL, PostgreSQL, and
MongoDB databases. It also offers Jenkins CI, RockMongo, Mongo Monitoring Service agent,
phpMyAdmin, and a lot of other features. OpenShift, being extensible in nature, allows
developers to extend it by adding support for runtimes, databases, and other services, which
OpenShift currently does not support. Developers can work with OpenShift using command-line
tools, IDE integrations, or a web console. OpenShift manages application deployment using
a popular version control system named Git. The OpenShift PaaS has made cloud-enabled
web application development an easy process. It is straightforward to deploy existing or new
applications on OpenShift. Many developers around the world are making use of the OpenShift
capabilities to develop and deploy faster.

Getting started with OpenShift is easy, but as is the case with many of the tools we use to
develop web applications, it can take time to appreciate all the capabilities of OpenShift. The
OpenShift platform and its client tools are full of features you might never have known to
wish for. Once you know about them, they can make you more productive and help in writing
scalable web applications.

OpenShift Cookbook presents over 100 recipes written in a simple and easy-to-understand
manner. It will walk you through a number of recipes, showcasing the OpenShift features and
demonstrating how to deploy a particular technology or framework on it. You can quickly learn
and start deploying applications on OpenShift immediately. The cookbook also covers topics
such as horizontal scaling and application logging and monitoring. The recipes covered address
the common, everyday problems required to effectively run applications on OpenShift. The
reader is assumed to be familiar with the PaaS and cloud computing concepts. The book does
not need to be read from cover to cover, which enables the reader to choose chapters and
recipes that are of interest. OpenShift Cookbook is an easy read and is packed with practical
recipes and helpful screenshots.

Preface

2

What this book covers
Chapter 1, Getting Started with OpenShift, begins with an introduction to OpenShift and
creating an OpenShift Online account. You will create your first OpenShift application
using the web console and understand common OpenShift terminology, such as gears and
cartridges. The web console is often the primary interface to OpenShift that developers use. It
also discusses how to install the rhc OpenShift command-line tool and how to perform basic
operations with it.

Chapter 2, Managing Domains, discusses the concept of domains and namespaces. You
will learn how to perform operations, such as creating, renaming, viewing, and deleting on
a domain. In addition, the chapter also covers the concept of membership, which enables
team collaboration.

Chapter 3, Creating and Managing Applications, covers how to create applications using
the rhc OpenShift command-line tool. The rhc command-line client is the most powerful way
to interact with OpenShift. You will learn how to perform various application management
operations, such as starting, stopping, cleaning, and deleting the application using rhc. It also
discusses advanced OpenShift features, such as deployment tracking, rollback, configuring
the binary file, and source code deployment. In addition, you will also learn how to use your
own domain name for OpenShift applications.

Chapter 4, Using MySQL with OpenShift Applications, teaches readers how to use a
MySQL database with their applications. It will also cover how to update the default MySQL
configuration to meet the application needs.

Chapter 5, Using PostgreSQL with OpenShift Applications, presents a number of recipes that
show you how to get started with the OpenShift PostgreSQL database cartridge. You will learn
how to add and manage the PostgreSQL cartridge, take backups of a PostgreSQL database,
list and install the PostgreSQL extensions, and use the EnterpriseDB PostgreSQL Cloud
Database service with OpenShift applications.

Chapter 6, Using MongoDB and Third-party Database Cartridges with OpenShift Applications,
presents a number of recipes that show you how to get started with the OpenShift MongoDB
cartridge. You will also learn how to use downloadable cartridges for MariaDB and Remote
Dictionary Server (Redis).

Chapter 7, OpenShift for Java Developers, covers how Java developers can effectively use
OpenShift to develop and deploy Java applications. You will learn how to deploy Java EE 6 and
Spring applications on OpenShift. OpenShift has first-class integration with various IDEs, so
you will learn how to use Eclipse to develop and debug OpenShift applications.

Chapter 8, OpenShift for Python Developers, covers how Python developers can effectively
use OpenShift to develop and deploy Python applications. This chapter will teach you how to
develop Flask framework web applications on OpenShift. You will also learn how to manage
application dependencies, access your application virtualenv, and use standalone WSGI
servers, such as Gunicorn or Gevent.

Preface

3

Chapter 9, OpenShift for Node.js Developers, covers how to build Node.js applications with
OpenShift. You will learn how to use the Express framework to build web applications. This
chapter will also cover how to manage application dependencies using npm, working with
web sockets, and using CoffeeScript with OpenShift Node.js applications.

Chapter 10, Continuous Integration for OpenShift Applications, teaches readers how to use
continuous integration with their OpenShift applications. You will learn how to add the Jenkins
cartridge to your application and customize a Jenkins job to meet your requirements. Also, this
chapter covers how to install the Jenkins plugins, build projects hosted on GitHub, and define
a custom Jenkins workflow for OpenShift applications.

Chapter 11, Logging and Scaling Your OpenShift Applications, consists of recipes that will
help you work with application logs. You will learn how to create autoscalable applications. You
will learn how to disable autoscaling and manually scale OpenShift applications using the rhc
command-line tool.

Appendix, Running OpenShift on a Virtual Machine, explains how to run an instance of
OpenShift in a virtualized environment.

What you need for this book
All the recipes contain references to the required tools that are used in each recipe. It is
expected that you are a web developer, well versed in your web framework. You should have
working knowledge of Git and Bash. If you are a Java developer, you will need the latest
version of Java and Eclipse. If you are a Python developer, you will need Python, virtualenv,
and a text editor. If you are a Node.js developer, you will need Node.js and a text editor.

Who this book is for
This book is aimed at readers interested in building their next big idea using OpenShift. The
reader could be a web developer already using OpenShift or planning to use it in the future.
The recipes provide the information you need to accomplish a broad range of tasks. It is
expected that you are familiar with web development in a programming language that you
wish to develop your web application in. For example, if you are a Java developer, then it is
expected that you know the Java EE or Spring basics. This book will not cover the Java EE or
Spring basics, but will cover how to deploy Java EE or Spring applications on OpenShift.

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "Instead
of osbook, the message would refer to your domain name."

Preface

4

A block of code is set as follows:

[remote "origin"]
 url = ssh://52bbf209e0b8cd707000018a@myapp-
osbook.rhcloud.com/~/git/blog.git/
 fetch = +refs/heads/*:refs/remotes/origin/*

Any command-line input or output is written as follows:

$ ssh 52b823b34382ec52670003f6@blog-osbook.rhcloud.com ls

app-deployments

app-root

git

mysql

php

phpmyadmin

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: "Click on the I Accept button
and the browser will redirect to the getting started web page."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or may have disliked. Reader feedback is important for us to develop
titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and
mention the book title through the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

www.packtpub.com/authors

Preface

5

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased from your
account at http://www.packtpub.com. If you purchased this book elsewhere, you can
visit http://www.packtpub.com/support and register to have the files e-mailed directly
to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you find a mistake in one of our books—maybe a mistake in the text or the code—we would be
grateful if you would report this to us. By doing so, you can save other readers from frustration
and help us improve subsequent versions of this book. If you find any errata, please report
them by visiting http://www.packtpub.com/support, selecting your book, clicking on
the errata submission form link, and entering the details of your errata. Once your errata are
verified, your submission will be accepted and the errata will be uploaded to our website, or
added to any list of existing errata, under the Errata section of that title.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

http://www.packtpub.com/
http://www.packtpub.com/support
http://www.packtpub.com/support
mailto:copyright@packtpub.com

1
Getting Started with

OpenShift

This chapter presents a number of recipes that show you how to get started with OpenShift
using the web console and rhc command-line client. You will learn how to host your own
WordPress blog with a button click, make source code changes and deploy them, and perform
basic operations with the rhc command-line client. The specific recipes of this chapter are:

ff Creating an OpenShift Online account

ff Creating OpenShift domains using the web console

ff Creating a WordPress application using the web console

ff Uploading SSH keys using the web console

ff Working with the SSH key passphrases

ff Cloning the application to the local machine

ff Deploying your first change

ff Checking the application's gear quota and limits

ff Installing the OpenShift rhc command-line client

ff Setting up an OpenShift account using rhc

ff Enabling the autocomplete feature in an rhc command-line client

ff Viewing the account details using rhc

ff Specifying a different OpenShift server hostname

ff Updating rhc

Getting Started with OpenShift

8

A brief introduction into OpenShift
A few years ago, I wanted to write a web application that would process a stream of tweets
about a movie and then output the overall sentiment about it. This would help me decide
whether I should watch a movie or not. So, I researched for a hosting provider and found out
that I could rent a few virtual machines from Amazon to host my web application. This was my
entry into the world of cloud computing. Cloud computing allows access to a shared pool of
computing (both hardware and software) resources available as a service over the network,
which is pay per use, has an elastic nature (that is, can be scaled up and down), and is
available on demand. It has three delivery models:

ff Infrastructure as a Service (IaaS): This is the most fundamental delivery model
where a user can provision compute, storage, and other resources such as network
to run an application, but the user has to install and manage the application stack
required to run the application. Examples of IaaS include Amazon EC2, Google
Compute Engine, and Rackspace.

ff Platform as a Service (PaaS): PaaS provides an application development platform
to help developers build their applications using the runtimes, tools, libraries, and
services provided by the platform provider. Examples of PaaS include OpenShift,
Cloud Foundry, and Heroku.

ff Software as a Service (SaaS): SaaS is a set of applications (or software) that run on
the cloud and are available as a service. Examples of SaaS include Google Apps and
Microsoft Office 365.

As a developer, I liked the concept of PaaS, as it enabled me to use my skillset to focus only
on the application code and let someone else worry about managing the application stack
and infrastructure for me.

OpenShift is an open source, a polyglot, and a scalable PaaS from Red Hat. At the time of
writing this book, OpenShift officially supports the Java, Ruby, Python, Node.js, PHP, and Perl
programming language runtimes, along with MySQL, PostgreSQL, and MongoDB databases,
and a lot of other features. Along with all the supported services, OpenShift users can also
leverage marketplace (https://marketplace.openshift.com/home) to try and use
other cloud services managed by various partners. The services supported by the partners
vary from databases such as ElephantSQL scalable PostgreSQL as a Service to SendGrid's
Email as a Service.

https://marketplace.openshift.com/home

Chapter 1

9

OpenShift is an umbrella under which three subprojects coexist. These three subprojects
differ in the way they deliver the OpenShift technology to the users, developers, and
community members. Each of the subprojects is described as follows:

ff OpenShift Origin: OpenShift Origin is the open sourced, Apache License 2.0,
community-supported version of OpenShift. It is the upstream feeder project to both
OpenShift Online and OpenShift Enterprise. The project is available on GitHub at
https://github.com/openshift.

ff OpenShift Online: OpenShift Online is the public-managed version of OpenShift. It
runs on top of Amazon EC2 and uses a hardened and stabilized version of OpenShift
Origin. Every OpenShift Online user is entitled to a free plan. The free plan gives
users access to three small instances with 512 MB RAM and 1 GB of disk space.
OpenShift Online is also available as commercial offering via Bronze and Silver plans.
The commercial plans allow users to get more resources, storage, and Red Hat
professional support. You can learn about the OpenShift Online pricing at https://
www.openshift.com/products/pricing.

ff OpenShift Enterprise: OpenShift Enterprise is a Red Hat fully supported, private
PaaS solution, which can run on enterprise hardware. OpenShift Enterprise can help
make enterprises more agile and meet their business application demands.

This book will focus mainly on OpenShift Online, but the recipes apply to all three.

As a developer, you can interact with OpenShift in the following four ways:

ff Web console: This is the easiest way to get started with OpenShift, as it does not
require you to install any software on your machine. You can log in to the web console
and start creating applications. At the time of writing this book, the web console lacks
all the features available in the command-line tool.

ff The rhc command line: This is a command-line tool that interacts with OpenShift.
It is available as a Ruby gem. It is the most powerful way to interact with OpenShift
because it exposes all the OpenShift functionalities.

ff IDE Integration: If you are a developer who likes to do most of the coding from within
an IDE, then you will be happy to know that OpenShift has first class integration with
various IDEs such as Eclipse, IntelliJ IDEA, Zend Studio, and Titanium Studio.

ff The REST API: You can write your own client using the OpenShift REST API. You can
use this API to write plugins for IDEs such as NetBeans or write another command-
line client. You can read the REST API documentation at https://access.
redhat.com/knowledge/docs/en-US/OpenShift/2.0/html-single/REST_
API_Guide/index.html.

https://github.com/openshift
https://www.openshift.com/products/pricing
https://www.openshift.com/products/pricing
https://access.redhat.com/knowledge/docs/en-US/OpenShift/2.0/html-single/REST_API_Guide/index.html
https://access.redhat.com/knowledge/docs/en-US/OpenShift/2.0/html-single/REST_API_Guide/index.html
https://access.redhat.com/knowledge/docs/en-US/OpenShift/2.0/html-single/REST_API_Guide/index.html

Getting Started with OpenShift

10

The important OpenShift components are shown in the following diagram:

As shown in the preceding diagram, a developer interacts with OpenShift using one of the
client interfaces, that is, the web console, rhc command-line client, or IDE support. OpenShift
has the following three main components:

ff Broker: All the clients interact with the broker using a well-defined REST interface
exposed by the broker. The broker is responsible for all application management
activities. It is a Ruby on Rails application that manages user logins, DNS
management, and general application orchestration.

ff Node: This is a set of RHEL instances that provides a multitenant environment for
end user applications.

ff Gear: A gear is a secure container that runs inside a node and host user applications.
It is constrained by CPU, disk space, and memory.

The broker and nodes use the ActiveMQ message queue to talk with each
other. They both have the MCollective client installed on them to send
instructions to each other.

Now that you know what OpenShift is and how you can work with it, let's kick off the first
chapter. This chapter presents a number of recipes that gets you up to speed quickly by giving
you information you need to create cloud applications using OpenShift. You will learn how to
create your first OpenShift application using the web console, clone the application using Git,
make your first source code change, and finally deploy that change to OpenShift. If this is the
first time you are working with OpenShift, then you will be amazed by the speed at which you
can create and deploy applications on OpenShift. This chapter will also cover how to install
the rhc command-line client and perform some basic operations using it.

Chapter 1

11

Creating an OpenShift Online account
In this recipe, you will learn how to create an OpenShift Online account. You can sign up for an
OpenShift Online account for free; all you need is a valid e-mail address.

Getting ready
To create an OpenShift Online account, you need a web browser and a valid e-mail address.

How to do it…
Follow these steps to create an OpenShift Online account:

1.	 Open a web browser and go to the sign-up page at https://www.openshift.
com/app/account/new.

2.	 Enter the details required to create a new account and then submit the form.

3.	 After signing up, you will receive an e-mail in your inbox that contains the verification
link. Click on the verification link to verify your e-mail address. This will redirect the
browser to a web page, asking you to accept the legal terms to use OpenShift Online,
as shown in the following screenshot:

4.	 Click on the I Accept button and the browser will redirect to the getting started
web page.

If you do not receive a verification e-mail, make sure to check your
Spam folder.

https://www.openshift.com/app/account/new
https://www.openshift.com/app/account/new

Getting Started with OpenShift

12

How it works…
In this recipe, you learned how to create an OpenShift Online account. From a user's
perspective, OpenShift Online is the easiest way to get started with OpenShift because
you do not have to deploy and manage your own OpenShift installation.

When you sign up for OpenShift Online, you will be associated with a free plan. At the time
of writing this, Red Hat gives every user three free gears on which to run their applications.
A gear provides a resource-constrained container to run one or more cartridges. A cartridge
provides the actual functionality required to run the application. OpenShift Online currently
supports many cartridges such as JBoss, Tomcat, PHP, Ruby, Python, MongoDB, MySQL, and
so on. Gear provides RAM and disk space to a cartridge. At the time of writing this book, each
gear is 512 MB of RAM and 1 GB of disk space. A user can upgrade to the Bronze or Silver
plan to get access to more and bigger resources. You can refer to the pricing web page at
https://www.openshift.com/products/pricing for up to date information.

See also
ff The Creating OpenShift domains using the web console recipe

ff The Creating a WordPress application using the web console recipe

Creating OpenShift domains using the web
console

After creating the OpenShift Online account, the first step is to create a domain. A domain or
namespace is a logical container for applications. It forms parts of an application URL and
is unique to an account. In this recipe, you will learn how to create a domain using the
web console.

Getting ready
Open the OpenShift Online login page at https://openshift.redhat.com/app/login
in your favorite web browser and then sign in using your OpenShift Online credentials.

How to do it…
1.	 To create a domain or namespace, go to the account settings web page at

https://openshift.redhat.com/app/console/settings and enter a
unique name. A domain or namespace should be unique across all the users.
This means that you can't use osbook as a domain name because the OpenShift
account associated with this book uses osbook.

https://www.openshift.com/products/pricing for up to date information
https://openshift.redhat.com/app/login
https://openshift.redhat.com/app/console/settings

Chapter 1

13

Click on the Save button to create a new domain, as shown in the following
screenshot:

2.	 After the domain is created, you will see a message, The domain 'osbook' has
been created, on your screen. Instead of osbook, the message would refer to
your domain name.

How it works…
OpenShift requires you to have a domain before it can allow you to create applications. A
domain represents a logical container for the applications under an OpenShift account. All
the OpenShift applications must belong to a domain. It is unique across all OpenShift users
and is a part of the application URL. For example, if your application name is myapp and
your domain name is osbook, then your application URL will be http://myapp-osbook.
rhcloud.com. A domain can contain as many as 16 alphanumeric characters and cannot
have spaces or symbols. It is also sometimes called a namespace.

A user can join domains created by other OpenShift users. This allows users to work as
a team. Depending on the OpenShift plan or configuration, a user will able to create more
than one domain. The free plan does not allow a user to create more than one domain
name, but you can still join other domains. We will discuss domains in detail in Chapter 2,
Managing Domains.

You can see the created domains listed on the application settings web page at https://
openshift.redhat.com/app/console/settings. This can be seen in the following
screenshot:

https://openshift.redhat.com/app/console/settings
https://openshift.redhat.com/app/console/settings

Getting Started with OpenShift

14

There's more…
In this recipe, you learned how to create a domain using the web console. You can view the
details of a domain by clicking on the domain name web link. The following screenshot shows
the domain details:

In the preceding screenshot, you can see that there are no applications associated with this
domain. As per the free plan configuration, you can only use small gears. If you uncheck the
Allow small gears checkbox, then you will not be able to create any applications. You can
also invite other users to join your domain by clicking on the Add members… web link. Team
collaboration will be covered in detail in Chapter 2, Managing Domains. You can also delete
a domain by clicking on the Delete this domain… button.

See also
ff The Creating a domain using rhc recipe in Chapter 2, Managing Domains

ff The Viewing domain details using rhc recipe in Chapter 2, Managing Domains

ff The Adding an editor member to a domain using rhc recipe in Chapter 2,
Managing Domains

Creating a WordPress application using the
web console

In this recipe, you will create your first OpenShift application using the web console. The
web console, as mentioned in the Introduction section, is a web interface to OpenShift that
developers can use to quickly create and manage applications. You will use the OpenShift
WordPress quickstart in order to create a fully configured application. If you do not have a
blog, now is the time to have your own personal blog for free.

Chapter 1

15

Getting ready
Open the login web page at https://openshift.redhat.com/app/login in your
favorite web browser and log in using your OpenShift credentials.

How to do it…
Follow these steps to create a WordPress application using the web console:

1.	 Go to the applications web page at https://openshift.redhat.com/app/
console/applications and click on the Create your first application now
web link.

2.	 Under the Instant App section, click on the WordPress 3.9 instant app. At the time of
writing this book, the WordPress version is 3.9, as shown in the following screenshot:

https://openshift.redhat.com/app/login
https://openshift.redhat.com/app/console/applications
https://openshift.redhat.com/app/console/applications

Getting Started with OpenShift

16

3.	 Enter a name for the blog and click on the Create Application button. I have
used blog as the name of the WordPress application, as shown in the following
screenshot:

4.	 After the application is created, you will be directed to a page that shows the MySQL
connection details. You can view the newly created application details by clicking on
Continue to the application overview page.

5.	 Your WordPress blog will now be running at http://blog-{domain-name}.
rhcloud.com/. Replace {domain-name} with your OpenShift account
domain name.

Chapter 1

17

How it works…
A quickstart is a preconfigured OpenShift application that provides a repeatable way to
spin up an application with its source code and dependencies such as databases. You
can view the list of actively maintained quickstarts at https://www.openshift.com/
quickstarts. Note that the OpenShift team does not support these quickstarts. They
are just to help you get your favorite project (mostly open source) running on OpenShift. In
this recipe, you used WordPress quickstart to quickly scaffold a WordPress application. You
selected the WordPress 3.x quickstart in the web console and gave it a name. An application
name can contain 32 alphanumeric characters at most. The WordPress quickstart uses a
public Git repository, which installs the WordPress application. It also defines the cartridges
it will use. The WordPress quickstart uses the PHP 5.3 and MySQL 5.1 cartridges.

To create an application, click on the Create Application button. This will create an
application container for us, called a gear, and set up all the required SELinux policies and
cgroups configuration. OpenShift will also set up a private Git repository using the quickstart
public Git repository. It will install the MySQL database on the application gear. The quickstart
source code references the MySQL database using the environment variables. You will learn
about OpenShift application details in Chapter 3, Creating and Managing Applications.

Finally, OpenShift will propagate the DNS to the outside world. The application will be
accessible at http://blog-{domain-name}.rhcloud.com/. Replace the {domain-
name} part with your own unique OpenShift domain name, sometimes called a namespace.
Open the http://blog-{domain-name}.rhcloud.com/ link in your favorite browser and
set up your WordPress installation. After the setup, you will have your own WordPress blog and
you can start blogging.

There's more…
In this recipe, you learned how to create a WordPress application using the OpenShift web
console. You can also view the application details by going to the Applications tab and then
clicking on the application, as shown in the following screenshot:

https://www.openshift.com/quickstarts
https://www.openshift.com/quickstarts

Getting Started with OpenShift

18

In the preceding screenshot, you can see the state of the application, that is, Started. You can
restart the application by clicking on the restart button next to Started. The application uses
the PHP 5.3 and MySQL 5.1 cartridges. To view the database password, you can click on the
show web link. To add the phpMyAdmin 4.0 MySQL web client, click on the Add phpMyAdmin
4.0 web link. Next, click on the Add Cartridge button to add the phpMyAdmin 4.0 cartridge.

The cartridge will be available at https://blog-{domain-name}.rhcloud.com/
phpmyadmin/. The phpMyAdmin credentials are the same as the database credentials.

See also
ff The Uploading SSH keys using the web console recipe

ff The Cloning the application to the local machine recipe

ff The Deploying your first change recipe

Uploading SSH keys using the web console
Secure Shell (SSH) is a network protocol that guarantees robust authentication, data
encryption, and data integrity between two networked machines that connect over an insecure
network. It uses the client-server architecture and transparently encrypts the data between
the client and server. SSH clients communicate with SSH servers over encrypted network
connections. There are plenty of free and commercial products available that implement
the SSH protocol. SSH has various authentication mechanisms where OpenShift uses the
public-private key pair authentication mechanism. Other SSH authentication methods such as
password authentication and host-based authentication are beyond the scope of this book.

In this recipe, you will learn how to create a public-private key pair and upload the public key
to your OpenShift account. OpenShift uses SSH for the following purposes:

ff Providing a secure and encrypted connection between your machine and
application gear

ff Allowing remote access to your application gear

ff Working with your application Git repository and deploying code to OpenShift

ff Port forwarding, which allows users to connect to OpenShift services such as
databases from their own machines

Chapter 1

19

Getting ready
To complete this recipe, you will need the OpenSSH SSH connectivity tools installed on
your machine. These are very common as they come bundled with most Linux installations,
Macintosh OS X, and almost all Unix-inspired operating systems. Microsoft Windows also has
plenty of free and commercial SSH clients as mentioned at http://www.openssh.com/
windows.html. Also, if you use PuTTy on your Windows machine, then you can refer to the
official documentation at https://www.openshift.com/developers/install-and-
setup-putty-ssh-client-for-windows.

To verify that the OpenSSH client tool is installed, run the following command:

$ ssh -V

OpenSSH_6.2p2, OpenSSL 1.0.1e-fips 11 Feb 2013

The output of the preceding command will depend on your operating
system and the OpenSSH version installed on your machine. If you
get ssh: command not found, then the tools are not installed
on your machine.

This recipe will use the WordPress application created in the
preceding recipe.

How to do it…
Perform the following steps:

1.	 Run the ssh-keygen command to generate a new pair of SSH keys. The
ssh-keygen command is one of the SSH tools installed by OpenSSH. This
command will generate a key pair in the .ssh folder under the user's home directory:
$ ssh-keygen -t rsa -b 2048 -C 'SSH keys to connect with
OpenShift'

2.	 Go to the Settings web page at https://openshift.redhat.com/app/
console/settings and paste the content of the public key. The public key is
the key with the .pub extension. After pasting the public key content, click on the
save button.

http://www.openssh.com/windows.html
http://www.openssh.com/windows.html
https://www.openshift.com/developers/install-and-setup-putty-ssh-client-for-windows
https://www.openshift.com/developers/install-and-setup-putty-ssh-client-for-windows
https://openshift.redhat.com/app/console/settings
https://openshift.redhat.com/app/console/settings

Getting Started with OpenShift

20

3.	 Go to the Applications web page at https://openshift.redhat.com/app/
console/applications and click on the application for its details, as shown in
the following screenshot:

4.	 Next, view the application SSH details by clicking on Want to log in to your
application?, as shown in the following screenshot:

https://openshift.redhat.com/app/console/applications
https://openshift.redhat.com/app/console/applications

Chapter 1

21

5.	 Copy the application SSH information shown in the following screenshot:

6.	 Open a new command-line terminal on your local machine and run the following
command. Here, you will list the directories in the application's gear home folder.
Replace the SSH information with your application SSH information.
$ ssh 52b823b34382ec52670003f6@blog-osbook.rhcloud.com ls

app-deployments

app-root

git

mysql

php

phpmyadmin

How it works…
First, let's try to understand what you did in the preceding section. In the first step, you
created a new pair of SSH keys. The ssh-keygen utility can take a number of options.
Three of the many options used are as follows:

ff The -t option is used to specify the type of the key. It can be either RSA or DSA, and
in this case, the RSA key type is used. Note that OpenShift supports both the RSA
and DSA key types.

Getting Started with OpenShift

22

ff The -b option is used to specify the number of bits in the key. For RSA keys, the
minimum size is 768 bits and the default is 2048 bits. Generally, 2048 bits is
considered sufficient.

ff The -C option is used to provide a comment, which can be useful to identify a key.
This is appended to the public key.

The ssh-keygen command prompts the user with a few questions, as shown in the
following command:

$ ssh-keygen -t rsa -b 2048 -C 'SSH keys to connect with OpenShift'

Generating public/private rsa key pair.

Enter file in which to save the key (/home/vagrant/.ssh/id_rsa):

Enter passphrase (empty for no passphrase):

Enter same passphrase again:

Your identification has been saved in /home/vagrant/.ssh/id_rsa.

Your public key has been saved in /home/vagrant/.ssh/id_rsa.pub.

The key fingerprint is:

ad:59:8a:02:e6:94:35:92:a3:b9:94:93:c8:9a:30:47 SSH keys to connect
with OpenShift

The key's randomart image is:

+--[RSA 2048]----+

| |

| . |

| E o |

|o+o= . . |

|*** S o |

|+O.. . = |

|+ . . . + |

| . |

| |

+-----------------+

Firstly, this command asks the user to provide the SSH key filename and its location. The
default filename for RSA keys is id_rsa for a private key and id_rsa.pub for a public key.
The default location to store these keys is the .ssh folder under the user's home directory.

Secondly, it asks the user to provide a passphrase. In order to not use a passphrase, just
press Enter twice. The passphrase is used to secure the private key. If you enter a passphrase,
you will be prompted to enter the passphrase every time you perform any operation that
requires SSH. In the next recipe, you will learn how to use a passphrase without entering it
each time.

Chapter 1

23

When you run any SSH client, such as ssh, to connect with an SSH server, the client
uses the private key to prove your identity to the server. The server uses the public key for
authentication. If the authentication succeeds, then the connection proceeds. Otherwise,
you will get an error message.

In the second step, you uploaded the public SSH key to the OpenShift account. OpenShift
copies the public key into an authorization file on the application gear at ~/.ssh/
authorized_keys. Thereafter, when an SSH client requests a connection to the application
gear, the SSH server running on the application gear consults the authorized_keys file to
find the matching public key.

From step 3 to step 5, you learned how to find the SSH information for an application using
the web console. In step 6, you tested the SSH connection by executing the ls command on
the application gear. The first time you connect to an SSH server, you will be asked whether
you want to connect to the server. This is because the client does not know about the server.
The SSH client consults the known_hosts file at ~/.ssh/known_hosts for the server
information. If there is no entry in ~/.ssh/known_hosts, then it will ask for confirmation,
as shown in the following command:

$ ssh 52b823b34382ec52670003f6@blog-osbook.rhcloud.com ls

The authenticity of host 'blog-osbook.rhcloud.com (54.221.64.115)'
can't be established.

RSA key fingerprint is
cf:ee:77:cb:0e:fc:02:d7:72:7e:ae:80:c0:90:88:a7.

Are you sure you want to continue connecting (yes/no)? yes

Warning: Permanently added 'blog-osbook.rhcloud.com,54.221.64.115'
(RSA) to the list of known hosts.

app-deployments

app-root

git

mysql

php

phpmyadmin

After you enter yes, a new entry will be added to the known_hosts file at ~/.ssh/known_
hosts. The known_hosts file at ~/.ssh/known_hosts acts as a database, and the client
will check this file for the server entry on every subsequent request.

Getting Started with OpenShift

24

The OpenShift rhc command-line client also offers various commands to
work with SSH keys. Once you have installed the rhc client, you can run
the rhc sshkey command to view all the supported actions.

There's more…
You can decide to use another name or location for the SSH key pair. You can create another
SSH key using the ssh-keygen utility. This time, name the key openshift_key:

$ ssh-keygen

Generating public/private rsa key pair.

Enter file in which to save the key (/home/vagrant/.ssh/id_rsa):
/home/vagrant/.ssh/openshift_key

Go to the OpenShift account settings web page at https://openshift.redhat.com/
app/console/settings and delete the existing key, as shown in the following screenshot:

Now, upload the openshift_key.pub SSH key to your OpenShift account as discussed
previously.

Run the ssh command again. This time, you will get an error, as the SSH client used the
default key to connect with the SSH server. The default key name is id_rsa. Now, let's try
to run the ls command on the application gear to confirm whether we get the Permission
denied error:

$ ssh 52b823b34382ec52670003f6@blog-osbook.rhcloud.com ls

Permission denied (publickey,gssapi-keyex,gssapi-with-mic).

https://openshift.redhat.com/app/console/settings
https://openshift.redhat.com/app/console/settings

Chapter 1

25

To get debug information, you should use the following command:
ssh -v 52b823b34382ec52670003f6@blog-osbook.rhcloud.com
ls

To get even more debug information, you should use the following command:
ssh -v -v -v 52b823b34382ec52670003f6@blog-
osbook.rhcloud.com ls

The number of –v options in the preceding command defines the verbosity.

To connect with the application gear, you have to connect using openshift_key. To use a
different key, run the following command:

$ ssh -i /home/vagrant/.ssh/openshift_key
52b823b34382ec52670003f6@blog-osbook.rhcloud.com ls

The -i option is used to tell the SSH client to pick a different SSH key.

See also
ff The Working with the SSH key passphrases recipe

Working with the SSH key passphrases
In the Uploading SSH keys using the web console recipe, you learned how to create a new
SSH key pair and upload it to an OpenShift account. The SSH key pair was created with
an empty passphrase. The passphrase is a password to protect the private key. The empty
passphrase avoids reentering a passphrase every time you use the key, but it might cause
some security concerns. This recipe will walk you through the process of securing your SSH
keys while avoiding having to re-enter the passphrase every time you use the key.

Getting ready
To step through this recipe, you will need the OpenSSH SSH connectivity tools installed on
your machine.

To make sure that the OpenSSH client tool is installed, run the following command:

$ ssh -V

OpenSSH_6.2p2, OpenSSL 1.0.1e-fips 11 Feb 2013

Getting Started with OpenShift

26

The output of the preceding command will depend on the operating system and OpenSSH
version installed on your machine. If you get ssh: command not found, then the
OpenSSH tools are not installed on your machine.

This recipe will use the WordPress application created in the Uploading SSH keys using the
web console recipe.

How to do it…
Perform the following steps to use SSH key passphrases:

1.	 Passphrases can be added during key creation time or to an existing key without
regenerating a new key pair. As you have already created the key pair in the
Uploading SSH keys using the web console recipe, we will reuse this key pair.
You will use ssh-keygen to add a key pair to the existing key:
$ ssh-keygen -p

Enter file in which the key is (/home/vagrant/.ssh/id_rsa):

Key has comment '/home/vagrant/.ssh/id_rsa'

Enter new passphrase (empty for no passphrase): <Enter
passphrase>

Enter same passphrase again: <Enter passphrase again>

Your identification has been saved with the new passphrase.

2.	 Now, if you try to SSH into the application gear, you will be asked to enter the
passphrase.

3.	 Next, run the ssh-agent command. The ssh-agent command, which is a part of
the OpenSSH toolbelt, is another tool that stores your passphrase securely so that
you do not have to re-enter the passphrase. You can run the ssh-agent command
by typing the following:
$ ssh-agent $SHELL

4.	 To add the passphrase, run the ssh-add utility:
$ ssh-add

Enter passphrase for /home/vagrant/.ssh/id_rsa: <Enter
passphrase>

Identity added: /home/vagrant/.ssh/id_rsa
(/home/vagrant/.ssh/id_rsa)

Chapter 1

27

5.	 Connect to the application gear to see the SSH agent in action. You will notice that
you are not asked to enter the passphrase:
$ ssh 52b823b34382ec52670003f6@blog-osbook.rhcloud.com ls

app-deployments

app-root

git

mysql

php

phpmyadmin

6.	 Exit the shell to end the ssh-agent session. If you try to connect with the application
gear now, you will be asked to enter the passphrase:
$ ssh 52b823b34382ec52670003f6@blog-osbook.rhcloud.com ls

Enter passphrase for key '/home/vagrant/.ssh/id_rsa':

How it works…
The ssh-agent utility stores the SSH keys in memory. It caches the private keys and
responds to the authentication queries from SSH clients. The ssh-add utility is used to add
and remove keys from ssh-agent. In step 1, you added the passphrase to your existing key.
By default, it will use the default key, id_rsa, in the .ssh folder, but you can provide another
SSH key file using the -i option. Now, SSH into the application gear and you will be asked to
enter the passphrase:

$ ssh 52b823b34382ec52670003f6@blog-osbook.rhcloud.com ls

Enter passphrase for key '/home/vagrant/.ssh/id_rsa':

Step 2 starts the agent by forking the existing shell. It sets some environment variables
required by the SSH agent. Next, in step 3, you add the SSH key into the agent. It asks for
the passphrase to decrypt the private key. After decryption, it adds the private key to the
agent's cache.

Finally, in step 4, you connect to the application gear using the ssh client. This time you
will not be asked to enter the passphrase as the agent already cached the private key.

You can terminate the agent or log out from the shell to end the session.

See also
ff The Uploading SSH keys using the web console recipe

Getting Started with OpenShift

28

Cloning the application to the local machine
Every OpenShift application has a private Git repository that houses the application source
code. OpenShift uses Git not only as a version control system but also to build and deploy the
application using Git's action hooks. In this recipe, you will learn how to get the source code of
the OpenShift application on your local machine.

Getting ready
You will need Git installed on the operating system before stepping through this recipe. For
Debian-based Linux distributions, you can install Git with apt-get install git as the
root. If you are on Fedora or any other Red Hat-based system, you can install Git with yum
install git-core as the root. Mac and Windows users can download the Git package
from the official download site at http://git-scm.com/downloads.

This recipe will use the WordPress application created in the Creating a WordPress application
using the web console recipe.

How to do it…
Perform the following steps to clone the repository:

1.	 Go to the Applications tab in the web console at https://openshift.redhat.
com/app/console/applications and click on the application to view its details,
as shown in the following screenshot:

http://git-scm.com/downloads
https://openshift.redhat.com/app/console/applications
https://openshift.redhat.com/app/console/applications

Chapter 1

29

2.	 Copy the Git repository URL mentioned on the application detail web page, as shown
in the following screenshot:

3.	 Open a command-line terminal, go to a convenient location on your machine,
and execute the git clone command. Replace the repository URL with your
application Git URL:
$ git clone ssh://52b823b34382ec52670003f6@blog-
osbook.rhcloud.com/~/git/blog.git/

How it works…
The first and second steps helped us to locate the application Git repository URL. As
discussed in the preceding section, OpenShift uses Git as revision control and a source code
management system. Every application has a private Git repository. A Git repository contains
all the information needed to retain and manage the revisions and history of a project.
OpenShift uses the SSH transport protocol to work with Git repositories. To create a secure
communication channel between the local machine and application gear, Git uses the SSH
key setup discussed in the Uploading SSH keys using the web console recipe. Nobody will be
able to clone your application repository unless you add their public SSH key to your account.

In step 3, you cloned the application Git repository using the clone command. The git
clone command created a new Git repository based on the original application repository
URL. The difference between Git and other version control systems is that Git clones the full
copy of the repository, in addition to the working copy, of all the files in the repository. The
clone command will create a new directory on your local filesystem with the same name
as the application.

Getting Started with OpenShift

30

There's more…
You can also specify a different folder name with the git clone command. Suppose you
want to clone the application in the myapp folder. To do this, execute the following command:

$ git clone ssh://52b823b34382ec52670003f6@blog-
osbook.rhcloud.com/~/git/blog.git/ myapp

If you want to allow any of your friends or team members to clone your repository, just add
their public key to your account. Follow the Uploading SSH keys using the web console recipe
to upload the public SSH key. We will discuss team collaboration in detail in Chapter 2,
Managing Domains.

See also
ff The Deploying your first change recipe

Deploying your first change
In the Cloning the application to the local machine recipe, you learned how to clone an
OpenShift application Git repository using the git clone command. The next logical step
after cloning the repository is to make a change, commit it, and finally deploy it. In this recipe,
you will learn how to deploy the source code changes to OpenShift applications.

Getting ready
To step through this recipe, you will need Git installed on your local machine.

How to do it…
Perform the following steps to deploy your first change:

1.	 Go to the OpenShift web console and navigate to the PHP 5.4 application creation
page at https://openshift.redhat.com/app/console/application_
type/cart!php-5.4.

2.	 Enter the name of the application. I have used myapp as the application name.

3.	 Click on the Create Application button to create a new application.

4.	 Clone the application's Git repository on your local machine by following the steps
mentioned in the Cloning the application to the local machine recipe.

https://openshift.redhat.com/app/console/application_type/cart!php-5.4
https://openshift.redhat.com/app/console/application_type/cart!php-5.4

Chapter 1

31

5.	 Open the index.php file inside the application source code root directory. Go to the
following line of code in index.php:
<h1>Welcome to your PHP application on OpenShift</h1>

Replace the preceding line of code with this:
<h1>Updated the application</h1>

6.	 Commit the change to the local repository using Git:
$ git commit -am 'modified index.php'

7.	 Push the changes to the remote repository hosted on the OpenShift application gear
using the following Git command:
$ git push origin master

8.	 After git push successfully completes, open the http://myapp-{domain-
name}.rhcloud.com/ application in your favorite browser. You will see your
first change.

How it works…
The OpenShift deployment process is based around Git. From step 1 to step 4, you created a
PHP 5.4 application using the web console and cloned the application on your local machine.
In step 5, you made a simple change to the index.php file. This change has not yet been
committed to the local repository. Git, being a distributed version control system, has a
concept of local and remote repositories. You can continue working (making changes and
committing them) on your local machine as long as you want, and when you are ready, you
can push the changes to the remote Git repository.

In step 6, you committed the change to your local Git repository using the git commit
command. You used the -a and -m options. The -a option tells the git command to
automatically stage the modified and deleted files, but new files are not touched. To commit
a new file, you have to first stage the file using the git add command and then commit it:

$ git add test.html

$ git commit -m 'new html file'

Step 7 pushes the local commits to a remote repository. When you clone a repository, the
cloned repository maintains a link back to its parent repository via a remote called origin. A
remote is a handle or reference to another Git repository. The remote information is stored in
a configuration file called config under the .git folder. You can open the .git/config file
and view the origin remote information as follows:

[remote 'origin']
 url = ssh://52bbf209e0b8cd707000018a@myapp-osbook.rhcloud.com/~/git/
blog.git/
 fetch = +refs/heads/*:refs/remotes/origin/*

Getting Started with OpenShift

32

As shown in the preceding code, a remote consists of two different parts. The url part is the
name of the remote repository in the form of a URL. The fetch part specifies how a reference
should be mapped from the namespace of one repository into that of another.

The output of the git push command is as follows:

$ git push origin master

Counting objects: 7, done.

Compressing objects: 100% (4/4), done.

Writing objects: 100% (4/4), 404 bytes | 0 bytes/s, done.

Total 4 (delta 3), reused 0 (delta 0)

remote: Stopping PHP cartridge

remote: Waiting for stop to finish

remote: Stopping MySQL cartridge

remote: Stopping PHPMyAdmin cartridge

remote: Waiting for stop to finish

remote: Building git ref 'master', commit 3933f99

remote: Building PHP cartridge

remote: Preparing build for deployment

remote: Deployment id is b78e5efd

remote: Activating deployment

remote: Starting MySQL cartridge

remote: Starting PHPMyAdmin cartridge

remote: Database already configured.

remote: Starting PHP cartridge

remote: Result: success

remote: Activation status: success

remote: Deployment completed with status: success

To ssh://52bbf209e0b8cd707000018a@blog-
osbook.rhcloud.com/~/git/blog.git/

 e83c2a7..3933f99 master -> master

This is how the process works:

1.	 Git takes the master branch changes, compresses them, and transfers all the
missing objects from your local repository to the remote repository named origin.

2.	 Next, a pre-receive action hook is invoked on the application gear. Git hooks are
custom scripts, which Git will run at specific events like push. You can write scripts
in bash, Perl, Python, Ruby, or whatever you have. The pre-receive hook receives a
list of all (new or old) the refs that are to be updated. The pre-receive action hook in
the application gear Git repository stops the PHP and other cartridges, checks the
deployment integrity, and configures the deployment metadata.

Chapter 1

33

3.	 Lastly, the postreceive action hook is invoked on the application gear. It receives a
list of all the updated refs. The postreceive action hook in the application gear Git
repository archives the application repository, builds the application, starts the PHP
and other cartridges, and then finally deploys the application.

There's more…
Instead of using the git push origin master command, you can also use git push.
The origin part is the default remote and master is the default branch, so they are
not required.

See also
ff The Cloning the application to the local machine recipe

Checking the application's gear quota
and limits

In this recipe, you will learn how to check the application resource limits.

Getting ready
To step through this recipe, you will need the OpenSSH SSH connectivity tools installed
on your machine. This recipe will use the WordPress application created in the Creating a
WordPress application using the web console recipe.

How to do it…
To check the resources consumed by your application, run the following command. Here, you
replace the SSH URL with your application SSH URL. To find the SSH URL of your application,
refer to the Uploading SSH keys using the web console recipe.

$ ssh 52bbf209e0b8cd707000018a@blog-osbook.rhcloud.com quota -s

How it works…
The OpenShift applications run inside gears that have limited resources. Every gear,
depending on its size, has a definite amount of resources. The quota -s command can be
used to check the resources consumed by the application and the limits imposed on the gear.

Getting Started with OpenShift

34

The output of the quota -s command is shown as follows:

Disk quotas for user 52bbf209e0b8cd707000018a (uid 2187):

 Filesystem blocks quota limit grace files quota
limit grace

/dev/mapper/EBSStore01-user_home01

 124M 0 1024M 2898 0
80000

The first column is the name of the filesystem that has quota enabled for it. The second
column shows how many blocks the user is currently using. The fourth column tells us the
storage limit. Gears in free tier have access to 1 GB of disk storage. The sixth column tells
us the number of files created by the application. The eighth column shows the maximum
number of files a user can create. Gears can create a maximum of 80,000 files. The gears
also have limited RAM memory. Small gears have 512 MB of RAM, medium gears have 1 GB
of RAM, and large gears have 2 GB of RAM. The medium and large gears are only available
in the Bronze and Silver commercial plans.

There's more…
You can also view how much disk space your gear is using by running the ***du***
command:

$ ssh 52bbf209e0b8cd707000018a@blog-osbook.rhcloud.com 'du -sh *'

17M	 app-deployments

Installing the OpenShift rhc command-line
client

The rhc client is the most powerful and feature-rich command-line client utility, which users
can use to work with OpenShift. It is built using Ruby programming language and packaged
as a Ruby gem. The rhc source code is available on GitHub at https://github.com/
openshift/rhc.

Getting ready
To install rhc, you will need to have Ruby 1.8.7 or above installed on your machine. You can
check whether Ruby is installed on your machine by running the following command:

$ ruby --version

ruby 2.0.0p247 (2013-06-27 revision 41674) [x86_64-linux]

https://github.com/openshift/rhc
https://github.com/openshift/rhc

Chapter 1

35

The output of the preceding command will depend on the operating system and Ruby version
installed on your machine. If you receive ruby: command not found, then Ruby is not
installed on your machine. Install Ruby on your operating system. You can download the
package for your operating system from the official website at https://www.ruby-lang.
org/en/downloads/.

How to do it…
Open a new command-line terminal and run the following command:

$ gem install rhc

This command will install the rhc gem required to work with OpenShift.

How it works…
OpenShift packages the rhc command-line utility as a gem. A gem is a reusable piece of code
or a command-line utility to help automate tasks. RubyGems is a package manager for the
Ruby programming language that provides a standard format for distributing Ruby programs
and libraries. This software allows a developer to download, install, and use software
packages on their machine. The gem command allows you to work with RubyGems.

When you run the gem install command, the gem command-line tool fetches the
package and its dependencies from the central repository and installs them. The central
gem repository is available at http://rubygems.org.

After the command successfully finishes, you can check the version of rhc using the
following command:

$ rhc --version

rhc 1.27.4

There's more…
The gem install command also generates the documentation for the installed packages.
You can use the Ruby ri command-line tool to view the documentation offline. For example,
if you want to list all the classes for which ri can show documentation, then run the
following command:

$ ri --list

This command will list all the classes and their methods for which you can view the
documentation. To view the documentation of the CLI class method of the RHC class,
execute the following command:

$ ri RHC::CLI

https://www.ruby-lang.org/en/downloads/
https://www.ruby-lang.org/en/downloads/
http://rubygems.org

Getting Started with OpenShift

36

The output will be the documentation for the CLI method, as follows:

= RHC::CLI

(from gem rhc-1.27.4)

Run and execute a command line session with the RHC tools.

You can invoke the CLI with:

 bundle exec ruby -e 'require 'rhc/cli'; RHC::CLI.start(ARGV);' --
<arguments>

You can disable the documentation generation by using the following command:

$ gem install rhc --no-document

See also
ff The Setting up an OpenShift account using rhc recipe

ff The Updating rhc recipe

Setting up an OpenShift account using rhc
In the Installing the OpenShift rhc command-line client recipe, you learned how to install the
rhc command-line client. After installation, the first operation you have to perform is to set up
the OpenShift account. In this recipe, you will learn how to set up your account using rhc.

Getting ready
To complete this recipe, you will need to have rhc installed on your machine. Refer to the
Installing the OpenShift rhc command-line client recipe for instructions.

How to do it…
To set up an OpenShift account, open a command-line terminal and run the following
command:

$ rhc setup

Chapter 1

37

How it works…
Before you can use the rhc client to work with OpenShift, you have to set up the account.

The setup command does the following:

1.	 It first asks you to provide your OpenShift credentials to authenticate with
openshift.redhat.com.

2.	 After successful authentication, rhc asks whether it should create an authorization
token. An authorization token allows you to access the OpenShift server without
entering the password with every command. It stores the token in the .openshift
folder under the user's home directory. By default, the token is valid for 30 days,
which means that after this you have to authenticate it again.

3.	 Next, the setup command creates a file called express.conf in the .openshift
folder under the user's home directory. The express.conf file stores the basic
configuration required by rhc such as the OpenShift server location, your OpenShift
username, and whether or not to create and use authorization tokens.

4.	 If no SSH key exists in the .ssh folder at ~/.ssh, then the rhc setup command
will generate a new key pair using the ssh-keygen utility.

5.	 After generating the new SSH key pair, rhc will upload the public SSH key to the
OpenShift server. OpenShift copies the public key into an authorization file on the
application gear called authorized_keys at ~/.ssh/authorized_keys. In the
Uploading SSh keys using the web console recipe, you uploaded the public SSH key
using the web console. It will prompt you to provide the name of the key or use the
default name generated by the setup command.

6.	 Next, rhc checks if Git has been installed. The rhc setup command will run a
simple check against your local configuration and credentials to confirm that the
configurations have been completed. It will also run a series of tests to check whether
ssh has been configured properly and whether your system can communicate with
OpenShift servers.

7.	 Finally, rhc asks the user to create a domain if one is not already created. In the
Creating OpenShift domains using the web console recipe, you created the domain
using the web console.

There's more…
You can run the rhc setup command anytime while working with OpenShift. Every time
you run the rhc setup command, it will use the configuration properties defined in the
express.conf file. If you want to generate a new, clean configuration, you can use the
--clean option. This will run the setup command again, ignoring any saved configuration
options stored in express.conf:

$ rhc setup --clean

openshift.redhat.com

Getting Started with OpenShift

38

See also
ff The Enabling the autocomplete feature in an rhc command-line client recipe

ff The Viewing the account details using rhc recipe

ff The Specifying a different OpenShift server hostname recipe

Enabling the autocomplete feature in an rhc
command-line client

The rhc command-line utility supports autocompletion. This involves rhc predicting a
command that the user wants to type in without them actually typing it completely. This is very
helpful for new users who do not know all the commands supported by rhc. In this recipe, you
will learn how to enable autocomplete for the rhc command-line client.

The autocomplete feature does not work for Windows Terminal.

Getting ready
To step through this recipe, you will need to have rhc installed on your machine. Refer to the
Installing the OpenShift rhc command-line client recipe for instructions.

How to do it…
To enable autocompletion, perform the following steps:

1.	 Run the rhc setup command again with the autocomplete option:
$ rhc setup --autocomplete

2.	 The previous step will generate a file named bash_autocomplete in the
.openshift folder at ~/.openshift. To enable autocompletion, you have to
add the ~/.openshift/bash_autocomplete line to the .bashrc or .bash_
profile file present in your user's home directory. The .bashrhc file on my Fedora
box is as follows:
.bashrc

. ~/.openshift/bash_autocomplete

Source global definitions

if [-f /etc/bashrc]; then

Chapter 1

39

. /etc/bashrc

fi

User specific aliases and functions

3.	 Note that on Mac OS X, you have to add ~/.openshift/bash_autocomplete
to your ~/.bash_profile. On Mac OS X, the new Terminal windows and tabs are
always considered login shells, so this is a necessary step for OS X users.

4.	 Reload or restart the shell to allow these changes to take effect.

How it works…
You should try to understand what you have done in the preceding section. In step 1, you
ran the setup command with the autocomplete option. This generated a bash script
called bash_autocomplete in the .openshift folder at ~/.openshift. This bash script
defines a custom completion function called _rhc for the rhc command-line client. Bash will
execute this function when the rhc tab key is typed at the prompt and will display possible
completions.

In step 2, you sourced the bash_autocomplete file by adding ~/.openshift/bash_
autocomplete to the .bashrc script. This will make sure that the autocompletion
functionality is available for each shell.

Finally, in step 3, you restarted the shell to load the _rhc function. Now, if you type rhc and
then press the Tab key, it will show you all the rhc commands:

$ rhc

account app-tidy deployment-list
member-list // removed all commands for brevity

There's more…
Most of the rhc commands have options, which you can provide. To view all the options for
a command, type in -- and press Tab. For example, to view all the rhc setup command
options, type in rhc setup -- and press Tab:

$ rhc setup --

--autocomplete --clean --create-token --no-create-
token --server

See also
ff The Setting up an OpenShift account using rhc recipe

Getting Started with OpenShift

40

Viewing the account details using rhc
In this recipe, you will learn how to view your account details using rhc.

Getting ready
To complete this recipe, you will need to have rhc installed on your machine. Refer to the
Installing the OpenShift rhc command-line client recipe for instructions.

How to do it…
To view the account details, run the rhc account command as follows:

$ rhc account

This is all you need to do to view the account details.

How it works…
The rhc account command shows details about the currently logged-in user. When you run
the command, it makes a REST call to the OpenShift REST API using the authentication token
generated during rhc setup. The REST API returns a JSON response, which rhc will render
in a human-readable format:

$ rhc account

Login openshift.cookbook@gmail.com on openshift.redhat.com

--

 ID: 52b8112ae0b8cdc308000018

 Plan: Free

 Gears Used: 0

 Gears Allowed: 3

 Domains Allowed: 1

 Allowed Gear Sizes: small

 SSL Certificates: no

The account details include whom you are logged in as, which OpenShift server you are
connected to, your OpenShift user ID, the OpenShift plan you are using, the number of gears
as well as the gear size used and allowed, the number of domains allowed, and whether you
can use SSL certificates or not.

You can also view the account details in the web console by navigating to the account web
page at https://openshift.redhat.com/app/account.

https://openshift.redhat.com/app/account

Chapter 1

41

There's more…
You can also view details of any of your other OpenShift accounts by passing the -l or
--rhlogin option. The -l or --rhlogin option is a global option available with
every command. When you use -l or --rhlogin, you force the rhc client to use the
user-specified login:

$ rhc account --rhlogin user@example.com

You can log out from your current session on the server by using the rhc account-logout
command. This ends the user's current session and deletes the authorization token files in
the .openshift folder at ~/.openshift:

$ rhc account-logout

You can also use rhc logout as a short alternative to rhc account-logout.

See also
ff The Setting up an OpenShift account using rhc recipe

Specifying a different OpenShift server
hostname

This recipe talks about how you can configure a different OpenShift server hostname. By
default, when you set up your OpenShift account using the rhc setup command, rhc is
configured to work with the public OpenShift PaaS hosted at openshift.redhat.com.
However, it is possible to use a different OpenShift installation, which can be either an
OpenShift Enterprise or an OpenShift Origin installation.

Getting ready
To step through this recipe, you will need to have rhc installed on your machine. Refer to the
Installing the OpenShift rhc command-line client recipe for instructions.

How to do it…
Open a command-line terminal and run the following command to use a different OpenShift
server hostname:

$ rhc setup --server <My OpenShift Installation Hostname>

Replace <My OpenShift Installation Hostname> with the OpenShift server
hostname.

openshift.redhat.com

Getting Started with OpenShift

42

How it works…
The rhc setup command takes an option, --server, which allows a user to specify the
server hostname. When you run the rhc setup command with the new server location, the
setup command will perform all the actions required to configure your OpenShift account
to work with the new server. The setup command will overwrite the express.conf file in
~/.openshift with the new server hostname. The rhc client will get configured to work
with the new OpenShift server.

There's more…
You can also configure the server by directly editing the express.conf file at
~/.openshift/express.conf. The libra_server property is as follows:

The OpenShift server to connect to
libra_server=openshift.redhat.com

Change the preceding code to a new server hostname:

The OpenShift server to connect to
libra_server=<Your OpenShift Installation>

See also
ff The Setting up an OpenShift account using rhc recipe

ff The Viewing the account details using rhc recipe

Updating rhc
The OpenShift command-line tool, rhc, is the most powerful and popular way to work with
OpenShift. In this recipe, you will learn how to update rhc to the latest version. OpenShift
Online has a three-week release cycle, and most of the time, the rhc client tool is also
updated to either support a new feature or fix a bug. So, it always helps if you use the latest
version of rhc.

Getting ready
To be ready for this recipe, you will need an already installed rhc. No other prerequisites
are required.

Chapter 1

43

How to do it…
To update the rhc gem, run the gem update command:

$ gem update rhc

This is all you need to do to update the rhc command line to the latest version.

How it works…
rhc is a Ruby gem and RubyGems is a package manager like many other package managers.
It uses a central repository, which hosts installable packages. When you run the gem update
command, this command-line tool fetches the latest packages from the central repository and
installs them.

There's more…
When you start working with rhc, you will soon have multiple versions of the rhc gem
installed on your machine. You can uninstall all the previous versions using the cleanup
command. This command will uninstall old versions of installed gems in the local repository:

$ gem cleanup rhc

See also
ff The Installing the OpenShift rhc command-line client recipe

2
Managing Domains

This chapter presents a number of recipes that will show you how to get started with creating
and managing domains. You will also learn how domains can help you work as a team and
collaborate on a project. The specific recipes of this chapter are:

ff Creating a domain using rhc

ff Renaming a domain using rhc

ff Viewing domain details using rhc

ff Adding viewer members to a domain using rhc

ff Adding an editor member to a domain using rhc

ff Adding an admin member to a domain using rhc

ff Viewing all the members in a domain using rhc

ff Removing members from a domain using rhc

ff Restricting gear sizes for a domain using rhc

ff Leaving a domain using rhc

ff Deleting a domain using rhc

Managing Domains

46

Introduction
A domain represents a unique name for each user within which each user application must
exist. OpenShift users cannot create an application until they have a valid domain. The
domain name becomes a part of the application URL. For example, if your domain name
is foo and your application name is bar, the application URL will be http://bar-foo.
rhcloud.com. Every OpenShift account must have at least one domain associated with it.
The OpenShift Online free tier does not allow a user to create more than one domain, but
you can create more than one domain in paid tiers. The domains make it possible for users
to choose any valid name for their application. They allow two or more users to have the
same name for their applications. For example, user A can have an application named bar in
domain foo, and similarly, user B can also have an application named bar in domain test.
Once a user has a valid domain, he/she can use any valid name for their application.

Team collaboration is one of the essential features of modern-day software development.
Whether you are working on an open source project or an enterprise project, you need to
collaborate and work with others. A group of people may work together to make a software
project a success. A domain makes it possible to work as a team because you can add other
users to your domain, giving them privileges to work with your application. This makes it very
easy for different users to collaborate on a project and work together. You can add a user to
your domain either as a viewer, editor, or an admin. Recipes 4 through 6 will cover these
in detail.

A domain also helps us incorporate the concept of environments in our applications. You
can have different domains for different environments. One can be used as a development
environment, one as a quality assurance environment, and another for production. This allows
you to give different people access to different domains. Your developers can have access to
development and quality assurance domains but not to the production domain.

Creating a domain using rhc
In the Creating OpenShift domains using the web console recipe of Chapter 1, Getting Started
with OpenShift, you learned how to create a domain using the web console. In this recipe, you
will learn how to create a domain using the rhc command line.

Chapter 2

47

Getting ready
To complete this recipe, you will need to have rhc installed on your machine. Please refer to
the Installing the OpenShift rhc command-line client recipe in Chapter 1, Getting Started
with OpenShift, for instructions. If you are using OpenShift's free plan, you have to first delete
the domain you created in the Creating OpenShift domains using the web console recipe of
Chapter 1, Getting Started with OpenShift, before continuing with this recipe. This is required
because you cannot have more than one domain with OpenShift's free plan. To delete a
domain, run the command shown as follows. This command is explained in the Deleting a
domain using rhc recipe in this chapter:

$ rhc delete-domain <domain_name> --force

How to do it…
To create a domain name, open a new command-line terminal and run the following
command. Please provide a unique domain name.

$ rhc create-domain --namespace <unique_domain_ame>

If you get the You may not have more than 1 domain
error when you run this command, delete the existing domain
associated with your account. In the free tier, you cannot create
more than one domain.

How it works…
You can use the rhc domain-create or rhc create-domain command to create a new
domain name. The only required argument to create a domain is a unique alphanumeric
name. Please note that a domain can contain, at most, 16 alphanumeric characters and
cannot have spaces or symbols.

The output of the rhc create-domain command is shown as follows:

$ rhc create-domain --namespace osbook

Creating domain 'osbook' ... done

You may now create an application using the 'rhc create-app' command

Managing Domains

48

You can avoid using the --namespace option by typing the following command.
The rhc command-line client is intelligent and understands that you are only providing
the mandatory argument:

$ rhc domain-create osbook

There's more...
All OpenShift commands have help associated with them. To understand the usage of the
rhc create-domain command and all the options available with it, you can use the -h or
--help option. We will look at the other options in the later recipes.

$ rhc create-domain --help

Usage: rhc domain-create <namespace>

See also
ff The Creating OpenShift domains using the web console recipe in Chapter 1,

Getting Started with OpenShift

ff The Renaming a domain using rhc recipe

ff The Viewing domain details using rhc recipe

ff The Deleting a domain using rhc recipe

Renaming a domain using rhc
Following the creation of a domain, you might need to rename it. Let's suppose you want
to rename your existing name to reflect its environment. For instance, you may rename
the osbook domain name to devosbook in order to indicate devosbook as your
development environment.

Getting ready
To complete this recipe, you will need to have rhc installed on your machine. Please refer to
the Installing the OpenShift rhc command-line client recipe in Chapter 1, Getting Started with
OpenShift, for instructions.

Chapter 2

49

How to do it…
To rename a domain, open a new command-line terminal and run the following command.
You should provide a unique, new domain name:

$ rhc rename-domain <old_domain_name> <new_domain_name>

How it works…
To rename a domain, you have to first make sure there are no applications associated with
it. If there are any applications associated with a domain, you have to first delete them. To
learn how to delete an application, refer to the Deleting the application recipe in Chapter
3, Creating and Managing Applications. The rename-domain command first deletes the
old domain before creating a new one using the new domain name. To rename the osbook
domain to devosbook, you need to run the following command:

$ rhc domain-rename osbook devosbook

Renaming domain 'osbook' to 'devosbook' ... done

There's more…
You can also rename a domain using the web console. Visit your domain web page at
https://openshift.redhat.com/app/console/domain/{domain-name} and click
on Change, as shown in the following screenshot. Please replace {domain-name} with your
OpenShift account domain name.

https://openshift.redhat.com/app/console/domain/{domain-name}

Managing Domains

50

This will direct you to another web page where you can enter the new domain name, as seen
in the following screenshot. Enter the new domain name and click on Save.

See also
ff The Creating OpenShift domains using the web console recipe in Chapter 1,

Getting Started with OpenShift

ff The Renaming a domain using rhc recipe

ff The Viewing domain details using rhc recipe

ff The Deleting a domain using rhc recipe

Viewing domain details using rhc
In this recipe, you will learn how to view the details associated with a domain.

Getting ready
To complete this recipe, you will need to have rhc installed on your machine. Please refer to
the Installing the OpenShift rhc command-line client recipe in Chapter 1, Getting Started with
OpenShift, for instructions.

Also, you will need to have a valid domain associated with your account. Refer to the Creating
a domain using rhc recipe in this chapter for instructions on how to create a new domain.

How to do it...
To view domain details, open a new command-line terminal and run the following command:

$ rhc show-domain --namespace <your domain name>

Chapter 2

51

How it works...
The rhc show-domain command returns the details of a domain and its applications.
The output of the command is shown as follows. The details include the domain name, the
owner's e-mail ID, other domain members, and the information of all the applications
within it:

$ rhc show-domain --namespace devosbook

Domain devosbook (owned by openshift.cookbook@gmail.com)

--

Created: 9:49 AM

Allowed Gear Sizes: small

Members: shekhar.redhat@gmail.com (edit)

blog @ http://blog-devosbook.rhcloud.com/ (uuid:
52d56620e0b8cd9911000166)

--
--

Domain: devosbook

Created: 11:30 AM

Gears: 1 (defaults to small)

Git URL: ssh://52d56620e0b8cd9911000166@blog-devosbook.rhcloud.com/~/git/
blog.git/

Initial Git URL: git://github.com/openshift/wordpress-example.git

SSH: 52d56620e0b8cd9911000166@blog-devosbook.rhcloud.com

Deployment: auto (on git push)

php-5.3 (PHP 5.3)

Gears: Located with mysql-5.1

mysql-5.1 (MySQL 5.1)

Gears: Located with php-5.3

Connection URL: mysql://$OPENSHIFT_MYSQL_DB_HOST:$OPENSHIFT_MYSQL_DB_
PORT/

Database Name: blog

Managing Domains

52

Password: teic7xz7JUFv

Username: adminiabcAWU

You have 1 application in your domain.

The --namespace option is optional. If you do not specify the --namespace option,
OpenShift will first try to find the domain name from the Git repository configuration file
in the current directory. It considers the directory from which you run the command as an
OpenShift application Git repository. It uses the git config --get rhc.domain-name
command to find the domain name. As we are not running the command inside an OpenShift
application's Git repository, OpenShift will make a GET REST API request to fetch all the
domains associated with the user. The user details and authorization token information will
be retrieved from the ~/.openshift folder. After finding all the domains associated with the
user, a GET REST API call will be made to fetch details for each domain. Finally, the output will
be shown to the user.

There's more…
You can also view all the domains you have access to by running the rhc list-domain
command:

$ rhc list-domain

Domain devosbook (owned by openshift.cookbook@gmail.com)

--

Created: 9:49 AM

Allowed Gear Sizes: small

Members: shekhar.redhat@gmail.com (edit)

Domain ndtv123 (owned by shekhar.redhat@gmail.com)

--

Created: 12:08 PM

Allowed Gear Sizes: small

Members: openshift.cookbook@gmail.com (view)

As you can see, the openshift.cookbook@gmail.com user has access to two domains.
The openshift.cookbook@gmail.com user owns the devosbook domain, but it is the
only member of the ndtv123 domain.

Chapter 2

53

If a user only wants to view his/her domain, he/she can use the --mine argument,
as shown in the following command-line output. To view all the options available for
a command, you can pass the --help option:

$ rhc list-domain --mine

Domain devosbook (owned by openshift.cookbook@gmail.com)

--

Created: 9:49 AM

Allowed Gear Sizes: small

Members: shekhar.redhat@gmail.com (edit)

You have access to 1 domain.

See also
ff The Creating a domain using rhc recipe

ff The Viewing domain details using rhc recipe

ff The Deleting a domain using rhc recipe

Adding viewer members to a domain
using rhc

Let's suppose you are a system administrator of your organization, where your job is to make
sure all the production applications are running smoothly. Ideally, you would not want all
the developers in your organization to have access to the production environment. Giving
everyone access to the production environment is waiting for the inevitable to happen. What
you should remember is that you can have different domains for different environments.
The domain corresponding to the production deployment will be controlled by system
administrators rather than developers. OpenShift allows you to give different access levels
to a different group of people. You, along with other system administrators, can enjoy admin
access to the production domain, whereas developers can only have viewer access, if
required. Developers will be added to the production domain in the read-only mode. They can
view the information about it and its applications, but they cannot make any changes. They
also can't use Git to clone the source code or deploy changes. Viewers are also not allowed
to SSH into the application gear.

Managing Domains

54

Getting ready
To complete this recipe, you will need to have rhc installed on your machine. Please refer to
the Installing the OpenShift rhc command-line client recipe in Chapter 1, Getting Started with
OpenShift, for instructions.

You will need two OpenShift accounts to work through this recipe. Please refer to the Creating
an OpenShift Online account recipe in Chapter 1, Getting Started with OpenShift, for
OpenShift account registration instructions.

How to do it…
Let's suppose we have two OpenShift users, openshift.cookbook@gmail.com and
openshift.cookbook.test@gmail.com. You may want to add openshift.cookbook.
test@gmail.com as a viewer to the prodosbook domain of openshift.cookbook@
gmail.com. The prodosbook domain corresponds to the production environment of your
application. To do this, execute the following command:

$ rhc add-member openshift.cookbook.test@gmail.com --namespace prodosbook
--role view

How it works…
The add-member command allows you to add members to your domain. A user can be
added to one of the three roles: view, edit, or admin. In this recipe, we may want to add
openshift.cookbook.test@gmail.com as a viewer, so we use the --role option to give
the user the view role.

The syntax of the rhc add-member command is shown as follows:

$ rhc add-member <login> --namespace <namespace> --role <role>

The breakup of the command is as follows:

ff login: This is the e-mail ID or short name of the OpenShift account you want to add
as a member

ff namespace: This is the domain name in which you want to add a member

ff role: This refers to the access level you want to give to a member

Chapter 2

55

You can view the added user by viewing the domain details:

$ rhc show-domain

Domain prodosbook (owned by openshift.cookbook@gmail.com)

Created: Jan 14 9:49 AM

Allowed Gear Sizes: small

Members: openshift.cookbook.test@gmail.com (view)

blog @ http://blog-prodosbook.rhcloud.com/ (uuid:
52d681815973ca43d600009a)

// app details .. removed for brevity

You have 1 application in your domain.

If the openshift.cookbook.test@gmail.com user tries to clone the application to their
local machine, they will receive the permission denied error shown as follows:

$ rhc git-clone blog -l openshift.cookbook.test@gmail.com

Cloning into 'blog'...

Permission denied (publickey,gssapi-keyex,gssapi-with-mic).

fatal: The remote end hung up unexpectedly

Unable to clone your repository. Called Git with: git clone

ssh://52d681815973ca43d600009a@blog-prodosbook.rhcloud.com/~/git/blog.
git/ "blog"

You can also use the OpenShift account user id instead of the OpenShift
login.

$ rhc add-member --ids 52d6784e5004462a80000235 --namespace prodosbook
--role view

To get the id for an OpenShift account, you can use the rhc account
command.

$ rhc account

Login openshift.cookbook.test@gmail.com on openshift.redhat.com

ID: 52d6784e5004462a80000235

Managing Domains

56

Plan: Free

Gears Used: 0

Gears Allowed: 3

Domains Allowed: 1

Allowed Gear Sizes: small

SSL Certificates: no

You can also add multiple members to your domain in one go, as shown:

$ rhc add-member openshift.cookbook.test@gmail.com shekhar.redhat@gmail.
com --namespace prodosbook --role view

This also works for OpenShift account IDs as well by entering the following command:

$ rhc member-add --ids 52d6784e5004462a80000235 52d6784e5004462a80000236
--namespace prodosbook --role view

There's more…
The OpenShift web console also allows users to add members. You can do this by going
to https://openshift.redhat.com/app/console/domain/{domain-name}
and replacing {domain-name} with your account domain name. Then, click on the
Add members… web link:

https://openshift.redhat.com/app/console/domain/{domain-name}

Chapter 2

57

Enter the user login details and the role you want to give to the user before clicking on Save:

See also
ff The Adding an editor member to a domain using rhc recipe

ff The Adding an admin member to a domain using rhc recipe

ff The Viewing all the members in a domain using rhc recipe

Adding an editor member to a domain
using rhc

Imagine that you are leading a software development team that uses OpenShift for
development. During development, you would like all the developers in your team to be
able to create, delete, push, or even SSH into application gear. However, you would not want
users to rename or delete a domain, as this might impact other developers in your team or
other teams. Another thing you would not like is to allow developers to change gear sizes.
You can restrict development domains to only use small gears to save money. In this scenario,
you will give developers an editor role that gives them the freedom to work with applications
but not domains.

Managing Domains

58

Getting ready
To complete this recipe, you will need to have rhc installed on your machine. Please refer to
the Installing the OpenShift rhc command-line client recipe in Chapter 1, Getting Started with
OpenShift, for instructions.

You will need two OpenShift accounts to work through this recipe. Please refer to the
Creating an OpenShift online account recipe in Chapter 1, Getting Started with OpenShift,
for OpenShift account registration instructions.

How to do it…
To add the openshift.cookbook.test@gmail.com user as an editor to the devosbook
domain of openshift.cookbook@gmail.com, run the following command:

$ rhc add-member openshift.cookbook.test@gmail.com --namespace devosbook
--role edit

How it works…
The edit role allows a user to perform the following actions on a domain:

ff A user can create applications under the domain

ff A user can delete applications under the domain

ff A user can view logs of the application

ff A user can perform other application-related actions such as start, stop, and restart

ff A user can push the source code using Git

ff A user can SSH into the application gear using SSH

When you run the rhc add-member command with the edit role, OpenShift will firstly add
a new member to a domain with an edit role and then copy the user public SSH key to the
OpenShift gear ~/.ssh/authorized_keys file. This allows an editor to perform SSH-related
operations such as code deployment using Git and SSH to the application gear.

To check whether the editor has been added successfully, you can view the domain details:

$ rhc show-domain

Domain devosbook (owned by openshift.cookbook@gmail.com)

Created: Jan 14 9:49 AM

Allowed Gear Sizes: small

Members: openshift.cookbook.test@gmail.com (edit)

Chapter 2

59

There's more…
You can also use the web console to add the editor to your application. Just follow the steps
mentioned in the Adding viewer members to a domain using rhc recipe in this chapter.

See also
ff The Adding viewer members to a domain using rhc recipe

ff The Adding an admin member to a domain using rhc recipe

ff The Viewing all the members in a domain using rhc recipe

Adding an admin member to a domain
using rhc

Consider a situation where a new system administrator joins your team. As the new system
admin is also responsible for making sure your production apps are running smoothly, you
would like to add the new system admin as an administrator. You can do this by giving the
new user an admin role.

Getting ready
To complete this recipe, you will need to have rhc installed on your machine. Please refer to
the Installing the OpenShift rhc command-line client recipe in Chapter 1, Getting Started with
OpenShift, for instructions.

You will need two OpenShift accounts to work through this recipe. Please refer to the Creating
an OpenShift Online account recipe in Chapter 1, Getting Started with OpenShift, for
OpenShift account registration instructions.

How to do it…
To add the openshift.cookbook.test@gmail.com user as an administrator to
prodosbook of the openshift.cookbook@gmail.com domain, run the following command:

$ rhc add-member openshift.cookbook.test@gmail.com --namespace osbook
--role admin

Managing Domains

60

How it works…
The admin role allows a user to perform the following actions on a domain:

ff Everything an editor can do such as performing actions related to applications

ff Perform operations on a domain such as adding members to a domain

When you run the rhc add-member command with an admin role, OpenShift will add
a new member to a domain with an admin role and then copy the public SSH key to the
OpenShift gear ~/.ssh/authorized_keys file. This allows an editor to perform
SSH-related operations.

To check whether the administrator has been added successfully, you can view the domain
details by inserting the following command:

$ rhc domain-show

Domain prodosbook (owned by openshift.cookbook@gmail.com)

Created: Jan 14 9:49 AM

Allowed Gear Sizes: small

Members: openshift.cookbook+test@gmail.com (admin)

There's more…
You can also use the web console to add the editor to your application. Just follow the steps
mentioned in the Adding viewer members to a domain using rhc recipe in this chapter.

See also
ff The Adding viewer members to a domain using rhc recipe

ff The Adding an admin member to a domain using rhc recipe

ff The Viewing all the members in a domain using rhc recipe

Viewing all the members in a domain
using rhc

There may be a situation when you want to view all the members in a domain. If so,
you should follow this recipe.

Chapter 2

61

Getting ready
To complete this recipe, you will need to have rhc installed on your machine. Please refer to
the Installing the OpenShift rhc command-line client recipe in Chapter 1, Getting Started with
OpenShift, for instructions.

You will need two OpenShift accounts to work through this recipe. Please refer to the
Creating an OpenShift Online account recipe in Chapter 1, Getting Started with OpenShift,
for OpenShift account registration instructions.

How to do it…
To view all the members added to the osbook domain, run the following command:

$ rhc list-member --namespace osbook

How it works…
The result of the rhc list-member command is shown as follows:

Login Role

--------------------------------- -------------

openshift.cookbook@gmail.com admin (owner)

openshift.cookbook.test@gmail.com admin

The rhc list-member command makes a GET request to fetch all the information about
the osbook domain. The rhc client then parses the JSON response and shows the relevant
information to the user.

There's more…
You can also use a shortcut command to fetch all the members in a domain:

$ rhc members --namespace osbook

See also
ff The Adding viewer members to a domain using rhc recipe

ff The Adding an admin member to a domain using rhc recipe

ff The Viewing all the members in a domain using rhc recipe

Managing Domains

62

Removing members from a domain using rhc
Let's suppose you are a system admin and suddenly your application starts behaving weird.
You looked at the logs but you were not able to understand them. To fix this issue, you had
to give a developer access to look at the logs. The developer was able to understand the
problem, and now you want to remove the developer membership.

Getting ready
To complete this recipe, you will need to have rhc installed on your machine. Please refer to
the Installing the OpenShift rhc command-line client recipe in Chapter 1, Getting Started with
OpenShift, for instructions.

You will need two OpenShift accounts to work through this recipe. Please refer to the
Creating an OpenShift Online account recipe in Chapter 1, Getting Started with OpenShift,
for OpenShift account registration instructions.

How to do it…
To remove the openshift.cookbook.test@gmail.com user from the osbook domain of
openshift.cookbook@gmail.com, run the following command:

$ rhc remove-member openshift.cookbook.test@gmail.com --namespace osbook

How it works…
The rhc member-remove command does two things:

ff It removes the openshift.cookbook.test@gmail.com public SSH key from the
authorized keys registry so that openshift.cookbook.test@gmail.com can't
perform SSH operations such as git clone and SSH into application gears.

ff It removes the openshift.cookbooktest@gmail.com member from the
osbook domain.

You can verify that openshift.cookbook.test@gmail.com is removed from the
members' list by inserting the following command:

$ rhc members --namespace osbook

Login Role

---------------------------- -------------

openshift.cookbook@gmail.com admin (owner)

Chapter 2

63

There's more…
You can remove all the members from a domain by using the --all flag:

$ rhc remove-member --all --namespace osbook

See also
ff The Adding viewer members to a domain using rhc recipe

ff The Adding an admin member to a domain using rhc recipe

ff The Viewing all the members in a domain using rhc recipe

Restricting gear sizes for a domain using rhc
As you start using different domains for different environments, you will feel the need to
restrict gear sizes for different domains. In particular, you would like to use small gears
for development and large gears for production. When you create an application, you can
specify the gear size for that application. This does not help much as it applies only to that
application. To avoid using large gears for development, you would want to restrict the
development domain only to small gears.

Getting ready
To complete this recipe, you will need to have rhc installed on your machine. Please refer to
the Installing the OpenShift rhc command-line client recipe in Chapter 1, Getting Started with
OpenShift, for instructions.

How to do it…
To restrict the devosbook domain to only small gears, run the following command:

$ rhc configure-domain --allowed-gear-sizes small --namespace devosbook

How it works…
By default, when you create a new domain, it gains access to all the gear sizes available for
your account. When you sign up for a free account, you receive access to only small gears,
meaning what you can do is limited. However, in the commercial version, you can get access
to bigger gear sizes. The rhc configure-domain command allows you to restrict a domain
to specific gear sizes.

Managing Domains

64

The rhc configure-domain command requires you to specify a list of gear sizes you
want to allow in a domain. The namespace is optional. If you do not specify a domain name,
the domain associated with the user specified in ~/.openshift/express.conf will be
configured. You can also specify multiple gear sizes:

$ rhc configure-domain --allowed-gear-sizes small,medium --namespace
devosbook

There's more…
You can also configure a domain to not allow any application creation by using the --no-
allowed-gear-sizes option. You will use this option to disallow application creation for a
domain or to block a domain name for later use. For example, I could create another domain,
osbook2, for the second version of this book and configure it with the--no-allowed-
gear-sizes option:

$ rhc configure-domain --no-allowed-gear-sizes --namespace osbook

See also
ff The Adding viewer members to a domain using rhc recipe

ff The Adding an admin member to a domain using rhc recipe

ff The Viewing all the members in a domain using rhc recipe

Leaving a domain using rhc
You have now become a member of a domain that corresponds to the production environment.
You have completed your work and now you want to leave the production domain.

Getting ready
To complete this recipe, you will need to have rhc installed on your machine. Please refer to
the Installing the OpenShift rhc command-line client recipe in Chapter 1, Getting Started with
OpenShift, for instructions.

How to do it…
To leave a domain, you should run the following command. All the users are allowed to leave
the domain they are a member of:

$ rhc leave-domain --namespace prodosbook -l openshift.cookbook.test@
gmail.com

Chapter 2

65

How it works…
The rhc leave-domain command requires only one mandatory argument, which is
--namespace, the namespace you want to leave. It then removes the user from the
domain members. The rhc client makes a REST delete request to remove the member
from the namespace.

See also
ff The Adding viewer members to a domain using rhc recipe
ff The Adding an admin member to a domain using rhc recipe
ff The Viewing all the members in a domain using rhc recipes

Deleting a domain using rhc
You created a domain for testing and now you no longer require it. Naturally, you would like to
delete the domain.

Getting ready
To complete the steps in this recipe, you will need rhc to be installed on your machine.

How to do it…
You should run the following command to delete a domain:

$ rhc delete-domain --namespace testosbook

Once the domain is deleted, there is no way to undo it. So, please use
this command with precaution.

How it works…
The rhc delete-domain command will delete the domain by making a REST delete call to
the OpenShift service. If your domain contains an application, you will not be able to delete
the domain. Instead, you will get an error message:

$ rhc delete-domain --namespace testosbook

Deleting domain 'testosbook' ... Domain contains applications. Delete
applications first or set force to true.

Managing Domains

66

Therefore, to delete a domain with an application, you have to pass a –force flag. This will
delete the domain and all the applications associated with it.

There's more…
The OpenShift web console also allows you to delete members from a domain. Go to
https://openshift.redhat.com/app/console/domain/{domain-name} and
replace {domain-name} with the domain name in which you want to delete a member. Click
on the Delete this domain… button to delete it. This is shown in the following screenshot:

See also
ff The Renaming a domain using rhc recipe

https://openshift.redhat.com/app/console/domain/{domain-name}

3
Creating and Managing

Applications

This chapter presents a number of recipes that show you how to get started with application
development using the rhc command-line client. You will learn how to create your own OpenShift
application using a single command, how to use application management operations such as
start, stop, and delete, how to set up your own domain name for your application, and how to
track and roll back deployments.

The specific recipes within this chapter are:

ff Creating an OpenShift application using the rhc command-line client

ff Specifying your own template Git repository URL

ff Starting/stopping/restarting an application

ff Adding and managing add-on cartridges

ff Adding a cron cartridge to an application

ff Using downloadable cartridges with OpenShift applications

ff Viewing application details

ff Cloning the application Git repository using rhc

ff SSH into the application gear using rhc

ff Running a command in the application's SSH session using rhc

ff Setting application-specific environment variables

ff Taking and restoring application backups

ff Tracking and rolling back application deployments

ff Configuring the default Git branch for deployment

Creating and Managing Applications

68

ff Doing manual deployments

ff Configuring and doing binary deployments

ff Using your own custom domain name

ff Cleaning up the application

ff Deleting the application

Introduction
OpenShift (or any other Platform as a Service (PaaS)) is based on one core principle, in that
it should simplify the application life cycle management, including application scaling to help
developers build their business applications faster. They all help developers achieve higher
productivity by provisioning, managing, and scaling the infrastructure as well as application
stack for them. It enables software developers to take their ideas, write code on the local
machine, and then deploy the application to the cloud in minutes. PaaS can take you a long
way without requiring much work by providing a good foundation to your next big business
idea. PaaS can also help enforce best practices, such as continuous integration, in your
application from inception. In addition, PaaS can also help you get quick feedback from the
customer, and you can iterate faster.

OpenShift provides application developers all the services and tools required to develop and
deploy their applications. Apps running on OpenShift can leverage their managed stack, and
they do not require system admins to manage the underlying platform in order to keep their
apps secure and reliable. OpenShift provides commands that can help application developers
take backups of their applications periodically. To understand how application developers can
take backups, refer to the Taking and restoring application backups recipe.

The rhc command-line tool provides all the commands required to work with your application.
To view all the application-related commands, open a command-line terminal and run the
following command:

$ rhc app -h

Usage: rhc app <action>

Creates and controls an OpenShift application. To see the list of all
applications use the rhc domain show command. Note that

delete is not reversible and will stop your application and then remove
the application and repo from the remote server. No

local changes are made.

We will cover all these commands in this chapter, so stay tuned!

Chapter 3

69

Every OpenShift application runs inside a gear, which is a container built using SELinux,
Control Groups, and pam_namespace Linux technologies. Let's look at all these technologies
one by one:

ff SELinux:SELinux (Security Enhanced Linux) is a Linux kernel security module
originally developed by the United States National Security Agency. OpenShift uses
SELinux to achieve gear isolation and a hardened security layer around gears.
This limits application gears from accessing parts of the system they should not
access, such as the lower-level system and other application gears running on the
same node. In a multitenant environment, such as OpenShift, this behavior is very
important to ensure security and reliability when running multiple applications on
the same infrastructure.

ff Control Groups: OpenShift uses Control Groups (cgroups), a Linux kernel feature,
to allocate resources such as CPU time, memory, bandwidth, or a combination of
these resources among process groups. The amount of RAM and disk space a gear
is allocated depends on the gear size. In the free tier, you only have access to small
gears, which have 512 MB RAM and 1 GB of disk space. We will look at gear size in
the Creating an OpenShift application using the rhc command-line client recipe.

ff pam_namespace: pam_namespace is used to allow each user or session to maintain
its own namespace for directory structures, keeping them from being able to view or
impede upon each other's namespace. By using this, OpenShift is able to provide the
/tmp directory to each gear.

A gear runs different software components (or cartridges) for your application. A cartridge is
what makes a gear useful, that is, it provides the software components that an application
might need. Every OpenShift application requires one web cartridge and can have zero or
more add-on and downloadable cartridges. There are three types of cartridges:

ff Web cartridge: These are used to serve web requests. You can't create an OpenShift
application without a web cartridge. You have to specify the web cartridge at application
creation time. They are available for Java, PHP, Python, Ruby, Node.js, and Perl, where
you can list all the web cartridges by running the following command:
$ rhc cartridges|grep web

jbossas-7 JBoss Application Server 7 web

jbosseap-6 (*) JBoss Enterprise Application Platform 6 web

jenkins-1 Jenkins Server web

nodejs-0.10 Node.js 0.10 web

nodejs-0.6 Node.js 0.6 web

perl-5.10 Perl 5.10 web

php-5.3 PHP 5.3 web

zend-5.6 PHP 5.3 with Zend Server 5.6 web

php-5.4 PHP 5.4 web

Creating and Managing Applications

70

zend-6.1 PHP 5.4 with Zend Server 6.1 web

python-2.6 Python 2.6 web

python-2.7 Python 2.7 web

python-3.3 Python 3.3 web

ruby-1.8 Ruby 1.8 web

ruby-1.9 Ruby 1.9 web

jbossews-1.0 Tomcat 6 (JBoss EWS 1.0) web

jbossews-2.0 Tomcat 7 (JBoss EWS 2.0) web

diy-0.1 Do-It-Yourself 0.1 web

ff Add-on cartridge: These are additional cartridges provided by OpenShift. You can
add them depending on your requirement, that is, if you need a database in your
application, you will need to add the MySQL, PostgreSQL, or MongoDB add-on
cartridge. You can list all the add-on cartridges by running the following command:
$ rhc cartridges|grep addon

10gen-mms-agent-0.1 10gen Mongo Monitoring Service Agent addon

cron-1.4 Cron 1.4 addon

jenkins-client-1 Jenkins Client addon

mongodb-2.2 MongoDB 2.2 addon

mysql-5.1 MySQL 5.1 addon

mysql-5.5 MySQL 5.5 addon

metrics-0.1 OpenShift Metrics 0.1 addon

phpmyadmin-4 phpMyAdmin 4.0 addon

postgresql-8.4 PostgreSQL 8.4 addon

postgresql-9.2 PostgreSQL 9.2 addon

rockmongo-1.1 RockMongo 1.1 addon

switchyard-0 SwitchYard 0.8.0 addon

haproxy-1.4 Web Load Balancer addon

ff Downloadable cartridge: This enables developers to write their own cartridges. They
can write their own cartridges and make them available via a public Git repository.
These can then be installed using the rhc add-cartridge command. We will cover
these in the Using downloadable cartridges with OpenShift applications recipe
in this chapter.

Every OpenShift application has at least a private Git repository and web cartridge. It may
have zero or more add-on cartridges, with the possibility of zero or more downloadable
cartridges. An OpenShift application has built-in support for the Git version control system,
automated dependency management, persistent data directory for file upload or storing other
files, and deployment rollback.

Chapter 3

71

An application can be a scalable or nonscalable application. A scalable application runs on
multiple gears and scales horizontally depending on the number of concurrent users. We will
look at scalable applications in Chapter 11, Logging and Scaling Your OpenShift Applications.
In the current chapter, we will cover nonscalable applications. A nonscalable application
runs inside a single gear, and all the cartridges are added to that gear. These are good for
development purposes, but for production, high-traffic applications, you should consider
scalable applications.

Creating an OpenShift application using the
rhc command-line client

In this recipe, you will learn how to create an OpenShift application using rhc. We will create
a PHP 5.4 application just for demonstration. This chapter will be language-agnostic and will
only cover concepts that apply to all the application types. Different programming languages
supported by OpenShift will be covered later in the book.

Getting ready
To step through this recipe, you will need the rhc command-line client installed on your
machine. Please refer to the Installing the OpenShift rhc command-line client recipe in
Chapter 1, Getting Started with OpenShift, for details. Also, you should set up your OpenShift
account using rhc by following the Setting up an OpenShift account using rhc recipe in
Chapter 1, Getting Started with OpenShift.

How to do it…
To create a PHP 5.4 OpenShift application named myapp, open a new command-line terminal
and run the following command:

$ rhc create-app --app myapp --type php-5.4

You can also avoid typing the --app and --type options where OpenShift will automatically
figure them out, as follows:

$ rhc create-app myapp php-5.4

You can also write the command as follows:

$ rhc app-create myapp php-5.4

All the rhc commands can take either the rhc <noun>-<verb> or rhc <verb>-<noun>
form.

Creating and Managing Applications

72

How it works…
Let's go through all the steps performed by the rhc create-app command:

1.	 The rhc create-app command requires two mandatory options:--app and
--type. You are not required to pass these options with the command, but you
are required to provide their values as shown in the rhc create-app myapp
php-5.4 command. These two options specify the application name and the
web cartridge the application will use. The OpenShift server checks whether the
application name and web cartridge name are correct. A valid application name must
contain only alphanumeric characters and can be, at the most, 32 characters in
length. You can view all the available web cartridges using the following command:
$ rhc cartridges|grep web

2.	 After making sure the application name and web cartridge name are correct, it will
check whether sufficient gears are available in your domain to create an application.
In the free tier, you only have access to three gears, so if you try to create an
application after you have consumed all three, you will receive an error response.
For example, if you have already created three applications and you try to create the
fourth application, you will get the error response, user has already reached
the gear limit of 3.

3.	 If you have sufficient resources to create an application, rhc will make a HTTP POST
request to create an application. The rhc command-line client is a wrapper around
the OpenShift REST API. The OpenShift server will receive the POST request and
allocate a gear for your application. The amount of RAM and disk space a gear is
allocated depends on the gear size. In the free tier, you only have access to small
gears, which have 512 MB of RAM and 1 GB of disk space. If you are in the paid
tier, you can specify bigger gear sizes with the --gear option. The valid values for
--gear at the time of writing are small, medium, and large.

4.	 Next, OpenShift will install the web cartridge required by your application. In the
application created previously, it will install the PHP 5.4 language runtime and Apache
web server to serve your web requests and perform the required configuration.

5.	 The OpenShift server will also create a private Git repository for your application.
The Git repository will have a template application depending on the web cartridge
type. You can specify your own template application using --from-code. This is
covered in the next recipe.

6.	 Once the application is created with all the required cartridges, the OpenShift
server will create a public URL for your application and register it with the DNS. The
public URL is a combination of the application name and the domain name. For the
application created previously, the URL will be http://myapp-osbook.rhcloud.
com. Here, myapp is the application name, and osbook is the domain name. You can
also use your own custom domain name with OpenShift applications. This is covered
in the Using your own custom domain name recipe.

Chapter 3

73

7.	 After the application DNS name is available, rhc will use the Git command-line to
clone the application Git repository on your local machine.

8.	 Finally, you will be shown the details of your application. You can view the running
application at http://myapp-{domain-name}.rhcloud.com/. Please replace
{domain-name}with your account domain name. An example is shown as follows:

Your application 'myapp' is now available.

 URL: http://myapp-osbook.rhcloud.com/

 SSH to: 52ef686d4382ec39f500001a@myapp-osbook.rhcloud.com

 Git remote: ssh://52ef686d4382ec39f500001a@myapp-osbook.rhcloud.
com/~/git/myapp.git/

 Cloned to: /home/vagrant/dev/apps/myapp

Let's look at the myapp application directory on your local machine. After the application is
created, a directory with a name that is identical to the application name is created on your
local machine. It houses the source code of the template application created by OpenShift,
as follows:

$ ls -a

.git .openshift index.php

Let's look at each of these components one by one as follows:

1.	 The .git directory stores the Git repository of the myapp application. This directory
contains the complete history of the repository. The .git/config file contains the
configuration for the repository. The rhc command-line tool also adds the application-
specific metadata to the .git/config file. The application-specific metadata is
under the rhc section:
[rhc]

app-id = 52ef686d4382ec39f500001a

app-name = myapp

domain-name = osbook

2.	 The .openshift directory stores OpenShift-specific files. The .openshift directory
has three subdirectories—action_hooks, cron, and markers:

�� The action_hooks directory stores the executable scripts, which gives
application developers an entry point into various applications and platform
life cycle operations. An example of using an action hook would be to send
an e-mail after the application is deployed.

�� The cron directory stores the executable scripts, which can be scheduled to
run periodically. We will cover this in detail in the Adding a cron cartridge to
an application recipe later in this chapter.

Creating and Managing Applications

74

�� The markers directory allows a user to specify settings such as hot
deployment, debugging, and the version of Java to be used. As these
settings are specific to web cartridges, we will cover them in detail in
web-cartridge-specific chapters.

3.	 The index.php file contains a simple PHP application that you see when you visit
the application URL.

At the time of writing this book, applications in the free tier will idle
out after 24 hours of inactivity. Inactivity means no HTTP request
has been made to your application URL from outside the gear.
When idling, it takes a few seconds for the gear to wake up and
start processing web requests.

There's more
The rhc command-line tool will raise an exception if the application creation takes more than
120 seconds. To overcome errors related to timeout, you can specify the --timeout option
as shown in the following code. The timeout value is in seconds:

$ rhc app-create myapp php-5.4 --timeout 300

You can also configure the timeout in the ~/.openshift/express.conf file, as shown in
the following code. This will apply to all the commands:

The default timeout for network operations

timeout=300

See also
ff The Creating a WordPress application using the web console recipe in Chapter 1,

Getting Started with OpenShift

ff The Specifying your own template Git repository URL recipe

ff The Adding a cron cartridge to an application recipe

ff The Viewing application details recipe

ff The Using your own custom domain name recipe

Chapter 3

75

Specifying your own template Git
repository URL

In the Creating an OpenShift application using the rhc command-line client recipe, we created
an application that used a template source code provided by OpenShift. Let's suppose you
want OpenShift to use your Git repository to populate the initial contents of the application.
This can be accomplished using the --from-code option at application creation time.

Getting ready
To complete this recipe, you will need the rhc command-line client installed on your machine.
Please refer to the Installing the OpenShift rhc command-line client recipe in Chapter 1,
Getting Started with OpenShift, for details. You should also complete the setup on your
OpenShift account using rhc by following the Setting up an OpenShift account using rhc
recipe in Chapter 1, Getting Started with OpenShift.

How to do it…
To create an application that uses initial content from your own Git repository, use the--
from-code option:

$ rhc create-app javaapp jbosseap-6 --from-code https://github.com/
OpenShift-Cookbook/chapter3-recipe2.git

The Git repository URL should be a public Git repository; otherwise, application
creation will fail as OpenShift cannot access the repository.

How it works…
When you create an OpenShift application using the --from-code option, the OpenShift
server will first clone the Git repository provided with the --from-code option and then
use that repository source code to populate the initial contents of the application. The Git
repository URL should be a public Git repository; otherwise, OpenShift will not be able to
clone the repository and will instead raise an exception. Following this, OpenShift will build
the source code, create an artifact, and then deploy the artifact to the server. An artifact
is a by-product produced during the development of software, for example, in the case of
Java applications, it could be either a Java Archive (JAR), Web Archive (WAR), or Enterprise
Archive (EAR) file.

Creating and Managing Applications

76

In the previous command, we created a JBoss EAP application that used a public Git
repository URL as its initial code. After the application is successfully created, you can view
the application running at http://javaapp-{domain-name}.rhcloud.com/. The
application is a simple demonstration of the article extraction library called Boilerpipe (which
you can access at https://code.google.com/p/boilerpipe/). It takes a URL and
gives you the title and relevant text from the URL.

See also
ff The Creating a WordPress application using the web console recipe in Chapter 1,

Getting Started with OpenShift

ff The Creating an OpenShift application using the rhc command-line client recipe

Starting/stopping/restarting an application
The rhc command-line client provides commands to start, stop, and restart an application.
In this recipe, you will learn how to perform these commands using rhc.

Getting ready
To step through this recipe, you will need rhc installed on your machine. Also, we will make
use of the OpenShift application created in the Creating an OpenShift application using the
rhc command-line client recipe.

How to do it…
To start an application, run the following command:

rhc start-app --app myapp

To stop an application, run the following command:

rhc stop-app --app myapp

To restart an application, run the following command:

rhc restart-app –-app myapp

The --app option is not required if you are running the command from within the application
Git repository. When you run the command within the repository, rhc will find the domain
name and the application name from the .git/config Git repository configuration file. It
uses the git config --get rhc.domain-name command to find the domain name and
git config –get rhc.app-name to find the application name.

http://javaapp-{domain-name}.rhcloud.com/
https://code.google.com/p/boilerpipe/

Chapter 3

77

How it works…
The rhc start/stop/restart app commands allow you to manage the application using rhc.
The rhc client makes a POST HTTP request to stop the application, which stops the web and
add-on cartridges. Every OpenShift gear has an executable called the gear available on it.
When the server receives the POST request, it executes the gear stop command to stop the
PHP 5.4 cartridge. After the application has successfully stopped, the curl request to the
application URL will return a 503 error:

$ curl http://myapp-osbook.rhcloud.com

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN">

<html><head>

<title>503 Service Temporarily Unavailable</title>

</head><body>

<h1>Service Temporarily Unavailable</h1>

<p>The server is temporarily unable to service your

request due to maintenance downtime or capacity

problems. Please try again later.</p>

<hr>

<address>Apache/2.2.22 (Red Hat Enterprise Web Server) Server at myapp-
osbook.rhcloud.com Port 80</address>

</body></html>

The rhc start-app command makes a POST HTTP request to start the application. The
OpenShift server will receive the POST request and invoke the gear start command on the
application gear. The gear start command will first start all the add-on cartridges before
starting the web cartridge.

The rhc restart-app command first stops the application by invoking the gear stop
command on the application gear, and then starts the application by calling the gear start
command on the application gear.

There's more…
The rhc stop-app command only stops the web and add-on cartridge processes, but if
you want to kill all the processes running in your application gear, you should use the rhc
force-stop-app command. This command will kill all the processes running inside the
gear. This is very useful when people start running their own processes inside the application.
In those cases, the rhc app-stop command will not help:

$ rhc force-stop-app --app myapp

Creating and Managing Applications

78

See also
ff The Creating an OpenShift application using the rhc command-line client recipe

ff The Viewing application details recipe

Adding and managing add-on cartridges
In the Creating an OpenShift application using the rhc command-line client recipe, you
learned how to create a new OpenShift application using a web cartridge. Apart from web
cartridges, OpenShift also supports a number of add-on cartridges. These cartridges provide
functionalities, such as databases, monitoring, cron jobs, database web clients, and others.

In this recipe, you will learn how to install the MySQL 5.5 cartridge to the PHP 5.4 application
that you created in the Creating an OpenShift application using the rhc command-line
client recipe.

Getting ready
To complete this recipe, you will need rhc installed on your machine. Also, we will make use
of the OpenShift application created in the Creating an OpenShift application using the rhc
command-line client recipe.

How to do it…
To add the MySQL 5.5 cartridge to our application, run the following command:

$ rhc cartridge-add --app myapp --cartridge mysql-5.5

If you want to start a cartridge, run the following command:

$ rhc cartridge-start --app myapp --cartridge mysql-5.5

To stop a cartridge, run the following command:

$ rhc cartridge-stop --app myapp --cartridge mysql-5.5

To restart a cartridge, run the following command:

$ rhc cartridge-restart --app myapp --cartridge mysql-5.5

You can also view a cartridge status using the following command:

$ rhc cartridge-status --app myapp --cartridge mysql-5.5

Finally, to remove a cartridge, run the following command:

$ rhc cartridge-remove --app myapp --cartridge mysql-5.5 --confirm

Chapter 3

79

The --confirm option is used to confirm the cartridge removal. If you don't specify
the--confirm option, OpenShift will ask you to confirm your action.

How it works…
All the cartridge-specific commands are available under rhc cartridge. To view all the
actions you can perform on a cartridge, run the following command:

$ rhc cartridge -h

List of Actions

 add Add a cartridge to your application

 list List available cartridges

 reload Reload the cartridge's configuration

 remove Remove a cartridge from your application

 restart Restart a cartridge

 scale Set the scale range for a cartridge

 show Show useful information about a cartridge

 start Start a cartridge

 status Get current the status of a cartridge

 stop Stop a cartridge

 storage View/manipulate storage on a cartridge

The rhc cartridge-add command makes an HTTP POST request to add the MySQL 5.5
cartridge to the myapp application. The command-line tool runs within the context of the
current directory of your command line and interacts with OpenShift REST API. This helps you
to get away with specifying the application name using the --app option with every command.
The server receives the POST request and installs the MySQL binary on the application gear.
After successfully creating the application, you will receive the following result:

mysql-5.5 (MySQL 5.5)

 Gears: Located with php-5.4

 Connection URL: mysql://$OPENSHIFT_MYSQL_DB_HOST:$OPENSHIFT_MYSQL_DB_
PORT/

 Database Name: myapp

 Password: 2L5FIzuyZrXa

 Username: adminyEY1pty

Added mysql-5.5 to application myapp

MySQL 5.5 database added. Please make note of these credentials:

Creating and Managing Applications

80

 Root User: adminyEY1pty

 Root Password: 2L5FIzuyZrXa

 Database Name: myapp

Connection URL: mysql://$OPENSHIFT_MYSQL_DB_HOST:$OPENSHIFT_MYSQL_DB_
PORT/

You can manage your new MySQL database by also embedding phpmyadmin.

The phpmyadmin username and password will be the same as the MySQL
credentials above.

The rest of the commands are self-explanatory, so they require little discussion.

Please be aware that the rhc remove-cartridge command is an
irreversible action, and you cannot recover data after removing the cartridge.

There's more…
You can also view the details of a cartridge using the rhc cartridge command:

$ rhc show-cartridge mysql –-app myapp

Using mysql-5.5 (MySQL 5.5) for 'mysql'

mysql-5.5 (MySQL 5.5)

 Gears: Located with php-5.4

 Connection URL: mysql://$OPENSHIFT_MYSQL_DB_HOST:$OPENSHIFT_MYSQL_DB_
PORT/

 Database Name: myapp

 Password: 2L5FIzuyZrXa

 Username: adminyEY1pty

See more
ff The Creating an OpenShift application using the rhc command-line client recipe

ff The Viewing application details recipe

ff The Adding a cron cartridge to an application recipe

Chapter 3

81

Adding a cron cartridge to an application
In this recipe, you will learn how to add the cron add-on cartridge to your application. The cron
cartridge will write the output of the quota command to a file every hour. The database and
other cartridges will be covered later in this book.

Getting ready
To prepare for this recipe, you will need rhc installed on your machine. Also, we will make
use of the OpenShift application created in the Creating an OpenShift application using
the rhc command-line client recipe.

How to do it…
Perform the following steps to add a cron cartridge to your application:

1.	 Open a new command-line terminal and run the following command:
$ rhc add-cartridge --cartridge cron --app myapp

2.	 Create a new file quota.txt in the application root directory and populate it with the
following code. On a *nix machine, you can use the cat command, as shown in the
following command line:
$ echo "# Quote File" >> quota.txt

On Windows machines, you can use filesystem explorer to create a new file. After
creating the file, write # Quota File to it.

3.	 After adding the cron cartridge, create a new file named quota.sh in the
.openshift/cron/hourly folder, and add the following content to it:
#!/bin/bash
date >> $OPENSHIFT_REPO_DIR/quota.txt
quota -s >> $OPENSHIFT_REPO_DIR/quota.txt
echo "***
*********************************" >> $OPENSHIFT_REPO_DIR/quota.txt

4.	 Make the quota.sh script executable by running the following command. On *nix
machines, you can run the following command:
$ chmod +x .openshift/cron/hourly/quota.sh

On Windows machines, you have to use the following command as the chmod
command is not available on them:
$ git update-index --add --chmod=+x .openshift/cron/hourly/quota.sh

5.	 Add the quota.sh script to the Git repository, and then commit the changes to the
local Git repository:
$ git add .

$ git commit -am "added hourly script to output quota limits"

Creating and Managing Applications

82

6.	 Push the changes to OpenShift service:
$ git push

7.	 After the changes are deployed, you will see the quota information at
http://myapp-{domain-name}.rhcloud.com/quota.txt.

How it works…
Every OpenShift application has a cron directory under the .openshift directory. This
directory is used to define jobs that should run every minute, hourly, daily, weekly, or monthly.
Cron jobs are not invoked until you add the cron cartridge to the application using the
rhc add-cartridge command. They are useful to automatically perform tasks in the
background at regular intervals. You can use them to take database backups, clean up log
files, send e-mails, and much more.

In step 1, you added the cron cartridge to the myapp application. Next, in step 3, you defined
a quota.sh bash script that should run every hour. The quota.sh script appends the
date and quota information to the quota.txt file in the php directory under the OpenShift
repository location. $OPENSHIFT_REPO_DIR is an environment variable that points to the
location of the application source code directory. In step 4, you made the quota.sh script
executable, without which the OpenShift service would not be able to execute the script. In
the next three steps, you committed the change to the local Git repository and then pushed
the changes to your application Git repository hosted on the OpenShift application gear.
OpenShift will first stop the entire cartridge, build the application, deploy it to the Apache
server, and then finally start all the cartridges. After the cron cartridge is started, it will write
to the quota.txt file every hour. You can view the quota details by going to http://myapp-
{domain-name}.rhcloud.com/quota.txt:
Tue Feb 4 02:57:14 EST 2014 Disk quotas for user
52f08f184382ecb8e9000239 (uid 2675): Filesystem blocks quota
limit grace files quota limit grace /dev/mapper/EBSStore01-
user_home01 9760 0 1024M 359
0 80000 ***
*************************************** Tue Feb 4 03:57:14 EST 2014 Disk
quotas for user 52f08f184382ecb8e9000239 (uid 2675): Filesystem
blocks quota limit grace files quota limit grace /dev/
mapper/EBSStore01-user_home01 9760 0 1024M
359 0 80000 ***

The default timeout for a cron job is 5 minutes, which means that your job
should be complete within 5 minutes, or else it will be terminated.
You can run longer jobs in the background using nohup:
nohup /path-to/script > $OPENSHIFT_LOG_DIR/logfile 2>&1 &

Chapter 3

83

There's more…
OpenShift currently only supports scheduling jobs every minute, or at hourly, daily, weekly, or
monthly intervals. To run a job at a specific time or specific intervals, such as running a daily
job at 8:30 PM, create a job that runs every minute, and then add the following code. This job
will execute itself only when the time is 8:30 PM:

#!/bin/bash
if [`date +%H:%M` == "20:30"]
then
 date >> $OPENSHIFT_REPO_DIR/quota_20h_30m.txt
quota -s >> $OPENSHIFT_REPO_DIR/quota_20h_30m.txt
echo "********************************">> $OPENSHIFT_REPO_DIR/
quota_20h_30m.txt
fi

See also
ff The Creating an OpenShift application using the rhc command-line client recipe

Using downloadable cartridges with
OpenShift applications

In this recipe, you will learn how to use a third-party downloadable cartridge with
OpenShift applications.

Getting ready
To step through this recipe, you will need rhc installed on your machine. Also, we will make
use of the OpenShift application created in the Creating an OpenShift application using the
rhc command-line client recipe.

How to do it…
To add the Monit downloadable cartridge, use the rhc add-cartridge command as
shown in the following command. Please replace email@address.com with your valid
email address:

$ rhc cartridge-add --app myapp https://raw.githubusercontent.com/
openshift-cartridges/openshift-origin-cartridge-monit/master/metadata/
manifest.yml --env MONIT_ALERT_EMAIL=email@address.com

Creating and Managing Applications

84

The --env option is used to set the environment variable required by this cartridge.
The cartridge required the MONIT_ALERT_EMAIL environment variable, which is used to
configure e-mail that would be used to send alert notifications. Environment variables will
be covered in detail in the Setting application-specific environment variables recipe.

How it works…
To install a third-party downloadable cartridge to your application, you need to provide the
rhc command-line client with the URL to its manifest file called manifest.yml. This file
exists under the metadata directory in the cartridge source repository, and contains a URL
pointing to the actual contents of the cartridge. The list of actively maintained third-party
cartridges can be found at https://www.openshift.com/developers/download-
cartridges. Another good way to find downloadable cartridges is to search GitHub
(https://github.com/search?q=%22openshift+cartridge%22), as most
cartridges are hosted on GitHub.

You can later remove the cartridge by running the rhc remove-cartridge command:

$ rhc remove-cartridge monit --confirm

See also
ff The Creating an OpenShift application using the rhc command-line client recipe

ff The Adding and managing add-on cartridges recipe

ff The Adding a cron cartridge to an application recipe

Viewing application details
In this recipe, you will learn how to view all the details related to an application.

Getting ready
To step through this recipe, you will need rhc installed on your machine. Also, we will make
use of the OpenShift application created in the Creating an OpenShift application using the
rhc command-line client recipe.

How to do it…
The rhc show-app command can be used to view the information details about the
application, as follows:

$ rhc show-app --app myapp

https://www.openshift.com/developers/download-cartridges
https://www.openshift.com/developers/download-cartridges
https://github.com/search?q=%22openshift+cartridge%22

Chapter 3

85

The --app option is not required if you are running the command within the application
Git repository.

How it works…
The rhc show-app command returns all the details about an application. The output of the
command is shown as follows. The details include the application creation time, application
name, public URL, Git repository URL, SSH URL, and details about all the cartridges:

rhc show-app --app myapp

myapp @ http://myapp-osbook.rhcloud.com/ (uuid: 52f08f184382ecb8e9000239)

 Domain: osbook

 Created: 1:56 AM

 Gears: 1 (defaults to small)

 Git URL: ssh://52f08f184382ecb8e9000239@myapp-osbook.rhcloud.com/~/
git/myapp.git/

 SSH: 52f08f184382ecb8e9000239@myapp-osbook.rhcloud.com

 Deployment: auto (on git push)

 php-5.4 (PHP 5.4)

 Gears: Located with cron-1.4

 cron-1.4 (Cron 1.4)

 Gears: Located with php-5.4

You can also view the state of the application by passing in the --state option, as shown in
the following command. The valid application states are started, stopped, and building:

$ rhc show-app --app myapp --state

Cartridge php-5.4, cron-1.4 is started

Creating and Managing Applications

86

If you only want to view the SSH information and state of all the gears in the application,
you can use the --gears option with the rhc app-show command:

$ rhc show-app--app --gears

ID State Cartridges Size SSH URL

------------------------ ------- ---------------- ----- -----------------

52f08f184382ecb8e9000239 started php-5.4 cron-1.4 small
52f08f184382ecb8e9000239@myapp-osbook.rhcloud.com

The previous command is very useful when you are working with scalable applications, as it
provides you with information about all the application gears with a single command.

See more
ff The Creating an OpenShift application using the rhc command-line client recipe

ff The Cloning the application Git repository using rhc recipe

Cloning the application Git repository
using rhc

In the Cloning the application to the local machine recipe in Chapter 1, Getting Started with
OpenShift, you learned how to clone the Git repository using the Git command-line tool. This
recipe had a couple of steps—first, to copy the Git repository URL from the web console and
second, to use the git-clone command to clone the Git repository. The rhc command-line
tool can help you save some keystrokes. In this recipe, you will learn how to use rhc to clone
the Git repository.

Getting ready
To step through this recipe, you will need rhc installed on your machine. Also, we will use
the OpenShift application created in The Creating an OpenShift application using the rhc
command-line client recipe.

How to do it…
To clone the myapp application on your local machine using rhc, run the following command:

rhc git-clone --app myapp

Chapter 3

87

How it works…
The rhc git-clone command first makes a HTTP GET request to fetch the details about
the myapp application. The application details include the Git repository URL. The rhc git-
clone command then uses the git clone <GIT_REPOSITORY_URL> command to clone
the application.

The rhc git-clone command requires Git to be installed on
your machine to work.

There's more…
You can also tell the rhc git-clone command to clone the repository to a specific directory
using the --repo option. The following command will clone the repository inside the
tmp/myapp folder:

$ rhc git-clone --app myapp --repo ../tmp/myapp

See more
ff The Creating an OpenShift application using the rhc command-line client recipe

ff The Cloning the application to the local machine recipe in Chapter 1, Getting Started
with OpenShift

SSH into the application gear using rhc
In this recipe, you will learn how to use rhc to SSH into the application gear.

Getting ready
In order to complete this recipe, you will need rhc installed on your machine. Also, you
will need to make use of the OpenShift application created in The Creating an OpenShift
application using the rhc command-line client recipe.

How to do it…
To SSH into the application gear, open a new command-line terminal and run the
following command:

$ rhc ssh --app myapp

Creating and Managing Applications

88

The --app option is not required if you are running the command within the application
Git repository.

How it works…
Every OpenShift application gear acts and behaves like a virtual server that you can access
using SSH. A gear is assigned a unique user ID and is associated with a SELinux context.
When you run the rhc ssh command, a secure communication channel is opened between
the node hosting the gear and the local machine where you are presented with a limited
shell within the environment, as shown in the following command. I have removed part of
the output for brevity:

Connecting to 52f08f184382ecb8e9000239@myapp-osbook.rhcloud.com ...

 Welcome to OpenShift shell

This shell will assist you in managing OpenShift applications.

 !!! IMPORTANT !!! IMPORTANT !!! IMPORTANT !!!

 Shell access is quite powerful and it is possible for you to

 accidentally damage your application. Proceed with care!

 If worse comes to worst, destroy your application with "rhc app
delete"

 and recreate it

 !!! IMPORTANT !!! IMPORTANT !!! IMPORTANT !!!

 Type "help" for more info.

[myapp-osbook.rhcloud.com 52f08f184382ecb8e9000239]\>

If you run the ls command, you will only see all the directories available under your
application user home directory:

[myapp-osbook.rhcloud.com 52f08f184382ecb8e9000239]\> ls

app-deployments app-root cron git php

There's more…
By default, the SSH connection will timeout after 5 minutes of inactivity, and you will be
logged out of the SSH session. You can turn off connection timeout by unsetting the TMOUT
environment variable:

[myapp-osbook.rhcloud.com 52f08f184382ecb8e9000239]\> unset TMOUT

Chapter 3

89

If other people access your machine and you don't want them to access
your OpenShift application by just typing the rhc ssh command, I would
recommend you use the SSH key passphrase to restrict access. We discussed
SSH key passphrases in the Working with the SSH key passphrases recipe in
Chapter 1, Getting Started with OpenShift.

See more
ff The Creating an OpenShift application using the rhc command-line client recipe

ff The Uploading SSH keys using the web console recipe in Chapter 1, Getting Started
with OpenShift

ff The Working with the SSH key passphrases recipe in Chapter 1, Getting Started
with OpenShift

Running a command in the application's
SSH session using rhc

In this recipe, you will learn how to view the gear directory listing without performing SSH into
the server using rhc.

Getting ready
To step through this recipe, you will need rhc installed on your machine. Also, we will use
the OpenShift application created in the Creating an OpenShift application using the rhc
command-line client recipe.

How to do it…
To run the ls command without performing SSH into the application server, you should run
the following command:

$ rhc app-ssh --app myapp --command ls

The rhc ssh command is a short hand for rhc app-ssh. Both these commands allow you
to SSH into an application gear.

Creating and Managing Applications

90

How it works…
The rhc app-ssh command internally uses the SSH command-line client to connect with the
application gear. With the SSH command-line client, you can specify the command:

$ ssh username@server.com command

The rhc command-line client provides a --command option that allows you to specify a
command you want to run on the server:

$ rhc app-ssh --app myapp --command ls

app-deployments

app-root

cron

git

php

There's more…
If you want to run the command on all the gears in your application, you should use the--
gears option with the rhc app-ssh command. This would be useful when working with
scalable applications. Have a look at the following command:

$ rhc app-ssh --app myapp --gears --command ls

See more
ff The Creating an OpenShift application using the rhc command-line client recipe

ff The SSH into the application gear using rhc recipe

Setting application-specific environment
variables

It is very common that people deploy their application in multiple environments, such
as testing, staging, and production. Usually, the configuration differs between these
environments to ensure that you are using the right service for the right environment.
Consider an example where you want to send e-mails in your application. In the production
environment, you would like to use the cloud e-mail service, such as Sendmail (accessible at
https://www.sendmail.com/), but in the development environment, you would like to use
an open source version of Sendmail. Environment variables provide a programming language
and operating-system-agnostic solution to these kinds of problems.

https://www.sendmail.com/

Chapter 3

91

Hard coding configuration values in the source code is never a good idea, as it leads to
strong coupling between your code and the values, compromising the security of your app if
your code falls into the wrong hands. The environment variables allow you to use the same
application code in different environments leading to portable code.

OpenShift also exposes some environment variables you should use in your application,
rather than hard coding their values. For example, if you want to write a file in your OpenShift
application, you should use the OPENSHIFT_DATA_DIR environment variable to access the
location of the persistent directory. Every OpenShift cartridge also exposes its own set of
environment variables. For example, the PostgreSQL cartridge exposes environment variables
for the username, password, host, port, and so on. You should not hard code the database
configuration properties in your source code but take advantage of environment variables.
You can view all the OpenShift and cartridge-specific environment variables by running the
following command. The rhc ssh command is a shorthand for rhc app-ssh. Both these
commands allow you to SSH into an application gear:

$ rhc ssh --command env

MANPATH=/opt/rh/php54/root/usr/share/man:

OPENSHIFT_PHP_IDENT=redhat:php:5.4:0.0.10

OPENSHIFT_GEAR_MEMORY_MB=512

SELINUX_ROLE_REQUESTED=

GEM_HOME=/var/lib/openshift/52f08f184382ecb8e9000239/.gem

OPENSHIFT_DEPLOYMENT_TYPE=git

SHELL=/usr/bin/oo-trap-user

TMPDIR=/tmp/

SSH_CLIENT=117.207.187.145 15958 22

OPENSHIFT_DEPLOYMENTS_DIR=/var/lib/openshift/52f08f184382ecb8e9000239/
app-deployments/

OPENSHIFT_TMP_DIR=/tmp/

SELINUX_USE_CURRENT_RANGE=

OPENSHIFT_REPO_DIR=/var/lib/openshift/52f08f184382ecb8e9000239/app-root/
runtime/repo/

OPENSHIFT_HOMEDIR=/var/lib/openshift/52f08f184382ecb8e9000239/

OPENSHIFT_GEAR_NAME=myapp

PHPRC=/var/lib/openshift/52f08f184382ecb8e9000239/php//configuration/etc/
php.ini

OPENSHIFT_PYPI_MIRROR_URL=http://mirror1.ops.rhcloud.com/mirror/python/
web/simple

OPENSHIFT_CRON_DIR=/var/lib/openshift/52f08f184382ecb8e9000239/cron/

Creating and Managing Applications

92

OPENSHIFT_APP_SSH_PUBLIC_KEY=/var/lib/openshift/52f08f184382ecb
8e9000239/.openshift_ssh/id_rsa.pub

OPENSHIFT_CLOUD_DOMAIN=rhcloud.com

USER=52f08f184382ecb8e9000239

..// Removed for brevity

As you can see in the result of the previous command, the list also includes environment
variables specific to the cron cartridge that we added in the previous recipe.

In this recipe, you will learn how you can create application-specific environment variables.

Getting ready
To complete this recipe, you will need rhc installed on your machine. Also, you will need to
use the OpenShift application created in the Creating an OpenShift application using the rhc
command-line client recipe.

How to do it…
Perform the following steps to set application-specific environment variables:

1.	 To create an application-specific environment variable, open a new command-line
terminal and run the following command:
rhc env-set --app myapp --env MY_APP_ENV="Hello OpenShift
Environment Variables"

2.	 To test the environment variable, open theindex.php file in the myapp folder,
as follows:
<hgroup>
<h1>Welcome to your PHP application on OpenShift</h1>
</hgroup>

Then, make the following changes in the file:

<hgroup>

<h1>

<?php

echo($_ENV["MY_APP_ENV"]);

?>

</h1>
</hgroup>

Chapter 3

93

3.	 Finally, commit the changes and push it into application gear:
git commit –am "added environment variable in index.php"

git push

4.	 After a successful push, go to http://myapp-osbook.rhcloud.com/ to view
the change.

How it works…
The rhc env-set command allows a developer to set their application-specific environment
variables. This is what happens when you run the rhc env-set command:

1.	 The rhc command-line client makes an HTTP POST request with the environment
variable data in the body.

2.	 The OpenShift broker receives the request and performs some validation. If the
validation check fails, the user would be presented with an error message.

3.	 After passing the validation checks, the broker will create tasks to update all the
application gears with a new environment variable.

4.	 Once done, the user will be shown the success message:
Setting environment variable(s) ... done

The environment variable will not be available until you restart
the application. So, after setting the environment, restart the
app using the rhc app-restart command.

Not only can you set one environment variable at a time, but you can also set multiple
environment variables in one go:

rhc env-set –app myapp –env MY_APP_ENV1=test1 MY_APP_ENV2=test2

There is another alternative to setting up multiple environment variables that use a file to
store environment variables and the passing of the file to the rhc env-set command. You
should create a new file named envs.txt and enter one environment variable per line:

MY_APP_ENV1=test

MY_APP_ENV2=

Now, you can pass the envs.txt file to the rhc env-set command, as follows:

rhc env-set –app myapp envs.txt

Creating and Managing Applications

94

If you want to view all the application-specific environment variables, run the
following command:

rhc env-list –app myapp

There's more…
To update the environment variable value, you should run the rhc env-set command with a
new value, as follows:

rhc env-set --app myapp --env MY_APP_ENV="Hello World"

To remove an environment variable, run the following command:

$ rhc env-remove --env MY_APP_ENV –confirm

See more
ff The Creating an OpenShift application using the rhc command-line client recipe

ff The Viewing application details recipe

Taking and restoring application backups
In the real world, things can go wrong at any time, and you should always have a backup of your
entire application that you can apply to restore the application to a happy state. An OpenShift
application consists of a Git repository, one or more databases, environment variables, and a
persistent data directory you should make a backup of. You can make database backups using
command-line tools, such as mysqldump, pg_dump, and mongoexport, but those only make
backups of the respective databases. We will cover database backups in later chapters. In this
recipe, you will learn how to use rhc to make and restore backups.

Getting ready
In order to prepare yourself for this recipe, you will need rhc installed on your machine. Also,
you will need to make use of the application created in the Creating an OpenShift application
using the rhc command-line client recipe.

How to do it…
1.	 To make a backup of your application, open a command-line terminal and run the

following command:
$ rhc snapshot-save --app myapp --filepath myapp-backup.tar.gz

Chapter 3

95

2.	 Make a change to index.php under the php directory. Change the header to
the following:
<h1>
 Welcome to your PHP application running on OpenShift
</h1>

3.	 Commit the change to the local repository and push the changes to the application's
remote Git repository to deploy the changes, as follows:
$ git commit -am "updated header in index.php"

$ git push

4.	 Go to http://myapp-{domain-name}.rhcloud.com/ to view your change.

5.	 To restore your application from the backup, run the following command:
$ rhc restore-snapshot --filepath myapp-backup.tar.gz

6.	 Now, after applying the backup, if you visit the application URL at http://myapp-
{domain-name}.rhcloud.com/, you will notice that the change we made got
reverted, as we applied the snapshot that was taken before making the change
in step 2.

How it works…
Let's now understand what you did in the steps mentioned in the previous section. In step 1,
you ran the rhc snapshot-save command to make the application backup. The rhc tool
first retrieves the application details by making an HTTP GET request to the OpenShift broker.
The application details include the SSH URL of the application. After getting the SSH URL, the
rhc command-line client executes a ssh <application_ssh_url>'snapshot'>../
backup/myapp-backup.tar.gz command to back up the application. This uses the SSH
command-line functionality of running a command on a remote server. The output of the
snapshot command is written to the myapp-backup.tar.gz file on your local machine.
This rhc snapshot-save command does not require the--filepath option and will, by
default, create a TAR file with a name as that of the application and write it to the current
directory. This command first stops the application before creating a backup of all the
directories under your application gear home directory. This includes the application Git
repository, data directory, all the cartridges and their data, and environment variables. You
can list the content of the tar.gz file using the following command:

$ tar -ztf myapp-backup.tar.gz

Through step 2 to step 4 of the previous list of steps to be performed, you made a small
change in index.php, pushed the change to your application gear, and then viewed the
change by going to your application URL. This is done in order to test the restore functionality.

Creating and Managing Applications

96

Step 5 restored the application backup you made in step 1 using the rhc snapshot-
restore command. The rhc command-line client first makes the HTTP GET request to get
the SSH URL of the application. After getting the SSH URL, the rhc command-line client
executes the cat '../backup/myapp-backup.tar.gz' | ssh <application_ssh_
url>'restore INCLUDE_GIT' command to restore the backup. The command pipes the
standard output of the cat command to the standard input of the SSH command. The restore
commands will stop the application before replacing all the directories in the application gear
home directory with the one in the backup archive.

Finally, in step 6, you verified that the change you made in step 2 was reverted, because you
applied a backup that didn't reflect the change made in step 2.

The rhc snapshot commands stop the application and then run the
save or restore commands.

There's more…
The rhc snapshot commands can also take another option, which is --ssh. This can be
used to specify a different SSH client and/or to pass SSH options. Suppose you want to print
SSH debug information; you can use the SSH client -v option:

rhc snapshot-save --app myapp --filepath ../backup/myapp-backup.tar.gz
--ssh 'ssh -v'

This will print all the SSH debug information. For brevity, I am only showing part of the output:

Creating and sending tar.gz

debug1: client_input_channel_req: channel 0 rtype exit-status reply 0

debug1: client_input_channel_req: channel 0 rtype eow@openssh.com reply 0

debug1: channel 0: free: client-session, nchannels 1

debug1: fd 1 clearing O_NONBLOCK

Transferred: sent 2688, received 207872 bytes, in 19.0 seconds

Bytes per second: sent 141.2, received 10915.6

debug1: Exit status 0

RESULT:

Success

See also
ff The Creating an OpenShift application using the rhc command-line client recipe

ff The Tracking and rolling back application deployments recipe

Chapter 3

97

Tracking and rolling back application
deployments

When you deploy the source code using git push, OpenShift executes a new build, creates a
deployment, deploys it to the respective server, and then starts your application container. By
default, it will only track the last deployment of your application, which means you can't roll back
to a previous deployment. In this recipe, you will learn how to configure your application to track
multiple deployments and roll back to a particular deployment.

Getting ready
To step through this recipe, you will need to have rhc installed on your machine.

How to do it…
Perform the following steps to learn how to configure applications to track multiple
deployments and roll back to a previous version:

1.	 Create a new PHP 5.4 application just like we created in the Creating an OpenShift
application using the rhc command-line client recipe, as follows:
$ rhc create-app–-app myapp php-5.4

2.	 To enable an OpenShift application to track 10 deployments (for instance), you
should run the following command:
$ rhc configure-app --app myapp --keep-deployments 10

3.	 Make a change to index.php in the application directory:
<h1>

 Configured the application to track 10 deployments

</h1>

4.	 Commit the change and push the change to the application gear as follows:
$ git commit -am "enabled deployment tracking"

$ git push

5.	 View the change at http://myapp-{domain-name}.rhcloud.com.

6.	 List all the deployments tracked by the application by running the following command:
$ rhc deployment-list --app myapp

7:42 PM, deployment fbaa7582
7:47 PM, deployment ac5d6f39

Creating and Managing Applications

98

7.	 To roll back to the deployment with the ID fbaa7582, run the following command:
$ rhc deployment-activate --app myapp --id fbaa7582

8.	 You can verify that rollback has happened by again running the rhc deployment-
list command:

$ rhc deployment-list --app myapp

7:42 PM, deployment fbaa7582

7:47 PM, deployment ac5d6f39 (rolled back)

7:50 PM, deployment fbaa7582 (rollback to 7:42 PM)

How it works…
In step 1, you created a new PHP 5.4 application, and then in step 2, you configured the
application to track 10 deployments using the rhc app-configure command. Then,
from step 2 through to step 5, you made a simple change in index.php and deployed
that change to the application gear. When you push the code to an application gear, a new
deployment is created with the ID ac5d6f39 and is stored in the app-deployments folder,
under the application gear home directory. You can view the deployments stored under
the app-deployments directory, as shown in the following command. Every deployment
is stored inside a directory with its name as the current timestamp. The current active
deployment is stored under the current directory:

$ rhc ssh --command "ls ~/app-deployments"

2014-02-09_09-11-31.636

2014-02-09_09-17-22.896

by-id

current

In step 6, you then listed all the deployments using the rhc deployment-list command.
The rhc deployment-list command lists down all the deployments tracked. The first
deployment with the ID fbaa7582 is the initial deployment that happened when you created
the application. The second deployment with the ID ac5d6f39 is the deployment that
happened after making a change in index.php.

Step 7 involved rolling back the code to deployment with the ID fbaa7582 using the rhc
deployment-activate command. Under the hoods, the rhc deployment-activate
command runs the ssh <application_ssh_url> 'gear activate --all fbaa7582'
command on the application gear to activate the deployment.

Finally, in step 8, you ran the rhc deployment-list command to view the information
about the rollback that happened in step 7.

Chapter 3

99

There's more…
You can also enable deployment tracking during application creation, as follows:

$ rhc create-app myapp php-5.4 --keep-deployments 10

You can also view application configuration details using the rhc show-app command:

$ rhc show-app --app myapp --configuration

myapp @ http://myapp-osbook.rhcloud.com/ (uuid: 52f78c895973ca4cbc000113)

 Deployment: auto (on git push)

 Keep Deployments: 10

 Deployment Type: git

 Deployment Branch: master

See also
ff The Creating an OpenShift application using the rhc command-line client recipe

ff The Taking and restoring application backups recipe

Configuring the default Git branch for
deployment

Every OpenShift application has an associated remote Git repository. When you push the
source code to an application gear using git push, you are pushing the source code to
a Git remote named origin and branch named master. Every application is configured
to autodeploy when code is pushed to the master branch on a remote origin. But it might
so happen that you would like to use the master branch for development while using the
production branch for deployment. In this recipe, you will learn how to configure an OpenShift
application, where you will use a branch named production for deployment and a master
for development.

Getting ready
In order to complete this recipe, you will need rhc installed on your machine. Also, you
will need to make use of the OpenShift application created in the Creating an OpenShift
application using the rhc command-line client recipe.

Creating and Managing Applications

100

How to do it…
Perform the following steps to configure a different branch for deployment:

1.	 Open a command-line terminal and change the directory to the location where myapp
application exists.

2.	 Create a new branch with the name production using the Git command-line client:
$ git branch production

3.	 Configure the myapp OpenShift application to use the production branch
for deployment:
$ rhc configure-app --deployment-branch production

4.	 Open the index.php file in the application directory and change the header to
the following:
<h1>
Configured the 'production' branch for auto-deployment
</h1>

5.	 Commit the change to the local repository, and then push the changes to the master
branch. As we have configured the application to deploy the production branch, only
the code will be pushed, so autodeployment will not happen:
$ git commit -am "updated index.php"

$ git push

6.	 Next, check out the production branch, and merge the master branch changes:
$ git checkout production

$ git merge master

7.	 Now, push the changes to application gear, and the changes will get deployed:
$ git push origin production

8.	 Now, if you go to http://myapp-{domain-name}.rhcloud.com, you will view
the changes made in step 4.

Chapter 3

101

How it works…
OpenShift leverages the Git action hooks for application deployment. By default, deployment
occurs every time you push the source code to the master branch. In step 1, you changed
the directory to the myapp application location on your command-line tool. Step 2 helped
you to create a new branch named production for future deployments. You can list all the
branches in your Git repository using the git branch command:

$ git branch

* master

 production

In step 3, you configured the application to use the production branch for application
deployment. You will get the following output upon successful completion of the command:

Configuring application 'myapp' ... done

myapp @ http://myapp-osbook.rhcloud.com/ (uuid: 52f78c895973ca4cbc000113)

 Deployment: auto (on git push)

 Keep Deployments: 10

 Deployment Type: git

 Deployment Branch: production

Your application 'myapp' is now configured as listed above.

The output shows that the deployment branch is changed to production.

In step 4, you made a change to index.php in which you committed and pushed the changes
to the master branch in step 5. One thing you will notice is that the git push command only
pushes the bits to the application gear, but it does not invoke the deployment. The application
deployment does not happen, because in step 3, you configured the deployment of the
application when to changes are pushed to the production branch. The output of the
git push command is as follows:

Counting objects: 7, done.

Delta compression using up to 8 threads.

Compressing objects: 100% (4/4), done.

Writing objects: 100% (4/4), 427 bytes, done.

Total 4 (delta 2), reused 0 (delta 0)

To ssh://52f78c895973ca4cbc000113@myapp-osbook.rhcloud.com/~/git/myapp.
git/

 8252402..9e4ac48 master -> master

Creating and Managing Applications

102

In step 6, you checked out the production branch and merged the changes that you made in
the master branch. You pushed the changes to the production branch in step 7, which will
invoke the autodeployment, and the changes will be deployed to the application. The git
push origin production command is shown as follows:

$ git push origin production

Total 0 (delta 0), reused 0 (delta 0)

remote: Stopping PHP 5.4 cartridge (Apache+mod_php)

remote: Waiting for stop to finish

remote: Building git ref 'production', commit 9e4ac48

remote: Checking deplist.txt for PEAR dependency..

remote: Preparing build for deployment

remote: Deployment id is 8c2a41a8

remote: Activating deployment

remote: Starting PHP 5.4 cartridge (Apache+mod_php)

remote: -------------------------

remote: Git Post-Receive Result: success

remote: Activation status: success

remote: Deployment completed with status: success

To ssh://52f78c895973ca4cbc000113@myapp-osbook.rhcloud.com/~/git/myapp.
git/

 * [new branch] production -> production

Finally, you viewed that changes were actually deployed by visiting the application.

There's more…
What if you want to turn off automatic deployment altogether, that is, if you do not want to deploy
even on the production branch, this can be achieved using the --no-auto-deploy option:

$ rhc configure-app --app myapp --no-auto-deploy

This will turn off autodeployment, and only code will be pushed to the Git repository hosted
on the application gear. If you want to deploy code, you have to do manual deployment,
as explained in the Doing manual deployments recipe.

See also
ff The Creating an OpenShift application using the rhc command-line client recipe

ff The Tracking and rolling back application deployments recipe

ff The Doing manual deployments recipe

Chapter 3

103

Doing manual deployments
In the Configuring the default Git branch for deployment recipe, under the There's more...
section, we looked at how to turn off autodeployment using the --no-auto-deploy
option with the rhc app-configure command. What do you do if you want to deploy the
application after switching off autodeployment? One solution would be to reconfigure the
application to autodeploy by running the rhc app-configure –auto-deploy command.
This solution is good if you want to perform autodeployment from now on, but if you want to
manage deployment yourself, the --auto-deploy option is not a solution. In this recipe,
you will learn how to manually deploy the application to OpenShift.

Getting ready
To complete this recipe, you will need rhc installed on your machine. Also, you will need the
application you created in the Creating an OpenShift application using the rhc command-line
client recipe.

How to do it…
Perform the following steps to perform manual deployments:

1.	 Open a command-line terminal and change the directory to the myapp application.

2.	 Disable autodeployment of the application using the --no-auto-deploy option
with the rhc configure-app command:
$ rhc configure-app --app myapp --no-auto-deploy

3.	 Make a change to the application's index.php:
<h1>
Application configured with no-auto-deploy
</h1>

4.	 Commit the change, and push it to the application gear. As autodeployment is turned
off, the code will not be deployed:
$ git commit –am "updated index.php"

$ git push

5.	 To manually deploy the change, use the rhc deploy command to deploy the
master branch:
$ rhc deploy --app --ref master

6.	 View the change by visiting http://myapp-{domain-name}.rhcloud.com.

Creating and Managing Applications

104

How it works…
In step 1, you changed the directory to the myapp application location. To disable
autodeployment, you used the rhc configure-app command with the --no-auto-
deploy option. You can view the application details by running the rhc show-app command
with the --configuration option:

$ rhc show-app --configuration

myapp @ http://myapp-osbook.rhcloud.com/ (uuid: 52f78c895973ca4cbc000113)

 Deployment: manual (use 'rhc deploy')

 Keep Deployments: 10

 Deployment Type: git

 Deployment Branch: master

As you can see in the previous command, the deployment has been set to manual. In steps 3
and 4, you made a change in index.php and then committed and pushed the change to the
application gear. The autodeployment will not kick in, as we disabled it in step 2. The output
of the git push command is shown as follows:

$ git push

Counting objects: 7, done.

Delta compression using up to 8 threads.

Compressing objects: 100% (4/4), done.

Writing objects: 100% (4/4), 421 bytes, done.

Total 4 (delta 2), reused 0 (delta 0)

To ssh://52f78c895973ca4cbc000113@myapp-osbook.rhcloud.com/~/git/myapp.
git/

 9e4ac48..75ea3dc master -> master

In step 5, you manually deployed the change using the rhc deploy command. The rhc
deploy command needs a reference that can be either a Git tag, Git commit ID, or Git branch
name. This step made use of the master branch for deployment. The rhc deploy command
under the hood executed the gear deploy master command on the application gear.
The output of step 5 is shown as follows:

$ rhc deploy --ref master

Deployment of git ref 'master' in progress for application myapp ...

Stopping PHP 5.4 cartridge (Apache+mod_php)

Waiting for stop to finish

Building git ref 'master', commit 75ea3dc

Checking deplist.txt for PEAR dependency..

Chapter 3

105

Preparing build for deployment

Deployment id is c36cde4a

Activating deployment

Starting PHP 5.4 cartridge (Apache+mod_php)

Success

As you can see in the previous command, first cartridges are stopped, and then the
application is built using the latest commit ID of the Git master branch before finally
deploying the changes.

Finally, you can view the deployed application and verify that changes are deployed.

There's more…
Instead of using the branch name, you can also use the Git commit ID or Git tag with the rhc
deploy command. You can see how to use a commit ID with the rhc deploy command:

$ rhc deploy --ref 9e4ac482d87fdbcf82546afb5a58910be0b9ef19

See also
ff The Creating an OpenShift application using the rhc command-line client recipe

ff The Viewing application details recipe

Configuring and doing binary deployments
So far, we have looked at how easy it is to perform Git-based deployments with OpenShift,
where you perform a git push command, and OpenShift builds and deploys the application.
This is ideal if you want to perform source-based deployments. It may be that you want
OpenShift to also manage your source code using Git. But there are cases when developers
do not want to push their source code to OpenShift servers. In those cases, you can use
binary deployments to deploy your binary artifact. This is ideal when you want to deploy
binary artifacts, such as a .war file, as Git is not an efficient means for storing binaries.

Getting ready
To step through this recipe, you will need rhc installed on your machine.

Creating and Managing Applications

106

How to do it…
Perform the following steps to perform binary deployment:

1.	 Open a command-line terminal and change the directory to an appropriate location.
Then, create a new JBoss EAP 6 application using rhc, as shown in the following
command. Note that we are using the --no-git option, as we do not want to
use Git:
$ rhc create-app javaapp jbosseap --no-git

2.	 Configure the application to use binary deployment. Also, switch off autodeploy, and
configure the application to store two deployments. This will help if we want to roll
back to a previous version later. Have a look at the following command:
$ rhc configure-app --app javaapp --no-auto-deploy --keep-
deployments 2 --deployment-type binary

3.	 Create a directory structure, as shown in the following commands:
$ mkdir javaapp-binary-deployment

$ cd javaapp-binary-deployment/

$ mkdir -p build-dependencies/.m2 repo/deployments dependencies/
jbosseap/deployments

4.	 Download or copy the WAR file to the repo/deployments folder:
$ cd repo/deployments

$ wget https://github.com/OpenShift-Cookbook/chapter3-recipe15/
raw/master/ROOT.war --no check-certificate

5.	 Package the folder structure to an archive. You can use the ZIP, TAR, tar.gz, or tar.bz
formats:
$ cd ../../

$ tar -czvf ../javaapp-archive.tar.gz ./

6.	 Deploy the new binary artifact using the rhc deploy command:
rhc deploy --app javaapp --ref ../javaapp-archive.tar.gz

How it works…
In step 1, you created a JBoss EAP 6 application named javaapp. You also specified the
--no-git option with the rhc app-create command, as we do not want to clone the Git
repository to the local machine. Next, in step 2, you configured the application to use binary
deployment. OpenShift supports two types of deployment—Git and binary. The Git deployment
type is the default deployment type and is invoked via a git push command. When you use
this, the gear will build a deployment artifact and then deploy the artifact to the server.

Chapter 3

107

With the binary deployment type, you have to provide the deployment archive, as the
OpenShift gear will not be responsible for building the deployment. The binary deployment
requires an archive that follows a specified directory format. In step 3, you created a directory
structure specific to the JBoss EAP 6 application type. Have a look at the following commands:

$ tree -a

.

├── build-dependencies

│ └── .m2

├── dependencies

│ └── jbosseap

│ └── deployments

└── repo

 └── deployments

7 directories, 0 files

As we are performing binary deployment, you just downloaded the WAR file to the repo/
deployments folder. Next, in step 5, you created a tar.gz archive with the repository
structure. Finally, in step 6, you deployed the binary artifact using the rhc deploy
command. You can also use the HTTP URL instead of the local file path, as shown in
the following code:

$ rhc deploy --app javaapp --ref https://github.com/OpenShift-Cookbook/
chapter3-recipe15/raw/master/javaapp-archive.tar.gz

There's more…
You can save a deployment snapshot anytime using the rhc snapshot-save command:

$ rhc snapshot-save --app javaapp --deployment

This will save a javaapp.tar.gz archive on your local machine. Then, you can deploy this
artifact at any point in time using the rhc deploy command.

See also
ff The Creating an OpenShift application using the rhc command-line client recipe

ff The Viewing application details recipe

Creating and Managing Applications

108

Using your own custom domain name
By default, all the applications created by OpenShift are subdomains of rhcloud.com. In
this recipe, you will learn how to use your own domain name with the myapp application you
created in the Creating an OpenShift application using the rhc command-line client recipe.

Getting ready
To complete this recipe, you will need rhc installed on your machine. Also, we will make use
of the OpenShift application created in the Creating an OpenShift application using the rhc
command-line client recipe.

How to do it…
1.	 The first step is to buy a domain name from a domain registration provider. I will use

GoDaddy, as I have few domains registered there, but you can just as easily choose
a different domain provider. I have bought the openshift-cookbook.in domain
name for this demonstration.

2.	 Open your domain registration provider's DNS manager console, and add a CNAME
record. The CNAME record lets you point one domain name to another. You can
create a new CNAME record that will point to www.subdomain to myapp-osbook.
rhcloud.com, as shown in the following screenshot:

3.	 After creating the CNAME record, you have to map your OpenShift application with the
custom name. This is done using the rhc alias command. To create an alias for
www.openshift-cookbook.in, run the following command. Please use your own
domain name with the rhc alias command. Have a look at the following command:

$ rhc alias-add --app myapp www.openshift-cookbook.in

rhcloud.com

Chapter 3

109

How it works…
In step 2, you created a new CNAME entry for the www subdomain. OpenShift allows you to do
this by pointing the Canonical Name (CNAME) entry to your DNS provider's settings to provide
an alias for your domain name. CNAME specifies that the domain name is an alias of another
domain name. In the previous example, www.openshift-cookbook.com becomes an alias
for http://myapp-osbook.rhcloud.com. In step 3, you ran the rhc alias command,
which allows you to use your own domain names to run your apps. Technically, what OpenShift
has done under the hood is to set up a Vhost in Apache to handle the URL.

Now, if you go to your custom domain name, such as http://www.openshift-cookbook.
in, you will see your OpenShift application home page.

This configuration works fine if you use the www subdomain, but it will not work if we remove
www from the openshift-cookbook.in URL. It is very common that developers would
require both root and www URLs to work. To make it work, you have to use domain forwarding
so that when a request comes to openshift-cookbook.in, it will be forwarded to www.
openshift-cookbook.in. Open the DNS provider web console and go to the Forward tab.
Forward the requests coming to openshift-cookbook.in to http://www.openshift-
cookbook.in, as follows:

It will take 30 minutes or so to reflect the forwarding change. After changes are propagated,
go to openshift-cookbook.in, and you will be redirected to http://www.openshift-
cookbook.in.

Creating and Managing Applications

110

There's more…
You can also set an alias using the OpenShift web console. Please refer to the OpenShift
blog at https://www.openshift.com/blogs/how-to-configure-custom-domain-
names-and-ssl-in-the-openshift-web-console for more information.

See also
ff The Creating an OpenShift application using the rhc command-line client recipe

ff The Viewing application details recipe

Cleaning up the application
As you start using OpenShift for application development, the different components, such as
Git and cartridge log directories, which constitute an application, will start consuming disk
space. In the OpenShift Online free tier, applications are allocated only 1 GB of disk space
so that it becomes critical to use the disk space effectively to avoid disk quota errors. In this
recipe, you will learn how to clean up your application periodically to avoid disk quota errors.

Getting ready
To step through this recipe, you will need rhc installed on your machine. Also, we will use
the OpenShift application created in the Creating an OpenShift application using the rhc
command-line client recipe.

How to do it…
To clean up the application, open a command-line terminal and run the following command:

$ rhc tidy-app --app myapp

How it works…
The rhc tidy-app command helps to manage the application disk space. Under the hood,
it performs three operations:

1.	 To start off, the rhc tidy-app command stops the application.

2.	 Next, it clears out the application tmp directory. The location of the tmp directory can
be found by fetching the OPENSHIFT_TMP_DIR environment variable.

3.	 Next, it clears the log directory for each cartridge.

https://www.openshift.com/blogs/how-to-configure-custom-domain-names-and-ssl-in-the-openshift-web-console
https://www.openshift.com/blogs/how-to-configure-custom-domain-names-and-ssl-in-the-openshift-web-console

Chapter 3

111

4.	 Then, it clears up the application Git repository on the server. The Git
repository cleanup is done using two Git commands—git prune and git gc
--aggressive. The git prune command removes all the unreachable objects
from the Git repository object database. The git gc --aggressive command
deletes any loose objects and compresses objects to use the disk space
more efficiently.

5.	 Finally, it starts the application. The application is started even if the rhc tidy
command has any exceptions.

There's more…
You can also create a daily or weekly cron job that would run git gc periodically on the
application gear. To do that, add the cron cartridge to the application. Refer to the Adding a
cron cartridge to an application recipe. After adding the cartridge, create a new shell script
named gc_cleanup.sh under the .openshift/cron/daily directory, and add the
following contents to it:

#!/bin/bash

cd ~/git/$OPENSHIFT_APP_NAME.git

git prune

git gc --aggressive

echo "Ran Git cleanup at $(date)">> $OPENSHIFT_REPO_DIR/php/git-gc.txt

Commit the files and push them to the application gear. The daily cron job will perform Git
cleanup every day.

See also
ff The Creating an OpenShift application using the rhc command-line client recipe

ff The Viewing application details recipe

Deleting the application
In this recipe, you will learn how to delete an OpenShift application.

Getting ready
To step through this recipe, you will need rhc installed on your machine. Also, you will use
the application created in the Creating an OpenShift application using the rhc command-line
client recipe.

Creating and Managing Applications

112

How to do it…
To delete an application, open a command-line terminal and run the following command:

$ rhc delete-app --app myapp --confirm

How it works…
The rhc -delete command deletes the application and all its data on the OpenShift server.
You cannot roll back this command, so use it with caution. Under the hood, the rhc -delete
command makes an HTTP DELETE request to delete the application.

See also
ff The Creating an OpenShift application using the rhc command-line client recipe

ff The Viewing application details recipe

4
Using MySQL with

OpenShift Applications

This chapter presents a number of recipes that show you how to get started with the OpenShift
MySQL database cartridge. You will learn how to add and manage the MySQL cartridge, how to
take MySQL database backups, and how to use Amazon RDS MySQL support with OpenShift
applications. The specific recipes within this chapter are:

ff Adding a MySQL cartridge to your application

ff Adding a phpMyAdmin cartridge to your application

ff Accessing a MySQL database from your local machine

ff Connecting to a MySQL cartridge from your local machine using MySQL Workbench

ff Updating the MySQL max connections setting

ff Updating the MySQL configuration settings

ff Performing scheduled MySQL database backups

ff Using an Amazon RDS MySQL DB instance with OpenShift

Using MySQL with OpenShift Applications

114

Introduction
Every typical web application needs some sort of persistent data storage on the backend.
OpenShift supports a number of options to store your data, including several third-party
providers that liberate you from having to deal with hardware provisioning and database
management. At the time of writing this book, OpenShift officially supports the MySQL,
PostgreSQL, and MongoDB data stores. Apart from these supported databases, there are
third-party downloadable database cartridges available for data stores, such as Redis and
MariaDB. Red Hat does not support downloadable cartridges, so you have to use them at your
own risk. This chapter will cover the MySQL cartridge in detail. Chapter 5, Using PostgreSQL with
OpenShift Applications, and Chapter 6, Using MongoDB and Third-party Database Cartridges
with OpenShift Applications, will cover the PostgreSQL and MongoDB cartridges respectively.

This chapter will use the PHP 5.4 application we created in Chapter 3, Creating and Managing
Applications. If you do not have any OpenShift application running, then you can create a new
OpenShift application by running the following command:

$ rhc create-app myapp php-5.4

In the preceding command, we created a nonscalable application, as we have not used the
–s option. If the application is nonscalable, then the database cartridges are installed on
the same gear as the primary application gear. If you created a scalable application, then the
database cartridge is installed on its own gear. This allows a database to use all the available
RAM and disk space. We will cover scalable applications in Chapter 11, Logging and Scaling
Your OpenShift Applications.

OpenShift also provides a persistent data directory to store your data. The persistent data
directory is not scalable and, hence, should not be used with scalable applications. For
scalable applications, you should use a third-party service such as Amazon S3.

OpenShift supports stock-standard, security-hardened distributions of MySQL, PostgreSQL,
and MongoDB databases. If something goes wrong, the OpenShift operation team is available
to fix operational issues. Also, as you are using standard versions of databases, you are not
locked inside OpenShift and can easily port your data if required. In this chapter, we will cover
how to take periodic backups of your database cartridges to make sure you always have your
data in case something goes wrong.

You can also use third-party database services, such as Amazon RDS, if running your
database in OpenShift is not possible, or you have already invested in third-party services.
Another reason you might like to use a third-party database service is that the OpenShift
database cartridges are not scalable. So, for applications where you need horizontally
scalable, highly available databases, you can use any of the third-party database services
covered in this chapter. This chapter will cover how to use Amazon RDS with OpenShift
applications. Chapter 5, Using PostgreSQL with OpenShift Applications, and Chapter 6,
Using MongoDB and Third-party Database Cartridges with OpenShift Applications, will
cover third-party PostgreSQL and MongoDB cloud database services.

Chapter 4

115

Adding a MySQL cartridge to your
application

At the time of this writing, OpenShift supports two versions of the MySQL database. You can
view the supported MySQL versions by running the following command:

$ rhc cartridges|grep mysql

mysql-5.1 MySQL 5.1 addon

mysql-5.5 MySQL 5.5 addon

Getting ready
To prepare for this recipe, you will need the rhc command-line client installed on your
machine. Please refer to the Installing the OpenShift rhc command-line client recipe in
Chapter 1, Getting Started with OpenShift, for more details. Also, we will use the application
created in the Creating an OpenShift application using the rhc command-line client recipe in
Chapter 3, Creating and Managing Applications.

How to do it…
Follow these steps to add the MySQL database cartridge to your OpenShift application and
manage it:

1.	 To add the MySQL 5.5 cartridge to the myapp application, open a new
command-line terminal, change the directory to the myapp directory location,
and execute the following command:
$ rhc add-cartridge -c mysql-5.5 --app myapp

2.	 This will install a new instance of the MySQL database on your application gear. The
-c option is used to specify the cartridge name, and the --app option is used to
specify the application name. The --app option is not required if you are running the
command from within the application directory. The -c option is required, but you can
get away from writing -c as the rhc command-line client is intelligent enough to infer
that mysql-5.5 is the cartridge name. This can be seen in the following command:
$ rhc cartridge-add mysql-5.5

3.	 You can view the cartridge details using the rhc show-cartridge command as
shown in the following command line:
$ rhc show-cartridge mysql

Using mysql-5.5 (MySQL 5.5) for 'mysql'

mysql-5.5 (MySQL 5.5)

Using MySQL with OpenShift Applications

116

 Gears: Located with php-5.4

 Connection URL:
mysql://$OPENSHIFT_MYSQL_DB_HOST:$OPENSHIFT_MYSQL_DB_PORT/

 Database Name: myapp

 Password: lQkran3E1a4K

 Username: adminjL3VBAM

4.	 To stop the MySQL database cartridge, use the stop command as shown in this
command:
$ rhc stop-cartridge mysql

5.	 To restart the MySQL database cartridge, use the restart command as shown in
the following command:
$ rhc restart-cartridge mysql

6.	 Finally, if you want to remove the MySQL database from your application, you can use
the remove command as shown in this command:
$ rhc remove-cartridge mysql --confirm

How it works…
When you run the rhc cartridge-add command, rhc will make an HTTP POST request
to the OpenShift server. The OpenShift server will receive the request and instantiate a new
instance of the MySQL server for your application. After provisioning the MySQL server, the
rhc client will show the database details on the command-line terminal as follows:

Adding mysql-5.5 to application 'myapp' ... done

mysql-5.5 (MySQL 5.5)

 Gears: Located with php-5.4

 Connection URL:
mysql://$OPENSHIFT_MYSQL_DB_HOST:$OPENSHIFT_MYSQL_DB_PORT/

 Database Name: myapp

 Password: lQkran3E1a4K

 Username: adminjL3VBAM

MySQL 5.5 database added. Please make note of these credentials:

 Root User: adminjL3VBAM

 Root Password: lQkran3E1a4K

Chapter 4

117

 Database Name: myapp

Connection URL:
mysql://$OPENSHIFT_MYSQL_DB_HOST:$OPENSHIFT_MYSQL_DB_PORT/

You can view the MySQL installation by performing SSH into your application gear:

$ rhc ssh --app myapp

Then run the ls command to view the gear directory structure:

[myapp-osbook.rhcloud.com 52fb71aa5973caf609000026]\> ls -p

app-deployments/ app-root/ git/ mysql/ php/

The mysql directory hosts your mysql installation. The MySQL database is not shared
with any other OpenShift application or user. It is only for your application, and only your
application can access it.

You can connect to the mysql directory with your MySQL database using the mysql
command-line client as shown in the following command:

[myapp-osbook.rhcloud.com 52fb71aa5973caf609000026]\> mysql

Welcome to the MySQL monitor. Commands end with ; or \g.

Your MySQL connection id is 3

Server version: 5.5.32 MySQL Community Server (GPL)

Type 'help;' or '\h' for help. Type '\c' to clear the current input
statement.

mysql>

Now, you can run SQL commands against your MySQL server. To view all the databases, run
the following command:

mysql> SHOW DATABASES;

+--------------------+

| Database |

+--------------------+

| information_schema |

| myapp |

| mysql |

| performance_schema |

+--------------------+

4 rows in set (0.00 sec)

Using MySQL with OpenShift Applications

118

The myapp database corresponds to your application database. You can use this database for
your application or create a new database using the CREATE DATABASE command. To view
the uptime of your MySQL database, try running the following command:

mysql> SHOW STATUS LIKE 'Uptime';

+---------------+-------+

| Variable_name | Value |

+---------------+-------+

| Uptime | 2573 |

+---------------+-------+

1 row in set (0.00 sec)

The output shows that the MySQL server is up from the last 2573 seconds.

You can view all the available MySQL command-line utilities on the gear by typing mysql and
hitting Tab twice:

[myapp-osbook.rhcloud.com 52fb71aa5973caf609000026]\> mysql

mysql mysql_convert_table_format mysql_fix_
privilege_tables mysqlslap

mysqlaccess mysqld_multi mysqlhotcopy
mysqltest

mysqladmin mysqld_safe mysqlimport
mysql_tzinfo_to_sql

mysqlbinlog mysqldump mysql_install_db
mysql_upgrade

mysqlbug mysqldumpslow mysql_secure_
installation mysql_waitpid

mysqlcheck mysql_find_rows mysql_
setpermission mysql_zap

mysql_config mysql_fix_extensions mysqlshow

Chapter 4

119

There's more…
You can also add MySQL cartridges from the OpenShift web console. Go to https://
openshift.redhat.com/app/console/applications, and click on the myapp
application for details. On the myapp application details web page, you will see the option to
add the MySQL database as shown in the following screenshot. Click on the Add MySQL 5.5
link to add the MySQL 5.5 cartridge.

Next, click on the Add Cartridge button to add the MySQL 5.5 cartridge to your application as
shown in the following screenshot:

https://openshift.redhat.com/app/console/applications
https://openshift.redhat.com/app/console/applications

Using MySQL with OpenShift Applications

120

After installing the MySQL cartridge, you will be shown the MySQL database details as follows:

See also
ff The Creating an OpenShift application using the rhc command-line client recipe in

Chapter 3, Creating and Managing Applications

ff The Adding a phpMyAdmin cartridge to your application recipe

ff The Accessing a MySQL database from your local machine recipe

Adding a phpMyAdmin cartridge to your
application

phpMyAdmin (which you can access at http://www.phpmyadmin.net/) is a free,
open source, and popular tool written in the PHP programming language to handle the
administration of the MySQL database via a web browser. In this recipe, you will learn
how to install a phpMyAdmin cartridge to your application.

Getting ready
To complete this recipe, you will need an application with a MySQL cartridge. Please refer to
the Adding a MySQL cartridge to your application recipe in this chapter to learn how to add a
MySQL cartridge.

http://www.phpmyadmin.net/

Chapter 4

121

How to do it…
This recipe will walk you through all the steps required to add a phpMyAdmin cartridge to the
OpenShift application:

1.	 To install the phpMyAdmin cartridge to the myapp application, open a new command-
line terminal, change the directory to the myapp directory location, and execute the
following command:
$ rhc add-cartridge phpmyadmin-4

2.	 Note the username and password returned by the rhc add-cartridge command.
You will need the credentials to log in to phpMyAdmin. The phpMyAdmin credentials
are the same as your MySQL database credentials, and you can view them anytime
by executing the rhc show-app command.

3.	 Log in to phpMyAdmin, accessible at https://myapp-{domain-name}.
rhcloud.com/phpmyadmin/, using the credentials you got in step 1.

How it works…
When you run the rhc cartridge-add command, the rhc client makes an HTTP POST
request to the OpenShift server. The OpenShift server receives the request and installs the
phpMyAdmin cartridge on the application gear. The phpMyAdmin cartridge works with all the
supported application types (Java, Python, Node.js, Ruby, Perl, and PHP). You don't need to
create PHP applications to use the phpMyAdmin cartridge. OpenShift will start an Apache
process to run the phpMyAdmin application.

You can only add a phpMyAdmin cartridge after you have added a MySQL
cartridge to your application. If you try to add the phpMyAdmin cartridge
before adding the MySQL cartridge, then you will get an error, Cartridge
'phpmyadmin-4' cannot be added without mysql. The
dependency mysql can be satisfied with mysql-5.5 or mysql-5.1.

There's more…
You can also add the phpMyAdmin cartridge from the OpenShift web console. Go to
https://openshift.redhat.com/app/console/applications, and add the
phpMyAdmin cartridge.

See also
ff The Adding a MySQL cartridge to your application recipe

ff The Accessing a MySQL database from your local machine recipe

https://openshift.redhat.com/app/console/applications

Using MySQL with OpenShift Applications

122

Accessing a MySQL database from your
local machine

In the Adding a MySQL cartridge to your application recipe of this chapter, you learned how
to access the MySQL database by performing an SSH into the application gear. In this recipe,
you will learn how to connect with the MySQL database from your local machine.

Getting ready
To complete this recipe, you will need an application with a MySQL cartridge. Please refer
to the Adding a MySQL cartridge to your application recipe to learn how to install a MySQL
cartridge. Also, you will need the mysql command-line client on your machine. You can
download the MySQL community server (which includes the mysql command-line client)
from the official website at http://dev.mysql.com/downloads/mysql/.

How to do it…
Follow these steps to access the MySQL cartridge from your local machine:

1.	 Open a command-line terminal, and change the directory to the myapp application
directory. Execute the following command to forward remote ports to the local machine:
$ rhc port-forward --app myapp

2.	 The output of the preceding command will list down ports along with services that
you could use to connect from your local machine. The output is as follows:
Service Local OpenShift

------- -------------- ---- -------------------

httpd 127.0.0.1:8080 => 127.12.123.129:8080

mysql 127.0.0.1:3306 => 127.12.123.130:3306

Press CTRL-C to terminate port forwarding

3.	 Connect to the MySQL server from the local mysql command-line client as shown
in the following command. You can get the username and password for the MySQL
cartridge using the rhc show-app or rhc cartridge-show mysql command. The
hostname and port are available in the output of the rhc port-forward command.
$ mysql --user=<user> --password=<password> --host 127.0.0.1 -
-port 3306

http://dev.mysql.com/downloads/mysql/

Chapter 4

123

4.	 Once connected to the MySQL server, you can run any valid SQL command as follows:
mysql> SHOW DATABASES;

+--------------------+

| Database |

+--------------------+

| information_schema |

| myapp |

| mysql |

| performance_schema |

+--------------------+

4 rows in set (0.38 sec)

How it works…
In step 1, you used the rhc port-forward command to forward all the remote ports to
the local machine. The rhc port-forward command is a wrapper around the SSH port.
Forwarding that makes a port on the remote machine available on your local machine. A
port on the remote machine, which would otherwise be unavailable to you, can be used just
as if it's on your local machine. The following command returns the list of ports that you can
connect to from your local machine:

$ rhc port-forward --app myapp

Checking available ports ... done

Forwarding ports ...

To connect to a service running on OpenShift, use the Local address

Service Local OpenShift

------- -------------- ---- ------------------

httpd 127.0.0.1:8080 => 127.9.255.129:8080

mysql 127.0.0.1:3306 => 127.9.255.130:3306

Press CTRL-C to terminate port forwarding

As you can see from the preceding output, the MySQL process is available at port 3306 on the
127.0.0.1 host.

Using MySQL with OpenShift Applications

124

In step 2, you connected to the MySQL server from your local machine, passing in the
username, password, host, and port of the database. After successful connection, you ran
a SQL command in step 3.

To terminate port forwarding, just press Ctrl + C on the command-line terminal where the
rhc port-forward command is running.

See also
ff The Adding a MySQL cartridge to your application recipe

ff The Connecting to a MySQL cartridge from your local machine using MySQL
Workbench recipe

Connecting to a MySQL cartridge from your
local machine using MySQL Workbench

In the Accessing a MySQL database from your local machine recipe, we showed you how
to connect to the MySQL database from the mysql command line from your local machine
using port forwarding. In this recipe, you will learn how to connect to the MySQL database
from MySQL Workbench. MySQL Workbench is a visual database design tool that integrates
SQL development, administration, database design, creation, and maintenance into a single
integrated development environment for the MySQL database system.

Getting ready
To complete this recipe, you will need an application with a MySQL cartridge. Please refer to
the Adding a MySQL cartridge to your application recipe of this chapter to learn how to install
the MySQL cartridge. Also, you will need MySQL Workbench on your local machine. You can
download MySQL Workbench from the MySQL official website at http://dev.mysql.com/
downloads/tools/workbench/.

How to do it…
Follow these steps to connect to the MySQL cartridge from MySQL Workbench running on your
local machine:

1.	 Open a command-line terminal, and change the directory to the myapp application
directory. Execute the following command to forward the remote ports to the
local machine:
$ rhc port-forward --app myapp

2.	 Start the MySQL Workbench application, and you will see the following screenshot.

http://dev.mysql.com/downloads/tools/workbench/
http://dev.mysql.com/downloads/tools/workbench/

Chapter 4

125

Click on the plus button to add a new MySQL connection.

3.	 Set up a new connection by entering the MySQL database details. You can get the
username and password for the MySQL cartridge using the rhc show-app or rhc
cartridge-show mysql command. The hostname and port are available in the
output of the rhc port-forward command. The following screenshot shows the
Setup New Connection page:

Using MySQL with OpenShift Applications

126

4.	 Next, test the connection by clicking on the Test Connection button. After successful
connection, you will see the following dialog box with the message Connection
parameters are correct:

5.	 Connect to the MySQL cartridge by clicking on the OK button. You will see the
new connection listed on the MySQL Workbench screen shown in the following
screenshot. Click on the connection to open SQL Editor.

Chapter 4

127

6.	 Now you can run any legitimate SQL query from within SQL Editor as shown in the
following screenshot:

How it works…
In step 1, you used the rhc port-forward command to forward all the remote ports to the
local machine. This makes it possible to connect to the MySQL database running inside your
application gear. From step 2 through to step 6, you created a new MySQL connection and
connected with the MySQL cartridge from within MySQL Workbench. In Step 7, you executed a
SQL query using SQL Editor to check whether that connection is getting data from the MySQL
cartridge installed in your myapp application.

See also
ff The Adding a MySQL cartridge to your application recipe

ff The Accessing a MySQL database from your local machine recipe

Using MySQL with OpenShift Applications

128

Updating the MySQL max connections
setting

The MySQL database will start giving too many connection errors when all the available
connections are in use by other clients. In this recipe, you will learn how to update the
MySQL cartridge max connections setting.

Getting ready
To complete this recipe, you will need an application with a MySQL cartridge. Please refer to
the Adding a MySQL cartridge to your application recipe of this chapter to learn how to install
the MySQL cartridge.

How to do it…
Follow these steps to update the MySQL max connection setting:

1.	 To set the maximum connections to 200, open a command-line terminal, and run the
following command:
$ rhc env-set OPENSHIFT_MYSQL_MAX_CONNECTIONS=200 --app myapp

2.	 After setting the environment variable, you have to restart the MySQL cartridge for
changes to take effect using the following command:
$ rhc cartridge-restart mysql --app myapp

How it works…
The number of connections supported by the MySQL database is controlled by the max_
connections system variable. The default value of max_connections is 151. You can see
the current value by running the following SQL query against your MySQL database. To see
max_connections for your OpenShift application, SSH into the application gear, and run the
following command:

mysql> show variables like 'max_connections';

+-----------------+-------+

| Variable_name | Value |

+-----------------+-------+

| max_connections | 151 |

+-----------------+-------+

Chapter 4

129

One way to configure the max_connections system variable is to add max_connections
= 200 under the [mysqld] section in the my.cnf MySQL configuration file. This solution
does not work with OpenShift as the my.cnf file is read-only. To allow users to change the
max_connections value, OpenShift provides an environment variable called OPENSHIFT_
MYSQL_MAX_CONNECTIONS that can be used to set the max_connections system variable.
In step 1, you set the OPENSHIFT_MYSQL_MAX_CONNECTIONS environment variable to 200.
The MySQL server will not read the new value unless you restart the database. So, in step 2, you
restarted the database using the rhc cartridge-restart command. To verify whether the
max_connections value is updated, you can run the following SQL command again:

mysql> show variables like 'max_connections';

+-----------------+-------+

| Variable_name | Value |

+-----------------+-------+

| max_connections | 200 |

+-----------------+-------+

This is the recommended way to update the MySQL max_connections system variable
value. The only drawback with this approach is that you have to restart the MySQL database,
which, depending on the circumstances, may not be the ideal way. Another way you could
update the max_connections system variable is by issuing the following SQL command:

mysql> set global max_connections = 200;

This will take immediate effect and will not require a restart. However, this value will be lost
once the MySQL database is restarted.

The best solution is to combine the two approaches. Run the set global max_
connections = 200; SQL command to make sure max_connections is instantly
updated, and then create a new environment variable using the rhc env-set command.
This means the next time your MySQL database is started, it will pick the value from the
environment variable.

See also
ff The Adding a MySQL cartridge to your application recipe

ff The Updating the MySQL configuration settings recipe

Using MySQL with OpenShift Applications

130

Updating the MySQL configuration settings
The MySQL database stores its configuration settings in the my.cnf file. This file is located
under the conf directory inside the MySQL cartridge installation. As mentioned in the previous
recipe, OpenShift does not allow users to update the my.cnf configuration file. The solution is
to use a set of environment variables to configure various settings of the MySQL database.

At the time of writing this book, you could configure the following MySQL settings through the
environment variables:

MySQL setting OpenShift environment variable

lower_case_table_names OPENSHIFT_MYSQL_LOWER_CASE_TABLE_NAMES

default-storage-engine OPENSHIFT_MYSQL_DEFAULT_STORAGE_ENGINE

max_connections OPENSHIFT_MYSQL_MAX_CONNECTIONS

ft_min_word_len OPENSHIFT_MYSQL_FT_MIN_WORD_LEN

ft_max_word_len OPENSHIFT_MYSQL_FT_MAX_WORD_LEN

innodb_use_native_aio OPENSHIFT_MYSQL_AIO

default-time-zone OPENSHIFT_MYSQL_TIMEZONE

table_open_cache OPENSHIFT_MYSQL_TABLE_OPEN_CACHE

Getting ready
To complete this recipe, you will need an application with a MySQL cartridge. Please refer to
the Adding a MySQL cartridge to your application recipe of this chapter to learn how to add
a MySQL cartridge to your application.

How to do it…
Follow these steps to update the MySQL lower_case_table_names configuration:

1.	 To set the lower_case_table_names setting, you should type the
following command:
$ rhc env-set OPENSHIFT_MYSQL_LOWER_CASE_TABLE_NAMES=1 --app
myapp

2.	 After setting the environment variable, you have to restart the MySQL cartridge for
changes to take effect using the following command:
$ rhc cartridge-restart mysql --app myapp

Chapter 4

131

How it works…
The way it works is that OpenShift provides a set of environment variables that you can set to
configure the MySQL configuration settings. After setting the environment variable, you have
to restart the MySQL database so that it can use the new configuration value.

See also
ff The Adding a MySQL cartridge to your application recipe
ff The Updating the MySQL max connections setting recipe

Performing scheduled MySQL database
backups

In this recipe, you will learn how to perform a scheduled backup of your MySQL database and
upload it to Amazon S3.

Getting ready
To complete this recipe, you will need an application with a MySQL cartridge. Please refer to
the Adding a MySQL cartridge to your application recipe of this chapter to learn how to install
the MySQL cartridge. Also, you need to have an Amazon AWS account. Visit http://aws.
amazon.com/, and sign up for a new account if you don't have one already.

How to do it…
Follow these steps to schedule a daily backup of your MySQL cartridge:

1.	 Go to https://console.aws.amazon.com/s3/home, and create a new bucket
to store your database backups.

2.	 Add a cron cartridge to your application by running the following command:
$ rhc add-cartridge cron --app myapp

3.	 SSH into the application gear, and download the s3-bash utility in
$OPENSHIFT_DATA_DIR. Then, extract it to the s3-bash directory by
running the following commands:
$ rhc ssh --app myapp

$ cd $OPENSHIFT_DATA_DIR

$ wget http://s3-bash.googlecode.com/files/s3-bash.0.02.tar.gz

$ mkdir s3-bash

$ tar -xf s3-bash.0.02.tar.gz -C s3-bash

http://aws.amazon.com/
http://aws.amazon.com/
https://console.aws.amazon.com/s3/home

Using MySQL with OpenShift Applications

132

4.	 Create a new file called AWSSecretAccessKeyIdFile in the $OPENSHIFT_DATA_
DIR/s3-bash directory, and store your Amazon access key secret to it. This is
required by s3-bash to communicate with Amazon S3.

5.	 Create a script on your local machine at .openshift/cron/minutely named
database_backup.sh, and add the following contents to it:
#!/bin/bash
if [`date +%H:%M` == "23:50"]
then
 FILE_NAME=$(date +"%Y%m%d%H%M")
 mysqldump --user $OPENSHIFT_MYSQL_DB_USERNAME -
p$OPENSHIFT_MYSQL_DB_PASSWORD --host
$OPENSHIFT_MYSQL_DB_HOST $BACKUP_DATABASE_NAME >
$OPENSHIFT_DATA_DIR/$FILE_NAME.sql
 echo "Took MySQL Dump" >>
$OPENSHIFT_CRON_DIR/log/backup.log
 $OPENSHIFT_DATA_DIR/s3-bash/s3-put -k
$AWS_ACCESS_KEY_ID -s $OPENSHIFT_DATA_DIR/s3-
bash/AWSSecretAccessKeyIdFile -T
$OPENSHIFT_DATA_DIR/$FILE_NAME.sql
/$AWS_S3_BUCKET/$FILE_NAME.sql
 echo "Uploaded dump to Amazon S3" >>
$OPENSHIFT_CRON_DIR/log/backup.log
 rm -f $OPENSHIFT_DATA_DIR/$FILE_NAME.sql
fi

6.	 The preceding script will run every day at 23:50 and run the mysqldump command
to create the data dump file. The file is then transferred to Amazon S3 using the
s3-bash API. Finally, after uploading the file, it deletes the SQL dump file from the
application gear.

7.	 Create the following environment variables. Please refer to the Amazon EC2
documentation for detailed steps on how to create access keys and S3 bucket.
You then run the following commands:
$ rhc env-set AWS_ACCESS_KEY_ID=< Your Amazon ACCESS_KEY_ID>

$ rhc env-set BACKUP_DATABASE_NAME=<Database you want to take
backup off>

$ rhc env-set AWS_S3_BUCKET=<Amazon S3 bucket name >

8.	 Following this, commit the code, and push it to the OpenShift application gear. The
scheduled job will run every night at 23:50 (11:50 pm) to take database backup, and
your backup will be uploaded to Amazon S3:
$ git commit –am "database backup script added"

$ git push

Chapter 4

133

How it works…
In step 1, you created a new Amazon S3 bucket to store your MySQL database backups.
Amazon S3 is widely used to store static files and is an ideal choice for this job. Next, in
step 2, you added the cron cartridge to your application. The cron cartridge will be used to
perform daily backups at a particular time.

Amazon S3 exposes its REST service, which users can use to perform operations on S3
buckets. Amazon provides many programming languages wrapped around its REST API to
make it easy for developers to integrate with their application. As we wanted to keep this
recipe language agnostic, we used the Amazon S3-bash wrapper. Amazon does not officially
support this wrapper but it works very well nonetheless. In step 3, you downloaded the s3-
bash wrapper using the wget utility. The tar.gz file was stored in $OPENSHIFT_DATA_DIR.
You then extracted the tar.gz file to the s3-bash directory.

In step 4, you created a file called AWSSecretAccessKeyIdFile to store the Amazon
access key secret. The s3-bash wrapper uses this file for the AWS secret access key ID so
that it does not appear in the list of running processes with ps.

In step 5, you created a bash script that will be executed every night at 11:50 pm. The script
first takes the database backup using the mysqldump command and then uploads the file
to Amazon S3. The filename is the current timestamp. Finally, after uploading the backup to
S3, the script deletes the backup to save disk space. If your MySQL database is big, then you
might want to compress the mysqldump output. You just have to update the mysqldump
command in step 5 to the one shown in the following command:

mysqldump --user $OPENSHIFT_MYSQL_DB_USERNAME -
p$OPENSHIFT_MYSQL_DB_PASSWORD --host $OPENSHIFT_MYSQL_DB_HOST
$BACKUP_DATABASE_NAME | gzip -9 > $OPENSHIFT_DATA_DIR/$FILE_NAME.gz

In the preceding command, we have used gzip, a popular data compression program, to
compress the mysqldump output.

In Step 6, you created three environment variables required by the backup script. Finally, you
committed the changes in step 7 and pushed them to the OpenShift application gear.

See also
ff The Adding a MySQL cartridge to your application recipe

Using MySQL with OpenShift Applications

134

Using an Amazon RDS MySQL DB instance
with OpenShift

Amazon Relational Database Service (Amazon RDS) is a web service that makes it easy
for you to set up, operate, and scale a relational database on top of Amazon EC2. It provides
access to MySQL, Oracle, PostgreSQL, and Microsoft SQL Server database engines. In
addition to the standard database features, RDS offers the following functionality:

ff Automatic database patches

ff Automated backup

ff Point-in-time recovery

ff Vertical scaling of a database instance via a single API call

In this recipe, you will learn how to use the Amazon RDS MySQL database service with your
OpenShift applications.

Getting ready
To complete this recipe, you will need an application with a MySQL cartridge. Please refer to
the Adding a MySQL cartridge to your application recipe of this chapter to learn how to install
the MySQL cartridge. Also, you need to have an Amazon AWS account. Visit http://aws.
amazon.com/, and sign up for a new account if you don't have one already.

How to do it…
Follow these steps to learn how to use the Amazon RDS MySQL database with your
OpenShift applications:

1.	 Go to https://console.aws.amazon.com/rds/home, and then click on
Security Groups as shown in the following screenshot:

http://aws.amazon.com/
http://aws.amazon.com/
https://console.aws.amazon.com/rds/home

Chapter 4

135

2.	 Click on the Create DB Security Group option to create a new security group,
and then enter the details for your new security group (as shown in the following
screenshot) before clicking on the Add button:

3.	 The new security group will be visible in the security group list. Click on the details
icon to view the security group details.

4.	 Next, configure the security group to permit ingress from all IPs. After entering the CIDR
value 0.0.0.0/0, click on the Add button as shown in the following screenshot:

Using MySQL with OpenShift Applications

136

5.	 After a few seconds, the new CIDR connection type will be visible under Security
Group Details:

6.	 Click on the Instances option in the left-hand side navigation bar, and then click on
Launch DB Instance:

7.	 Next, you have to choose the database engine that you want to work with. Select the
use MySQL database option.

8.	 Next, you have to choose whether you want to use this database for production or
development purposes. We will choose No, but for production, it is recommended
that you choose Yes.

9.	 Then, enter the database details, which will include the MySQL version, database
identifier, username, and password to connect to the MySQL database and many
others as shown in the following screenshot:

Chapter 4

137

10.	 On the Additional Config page, you have to provide the additional information that
RDS needs to launch the MySQL database. You have to specify the database name,
port, availability zone, DB security group, and so on. The DB security group is very
important as we want to use the security group we created in step 3. Enter the details
and click on Next Step. Have a look at the following screenshot:

Using MySQL with OpenShift Applications

138

11.	 Next, on the Management Options page, you can specify the backup and
maintenance options for your DB instance as shown in the following screenshot:

12.	 Finally, you can review the details of your DB instance on the Review page.

13.	 The creation and provisioning of the new MySQL DB instance will take a minute or so,
and once done, it will be available under the list of DB instances, as you can see in
the following screenshot:

14.	 Before you can connect to the Amazon RDS MySQL DB instance, you should know
the details of the newly created instance. The details of the MySQL DB instance can
be found by clicking on the details icon in the DB instance list, as you can see in the
following screenshot:

Chapter 4

139

15.	 After clicking on the details page icon, you can view the MySQL hostname that you
can connect to. The host information is next to Endpoint, and it will be a subdomain
of *.rds.amazonaws.com, as shown in the following screenshot:

16.	 To connect to the MySQL DB instance, you will need to have the MySQL
command-line client on the gear. Every OpenShift application gear already
has the mysql command-line agent installed, so you don't have to do anything.
Just SSH into the application gear using the rhc ssh command and then
running the following command:

The username and password corresponds to the one you
created during step 10.

$ mysql --host <host_endpoint>.rds.amazonaws.com --port 3306 -
u <username> -p<password> <database_name>

17.	 Once connected, you can run any SQL command. To check the uptime of your MySQL
database, you can run the following command:
Welcome to the MySQL monitor. Commands end with ; or \g.

Your MySQL connection id is 12

Server version: 5.5.33-log Source distribution

Copyright (c) 2000, 2011, Oracle and/or its affiliates. All
rights reserved.

Type 'help;' or '\h' for help. Type '\c' to clear the current
input statement.

mysql> SHOW STATUS like 'Uptime';

+---------------+-------+

| Variable_name | Value |

Using MySQL with OpenShift Applications

140

+---------------+-------+

| Uptime | 2227 |

+---------------+-------+

1 row in set (0.33 sec)

mysql>

How it works…
Every Amazon RDS instance has a firewall that prevents any outside access to it. So, before
you can create an Amazon RDS instance, you should create a new DB security group that
gives access to an IP range. From step 1 through to step 6, you created a new security group
that would allow all the IP addresses to connect to your Amazon MySQL DB instance. The
0.0.0.0/0 value allows all the IPs to access the database instance. This is important with
environments such as OpenShift that do not provide static IPs.

Step 7 through to step 14 helped you create a new instance of Amazon RDS MySQL DB. You
are required to provide details related to your DB instance, and Amazon RDS will provision
a DB instance based on the details you entered. By step 14, you had a running MySQL DB
instance that you could connect to from the outside world. You can connect to it from your
local machine or the OpenShift application gear.

Step 15 and step 16 helped you to view the details of your MySQL DB instance. The most
important detail is the hostname on which the MySQL DB instance is hosted. In step 17,
you used the details to connect to the Amazon RDS MySQL DB instance using the mysql
command-line client. In step 18, you ran a simple SQL query against your database to check
its uptime.

There's more…
You can make the MySQL database connection secure by configuring the RDS instance
to only accept SSL-encrypted connections from authorized users. To configure SSL,
execute the following SQL command. Please replace the username with your MySQL DB
instance username:

mysql> GRANT USAGE ON *.* TO 'username'@'%' REQUIRE SSL;

Now, if you quit the connection and try to log in again using the mysql command mentioned
in step 5, you will get an access denied error:

[myapp-osbook.rhcloud.com 530f227e50044604f9000060]\> mysql --host
<host_endpoint>.rds.amazonaws.com --port 3306 -u <username> -
p<password> <db_name>

ERROR 1045 (28000): Access denied for user 'username'@'ip-10-181-217-
44.ec2.internal' (using password: YES)

Chapter 4

141

To connect to the MySQL DB instance, you have to first download the Amazon RDS CA
certificate. Go to $OPENSHIFT_DATA_DIR, and run the following wget command:

[myapp-osbook.rhcloud.com]\> cd $OPENSHIFT_DATA_DIR

[myapp-osbook.rhcloud.com data]\> wget https://s3.amazonaws.com/rds-
downloads/mysql-ssl-ca-cert.pem

Next, connect to RDS instance using mysql command-line as shown
below. Please note the use of ssl_ca parameter to reference the
public key.

 [myapp-osbook.rhcloud.com data]\> mysql --host
<host_endpoint>.rds.amazonaws.com --port 3306 -u <username> -
p<password> <db_name> --ssl_ca=mysql-ssl-ca-cert.pem

Welcome to the MySQL monitor. Commands end with ; or \g.

Your MySQL connection id is 20

Server version: 5.5.33-log Source distribution

mysql>

See also
ff The Adding a MySQL cartridge to your application recipe

5
Using PostgreSQL with
OpenShift Applications

This chapter presents a number of recipes that show you how to get started with the
OpenShift PostgreSQL database cartridge. You will learn how to add and manage the
PostgreSQL cartridge, how to take backups of a PostgreSQL database, how to list and install
PostgreSQL extensions, and how to use the EnterpriseDB PostgreSQL Cloud Database service
with OpenShift applications. The specific recipes within this chapter are:

ff Adding the PostgreSQL cartridge to your application

ff Accessing the PostgreSQL cartridge from your local machine

ff Connecting to the PostgreSQL cartridge using pgAdmin from your local machine

ff Updating the PostgreSQL max_connections setting

ff Using the .psqlrc configuration file to configure the OpenShift application psql shell

ff Performing scheduled PostgreSQL database backups

ff Using EnterpriseDB PostgreSQL Cloud Database with OpenShift

ff Installing PostgreSQL extensions

Introduction
PostgreSQL is a popular, open source relational database used by many web applications
around the world. OpenShift supports a stock standard, security hardened version of
PostgreSQL database. As you are using standard versions of databases, you are not locked
inside OpenShift and can easily port your data if required.

Using PostgreSQL with OpenShift Applications

144

This chapter will use the PHP 5.4 application we created in Chapter 3, Creating and Managing
Applications. If you do not have any OpenShift application running, you can create a new
OpenShift application by running the following command:

$ rhc create-app myapp php-5.4

You can also use third-party database services, such as EnterpriseDB Cloud Database, if
running your database in OpenShift is not possible or you have already invested in third-party
services. Another reason why you might like to use a third-party database service is that the
OpenShift PostgreSQL cartridge is not scalable. So, for applications where you need horizontally
scalable and highly available PostgreSQL service, you can use a third-party provider, such as
EnterpriseDB, with your application.

Adding the PostgreSQL cartridge to your
application

At the time of writing this book, OpenShift supports two versions of the PostgreSQL database.
You can view all the supported PostgreSQL versions by running the following command:

$ rhc cartridges|grep postgresql

postgresql-8.4 PostgreSQL 8.4 addon

postgresql-9.2 PostgreSQL 9.2 addon

In this recipe, you will learn how to add the PostgreSQL 9.2 cartridge to your
OpenShift application.

Getting ready
To complete this recipe, you will need the rhc command-line client installed on your machine.
Please refer to the Installing the OpenShift rhc command-line client recipe in Chapter 1,
Getting Started with OpenShift, for details. Also, we will use the application created in the
Creating an OpenShift application using the rhc command-line client recipe in Chapter 3,
Creating and Managing Applications.

How to do it…
To install the PostgreSQL 9.2 cartridge to the myapp application, open a new command-line
terminal, change the directory to the myapp directory location, and then execute the
following command:

$ rhc add-cartridge --app myapp -c postgresql-9.2

Chapter 5

145

This will install a new instance of PostgreSQL server on your application gear. The -c option
is used to specify the cartridge name, and the --app option is used to specify the application
name. The --app option is not required if you are running the command within the application
directory. The -c option is required, but you can get away from writing -c, as the rhc
command-line client is intelligent enough to infer that PostgreSQL 9.2 is the cartridge name.
The command can be as simple as the following:

$ rhc cartridge-add postgresql-9

You can view the cartridge details using the rhc show-cartridge command as follows:

$ rhc cartridge-show postgresql

Using postgresql-9.2 (PostgreSQL 9.2) for 'postgresql'

postgresql-9.2 (PostgreSQL 9.2)

 Gears: Located with php-5.4

 Connection URL: postgresql://$OPENSHIFT_POSTGRESQL_DB_HOST:$OPENSHIFT_
POSTGRESQL_DB_PORT

 Database Name: myapp

 Password: dPLehGi-UGQi

 Username: admin8awrwrc

You can stop the PostgreSQL server using the stop command as follows:

$ rhc cartridge-stop postgresql

You can restart the PostgreSQL server using the restart command as follows:

$ rhc cartridge-restart postgresql

If you want to remove the PostgreSQL server from your application, you can use the remove
command as follows:

$ rhc cartridge-remove postgresql –-confirm

How it works…
When you run the rhc cartridge-add command, rhc will make a HTTP POST request to
the OpenShift server. The OpenShift server will receive the request and install a new instance
of the PostgreSQL database on your application gear. After provisioning the PostgreSQL
server, the rhc client will show the database details on the command-line terminal as follows:

Adding postgresql-9.2 to application 'myapp' ... done

postgresql-9.2 (PostgreSQL 9.2)

Using PostgreSQL with OpenShift Applications

146

 Gears: Located with php-5.4

 Connection URL: postgresql://$OPENSHIFT_POSTGRESQL_DB_HOST:$OPENSHIFT_
POSTGRESQL_DB_PORT

 Database Name: myapp

 Password: dPLehGi-UGQi

 Username: admin8awrwrc

PostgreSQL 9.2 database added. Please make note of these credentials:

 Root User: admin8awrwrc

 Root Password: dPLehGi-UGQi

 Database Name: myapp

Connection URL: postgresql://$OPENSHIFT_POSTGRESQL_DB_HOST:$OPENSHIFT_
POSTGRESQL_DB_PORT

You can view the PostgreSQL installation by performing SSH into your application gear:

$ rhc ssh --app myapp

Then, run the ls command to view the gear directory structure, and you will see the
postgresql directory:

[myapp-osbook.rhcloud.com 531069cd5973cad58c0000b6]\> ls -p

app-deployments/ app-root/ git/ php/ postgresql/

The postgresql directory is the location of your PostgreSQL installation, and it is not shared
with any other OpenShift application or user. It is only for your application, and only your
application can access it.

You can also connect with your PostgreSQL server using the psql command-line client:

[myapp-osbook.rhcloud.com 531069cd5973cad58c0000b6]\> psql

psql (9.2.4)

Type "help" for help.

myapp=#

Chapter 5

147

Now you can run SQL commands against your PostgreSQL server. To view all the databases,
run the following command:

myapp=# \list

 List of databases

 Name | Owner | Encoding | Collate | Ctype |
Access privileges

-----------+--------------+----------+-------------+-------------+-------

 myapp | admin8awrwrc | UTF8 | en_US.UTF-8 | en_US.UTF-8 |

 postgres | postgres | UTF8 | en_US.UTF-8 | en_US.UTF-8 |

 template0 | postgres | UTF8 | en_US.UTF-8 | en_US.UTF-8 | =c/
postgres +

 | | | | |
postgres=CTc/postgres

 template1 | postgres | UTF8 | en_US.UTF-8 | en_US.UTF-8 | =c/
postgres +

 | | | | |
postgres=CTc/postgres

(4 rows)

myapp=#

The myapp database corresponds to your application database. You can use this database for
your application or create a new database using the CREATE DATABASE command. To view
the uptime of your PostgreSQL server, run the following command:

myapp=# select date_trunc('minute',current_timestamp - pg_postmaster_
start_time()) as "postgresql_uptime";

 postgresql_uptime

 00:12:00

(1 row)

The output shows that the PostgreSQL server has been up for the last 12 minutes.

Using PostgreSQL with OpenShift Applications

148

You can view all the available PostgreSQL command-line utilities available on the gear by
typing pg_ and pressing Tab. The Tab key enables the command-line completion functionality
that allows the command-line program to automatically fill the rest of command:

[myapp-osbook.rhcloud.com 531069cd5973cad58c0000b6]\> pg_

pg_archivecleanup pg_controldata pg_dumpall pg_resetxlog
pg_test_fsync

pg_basebackup pg_ctl pg_filedump pg_restore
pg_test_timing

pg_config pg_dump pg_receivexlog pg_standby

There's more…
You can also add the PostgreSQL database from the OpenShift web console. Go to https://
openshift.redhat.com/app/console/applications, and click on the myapp
application for details. On the myapp application details web page, you will see the option to
add the PostgreSQL database, as shown in the following screenshot. Click on Add PostgreSQL
9.2 to add the PostgreSQL 9.2 cartridge.

Next, you will be directed to the page to add the PostgreSQL cartridge. Click on Add Cartridge
to add a PostgreSQL database to your application. Have a look at the following screenshot:

https://openshift.redhat.com/app/console/applications
https://openshift.redhat.com/app/console/applications

Chapter 5

149

After installing the PostgreSQL cartridge, you will be shown the PostgreSQL database details
as follows:

See also
ff The Accessing the PostgreSQL cartridge from your local machine recipe

Using PostgreSQL with OpenShift Applications

150

Accessing the PostgreSQL cartridge from
your local machine

In the Adding the PostgreSQL cartridge to your application recipe, you learned how to access
the PostgreSQL database by performing SSH into the application gear. In this recipe, you will
learn how to connect with the PostgreSQL database from your local machine.

Getting ready
To complete this recipe, you will need an application with the PostgreSQL cartridge. Please
refer to the Adding the PostgreSQL cartridge to your application recipe in this chapter to
learn how to install the PostgreSQL cartridge. Also, you will need the psql command-line
client on your machine. You can download the PostgreSQL server from the official website,
http://www.postgresql.org/download/.

How to do it…
Perform the following steps to access the PostgreSQL cartridge from your local machine:

1.	 Open a command-line terminal and change the directory to the myapp application
directory. Execute the following command to forward remote ports to the
local machine:
$ rhc port-forward

Checking available ports ... done

Forwarding ports ...

Address already in use - bind(2) while forwarding port 5432.
Trying local port 5433

To connect to a service running on OpenShift, use the Local
address

Service Local OpenShift

---------- -------------- ---- -----------------

httpd 127.0.0.1:8080 => 127.6.76.129:8080

postgresql 127.0.0.1:5433 => 127.6.76.130:5432

2.	 Connect to the PostgreSQL server from the local machine using the psql
command-line client as follows:
$ psql --host <host> --port <port> --username <username> myapp

http://www.postgresql.org/download/

Chapter 5

151

Please replace <username> with your PostgreSQL cartridge username and
password. The host and port values can be found in the output of the rhc port-
forward command. As you can see in step 1, PostgreSQL is available on the
127.0.0.1 host and port 5433. You can view the username and password by
running the rhc show-app or rhc cartridge-show postgresql command.

3.	 Once connected, you can run any valid SQL command. The \list command shows
the list of available databases:

adminvtxt5s8@127.0.0.1:5433 myapp#\list

 List of databases

 Name | Owner | Encoding | Collate | Ctype |
Access privileges

-----------+--------------+----------+-------------+-------------
+-------

 myapp | adminvtxt5s8 | UTF8 | en_US.UTF-8 | en_US.UTF-8 |

 postgres | postgres | UTF8 | en_US.UTF-8 | en_US.UTF-8 |

 template0 | postgres | UTF8 | en_US.UTF-8 | en_US.UTF-8 |
=c/postgres +

 | | | | |
postgres=CTc/postgres

 template1 | postgres | UTF8 | en_US.UTF-8 | en_US.UTF-8 |
=c/postgres +

 | | | | |
postgres=CTc/postgres

(4 rows)

How it works…
In step 1, you used the rhc port-forward command to forward all the remote ports to
the local machine. The rhc port-forward command is a wrapper around the SSH port
forwarding that makes a port on the remote machine available on your local machine. A port
on the remote machine that would otherwise be unavailable to you can be used just as if it's
on your local machine. The command returns the list of ports that you can connect from your
local machine.

As you can see in step 1, the postgresql process is available at port 5433 on the
127.0.0.1 host.

Using PostgreSQL with OpenShift Applications

152

In step 2, you connected to PostgreSQL from your local machine, passing in the username,
password, host, and port of the database. After successful connection, you ran a SQL
command in step 3.

To terminate port forwarding, just press Ctrl + C on the command-line terminal where the
rhc port-forward command is running.

See also
ff The Adding the PostgreSQL cartridge to your application recipe

ff The Connecting to the PostgreSQL cartridge using pgAdmin from your local
machine recipe

Connecting to the PostgreSQL cartridge
using pgAdmin from your local machine

In the Accessing the PostgreSQL cartridge from your local machine recipe, you learned how
to connect to the PostgreSQL cartridge from the psql command-line client from your local
machine using port forwarding. In this recipe, you will learn how to connect to the PostgreSQL
cartridge using pgAdmin from your local machine. pgAdmin is a comprehensive PostgreSQL
database design and management system for Unix and Windows systems.

Getting ready
To complete this recipe, you will need an application with the PostgreSQL cartridge. Please
refer to the Adding the PostgreSQL cartridge to your application recipe in this chapter to learn
how to add the PostgreSQL cartridge to your application. Also, you will need pgAdmin on your
local machine. You can download pgAdmin from the official website, http://www.pgadmin.
org/download/.

How to do it…
Perform the following steps to connect the PostgreSQL cartridge using the pgAdmin client:

1.	 Open a command-line terminal, and change the directory to the myapp application
directory. Execute the following command to forward remote ports to the local machine:
$ rhc port-forward --app myapp

http://www.pgadmin.org/download/
http://www.pgadmin.org/download/

Chapter 5

153

2.	 Start the pgAdmin application, and click on the socket icon to create a
new connection.

3.	 Set up a new connection by entering the PostgreSQL database details. You can get the
username and password for the PostgreSQL cartridge using the rhc show-app or
rhc cartridge-show mysql command. Have a look at the following screenshot:

4.	 Connect to the PostgreSQL cartridge by clicking on the OK button.

Using PostgreSQL with OpenShift Applications

154

5.	 You will see a connection listed in the left-hand side navigation pane, as shown in the
following screenshot:

6.	 Next, open the SQL editor by first clicking on the myapp database and then clicking
on SQL icon. Have a look at the following screenshot:

Chapter 5

155

7.	 Run the following SQL query inside the SQL editor to check the database uptime:
select date_trunc('minute',current_timestamp – pg_postmaster_
start_time()) as "postgresql_uptime";

How it works…
In step 1, you used the rhc port-forward command to forward all the remote ports to the
local machine. This makes it possible to connect to the PostgreSQL database running inside
your application gear. Step 2 through step 6, you created a new PostgreSQL connection and
connected with the PostgreSQL cartridge from within pgAdmin. In step 7, you executed a SQL
query using the SQL editor to verify that the connection is getting data from the PostgreSQL
cartridge installed in your myapp application.

See also
ff The Adding the PostgreSQL cartridge to your application recipe

ff The Accessing the PostgreSQL cartridge from your local machine recipe

Updating the PostgreSQL max_connections
setting

The OpenShift PostgreSQL cartridge is configured to allow 100 client connections at the
most. If the number of clients connected to the PostgreSQL server goes over this threshold,
PostgreSQL will start giving the FATAL too many connections error. In this recipe, you
will learn how to update the PostgreSQL cartridge max_connections setting.

The number of maximum connections is dictated by the max_connections setting
in the postgresql.conf configuration file. OpenShift does not allow users to modify
the postgresql.conf configuration file. The recommended way to change the
max_connections setting is by setting an environment variable.

Getting ready
To complete this recipe, you will need an application with the PostgreSQL cartridge. Please
refer to the Adding the PostgreSQL cartridge to your application recipe in this chapter to learn
how to install PostgreSQL cartridge.

Using PostgreSQL with OpenShift Applications

156

How to do it…
Perform the following steps to update the PostgreSQL max_connections setting:

1.	 To set the maximum connections to 200, open a command-line terminal and run the
following command:
$ rhc env-set OPENSHIFT_POSTGRESQL_MAX_CONNECTIONS=200 --app myapp

2.	 After setting the environment variable, you have to restart the PostgreSQL cartridge
for changes to take effect as follows:
$ rhc cartridge-restart postgresql --app myapp

How it works…
PostgreSQL database maintains its configuration in a file called postgresql.conf inside
the conf directory of your installation. The max_connections configuration setting controls
the maximum number of client connections allowed by the PostgreSQL server. You can view
the max_connection setting by running a query against your PostgreSQL database. To see
max_connections for your OpenShift PostgreSQL cartridge, SSH into the application gear,
and run the following command:

myapp=# show max_connections;

 max_connections

 100

(1 row)

OpenShift does not allow users to modify the postgresql.conf file for security reasons.
To allow users to modify the max_connections setting, OpenShift provides an environment
variable called OPENSHIFT_POSTGRESQL_MAX_CONNECTIONS, which can be used to set the
max_connections system variable. In step 1, you set the OPENSHIFT_POSTGRESQL_MAX_
CONNECTIONS environment variable to 200. The PostgreSQL server will not read the new
value unless you restart the database. So, in step 2, you restarted the database using the
rhc cartridge-restart command. To verify that max_connections value is updated,
you can run the SQL command again as follows:

myapp=# show max_connections;

 max_connections

 200

(1 row)

Chapter 5

157

There's more…
The OPENSHIFT_POSTGRESQL_MAX_CONNECTIONS variable is not the only configuration
property supported by the PostgreSQL cartridge. You can set the following properties
using environment variables. To learn about these settings, please refer to the following
documentation: https://wiki.postgresql.org/wiki/Tuning_Your_PostgreSQL_
Server.

Property Environment variable
shared_buffers OPENSHIFT_POSTGRESQL_SHARED_BUFFERS

datestyle OPENSHIFT_POSTGRESQL_DATESTYLE

ssl OPENSHIFT_POSTGRESQL_SSL_ENABLED

lc_messages OPENSHIFT_POSTGRESQL_LOCALE

lc_monetary OPENSHIFT_POSTGRESQL_LOCALE

lc_numeric OPENSHIFT_POSTGRESQL_LOCALE

lc_time OPENSHIFT_POSTGRESQL_LOCALE

See also
ff The Using the .psqlrc configuration file to configure the OpenShift application psql

shell recipe

ff The Accessing the PostgreSQL cartridge from your local machine recipe

Using the .psqlrc configuration file to
configure the OpenShift application psql
shell

PostgreSQL provides a startup file called .psqrc, which determines the behavior of the psql
interactive command-line client. Just like bashrc, the psql client utility attempts to read and
execute commands from the system-wide psqlrc file and the user's ~/.psqlrc file before
starting up. In this recipe, you will learn how you can use your own .psqlrc configuration file
to configure your OpenShift application psql shell.

Getting ready
To complete this recipe, you will need an application with the PostgreSQL cartridge. Please
refer to the Adding the PostgreSQL cartridge to your application recipe in this chapter to learn
how to install the PostgreSQL cartridge.

https://wiki.postgresql.org/wiki/Tuning_Your_PostgreSQL_Server
https://wiki.postgresql.org/wiki/Tuning_Your_PostgreSQL_Server

Using PostgreSQL with OpenShift Applications

158

How to do it…
Perform the following steps to configure the psql shell:

1.	 Change the directory to myapp, and then SSH into the application gear:
$ rhc ssh --app myapp

2.	 Create a new file in $OPENSHIFT_DATA_DIR named .psqlrc:
[myapp-osbook.rhcloud.com 531069cd5973cad58c0000b6]\> touch
$OPENSHIFT_DATA_DIR/.psqlrc

3.	 Now let's configure the psql shell to store the history of commands you have entered
so that you can run them again. This is achieved by setting the HISTFILE location
as shown in the following command. The :DBNAME variable allows psql to store a
different history for each database. We will also enable psql to print the time taken
to execute each command. This is done using the \timing option. To customize the
psql shell, add the following content to the .psqrc file:
\set HISTFILE ~/app-root/data/.psql_history- :DBNAME

\timing on

4.	 Log out of the SSH session and create a new environment variable named PSQLRC to
point to the new .psqlrc file location:
$ rhc env-set PSQLRC<OPENSHIFT_DATA_DIR>data/.psqlrc

Please replace OPENSHIFT_DATA_DIR with your OPENSHIFT_DATA_DIR location.
You can get the location by running the following command:

$ rhc ssh --app myapp --command 'cd $OPENSHIFT_DATA_DIR && pwd'

5.	 SSH into the application gear again using the rhc ssh command, and then run the
psql command. Run a query, and you will get the timing as well:
adminvtxt5s8:myapp#SELECT pid, usename from pg_stat_activity;

 pid | usename

--------+--------------

 354468 | adminvtxt5s8

(1 row)

Time: 85.372 ms

Chapter 5

159

How it works…
When psql is launched, it looks for a file called psqlrc and runs any command in the file to
initialize the environment. On a *nix-based system, this file is called .psqlrc and is usually
located under the user's home directory. From step 1 through step 3, you created a new
file, .psqlrc, under $OPENSHIFT_DATA_DIR. We added a couple of configurations to the
.psqlrc file. The first configuration makes sure that the SQL command history is stored in
a file called .psql_history under $OPENSHIFT_DATA_DIR. The second configuration
instructs psql to output the query execution time for each query.

In step 4, you created a new environment variable named PSQLRC that points to the .psqlrc
location. Finally, in step 5, you logged in to the psql client and ran a query. After query
execution, the psql client also showed the time taken to execute the query. As shown in the
preceding command-line output, this query took approximately 86 ms.

See also
ff The Adding the PostgreSQL cartridge to your application recipe

ff The Accessing the PostgreSQL cartridge from your local machine recipe

Performing scheduled PostgreSQL database
backups

In this recipe, you will learn how to perform a scheduled backup of your PostgreSQL database
and upload it to Amazon S3.

Getting ready
To complete this recipe, you will need an application with the PostgreSQL cartridge. Please
refer to the Adding the PostgreSQL cartridge to your application recipe in this chapter to learn
how to add the PostgreSQL cartridge. Also, you need to have the Amazon AWS account. Go to
http://aws.amazon.com/, and sign up for a new account if you don't already have one.

How to do it…
The following are the steps to perform daily scheduled backup of your PostgreSQL database:

1.	 Go to https://console.aws.amazon.com/s3/home, and create a new bucket
to store your database backups.

2.	 Add the cron cartridge to your application by running the following command:
$ rhc add-cartridge cron --app myapp

http://aws.amazon.com/
https://console.aws.amazon.com/s3/home

Using PostgreSQL with OpenShift Applications

160

3.	 SSH into the application gear, and download the s3-bash utility in $OPENSHIFT_
DATA_DIR. Extract it to the s3-bash directory. Have a look at the following commands:
$ rhc ssh --app myapp

$ cd $OPENSHIFT_DATA_DIR

$ wget http://s3-bash.googlecode.com/files/s3-bash.0.02.tar.gz

$ mkdir s3-bash

$ tar -xf s3-bash.0.02.tar.gz -C s3-bash

4.	 Create a new file named AWSSecretAccessKeyIdFile in the $OPENSHIFT_
DATA_DIR/s3-bash directory, and store your Amazon secret access key to it.
This is required by s3-bash to communicate with Amazon S3.

5.	 Create a script named database_backup.sh on your local machine in
.openshift/cron/minutely, and add the following content to it:
#!/bin/bash
if [`date +%H:%M` == "23:50"]
then
 FILE_NAME=$(date +"%Y%m%d%H%M")
 pg_dump --username=$OPENSHIFT_POSTGRESQL_DB_USERNAME --no-
password --host=$OPENSHIFT_POSTGRESQL_DB_HOST $BACKUP_DATABASE_
NAME > $OPENSHIFT_DATA_DIR/$FILE_NAME.sql
 echo "Took PostgreSQL Dump" >> $OPENSHIFT_CRON_DIR/log/backup.
log
 $OPENSHIFT_DATA_DIR/s3-bash/s3-put -k $AWS_ACCESS_KEY_ID
-s $OPENSHIFT_DATA_DIR/s3-bash/AWSSecretAccessKeyIdFile -T
$OPENSHIFT_DATA_DIR/$FILE_NAME.sql /$AWS_S3_BUCKET/$FILE_NAME.sql
 echo "Uploaded dump to Amazon S3" >> $OPENSHIFT_CRON_DIR/log/
backup.log
 rm -f $OPENSHIFT_DATA_DIR/$FILE_NAME.sql
fi

The previous script will run every day at 23:50 and run the pg_dump command
to create the data dump file. The file is then transferred to Amazon S3 using the
s3-bash API. Finally, after uploading the file, it deletes the SQL dump file from the
application gear.

6.	 Now, we have to set the environment variables so that our script can talk with
Amazon S3 as shown in the following commands. If you are not sure how to access
your security credentials, please refer to the documentation at http://docs.aws.
amazon.com/general/latest/gr/getting-aws-sec-creds.html. Have a
look at the following commands:
$ rhc env-set AWS_ACCESS_KEY_ID=< Your Amazon ACCESS_KEY_ID>

$ rhc env-set BACKUP_DATABASE_NAME=<Database you want to take
backup off>

$ rhc env-set AWS_S3_BUCKET=<Amazon S3 bucket name >

http://docs.aws.amazon.com/general/latest/gr/getting-aws-sec-creds.html
http://docs.aws.amazon.com/general/latest/gr/getting-aws-sec-creds.html

Chapter 5

161

7.	 Commit the code, and push the code to the OpenShift gear. Every night at 23:50, a
database backup would be done, and your backup would be uploaded to Amazon S3:
$ git commit –am "database backup script added"

$ git push

How it works…
In the previous steps, you enabled daily backups of your PostgreSQL database cartridge. The
recipe used the cron cartridge to upload database dumps to Amazon S3.

In step 1, you created a new Amazon S3 bucket to store your PostgreSQL database backups.
Amazon S3 is widely used to store static files and is an ideal choice for this job. Next, you
added the cron cartridge to the application. The cron cartridge will be used to perform daily
backups at a particular time.

Amazon S3 exposes its REST service that users can use to perform operations on S3 buckets.
Amazon provides wrappers of many programming languages around its REST API to make
it easy for developers to integrate with their application. As we wanted to keep this recipe
language-agnostic, we used the Amazon S3 bash wrapper. Amazon does not officially support
this wrapper, but it works very well. In step 3, you downloaded s3-bash using wget. The
tar.gz file was stored in $OPENSHIFT_DATA_DIR. You then extracted tar.gz to the s3-
bash directory.

Next, in step 4, you created a file named AWSSecretAccessKeyIdFile to store the Amazon
access key secret. The s3-bash wrapper uses a file for the AWS Secret Access Key ID so that
it does not appear in the list of running processes with ps.

In step 5, you created a bash script that will be executed every night at 23:50. The script
first takes the database backup using the pg_dump command and then uploads the file to
Amazon S3. The filename is the current timestamp. Finally, after uploading the backup to S3,
the script deletes the backup to save disk space.

In step 6, you created three environment variables required by the backup script. Finally, you
committed the changes in step 7 and pushed them to the OpenShift application gear.

See also
ff The Adding the PostgreSQL cartridge to your application recipe

Using PostgreSQL with OpenShift Applications

162

Using EnterpriseDB PostgreSQL Cloud
Database with OpenShift

In this recipe, you will learn how to use EnterpriseDB PostgreSQL Cloud Database with your
OpenShift applications. You can also use the Amazon RDS PostgreSQL DB instance in the
same way we used the Amazon RDS MySQL DB instance. EnterpriseDB Cloud Database
allows you to set up a replicated, sharded, and highly available PostgreSQL cluster either on
Amazon EC2 or the HP Cloud services. You can take periodic backups of your data and scale
it horizontally without any administrative skills.

Getting ready
To complete this recipe, you will need an OpenShift application. Refer to the Creating an
OpenShift application using the rhc command-line client recipe in Chapter 3, Creating and
Managing Applications, for more information.

How to do it…
Perform the following steps to learn how to connect your OpenShift applications with the
EnterpriseDB PostgreSQL database:

1.	 Go to http://www.enterprisedb.com/cloud-database/amazon, and click on
Get Started Now in the free trial section.

2.	 Next, you will be directed to the signup page. Enter the valid details, and click on the
submit button.

3.	 After successful signup, you will be redirected to the dashboard console as shown in
the next screenshot. Here, you can launch a database cluster, see the resources you
are consuming, or see the status update of the service. At the bottom of the dashboard,
there are links to the tutorials and documentation about PostgreSQL CloudDB.

4.	 Now, we will create our first DB cluster on EnterpriseDB Cloud by clicking on Launch
DB Cluster. This will open a pop up where you need to provide details of your cluster,
as shown in the following screenshot. The details include the name of the cluster,
PostgreSQL version, instance size of Amazon, number of nodes, and the master
username and password.

http://www.enterprisedb.com/cloud-database/amazon

Chapter 5

163

5.	 After entering cluster details, you can choose how many backups you want to keep
and when you would like to take the backup. Use the default options.

6.	 Finally, click on the Launch button. This will initiate the process of creating a
replicated DB cluster, as shown in the following screenshot. It will take a couple of
minutes to launch the cluster, so please be patient. From the Clusters tab, you can
get information about the database clusters you own. In the Details tab, you can see
the address where master and replica are running.

Creating a replicated DB cluster

Using PostgreSQL with OpenShift Applications

164

7.	 To connect to the EnterpriseDB PostgreSQL Cloud DB, SSH into the application gear,
and use the psql command to connect with Cloud DB. Every application gear has
psql installed on it. The host address is the address of master that you can get from
step 6.
$ psql -h host_address.compute-1.amazonaws.com -p 9999 -U postgres
-W postgres

How it works…
Step 1 through step 6 helped you create a new instance of EnterpriseDB PostgreSQL Cloud
DB instance. You are required to provide details related to your DB instance, and EnterpriseDB
will provision a PostgreSQL DB instance based on the details you entered. By step 6, you had
a running PostgreSQL DB instance that you could connect from the outside world. You can
connect it from your local machine or from your OpenShift application gear.

In step 7, you used the database details to connect to the EnterpriseDB PostgreSQL instance
using the psql command-line client.

See also
ff The Adding the PostgreSQL cartridge to your application recipe

Installing PostgreSQL extensions
Extensions are add-ons that you can install in a PostgreSQL database to extend the
functionality beyond the basic offering. You can find a list of PostgreSQL extensions available
on the PostgreSQL Extension Network website, http://www.pgxn.org/. The OpenShift
PostgreSQL cartridge comes in a bundle with a list of extensions. These extensions are not
installed by default but are available to you if you need them. In this recipe, you will learn how
to install an extension in your OpenShift PostgreSQL cartridge.

Getting ready
To complete this recipe, you will need an application with the PostgreSQL cartridge. Please
refer to the Adding the PostgreSQL cartridge to your application recipe in this chapter to learn
how to add the PostgreSQL cartridge to your application.

http://www.pgxn.org/

Chapter 5

165

How to do it…
Perform the following steps to install an extension:

1.	 Open a new command-line terminal, and SSH into the application gear using the
rhc ssh command. Once logged in, run the psql command-line utility to connect
with the PostgreSQL cartridge.

2.	 From inside the psql shell, run the following command to view all the
available extensions:
select * from pg_available_extensions;

3.	 Next, install the fuzzystrmatch extension by executing the following SQL command:
create extension fuzzystrmatch;

4.	 You can view all the installed extensions by running the \dx command:
#\dx

 List of installed extensions

 Name | Version | Schema |
Description

---------------+---------+------------+---------------------------

 fuzzystrmatch | 1.0 | public | determine similarities and
distance between strings

 plpgsql | 1.0 | pg_catalog | PL/pgSQL procedural
language

(2 rows)

5.	 You can remove the extension from your psql cartridge by running the following
SQL command:
drop extension fuzzystrmatch;

How it works…
Every OpenShift PostgreSQL cartridge has access to a list of extensions. These extensions
are not installed by default, as not all the applications need these extensions. To view all the
available extensions, you can use the select * from pg_available_extensions SQL
command as shown in step 2. At the time of writing this book, the PostgreSQL cartridge is
prepackaged with 51 extensions. These extensions can be installed by running the CREATE
EXTENSION SQL command as shown in step 2. The CREATE EXTENSION command
compiles and installs the extension. In step 3, you installed the fuzzystrmatch extension.

Using PostgreSQL with OpenShift Applications

166

The fuzzystrmatch extension provides several functions to determine similarities and
differences between strings. To view the details of the fuzzystrmatch extension, you can
run the following command:

\dx+ fuzzystrmatch

 Objects in extension "fuzzystrmatch"

 Object Description

 function difference(text,text)

 function dmetaphone_alt(text)

 function dmetaphone(text)

 function levenshtein_less_equal(text,text,integer)

 function levenshtein_less_equal(text,text,integer,integer,integer,integ
er)

 function levenshtein(text,text)

 function levenshtein(text,text,integer,integer,integer)

 function metaphone(text,integer)

 function soundex(text)

 function text_soundex(text)

(10 rows)

To find the levenshtein distance between Hello and Hallo, you can run
command shown below.

select levenshtein('Hello','Hallo');

 levenshtein

 1

(1 row)

You can drop an extension using the DROP EXTENSION command.

See also
ff The Adding the PostgreSQL cartridge to your application recipe

6
Using MongoDB and

Third-party Database
Cartridges with

OpenShift Applications

This chapter presents a number of recipes that show you how to get started with the OpenShift
MongoDB cartridge. We will also look at how you can use downloadable cartridges for MariaDB
and Remote Dictionary Server (Redis). The specific recipes within this chapter are:

ff Adding a MongoDB cartridge to your application

ff Adding a RockMongo cartridge to your application

ff Accessing a MongoDB cartridge from your local machine

ff Connecting to a MongoDB cartridge using Robomongo from your local machine

ff Enabling the MongoDB cartridge REST interface

ff Performing scheduled MongoDB database backups

ff Using MongoLab MongoDB-as-a-Service with OpenShift

ff Adding a MariaDB cartridge to your application

ff Adding a Redis cartridge to your application

Using MongoDB and Third-party Database Cartridges with OpenShift Applications

168

Introduction
MongoDB is a popular and open source document-oriented NoSQL data store. It is designed
for scalability and stores complex object graphs in a single document. It has support for
dynamic queries, secondary indexes, fast atomic updates, aggregation, and inbuilt support
for replication and sharding.

This chapter will use the PHP 5.4 application we created in Chapter 3, Creating and Managing
Applications. If you do not have any OpenShift application running, then you can create a new
OpenShift application by running the following command:

$ rhc create-app myapp php-5.4

Adding a MongoDB cartridge to your
application

In this recipe, you will learn how to add a MongoDB cartridge to your OpenShift application.
MongoDB is a document-oriented, horizontally scalable, and NoSQL data store.

Getting ready
To step through this recipe, you will need the rhc command-line client installed on
your machine. Refer to the Installing the OpenShift rhc command-line client recipe in
Chapter 1, Getting Started with OpenShift for details. Also, we will use the application
created in the Creating an OpenShift application using the rhc command-line client
recipe in Chapter 3, Creating and Managing Applications.

How to do it…
To install the MongoDB cartridge to the myapp application, use the following steps:

1.	 Open a new command-line terminal, then change the directory to the myapp directory
location and execute the following command:
$ rhc cartridge-add c mongodb-2.4 --app myapp

This will install a new instance of MongoDB on your application gear. The -c option
is used to specify the cartridge name and the --app option is used to specify the
application name.

2.	 You can view the cartridge details using the rhc show-cartridge command:
$ rhc show-cartridge mongodb --app myapp

Using mongodb-2.4 (MongoDB 2.4) for 'mongodb'

Chapter 6

169

mongodb-2.4 (MongoDB 2.4)

 Gears: Located with php-5.4

 Connection URL:
mongodb://$OPENSHIFT_MONGODB_DB_HOST:$OPENSHIFT_MONGODB_DB_POR
T/

 Database Name: myapp

 Password: DSdIxMVY8kd4

 Username: admin

3.	 You can also stop the MongoDB server using the stop command:
$ rhc stop-cartridge mongodb

You can restart the MongoDB server using the restart command:

$ rhc cartridge-restart mongodb

4.	 If you want to remove the MongoDB server from your application, you can use the
remove command:
$ rhc cartridge-remove mongodb –-confirm

How it works…
When you run the rhc add-cartridge command, rhc will make an HTTP POST request
to the OpenShift server. The OpenShift server will receive the request and instantiate a new
instance of the MongoDB database for your application. After provisioning the MongoDB
database, the rhc client will show the database details on the command-line terminal.

You can view the MongoDB installation by performing an SSH into your application gear:

$ rhc ssh --app myapp

Then, run the ls command to view the gear directory structure and you will see the
mongodb directory:

[myapp-osbook.rhcloud.com 52fb71aa5973caf609000026]\> ls -p

app-deployments/ app-root/ git/ mongodb/ php/

The mongodb directory is your mongodb installation, and it is not shared with any other
OpenShift application or user. It is only for your application, and only your application
can access it.

Using MongoDB and Third-party Database Cartridges with OpenShift Applications

170

You can also connect with your MongoDB database by using the mongo command-line client,
as shown in the following command. The Accessing a MongoDB cartridge from your local
machine recipe will cover how to connect with MongoDB from your local machine:

[myapp-osbook.rhcloud.com 52fb71aa5973caf609000026]\> mongo

MongoDB shell version: 2.4.6

connecting to: 127.2.34.2:27017/admin

Welcome to the MongoDB shell.

For interactive help, type "help".

For more comprehensive documentation, see

 http://docs.mongodb.org/

Questions? Try the support group

 http://groups.google.com/group/mongodb-user

>

Now, you can run commands against your MongoDB database. To view all the databases, run
the following command:

> show databases;

admin 0.03125GB

local 0.03125GB

myapp 0.03125GB

The myapp database corresponds to your application database.

You can view all the MongoDB command-line utilities available on the gear by typing in mongo
and hitting Tab twice:

[myapp-osbook.rhcloud.com 52fb71aa5973caf609000026]\> mongo

mongo mongod mongoexport mongoimport mongoperf
mongos mongostat

mongo_console mongodump mongofiles mongooplog
mongorestore mongosniff mongotop

There's more…
You can also add a MongoDB database from the OpenShift web console. Go to
https://openshift.redhat.com/app/console/applications, and click on
the myapp application for details. On the myapp application's details web page, you will
see an option to add a MongoDB database. Click on the Add MongoDB 2.4 option to add
a MongoDB 2.4 cartridge.

https://openshift.redhat.com/app/console/applications

Chapter 6

171

See also
ff The Adding a RockMongo cartridge to your application recipe

Adding a RockMongo cartridge to your
application

RockMongo (http://rockmongo.com/) is a free, open source, and popular tool written in
the PHP programming language to handle the administration of the MongoDB database via
a web browser. As a web application, RockMongo makes it easy to administer the MongoDB
server without any installation on your local machine. In this recipe, you will learn how to
install a RockMongo cartridge on your application.

Getting ready
To complete this recipe, you will need an application with a MongoDB cartridge. Refer to
the Adding a MongoDB cartridge to your application recipe to learn how to install a
MongoDB cartridge.

How to do it…
The steps needed to add the RockMongo cartridge are as follows:

1.	 To install the RockMongo cartridge on the myapp application, open a new command-
line terminal, then change the directory to the myapp directory location and execute
the following command:
$ rhc add-cartridge rockmongo --app myapp

2.	 Note the username and password returned by the rhc cartridge-add command.
You will need these to log in to RockMongo. The RockMongo credentials are the same
as your MongoDB database credentials, and you can view them anytime by executing
the rhc show-app or rhc cartridge-show mongodb-2.4 command.

3.	 Log in to RockMongo (https://myapp-{domain-name}.rhcloud.com/
rockmongo/) using the credentials from step 1.

http://rockmongo.com/

Using MongoDB and Third-party Database Cartridges with OpenShift Applications

172

How it works…
When you run the rhc add-cartridge command, the rhc client makes an HTTP POST
request to the OpenShift server. The OpenShift server receives the request and installs the
RockMongo cartridge on the application gear. The RockMongo cartridge works with all the
supported application types (Java, Python, Node.js, Ruby, Perl, and PHP). You don't need to
create PHP applications in order to use the RockMongo cartridge. OpenShift will start an
Apache process to run the RockMongo application.

You can only add the RockMongo cartridge after you have added a
MongoDB cartridge to your application. If you try to add RockMongo
before adding a MongoDB cartridge, then you will receive the Cartridge
'rockmongo-1.1' can not be added without mongodb error.

There's more…
You can also add a RockMongo cartridge from the OpenShift web console. Go to
https://openshift.redhat.com/app/console/applications and click on the
myapp application. To install a RockMongo cartridge, click on the Add RockMongo 1.1 web link.

See also
ff The Accessing a MongoDB cartridge from your local machine recipe

ff The Connecting to a MongoDB cartridge using Robomongo from your local
machine recipe

Accessing a MongoDB cartridge from your
local machine

In the Adding a MongoDB cartridge to your application recipe, you learned how to access a
MongoDB database by performing an SSH into the application gear. In this recipe, you will
learn how to connect with the MongoDB database from your local machine.

Getting ready
To complete this recipe, you will need an application with a MongoDB cartridge. Refer to the
Adding a MongoDB cartridge to your application recipe in this chapter to learn how to add a
MongoDB cartridge. Also, you will need the mongo command-line client on your machine. You
can download the MongoDB database from the official website at http://www.mongodb.
org/downloads/.

https://openshift.redhat.com/app/console/applications
http://www.mongodb.org/downloads/
http://www.mongodb.org/downloads/

Chapter 6

173

How to do it…
Perform the following steps to connect to a MongoDB cartridge from your local machine:

1.	 Open a command-line terminal and change the directory to the myapp application
directory. Execute the following command to forward remote ports to the local machine:
$ rhc port-forward --app myapp

Checking available ports ... done

Forwarding ports ...

Address already in use - bind(2) while forwarding port 8080.
Trying local port 8081

To connect to a service running on OpenShift, use the Local
address

Service Local OpenShift

------- --------------- ---- ----------------

httpd 127.0.0.1:8080 => 127.2.34.1:8080

httpd 127.0.0.1:8081 => 127.2.34.3:8080

mongodb 127.0.0.1:27017 => 127.2.34.2:27017

Press CTRL-C to terminate port forwarding

2.	 Open another command-line terminal and connect to the MongoDB database
from the mongo command-line client from your local machine using the following
command:
$ mongo --username <username> --password <password>
<host>:<port>/admin

3.	 Replace <username> and <password> with your MongoDB cartridge username
and password. The host and port values can be found in the output of the rhc
port-forward command. As you can see in step 1, the MongoDB database
is available on the 127.0.0.1 host and 27017 port number. You can view the
username and password by running the rhc show-app or rhc cartridge-show
mongodb-2.4 command.

4.	 Once connected to the MongoDB database, you can run any legitimate command,
as follows:

> show databases

admin 0.03125GB

local 0.03125GB

myap (empty)

myapp 0.03125GB

test 0.03125GB

Using MongoDB and Third-party Database Cartridges with OpenShift Applications

174

How it works…
In step 1, you used the rhc port-forward command to forward all the remote ports to
the local machine. The rhc port-forward command is a wrapper around the SSH port
forwarding that makes a port on the remote machine available on your local machine. A port
on the remote machine, which would otherwise be unavailable to you, can be used as if it's
on your local machine. The command returns the list of ports that you can connect from your
local machine, as shown in step 1.

As you can see in the output, the mongod process is available on the 27017 port and
127.0.0.1 host.

In step 2, you connected to the MongoDB database from your local machine, passing in the
username, password, host, and port of the database. After a successful connection, you ran a
command in step 3.

To terminate port forwarding, just press Ctrl + C on the command-line terminal where the rhc
port-forward command is running.

See also
ff The Connecting to a MongoDB cartridge using Robomongo from your local

machine recipe

ff The Adding a MongoDB cartridge to your application recipe

Connecting to a MongoDB cartridge using
Robomongo from your local machine

In the Accessing a MongoDB cartridge from your local machine recipe, you learned how
to connect to a MongoDB cartridge using the mongo command-line client from your local
machine. In this recipe, you will learn how to connect to a MongoDB cartridge using RoboMongo
from your local machine. RoboMongo (http://robomongo.org/) is an open source,
cross-platform MongoDB GUI management tool. We used RoboMongo because it is available
across all the operating systems, and you can type in all the commands you type in the mongo
shell in RoboMongo. It feels natural to developers who are used to the mongo shell.

Getting ready
To complete this recipe, you will need an application with a MongoDB cartridge. Refer to the
Adding a MongoDB cartridge to your application recipe in this chapter to learn how to add a
MongoDB cartridge. Also, you will need the RoboMongo tool installed on your local machine.
You can download the RoboMongo tool from its website at http://robomongo.org/.

http://robomongo.org/
http://robomongo.org/

Chapter 6

175

How to do it…
Perform the following steps to connect to RoboMongo with your MongoDB cartridge:

1.	 Open a command-line terminal and change the directory to the myapp application
directory. Execute the following command to forward remote ports to the local machine:
$ rhc port-forward --app myapp

2.	 Start the RoboMongo application, and you will see the following screenshot.
Click on the connect icon in the top-left corner:

3.	 After clicking on the connect icon, you will see a new window with options to create a
new connection. Click on the Create link to create a new connection:

Using MongoDB and Third-party Database Cartridges with OpenShift Applications

176

4.	 Set up a new connection by entering the MongoDB database details. The host and
port can be found in the output of the rhc port-forward command in step 1,
as shown in the following screenshot:

5.	 Click on the Authentication tab to enter the username and password required to
connect with the MongoDB cartridge. You can view the MongoDB cartridge details
using the rhc show-app or rhc cartridge-show mongodb-2.4 command.
The following screenshot shows the Authentication tab details:

Chapter 6

177

6.	 Click on the Save button and you will see the new connection listed in the MongoDB
Connections window:

7.	 Click on the Connect button and you will be connected to the MongoDB cartridge.

8.	 Once connected to your MongoDB cartridge, you can click on any database and
view all its collections. When you double-click on a collection, you can see the first
50 documents inside it. The following screenshot shows the documents inside the
msgs collection:

How it works…
In step 1, you used the rhc port-forward command to forward all the remote ports to the
local machine. This will make it possible to connect to the MongoDB database running inside
your application gear. In steps 2 through 7, you created a new MongoDB connection and
connected with the MongoDB cartridge from within RoboMongo. In step 8, you navigated to
the msgs collection in the test database.

Using MongoDB and Third-party Database Cartridges with OpenShift Applications

178

See also
ff The Accessing a MongoDB cartridge from your local machine recipe

ff The Enabling the MongoDB cartridge REST interface recipe

Enabling the MongoDB cartridge REST
interface

MongoDB exposes a minimal REST interface that allows users to query collections.
The interface does not expose operations to insert, update, or remove documents.
In this recipe, you will learn how to enable the MongoDB cartridge REST interface.

Getting ready
To complete this recipe, you will need an application with a MongoDB cartridge. Refer to the
Adding a MongoDB cartridge to your application recipe in this chapter to learn how to add one.

How to do it…
Perform the following steps to enable the MongoDB REST interface:

1.	 Open a new command-line terminal and SSH into the myapp application gear using
the ssh command:
$ rhc ssh --app myapp

2.	 Once inside the application gear, change the directory to mongodb/conf and edit
the mongodb.conf file using Vim.

3.	 Now, we need to update the nohttpinterface property value to false so that
MongoDB enables the HTTP frontend on the 28017 port. To enable the REST
interface, you have to add a new property, rest, and set its value equal to true,
as shown in the following code:
nohttpinterface = false
rest = true

4.	 Exit the SSH session and restart the MongoDB cartridge to allow the changes to
take effect:
$ rhc cartridge-restart –app mongodb-2.4

Chapter 6

179

5.	 Execute the rhc port-forward command on your local machine to enable port
forwarding. This will list all the applications that you can connect to from your local
machine. The REST interface will be exposed at the 28017 port:
$ rhc port-forward

Checking available ports ... done

Forwarding ports ...

Address already in use - bind(2) while forwarding port 8080.
Trying local port 8081

To connect to a service running on OpenShift, use the Local
address

Service Local OpenShift

------- --------------- ---- ----------------

httpd 127.0.0.1:8080 => 127.2.34.1:8080

httpd 127.0.0.1:8081 => 127.2.34.3:8080

mongod 127.0.0.1:28017 => 127.2.34.2:28017

mongodb 127.0.0.1:27017 => 127.2.34.2:27017

Press CTRL-C to terminate port forwarding

6.	 Open http://127.0.0.1:28017/ in a web browser. You have to authenticate
using the MongoDB cartridge credentials. It uses the HTTP basic authentication.

7.	 Then, to view all the documents in the msgs collection in the test document,
you can go to http://127.0.0.1:28017/test/msgs/. This will list a JSON
document that contains all the messages in the msgs collection.

How it works…
By default, MongoDB disables the REST interface. To enable the REST interface, you have to
update the mongodb.conf MongoDB configuration file. In step 3, you updated the mongodb.
conf file to enable the REST API. Then, you restarted the MongoDB cartridge in step 4 to
reload the configuration. To connect with the REST interface from your local machine, you
enabled port forwarding in step 5. The rhc port-forward command lists all the remote
services that you can connect to from your local machine. The MongoDB REST interface is
available on the 28017 port. In step 7, you viewed the details of the msgs collection in the
test database by opening http://127.0.0.1:28017/test/msgs/ in the browser.

Using MongoDB and Third-party Database Cartridges with OpenShift Applications

180

See also
ff The Using MongoLab MongoDB-as-a-Service with OpenShift recipe

ff The Performing scheduled MongoDB database backups recipe

Performing scheduled MongoDB database
backups

In this recipe, you will learn how to perform a scheduled backup of your MongoDB database
and upload the backup to Amazon S3.

Getting ready
To complete this recipe, you will need an application with a MongoDB cartridge. Refer to
the Adding a MongoDB cartridge to your application recipe in this chapter to learn how to
install one. Also, you need to have an Amazon AWS account. Go to http://aws.amazon.
com/ and sign up for a new account if you don't have one already.

How to do it…
Perform the following steps to enable a daily scheduled backup of the MongoDB cartridge:

1.	 Go to https://console.aws.amazon.com/s3/home and create a new bucket
to store your database backups.

2.	 Add the cron cartridge to your application by running the following command:
$ rhc cartridge-add cron --app myapp

3.	 SSH into the application gear and download the s3-bash utility in $OPENSHIFT_
DATA_DIR. Extract it to the s3-bash directory using the following commands:
$ rhc ssh --app myapp

$ cd $OPENSHIFT_DATA_DIR

$ wget http://s3-bash.googlecode.com/files/s3-bash.0.02.tar.gz

$ mkdir s3-bash

$ tar -xf s3-bash.0.02.tar.gz -C s3-bash

4.	 Create a new file, AWSSecretAccessKeyIdFile, in the $OPENSHIFT_DATA_DIR/
s3-bash directory and store your Amazon secret access key to it. This is required by
s3-bash to communicate with Amazon S3.

http://aws.amazon.com/
http://aws.amazon.com/
https://console.aws.amazon.com/s3/home

Chapter 6

181

5.	 Create a script on your local machine in .openshift/cron/minutely/
database_backup.sh and add the following content to it:
#!/bin/bash
function load_env {
 [-z "$1"] && return 1
 [-f "$1"] || return 0

 local key=$(basename $1)
 export $key="$(< $1)"
}

for f in ~/.env/mongodb/*
do
 load_env $f
done

set -x
if ['date +%H:%M' == "23:50"]
then
 FILE_NAME=$(date +"%Y%m%d%H%M")
 mongodump --host $OPENSHIFT_MONGODB_DB_HOST --port
$OPENSHIFT_MONGODB_DB_PORT --username
$OPENSHIFT_MONGODB_DB_USERNAME --password
$OPENSHIFT_MONGODB_DB_PASSWORD --db $OPENSHIFT_APP_NAME --
out $OPENSHIFT_DATA_DIR/$FILE_NAME
 cd $OPENSHIFT_DATA_DIR
 zip -r $FILE_NAME.zip $FILE_NAME
 echo "Took MongoDB Dump" >>
$OPENSHIFT_CRON_DIR/log/backup.log
 $OPENSHIFT_DATA_DIR/s3-bash/s3-put -k $AWS_ACCESS_KEY_ID
-s $OPENSHIFT_DATA_DIR/s3-bash/AWSSecretAccessKeyIdFile -T
$OPENSHIFT_DATA_DIR/$FILE_NAME.zip
/$AWS_S3_BUCKET/$FILE_NAME.zip
 echo "Uploaded dump to Amazon S3" >>
$OPENSHIFT_CRON_DIR/log/backup.log
 rm -f $OPENSHIFT_DATA_DIR/$FILE_NAME.zip
 rm -rf $OPENSHIFT_DATA_DIR/$FILE_NAME
fi

6.	 The preceding script will run every day at 23:50 (11:50 p.m.) and also run the
mongodump command to create the database backup file. The file is then transferred
to Amazon S3 using the s3-bash API. Finally, after uploading the file, it deletes the
database dump file from the application gear.

Using MongoDB and Third-party Database Cartridges with OpenShift Applications

182

7.	 Now, we have to set the environment variables so that our script can talk with
Amazon S3. If you are not sure how to access your security credentials, then refer to
the documentation at http://docs.aws.amazon.com/general/latest/gr/
getting-aws-sec-creds.html. We run the following commands:
$ rhc env-set AWS_ACCESS_KEY_ID=< Your Amazon ACCESS_KEY_ID>

$ rhc env-set AWS_S3_BUCKET=<Amazon S3 bucket name >

8.	 Commit the code and push it to the OpenShift gear. Every night, at 23:50
(11:50 p.m.), database backup will be done and your backup will be uploaded
to Amazon S3.

How it works…
In step 1, you created a new Amazon S3 bucket to store your MongoDB database backups.
Amazon S3 is widely used to store static files and is an ideal choice for this job. Next, you
added the cron cartridge to the application. The cron cartridge will be used to perform
daily backups at a particular time.

Amazon S3 exposes its REST service that users can use to perform operations on S3 buckets.
Amazon provides many programming languages wrapped around their REST API to make it
easy for developers to integrate with their application. As we wanted to keep this recipe's
language agnostic, we used the Amazon S3 bash wrapper. Amazon does not officially support
this wrapper, but it works very well. In step 3, you downloaded the s3-bash utility using
wget. The tar.gz file was stored in $OPENSHIFT_DATA_DIR. You then extracted the
tar.gz file to the s3-bash directory.

Next, in step 4, you created a file called AWSSecretAccessKeyIdFile to store the Amazon
access key secret. The s3-bash wrapper uses a file for the AWS secret access key ID so that
it does not appear in the list of running processes with ps.

In step 5, you created a bash script that will be executed every night at 23:50 (11:50 p.m.).
The script first takes the database backup using the mongodump command and then uploads
the file to Amazon S3. The filename is the current timestamp. Finally, after uploading the
backup to S3, the script deletes the backup to save disk space.

Step 6 creates two environment variables required by the backup script. Finally, in step 7,
you push the code to the application gear.

See also
ff The Using MongoLab MongoDB-as-a-Service with OpenShift recipe

http://docs.aws.amazon.com/general/latest/gr/getting-aws-sec-creds.html
http://docs.aws.amazon.com/general/latest/gr/getting-aws-sec-creds.html

Chapter 6

183

Using MongoLab MongoDB-as-a-Service
with OpenShift

The MongoLab (https://mongolab.com) MongoDB-as-a-Service makes it easy for you to
set up, operate, and scale a MongoDB database on top of various cloud providers. In addition
to the standard MongoDB features, MongoLab also offers the following functionality:

ff Running MongoDB on all the major cloud providers, such as Amazon, Google,
Rackspace, and so on

ff Highly available MongoDB

ff Automated backups

ff Monitoring support

In this recipe, you will learn how to use the MongoLab MongoDB-as-a-Service with your
OpenShift applications.

Getting ready
To complete this recipe, you will need an OpenShift application. Also, you need to have
a MongoLab account. Go to https://mongolab.com/ and sign up for a new account
if you don't have one already.

How to do it…
Perform the following steps to connect with the MongoLab MongoDB server from the
OpenShift application:

1.	 After you have created a MongoLab account, you will be shown a screen to create
your first database. Click on the Create new button:

https://mongolab.com
https://mongolab.com/

Using MongoDB and Third-party Database Cartridges with OpenShift Applications

184

2.	 Enter the details of your MongoDB instance. In the following screenshot, the
database name is myapp and Amazon EC2 is the cloud-hosting provider. We choose
the US East coast data center, as this is where the OpenShift Online application
instances are located. This helps to minimize the latency between the OpenShift
application and the database instance:

3.	 After the database is successfully provisioned, you will see it listed, as shown in the
following screenshot:

Chapter 6

185

4.	 Click on the myapp database and you will be shown details of the database:

5.	 Before you can connect with the database, you need to create a database user.
Click on the Click here link to create a new database user, as shown in the
following screenshot:

Using MongoDB and Third-party Database Cartridges with OpenShift Applications

186

6.	 This will open a pop up, as shown in the following screenshot, where you have to
enter the username and password for the new database user:

7.	 After creation, the database user will be shown on the database details page under
the Users tab.

8.	 To connect to the MongoLab MongoDB instance, you will need to have the mongo
command-line client on the gear. Every OpenShift application gear already has
the mongo command-line client installed, so you don't have to do anything. Just
SSH into the application gear using the rhc ssh command and then enter the
following command. The username and password corresponds to the one you
created during step 6. The host, port, and database name correspond to the
information found in step 4:
$ mongo --host <host> --port <port> --username <username> --
password <password> <database_name>

9.	 Once connected to the MongoLab MongoDB instance, you can run any valid
MongoDB command, as follows:

> show collections

system.indexes

system.users

> db.msgs.insert({msg:"hello"})

>

> db.msgs.findOne()

{ "_id" : ObjectId("5315aa28317c39c58ecd4f04"), "msg" :
"hello" }

Chapter 6

187

How it works…
Step 1 through 4 helped you create a new instance of the MongoLab MongoDB database
instance. You are required to provide details related to your database instance, and
MongoLab will provision a MongoDB database instance based on the details you entered.
From step 5 through step 7, you created a new database user that will allow you to connect to
the MongoDB database instance from the outside world.

In step 8, you used the database details to connect to the MongoDB instance from the
OpenShift application gear using the mongo command-line client. Finally, you ran a few
Mongo commands on the connected MongoLab MongoDB database instance. To learn
how to connect to MongoLab with your PHP code, you can refer to the OpenShift official
blog at https://www.openshift.com/blogs/getting-started-with-mongodb-
mongolab-php-and-openshift.

See also
ff The Adding a MongoDB cartridge to your application recipe

Adding a MariaDB cartridge to your
application

In this recipe, you will learn how to add the MariaDB downloadable cartridge to your OpenShift
application. MariaDB (https://mariadb.org/) is a community fork of the MySQL
database. It is intended to be a drop-in replacement for the MySQL database.

Getting ready
To step through this recipe, you will need the rhc command-line client installed on your
machine. Refer to the Installing the OpenShift rhc command-line client recipe in Chapter 1,
Getting Started with OpenShift for details. Also, we will use the application created in the
Creating an OpenShift application using the rhc command-line client recipe in Chapter 3,
Creating and Managing Applications.

How to do it…
To install the MariaDB 5.5 downloadable cartridge on the myapp application, open a new
command-line terminal, then change the directory to the myapp directory location and
execute the following command:

$ rhc cartridge-add https://raw.github.com/openshift-
cartridges/mariadb-cartridge/master/metadata/manifest.yml --app myapp

https://www.openshift.com/blogs/getting-started-with-mongodb-mongolab-php-and-openshift
https://www.openshift.com/blogs/getting-started-with-mongodb-mongolab-php-and-openshift
https://mariadb.org/

Using MongoDB and Third-party Database Cartridges with OpenShift Applications

188

The preceding command will install a new instance of the MariaDB server on your
application gear.

You can view the cartridge details using the rhc cartridge-show command:

$ rhc cartridge-show mariadb

developercorey-mariadb-5.5 (MariaDB 5.5)

--

 From: https://raw.github.com/openshift-
cartridges/mariadb-cartridge/master/metadata/manifest.yml

 Gears: Located with php-5.4, cron-1.4

 Connection URL:
mysql://$OPENSHIFT_MARIADB_DB_HOST:$OPENSHIFT_MARIADB_DB_PORT/

 Database Name: myapp

 Password: wPG6vvBy6_L9

 Username: admin7H6WdQN

You can also stop the MariaDB server using the stop command:

$ rhc cartridge-stop mariadb

You can restart the MariaDB server using the restart command:

$ rhc cartridge-restart mariadb

If you want to remove the MariaDB server from your application, you can use the
remove command:

$ rhc cartridge-remove mariadb –-confirm

How it works…
When you run the rhc cartridge-add command, rhc will make an HTTP POST request
to the OpenShift server. The OpenShift server will receive the request and instantiate a new
instance of the MariaDB server for your application using the manifest file. After provisioning the
MariaDB server, the rhc client will show the database details on the command-line terminal.

You can view the MariaDB installation by performing an SSH into your application gear:

$ rhc ssh --app myapp

Then, run the ls command to view the gear directory structure and you will see the
mariadb directory:

[myapp-osbook.rhcloud.com 52fb71aa5973caf609000026]\> ls -p

app-deployments/ app-root/ cron/ git/ mariadb/ php/

Chapter 6

189

The mariadb directory is your mariadb installation, and it is not shared with any other
OpenShift application or user. It is only for your application, and only your application can
access it.

You can also connect with your MariaDB server using the mysql command-line client.
We used the mysql client because it is already installed and compatible with MariaDB.

Now, you can run SQL commands against your MariaDB server. To view all the databases,
run the following command:

mysql> SHOW DATABASES;

+--------------------+

| Database |

+--------------------+

| information_schema |

| myapp |

| mysql |

+--------------------+

3 rows in set (0.00 sec)

The myapp database corresponds to your application database.

See also
ff The Adding a MongoDB cartridge to your application recipe

Adding a Redis cartridge to your application
In this recipe, you will learn how to add the Redis downloadable cartridge to your OpenShift
application. Redis is an open source, advanced, NoSQL key value data store, written in
the ANSI C programming language. It is an in-memory data store but also writes to the disk
for durability.

Getting ready
To step through this recipe, you will need the rhc command-line client installed on your
machine. Refer to the Installing the OpenShift rhc command-line client recipe in Chapter 1,
Getting Started with OpenShift for details. Also, we will use the application created in the
Creating an OpenShift application using the rhc command-line client recipe in Chapter 3,
Creating and Managing Applications.

Using MongoDB and Third-party Database Cartridges with OpenShift Applications

190

How to do it…
To install the Redis downloadable cartridge to the myapp application, open a new
command-line terminal, then change the directory to the myapp directory location,
and execute the following command:

$ rhc cartridge-add http://cartreflect-
claytondev.rhcloud.com/reflect?github=smarterclayton/openshift-redis-
cart --app myapp

This will install a new instance of the Redis server on your application gear.

You can view the cartridge details using the rhc cartridge-show command.

You can also stop the Redis server using the stop command:

$ rhc cartridge-stop redis

You can restart the Redis server using the restart command:

$ rhc cartridge-restart redis

If you want to remove the Redis server from your application, you can use the
remove command:

$ rhc cartridge-remove redis –-confirm

How it works…
When you run the rhc cartridge-add command, rhc will make an HTTP POST request
to the OpenShift server. The OpenShift server will receive the request and instantiate a new
instance of the Redis server for your application using the manifest file. After provisioning
the Redis server, the rhc client will show the database details on the command-line terminal,
as follows:

Adding http://cartreflect-
claytondev.rhcloud.com/reflect?githubgithub=smarterclayton/openshift-
redis-cart to application 'myapp' ... done

smarterclayton-redis-2.6 (Redis)

 From: http://cartreflect-
claytondev.rhcloud.com/reflect?github=smarterclayton/openshift-redis-
cart

 Gears: Located with php-5.4

Chapter 6

191

Redis is now configured with a default password
ZTNiMGM0NDI5OGZjMWMxNDlhZmJmNGM4OTk2ZmI5

You can configure various Redis scaling and persistence modes by
setting

environment variables - consult the cartridge README for more info.

You can view the Redis installation by performing an SSH into your application gear:

$ rhc ssh --app myapp

Then, run the ls command to view the gear directory structure, and you will see the
redis directory:

[myapp-osbook.rhcloud.com 52fb71aa5973caf609000026]\> ls -p

app-deployments/ app-root/ git/ php/ redis/

The redis directory is your redis installation, and it is not shared with any other OpenShift
application or user. It is only for your application, and only your application can access it.

You can also connect with your Redis server using the redis-cli command-line client:

[myapp-osbook.rhcloud.com 53121c645973ca7acf000018]\> redis-cli
$REDIS_CLI

redis 127.2.34.2:16379>

Now, you can run commands against your Redis server. To view the details about your
Redis installation, you can run the INFO command:

redis 127.2.34.2:16379> INFO

Server

redis_version:2.6.13

redis_git_sha1:00000000

redis_git_dirty:0

redis_mode:standalone

os:Linux 2.6.32-431.5.1.el6oso.bz844450.x86_64 x86_64

arch_bits:64

multiplexing_api:epoll

tcp_port:16379

uptime_in_seconds:874

uptime_in_days:0

hz:10

lru_clock:957695

// removed for brevity

Using MongoDB and Third-party Database Cartridges with OpenShift Applications

192

There's more…
To learn how to use Redis with a Java application, you can read my blog at
https://www.openshift.com/blogs/build-cloud-enabled-java-redis-
applications-with-spring-on-openshift.

See also
ff The Adding a MariaDB cartridge to your application recipe

https://www.openshift.com/blogs/build-cloud-enabled-java-redis-applications-with-spring-on-openshift
https://www.openshift.com/blogs/build-cloud-enabled-java-redis-applications-with-spring-on-openshift

7
OpenShift for

Java Developers

This chapter presents a number of recipes that show you how to get started with Java web
application development on OpenShift. You will learn how to create and deploy Java Enterprise
Edition (Java EE) applications on OpenShift using the JBoss EAP 6 and JBoss AS 7 application
server cartridges. This chapter will also cover how to develop and host your Spring Framework
applications on the Tomcat server. The specific recipes within this chapter are as follows:

ff Creating and deploying Java EE 6 applications using the JBoss EAP and PostgreSQL
9.2 cartridges

ff Configuring application security by defining the database login module in
standalone.xml

ff Installing modules with JBoss cartridges
ff Managing JBoss cartridges using the management web interface and CLI
ff Creating and deploying Spring applications using the Tomcat 7 cartridge
ff Taking thread dumps of Java cartridges
ff Choosing between Java 6 and Java 7
ff Enabling hot deployment for Java applications
ff Skipping the Maven build
ff Forcing a clean Maven build
ff Overriding the default Maven build command
ff Installing the JAR file not present in the Maven central repository
ff Developing OpenShift Java applications using Eclipse
ff Using Eclipse System Explorer to SSH into the application gear
ff Debugging Java applications in the Cloud

OpenShift for Java Developers

194

Introduction
This chapter will explore how Java developers can get started with OpenShift to develop Java
EE or Spring applications. Java is often thought of as the de facto open source, enterprise
programming language. OpenShift supports the JBoss application server, which is a certified
platform for Java EE 6 development. As an OpenShift Online user, you have access to both the
community version of JBoss and commercial JBoss EAP 6 for free. The Creating and deploying
Java EE 6 applications using the JBoss EAP and PostgreSQL 9.2 cartridges recipe will cover
how to develop and deploy Java EE 6 applications on OpenShift. There is also a community-
supported cartridge for WildFly, a certified Java EE 7 application server that you can use to
deploy Java EE 7 applications. This chapter will not cover the WildFly cartridge.

A popular alternative to Java EE development is Spring Framework. Spring developers normally
use Apache Tomcat to host their applications. OpenShift supports two versions of Tomcat:
Apache Tomcat 6 and Apache Tomcat 7. The Creating and deploying Spring applications using
the Tomcat 7 cartridge recipe will cover how to develop a Spring application and deploy it on
OpenShift. Also, it is possible to run Apache Tomcat 8 (currently in beta) on OpenShift. You
can read my blog to learn how to deploy Apache Tomcat 8 on OpenShift at https://www.
openshift.com/blogs/how-to-run-apache-tomcat-8-on-openshift.

OpenShift uses Apache Maven to manage dependencies and build your OpenShift apps. All
OpenShift Java applications are Maven-based applications. This chapter assumes that you
are familiar with Apache Maven. In the event that you are not comfortable with Maven, then
please refer to the documentation at http://maven.apache.org/guides/getting-
started/index.html. This chapter will cover various aspects of using Apache Maven with
OpenShift, such as how to use your own JARs (not hosted on the Maven central repository)
with OpenShift, and so on. OpenShift also allows you to use other build tools, such as Apache
Ant and Gradle. Please refer to my blogs on Apache Ant (https://www.openshift.com/
blogs/running-ant-builds-on-openshift) and Gradle (https://www.openshift.
com/blogs/run-gradle-builds-on-openshift) to learn how to use them with
OpenShift applications.

Almost all Java developers use an IDE to build their applications. OpenShift has first-class
support for the Eclipse IDE. The Developing OpenShift Java applications using Eclipse recipe
will walk you through a step-by-step process of creating and managing an application from
within Eclipse. You can even SSH into the application gear from within Eclipse. This will be
covered in the Using Eclipse System Explorer to SSH into the application gear recipe.

If you want to run the examples on your local machine, then please install Java 7, Apache
Maven, and Eclipse. The instructions to install Java for your operating system can be found
at http://www.java.com/en/download/help/download_options.xml. Next,
instructions to install Apache Maven can be found here: http://maven.apache.org/
download.cgi#Installation. Finally, you can install Eclipse on your machine by following
the instructions mentioned here: http://wiki.eclipse.org/Eclipse/Installation.

https://www.openshift.com/blogs/how-to-run-apache-tomcat-8-on-openshift
https://www.openshift.com/blogs/how-to-run-apache-tomcat-8-on-openshift
http://maven.apache.org/guides/getting-started/index.html
http://maven.apache.org/guides/getting-started/index.html
https://www.openshift.com/blogs/running-ant-builds-on-openshift
https://www.openshift.com/blogs/running-ant-builds-on-openshift
https://www.openshift.com/blogs/run-gradle-builds-on-openshift
https://www.openshift.com/blogs/run-gradle-builds-on-openshift
http://www.java.com/en/download/help/download_options.xml
http://maven.apache.org/download.cgi#Installation
http://maven.apache.org/download.cgi#Installation
http://wiki.eclipse.org/Eclipse/Installation

Chapter 7

195

This chapter is based on the assumption that you know the basics of OpenShift application
development and database cartridges. In the event that you are not comfortable with the
basics, I will recommend that you first read Chapter 3, Creating and Managing Applications to
Chapter 6, Using MongoDB and Third-party Database Cartridges with OpenShift Applications
before continuing with this chapter.

In this chapter, we will develop a simple job portal application that will allow users to post job
openings for a company. Users can create a company and then post jobs for that company.
All the source code is on the OpenShift-Cookbook repository of the GitHub organization at
https://github.com/OpenShift-Cookbook.

Creating and deploying Java EE 6
applications using the JBoss EAP and
PostgreSQL 9.2 cartridges

Gone are the days when Java EE or J2EE (as it was called in the olden days) was considered
evil. Java EE now provides a very productive environment to build web applications. Java EE has
embraced convention over configuration and annotations, which means that you are no longer
required to maintain XML to configure each and every component. In this recipe, you will learn
how to build a Java EE 6 application and deploy it on OpenShift. This recipe assumes that you
have basic knowledge of Java and Java EE 6. If you are not comfortable with Java EE 6, please
read the official tutorial at http://docs.oracle.com/javaee/6/tutorial/doc/.

In this recipe, you will build a simple job portal that will allow users to post job openings and
view a list of all the persisted jobs in the system. These two functionalities will be exposed
using two REST endpoints.

The source code for the application created in this recipe is on GitHub at https://github.
com/OpenShift-Cookbook/chapter7-jobstore-javaee6-simple. The example
application that you will build in this recipe is a simple version of the jobstore application
with only a single domain class and without any application interface. You can get the
complete jobstore application source code on GitHub as well at https://github.com/
OpenShift-Cookbook/chapter7-jobstore-javaee6.

Getting ready
To complete this recipe, you will need the rhc command-line client installed on your machine.
Please refer to the Installing the OpenShift rhc command-line client recipe in Chapter
1, Getting Started with OpenShift, for details. Also, you will need an IDE to work with the
application code. The recommended IDE to work with OpenShift is Eclipse Luna, but you
can also work with other IDEs, such as IntelliJ Idea and NetBeans. Download and install the
Eclipse IDE for Java EE developers from the official website at https://www.eclipse.
org/downloads/.

https://github.com/OpenShift-Cookbook
http://docs.oracle.com/javaee/6/tutorial/doc/
https://github.com/OpenShift-Cookbook/chapter7-jobstore-javaee6-simple
https://github.com/OpenShift-Cookbook/chapter7-jobstore-javaee6-simple
https://github.com/OpenShift-Cookbook/chapter7-jobstore-javaee6
https://github.com/OpenShift-Cookbook/chapter7-jobstore-javaee6
https://www.eclipse.org/downloads/
https://www.eclipse.org/downloads/

OpenShift for Java Developers

196

How to do it…
Perform the following steps to create the jobstore application:

1.	 Open a new command-line terminal, and go to a convenient location. Create a new
JBoss EAP application by executing the following command:
$ rhc create-app jobstore jbosseap-6

2.	 The preceding command will create a Maven project and clone it to your local
machine.

3.	 Change the directory to jobstore, and execute the following command to add the
PostgreSQL 9.2 cartridge to the application:
$ rhc cartridge-add postgresql-9.2

4.	 Open Eclipse and navigate to the project workspace. Then, import the application
created in step 1 as a Maven project. To import an existing Maven project, navigate
to File|Import|Maven|Existing Maven Projects. Then, navigate to the location of
your OpenShift Maven application created in step 1.

5.	 Next, update pom.xml to use Java 7. The Maven project created by OpenShift
is configured to use JDK 6. Replace the properties with the one shown in the
following code:
<maven.compiler.source>1.7</maven.compiler.source>
<maven.compiler.target>1.7</maven.compiler.target>

6.	 Update the Maven project to allow the changes to take effect. You can update the
Maven project by right-clicking on the project and navigating to Maven|Update Project.

7.	 Now, let us write the domain classes for our application. Java EE uses JPA to define
the data model and manage entities. The application has one domain class: Job.
Create a new package called org.osbook.jobstore.domain, and then create
a new Java class called Job inside it. Have a look at the following code:
@Entity
public class Job {

@Id
@GeneratedValue(strategy = GenerationType.AUTO)
private Long id;

@NotNull
private String title;

@NotNull
@Size(max = 4000)
private String description;

Chapter 7

197

@Column(updatable = false)
@Temporal(TemporalType.DATE)
@NotNull
private Date postedAt = new Date();

@NotNull
private String company;

//setters and getters removed for brevity

}

8.	 Create a META-INF folder at src/main/resources, and then create a
persistence.xml file with the following code:
<?xml version="1.0" encoding="UTF-8"?>
<persistence xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance"

xsi:schemaLocation="http://java.sun.com/xml/ns/persistence
http://java.sun.com/xml/ns/persistence/persistence_2_0.xsd"
version="2.0"
xmlns="http://java.sun.com/xml/ns/persistence">

<persistence-unit name="jobstore" transaction-type="JTA">

<provider>org.hibernate.ejb.HibernatePersistence</provider>
<jta-data-
source>java:jboss/datasources/PostgreSQLDS</jta-data-
source>

<exclude-unlisted-classes>false</exclude-unlisted-
classes>

<properties>
<property name="hibernate.show_sql" value="true" />
<property name="hibernate.hbm2ddl.auto"
value="update" />
</properties>
</persistence-unit>

</persistence>

OpenShift for Java Developers

198

9.	 Now, we will create the JobService class that will use the JPA EntityManager API
to work with the database. Create a new package called org.osbook.jobstore.
services, and create a new Java class as shown in the following code. It defines
the save and findAll operations on the Job entity.
@Stateless
public class JobService {

@PersistenceContext(unitName = "jobstore")
private EntityManager entityManager;

public Job save(Job job) {
entityManager.persist(job);
return job;
}

public List<Job> findAll() {
return entityManager
.createQuery("SELECT j from
org.osbook.jobstore.domain.Job j order by j.postedAt desc",
Job.class)
.getResultList();
}
}

10.	 Next, enable Contexts and Dependency Injection (CDI) in the jobstore application
by creating a file with the name beans.xml in the src/main/webapp/WEB-INF
directory as follows:
<?xml version="1.0"?>
<beans xmlns="http://java.sun.com/xml/ns/javaee"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
http://jboss.org/schema/cdi/beans_1_0.xsd"/>

11.	 The jobstore application will expose the REST JSON web service. Before you can
write the JAX-RS resources, you have to configure JAX-RS in your application. Create
a new package called org.osbook.jobstore.rest and a new class called
RestConfig, as shown in the following code:
@ApplicationPath("/api/v1")
public class RestConfig extends Application {
}

Chapter 7

199

12.	 Create a JAX-RS resource to expose the create and findAll operations of
JobService as REST endpoints as follows:
@Path("/jobs")
public class JobResource {

@Inject
private JobService jobService;

@POST
@Consumes(MediaType.APPLICATION_JSON)
public Response createNewJob(@Valid Job job) {
job = jobService.save(job);
return Response.status(Status.CREATED).build();
}

@GET
@Produces(MediaType.APPLICATION_JSON)
public List<Job> showAll() {
return jobService.findAll();
}
}

13.	 Commit the code, and push it to the OpenShift application as shown in the
following commands:
$ git add .

$ git commit -am "jobstore application created"

$ git push

14.	 After the build finishes successfully, the application will be accessible at
http://jobstore-{domain-name}.rhcloud.com. Please replace
domain-name with your own domain name.

15.	 To test the REST endpoints, you can use curl. curl is a command-line tool for
transferring data across various protocols. We will use it to test our REST endpoints.
To create a new job, you will run the following curl command:
$ curl -i -X POST -H "Content-Type: application/json" -H
"Accept: application/json" -d '{"title":"OpenShift
Evangelist","description":"OpenShift
Evangelist","company":"Red Hat"}'http://jobstore-{domain-
name}.rhcloud.com/api/v1/jobs

16.	 To view all the jobs, you can run the following curl command:
$ curl http://jobstore-{domain-name}.rhcloud.com/api/v1/jobs

OpenShift for Java Developers

200

How it works…
In the preceding steps, we created a Java EE application and deployed it on OpenShift. In step
1, you used the rhc create-app command to create a JBoss EAP web cartridge application.
The rhc command-line tool makes a request to the OpenShift broker and asks it to create
a new application using the JBoss EAP cartridge. The anatomy of application creation was
explained in the Creating an OpenShift application using the rhc command-line client recipe
in Chapter 3, Creating and Managing Applications. Every OpenShift web cartridge specifies a
template application that will be used as the default source code of the application. For Java
web cartridges (JBoss EAP, JBoss AS7, Tomcat 6, and Tomcat 7), the template is a Maven-
based application. After the application is created, it is cloned to the local machine using Git.
The directory structure of the application is shown in the following command:

$ ls -a

.git .openshift README.md pom.xml deployments src

As you can see in the preceding command, apart from the .git and .openshift directories,
this looks like a standard Maven project. OpenShift uses Maven to manage application
dependencies and build your Java applications.

Let us take a look at what's inside the jobstore directory to better understand the layout of
the application:

ff The src directory: This directory contains the source code for the template
application generated by OpenShift. You need to add your application source code
here. The src folder helps in achieving source code deployment when following the
standard Maven directory conventions.

ff The pom.xml file: The Java applications created by OpenShift are Maven-based
projects. So, a pom.xml file is required when you do source code deployment on
OpenShift. This pom.xml file has a profile called openshift, which will be executed
when you push code to OpenShift as shown in the following code. This profile will
create a ROOT WAR file based upon your application source code.
<profiles>
<profile>
<id>openshift</id>
<build>
<finalName>jobstore</finalName>
<plugins>
<plugin>
<artifactId>maven-war-plugin</artifactId>
<version>2.1.1</version>
<configuration>
<outputDirectory>deployments</outputDirectory>
<warName>ROOT</warName>

Chapter 7

201

</configuration>
</plugin>
</plugins>
</build>
</profile>
</profiles>

ff The deployments directory: You should use this directory if you want to do binary
deployments on OpenShift, that is, you want to deploy a WAR or EAR file directly
instead of pushing the source code.

ff The .git directory: This is a local Git repository. This directory contains the complete
history of the repository. The config file in.git/ contains the configuration for the
repository. It defines a Git remote origin that points to the OpenShift application gear
SSH URL. This makes sure that when you do git push, the source code is pushed
to the remote Git repository hosted on your application gear. You can view the details
of the origin Git remote by executing the following command:
$ git remote show origin

ff The .openshift directory: This is an OpenShift-specific directory, which can be used
for the following purposes:

�� The files under the action_hooks subdirectory allow you to hook onto the
application lifecycle.

�� The files under the config subdirectory allow you to make changes to the
JBoss EAP configuration. The directory contains the standalone.xml
JBoss EAP-specific configuration file.

�� The files under the cron subdirectory are used when you add the cron
cartridge to your application. This allows you to run scripts or jobs on a
periodic basis.

�� The files under the markers subdirectory allow you to specify whether
you want to use Java 6 or Java 7 or you want to do hot deploy or debug
the application running in the Cloud, and so on.

In step 2, you added the PostgreSQL 9.2 cartridge to the application using the rhc
cartridge-add command. We will use the PostgreSQL database to store the jobstore
application data. Then, in step 3, you imported the project in the Eclipse IDE as a Maven
project. Eclipse Kepler has inbuilt support for Maven applications, which makes it easier
to work with Maven-based applications.

From step 3 through step 5, you updated the project to use JDK 1.7 for the Maven compiler
plugin. All the OpenShift Java applications use OpenJDK 7, so it makes sense to update the
application to also use JDK 1.7 for compilation.

OpenShift for Java Developers

202

In step 6, you created the job domain class and annotated it with JPA annotations. The
@Entity annotation marks the class as a JPA entity. An entity represents a table in the
relational database, and each entity instance corresponds to a row in the table. Entity class
fields represent the persistent state of the entity. You can learn more about JPA by reading
the official documentation at http://docs.oracle.com/javaee/6/tutorial/doc/
bnbpz.html.

The @NotNull and @Size annotation marks are Bean Validation annotations. Bean
Validation is a new validation model available as a part of the Java EE 6 platform. The
@NotNull annotation adds a constraint that the value of the field must not be null. If the
value is null, an exception will be raised. The @Size annotation adds a constraint that the
value must match the specified minimum and maximum boundaries. You can learn more
about Bean Validation by reading the official documentation at http://docs.oracle.com/
javaee/6/tutorial/doc/gircz.html.

In JPA, entities are managed within a persistence context. Within the persistence context,
the entity manager manages the entities. The configuration of the entity manager is defined
in a standard configuration XML file called persitence.xml. In step 7, you created the
persistence.xml file. The most important configuration option is the jta-datasource-
source configuration tag. It points to java:jboss/datasources/PostgreSQLDS.
When a user creates a JBoss EAP 6 application, then OpenShift defines a PostgreSQL
datasource in the standalone.xml file. The standalone.xml file is a JBoss configuration
file, which includes the technologies required by the Java EE 6 full profile specification
plus Java Connector 1.6 architecture, Java XML API for RESTful web services, and OSGi.
Developers can override the configuration by making changes to the standalone.xml
file in the .openshift/config location of your application directory. So, if you open the
standalone.xml file in .openshift/config/ in your favorite editor, you will find the
following PostgreSQL datasource configuration:

<datasource jndi-name="java:jboss/datasources/PostgreSQLDS"
enabled="${postgresql.enabled}" use-java-context="true" pool-
name="PostgreSQLDS"
use-ccm="true">
<connection-
url>jdbc:postgresql://${env.OPENSHIFT_POSTGRESQL_DB_HOST}:${env.OP
ENSHIFT_POSTGRESQL_DB_PORT}/${env.OPENSHIFT_APP_NAME}
</connection-url>
<driver>postgresql</driver>
<security>
<user-name>${env.OPENSHIFT_POSTGRESQL_DB_USERNAME}</user-name>
<password>${env.OPENSHIFT_POSTGRESQL_DB_PASSWORD}</password>
</security>
<validation>
<check-valid-connection-sql>SELECT 1</check-valid-connection-
sql>

http://docs.oracle.com/javaee/6/tutorial/doc/bnbpz.html
http://docs.oracle.com/javaee/6/tutorial/doc/bnbpz.html
http://docs.oracle.com/javaee/6/tutorial/doc/gircz.html
http://docs.oracle.com/javaee/6/tutorial/doc/gircz.html

Chapter 7

203

<background-validation>true</background-validation>
<background-validation-millis>60000</background-validation-
millis>
<!--<validate-on-match>true</validate-on-match> -->
</validation>
<pool>
<flush-strategy>IdleConnections</flush-strategy>
<allow-multiple-users />
</pool>
</datasource>

In step 8, you created stateless Enterprise JavaBeans (EJBs) for our application service layer.
The service classes work with the EntityManager API to perform operations on the Job entity.

In step 9, you configured CDI by creating the beans.xml file in the src/main/webapp/
WEB-INF directory. We are using CDI in our application so that we can use dependency
injection instead of manually creating the objects ourselves. The CDI container will manage
the bean life cycle, and the developer just has to write the business logic. To let the JBoss
application server know that we are using CDI, we need to create a file called beans.xml in
our WEB-INF directory. The file can be completely blank, but its presence tells the container
that the CDI framework needs to be loaded.

In step 10 and step 11, you configured JAX-RS and defined the REST resources for
the Job entity. You activated JAX-RS by creating a class that extends javax.ws.rs.
ApplicationPath. You need to specify the base URL under which your web service will be
available. This is done by annotating the RestConfig class with the ApplicationPath
annotation. You used /api/v1 as the application path.

In step 12, you added and committed the changes to the local repository and then pushed
the changes to the application gear. After the bits are pushed, OpenShift will stop all the
cartridges and then invoke the mvn -e clean package -Popenshift -DskipTests
command to build the project. Maven will build a ROOT.war file, which will be copied to the
JBoss EAP deployments folder. After the build successfully finishes, all the cartridges are
started. Then the new updated ROOT.war file will be deployed. You can view the running
application at http://jobstore-{domain-name}.rhcloud.com. Please replace
{domain-name} with your account domain name.

Finally, you tested the REST endpoints using curl in step 14.

There's more…
You can perform all the aforementioned steps with just a single command as follows:

$ rhc create-app jobstore jbosseap postgresql-9.2 --from-code
https://github.com/OpenShift-Cookbook/chapter7-jobstore-javaee6-
simple.git --timeout 180

OpenShift for Java Developers

204

See also
ff The Configuring application security by defining the database login module in

standalone.xml recipe

ff The Managing JBoss cartridges using the management web interface and CLI recipe

Configuring application security by
defining the database login module
in standalone.xml

In the Creating and deploying Java EE 6 applications using the JBoss EAP and PostgreSQL
9.2 cartridges recipe, you learned how to develop a Java EE 6 application on OpenShift. The
application allows you to create company entities and then assign jobs to them. The problem
with the application is that it is not secured. The Java EE specification defines a simple, role-
based security model for EJBs and web components. JBoss security is an extension to the
application server and is included by default with your OpenShift JBoss applications. You can
view the extension in the JBoss standalone.xml configuration file. The standalone.xml
file exists in the .openshift/config location. The following code shows the extension:

<extension module="org.jboss.as.security" />

OpenShift allows developers to update the standalone.xml configuration file to meet their
application needs. You make a change to the standalone.xml configuration file, commit
the change to the local Git repository, then push the changes to the OpenShift application
gear. Then, after the successful build, OpenShift will replace the existing standalone.xml
file with your updated configuration file and then finally start the server. But please make sure
that your changes are valid; otherwise, the application will fail to start.

In this recipe, you will learn how to define the database login module in standalone.xml to
authenticate users before they can perform any operation with the application.

The source code for the application created in this recipe is on GitHub at https://github.
com/OpenShift-Cookbook/chapter7-jobstore-security.

Getting ready
This recipe builds on the application created in the Creating and deploying Java EE 6
applications using the JBoss EAP and PostgreSQL 9.2 cartridges recipe. So, please refer to
that recipe before continuing with this recipe.

https://github.com/OpenShift-Cookbook/chapter7-jobstore-security
https://github.com/OpenShift-Cookbook/chapter7-jobstore-security

Chapter 7

205

How to do it…
Perform the following steps to add security to your web application:

1.	 Create the OpenShift application created in the Creating and deploying Java EE 6
applications using the JBoss EAP and PostgreSQL 9.2 cartridges recipe using the
following command:
$ rhc create-app jobstore jbosseap postgresql-9.2 --from-code
https://github.com/OpenShift-Cookbook/chapter7-jobstore-
javaee6-simple.git --timeout 180

2.	 After the application creation, SSH into the application gear, and connect with the
PostgreSQL database using the psql client. Then, create the following tables and
insert the test data:
$ rhc ssh

$ psql

jobstore=# CREATE TABLE USERS(email VARCHAR(64) PRIMARY KEY,
password VARCHAR(64));

jobstore=# CREATE TABLE USER_ROLES(email VARCHAR(64), role
VARCHAR(32));

jobstore=# INSERT into USERS values('admin@jobstore.com',
'ISMvKXpXpadDiUoOSoAfww==');

jobstore=# INSERT into USER_ROLES values('admin@jobstore.com',
'admin');

3.	 Exit from the SSH shell, and open the standalone.xml file in the.openshift/
config directory. Update the security domain with the following code:
<security-domain name="other" cache-type="default">
<authentication>
<login-module code="Remoting" flag="optional">
<module-option name="password-stacking"
value="useFirstPass" />
</login-module>
<login-module code="Database" flag="required">
<module-option name="dsJndiName"
value="java:jboss/datasources/PostgreSQLDS" />
<module-option name="principalsQuery"
value="select password from USERS where email=?" />
<module-option name="rolesQuery"
value="select role, 'Roles' from USER_ROLES where
email=?" />
<module-option name="hashAlgorithm" value="MD5" />
<module-option name="hashEncoding" value="base64" />

OpenShift for Java Developers

206

</login-module>
</authentication>
</security-domain>

4.	 Create the web deployment descriptor (that is, web.xml) in the src/main/webapp/
WEB-INF folder. Add the following content to it:
<?xml version="1.0" encoding="UTF-8"?>
<web-app version="3.0"
xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/web-app_3_0.xsd">

<security-constraint>
<web-resource-collection>
<web-resource-name>WebAuth</web-resource-name>
<description>application security constraints
</description>
<url-pattern>/*</url-pattern>
<http-method>GET</http-method>
<http-method>POST</http-method>
</web-resource-collection>
<auth-constraint>
<role-name>admin</role-name>
</auth-constraint>
</security-constraint>
<login-config>
<auth-method>FORM</auth-method>
<realm-name>jdbcRealm</realm-name>
<form-login-config>
<form-login-page>/login.html</form-login-
page>
<form-error-page>/error.html</form-error-
page>
</form-login-config>
</login-config>
<security-role>
<role-name>admin</role-name>
</security-role>

</web-app>

Chapter 7

207

5.	 Create the login.html file in the src/main/webapp directory. The login.html
page will be used for user authentication. The following code shows the contents of
this file:
<!DOCTYPE html>
<html>
<head>
<meta charset="UTF-8">
<title>Login</title>
<link href="//cdnjs.cloudflare.com/ajax/libs/twitter-
bootstrap/3.1.1/css/bootstrap.css" rel="stylesheet">
</head>
<body>
<div class="container">
<form class="form-signin" role="form" method="post"
action="j_security_check">
<h2 class="form-signin-heading">Please sign in</h2>
<input type="text" id="j_username"
name="j_username" class="form-control" placeholder="Email
address" required autofocus>
<input type="password" id="j_password"
name="j_password" class="form-control"
placeholder="Password" required>
<button class="btn btn-lg btn-primary btn-block"
type="submit">Sign in</button>
</form>
</div>
</body>
</html>

6.	 Create an error.html file in the src/main/webapp directory. The error.html
page will be shown after unsuccessful authentication. The following code shows the
contents of this file:
<!DOCTYPE html>
<html>
<head>
<meta charset="US-ASCII">
<title>Error page</title>
</head>
<body>
<h2>Incorrect username/password</h2>
</body>
</html>

OpenShift for Java Developers

208

7.	 Commit the changes, and push them to the OpenShift application gear:
$ git add .

$ git commit –am "enabled security"

$ git push

8.	 Go to the application page at http://jobstore-{domain-name}.rhcloud.
com, and you will be asked to log in before you can view the application. Use
admin@jobstore.com/admin as the username-password combination to
log in to the application.

How it works…
Let's now understand what you did in the preceding steps. In step 1, you recreated the
jobstore application we developed in the Creating and deploying Java EE 6 applications
using the JBoss EAP and PostgreSQL 9.2 cartridges recipe. Next, in step 2, you performed an
SSH into the application gear and created the USERS and USER_ROLES tables. These tables
will be used by the JBoss database login module to authenticate users. As our application
does not have the user registration functionality, we created a default user for the application.
Storing the password as a clear text string is a bad practice, so we have stored the MD5 hash
of the password. The MD5 hash of the admin password is ISMvKXpXpadDiUoOSoAfww==. If
you want to generate the hashed password in your application, I have included a simple Java
class, which uses org.jboss.crypto.CryptoUtil to generate the MD5 hash of any string.
The CryptoUtil class is part of the picketbox library. The following code depicts this:

import org.jboss.crypto.CryptoUtil;

public class PasswordHash {

public static String getPasswordHash(String password) {
return CryptoUtil.createPasswordHash("MD5",
CryptoUtil.BASE64_ENCODING,
null, null, password);
}

public static void main(String[] args) throws Exception {
System.out.println(getPasswordHash("admin"));
}
}

Chapter 7

209

In step 3, you logged out of the SSH session and updated the standalone.xml JBoss
configuration file with the database login module configuration. There are several login
module implementations available out of the box. This book will only talk about the database
login module, as discussing all the modules is outside the scope of this book. You can read
about all the login modules at https://docs.jboss.org/author/display/AS7/Secur
ity+subsystem+configuration. The database login module checks the user credentials
against a relational database. To configure the database login module, you have to specify
a few configuration options. The dsJndiName option is used to specify the application
datasource. As we are using a configured PostgreSQL datasource for our application, you
specified the same dsJndiName option value. Next, you have to specify the SQL queries to
fetch the user and its roles. Then, you have specified that the password will be hashed against
an MD5 hash algorithm by specifying the hashAlgorithm configuration.

In step 4, you applied the database login module to the jobstore application by defining
the security constraints in web.xml. This configuration will add a security constraint on all
the web resources of the application that will restrict access to authenticated users with role
admin. You have also configured your application to use FORM-based authentication. This
will make sure that when unauthenticated users visit the website, they will be redirected
to the login.html page created in step 5. If the user enters a wrong e-mail/password
combination, then they will be redirected to the error.html page created in step 6.

Finally, in step 7, you committed the changes to the local Git repository and pushed the
changes to the application gear. OpenShift will make sure that the JBoss EAP application
server uses the updated standalone.xml configuration file. Now, the user will be asked
to authenticate before they can work with the application.

See also
ff The Creating and deploying Java EE 6 applications using the JBoss EAP and

PostgreSQL 9.2 cartridges recipe

ff The Installing modules with JBoss cartridges recipe

ff The Managing JBoss cartridges using the management web interface and CLI recipe

Installing modules with JBoss cartridges
From version 7 of the JBoss application server, class loading is based on the JBoss Modules
project. In this recipe, you will learn how to install the Twitter4J library as a module on the
JBoss EAP 6 cartridge. The modules directory under the JBoss server home houses all the
modules installed on the application server.

The source code for the application created in this recipe is on GitHub at
https://github.com/OpenShift-Cookbook/chapter7-recipe4.

https://docs.jboss.org/author/display/AS7/Security+subsystem+configuration
https://docs.jboss.org/author/display/AS7/Security+subsystem+configuration
https://github.com/OpenShift-Cookbook/chapter7-recipe4

OpenShift for Java Developers

210

Getting ready
This recipe builds on the application created in the Creating and deploying Java EE 6
applications using the JBoss EAP and PostgreSQL 9.2 cartridges recipe. So, please refer
to that recipe before continuing with this recipe.

How to do it…
Perform the following steps to install the Twitter4J library as a module:

1.	 Create the OpenShift application created in the Creating and deploying Java EE 6
applications using the JBoss EAP and PostgreSQL 9.2 cartridges recipe using the
following command:
$ rhc app-create jobstore jbosseap postgresql-9.2 --from-code
https://github.com/OpenShift-Cookbook/chapter5-jobstore-
javaee6.git --timeout 180

2.	 To install a new module, you have to create the module path under the
.openshift/config/modules directory as follows:
$ mkdir –p .openshift/config/modules/org/twitter4j/main

3.	 Download the twitter4j-core library from http://mvnrepository.com/
artifact/org.twitter4j/twitter4j-core/3.0.5, and place it under the
.openshift/config/modules/org/twitter4j/main directory.

4.	 Now, in the main folder, add a file named module.xml. This file contains the actual
module definition as follows:
<module xmlns="urn:jboss:module:1.1" name="org.twitter4j">
<resources>
<resource-root path="twitter4j-core-3.0.5.jar" />
</resources>
<dependencies>
<module name="javax.api"/>
</dependencies>
</module>

5.	 Now, to use this module in your application, you have to first add its dependency in
your pom.xml file. Make sure that the scope is provided, as the server will already
have this dependency since you are adding it as a module:
<dependency>
<groupId>org.twitter4j</groupId>
<artifactId>twitter4j-core</artifactId>
<version>3.0.5</version>
<scope>provided</scope>
</dependency>

http://mvnrepository.com/artifact/org.twitter4j/twitter4j-core/3.0.5
http://mvnrepository.com/artifact/org.twitter4j/twitter4j-core/3.0.5

Chapter 7

211

6.	 Secondly, you have to update the Maven WAR plugin configuration by adding the
org.twitter4j module dependency in the META-INF/MANIFEST.MF location:
<plugin>
<artifactId>maven-war-plugin</artifactId>
<version>2.4</version>
<configuration>
<archive>
<manifestEntries>
<Dependencies>org.twitter4j</Dependencies>
</manifestEntries>
</archive>
<outputDirectory>deployments</outputDirectory>
<warName>ROOT</warName>
<failOnMissingWebXml>false</failOnMissingWebXml>
</configuration>
</plugin>

7.	 Finally, commit the changes, and push them to the application gear. Now, after the
server restarts, JBoss will have the twitter4j library as a module.

How it works…
In the preceding steps, you learned how to install a third-party library as a module. The
alternative to using a third-party library is to add a compile scope dependency in pom.xml
and then use the twitter4j library in your application. The advantage of using a module is
that you do not have to bundle the JAR file with your application archive. If you are deploying
multiple applications on a single server instance, then the server will only need one copy of
the JAR file.

After creating the application in step 1, you created a directory structure required to define
a module inside the.openshift/config directory in step 2. This directory is added to the
module path of the JBoss EAP server associated with your OpenShift application. It has the
same structure as the standard JBoss EAP modules directory. Inside org.twitter4j.
main, you placed the twitter4j-core-3.0.5.jar file in step 3. In step 4, you created
a file called module.xml inside the org.twitter4j.main directory. The module.xml
file is used to define a module and its dependencies. The module name org.twitter4j
corresponds to the module attribute that you will define in your application manifest. Next,
you need to state the path to the twitter4j-core library and finally, its dependencies.

OpenShift for Java Developers

212

Next, in step 5, you added a provided scope dependency to the twitter4j-core library.
The provided scope indicated that you expect the application container to provide the
dependency at runtime. Also, provided dependencies are not packaged with web applications.
This makes sure that the application archives are smaller in size and the application deploys
faster. Also, in step 5, you updated the Maven WAR plugin configuration to add a dependency
on the org.twitter4j module to the application archive META-INF/MANIFEST.MF file.

In step 6, you committed the changes and pushed them to the application gear.

In this recipe, I have not covered how to use the Twitter4J library. If you want to see
Twitter4J in action, I have created an application for you, which will tweet after posting a
job. To use the application, you have to first create a Twitter application. Go to https://dev.
twitter.com, and create a new Twitter application. Give the application the read-and-write
level access. Once you are done, create a new OpenShift application by running the following
command. Please replace the environment variable values with your Twitter application
values. You can find these values under the Twitter application's API Keys section.

$ rhc create-app jobstore jbosseap postgresql-9.2 --env
TWITTER_CONSUMER_KEY=$TWITTER_CONSUMER_KEY
TWITTER_CONSUMER_SECRET=$TWITTER_CONSUMER_SECRET
TWITTER_ACCESS_TOKEN_KEY=$TWITTER_ACCESS_TOKEN_KEY
TWITTER_ACCESS_TOKEN_SECRET=$TWITTER_ACCESS_TOKEN_SECRET --from-code
https://github.com/OpenShift-Cookbook/chapter7-recipe4.git

After the application is successfully created, a tweet will be sent after every job posting.

See also
ff The Creating and deploying Java EE 6 applications using the JBoss EAP and

PostgreSQL 9.2 cartridges recipe

ff The Managing JBoss cartridges using the management web interface and CLI recipe

Managing JBoss cartridges using the
management web interface and CLI

JBoss provides three different ways to manage the server: a web interface, a command-line
client, and the XML configuration files. In this recipe, you will learn how to deploy WAR files to
your JBoss cartridge using the web management interface and JBoss CLI.

https://dev.twitter.com
https://dev.twitter.com

Chapter 7

213

Getting ready
To complete this recipe, you will need to have the JBoss application server binary on your local
machine. This is required to connect with the JBoss cartridge using jboss-cli. Download
the JBoss AS7 binary from the official website at http://www.jboss.org/jbossas/
downloads. Extract the ZIP file, and you will find the jboss-cli script in the bin folder.

In this recipe, we will use the jobstore application that we created in the Creating and
deploying Java EE 6 applications using the JBoss EAP and PostgreSQL 9.2 cartridges recipe.

How to do it…
Perform the following steps:

1.	 Open a new command-line terminal, and navigate to the directory where the
jobstore application is located. Run the rhc port-forward command to forward
the remote ports on your local machine:
$ rhc port-forward --app myapp

To connect to a service running on OpenShift, use the Local
address

Service Local OpenShift

---------- -------------- ---- ------------------

java 127.0.0.1:3528 => 127.8.104.129:3528

java 127.0.0.1:4447 => 127.8.104.129:4447

java 127.0.0.1:5445 => 127.8.104.129:5445

java 127.0.0.1:8080 => 127.8.104.129:8080

java 127.0.0.1:9990 => 127.8.104.129:9990

java 127.0.0.1:9999 => 127.8.104.129:9999

postgresql 127.0.0.1:5433 => 127.8.104.130:5432

Press CTRL-C to terminate port forwarding

2.	 Open the management interface at http://127.0.0.1:9990 in your favorite
web browser. This information is available in the output of the rhc port-forward
command.

http://www.jboss.org/jbossas/downloads
http://www.jboss.org/jbossas/downloads

OpenShift for Java Developers

214

3.	 In this recipe, we will deploy the WAR file of the application we created in the Creating
and deploying Java EE 6 applications using the JBoss EAP and PostgreSQL 9.2
cartridges recipe using the JBoss management interface. Download the WAR file
from https://github.com/OpenShift-Cookbook/chapter7-recipe5/raw/
master/ROOT.war to your local machine.

4.	 After downloading the WAR file, navigate to Runtime | Manage Deployments, and
remove the existing ROOT.war file by clicking on the Remove button as shown in the
following screenshot. It will ask you to confirm the removal, and you can click on the
OK button. Have a look at the following screenshot:

5.	 To deploy the WAR file, click on the Add button, and then upload the ROOT.war file
from your local machine. After uploading the WAR file, you will be asked to verify the
deployment name. Choose the default values, and click on the Save button as shown
in the following screenshot:

https://github.com/OpenShift-Cookbook/chapter7-recipe5/raw/master/ROOT.war
https://github.com/OpenShift-Cookbook/chapter7-recipe5/raw/master/ROOT.war

Chapter 7

215

6.	 Uploading the WAR file does not initiate the deployment. You have to click on the
En/Disable button to initiate the deployment. You will be asked to confirm your
decision. Click on the Confirm button as shown in the following screenshot:

7.	 Now, if you go to http://myapp-{domain-name}.rhcloud.com, you will see
your application deployed.

8.	 Another way to deploy an application is via the jboss-cli command-line interface.
The jboss-cli script can be found in your local downloaded JBoss archive bin
folder. Launch the jboss-cli client, and you will see the message shown in the
following command:
$ ~/ jboss-eap-6.2/bin/jboss-cli.sh

You are disconnected at the moment. Type 'connect' to connect
to the server or 'help' for the list of supported commands.

[disconnected /]

9.	 To connect to the JBoss cartridge, type the connect command as follows:
[disconnected /] connect

[standalone@localhost:9999 /]

10.	 Now, you can check the deployed applications using the deploy command. Type
deploy, and then press Enter:
[standalone@localhost:9999 /] deploy

ROOT.war

11.	 As you can see in the preceding command, ROOT.war is currently deployed. This
WAR file was deployed using the web interface. To withdraw this WAR file, type the
undeploy command:
[standalone@localhost:9999 /] undeploy ROOT.war

OpenShift for Java Developers

216

12.	 Now, if you go to http://myapp-{domain-name}.rhcloud.com, you will get
a 404 error as the application is not deployed.

13.	 To deploy the application using jboss-cli, you can use the deploy command
as shown in the following command line. Please make sure you have downloaded
the application ROOT.war file as discussed in step 3. Have a look at the
following command:
[standalone@localhost:9999 /] deploy
~/chapter5/recipe8/jobstore/ROOT.war

[standalone@localhost:9999 /]

14.	 Finally, you can see the application running at http://myapp-{domain-name}.
rhcloud.com.

How it works…
In the preceding steps, you learned how to manage your application deployment from the
JBoss web management and command-line interface. In step 1, you ran the rhc port-
forward command to enable SSH port forwarding. The rhc port-forward command
forwarded all the remote ports running on the application gear to your local machine. In the
output of the rhc port-forward command, you can see that the management interface is
exposed on port 9090.

From step 3 through step 5, you saw how to connect with the web interface from your local
machine and undeploy the existing ROOT.war file. The web interface is a Google Web Toolkit
(GWT) application accessible on port 9090. Google Web Toolkit is an open source set of
tools that allows Java developers to write complex JavaScript-based web applications in Java.
OpenShift only exposes port 8080 to the outside world; all other ports are internal to the
application gear and can only be connected via port forwarding. This is a secure setup as no
one from the outside world will be able to connect with your application web management
interface, because the rhc port-forward command will only work if their SSH keys are
uploaded. The web console is divided into two main tabs: the Profile and the Runtime tab.
The Profile tab gives access to all the subsystem configurations. You can edit the configuration
without fiddling with XML. For example, you can go to http://127.0.0.1:9990/console/
App.html#datasources to edit the datasource configuration. The Runtime tab can be
used to manage application deployment, and you used it to undeploy the WAR file in step 5.
You can learn more about the management interface from the documentation at
https://docs.jboss.org/author/display/AS7/Admin+Guide.

In step 6, you uploaded the ROOT.war file to your JBoss cartridge. After upload, the
deployment is listed in the Deployments table. The WAR file is not deployed by default; you
have to click on the En/Disable button to enable the deployment of the application as you
did in step 7.

https://docs.jboss.org/author/display/AS7/Admin+Guide

Chapter 7

217

Another way to deploy an application is using the jboss-cli command-line interface. In
step 9, you launched the jboss-cli script. The jboss-cli console provides a built-in
autocomplete feature using the Tab key. At any point in time, you can list all the available
commands using the Tab key as shown in the following command. For brevity, only part
of the output is shown:

[standalone@localhost:9999 /]

alias connection-factory help ls
read-operation version….

In step 9, you undeployed the existing ROOT.war file using the undeploy command. The
undeploy command takes the application that is already deployed as an argument. Finally,
in step 10, you deployed the ROOT.war file on your local machine to the JBoss cartridge
running on OpenShift using the deploy command.

See also
ff The Configuring application security by defining the database login module in

standalone.xml recipe

ff The Installing modules with JBoss cartridges recipe

Creating and deploying Spring applications
using the Tomcat 7 cartridge

Spring Framework is a very popular alternative to Java EE web development. Java developers
around the world use Spring Framework to build their enterprise applications. Spring
Framework is often thought of as a lightweight alternative to Java EE, and Java developers
normally use a lightweight web container, such as Apache Tomcat, for deployment. At the
time of this writing, OpenShift supports two versions of Apache Tomcat: Apache Tomcat 6
and Apache Tomcat 7. They are shown using the following command:

$ rhc cartridges|grep Tomcat

jbossews-1.0 Tomcat 6 (JBoss EWS 1.0) web

jbossews-2.0 Tomcat 7 (JBoss EWS 2.0) web

In this recipe, you will learn how to develop a simple Spring Framework application from
scratch using OpenShift's Tomcat 7 cartridge. The application exposes a REST endpoint.
When a user makes an HTTP request to /api/v1/ping, then the applicaton will return a
JSON response with the message It works.

The source code for the application created in this recipe is on GitHub at
https://github.com/OpenShift-Cookbook/chapter7-jobstore-spring.

https://github.com/OpenShift-Cookbook/chapter7-jobstore-spring

OpenShift for Java Developers

218

Getting ready
To complete this recipe, you will need the rhc command-line client installed on your machine.
Please refer to the Installing the OpenShift rhc command-line client recipe in Chapter 1,
Getting Started with OpenShift, for details.

How to do it…
Perform the following steps to create an application using Spring Framework:

1.	 Open a new command-line terminal, and go to a convenient location. Create a new
Tomcat 7 and MySQL 5.5 application by executing the following commands:
$ rhc create-appmyapp tomcat-7

The preceding command will create a Maven-based project and clone it to your
local machine.

2.	 Open Eclipse and navigate to the project workspace. Then, import the application
created in step 1 as a Maven application. To import an existing Maven project,
navigate to File|Import|Maven|Existing Maven Projects. Then browse to the
location of your OpenShift Maven application created in step 1.

3.	 Next, update pom.xml to use Java 7. The Maven project created by OpenShift
is configured to use JDK 6. Replace the properties with the one shown in the
following code:
<maven.compiler.source>1.7</maven.compiler.source>
<maven.compiler.target>1.7</maven.compiler.target>

4.	 Update the Maven project to allow the changes to take effect. You can
update the Maven project by right-clicking on the project and navigating
to Maven|Update Project.

5.	 Add Spring Maven dependencies to your pom.xml file. These are the minimum
dependencies that you need to write a REST JSON web service using Spring
Framework. The code is as follows:
<dependency>
<groupId>org.springframework</groupId>
<artifactId>spring-webmvc</artifactId>
<version>4.0.3.RELEASE</version>
</dependency>
<dependency>
<groupId>javax.servlet</groupId>
<artifactId>javax.servlet-api</artifactId>
<version>3.1.0</version>

Chapter 7

219

<scope>provided</scope>
</dependency>
<dependency>
<groupId>com.fasterxml.jackson.core</groupId>
<artifactId>jackson-databind</artifactId>
<version>2.3.1</version>
</dependency>

6.	 Create a new package called org.myapp.config, and create a new class
named WebMvcConfig:
@EnableWebMvc
@ComponentScan(basePackageClasses = PingResource.class)
@Configuration
public class WebMvcConfig extends WebMvcConfigurerAdapter {

 @Bean
 public MappingJackson2JsonView jsonView() {
 MappingJackson2JsonView jsonView = new
MappingJackson2JsonView();
 jsonView.setPrefixJson(true);
 return jsonView;
 }
}

7.	 Create another configuration class in the org.myapp.config package. This
@Configuration class will be used for defining application beans, such as
datasource, and so on. This will be covered later in this recipe. The code is
as follows:
import org.springframework.context.annotation.Configuration;

@Configuration
public class ApplicationConfig {
}

8.	 From Servlet 3.0 onwards, the web.xml deployment descriptor is optional. Prior
to Servlet 3.0, we configured the Spring MVC dispatcher servlet in web.xml, but
now we can programmatically configure it using WebApplicationInitializer.
Create a new class called JobStoreWebApplicationInitializer in the
org.myapp.config package as follows:
public class JobStoreWebApplicationInitializer implements
WebApplicationInitializer {
 @Override
 public void onStartup(ServletContext servletContext)
throws ServletException {

OpenShift for Java Developers

220

 AnnotationConfigWebApplicationContext
webApplicationContext = new
AnnotationConfigWebApplicationContext();
 webApplicationContext.register(ApplicationConfig.class,
WebMvcConfig.class);

 Dynamic dynamc =
servletContext.addServlet("dispatcherServlet", new
DispatcherServlet(webApplicationContext));
 dynamc.addMapping("/api/v1/*");
 dynamc.setLoadOnStartup(1);
 }

}

9.	 Now, we will create a simple REST resource called PingResource. PingResource
will be invoked when a request is made to /api/v1/ping and will respond with a
JSON message. Create a new class called PingResource in the org.myapp.rest
package. Have a look at the following code:
@Controller
@RequestMapping("/ping")
public class PingResource {

@RequestMapping(method=RequestMethod.GET,produces=MediaType
.APPLICATION_JSON_VALUE)
public @ResponseBody PingResponse ping(){
return new PingResponse("It works!!");
}
}

10.	 Also, create another class called PingResponse as shown in the following code:
public class PingResponse {

private String message;

public PingResponse(String message) {
this.message = message;
}

public String getMessage() {
return message;
}
}

Chapter 7

221

11.	 Commit the changes and push them to the OpenShift application gear as follows:
$ git add .

$ git commit -am "Spring 4 application"

$ git push

12.	 You can test the PingResource using a command-line tool, such as curl, or by
opening the http://myapp-{domain-name}.rhcloud.com/api/v1/ping
location in your favorite browser. You should see the following JSON message:
$ curl http://myapp-osbook.rhcloud.com/api/v1/ping

{"message":"It works!!"}

How it works…
In the preceding steps, we created a Spring application and deployed it to OpenShift. In step
1, you used the rhc create-app command to create Apache Tomcat 7 MySQL 5.5. Every
OpenShift web cartridge specifies a template application that will be used as the default
source code of the application. For Java-based web cartridges, such as JBoss EAP, JBoss AS7,
Tomcat 6, and Tomcat 7, the template is a Maven-based application. After the application
is created, the template application is cloned to the local machine using Git. The directory
structure of the application is shown in the following command:

$ ls -a

.git .openshift README.md pom.xml webapps src

As you can see in the preceding command-line output, apart from the.git and .openshift
directories, this looks like a standard Maven project. OpenShift uses Maven for managing
application dependencies and building your Java applications.

The directory structure was explained in the Creating and deploying Java EE 6 applications
using the JBoss EAP and PostgreSQL 9.2 cartridges recipe. Please refer to the recipe to get
an understanding of the directory structure.

From step 3 through step 5, you made a few changes in pom.xml. You updated the project to
use JDK 1.7 for the Maven compiler plugin. All the OpenShift Java applications use OpenJDK
7, so it makes sense to update the application to also use JDK 1.7 for compilation. Another
change you made to pom.xml is that you updated the Maven WAR plugin configuration not
to fail the build if web.xml is not found. Next, you added the Spring Web MVC dependencies
to pom.xml. The Servlet 3.1.0 is provided, as this should exist in Apache Tomcat 7. The
jackson-databind dependency is added to convert Java objects to JSON.

OpenShift for Java Developers

222

From step 6 through step 8, you configured the Spring Web MVC framework programmatically.
Normally, we configure the Spring Web MVC dispatcher servlet in web.xml, but now, we
can programmatically configure it using WebApplicationInitializer. From Spring
3.1, Spring provides an implementation of the ServletContainerInitializer
interface called SpringServletContainerInitializer. The
SpringServletContainerInitializer class delegates to an implementation of org.
springframework.web.WebApplicationInitializer that you provide. There is just
one method that you need to implement: WebApplicationInitializer#onStartup(Ser
vletContext). You are handed the ServletContext parameter that you need to initialize.

From step 9 through step 11, you created a simple REST JSON resource called
PingResource using Spring MVC. PingResource is available at the/api/v1/ping
URL as defined using the @RequestMapping annotation.

There's more…
You can perform all the preceding steps with just the following single command:

$ rhc create-app jobstore tomcat-7 mysql-5.5 --from-code
https://github.com/OpenShift-Cookbook/chapter7-spring-recipe.git --
timeout 180

See also
ff The Taking thread dumps of Java cartridges recipe

Taking thread dumps of Java cartridges
In this recipe, you will learn how to take thread dumps of your Java cartridge applications.
A thread dump lists all the Java threads that are currently active in a Java Virtual Machine
(JVM). It can help you understand the state of every thread in the JVM at a particular point in
time. It gives you a snapshot of exactly what's executing at a moment in time. Thread dumps
are very useful to debug a deadlock condition or to understand resource usage.

This command will work with all the four supported Java cartridges
(Apache Tomcat 6, Apache Tomcat 7, JBoss AS7, and JBoss EAP).

Getting ready
This recipe will request for a thread dump of the application created in the Creating and
deploying Java EE 6 applications using the JBoss EAP and PostgreSQL 9.2 cartridges recipe.
So, please refer to the aforementioned recipe before continuing with this recipe.

Chapter 7

223

How to do it…
Perform the following steps to take a thread dump of your Java application:

1.	 Open a new command-line terminal, and navigate to the directory where the
jobstore application is located.

2.	 To take a thread dump of the jobstore application, run the following command:
$ rhc threaddump --app jobstore

How it works…
When you run the rhc threaddump command, the JBoss EAP cartridge initiates a thread
dump. It first gets the process ID of the JBoss application server and then runs the kill -3
<process id> command. The kill -3 command sends the HUP or BREAK signal to the
Java process. The thread dump log will be placed in the jbosseap.log file in $OPENSHIFT_
LOG_DIR/, which you can download on your local machine for analysis. You can also view the
logfile using the rhc tail command, as mentioned in the following command output:

$ rhc tail -f app-root/logs/jbosseap.log -o '-n 250'

To download the thread dump file on your local machine, you can use the rhc scp command.
The rhc scp command can be used to transfer files to and from your applications using
SCP (http://en.wikipedia.org/wiki/Secure_copy). Run the following command to
download the jbosseap.log file:

$ rhc scp jobstore download ./ app-root/logs/jbosseap.log

Now, you can use tools, such as samurai (http://yusuke.homeip.net/samurai/en/
index.html), to analyze the thread dump on your local machine.

There's more…
You can also take a thread dump of the Java application using the jps and jstack JVM
tools. To do that, perform the following steps:

1.	 Open a command-line terminal and then SSH into the jobstore application gear
as follows:
$ rhc ssh --app jobstore

2.	 Once inside the application gear, run the jps utility to list all the available Java
processes as follows:
$ jps –l

http://en.wikipedia.org/wiki/Secure_copy
http://yusuke.homeip.net/samurai/en/index.html
http://yusuke.homeip.net/samurai/en/index.html

OpenShift for Java Developers

224

3.	 The jps utility ships with JDK and lists all the Java process IDs.

4.	 The output of the jps -l command is as follows:
59850 sun.tools.jps.Jps

157027
/var/lib/openshift/541ecec35004466ec000007f/jbosseap/jboss-
modules.jar

5.	 Now, to take a thread dump of the Java process with ID 157027, run the
following command:
$ jstack 157027 >> /tmp/threaddump.log

6.	 The jstack utility is also part of JDK and is used to take a thread dump of
a Java process.

See also
ff The Choosing between Java 6 and Java 7 recipe

ff The Enabling hot deployment for Java applications recipe

ff The Creating and deploying Java EE 6 applications using the JBoss EAP and
PostgreSQL 9.2 cartridges recipe

Choosing between Java 6 and Java 7
OpenShift supports both Java 6 and Java 7 to run your applications. By default, all the Java
applications use OpenJDK 7, but you can configure your application to use OpenJDK 6 as well.
To get the exact version of your Java installation, you can SSH into the application gear and
run the java -version command or run the following command:

$ rhc ssh --app jobstore --command "java -version"

In this recipe, you will learn how you can choose among different supported versions of Java.

This recipe will work with all the four supported Java cartridges
(Apache Tomcat 6, Apache Tomcat 7, JBoss AS7, and JBoss EAP).

How to do it…
Perform the following steps to switch to OpenJDK 6:

1.	 Create a new JBoss AS 7 application by running the following command. If you
already have a Java application deployed on OpenShift, then you can use that as well.
$ rhc create-app myapp jbossas-7

Chapter 7

225

2.	 Once the application is created, you can check the default Java version by
running the java -version command on the application gear as shown
in the following command:
$ rhc ssh --command "java -version"

java version "1.7.0_51"

OpenJDK Runtime Environment (rhel-2.4.4.1.el6_5-i386 u51-b02)

OpenJDK Server VM (build 24.45-b08, mixed mode)

3.	 To configure your application to use Java 6, delete a marker file called java7 in the
.openshift/markers directory as follows:
$ rm –f .openshift/markers/java7

4.	 Commit the changes and push them to your application gear as follows:
$ git commit –am "switched to Java 6"

$ git push

5.	 After a successful build, run the java -version command again to verify that you
are now using Java 6 as follows:
$ rhc ssh --command "java -version"

java version "1.6.0_30"

OpenJDK Runtime Environment (IcedTea6 1.13.1) (rhel-
3.1.13.1.el6_5-i386)

OpenJDK Server VM (build 23.25-b01, mixed mode)

How it works…
OpenShift uses the marker files to configure various aspects of the application, such as the
Java version, hot deployment, debugging, and so on. The presence of a marker file in the
.openshift/markers location tells OpenShift that you want to enable the feature. For
example, every OpenShift application has a java7 marker file in the .openshift/markers
directory that informs OpenShift that it should use Java 7 for application deployment. When you
perform code deployment using git push, OpenShift will set the JAVA_HOME environment
variable depending on the Java version you want to use in your application.

To use Java 6, you just deleted the java7 marker file. This informs OpenShift that it should
fall back to Java 6. From now on, your application will use Java 6.

See also
ff The Taking thread dumps of Java cartridges recipe

ff The Enabling hot deployment for Java applications recipe

OpenShift for Java Developers

226

Enabling hot deployment for Java
applications

Every time you make a change and push it to the OpenShift application gear, OpenShift stops
your gear (that is, all the cartridges), copies the source code from your application Git repo to
app-root/runtime/repo, performs a build, prepares the artifact, and finally starts your
gear (that is, all the cartridges). This process takes time and does not suit rapid development.
To enable rapid development and faster deployment, OpenShift supports hot deployment.
Hot deployment means that you can deploy your changes without the need to restart all the
application cartridges.

This recipe will work with all the four supported Java cartridges
(Apache Tomcat 6, Apache Tomcat 7, JBoss AS7, and JBoss EAP).

How to do it…
Perform the following steps to enable hot deployment:

1.	 Open a new command-line terminal, and navigate to the directory where you want to
create the application. To create a new JBoss EAP application, execute the following
command. If you already have an OpenShift Java application, then you can work with
that as well. Have a look at the following command:
$ rhc create-app myapp jbosseap

2.	 To enable hot deployment, create a new file with the name hot_deploy inside the
.openshift/markers directory. On *nix machines, you can create a new file using
the touch command as shown in the following command. On Windows machines,
you can use file explorer to create a new file. Have a look at the following code:
$ touch .openshift/markers/hot_deploy

3.	 Add the new file to the Git repository index, commit it to the local repository,
and then push the changes to the application's remote Git repository:
$ git add .openshift/markers/hot_deploy

$ git commit –am "enabled hot deployment"

$ git push

4.	 In the git push logs, you will see a message that cartridges are not stopped
because hot deployment is enabled as follows:

remote: Not stopping cartridge jbosseap because hot deploy is
enabled

Chapter 7

227

How it works…
The presence of the hot_deploy marker file informs OpenShift that you want to do hot
deployment. Before stopping and starting the application cartridges, OpenShift checks for the
existence of the hot_deploy marker file. For JBoss cartridges, hot deployment is achieved
by using the JBoss deployment scanner. The scanner polls the deployments directory every
5 seconds to check for the existence of the WAR file. If the WAR file exists, it will undeploy the
existing WAR file and deploy the new WAR file. You can configure the deployment scanner's
scan-interval option in .openshift/config/standalone.xml:

<subsystem xmlns="urn:jboss:domain:deployment-scanner:1.1">
<deployment-scanner path="deployments" relative-
to="jboss.server.base.dir"
scan-interval="5000" deployment-timeout="300" />
</subsystem>

When your application is using hot deploy, then your application will have downtime starting
when the JBoss deployment scanner recognizes the new WAR file, undeploys the old one, and
deploys the new WAR file. Your application will be back online once the new file is deployed.

Hot deployment is ideal for development, and I recommend you should always use it
during development.

If you set new environment variables with hot deployment enabled, then
you have to restart the application to allow the server to pick the new
environment variables.

See also
ff The Taking thread dumps of Java cartridges recipe

ff The Choosing between Java 6 and Java 7 recipe

Skipping the Maven build
Every OpenShift Java application is a Maven-based application. Whenever you run a git
push command, a Maven build is performed, and the resulting archive (WAR or EAR) is
deployed. There are scenarios where you don't want to do a Maven build with every push to
the gear. These scenarios can be WAR deployment or executing only action hooks. In this
recipe, you will learn how to skip the Maven build step during deployment.

OpenShift for Java Developers

228

This recipe will work with all the four supported Java cartridges
(Apache Tomcat 6, Apache Tomcat 7, JBoss AS7, and JBoss EAP).

Getting ready
To complete this recipe, you will need the jobstore application created in the Creating and
deploying Java EE 6 applications using the JBoss EAP and PostgreSQL 9.2 cartridges recipe.
Please refer to this recipe if you don't have a running OpenShift application.

How to do it…
Perform the following steps to skip the Maven build:

1.	 Open a new command-line terminal, and navigate to the directory where the
jobstore application is located. If you don't have a Java OpenShift application, then
you can recreate a new application by following the steps mentioned in the Creating
and deploying Java EE 6 applications using the JBoss EAP and PostgreSQL 9.2
cartridges recipe.

2.	 To skip a Maven build during deployment, create a marker file called
skip_maven_build in the .openshift/markers directory. On *nix systems,
you can use the touch command as shown in the following command. On Windows
machines, you can use file explorer. Have a look at the following code:
$ touch .openshift/markers/skip_maven_build

3.	 Add the new file to the Git repository index, commit it to the local repository,
and then push the changes to the application's remote Git repository as follows:
$ git add .openshift/markers/skip_maven_build

$ git commit –am "skipmaven build"

$ git push

How it works…
The presence of the skip_maven_build marker informs OpenShift that it should not build
the application. In the git push command output, you will see that the Maven build is
skipped because of the presence of the skip_maven_build marker file:

remote: skip_maven_build marker found; build will be skipped

Chapter 7

229

There's more…
Another way to skip the Maven build is to delete the pom.xml file. If there is no pom.xml file,
then OpenShift does not try to build the application.

See also
ff The Forcing a clean Maven build recipe

ff The Installing the JAR file not present in the Maven central repository recipe

ff The Overriding the default Maven build command recipe

Forcing a clean Maven build
The first time you push your changes to the application gear, Maven will download all the
dependencies and will store those dependencies in the .m2 directory under your application
gear home directory. After the first push, OpenShift will reuse all the dependencies in the
.m2 repository and will only download new dependencies. This saves build time and make
application deployment faster. But, there are a few situations when you want to do a clean
build. One situation can be when you want to download all the latest Maven dependencies.
In this recipe, you will learn how you can inform OpenShift to perform a clean build.

This recipe will work with all the four supported Java cartridges
(Apache Tomcat 6, Apache Tomcat 7, JBoss AS7, and JBoss EAP).

Getting ready
To complete this recipe, you will need the jobstore application created in the Creating and
deploying Java EE 6 applications using the JBoss EAP and PostgreSQL 9.2 cartridges recipe.
Please refer to this recipe if you don't have a running OpenShift application.

How to do it…
Perform the following steps to force a clean Maven build of your Java application:

1.	 Open a new command-line terminal, and navigate to the directory where the
jobstore application is located. If you don't have a Java OpenShift application, then
you can recreate a new application by following the steps mentioned in the Creating
and deploying Java EE 6 applications using the JBoss EAP and PostgreSQL 9.2
cartridges recipe.

OpenShift for Java Developers

230

2.	 To force a clean Maven build during deployment, create a marker file called
force_clean_build inside the application's.openshift/markers directory.
On *nix systems, you can use the touch command as shown in the following
command. On Windows machines, you can use file explorer. Have a look at the
following screenshot:
$ touch .openshift/markers/force_clean_build

3.	 Add the new file to the Git repository index, commit it to the local repository, and then
push the changes to the application's remote Git repository as follows:
$ git add .openshift/markers/force_clean_build

$ git commit –am "force_clean_buildmarker added"

$ git push

How it works…
The presence of the force_clean_build marker file informs OpenShift that you want
to do a clean build. When you run a git push command, OpenShift will first delete the
.m2 directory and then start the build process by invoking the mvn clean package
-Popenshift -DskipTests command. Maven will now download all the dependencies
again. You will see the following log message in the git push command output. Have
a look at the following command:

remote: Force clean build enabled - cleaning dependencies

See also
ff The Forcing a clean Maven build recipe

ff The Installing the JAR file not present in the Maven central repository recipe

ff The Overriding the default Maven build command recipe

Overriding the default Maven build command
OpenShift, by default, will execute the mvn -e clean package -Popenshift
-DskipTests command to build the project. If you don't want to use the OpenShift Maven
profile or want to run tests, then you have to tell OpenShift to run a different command. In this
recipe, you will learn how you can tell OpenShift to use a different command.

Getting ready
To complete this recipe, you will need the jobstore application created in the Creating and
deploying Java EE 6 applications using the JBoss EAP and PostgreSQL 9.2 cartridges recipe.
Please refer to this recipe if you don't have a running OpenShift application.

Chapter 7

231

How to do it…
Perform the following steps to override the default Maven build command:

1.	 Open a new command-line terminal, and navigate to the directory where the
jobstore application is located.

2.	 To configure OpenShift to use a different build command, create a new
environment variable with the name MAVEN_ARGS. The value of the MAVEN_ARGS
environment variable is the Maven build phases you want to run, as shown in the
following command:
$ rhc env-set MAVEN_ARGS="clean install"

How it works…
Before running the build, OpenShift first checks whether the environment variable called
MAVEN_ARGS is set. It uses the phases and goals defined in this environment variable to
create a Maven command that will be used to build the project. If MAVEN_ARGS is not set,
then it will set the default value, that is, clean package -Popenshift -DskipTests,
else it will use the value of the MAVEN_ARGS environment variable.

Now, when you run the git push command, you will see an entry in the git push logs, as
shown in the following command output:

remote: Found pom.xml... attempting to build with 'mvn -e clean
install'

See also
ff The Forcing a clean Maven build recipe

ff The Installing the JAR file not present in the Maven central repository recipe

ff The Skipping the Maven build recipe

Installing the JAR file not present in the
Maven central repository

OpenShift will download all the dependencies from the Maven central repositories specified
in your pom.xml file. There are times when your application depends on the libraries that
do not exist in any public Maven repository. In this recipe, you will learn how you can use the
OpenShift action hooks to install a local JAR.

OpenShift for Java Developers

232

Getting ready
To complete this recipe, you will need the jobstore application created in the Creating and
deploying Java EE 6 applications using the JBoss EAP and PostgreSQL 9.2 cartridges recipe.
Please refer to this recipe if you don't have a running OpenShift application.

How to do it…
Perform the following steps to install the JAR file not present in the configured
Maven repositories:

1.	 Open a new command-line terminal, and navigate to the directory where the
jobstore application is located.

2.	 Create a lib directory in the root of your application directory, and add your local
JAR file here. To demonstrate this recipe, I have created a simple library that you
can download from https://github.com/OpenShift-Cookbook/chapter7-
recipe14/raw/master/lib/simplelogger-0.0.1.jar.

3.	 Create a pre_build action hook inside the .openshift/action_hooks directory,
and add the following content to it:
#!/bin/bash

The following command will install the JAR file to the local Maven repository located
on the application gear:
mvn install:install-file -
Dfile=$OPENSHIFT_REPO_DIR/lib/simplelogger-0.0.1.jar -
DgroupId=org.osbook -DartifactId=simplelogger -Dversion=0.0.1
-Dpackaging=jar

4.	 Make sure the pre_build action hook is executable. You can make the pre_build
action hook script executable by running the following command:
$ chmod +x .openshift/action_hooks/pre_build

5.	 Add the dependency to the application's pom.xml file so that your application can
use the library in the application source code as follows:
<dependency>
<groupId>org.osbook</groupId>
<artifactId>simplelogger</artifactId>
<version>0.0.1</version>
</dependency>

https://github.com/OpenShift-Cookbook/chapter7-recipe14/raw/master/lib/simplelogger-0.0.1.jar
https://github.com/OpenShift-Cookbook/chapter7-recipe14/raw/master/lib/simplelogger-0.0.1.jar

Chapter 7

233

How it works…
In step 2, you created a lib directory inside the application source code root. You
downloaded the simplelogging library and placed it in the lib directory. Next, in step 2,
you created a pre_build action hook that installs the simplelogging-0.0.1.jar file
into the application gear's.m2 repository. The pre_build script is executed before the build
step. This means your library will be available during the build.

On Windows, the execute permissions on the action hooks will be lost during
git push. You can fix the problem by running the following command:
git update-index --chmod=+x .openshift/action_hooks/*

Finally, you added the library as a dependency in your application's pom.xml file so that you
can use the library in your application.

See also
ff The Forcing a clean Maven build recipe

ff The Overriding the default Maven build command recipe

ff The Skipping the Maven build recipe

Developing OpenShift Java applications
using Eclipse

You can build, deploy, and manage your OpenShift Java applications right from within
the Eclipse IDE using the JBoss Tools OpenShift plugin. This recipe will guide you through
installation, setup, application creation, and managing your application from within Eclipse. In
this recipe, you will develop a Java EE 6 PostgreSQL 9.2 application and deploy it on the JBoss
EAP 6 application server running on OpenShift all from within Eclipse.

Getting ready
Download the latest Eclipse package for your operating system from the official Eclipse
website at http://www.eclipse.org/downloads/. At the time of this writing, the
latest Eclipse package is Kepler.

It is very easy to install Eclipse; just extract the downloaded package, and we are done. On
Linux and Mac, open a new command-line terminal, and type the following command:

$ tar -xzvf eclipse-jee-kepler-R-*.tar.gz

http://www.eclipse.org/downloads/

OpenShift for Java Developers

234

On Windows, you can extract the ZIP file using WinZip or 7-zip (http://www.7-zip.org/
download.html) or any other software.

After we have extracted the Eclipse file, there will be a folder named *eclipse* in the directory
where we extracted Eclipse. We can optionally create a shortcut to the executable file.

It is recommended that you use the latest version of Eclipse, that is,
Kepler, to work with OpenShift. Earlier versions are not supported and
might not even work.

How to do it…
Perform the following steps to create OpenShift applications using OpenShift Eclipse tooling:

1.	 After downloading and extracting the Eclipse Kepler IDE for Java EE, open Eclipse,
and navigate to the project workspace. Navigate to Help|Eclipse Marketplace.

2.	 In the search box, type jboss tools, and then click on the Go button. After clicking
on the Go button, we will see JBoss Tools (Kepler) as the first result. Now click on the
Install button. Have a look at the following screenshot:

http://www.7-zip.org/download.html
http://www.7-zip.org/download.html

Chapter 7

235

3.	 After clicking on the Install button, you will get a list of plugins that you can install.
As the purpose of this recipe is to demonstrate the OpenShift Eclipse support, we
will only select JBoss OpenShift Tools from the list. After selecting JBoss OpenShift
Tools, click on the Confirm button. Have a look at the following screenshot:

4.	 Accept the license by clicking on the I accept the terms of the license agreement
radio button, and then click on the Finish button.

5.	 As the JBoss Tools OpenShift plugin is unsigned, you will get a security message. Click
on the OK button, and restart Eclipse to apply the changes.

OpenShift for Java Developers

236

6.	 Now that you've installed the OpenShift Eclipse plugin, you have everything required
to start building the application. Create a new OpenShift application by navigating to
File|New|Other|OpenShift Application:

7.	 Click on the Next button, and you will be asked to provide your OpenShift account
credentials. If you do not have an OpenShift account, you can click on the sign
up here link on the wizard to create a new OpenShift account. Have a look at the
following screenshot:

Chapter 7

237

8.	 Enter your OpenShift account details. Also, check the Save password checkbox so
that we do not have to enter the password with every command. Click on the Next
button. Have a look at the following screenshot:

9.	 After clicking on the Next button, you will be asked to enter additional information for
password recovery. I choose No, but you can choose Yes as well.

10.	 Next, you will be asked to create a new OpenShift domain if you don't have a domain
associated with your account already. The domain name is the unique namespace,
and all the user applications will exist under this namespace. This is shown in the
following screenshot:

OpenShift for Java Developers

238

11.	 Next, you will be asked to upload your public SSH keys to OpenShift, as shown in the
following screenshot:

12.	 You can either upload your existing SSH keys or create a new SSH key by
clicking on the New button. Let's create a new key by clicking on the New button.
We need to provide a name for the key and a name for the private and public key
filenames. I have used my name as the key name and filename. Have a look at
the following screenshot:

Chapter 7

239

13.	 Now, you will be directed to the application creation wizard where you have to enter
the application details. The details include the name of the application, the type
of the application, the gear profile (whether you want a small, medium, or large
instance; in a free tier, you have access only to small instances), whether you want
a scalable application or a nonscalable application, and whether you want to embed
any or multiple cartridges, such as MySQL, PostgreSQL, MongoDB, and others. For
our application, we will select the JBoss EAP and PostgreSQL cartridges. We will
name the application jobstore as shown in the following screenshot:

OpenShift for Java Developers

240

14.	 Next, you have to set up a jobstore application and configure the server adapter
settings. Choose the default and click on Next.

15.	 The next screen will ask us to specify the location where we want to clone the Git
repository and the name of the Git remote. Have a look at the following screenshot:

16.	 Finally, click on the Finish button to initiate the application creation process. This
will create an application container for us, called a gear, and set up all the required
SELinux policies and cgroup configuration. OpenShift will install the PostgreSQL
cartridge on the application gear, and the JBoss Tools OpenShift plugin will show an
information box with the PostgreSQL details.

Chapter 7

241

17.	 Finally, the project is imported as a Maven project in the Eclipse workspace. After
importing the application to Eclipse, you will be asked whether you want to publish
the uncommitted changes. You might start wondering why it is asking you to publish
changes. The reason is that when a project is imported into Eclipse, JBoss Tools
creates a new file called .jsdtscope under the .settings directory. As the file
is not ignored, the OpenShift Eclipse plugin asks you for a deployment. You can
easily ignore the file by navigating to the Git Staging view. To open the Git Staging
view, navigate to Window|Show View|Other|Git|Git Staging. Have a look at the
following screenshot:

18.	 Right-click on the .jsdtscope file under the Git Staging view, and then choose
Ignore. Have a look at the following screenshot:

OpenShift for Java Developers

242

19.	 Next, open the OpenShift Explorer view. Navigate to Window|Show
View|Other|JBoss Tools|OpenShift Explorer. This will open up a new
view as shown in the following screenshot:

20.	 Now, right-click on the application, and then click on the Show in Web Browser
option. This will open up the template application in the default browser.

How it works…
The preceding steps help you to create OpenShift Java applications using Eclipse. In this
recipe, I used the JBoss EAP cartridge, but you can do the same for the Tomcat or JBoss AS7
cartridge. The preceding steps are self-explanatory and do not require any explanation. Now,
I will explain to you how your development workflow should work. The recommended way to
work with OpenShift Eclipse tooling is split into two steps, which are as follows:

1.	 Write code for functionality, and then commit the code to a Git local repository using
the Git Staging view. The Git Staging view gives a graphical view to the changes,
and you can easily compare and look at all the files we have changed.

2.	 In the Git Staging view, you have two options. You can either commit the changes
to the local repository or do a commit and push together. When you perform git
commit and push together, the code is pushed to a Git remote called origin.
The origin remote points to a private Git repository created by OpenShift. When
the code is pushed to the remote repository, OpenShift will kick off the build. The
problem with the Git Staging view Commit and Push button is that you will not be
able to monitor the application build logs. To view the application build logs, you
should use the server view publication mechanism. We will use the server configured
for the jobstore OpenShift application. To publish the changes, right-click on the
server, and click on Publish. This internally does a git push. The advantage of
this approach is that it will open up a new console view, where we can monitor the
application build progress.

Chapter 7

243

Let's make a small change to the application to better understand the development
workflow discussed in the previous section. Open the index.html file, and consider
the following code:

<h1>
 Welcome to OpenShift, JBossEAP6.0 Cartridge
</h1>

And change it to:

<h1>
Welcome to JobStore application
</h1>

Go to the Git Staging view, and you will see the change shown in the following screenshot:

Next, drag the change to Staged Changes, and write a commit message. Have a look at the
following screenshot:

OpenShift for Java Developers

244

Commit the change by clicking on the Commit button. As I mentioned before, do not use
Commit and Push, as that will trigger application deployment and will not show the build
log. The build log is very useful when the build fails.

Go to the Servers view, and you will see a server configured for the jobstore application.

Right-click on the application server, and then click on Publish. Have a look at the
following screenshot:

You will get a dialog where you have to confirm whether you want to publish the changes or
not. Click on Yes, and it will open a new Console view where we can track the build progress.
Have a look at the following screenshot:

Chapter 7

245

To view the logfiles of the JBoss EAP application server, go to the OpenShift Explorer view,
and right-click on the application. Click on Tail files…. Have a look at the following screenshot:

Next, you will configure to tail only the JBoss EAP server.log file. By default, it will tail all the
logfiles, which includes the database logfiles as well, as shown in the following screenshot:

It will open up another console view where it will tail only the JBoss EAP server.log file.

Finally, we can view the change in the browser by right-clicking on the jobstore server, and
then navigating to Show In|Web Browser. This will open up the default web browser, where
we can view the change that we made in index.html.

OpenShift for Java Developers

246

There's more…
You can do a lot more with the OpenShift Eclipse plugin. For faster development, you
should enable hot deployment. The OpenShift Eclipse plugin makes it very easy to enable
hot deployment. To enable hot deployment, right-click on the project, and then navigate to
OpenShift|Configure Markers. Have a look at the following screenshot:

Then, you will see a view where you can configure which OpenShift markers you want to enable
for the application. Select the Hot Deploy marker. Have a look at the following screenshot:

Chapter 7

247

This will create a new empty file called hot_deploy in the .openshift/markers directory.
You can commit the changes by going to the Git Staging view. Go to the Servers view, and
publish this change. The build log will show that the cartridges are not stopped as hot deploy
is enabled. Have a look at the following build log:

Not stopping cartridge jbosseap because hot deploy is enabled

Not stopping cartridge postgresql because hot deploy is enabled

See also
ff The Using Eclipse System Explorer to SSH into the application gear recipe

ff The Debugging Java applications in the Cloud recipe

Using Eclipse System Explorer to SSH into
the application gear

In this recipe, you will learn how you can SSH into the application gear from within Eclipse.

Getting ready
This recipe requires you to have Eclipse with the JBoss Tools OpenShift plugin installed.
Please refer to the Developing OpenShift Java applications using Eclipse recipe for
more information.

How to do it…
Perform the following steps to learn how to SSH into the application gear from within Eclipse:

1.	 Create a new application using the OpenShift Eclipse plugin. Refer to the Developing
OpenShift Java applications using Eclipse recipe for instructions.

OpenShift for Java Developers

248

2.	 Navigate to Window|Open Perspective|Other|Remote System Explorer to open the
Remote System Explorer perspective. Have a look at the following screenshot:

3.	 Go to OpenShift Explorer and copy the SSH connection details as shown in the
following screenshot:

Chapter 7

249

4.	 Copy the SSH details as shown in the following screenshot:

5.	 Go back to the Remote System Explorer perspective, and define a new connection
to the remote system as shown in the following screenshot:

OpenShift for Java Developers

250

6.	 Next, it will ask you to select the remote system type. Select the SSH Only option as
shown in the following screenshot:

7.	 Next, you will be asked to enter the details of the new connection. Enter the
hostname of your application as shown in the following screenshot:

Chapter 7

251

8.	 Click on the Finish button to create a new connection. The connection will be listed in
the left-hand side bar.

9.	 To open an SSH terminal, navigate to Ssh Terminals|Launch Terminal
as follows:

10.	 Next, you will be asked to enter the user ID with which you want to connect. The
user ID is the UUID part of the SSH connection URL. Click on OK. Have a look at
the following screenshot:

11.	 Launch the terminal again, and you will see an SSH terminal as shown in the
following screenshot:

OpenShift for Java Developers

252

How it works…
In the preceding steps, you used Eclipse Remote System Explorer to SSH into the OpenShift
application gear. Remote System Explorer comes bundled with Eclipse Kepler for Java EE.
Remote System Explorer allows you to connect and work with a variety of remote systems.
To learn more about Remote System Explorer, you can refer to the documentation at
http://help.eclipse.org/kepler/index.jsp?nav=%2F56.

See also
ff The Developing OpenShift Java applications using Eclipse recipe

ff The Debugging Java applications in the Cloud recipe

Debugging Java applications in the Cloud
In this recipe, you will learn how to debug Java applications running on OpenShift.

Getting ready
This recipe requires you to have Eclipse with the JBoss Tools OpenShift plugin installed. Please
refer to the Developing OpenShift Java applications using Eclipse recipe for more information.

How to do it…
Perform the following steps to learn how to debug your Java applications:

1.	 In the Developing OpenShift Java applications using Eclipse recipe, you learned
how to create a Java application using the Eclipse plugin. The application that we
developed used the OpenShift template application as its starting point. As you might
know, in the rhc command line, you can use the --from-code option to specify
your own template application. Let's create a new Java application using Eclipse that
uses the application we created in the Creating and deploying Java EE 6 applications
using the JBoss EAP and PostgreSQL 9.2 cartridges recipe using Eclipse. Create a
new OpenShift application by navigating to File|New|Other|OpenShift Application.
After validating your account, you will get a screen where you need to enter the
application details. Please select the JBoss EAP and PostgreSQL 9.2 cartridges. To
specify the Git repository, click on the Advanced button, and then uncheck the Use
default source code checkbox.

http://help.eclipse.org/kepler/index.jsp?nav=%2F56

Chapter 7

253

In the input box, specify the URL of the Git repository as shown in the following
screenshot:

2.	 Next, you have to set up a jobstore application and configure the server adapter
settings. Choose the default and click on Next.

3.	 The next screen will ask us to specify the location where you want to clone the
Git repository and the name of the Git remote. Specify a writable directory,
and click on Finish.

4.	 Now, a new application instance will be created using the selected cartridges and Git
repository. Finally, the project will be imported into Eclipse as a Maven project.

5.	 To enable debugging, you have to create a new marker file called enable_jpda
inside the .openshift/markers directory. The Eclipse plugin can help us create
the file. Right-click on the project, and navigate to OpenShift |Configure Markers….

OpenShift for Java Developers

254

6.	 This will open a dialog where you can select the marker files. Select the Enable
JPDA marker as shown in the following screenshot. This will create a new file called
enable_jpda inside the .openshift/markers directory.

7.	 Go to the Git Staging view, and commit the change. Have a look at the
following screenshot:

Chapter 7

255

8.	 After committing the change, go to the Servers view, and publish your changes.
This will start the server with JPDA enabled.

9.	 Now, enable port forwarding so that you can connect with the JPDA port. Go to the
OpenShift Explorer view, and right-click on the project to enable port forwarding.
Have a look at the following screenshot:

10.	 This will open a dialog where you can configure port forwarding. Click on the Start All
button to enable port forwarding. The port 8787 is used to debug. This is shown in
the following screenshot:

OpenShift for Java Developers

256

11.	 Now, we will add the breakpoint to the CompanyResource class at line number 32.
After setting the debug point, create a new debug configuration by right-clicking on the
debug point, navigating to Debug Configurations|Remote Java Application|New and
giving it a name, and enter the port as 8787 as shown in the following screenshot:

12.	 After entering all the details, click on the Debug button. Open the debug perspective,
and you will see the remote debugger in action. Please note that it will take
some time to enable remote debugging, so please be patient. This is shown
in the following screenshot:

Chapter 7

257

13.	 Now, go to http://jobstore-{domain-name}.rhcloud.com/#companies/
new and create a new company. This will invoke the breakpoint as shown in the
following screenshot:

OpenShift for Java Developers

258

How it works…
The preceding steps enable Java developers to debug their OpenShift Java applications. To
enable debugging, you created a marker file under the.openshift/markers directory
using the Eclipse plugin. The file is committed, and the changes are pushed to the OpenShift
application gear. After a push, the JBoss server is stopped and then started again. The JBoss
cartridge checks the presence of the enable_jpda file. If the enable_jpda marker file
exists, then the server is started in debug mode. The debugging provided by JBoss is based on
the Java Platform Debugger Architecture (JPDA). To enable debugging, the JBoss server is
started with the JAVA_OPTS environment variable set to the value shown in the following code:

JAVA_OPTS="-Xdebug -
Xrunjdwp:transport=dt_socket,address=${OPENSHIFT_JBOSSEAP_IP}:8787
,server=y,suspend=n ${JAVA_OPTS}"

As the port 8787 is not accessible to the outside world, you have to enable port forwarding.
After enabling port forwarding, you created a new remote Java application that will connect
to the JBoss EAP cartridge running in debug mode.

See also
ff The Developing OpenShift Java applications using Eclipse recipe

ff The Using Eclipse System Explorer to SSH into the application gear recipe

8
OpenShift for Python

Developers

This chapter presents a number of recipes that will help you to get started with Python web
application development on OpenShift. This chapter contains the following recipes:

ff Creating your first Python application

ff Managing Python application dependencies

ff Creating and deploying Flask web applications using Python and
PostgreSQL cartridges

ff Enabling hot deployment for Python applications

ff Forcing a clean Python virtual environment

ff Accessing an application's Python virtual environment

ff Using Gevent with Python applications

ff Installing a custom Python package

ff Using the .htaccess file to configure Apache

Introduction
Python is a general-purpose, high-level, easy-to-use, popular programming language. It is
an interpreted language that emphasizes source code readability using strict indentation to
determine code blocks. Python is very commonly used as a scripting language, but it is also very
popular in the web application development and scientific computing world. There are various
powerful web application frameworks, such as Django, Flask, Bottle, and Tornado, available to
help developers build awesome web applications using the Python programming language.

OpenShift for Python Developers

260

OpenShift provides Python web developers with a hosting platform to deploy their web
applications. At the time of writing this book, it supports three versions of Python—2.6, 2.7,
and 3.3. You can view all the available Python versions by running the following command:

$ rhc cartridges |grep python

python-2.6 Python 2.6 web

python-2.7 Python 2.7 web

python-3.3 Python 3.3 web

The Creating your first Python application recipe will help you take your first steps toward
developing Python applications on OpenShift. OpenShift supports Apache with the mode_wsgi
HTTP server module (https://code.google.com/p/modwsgi/) to run your Python web
applications. Python applications can choose any of the supported versions and run within
a virtualenv tool. A virtualenv tool is an isolated and private copy of your Python installation,
which will be only used for that project without affecting the system's global Python installation.
The Accessing an application's Python virtual environment recipe will show you how to access
the virtual environment by connecting to the application gear using SSH.

We will also cover various ways in which you can manage application dependencies in Python
applications. You can use requirements.txt or setup.py or both to manage application
dependencies. This will be covered in the Managing Python application dependencies recipe.

The example application in this chapter will be developed using the Flask web framework and
PostgreSQL database. I choose Flask because of its popularity and ease of use. You can use
any other web framework, such as Bottle, web2py, and Django. The Creating and deploying
Flask web applications using Python and PostgreSQL cartridges recipe will cover step-by-step
how to write Flask web applications on OpenShift. All the source code is available on the
OpenShift-Cookbook GitHub organization (https://github.com/OpenShift-Cookbook).

It is also feasible to use a standalone WSGI server, such as Gevent or Gunicorn, with
OpenShift Python applications. The Using Gevent with Python applications recipe will cover
this in detail.

If you want to run the examples on your local machine, please install Python, pip, and
virtualenv. pip is a command-line tool to install and manage Python packages. The
instructions to install Python for your operating system can be found at http://docs.
python-guide.org/en/latest/index.html. Instructions to install pip can be found
at http://pip.readthedocs.org/en/latest/installing.html. Finally, you can
install virtualenv on your machine by following the instructions mentioned at http://docs.
python-guide.org/en/latest/dev/virtualenvs/.

This chapter assumes that you are comfortable with the Python web development basics,
OpenShift application basics, and how to work with OpenShift database cartridges. In case
you are not comfortable with these topics, I recommend that you first read Chapter 3, Creating
and Managing Applications, through Chapter 6, Using MongoDB and Third-party Database
Cartridges with OpenShift Applications, before continuing with this chapter.

https://code.google.com/p/modwsgi/
https://github.com/OpenShift-Cookbook
http://docs.python-guide.org/en/latest/index.html
http://docs.python-guide.org/en/latest/index.html
http://pip.readthedocs.org/en/latest/installing.html
http://docs.python-guide.org/en/latest/dev/virtualenvs/
http://docs.python-guide.org/en/latest/dev/virtualenvs/

Chapter 8

261

Creating your first Python application
In this recipe, you will learn how to create an OpenShift Python application using the
rhc command-line tool. We will create a Python 3.3 application and then understand the
template application created by OpenShift.

Getting ready
To walk through this recipe, you will need the rhc command-line client installed on your
machine. Please refer to the Installing the OpenShift rhc command-line client recipe in
Chapter 1, Getting Started with OpenShift, for details.

How to do it…
Perform the following steps to create your first Python application:

1.	 Open a new command-line terminal, and change the directory to a convenient
location where you want to create the application.

2.	 To create a new Python 3.3 application, run the following command:
$ rhc create-app myapp python-3.3

3.	 You can replace Python 3.3 with Python 2.6 or Python 2.7 to create applications
that use the respective Python versions.

4.	 Open your favorite web browser, and go to http://myapp-{domain-name}.
rhcloud.com to view the application. Please replace {domain-name} with your
OpenShift account domain name. You will see the OpenShift template application
in your browser as follows:

OpenShift for Python Developers

262

How it works…
When you run the rhc create-app command, OpenShift broker will receive the request and
will initiate the application creation process. The application creation process was explained
in detail in the Creating an OpenShift application using the rhc command-line client recipe in
Chapter 3, Creating and Managing Applications. To run your Python applications, OpenShift
needs to know the Python version you want to use. In step 2, you specified that OpenShift
should create a Python 3.3 application with myapp as the application name. OpenShift will
use these details along with a few defaults to create the myapp application. The defaults
include a small gear size, non-scalable application, and the use of the current directory to
clone the Git repository. To run Python-3.3-based web applications, OpenShift will install
Python 3.3 language runtime and configure the Apache server with the mod_wsgi module.
The mod_wsgi module provides an implementation of the Web Server Gateway Interface
(WSGI) specification, allowing the Apache web server to host Python web applications that
support the Python WSGI interface. The WSGI specification describes a simple interface
between web servers and web applications or frameworks for the Python programming
language. Most of the popular web frameworks (http://wsgi.readthedocs.org/en/
latest/frameworks.html) in the Python community support the WSGI interface. This
makes it very easy for developers to run their choice of framework on OpenShift, as it provides
the Apache mod_wsgi deployment environment.

You can also run Python web applications on alternative Python web
servers, such as Gevent. This will be covered in the Using Gevent with
Python applications recipe.

Apart from installing Python and configuring Apache with mod_wsgi, every OpenShift
application uses virtualenv and pip to manage application dependencies. A virtualenv tool
is an isolated and private copy of your Python installation, which will be only used for that
project without affecting the system's global Python installation. You can install packages in
a virtualenv tool using pip, and virtualenv will ensure the application has access only to the
package that it needs. Another advantage of virtual environments is that they don't require
administrative rights.

Now, let's look at the template application created by OpenShift as follows:

$ cd myapp && ls -ap

$.git/.openshift/ requirements.txt wsgi.py setup.py

http://wsgi.readthedocs.org/en/latest/frameworks.html
http://wsgi.readthedocs.org/en/latest/frameworks.html

Chapter 8

263

The template application has three files—requirements.txt, wsgi.py, and setup.
py—apart from the .openshift and .git directories. We have already talked about
.openshift and .git in the Creating an OpenShift application using the rhc
command-line client recipe in Chapter 3, Creating and Managing Applications,
so I will not cover them here. Let's talk about the three application files one by one:

ff requirements.txt: The requirements.txt file is used to specify libraries that
your application depends on. The pip package manager will install all the application
dependencies mentioned in requirements.txt. This is a regular text file with one
dependency per line. The format is [package name]==[package version].
The sample requirements.txt file is shown as follows:
Flask==0.10.1
Jinja2==2.7.2
MarkupSafe==0.21
Werkzeug==0.9.4
itsdangerous==0.24

ff setup.py: The setup.py file allows developers to more easily build and distribute
python packages that will be imported as dependencies by other projects. It allows
you to specify project-specific metadata, such as name and description, as well as
specify dependencies. The sample setup.py file is shown as follows:
from setuptools import setup
setup(name='MyAwesomeApp',
 version='1.0',
 description='My Awesome OpenShift Application',
 author='Shekhar Gulati',
 author_email='shekhargulati84@gmail.com',
 url='http://www.python.org/sigs/distutils-sig/',
 install_requires=['Flask>=0.7.2', 'MarkupSafe'],
)

ff wsgi.py: The wsgi.py file is a WSGI-compatible application created by OpenShift.
This file is mandatory if you want to use the Apache mod_wsgi server to host your
Python web application. This file contains the code mod_wsgi module, which will
execute on startup to get the application object. The application object is a callable
that takes two parameters—environ and start_response. The environ
parameter is a dictionary containing environment variables, and start_response
is a callable that takes two required parameters: status and response_headers.

You can check the exact version of Python running inside the application gear by running the
following command:

$ rhc ssh --command 'python -V'

Python 3.3.2

OpenShift for Python Developers

264

There's more...
By default, a Python application expects wsgi.py to be available at the application's root
directory. If you want to change the directory layout and use a different location for wsgi.py,
you can set the OPENSHIFT_PYTHON_WSGI_APPLICATION environment variable to specify
a different location, as shown in the following command. You can view the list of available
environment variables for a Python application at https://access.redhat.com/
documentation/en-US/OpenShift_Online/2.0/html/User_Guide/
Python_Environment_Variables.html.

$ rhc env-set OPENSHIFT_PYTHON_WSGI_APPLICATION=wsgi/wsgi.py

See also
ff The Managing Python application dependencies recipe

ff The Enabling hot deployment for Python applications recipe

ff The Creating and deploying Flask web applications using Python and
PostgreSQL cartridges recipe

Managing Python application dependencies
OpenShift gives the Python developer two options to specify their application dependencies.
You can specify application dependencies either in the install_requires element
in setup.py, in requirements.txt, or both. When dependencies are specified in
both the setup.py and requirements.txt files, OpenShift will install all the libraries
mentioned in both the files. The setup.py file is required when you want to distribute
your library as a package that others can use. All the packages listed on PyPi need to
have the setup.py script in their root directory. As you do not want to distribute your web
applications as a package, there is no need to use the setup.py file. I recommend that
you use requirements.txt for your OpenShift applications. The reason why setup.py
exists is that OpenShift initially only supported setup.py and later added support for the
requirements.txt file. So to make sure that the existing application continues to work
on OpenShift, we need to support both the options. In this recipe, you will learn how to
use requirements.txt to specify application dependencies. The source code of
the application created in this recipe is available on GitHub (https://github.com/
OpenShift-Cookbook/chapter8-recipe2).

https://access.redhat.com/documentation/en-US/OpenShift_Online/2.0/html/User_Guide/ Python_Environment_Variables.html
https://access.redhat.com/documentation/en-US/OpenShift_Online/2.0/html/User_Guide/ Python_Environment_Variables.html
https://access.redhat.com/documentation/en-US/OpenShift_Online/2.0/html/User_Guide/ Python_Environment_Variables.html
https://github.com/OpenShift-Cookbook/chapter8-recipe2
https://github.com/OpenShift-Cookbook/chapter8-recipe2

Chapter 8

265

Getting ready
This recipe is based on the assumption that you have read the Creating your first Python
application recipe. To walk through this recipe, you will need the rhc command-line client
installed on your machine. Please refer to the Installing the OpenShift rhc command-line
client recipe in Chapter 1, Getting Started with OpenShift, for details. This recipe will require
you to have virtualenv installed on your machine. You can install virtualenv on your machine
by following the instructions mentioned at http://docs.python-guide.org/en/
latest/dev/virtualenvs/.

How to do it…
Perform the following steps to build a Hello World Flask web application that will
demonstrate how you can work with application dependencies:

1.	 Open a new command-line terminal, and run the following command to create
a new Python application:
$ rhc create-app myapp python-3.3

If you want to create Python 2.6 or Python 2.7 applications, use python-2.6
or python-2.7 as the web cartridge name instead of python-3.3.

2.	 Change the directory to myapp, and delete the setup.py file as follows:
$ cd myapp

$ rm –f setup.py

3.	 Create a new virtual environment by running the following command:
$ virtualenv venv --python=python3.3

4.	 Before you can work with the virtual environment, you have to activate it.
To activate the virtual environment, run the following command:
$. venv/bin/activate

5.	 Once you have activated virtualenv, you can begin installing modules
without affecting the system's default Python interpreter. Install the Flask
module by running the following command:
$ pip install flask

http://docs.python-guide.org/en/latest/dev/virtualenvs/
http://docs.python-guide.org/en/latest/dev/virtualenvs/

OpenShift for Python Developers

266

6.	 Create a new Python file named hello.py in the myapp directory, and populate it
with the following code:
from flask import Flask
app = Flask(__name__)

@app.route('/')
def index():
 return 'Hello World!'

if __name__ == '__main__':
 app.run()

7.	 To run this application on your local machine, run the following command:
$ python hello.py

8.	 Next, open your favorite web browser, and go to http://127.0.0.1:5000.
You will see Hello World! displayed in the browser.

9.	 To deploy this application on OpenShift, we have to declare all the dependencies
in requirements.txt. The following command will write all of your application
dependencies in requirements.txt:
$ pip freeze > requirements.txt

10.	 The preceding command will populate requirements.txt with all the application
dependencies. This includes transitive dependencies as well. The requirements.
txt file will look as shown in the following code:
Flask==0.10.1

Jinja2==2.7.2

MarkupSafe==0.23

Werkzeug==0.9.4

distribute==0.7.3

itsdangerous==0.24

Please make sure that the distribute version is 0.7.3, as earlier versions
do not work with Python 3.3. Earlier versions of the distribute are not
compatible with Python 3.3, so you might face trouble if you use them.

11.	 Also, we have to update the wsgi.py file to load the Flask application instead of
the default one created by OpenShift. Delete all the content in the wsgi.py file,
and replace it with the one shown in the following code:
#!/usr/bin/env python
from hello import app as application

Chapter 8

267

12.	 Create a new file named .gitignore in the myapp directory, and add the venv
directory to be ignored. We do not want to push the virtual environment to OpenShift;
OpenShift will create the virtual environment based on the dependencies mentioned
in the requirements.txt file. The .gitignore file is created as follows:
$ cat .gitignore

venv/

13.	 Now commit the code to the local repository, and then push changes to application
gear. OpenShift will install all the packages specified in the requirements.txt file
and make them available to the application via the virtual environment as follows:
$ git add .

$ git commit -am "Hello World Flask application"

$ git push

14.	 Now, you can see the application running at http://myapp-{domain-name}.
rhcloud.com. Please replace {domain-name} with your application domain
name. You will see Hello World in your browser.

How it works…
In the previous steps, you created a simple Flask framework web application that uses
requirements.txt to specify application dependencies. Flask is a micro web framework
for the Python programming language. It is an easy-to-learn framework with extensive
documentation, which can be found at http://flask.pocoo.org/docs.

In step 1, you created a Python 3.3 application with the name myapp. Read the Creating your
first Python application recipe to understand the Python application created by OpenShift. As
you will use requirement.txt to specify application dependencies, you deleted the setup.
py file in step 2. If you wish, you can keep the setup.py file and specify your application
metadata in it. The application metadata includes the name, description, version, and so on,
of the application. I recommend that you specify application dependencies in only one file to
avoid dependency hell (http://en.wikipedia.org/wiki/Dependency_hell).

Step 3 created a new virtual environment using the Python 3.3 interpreter. To use a virtual
environment, you have to first activate it using the command shown in step 4. The virtual
environment is the ideal way to work with Python applications, as it avoids polluting the
system global Python installation.

You installed the Flask web framework using pip in step 5, as we are going to develop a
web application that uses this framework. The Flask framework will be installed in the
virtual environment and will become available to your application.

http://flask.pocoo.org/docs
http://en.wikipedia.org/wiki/Dependency_hell

OpenShift for Python Developers

268

In step 6, you created a new Python file named hello.py and added the source code for
the Hello World application. The code shown in step 6 does the following:

ff In line 1, you imported the Flask class from the flask module.

ff In line 2, you created an instance of the Flask class. This instance will be that of
the WSGI application.

ff Then, you defined a route for the root (/) URL. The route tells the Flask framework
that it should invoke the index() function when a request is made to the root
URL. The index() function will simply render Hello World! in the browser.

ff Finally, if the name of the application module is equal to '__main__', the
development server will be launched. The __name__ == '__main__' expression
is used to ensure the development server is started only when the script is executed
directly using the python hello.py command.

Step 7 started the development web server by executing the hello.py script. This will start
the development server and launch the Flask application.

In step 8, you used the pip freeze command to add all the dependencies to the
requirements.txt file. OpenShift will download all the dependencies mentioned in
this file and populate the application virtual environment with them. OpenShift uses Apache
mod_wsgi to run your Python applications. The entry point of mod_wsgi is the wsgi.py file.
This file should contain the code that will provide the application object on startup. In step
9, you replaced the content of the wsgi.py file so that it uses the Flask application object
instead of the application object created by the template.

Finally, you committed the code to the local Git repository and pushed the code to the
OpenShift application gear. OpenShift will first stop the Apache server, download all the
dependencies mentioned in the requirements.txt file inside a virtual environment, and
then finally start the Apache server. The part of the git push output is shown as follows:

$ git push

Counting objects: 9, done.

Writing objects: 100% (6/6), 695 bytes, done.

Total 6 (delta 0), reused 0 (delta 0)

remote: Stopping Python 3.3 cartridge

remote: Building git ref 'master', commit 128311d

remote: Activating virtenv

remote: Checking for pip dependency listed in requirements.txt file..

Chapter 8

269

remote: Downloading/unpacking Flask==0.10.1 (from -r /var/lib/openshift/5
36f59b3e0b8cd628600138b/app-root/runtime/repo/requirements.txt (line 1))

remote: Downloading/unpacking Jinja2==2.7.2 (from -r /var/lib/openshift/5
36f59b3e0b8cd628600138b/app-root/runtime/repo/requirements.txt (line 2))

…

remote: Successfully installed Flask Jinja2 MarkupSafe Werkzeug
itsdangerous setuptools distribute

remote: Cleaning up...

remote: Starting Python 3.3 cartridge (Apache+mod_wsgi)

remote: Application directory "/" selected as DocumentRoot

remote: Application "wsgi.py" selected as default WSGI entry point

remote: Deployment completed with status: success

There's more...
If you want to use setup.py instead of requirements.txt, you can delete requirement.
txt or keep it empty and specify all the requirements under the install_requires element,
as shown in the following code. The full source code of the application is available on GitHub at
https://github.com/OpenShift-Cookbook/chapter8-recipe2-setup.py.

from setuptools import setup

setup(name='MyApp',
 version='1.0',
 description='My OpenShift App',
 author='Shekhar Gulati',
 author_email='shekhargulati84@gmail.com',
 url='http://www.python.org/sigs/distutils-sig/',
 install_requires=['Flask>=0.10.1'],
)

See also
ff The Creating your first Python application recipe

ff The Enabling hot deployment for Python applications recipe

ff The Creating and deploying Flask web applications using Python and PostgreSQL
cartridges recipe

https://github.com/OpenShift-Cookbook/chapter8-recipe2-setup.py

OpenShift for Python Developers

270

Creating and deploying Flask web
applications using Python and PostgreSQL
cartridges

In this recipe, you will develop a simple job portal application using the Python Flask web
framework (http://flask.pocoo.org/) and the PostgreSQL database. I have chosen Flask
because it is a very easy-to-use and popular web framework. You can run any web framework,
such as Django, Bottle, Zope, and Tornado, on OpenShift. The example application will allow
users to post job openings and view a list of all the persisted jobs in the system. These two
functionalities will be exposed using the two REST endpoints. The source code for this recipe
is available on GitHub at https://github.com/OpenShift-Cookbook/chapter8-
jobstore-simple.

Getting ready
This recipe is based on the assumption that you have read previous recipes in this chapter.
To walk through this recipe, you will need the rhc command-line client installed on your machine.
Please refer to the Installing the OpenShift rhc command-line client recipe in Chapter 1, Getting
Started with OpenShift, for details. Also, if you want to run the application on your local machine,
you will need to have Python, pip, and virtualenv installed on your machine. Please refer to the
introduction section for links to installation instructions for respective software.

How to do it…
To create the application, perform the following steps:

1.	 Open a new command-line terminal, and navigate to a convenient location where
you want to create the application. Create a new Python 2.7 and PostgreSQL 9.2
OpenShift application, and type the following command:
$ rhc create-app jobstore python-2.7 postgresql-9.2

2.	 After the application is created, change the directory to jobstore, and delete
the setup.py file:
$ cd jobstore

$ rm -f setup.py

3.	 Also, create a .gitignore file, and add the following to it:
venv/

*.pyc

http://flask.pocoo.org/
https://github.com/OpenShift-Cookbook/chapter8-jobstore-simple
https://github.com/OpenShift-Cookbook/chapter8-jobstore-simple

Chapter 8

271

4.	 Create a new virtual environment for the jobstore application. Run the following
command to create the virtual environment, and then activate it:
$ virtualenv venv --python=python2.7

$. venv/bin/activate

5.	 Now that the virtual environment is activated, you can install the application
dependencies. This application uses the Flask web framework. To install the
dependencies in the virtual environment, run the following command:
$ pip install flask

6.	 Create a new file named jobstore.py, which will house the application
source code. The following code is a simple Flask application that renders an
index.html file when a request is made to the root URL:
from flask import Flask, render_template,jsonify, request,
Response

app = Flask(__name__)
app.config['PROPAGATE_EXCEPTIONS'] = True

@app.route('/')
def index():
 return render_template('index.html')

if __name__ == '__main__':
 app.run(debug=True)

7.	 In the previous code, the index route will render index.html when a request
is made to the root URL. By default, Flask looks for templates in the templates
directory inside the application folder. The render_template() function provided
by the Flask framework integrates the Jinja 2 template engine with the application.
To make sure this code works, create a new directory named templates in the
application source code repository as follows:
$ mkdir templates

8.	 Now, create a new index.html file inside the templates directory, and add the
following content to it:
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<title>JobStore</title>
<link href="//cdnjs.cloudflare.com/ajax/libs/twitter-
bootstrap/3.1.1/css/bootstrap.css" rel="stylesheet">
</head>

OpenShift for Python Developers

272

<body>
 <div class="container">
 <div class="row">
 <h2>JobStore application expose Two REST End Points</h2>

 To create a Job, make a HTTP POST request to <code>/api/
v1/jobs</code>

 To view all Jobs, make a HTTP GET request to <code>/api/
v1/jobs</code>

 </div>
 </div>

</body>
</html>

9.	 You can test the application when you start the Python server by running the following
command:
$ python jobstore.py

10.	 To view the application, go to http://127.0.0.1:5000/ in your favorite browser.
You will see index.html rendered in your browser.

11.	 The main responsibility of this application is to store the job data in the database.
Python has support functionalities for various database frameworks that makes it
very easy to work with a variety of databases. Among them, SQLAlchemy is the most
popular and powerful relational database framework that supports various RDBMS
backends. To use SQLAlchemy with Flask applications, you have to first install the
Flask SQLAlchemy extension. The Flask SQLAlchemy extension simplifies working
with SQLAlchemy inside Flask applications. To install Flask SQLAlchemy, run the
following pip command:
$ pip install flask-sqlalchemy

12.	 Now that you have installed the Flask SQLAlchemy extension, the next task is
to write the configuration code so that the jobstore application can connect to
the PostgreSQL database. Add the following content to jobstore.py. You can view
the full source code on GitHub at https://github.com/OpenShift-Cookbook/
chapter8-jobstore-simple/blob/master/jobstore.py.
from flask.ext.sqlalchemy import SQLAlchemy

app.config['SQLALCHEMY_DATABASE_URI'] = os.environ['OPENSHIFT_
POSTGRESQL_DB_URL']

https://github.com/OpenShift-Cookbook/chapter8-jobstore-simple/blob/master/jobstore.py
https://github.com/OpenShift-Cookbook/chapter8-jobstore-simple/blob/master/jobstore.py

Chapter 8

273

app.config['SQLALCHEMY_COMMIT_ON_TEARDOWN'] = True

db = SQLAlchemy(app)

13.	 In the preceding code, you added two configuration options to the Flask
application configuration object. SQLALCHEMY_DATABASE_URI points to the
database connection URL. OpenShift exposes the PostgreSQL database connection
URL using the OPENSHIFT_POSTGRESQL_DB_URL environment variable. The
SQLALCHEMY_COMMIT_ON_TEARDOWN option enables automatic commits of
database changes at the end of each request. Finally, you instantiated the db
object from the SQLAlchemy class, passing it the application object. This db
object provides access to all the database-related functionalities.

14.	 Next, you will write a model class to represent the Job table in the PostgreSQL
database. The model represents a persistent entity stored in the database.
The db instance that we got in step 7 provides a base class that a model can
extend. Apart from this, the db object also provides helper functions to define
the structure of a model class. The Job model is shown as follows:
class Job(db.Model):
 __tablename__ = 'jobs'
 id = db.Column(db.Integer(), primary_key=True)
 title = db.Column(db.String(64), index=True, nullable=False)
 description = db.Column(db.Text())
 posted_at = db.Column(db.DateTime(), nullable=False,
default=datetime.utcnow)
 company = db.Column(db.String(100), nullable=False)

 def __repr__(self):
 return 'Job %s' % self.title

 def to_json(self):
 job_json = {
 'id' : self.id,
 'title': self.title,
 'description' : self.description,
 'posted_at' : self.posted_at,
 'company':self.company
 }
 return job_json

 @staticmethod
 def from_json(job_json):
 title = job_json.get('title')
 description = job_json.get('description')

OpenShift for Python Developers

274

 company = job_json.get('company')
 return Job(title=title, description=description,company=compa
ny)

The __tablename__ variable is used to define the name of the table in the
database. The db.Column() function is used to define the class variables that
will be mapped to columns in the database table. You also defined a couple of
helper functions that will help convert to and from JSON. These methods will be
useful when we build the REST API.

15.	 Now you will write a couple of REST endpoints that will expose a couple of
functionalities. The first endpoint will allow users to list all the jobs inside
the database, and the second endpoint will allow users to create a new job.
The REST endpoints are shown as follows:
@app.route('/api/v1/jobs')
def all_jobs():
 jobs = Job.query.all()
 return jsonify({'jobs':[job.to_json() for job in jobs]})

@app.route('/api/v1/jobs', methods=['POST'])
def post_job():
 job = Job.from_json(request.json)
 db.session.add(job)
 db.session.commit()
 return jsonify(job.to_json()) , 201

In the previous code, the all_jobs() function queries the database for all the
Job rows. The result from the database is converted to JSON and returned to the
user. The jsonify() function is provided by Flask and creates a response with
the JSON representation and the application/json MIME type.

The post_job() function first converts the JSON request to the Job object and
then writes it to the database. Finally, it returns the persisted job to the user.

16.	 As discussed in the Managing Python application dependencies recipe, you have to
update the wsgi.py file to load the Flask application instead of the default created
by OpenShift. Delete all the content in the wsgi.py file, and replace it with the one
shown in the following code:
#!/usr/bin/python
import os
virtenv = os.environ['OPENSHIFT_PYTHON_DIR'] + '/virtenv/'
virtualenv = os.path.join(virtenv, 'bin/activate_this.py')
try:
 execfile(virtualenv, dict(__file__=virtualenv))
except IOError:
 pass

Chapter 8

275

from jobstore import app as application
from jobstore import *
db.create_all()

17.	 The last thing to do before we can deploy the application is specify the dependencies
in requirements.txt. Run the following command to populate the application
requirements.txt file:
$ pip freeze > requirements.txt

18.	 Now, commit the code and push the application changes to the application gear
as follows:
$ git add .

$ git commit -am "jobstore application created"

$ git push

19.	 The application will be up and running at http://jobstore-{domain-name}.
rhcloud.com.

20.	 To test the REST endpoints, you could use cURL. To create a new Job instance,
run the following cURL command:
$ curl -i -X POST -H "Content-Type: application/json" -H "Accept:
application/json" -d '{"title":"OpenShift Evangelist","descriptio
n":"OpenShift Evangelist","company":"Red Hat"}' http://jobstore-
{domain-name}.rhcloud.com/api/v1/jobs

21.	 To view all the jobs, you can run the following cURL command:
$ curl http://jobstore-osbook.rhcloud.com/api/v1/jobs

How it works…
In the previous steps, you created a Python web application and deployed it on OpenShift.
From steps 1 through 4, you first created a new Python 2.7 OpenShift application, created
a virtual environment for the project, and finally activated the virtual environment. The
application uses the Python Flask framework, so you installed it using pip in step 5.

In steps 6 through 8, you created a Flask web application that renders the index.html
file. The code shown in step 4 does the following:

ff You imported all the required classes and functions.

ff Then, you created an instance of the Flask class. The only required argument
is the name of the main module or package of the application. The correct value
is __name__ in most cases.

ff Then, you defined a route for the root URL using the app.route decorator. A route
allows you to bind HTTP requests to function calls based on the URL requested.
The index function will render index.html in the browser.

OpenShift for Python Developers

276

ff Finally, if the name of the application module is equal to '_ _main_ _', the
development server is launched. The __name__ == '__main__' expression is
used to ensure the development server is started only when the script is executed
directly using the python jobstore.py command. You tested the application on
your local machine in step 10.

In steps 11 through 14, you first installed the Flask SQLAlchemy extension and then did
the following:

ff First, you imported the SQLAlchemy class from the Flask-SQLAlchemy extension.

ff Then, you configured the URL of the application database using SQLALCHEMY_
DATABASE_URI in the Flask configuration object. You also used another useful
option, SQLALCHEMY_COMMIT_ON_TEARDOWN, to configure the automatic commits
of the database changes at the end of each request.

ff Next, you created an instance of the SQLAlchemy class that provides access to
all the SQLAlchemy APIs.

ff Then, you defined the Job model class using the SQLAlchemy API. The company
class extends the db.Model base class and uses the db.Column constructor to
define the structure of the model class. The __tablename__ variable is used to
define the name of the table in the database.

ff Finally, you defined a couple of helper functions that will help convert to and from
JSON. These methods will be useful when we build the REST API.

In step 15, you defined REST endpoints for the Job model class. The code listing shown in
step 15 does the following:

ff When a user makes a GET request to /api/v1/jobs, the all_jobs() function
is invoked. The function finds all the jobs using the SQLAlchemy API, iterates over
the result set, and then converts it into JSON.

ff When a user makes a POST request to /api/v1/jobs, a new job is created.
The JSON data is exposed as the request.json Python dictionary. Then, the
request.json dictionary is converted into the Job object using the from_json
method. The data is then persisted into the database using the db.session API.

In step 16, you replaced the content of the wsgi.py file so that it uses the Flask application
object instead of the application object created by the template. Finally, you committed the
code to your local Git repository and then pushed the changes to the OpenShift application
gear. Once deployed, you can go to http://jobstore-{domain-name}.rhcloud.com
and work with the application.

Chapter 8

277

There's more
You can do all the previously performed steps with just a single command. The Git repository
mentioned in the command contains the source code for this recipe as follows:

$ rhc create-app jobstore python-2.7 postgresql-9.2 --from-code https://
github.com/OpenShift-Cookbook/chapter8-jobstore-simple.git

See also
ff The Creating your first Python application recipe

ff The Enabling hot deployment for Python applications recipe

Enabling hot deployment for Python
applications

Every time you make a change to your application source code and push the changes to the
OpenShift application gear Git repository, OpenShift first stops your gear (which stops all the
cartridges installed on the gear), copies the source code from your application Git repository
to app-root/runtime/repo, performs a build, prepares the artifact, and finally starts
your gear (which starts all the cartridges). This process takes time and does not suit rapid
development and deployment. To enable rapid development and faster deployments,
OpenShift supports hot deployment. Hot deployment means that you can deploy your
changes without the need to restart all the application cartridges.

In this recipe, you will learn how you can enable hot deployment for Python applications.

This recipe will work with all the three supported Python versions.

How to do it…
Perform the following steps to enable hot deployment for your application:

1.	 Create a new Python application using the source code developed in the previous
recipe as follows:
$ rhc create-app myapp python-3.3 --from-code=https://github.com/
OpenShift-Cookbook/chapter8-recipe2.git

2.	 Open the hello.py file, and update Hello World! to Hello from OpenShift.

OpenShift for Python Developers

278

3.	 To enable hot deployment, create an empty file named hot_deploy under the
.openshift/markers directory. This file is called the marker file, as this does
not contain any content. On the *nix machine, you can create a new file by executing
the following command. On a Windows machine, you can use file explorer to create
a new file.
$ touch .openshift/markers/hot_deploy

4.	 Add the file to the Git repository, and then commit and push changes to the
application gear as shown in the following code:
$ git add –A .

$ git commit -am "enabled hot deployment"

$ git push

5.	 In the git push logs, you will see a message that cartridges are not stopped
because hot deployment is enabled as follows:
remote: Not stopping cartridge python because hot deploy is
enabled

6.	 Now open the application URL in your favorite web browser, and you will see the
change deployed without a restart.

How it works…
The presence of the hot_deploy marker file informs OpenShift that you want to do hot
deployment. Before stopping and starting the application cartridges, OpenShift checks
for the existence of the hot_deploy marker file. If the hot_deploy marker file exists,
OpenShift will not stop the cartridges, and changes will be deployed without cartridge
restart. Hot deployment is ideal for development, and I recommend that you should
always use it during development.

If you set new environment variables with hot deployment enabled or install
new cartridges, you have to restart the application to allow the server to pick
the new environment variables.

See also
ff The Forcing a clean Python virtual environment recipe

ff The Accessing an application's Python virtual environment recipe

Chapter 8

279

Forcing a clean Python virtual environment
The first time you push your changes to the application gear, pip will download all the
dependencies mentioned in setup.py or requirements.txt and populate the virtual
environment with these dependencies. On every successive push, OpenShift will reuse
the dependencies and will only download new dependencies mentioned in setup.py or
requirements.txt. This makes the application build faster, as it does not have to download
dependencies on every git push. There are scenarios, such as a corrupt virtual environment,
where you will like to recreate the virtual environment and download all the dependencies again.
In this recipe, you will learn how you can force OpenShift to recreate the virtual environment.

Getting ready
This recipe is based on the assumption that you have read the previous recipes in this
chapter. To step through this recipe, you will need the rhc command-line client installed on
your machine. Please refer to the Installing the OpenShift rhc command-line client recipe in
Chapter 1, Getting Started with OpenShift, for details.

How to do it…
1.	 Recreate the application you developed in the Creating and deploying Flask web

applications using Python and PostgreSQL cartridges recipe by running the following
command:
$ rhc create-app jobstore python-2.7 postgresql-9.2 --from-code
https://github.com/OpenShift-Cookbook/chapter8-jobstore-simple.git

2.	 Create a marker file named force_clean_build in the application's
.openshift/markers directory. On *nix machines, you can use the touch
command as follows:
$ cd jobstore

$ touch .openshift/markers/force_clean_build

3.	 Commit the file, and push the changes to the OpenShift application gear. From now
on, every git push will do a clean deployment. This is demonstrated using the
following commands:

$ git add .

$ git commit –am "enabled force_clean_build"

$ git push

OpenShift for Python Developers

280

How it works…
The presence of the force_clean_build marker file informs OpenShift that you want to do
a clean build. When you do a git push, OpenShift will first recreate the virtual environment,
activate the environment, and finally download all the dependencies using the pip package
manager. You will see the following log message in the git push logs:

remote: Force clean build enabled - cleaning dependencies

See also
ff The Enabling hot deployment for Python applications recipe
ff The Forcing a clean Python virtual environment recipe

Accessing an application's Python virtual
environment

By now, you will be aware that every OpenShift Python application has a virtual environment
associated with it. Your application will only be able to use the dependencies available in the
virtual environment. In this recipe, you will learn how to access the virtual environment of your
OpenShift Python application.

Getting ready
This recipe is based on the assumption that you have read previous recipes in this chapter. To
walk through this recipe, you will need the rhc command-line client installed on your machine.
Please refer to the Installing the OpenShift rhc command-line client recipe in Chapter 1, Getting
Started with OpenShift, for details. Also, if you want to run the application on your local machine,
you will need to have Python, pip, and virtualenv installed on your machine. Please refer to the
introduction section for links to installation instructions for the respective software.

How to do it…
Perform the following steps to access the Python application virtual environment:

1.	 Recreate the application you developed in the Creating and deploying Flask
web applications using Python and PostgreSQL cartridges recipe by running
the following command:
$ rhc create-app jobstore python-2.7 postgresql-9.2 --from-code
https://github.com/OpenShift-Cookbook/chapter8-jobstore-simple.git

2.	 Change the directory to jobstore, and then SSH into the application gear by
executing the rhc ssh command.

Chapter 8

281

3.	 To access the virtual environment, run the following command:
[536fdb88e0b8cd76ee000262]\> . $VIRTUAL_ENV/bin/activate

(virtenv)[536fdb88e0b8cd76ee000262]\>

4.	 Once you are inside the virtual environment, you can manually download the
new dependencies using pip. To install a command-line utility called Yolk, run
the following command. Yolk can list packages installed within an environment.
(virtenv)[536fdb88e0b8cd76ee000262]\> pip install yolk

5.	 To list all the installed packages in this virtual environment, run the following
command. Only part of the output is shown here for brevity.

(virtenv)[536fdb88e0b8cd76ee000262]\> yolk -l

Babel - 0.9.6 - active development (/opt/rh/
python27/root/usr/lib/python2.7/site-packages)

Extractor - 0.6 - active development (/opt/rh/
python27/root/usr/lib/python2.7/site-packages)

Flask-SQLAlchemy - 1.0 - active development (/var/lib/op
enshift/536fdb88e0b8cd76ee000262/app-root/runtime/dependencies/
python/virtenv/lib/python2.7/site-packages)

How it works…
You created a new Python application in step 1 and then connected to the application gear using
SSH in step 2 when you used the rhc ssh command. The location of the virtual environment is
available as an environment variable, $VIRTUAL_ENV. You activated the virtual environment in
step 3 so that you can use it. Finally, in step 4, you installed a package using the pip command
manually. After installation, the package becomes available to the application.

See also
ff The Enabling hot deployment for Python applications recipe

ff The Forcing a clean Python virtual environment recipe

Using Gevent with Python applications
So far in this chapter, you have used Apache with mod_wsgi to run your Python applications.
It is also possible to run other standalone WSGI servers, such as Gevent and Gunicorn, with
OpenShift. In this recipe, you will learn how to use Gevent to run your Python applications.
Gevent is a coroutine-based Python networking library that uses greenlet to provide a high-level,
synchronous API on top of the libevent event loop. The source code for this repository is on
GitHub at https://github.com/OpenShift-Cookbook/chapter8-gevent-recipe.

https://github.com/OpenShift-Cookbook/chapter8-gevent-recipe

OpenShift for Python Developers

282

Getting ready
This recipe is based on the assumption that you have read the previous recipes in this chapter.
To step through this recipe, you will need the rhc command-line client installed on your machine.
Please refer to the Installing the OpenShift rhc command-line client recipe in Chapter 1, Getting
Started with OpenShift, for details. Also, if you want to run the application on your local machine,
you will need to have Python, pip, and virtualenv installed on your machine. Please refer to the
introduction section for links to installation instructions for the respective software.

How to do it…
Perform the following steps to use Gevent's standalone WSGI server to run OpenShift
Python applications:

1.	 Open a new command-line terminal, and run the following command to create a
new Python 2.7 application:
$ rhc app create myapp python-2.7

If you want to create Python 2.6 or Python 3.3 applications, use Python 2.6 and
Python 3.3 respectively.

2.	 Change the directory to myapp, and delete the setup.py and wsgi.py files
as follows:
$ cd myapp

$ rm –f setup.py

$ rm –f wsgi.py

3.	 Create a new virtual environment by running the following command:
$ virtualenv venv --python=python2.7

4.	 Before you can work with the virtual environment, you have to activate it. To activate
the virtual environment, run the following command:
$. venv/bin/activate

5.	 Once you have activated virtualenv, you can begin installing modules without
affecting the system's default Python interpreter. Install the Flask module by
running the following command:
$ pip install flask

6.	 Create a new Python file named hello.py in the myapp directory, and populate it
with the following code:
from flask import Flask
app = Flask(__name__)
@app.route('/')

Chapter 8

283

def index():
 return 'Hello World!'

if __name__ == '__main__':
 app.run()

7.	 Next, install the Gevent library, as we want to use it to run our application, as follows:
$ pip install gevent

8.	 Create a new file named app.py, and add the following code to it:
import os
virtenv = os.environ['OPENSHIFT_PYTHON_DIR'] + '/virtenv/'
virtualenv = os.path.join(virtenv, 'bin/activate_this.py')
try:
 execfile(virtualenv, dict(__file__=virtualenv))
except IOError:
 pass

from gevent.wsgi import WSGIServer
from hello import app

ip = os.environ['OPENSHIFT_PYTHON_IP']
port = int(os.environ['OPENSHIFT_PYTHON_PORT'])

http_server = WSGIServer((ip, port), app)
http_server.serve_forever()

9.	 To deploy this application on OpenShift, we have to declare all the dependencies
in requirements.txt. The following command will write all of your application
dependencies in requirements.txt:
$ pip freeze > requirements.txt

10.	 The previous command will populate requirements.txt with all the application
dependencies. This includes transitive dependencies as well. The requirements.
txt file is shown as follows:
Flask==0.10.1

Jinja2==2.7.2

MarkupSafe==0.23

Werkzeug==0.9.4

gevent==1.0.1

greenlet==0.4.2

itsdangerous==0.24

wsgiref==0.1.2

OpenShift for Python Developers

284

11.	 Create a new file named .gitignore in the myapp directory, and add the venv
directory to be ignored. We do not want to push the virtual environment to OpenShift,
as OpenShift will create the one based on the dependencies mentioned in the
requirements.txt file. The .gitignore file is shown as follows:
$ cat .gitignore

venv/

12.	 Now commit the code to the local repository, and then push changes to the
application gear. OpenShift will install all the packages specified in requirements.
txt and make them available to the application via the virtual environment,
as follows:
$ git add .

$ git commit -am "using Gevent standalone WSGI server"

$ git push

13.	 Now, open the web application URL in your favorite browser to see the application in
action. You will be greeted by the Hello World text in your browser.

How it works…
In steps 1 through 6, you created a simple Flask web application as explained in the
Managing Python application dependencies recipe. As we will use Gevent to run this
application, you installed the Gevent library in step 7. In step 8, you created a new Python
file, app.py. If the user does not use the default wsgi.py file or WSGI endpoint configured
using the OPENSHIFT_PYTHON_WSGI_APPLICATION environment variable, OpenShift uses
the server configured in the app.py file to serve your application. This Python file should have
the name app and exist under the app root directory. The code in app.py first activates the
virtual environment and then starts the Gevent WSGI server at $OPENSHIFT_PYTHON_IP
and $OPENSHIFT_PYTHON_PORT.

In step 9, you used the pip freeze command to add all the dependencies in the
requirements.txt file. OpenShift will download all the dependencies mentioned in
this file and populate the application's virtual environment with them.

Finally, you committed the code to the local Git repository and pushed the code to the
OpenShift application gear. OpenShift will use the Gevent WSGI server to run your application.
You will see a line, as shown in the following command-line output, in the git push logs.
The following line clearly tells you that OpenShift is using the server configured in app.py:

remote: Starting Python 2.7 cartridge (app.py server)

Chapter 8

285

There's more...
Similarly, you can use the Tornado web server to serve your Python web applications.
Uninstall the Gevent and greenlet libraries, and then install the Tornado library:

$ pip uninstall gevent greenlet

$ pip install tornado

Update the requirements.txt file with dependencies by running the pip freeze >
requirements.txt command.

In the app.py file, replace the Gevent code with the following code:

from tornado.wsgi import WSGIContainer
from tornado.httpserver import HTTPServer
from tornado.ioloop import IOLoop
from hello import app

http_server = HTTPServer(WSGIContainer(app))
ip = os.environ['OPENSHIFT_PYTHON_IP']
port = int(os.environ['OPENSHIFT_PYTHON_PORT'])

http_server.listen(port, ip)
IOLoop.instance().start()

Now your application will use the Tornado web server.

See also
ff The Creating your first Python application recipe

ff The Creating and deploying Flask web applications using Python and PostgreSQL
cartridges recipe

Installing a custom Python package
Most of the time, your application dependencies can be downloaded from PyPi using pip, but
there are times when your application needs to depend on custom libraries that do not exist
in the PyPi index. In this recipe, you will learn how to use custom Python packages with your
OpenShift Python applications. The source code for this recipe is on GitHub at https://
github.com/OpenShift-Cookbook/chapter8-custom-package-recipe.

https://github.com/OpenShift-Cookbook/chapter8-custom-package-recipe
https://github.com/OpenShift-Cookbook/chapter8-custom-package-recipe

OpenShift for Python Developers

286

Getting ready
This recipe is based on the assumption that you have read the previous recipes in this chapter.
To walk through this recipe, you will need the rhc command-line client installed on your machine.
Please refer to the Installing the OpenShift rhc command-line client recipe in Chapter 1, Getting
Started with OpenShift, for details. Also, if you want to run the application on your local machine,
you will need to have Python, pip, and virtualenv installed on your machine. Please refer to the
introduction section for links to installation instructions for the respective software.

How to do it…
1.	 Open a new command-line terminal, and run the following command to create a

new Python 2.7 application:
$ rhc create-app myapp python-2.7

If you want to create Python 2.6 or Python 3.3 applications, use Python 2.6 and
Python 3.3 respectively.

2.	 Change the directory to myapp, and delete the setup.py file as follows:
$ cd myapp

$ rm –f setup.py

3.	 Also, create a .gitignore file to ignore the virtual environment artifacts and
Python-compiled files as follows:
$ touch .gitignore

4.	 Add the following lines to it:
venv

*.pyc

5.	 Create a new virtual environment and activate it by running the following commands:
$ virtualenv venv --python=python2.7

$. venv/bin/activate

6.	 Once you have activated virtualenv, you can begin installing modules without
affecting the system's default Python interpreter. Install the Flask module by
running the following command:
$ pip install flask

7.	 Create a new directory named libs in the application root, as shown in the following
code. The libs directory will be used to store your custom packages:
$ mkdir libs

Chapter 8

287

8.	 Now, we will create a custom package named msgs in the libs directory.
To create a custom package, perform the following steps:

1.	 Create an msgs directory inside the libs directory.

2.	 Create an empty file named __init__.py inside the msgs directory.

3.	 Create another file named hello.py inside the msgs directory, and place
the following code inside it:
def hello():
 return 'Hello World'

9.	 Next, create a new Python file named myapp.py in the myapp directory, and
populate it with the following code. This simple Flask application will use the
msgs package. Have a look at the following code:
from flask import Flask
import msgs.hello as hello
app = Flask(__name__)
@app.route('/')
def index():
 return hello.hello()
if __name__ == '__main__':
 app.run(debug=True)

10.	 Now, you need to update the wsgi.py file to load the Flask application instead of
the default created by OpenShift. Delete all the content in the wsgi.py file, and
replace it with the following code:
#!/usr/bin/python
import os
virtenv = os.environ['OPENSHIFT_PYTHON_DIR'] + '/virtenv/'
virtualenv = os.path.join(virtenv, 'bin/activate_this.py')
try:
 execfile(virtualenv, dict(__file__=virtualenv))
except IOError:
 pass

from myapp import app as application

11.	 To deploy this application on OpenShift, we have to declare all the dependencies
in requirements.txt. The following command will write all of your application
dependencies in requirements.txt:
$ pip freeze > requirements.txt

OpenShift for Python Developers

288

12.	 Now, commit the code to the local repository, and then push changes to the
application gear. OpenShift will install all the packages specified in requirements.
txt and make them available to the application via the virtual environment:
$ git add .

$ git commit -am "application with custom package"

$ git push

13.	 Now, open the web application URL in your favorite browser to see the application
in action. You will be greeted by the Hello World text in your browser.

How it works…
In the preceding steps, you learned how to use the libs directory to store your custom
packages. The libs directory is an example of how OpenShift uses convention over
configuration. The phrase convention over configuration means that if you follow certain
conventions, you do not have to write the configuration code. OpenShift follows a convention
that all the packages in the libs directory should be placed in the path so that your
application can use them. In step 6, you created a custom package named msgs in the
libs directory, and without any configuration, your application could access the package.

There's more…
Now, let's suppose that you want to use the mydeps directory to store your custom packages.
For your application to work, you have to write code in your application to add the mydeps
directory to the system path. Adding two lines in the application's wsgi.py file can solve
this problem. The full application source code is on GitHub at https://github.com/
OpenShift-Cookbook/chapter8-custom-package-mydeps-recipe. Have a look at
the following code:

import os,sys
sys.path.append(os.path.join(os.getenv("OPENSHIFT_REPO_DIR"),
"mydeps"))

The previous two lines will add the mydeps directory to the application's system path.

See also
ff The Creating your first Python application recipe

ff The Creating and deploying Flask web applications using Python and PostgreSQL
cartridges recipe

https://github.com/OpenShift-Cookbook/chapter8-custom-package-mydeps-recipe
https://github.com/OpenShift-Cookbook/chapter8-custom-package-mydeps-recipe

Chapter 8

289

Using the .htaccess file to configure Apache
By now, you will be aware that OpenShift uses Apache with mod_wsgi to serve your web
applications. In this recipe, you will learn to use the .htaccess and .htpasswd files to
configure the Apache web server for the HTTP basic authentication. The GitHub repository
for this recipe is https://github.com/OpenShift-Cookbook/chapter8-htaccess-
recipe.

Getting ready
This recipe is based on the assumption that you have read the previous recipes in this
chapter. To walk through this recipe, you will need the rhc command-line client installed on
your machine. Please refer to the Installing the OpenShift rhc command-line client recipe in
Chapter 1, Getting Started with OpenShift, for details.

How to do it…
Perform the following steps to enable the HTTP basic authentication:

1.	 Create a new Python 2.7 application using the rhc command-line tool:
$ rhc create-app myapp python-2.7

2.	 Change the directory to myapp, and create two files, .htaccess and .htpasswd,
in the myapp directory. If you are using a *nix machine, you can use the touch
command. On a Windows machine, you can use file explorer to create files. Have
a look at the following commands:
$ cd myapp

$ touch .htaccess

$ touch .htpasswd

3.	 In .htaccess, copy and paste the content as shown in the following code:
AuthType Basic
AuthName "Authentication Required"
AuthUserFile "$OPENSHIFT_REPO_DIR/.htpasswd"
Require valid-user

Replace $OPENSHIFT_REPO_DIR with the $OPENSHIFT_REPO_DIR location of
your application. To get the value of $OPENSHIFT_REPO_DIR, run the following
command:

$ rhc ssh --command 'echo $OPENSHIFT_REPO_DIR'

https://github.com/OpenShift-Cookbook/chapter8-htaccess-recipe
https://github.com/OpenShift-Cookbook/chapter8-htaccess-recipe

OpenShift for Python Developers

290

4.	 The .htpasswd file is used to store username and password credentials. To
generate a new username and password, you can use the online generator at
http://www.htaccesstools.com/htpasswd-generator/. For this recipe, the
username and password combination is admin and password respectively. Place
the content generated by the online tool in the .htpasswd file. My .htpasswd file
looks as follows:
admin:$apr1$EVxfKxv/$2BIOIAPHOZiyx4k52b5jT1ewdfg

5.	 Commit the code, and push the changes to the application gear:
$ git add .

$ git commit -am "added .htaccess and .htpasswd"

$ git push

6.	 After the application is deployed, open the application URL in your favorite
web browser. This time, you will be greeted by a pop up asking you to enter
the username and password, as shown in the following screenshot:

7.	 After entering the admin/password combination, you will be able to enter your
web application.

How it works…
This recipe is another example of the flexibility that OpenShift offers to the application
developers. There are a couple of ways you can configure the Apache web server. One way
to configure the Apache web server is to update the main configuration file, usually named
httpd.conf. OpenShift does not allow users to update the httpd.conf file. OpenShift
allows users to configure the Apache web server via the .htaccess file. The .htaccess file
provides a way to make configuration changes on a per-directory basis. This file can contain
one or more configuration directives. These directives will then be applied to the directory in
which the .htaccess file exists and all its subdirectories.

http://www.htaccesstools.com/htpasswd-generator/

Chapter 8

291

In step 1, you created a new Python 2.7 application with the name myapp. Then, in step 2, you
created a couple of files—.htaccess and .htpasswd—in the myapp directory. In step 3, you
updated the content of the .htaccess file with the HTTP basic authentication configuration.
You can learn more from the documentation at http://httpd.apache.org/docs/2.2/
howto/auth.html.

Next, in step 4, you generated content for the .htpasswd file using an online .htpasswd
generator. You placed the content generated by generator in the .htpasswd file and then
committed all the changes in step 5. On successful deployment, you opened the application
URL in the browser in step 6. You were asked to enter the admin/password username/
password credentials. On entering the valid username/password combination, you were
allowed to enter the application in step 7.

See also
ff The Creating your first Python application recipe

ff The Creating and deploying Flask web applications using Python and PostgreSQL
cartridges recipe

http://httpd.apache.org/docs/2.2/howto/auth.html
http://httpd.apache.org/docs/2.2/howto/auth.html

9
OpenShift for

Node.js Developers

This chapter presents a number of recipes that will help you get started with Node.js web
application development on OpenShift. The specific recipes of this chapter are:

ff Creating your first Node.js application

ff Configuring Node supervisor options

ff Managing Node.js application dependencies

ff Using the use_npm marker

ff Enabling hot deployment for Node.js applications

ff Creating and deploying Express web applications using Node.js and
MongoDB cartridges

ff Working with Web Sockets

ff Using CoffeeScript with OpenShift Node.js applications

Introduction
Node.js is a server-side JavaScript platform built on top of Google's Chrome V8 JavaScript
engine that developers can use to write applications. These applications can be web
applications, command-line utilities, or scripts to automate tasks. Node.js is a very popular
choice for web application development, as it allows web developers to use a single
programming language, such as JavaScript, on both the client side and the server side. It is
suitable for building highly concurrent, data-intensive, real-time web applications because of
its asynchronous, event-driven, non-blocking I/O nature. Node has a small core that provides
the basic building block APIs to write higher-level frameworks. The developers can then use
the web frameworks to build their awesome web applications.

OpenShift for Node.js Developers

294

There are many web frameworks, such as Express (http://expressjs.com/), Sails.
js (http://sailsjs.org/), Restify (http://mcavage.me/node-restify/), and
Geddy (http://geddyjs.org/), developed by the Node community that developers can
use for their web applications. Many big tech giants, such as LinkedIn, Walmart (http://
venturebeat.com/2012/01/24/why-walmart-is-using-node-js/), and Yahoo,
are using Node.js for their production applications.

OpenShift provides web developers a hosting platform to deploy their Node.js web
applications. You can run applications built using any of the Node.js web frameworks, such
as Express or Geddy, on OpenShift. At the time of writing this book, OpenShift supports two
versions of Node.js—0.6 and 0.10. The following command shows the currently supported
Node.js versions:

$ rhc cartridges | grep node

nodejs-0.10 Node.js 0.10 web

nodejs-0.6 Node.js 0.6 web

The Node Version 0.6 cartridge will get deprecated in the future, so
you are advised not to use it for your web applications. This book will
only cover Version 0.10.

The Creating your first Node.js application recipe will walk you through creating your first
OpenShift Node.js web application. We will look into the template application created by
OpenShift and then write a simple HTTP server using Node's HTTP module and deploy it
to OpenShift.

The Node.js web applications are very different from the traditional web applications that you
might have written so far. The web applications themselves are web servers, so you do not
need Apache or any other web server to host your web application. There are various ways to
fire up Node applications, such as using the commands node <app script file> and
npm start, supervisor <app script file>. OpenShift uses a Node module called
node-supervisor to run your application. The node-supervisor module (https://github.
com/isaacs/node-supervisor) runs the Node application and watches for any changes.
Once it detects changes, it restarts the application. In the Configuring Node supervisor
options recipe, you will learn how to customize a few supervisor options to take advantage
of the hot reloading behavior. The alternative to using supervisor is to use the npm start
command to run Node applications. You can configure OpenShift Node.js applications to use
npm start instead of supervisor by using a marker file. This will be covered in the Using
the use_npm marker recipe.

In the Managing Node.js application dependencies recipe, you will learn how OpenShift uses
npm to install and manage your application dependencies.

http://expressjs.com/
http://sailsjs.org/
http://mcavage.me/node-restify/
http://geddyjs.org/
http://venturebeat.com/2012/01/24/why-walmart-is-using-node-js/
http://venturebeat.com/2012/01/24/why-walmart-is-using-node-js/
https://github.com/isaacs/node-supervisor
https://github.com/isaacs/node-supervisor

Chapter 9

295

The example application in this chapter will be developed using the Express web framework
and MongoDB database. The Creating and deploying Express web applications using Node.
js and MongoDB cartridges recipe will walk you through all the steps required to build and
deploy Express web applications on OpenShift. All the source code for this chapter is available
on the OpenShift Cookbook GitHub organization (https://github.com/OpenShift-
Cookbook).

Node.js is very popular for building real-time web applications using Web Sockets. In the
Working with Web Sockets recipe, you will build a simple, real-time application using the
Node Socket.IO library.

Instead of using JavaScript to write Node applications, developers can also use CoffeeScript
to write their Node applications. CoffeeScript compiles to JavaScript and is a popular choice
among developers who don't like to use JavaScript. The Using CoffeeScript with OpenShift
Node.js applications recipe will cover this in detail.

To run the example applications that you will develop in this chapter on your local machine,
you will need to install Node on your operating system. You can get the latest installer of Node.
js for your operating system from the official website, http://nodejs.org/download/.
The installer will also install npm for you. This chapter will also use the MongoDB database.
You can get the latest installer of MongoDB for your operating system from their official
website (http://www.mongodb.org/downloads).

This chapter assumes that you are comfortable with Node web development basics, OpenShift
application basics, and how to work with OpenShift database cartridges. If you are not
comfortable with these topics, I recommend you first read Chapter 3, Creating and Managing
Applications, and Chapter 6, Using MongoDB and Third-party Database Cartridges with
OpenShift Applications, before continuing with this chapter.

Creating your first Node.js application
In this recipe, you will learn how to create your first OpenShift Node.js application using the
rhc command-line tool. After understanding the template application created by OpenShift,
you will write a Hello World Node.js application using Node's HTTP module.

Getting ready
To complete this recipe, you will need the rhc command-line client installed on your
machine. Please refer to the Installing the OpenShift rhc command-line client recipe in
Chapter 1, Getting Started with OpenShift, for details. This application will consume one
gear, so if you don't have an extra gear available for this recipe, use the rhc delete-app
<app_name> --confirm command to delete an existing application. To run this application
on your local machine, you will need Node installed on your machine. You can get the latest
installer of Node.js for your operating system from the official website, http://nodejs.
org/download/.

https://github.com/OpenShift-Cookbook
https://github.com/OpenShift-Cookbook
http://nodejs.org/download/
http://www.mongodb.org/downloads
http://nodejs.org/download/
http://nodejs.org/download/

OpenShift for Node.js Developers

296

How to do it…
Perform the following steps to create your first OpenShift Node.js application:

1.	 Open a new command-line terminal, and change the directory to a convenient
location where you want to create the application. To create a Node.js 0.10
application, run the following command:
$ rhc create-app myapp nodejs-0.10

2.	 Open your favorite web browser, and go to http://myapp-{domain-name}.
rhcloud.com to view the application. Please replace {domain-name} with
your OpenShift account domain name.

3.	 The template application created by OpenShift is an Express web framework
application. You can use your own template application by specifying your public
Git repository using the --from-code option. This was covered in the Specifying
your own template Git repository URL recipe in Chapter 3, Creating and Managing
Applications. In this recipe, you don't need the template code generated by
OpenShift, so delete all the files and directories created by OpenShift except the
.openshift directory. On the *nix machine, you can use the rm command to delete
the files as shown in the following command. On Windows, you can use file explorer or
the command-line equivalent to delete these files.
$ cd myapp

$ rm -rf deplist.txt index.html node_modules/ package.json server.
js

4.	 Create a new empty file named server.js in the application root directory.
On *nix machines, you can use the touch command to create a new file. On
Windows machines, you can use file explorer to create the new file. Run the
following command:
$ touch server.js

Open the file in your favorite editor, and populate it with the following code:

var http = require('http');
var ip = process.env.OPENSHIFT_NODEJS_IP || '127.0.0.1';
var port = process.env.OPENSHIFT_NODEJS_PORT || 3000;
var server = http.createServer(function(req,res){
 res.writeHead(200, {'Content-Type':'text/plain'});
 res.end('Hello World!!');
});
server.listen(port,ip);
console.log('Server running at http://%s:%d',ip,port);

Chapter 9

297

5.	 To run the application on your local machine, run the following command:
$ node server.js

To see the application in action, open the http://127.0.0.1:3000 in your favorite
browser. You will see the Hello World!! message rendered in your browser.

6.	 To deploy the application on OpenShift, commit the code to the local Git repository,
and then push the changes to the application gear:
$ git add .

$ git commit -am "Hello World Node.js application"

$ git push

7.	 After successful deployment, open the http://myapp-{domain-name}.
rhcloud.com in your favorite browser. The browser will render Hello World!!.

How it works…
In the previous steps, you created a Hello World Node.js application from scratch and
deployed it on OpenShift. The Hello World application that you wrote in the aforementioned
steps is no different from the one you will write if you want to run this application on your local
machine or elsewhere. There is no OpenShift-specific apart from the environment variables.

In step 1, you created an OpenShift Node.js 0.10 application using the rhc command-line
tool. The rhc create-app command will make an HTTP POST request to the OpenShift
broker. The OpenShift broker will accept the request and then initiate the application creation
process. You specified that OpenShift should create a Node.js 0.10 application with myapp as
the application name. OpenShift will use these details along with a few defaults to create the
myapp application. The defaults include small gear size, non-scalable application, and using
the current directory to clone the Git repository. OpenShift behind the scenes did the following:

ff OpenShift created a new application gear with the Node.js cartridge.

ff It created a private Git repository for your application and populated it with a template
application. The template application that OpenShift creates is an Express web
framework application.

ff It installed a Git action hook that will build the application. During the application
build phase, it will download all the dependencies mentioned in package.json
using the npm install command.

ff It created a public DNS for your application so that it is accessible from the
outside world.

After successful application creation, you will have the myapp directory inside the current
directory. You can view the application by opening the application URL in your browser as
mentioned in step 2. The application creation process was explained in detail in the Creating
an OpenShift application using the rhc command-line client recipe in Chapter 3, Creating and
Managing Applications.

OpenShift for Node.js Developers

298

Now, let's look at the template application created by OpenShift:

$ cd myapp && ls -ap

.git/ README.md index.html package.json

.openshift/ deplist.txt node_modules/ server.js

The template application has five files—README.md, index.html, package.json,
deplist.txt, and server.js—and the node_modules directory apart from the
.openshift and .git directories. We have already talked about .openshift and .git in
the Creating an OpenShift application using the rhc command-line client recipe in Chapter 3,
Creating and Managing Applications, so I will not cover them here. Let's talk about the others
one by one:

ff README.md: This is a standard Git repository markdown file where you can
summarize your project. GitHub uses README.md to generate the HTML summary
of the project.

ff index.html: This file contains the HTML markup that you will see when you view the
application in the browser. This is an HTML 5 file with Twitter Bootstrap styling.

ff package.json: This is your Node application descriptor. This is a JSON document
that contains all the information about your application, such as name, description,
version, and libraries, that this application depends on. The full documentation is
available at https://www.npmjs.org/doc/json.html.

ff deplists.txt: This is a deprecated method to specify application dependencies
in OpenShift Node.js applications. It is recommended not to use it, as this may get
removed in the future. This file only exists for backward compatibility so that the
application that uses it keeps running.

ff server.js: This file houses the template Express web framework application
created by OpenShift. This application exposes a couple of routes, / and /asciimo.
The / route renders index.html, and the second route renders an HTML page
with images. The Express application will be covered in detail in the Creating and
deploying Express web applications using Node.js and MongoDB cartridges recipe,
so we will not cover it in this recipe.

ff node_modules: This directory houses all the application dependencies you specify
in package.json. The npm install command will download all the dependencies
in the node_modules directory.

The template application generated by OpenShift is a standard Express web application. To
run this application on your local machine, you can run the following commands:

$ npm install

$ node server.js

https://www.npmjs.org/doc/json.html

Chapter 9

299

The application will be running at http://127.0.0.1:8080/. The previous two commands
did the following:

ff The npm install command downloads all the dependencies mentioned in the
package.json file. The template application mentions express as its dependency,
so the npm install command will download Express and all its transitive
dependencies in the node_modules directory.

ff As mentioned in the introduction section, in Node, the server and the application are
the same. So, you used the node server.js command to fire up the application's
server. This starts the HTTP server, and you can start making requests.

The node server.js command is one way to fire up the application. The other alternatives
to start the application are the npm start and supervisor server.js commands. The
npm start command will run the package start script if one was provided. The start script
can be mentioned in the package.json file:

"scripts":{"start":"node server.js"}

If the package.json file does not contain the start script, the npm start command will use
the node server.js command as the default start script.

OpenShift, by default, does not use the npm start or node <server script> command
to run your application. It uses a module called node-supervisor to run the application. You
can configure OpenShift Node applications to use the npm start command instead of node-
supervisor. This will be covered in the Using the use_npm marker recipe. The main advantage
of using the supervisor is that it can restart the application when they crash. Also, you can use
the supervisor to achieve the hot reloading behavior. It can monitor a set of directories and
files and restart the application when code changes.

If you want to use node-supervisor on your local machine, you can install the node-supervisor
module using the following command:

$ npm install supervisor -g

Now you can start the application using the supervisor server.js command. This will
restart the application every time you make changes to your source code. This can be very
useful during the development time, as it will save the time required to restart the application.

In step 3, you deleted the template source code generated by OpenShift so that you can write
a simple HTTP server from scratch. In step 4, you created a new file named server.js
and populated it with the Hello World Node.js code. The code listing in step 4 does
the following:

ff You imported the Node HTTP module using the require() function. This will be
used to write the server.

OpenShift for Node.js Developers

300

ff Then, you created two variables to hold the IP address and port. If the application
runs on a local machine, OpenShift-specific environment variables will not be
available. Hence, the IP and port will be 127.0.0.1 and 3000 respectively.

ff Next, you created the HTTP server using the HTTP module createServer()
function. You passed a callback that will be fired whenever a request happens. The
callback function accepts two arguments—request and response—and writes Hello
World to the response.

ff Finally, you instructed the server to listen on the IP and port variables.

In step 5, you tested the Hello World application on the local machine by running the node
server.js command. To deploy the application on OpenShift, you committed the code to
the local Git repository and pushed the changes to the application gear in step 6.

When you push the source code to the OpenShift Node.js application Git repository, OpenShift
will do the following:

ff First, all the bits are pushed to the application Git repository.

ff Then, if the package.json file is present, and this is the first time you are pushing
the source code, it will download all the dependencies mentioned in package.json.
On every subsequent push, only new dependencies that are already not present will
be downloaded. All existing node modules will be cached.

ff OpenShift will run the application using one of the three commands mentioned in the
subsequent list. This will change when the use_npm marker file is present and will be
covered in the Using the use_npm marker recipe.

�� If package.json is not present, OpenShift will run the supervisor
server.js command.

�� If package.json is present and the name of the main file in the
application is server.js, OpenShift will run the supervisor server.
js command. The name of the main file is mentioned in the package.json
main element.

�� If package.json is present and the name of the main file in the application
is something other than server.js (like app.js), OpenShift will run the
supervisor app.js command.

As you did not include package.json, OpenShift will run the application using the
supervisor server.js command. Once the application is started, you can open the
application URL in the browser, and you will be greeted with HelloWorld!! as shown in step 7.

Chapter 9

301

See also
ff The Configuring Node supervisor options recipe

ff The Enabling hot deployment for Node.js applications recipe

ff The Managing Node.js application dependencies recipe

Configuring Node supervisor options
As mentioned in the Creating your first Node.js application recipe, OpenShift uses the node-
supervisor module to run your programs. In this recipe, you will learn how you can configure
node-supervisor options. If you have the node-supervisor module installed on your machine,
you can see all the supported options by running the following command. You can install
node-supervisor by executing the npm install supervisor -g command. The help
option can be viewed using the following command:

$ supervisor --help

OpenShift allows you to configure the node-supervisor watch and poll-interval options. The
watch option allows you to specify a comma-delimited list of folders or JavaScript files that the
supervisor watches for changes. The poll-interval option allows you to specify how often the
supervisor should poll for changes.

Getting ready
To complete this recipe, you will need the rhc command-line client installed on your machine.
Please refer to the Installing the OpenShift rhc command-line client recipe in Chapter 1, Getting
Started with OpenShift, for details. This application will consume one gear, so if you don't have
an extra gear available for this recipe, use the rhc delete app <app_name> --confirm
command to delete an existing application. To run this application on your local machine, you
will need Node installed on your machine. You can get the latest installer of Node.js for your
operating system from the official website, http://nodejs.org/download/.

How to do it…
Perform the following steps to configure supervisor options:

1.	 If you don't already have a Node.js application running, create a new application by
executing the following command. This will create the application you created in the
Creating your first Node.js application recipe.
$ rhc create-app myapp nodejs-0.10 --from-code https://github.com/
OpenShift-Cookbook/chapter9-recipe1.git

http://nodejs.org/download/

OpenShift for Node.js Developers

302

2.	 Change the directory to myapp, and create two environment variables to configure
the supervisor poll interval and directories to watch.
$ cd myapp

$ rhc env-set OPENSHIFT_NODEJS_POLL_INTERVAL=60000 OPENSHIFT_
NODEJS_WATCH=$OPENSHIFT_REPO_DIR --app myapp

Replace the $OPENSHIFT_REPO_DIR variable with the value of your application's
$OPENSHIFT_REPO_DIR environment variable. You can get the value of
$OPENSHIFT_REPO_DIR by running the following command:

$ rhc ssh --command "env |grep OPENSHIFT_REPO_DIR"

3.	 Restart the application to allow it to pick the new environment variables:
$ rhc restart-app --app myapp

How it works…
The node-supervisor module helps OpenShift to restart Node applications when they die.
This is very helpful for developers, as they do not have to restart the application themselves if
applications can recover after restart. Another useful feature of node-supervisor is its support
for hot reload. You can tell node-supervisor to watch directories or files, and when they
change, the application will be restarted. This gives the hot reloading behavior.

In step 2, you created two environment variables that OpenShift exposes to configure the
hot reloading behavior. The OPENSHIFT_NODEJS_WATCH environment variable allows you
to specify a comma-delimited list of folders or JavaScript files that the supervisor should
watch for changes. You told the supervisor to monitor the $OPENSHIFT_REPO_DIR variable.
The OPENSHIFT_NODEJS_POLL_INTERVAL environment variable allows you to specify in
milliseconds how often the supervisor should poll for changes. The default value for polling is
10 seconds. You told the supervisor to poll $OPENSHIFT_REPO_DIR every 60 seconds.

The node-supervisor hot reloading behavior is not suitable for the git push deployment
model but can be useful if you use OpenShift SFTP support (https://www.openshift.
com/blogs/getting-started-with-sftp-and-openshift). The reason it is not
suitable for the git push deployment model is that you are already pushing the code to
application gear, which will update the $OPENSHIFT_REPO_DIR variable with new code and
restart the application. The preferred way to use hot deployment with git push is by using
the hot_deploy marker file. This is explained in the Enabling hot deployment for Node.
js applications recipe. To see hot reload in action, we will SSH into the application gear and
change the source code as follows:

1.	 SSH into the OpenShift application gear using the rhc ssh command. Instead
of SSH, you can also use the SFTP client to connect with the application gear, as
mentioned in the following blog: https://www.openshift.com/blogs/using-
filezilla-and-sftp-on-windows-with-openshift.

https://www.openshift.com/blogs/getting-started-with-sftp-and-openshift
https://www.openshift.com/blogs/getting-started-with-sftp-and-openshift
https://www.openshift.com/blogs/using-filezilla-and-sftp-on-windows-with-openshift
https://www.openshift.com/blogs/using-filezilla-and-sftp-on-windows-with-openshift

Chapter 9

303

2.	 Once connected, change the directory to the app-root/repo directory:
$ cd app-root/repo

3.	 Open the server.js file using vim and change "Hello World!!" to "Hello
OpenShift User!!" and save the file.

4.	 In the next polling cycle, the supervisor will detect the change and restart the
application. You can view your change by opening the application URL in your
favorite browser.

See also
ff The Creating your first Node.js application recipe

ff The Enabling hot deployment for Node.js applications recipe

ff The Managing Node.js application dependencies recipe

Managing Node.js application dependencies
So far in this chapter, you didn't have to use any third-party library. The applications that you
developed were simple Hello World applications that didn't require any third-party library
to do their work. In real applications, you have to use libraries written by others. Node makes
it very easy for developers to consume third-party libraries using npm. npm is the package
manager for Node.js that comes bundled with Node. It is a command-line tool that allows
you to publish new modules, downloads existing modules from the npm registry, and installs
third-party modules. In this recipe, you will write another simple application, but that will use
the Express framework. The goal of the recipe was to introduce you to the Node dependency
management without getting bogged down by the application details.

Getting ready
To complete this recipe, you will need the rhc command-line client installed on your machine.
Please refer to the Installing the OpenShift rhc command-line client recipe in Chapter 1, Getting
Started with OpenShift, for details. This application will consume one gear, so if you don't have
an extra gear available for this recipe, use the rhc delete app <app_name> --confirm
command to delete an existing application. To run this application on your local machine, you
will need Node installed on your machine. You can get the latest installer of Node.js for your
operating system from the official website (http://nodejs.org/download/).

http://nodejs.org/download/

OpenShift for Node.js Developers

304

How to do it…
In this recipe, you will create a Hello World Express framework web application from
scratch. Perform the following steps to create the application:

1.	 Recreate the application created in the Creating your first Node.js application recipe
by executing the following command:
$ rhc app create myapp nodejs-0.10 --from-code https://github.com/
OpenShift-Cookbook/chapter9-recipe1.git

2.	 Create a new file in the application root directory named package.json. The
package.json file is an application descriptor file that you can use to define
application metadata and its dependencies.
{
 "name": "myapp",
 "description": "My OpenShift Node.js Application",
 "version": "0.0.1"
}

3.	 The application will use the Express web framework, so install the express
dependency using the following command:
$ npm install express --save

This will download the Express framework module and its dependencies in the
node_modules directory and populate the package.json file with express
dependency, as shown in the following code:

{
 "name": "myapp",
 "description": "My OpenShift Node.js Application",
 "version": "0.0.1",
 "dependencies": {
 "express": "~4.3.1"
 }
}

4.	 Replace the code in server.js with the following code:
var express = require('express');
var ip = process.env.OPENSHIFT_NODEJS_IP || '127.0.0.1';
var port = process.env.OPENSHIFT_NODEJS_PORT || 3000;
var app = express();
app.get('/',function(req,res){
 res.send('Hello World!!');
});
app.listen(port,ip);
console.log('Server running at http://%s:%d',ip,port);

Chapter 9

305

5.	 Add the node_modules directory to the .gitignore file. We are adding the
node_modules directory to .gitignore to allow OpenShift to download all
the dependencies using npm. If you don't add node_modules to .gitignore,
OpenShift will not download the dependencies but use dependencies from your
node_modules directory:
$ echo "node_modules/" > .gitignore

6.	 Commit the code, and push the changes to the application gear:
$ git add .

$ git commit -am "used express"

$ git push

After the application is successfully built and deployed, you will see the application
running at http://myapp-{domain-name}.rhcloud.comhttp://myapp-
{domain-name}.rhcloud.com.

How it works…
Almost all real applications need to depend on third-party frameworks or libraries to do their
work. In the following steps, you created a very simple Express web application.

In step 1, you recreated the application created in the Creating your first Node.js application
recipe. As the example application in this recipe needs to use the Express web framework,
we have to declare the dependency in package.json. In step 2, you created a minimalistic
package.json file with just the name, description, and version number. Then in step 3, you
ran the npm install command to install Express and all its transitive dependencies. All the
modules will be downloaded to the node_modules directory. The --save option tells npm to
update the package.json file with the Express dependency.

In step 4, you replaced the content of server.js with the Express application code. The
code listing in step 4 does the following:

ff You imported the Node Express module using the require() function.

ff Then, you created two variables to hold the IP address and port. If the application
runs on the local machine, OpenShift's specific environment variables will not be
available; hence, the IP address and port will be 127.0.0.1 and 3000.

ff Then, you created a new application instance by calling the express() function.

ff Now you defined a new route for the root URL. In this case, an HTTP GET request to
/ will respond with Hello World.

ff Finally, you instructed the server to bind and listen on the IP and port variables for
incoming connections.

OpenShift for Node.js Developers

306

In step 5, you told Git to ignore the node_modules directory by adding an entry to the
.gitignore file. The reason you did that is to allow OpenShift to download the dependencies
mentioned in package.json. This makes your Git repository light as well. If you commit the
node_modules directory, OpenShift will not download the dependencies and use the modules
in the node_modules directory. You can choose either of the two options, and OpenShift will
just work. There is a lot of debate on this topic in the Node community, and different people
have different opinions. You can refer to the following blog for a detailed discussion on this
topic: http://www.futurealoof.com/posts/nodemodules-in-git.html.

Finally, in step 6, you committed the code to the local Git repository and pushed the changes
to the application gear. OpenShift will first download all the dependencies (and their transitive
dependencies) mentioned in package.json, as shown in the following code snippet, and
then restart the application with updated code using the supervisor server.js command:

remote: npm http GET https://registry.npmjs.org/express

remote: npm http 200 https://registry.npmjs.org/express

remote: npm info retry fetch attempt 1 at 12:45:38

remote: npm http GET https://registry.npmjs.org/express/-/express-
4.3.1.tgz

remote: npm http 200 https://registry.npmjs.org/express/-/express-
4.3.1.tgz

…

There's more…
In the Creating your first Node.js application recipe, I mentioned that when you push the
changes to the OpenShift application gear, OpenShift checks for the existence of the
package.json file. If the package.json file exists, OpenShift uses the value of the main
field as the primary entry point to your application. As you didn't define the main field in
package.json, OpenShift will use server.js as the default entry point. Let's suppose you
renamed the server.js to app.js. Then, to make this run on OpenShift, you will have to
create an entry for the main field, as shown in the following code snippet:

{
 "name": "myapp",
 "description": "My OpenShift Node.js Application",
 "version": "0.0.1",
 "dependencies": {
 "express": "~4.3.1"
 },
 "main":"app.js"
}

http://www.futurealoof.com/posts/nodemodules-in-git.html

Chapter 9

307

See also
ff The Creating your first Node.js application recipe

ff The Using the use_npm marker recipe

Using the use_npm marker
OpenShift uses the node-supervisor module to run your Node apps, but you can also tell
OpenShift to use the npm start command to run the application. In this recipe, you will
learn how to do that.

Getting ready
To complete this recipe, you will need the rhc command-line client installed on your machine.
Please refer to the Installing the OpenShift rhc command-line client recipe in Chapter 1, Getting
Started with OpenShift, for details. This application will consume one gear, so if you don't have
an extra gear available for this recipe, use the rhc delete app <app_name> --confirm
command to delete an existing application. To run this application on your local machine, you
will need Node installed on your machine. You can get the latest installer of Node.js for your
operating system from their official website (http://nodejs.org/download/).

How to do it…
Perform the following steps to use the npm start command to run your applications:

1.	 Open a new command-line terminal, and recreate the application you created in the
Managing Node.js application dependencies recipe as follows:
$ rhc create-app myapp nodejs-0.10 --from-code https://github.com/
OpenShift-Cookbook/chapter9-recipe3.git

2.	 Create a marker file named use_npm inside the .openshift/markers directory.
On the *nix machine, you can use the touch command as shown in the following
code. On Windows, you can use file explorer to create an empty file.
$ cd myapp

$ touch .openshift/markers/use_npm

3.	 Commit the code, and push the changes to the application gear:
$ git add .

$ git commit -am "using use_npm marker"

$ git push

http://nodejs.org/download/

OpenShift for Node.js Developers

308

4.	 The git push logs will clearly mention that the application is started using the npm
start command:

remote: *** NodeJS supervisor is disabled due to .openshift/
markers/use_npm

remote: *** Starting application using: npm start -d

How it works…
In step 1, you created an Express framework web application that we created in the Managing
Node.js application dependencies recipe. The application just has two files—server.js and
package.json. The server.js file contains the application source code, and package.
json contains the application metadata and its dependencies.

Then, in step 2, you created a marker file, use_npm. The presence of the use_npm marker
file tells OpenShift that you want to use the npm start command to run the application
instead of the node-supervisor module. The npm start command gives developers
more flexibility to run their applications. It allows developers to specify their own start script
in package.json, which OpenShift will use to run their application. The package.json is
shown as follows:

{
 "name": "myapp",
 "description": "My OpenShift Node.js Application",
 "version": "0.0.1",
 "dependencies": {
 "express": "~4.3.1"
 }
}

As you can see in the previous listing, it does not mention any start script. When there is no
start script in the package.json file, OpenShift will fall back to node server.js as the
start script:

"scripts": {"start": "node server.js"}

This is the reason the application successfully started in step 4 after git push.

Now let's suppose that you want to rename server.js to app.js. If you commit the source
code now and push the changes, the application will fail to start. You will see the following
message in the git push logs:

remote: *** NodeJS supervisor is disabled due to .openshift/markers/use_
npm

remote: *** Starting application using: npm start -d

remote: Application 'myapp' failed to start 1

Chapter 9

309

To make this application run again, you have to specify the start script as shown:

{
 "name": "myapp",
 "description": "My OpenShift Node.js Application",
 "version": "0.0.1",
 "dependencies": {
 "express": "~4.3.1"
 },
"scripts":{"start":"node app.js"}
}

See also
ff The Creating and deploying Express web applications using Node.js and MongoDB

cartridges recipe

ff The Managing Node.js application dependencies recipe

Enabling hot deployment for Node.js
applications

In this recipe, you will learn how you can enable hot deployment for Node.js applications.

How to do it…
Perform the following steps to enable hot deployment for your application:

1.	 Create a new Node.js application using the source code developed in the
previous recipe:
$ rhc app create myapp nodejs-0.10 --from-code https://github.com/
OpenShift-Cookbook/chapter9-recipe3.git

2.	 To enable hot deployment, create an empty file named hot_deploy under the
.openshift/markers directory. This file is called the marker file, as this does
not contain any content. On the *nix machine, you can use the touch command
to create the file. On Windows, you can use file explorer to create a new file. If you
are not in the myapp directory, first change directory to myapp. Have a look at the
following commands:
$ cd myapp

$ touch .openshift/markers/hot_deploy

OpenShift for Node.js Developers

310

3.	 Add the file to the Git index, commit the file to the local Git repository, and then push
changes to the application gear by typing the commands as shown:
$ git commit -am "enabled hot deployment"

$git push

4.	 In the git push logs, you will see a message that cartridges are not stopped
because hot deployment is enabled:
remote: Not stopping cartridge node.js because hot deploy is
enabled

How it works…
Every time you make a change and push it to the OpenShift application gear, OpenShift first
stops your gear (that is, all cartridges), copies the source code from your application Git repo
to app-root/runtime/repo, performs a build, prepares the artifact, and finally starts your
gear (that is, all cartridges). This process takes time and does not suit rapid development and
deployment. To enable rapid development and faster deployments, OpenShift supports hot
deployment. Hot deployment means that you can deploy your changes without the need to
restart all the application cartridges.

The presence of the hot_deploy marker file informs OpenShift that you want to do hot
deployment. Before stopping and starting the application cartridges, OpenShift checks for the
existence of the hot_deploy marker file. If the hot_deploy marker file exists, OpenShift will
not stop the cartridges, and changes will be deployed without cartridges restart. Hot deployment
is ideal for development, and I recommend that you always use it during development.

If you set new environment variables with hot deployment enabled or
install new cartridges, you have to restart the application to allow the
server to pick the new environment variables.

See also
ff The Creating and deploying Express web applications using Node.js and MongoDB

cartridges recipe

ff The Configuring Node supervisor options recipe

Chapter 9

311

Creating and deploying Express web
applications using Node.js and MongoDB
cartridges

In this recipe, you will build a Node.js application from scratch using the Express web
framework and MongoDB. I have chosen Express because it is very easy to use and is a
popular web framework in the Node community. You can run any other web framework,
such as Geddy, on OpenShift as well.

You will develop a job store application that will allow users to post job openings for a
company. The application will be a single-page web application (http://en.wikipedia.
org/wiki/Single-page_application) built using the Backbone.js (http://
backbonejs.org/) frontend. The application can do the following:

ff When a user goes to the / URL of the application, the user will see a list of companies
stored in the MongoDB database. Behind the scenes, the Backbone.js-based frontend
will make a REST HTTP GET ('/api/v1/companies') call to fetch all the companies:

http://en.wikipedia.org/wiki/Single-page_application
http://en.wikipedia.org/wiki/Single-page_application
http://backbonejs.org/
http://backbonejs.org/

OpenShift for Node.js Developers

312

ff Users can create a new company by visiting http://jobstore-{domain-name}.
rhcloud.com/#companies/new or by clicking on the + icon. This will render a
form where users can enter details about the new company, as shown in the following
screenshot. When a user submits the form, the Backbone.js-based frontend will make
an HTTP POST call to the REST backend and data related to a company is stored in
MongoDB:

ff When a user clicks on any company, they will see a list of job openings for that
company. Behind the scenes, the Backbone.js-based frontend will make an HTTP GET
('/api/v1/companies/company_id/jobs') call to fetch all the available jobs for
the selected company using its ID. Have a look at the following screenshot:

Chapter 9

313

ff Users can post new jobs for a company by clicking on the New Job link. This will
render a web form where users can enter their details. The Backbone.js-based
frontend will make an HTTP POST call to the REST backend and data related to
a job is stored in the MongoDB database:

The source code for the application is available on GitHub at https://github.com/
OpenShift-Cookbook/chapter9-jobstore-nodejs-express.

Getting ready
To complete this recipe, you will need the rhc command-line client installed on your machine.
Please refer to the Installing the OpenShift rhc command-line client recipe in Chapter 1,
Getting Started with OpenShift, for details. This application will consume one gear, so if you
don't have an extra gear available for this recipe, use the rhc delete app <app_name>
--confirm command to delete an existing application. To run this application on your local
machine, you will need Node and MongoDB installed on your machine. You can get the latest
installer of Node.js for your operating system from their official website (http://nodejs.
org/download/). You can get the latest installer of MongoDB for your operating system from
their official website (http://www.mongodb.org/downloads).

https://github.com/OpenShift-Cookbook/chapter9-jobstore-nodejs-express
https://github.com/OpenShift-Cookbook/chapter9-jobstore-nodejs-express
http://nodejs.org/download/
http://nodejs.org/download/
http://www.mongodb.org/downloads

OpenShift for Node.js Developers

314

How to do it…
1.	 Open a new command-line terminal, and navigate to a convenient location where you

want to create the application. Run the command shown as follows to create the job
store application:
$ rhc create-app jobstore nodejs-0.10 mongodb-2.4

This command will create an application named jobstore that uses Node.js and
MongoDB cartridges.

2.	 As the application will be built from scratch, we will delete the template source code
generated by OpenShift. Change the directory to jobstore, and delete the following
files and directories using the rm command on *nix machines. On Windows, you can
use file explorer to delete the files and directories.
$ cd jobstore

$ rm -rf deplist.txt index.html node_modules/ package.json server.
js

Add the node_modules directory to the .gitignore file by executing the
following command:

$ echo "node_modules/" > .gitignore

3.	 The Express team provides a project generator that you can use to create an Express
template application. This generator will create an application skeleton using the
latest Express version, that is, 4.2.0. It makes it easy for developers to get started
with Express application development. You can install the express-generator
package globally by running the following command:
$ npm install -g express-generator

Please make sure you install express-generator Version
4.2.0 or above. This recipe was written using express-
generator Version 4.2.0. You can check the version by typing
the express --version command.

4.	 Once the generator is installed globally, you can use the express command-line tool
to generate projects anywhere on your machine. Please make sure you are in the
jobstore directory, and create the project by running the following command:
$ express --ejs . --force

Chapter 9

315

5.	 To run this application on your local machine, you will have to first install all the
dependencies using npm:
$ npm install

Now, to run the application, use the following command:
$ DEBUG=jobstore ./bin/www

You can view the application in your favorite browser by visiting
http://127.0.0.1:3000/. The generated application exposes two routes as
specified in app.js:
app.use('/', routes);
app.use('/users', users);

When a user makes a GET request to /, the index route callback, routes, is invoked.
The routes callback is defined in routes/index.js. The callback renders the
index.ejs view.

When a user makes a HTTP GET request to '/users', the users callback function is
invoked. The default implementation just writes respond with a resource in
the response body.

6.	 In our single-page web application, when a user makes an HTTP GET request to
the application root URL, the Backbone.js-based frontend is rendered. Replace the
content of index.ejs with index.js in the project's GitHub repository, https://
github.com/OpenShift-Cookbook/chapter9-jobstore-nodejs-express/
blob/master/views/index.ejs. Also, copy the css (https://github.
com/OpenShift-Cookbook/chapter9-jobstore-nodejs-express/tree/
master/public/css) and js (https://github.com/OpenShift-Cookbook/
chapter9-jobstore-nodejs-express/tree/master/public/js) directory
from the application's GitHub repository, https://github.com/OpenShift-
Cookbook/chapter9-jobstore-nodejs-express, and place them inside the
public directory.

Restart the application, and you will see the index route in action. This time it will
render the application user interface.

7.	 The application does not need the users.js file in the routes directory, so delete
it. After removing routes/users.js, remove its reference in the app.js file. You
need to remove the following two lines from the app.js file:
var users = require('./routes/users');
app.use('/users', users);

8.	 Create a new file named api.js inside the routes directory. This file will house the
REST backend of our application. On *nix machines, you can create a new file using
the touch command. On Windows, you can use file explorer to create the file.
$ touch routes/api.js

https://github.com/OpenShift-Cookbook/chapter9-jobstore-nodejs-express/blob/master/views/index.ejs
https://github.com/OpenShift-Cookbook/chapter9-jobstore-nodejs-express/blob/master/views/index.ejs
https://github.com/OpenShift-Cookbook/chapter9-jobstore-nodejs-express/blob/master/views/index.ejs
https://github.com/OpenShift-Cookbook/chapter9-jobstore-nodejs-express/tree/master/public/css
https://github.com/OpenShift-Cookbook/chapter9-jobstore-nodejs-express/tree/master/public/css
https://github.com/OpenShift-Cookbook/chapter9-jobstore-nodejs-express/tree/master/public/css
https://github.com/OpenShift-Cookbook/chapter9-jobstore-nodejs-express/tree/master/public/js
https://github.com/OpenShift-Cookbook/chapter9-jobstore-nodejs-express/tree/master/public/js
https://github.com/OpenShift-Cookbook/chapter9-jobstore-nodejs-express
https://github.com/OpenShift-Cookbook/chapter9-jobstore-nodejs-express

OpenShift for Node.js Developers

316

9.	 The application will use the MongoDB database for storing data. To work with
MongoDB, you need to use a third-party library. For this application, you will use
the mongojs module. Install the module using the npm command, as shown in
the following command:
$ npm install mongojs --save

10.	 The next step is configuring the MongoDB database so that our REST API can talk
with MongoDB. Place the following code in api.js:
var db_name = process.env.OPENSHIFT_APP_NAME || "jobstore";
var connection_string = '127.0.0.1:27017/' + db_name;
// if OPENSHIFT env variables are present, use the available
connection info:
if (process.env.OPENSHIFT_MONGODB_DB_PASSWORD) {
 connection_string = process.env.OPENSHIFT_MONGODB_DB_USERNAME
+ ":" +
 process.env.OPENSHIFT_MONGODB_DB_PASSWORD + "@" +
 process.env.OPENSHIFT_MONGODB_DB_HOST + ':' +
 process.env.OPENSHIFT_MONGODB_DB_PORT + '/' +
 process.env.OPENSHIFT_APP_NAME;
}
var mongojs = require("mongojs");
var db = mongojs(connection_string, ['jobstore']);
var companies = db.collection("companies");

11.	 As mentioned in this recipe introduction, there are two company-related operations—
get all companies and store a company in the MongoDB database. These will be
exposed as two routes in the app.js file, as shown in the following commands:
var api = require('./routes/api');
app.get('/api/v1/companies', api.companies);
app.post('/api/v1/companies', api.saveCompany);

When the HTTP GET request is made to /api/v1/companies, the api.companies
callback will be called. The api.companies callback is defined in the api.js route
file. This callback will make a find call on the companies collection. It will find all
the companies in the MongoDB database and write them to the response object.
Have a look at the following commands:
exports.companies = function (req, res, next) {
 companies.find().sort({registeredAt: -1}, function (err,
companies) {
 if (err) {
 return next(err);
 }
 return res.json(companies);
 });
};

Chapter 9

317

Similarly, when the HTTP POST request is made to the /api/v1/companies URL,
the api.saveCompany callback will be called. The api.saveCompany callback is
defined in the api.js route file. The callback will create a company object from the
request object and then persist the company object in the MongoDB database:

exports.saveCompany = function (req, res, next) {
 var company = {
 "name": req.body.name,
 "description": req.body.description,
 "registeredAt": new Date(),
 "contactEmail": req.body.contactEmail,
 "jobs": []
 };
 companies.save(company, function (err, saved) {
 if (err) {
 return next(err);
 }
 console.log(saved);
 res.json(saved);
 })
};

12.	 Next, you will write REST endpoints to store and list the jobs data. There are two
REST endpoints related to jobs—listing all jobs for a company and saving a job for
a company. These will be exposed as two routes in app.js. Have a look at the
following code:
app.get('/api/v1/companies/:companyId/jobs', api.jobsForCompany);
app.post('/api/v1/companies/:companyId/jobs', api.
postJobForCompany);

When the HTTP GET request is made to /api/v1/companies/:companyId/jobs,
the jobsForCompany callback will be called. This callback will find the company
corresponding to companyId and then return the jobs embedded in the array:
exports.jobsForCompany = function (req, res, next) {
 var companyId = req.param('companyId');
 companies.findOne({"_id": mongojs.ObjectId(companyId)},
function (err, company) {
 if (err) {
 return next(err);
 }
 return res.json(company.jobs);
 });

};

OpenShift for Node.js Developers

318

When a user makes the HTTP POST request to /api/v1/companies/:companyId/
jobs, the postJobForCompany callback function will be called. This callback will be
defined in the api.js routes file. This route will update the company document with
the embedded job document. Finally, it will return the updated company document:

exports.postJobForCompany = function (req, res, next) {
 var companyId = req.param('companyId');
 var job = {
 "title": req.body.title,
 "description": req.body.description
 }

 companies.update({"_id": mongojs.ObjectId(companyId)}, {$push:
{"jobs": job}}, function (err, result) {
 if (err) {
 return next(err);
 }
 return companies.findOne({"_id": mongojs.
ObjectId(companyId)}, function (err, company) {
 if (err) {
 return next(err);
 }

 return res.json(company);
 })
 })
};

13.	 To test the application on your local machine, start the MongoDB database server,
and then restart the Node application.

14.	 To make this application run on OpenShift, you have to update the bin/www script:
#!/usr/bin/env node
var debug = require('debug')('jobstore');
var app = require('../app');
var ipaddress = process.env.OPENSHIFT_NODEJS_IP || "127.0.0.1";
var port = process.env.OPENSHIFT_NODEJS_PORT || 3000;
app.set('port', port);
app.set('ipaddress', ipaddress);
var server = app.listen(app.get('port'), app.get('ipaddress'),
function() {
 debug('JobStore application running at http://%s:%d ',app.
get('ipaddress'), app.get('port'));
});

This code sets the correct IP address and port values so that the application can
work on OpenShift.

Chapter 9

319

15.	 Add the node_modules directory to the .gitignore file as follows:
$ echo "node_modules/" > .gitignore

16.	 Update the package.json main field value. This is required, because, otherwise,
OpenShift will look for the server.js file. As this application does not have a
server.js file, the application will not start. This was explained in the Creating your
first Node.js application recipe:
"main":"./bin/www",

17.	 Add the changes to the Git index, commit the code to the local Git repository, and
then finally push the changes to the application gear:
$ git add .

$ git commit -am "jobstore app"

$ git push

18.	 After a successful build, changes will be deployed, and your application will be
available at http://jobstore-{domain-name}.rhcloud.com.

How it works…
Let's now understand what we did in the previous steps. In step 3, you installed the express-
generator module. In the previous version of Express, express-generator package was part of
the Express module itself. Now, in the latest versions, you will have to install express-generator
separately. This recipe was written using 4.2.0. This module is installed globally using the -g
option to run the Express executable from any directory.

Next, in step 4, you generated the project inside the jobstore directory using the express
. --ejs --force command. The command instructs Express to create the template in the
current directory. The --ejs option tells Express to configure the app with the ejs template
engine. Express supports almost all the template engines built for Node, but express-
generator only supports hogan, jade, and ejs. The --force option instructs Express
to forcefully create the project template inside a non-empty directory. If you don't use the
--force option, the generator will ask you for confirmation, as shown in the following code:

destination is not empty, continue?

The express command generates a folder structure suitable for the Express web
development as follows:

$ ls -p

app.js bin/ package.json public/ routes/ views/

OpenShift for Node.js Developers

320

The package.json file is an application descriptor file based on CommonJS (http://
wiki.commonjs.org/wiki/CommonJS). It contains application metadata and its
dependencies. The npm install command parses the dependencies mentioned in
package.json and installs them in the node_modules directory.

The app.js file configures the Express framework along with Connect middleware
components. The application server startup boilerplate is defined inside the bin/www script.
This is a Node script that creates an Express web server and binds it to a 3000 port number.
To run the application, you can use either the ./bin/www or npm start command.

The Express command creates three other subdirectories apart from bin—public, routes,
and views. The public directory houses all the static resources of the application. The app.
js file configures the Express application to use the public directory for static files:

app.use(express.static(path.join(__dirname, 'public')));

In step 6, you copied the css and js directories from the project's GitHub repository.

The routes directory has two files—index.js and users.js. Both these files are used
by app.js. These files define callbacks that will be invoked when the user makes requests
to the http://jobstore-{domain-name}.rhcloud.com and http://jobstore-
{domain-name}.rhcloud.com/users URLs.

The views directory holds the template files that will be shown to the user. In step 6, you
updated index.ejs with the one from the project's GitHub repository. As mentioned before,
the view of the application is built using Backbone.js and will not be covered as it is outside
the scope of this book.

From steps 7 through step 12, you defined the REST backend for the application. The
application exposes a REST call backed by the MongoDB database, which is consumed by the
Backbone.js frontend. You created a new file named api.js to define all the API callbacks.
You installed the mongojs package so that you can work with the MongoDB database. You
defined four methods in api.js—companies, saveCompany, jobsForCompany, and
postJobForCompany. All the methods work on the MongoDB database asynchronously and
write the database result to the response object.

In app.js, you defined four routes for the REST endpoints. The callbacks are defined in api.
js as follows:

app.get('/api/v1/companies', api.companies);
app.post('/api/v1/companies', api.saveCompany)
app.get('/api/v1/companies/:companyId/jobs', api.jobsForCompany);
app.post('/api/v1/companies/:companyId/jobs', api.postJobForCompany);

After writing the backend logic, you updated the bin/www script so that it can bind and listen
to the correct IP address and port when running on OpenShift.

http://wiki.commonjs.org/wiki/CommonJS
http://wiki.commonjs.org/wiki/CommonJS

Chapter 9

321

Finally, you committed the code and pushed the changes to the application gear. This will
download all the dependencies mentioned in the node_modules directory and then restart
the application with the updated code.

See also
ff The Creating your first Node.js application recipe

ff The Enabling hot deployment for Node.js applications recipe

ff The Working with Web Sockets recipe

Working with Web Sockets
HTTP was designed to be half-duplex, which means it allows transmission of data in just one
direction at a time. This makes it unsuitable for building real-time applications that need an
open, persistent connection always. To overcome this limitation of HTTP, developers have
created some workarounds or hacks. Some of these workarounds are polling, long polling,
and streaming.

Web Sockets provide an asynchronous, bidirectional, full-duplex messaging implementation
over a single TCP connection. In this recipe, you will learn how you can use Socket.IO and
Express to create a simple echo application. The application simply reverses the message
and echoes it back to the user browser.

Getting ready
To complete this recipe, you will need the rhc command-line client installed on your machine.
Please refer to the Installing the OpenShift rhc command-line client recipe in Chapter 1, Getting
Started with OpenShift, for details. This application will consume one gear, so if you don't have
an extra gear available for this recipe, use the rhc delete app <app_name> --confirm
command to delete an existing application. To run this application on your local machine, you
will need Node installed on your machine. You can get the latest installer of Node.js for your
operating system from their official website (http://nodejs.org/download/).

How to do it…
Perform the following steps to create an application that uses Web Sockets:

1.	 Open a new command-line terminal, and navigate to a convenient location where you
want to create the application. Run the following command to create the application:
$ rhc create-app reverseecho nodejs-0.10

http://nodejs.org/download/

OpenShift for Node.js Developers

322

2.	 Change the directory to reverseecho, and delete the template application
source code:
$ cd reverseecho

$ rm -rf deplist.txt index.html node_modules/ package.json server.
js

Add the node_modules directory to the .gitignore file by executing the
following command:

$ echo "node_modules/" > .gitignore

3.	 Create a package.json file:
{
 "name": "reverse-echo",
 "version": "0.0.1",
 "private": true,
 "main": "server.js"
}

4.	 Install the express and socket.io modules as follows:
$ npm install express –save

$ npm install socket.io --save

5.	 Create a new file named server.js in the app root directory and populate it with
the following code:
var express = require("express");
var app = express();
var server = require('http').createServer(app);
var ip = process.env.OPENSHIFT_NODEJS_IP || '127.0.0.1';
var port = process.env.OPENSHIFT_NODEJS_PORT || 3000;
server.listen(port,ip);
var io = require('socket.io').listen(server);

app.get('/',function(req,res){
 res.sendfile(__dirname+'/index.html');
});
console.log('App running at http://%s:%d',ip,port);
io.sockets.on('connection', function (socket) {

 // when the client emits 'sendchat', this listens and executes
 socket.on('message', function (data) {
 io.sockets.emit('rev-message', data.split("").reverse().
join(""));
 });
});

Chapter 9

323

In this code, you first created the Express server application instance. Then, you
imported the Socket.IO library and started the Socket.IO server, providing it with
the already-created Express server so that it can share the same TCP/IP address
and port. You defined a couple of event listeners using the io.sockets.on()
function. The io.sockets.on() function takes two arguments—the event name
and a callback function. The event name can be any string, such as 'connection'
and 'message'. The callback function defines work to perform when an event
is received.

6.	 Create index.html in the app root directory, and populate it with the following
code. This page has one textbox where the user can enter any text and submit it
to the server by pressing a button. The data is transferred to the server using
Web Sockets.
<html>
<head>
 <title>ReverseEcho</title>
application <meta name="viewport" content="width=device-width,
initial-scale=1.0">
 <link href="//cdnjs.cloudflare.com/ajax/libs/twitter-
bootstrap/3.1.1/css/bootstrap.css" rel="stylesheet">
 <style type="text/css">
 body {
 padding-top:60px;
 padding-bottom: 60px;
 }
 </style>
</head>
<body>
<div class="container">
 <div class="row">
 <div class="col-md-6">
 <input type="text" class="form-control" rows="3"
id="message" placeholder="Write a message">
 <input type="button" id="echobutton" value="Reverse Echo" />
 </div>
 <div class="col-md-6">
 <p id="result"></p>
 </div>
 </div>
</div>

<script src="/socket.io/socket.io.js"></script>
<script src="https://ajax.googleapis.com/ajax/libs/jquery/1.6.4/
jquery.min.js"></script>
<script>

OpenShift for Node.js Developers

324

 var wsUrl;
 if(window.location.host == '127.0.0.1:3000'){
 wsUrl = window.location.protocol + "//" + window.
location.host;
 }else{
 if (window.location.protocol == 'http:') {
 wsUrl = 'ws://' + window.location.host + ':8000/';
 } else {
 wsUrl = 'wss://' + window.location.host + ':8443/';
 }
 }
 console.log('WebSockets Url : ' + wsUrl);
 var socket = io.connect(wsUrl);
 socket.on('connect', function(){
 console.log('User connected');
 });
 socket.on('rev-message', function (data) {
 $('#result').text(data);
 });
 $(function(){
 $('#echobutton').click(function() {
 var message = $('#message').val();
 $('#message').val('');
 socket.emit('message', message);
 });
 });

</script>
</body>
</html>

This JavaScript code in the index.html file opens a Web Socket connection with
the backend Node server deployed on OpenShift. In OpenShift, Web Sockets are
not available over standard 80 and 443 ports because of the reasons outlined
in the official OpenShift blog, https://www.openshift.com/blogs/paas-
websockets, so you will have to use port numbers 8000 and 8443.

7.	 Add the code to the Git index, commit the code to the local Git repository, and
then finally push the changes to the application gear by executing the following
commands:
$ git add .

$ git commit -am "OpenShift Node Web Socket application"

$ git push

https://www.openshift.com/blogs/paas-websockets
https://www.openshift.com/blogs/paas-websockets

Chapter 9

325

8.	 After the code is deployed, you can see the application running at http://
reverseecho-{domain-name}.rhcloud.com. If you type OpenShift and click
on the Reverse Echo button, you will see tfihSnepO as the result. This is shown in the
following screenshot:

How it works…
In the previous steps, you built an echo server that will reverse the message sent by the user
and send it back to the user. To build this application, you installed two modules —Socket.
IO and Express as covered in step 3. Socket.IO provides an API abstraction over the Web
Sockets and other transports for the Node.js and client-side JavaScript. It will fall back to other
alternatives transparently if Web Sockets is not implemented in a web browser while keeping
the same API.

The code listing shown in step 4 does the following:

ff It first imports the Express library using the require() function and then creates
the server using the Express application object.

ff Then, it imports the Socket.IO library and starts the Socket.IO server using the
listen() function.

ff Next, you defined a route for the root URL, which will render index.html (created in
the next step).

ff Lastly, you added event handlers for connection and message events. On the
connection event, you will write a message in the server logs. On the message event,
you will reverse the message and emit the rev-message event. The client will listen
for the rev-message event and will render the user interface.

In the listing shown in step 5, you created an index.html file using Twitter Bootstrap styling.
The script tag does the following:

ff On page load, you connected with the Web Socket backend using the backend Web
Socket URL. In OpenShift, Web Sockets are not available over standard 80 and
443 ports because of the reasons outlined in this blog, so you will have to use port
numbers 8000 and 8443. You constructed the correct URL and then connected with
Socket.IO backend.

OpenShift for Node.js Developers

326

ff You added listeners for the connect and rev-message events.

ff When the rev-message event is received, you write the message in results div.

ff You added a jQuery event listener, which will emit the message event when the
button is pressed. This message will be received by the Socket.IO server backend,
and that will emit the rev-message event.

In step 7, you committed the code and pushed the changes to the application gear. This will
download all the dependencies and restart the application with the updated code. Finally, in
step 8, you tested the reverse echo functionality in your browser.

See also
ff The Creating and deploying Express web applications using Node.js and MongoDB

cartridges recipe

ff The Creating your first Node.js application recipe

Using CoffeeScript with OpenShift Node.js
applications

In the last recipe of this chapter, you will learn how to use CoffeeScript with OpenShift
Node.js applications. You will develop an Express web application in CoffeeScript and
deploy it to OpenShift.

Getting ready
To complete this recipe, you will need the rhc command-line client installed on your machine.
Please refer to the Installing the OpenShift rhc command-line client recipe in Chapter 1, Getting
Started with OpenShift, for details. This application will consume one gear, so if you don't have
an extra gear available for this recipe, use the rhc delete app <app_name> --confirm
command to delete an existing application. To run this application on your local machine, you
will need Node installed on your machine. You can get the latest installer of Node.js for your
operating system from their official website (http://nodejs.org/download/).

How to do it…
Perform the following steps to create a CoffeeScript Express application:

1.	 Open a new command-line terminal, and navigate to a convenient location where you
want to create the application. Run the following command to create the application:
$ rhc create-app myapp nodejs-0.10

http://nodejs.org/download/

Chapter 9

327

2.	 Change the directory to myapp, and delete the template application source code.
$ cd myapp

$ rm -rf deplist.txt index.html node_modules/ package.json server.
js

Add the node_modules directory to the .gitignore file by executing the
following command:

$ echo "node_modules/" > .gitignore

3.	 Create a package.json file to store your application metadata and dependencies
as follows:
{
 "name": "myapp",
 "version": "0.0.1"
}

4.	 Install CoffeeScript and Express modules using npm as follows:
$ npm install express coffee-script --save

5.	 Create a new file, app.coffee, and place the following contents in it. This is the
Hello World Express web application written in CoffeeScript:
express = require('express')
app = express()
ip = process.env.OPENSHIFT_NODEJS_IP || '127.0.0.1'
port = process.env.OPENSHIFT_NODEJS_PORT || 3000
App Routes
app.get '/', (request, response) ->
 response.send 'Hello World!!'

Listen
app.listen port,ip
console.log "Express server listening on port http://%s:%d",
ip,port

6.	 Create the use_npm marker file to tell OpenShift that you want to use the npm
start command to run the application:
$ touch .openshift/markers/use_npm

7.	 Update the package.json file with the start script:
{
 "name": "myapp",
 "description": "My OpenShift Node.js Application",
 "version": "0.0.1",
 "dependencies": {

OpenShift for Node.js Developers

328

 "express": "~4.3.1",
 "coffee-script": "~1.7.1"
 },
 "scripts":{"start":"~/app-root/runtime/repo/node_modules/.bin/
coffee app.coffee"}
}

This start script makes use of the coffee executable in the node_modules .bin
directory. The node_modules directory is available inside the $OPENSHIFT_REPO_
DIR directory.

8.	 Add the code to the Git index, commit the code to the local Git repository, and then
finally push the changes to the application gear by executing the following commands:
$ git add .

$ git commit -am "OpenShift Node CoffeeScript application"

$ git push

How it works…
CoffeeScript is a programming language that transcompiles to JavaScript. The Python
programming language inspires the CoffeeScript syntax. As a result, the code written using
CoffeeScript tends to be clean and readable inspires its syntax. Many developers that do not
like JavaScript syntax prefer to use CoffeeScript to build their Node applications. From steps
1 through 5, you built a Hello World Express web application in CoffeeScript. To run the
CoffeeScript code, you will need coffee executables from the coffee-script package.
The coffee executable is inside the node_modules/.bin directory.

To run CoffeeScript applications on the local machine, you can install the coffee-script
module globally using the npm install coffee-script -g command. This will install
the coffee executable globally, allowing you to run the coffee command anywhere on your
machine. This does not work with OpenShift. If you push the code after step 5, the supervisor
will fail to start the application, as it will not be able to find the coffee executable. The
use_npm marker can solve this problem. As explained in the Using the use_npm marker
recipe, with the use_npm marker, you can specify your own start script. OpenShift will use the
start script in package.json to run your application. In step 7, you defined the start script
that will use the coffee executable from the $OPENSHIFT_REPO_DIR/node_modules/.
bin directory to run the application.

See also
ff The Creating and deploying Express web applications using Node.js and MongoDB

cartridges recipe

ff The Creating your first Node.js application recipe

10
Continuous Integration

for OpenShift
Applications

This chapter will help you to add continuous integration to your OpenShift applications using
the Jenkins cartridge. The specific recipes of this chapter are as follows:

ff Adding Jenkins CI to your application

ff Increasing the slave idle timeout

ff Installing Jenkins plugins

ff Using Jenkins to build projects hosted on GitHub

ff Creating a Jenkins workflow for your OpenShift applications

ff Upgrading Jenkins to the latest version

Introduction
In this chapter, you will learn how to add Continuous Integration (CI) support to your
OpenShift applications. CI is an Extreme Programming (XP) practice in which a tool monitors
your version control system, such as Git or SVN, for code changes. Whenever it detects a
change, it builds the project and runs its test cases. If the build fails for some reason, the tool
will notify the development team about the failure via e-mail or other communication channels
so that they can fix the build failure immediately. CI tools can do much more beyond building
and testing the application. They can also keep track of the code quality over a period of time,
run functional tests, perform automatic deployment, apply database migrations, and perform
a lot of other tasks. This helps us to discover defects early in the software development cycle,
improves code quality, and automates deployment.

Continuous Integration for OpenShift Applications

330

OpenShift supports Jenkins as its CI tool of choice. Jenkins (http://jenkins-ci.org/)
is the most dominant and popular CI server in the market today. It is an open source project
written in the Java programming language. Jenkins is feature rich and extensible through
plugins. There are more than 600 Jenkins plugins made by an active community at your
disposal, which can cover everything from version control system, build tools, code quality
metrics, build notifiers, and much more.

The Adding Jenkins CI to your application recipe will help you to add Jenkins to your existing
OpenShift application. We will use a Java application to showcase OpenShift Jenkins
integration. This chapter discusses Jenkins in the context of Java applications. Nevertheless,
even if you are using any other web cartridge supported by OpenShift, this chapter will give
you a good understanding on how to add the OpenShift Jenkins CI support to your application.

OpenShift uses the Jenkins master/slave topology (https://wiki.jenkins-ci.org/
display/JENKINS/Distributed+builds) to distribute build jobs among different slaves.
This ensures you get a scalable Jenkins environment for your OpenShift applications. Also,
the Jenkins master will create different types of slaves to build different OpenShift application
types. The type of slave depends on the application type. For example, to build a JBoss EAP
application, the Jenkins master will create a slave that has a JBoss EAP cartridge installed.
By default, a slave will die after 15 minutes of inactivity. The Increasing the slave idle timeout
recipe will cover how you can increase the idle timeout for slaves.

Plugins make Jenkins extensible and allow you to extend it to meet your needs. In the Installing
Jenkins plugins recipe, you will learn how to install Jenkins plugins. You can view the full list of
Jenkins plugins at https://wiki.jenkins-ci.org/display/JENKINS/Plugins.

You can use Jenkins not only to build applications hosted on OpenShift but also to build
projects hosted elsewhere. The Using Jenkins to build projects hosted on GitHub recipe will
cover how you can build projects hosted on GitHub.

The Creating a Jenkins workflow for your OpenShift applications recipe will show how you can
customize the default build created by OpenShift for your needs. In this recipe, you will create
a Jenkins workflow, including three Jenkins jobs. The first Jenkins job will poll a Git repository
for changes, the second job will run code coverage over the application source code, and the
third will deploy the application to OpenShift.

The Jenkins version supported by OpenShift is not the latest version. In the Upgrading Jenkins
to the latest version recipe, you will upgrade Jenkins to the latest version. The advantage
of using the latest version is that some of the plugins do not work with the Jenkins version
supported by OpenShift.

Jenkins is not the only CI server you can use to build and deploy OpenShift applications.
You can also use a hosted CI server, such as Travis CI, to build and deploy an OpenShift
application. The OpenShift Travis CI integration is not covered in this chapter, but you can refer
to my blog for more information on this topic at https://www.openshift.com/blogs/
how-to-build-and-deploy-openshift-java-projects-using-travis-ci.

http://jenkins-ci.org/
https://wiki.jenkins-ci.org/display/JENKINS/Distributed+builds
https://wiki.jenkins-ci.org/display/JENKINS/Distributed+builds
https://wiki.jenkins-ci.org/display/JENKINS/Plugins
https://www.openshift.com/blogs/how-to-build-and-deploy-openshift-java-projects-using-travis-ci
https://www.openshift.com/blogs/how-to-build-and-deploy-openshift-java-projects-using-travis-ci

Chapter 10

331

Adding Jenkins CI to your application
Adding Jenkins to your application is a two-step process. You have to first create the Jenkins
server application and then add the Jenkins client cartridge to your application. In this recipe,
you will learn how to add Jenkins CI to an existing OpenShift application. After adding Jenkins
to your application, each Git push to your OpenShift application Git repository will initiate a
Jenkins job that will build the project and then deploy it to OpenShift.

Getting ready
To complete this recipe, you will need three available gears. One gear will be used by the
application, and Jenkins will consume the remaining two gears. This chapter will use the
application created in Chapter 7, OpenShift for Java Developers. If you don't have this
application running, then recreate the application using the following command:

$ rhc app create jobstore jbosseap postgresql-9.2 --from-code
https://github.com/OpenShift-Cookbook/chapter7-jobstore-javaee6.git

How to do it…
Perform the following steps to add Jenkins to your application:

1.	 Before you can add the Jenkins cartridge to your application, you have to create the
Jenkins server application:
$ rhc create-app jenkins jenkins

2.	 After the preceding command is executed, the Jenkins server will be available
at http://jenkins-{domain-name}.rhcloud.com. Please replace
{domain-name} with your OpenShift account domain name.

3.	 Make note of the username and password that the OpenShift rhc command-line
client presented to you in the application creation logs. These are used to log in
to the Jenkins web console. This is shown in the following command-line output:
Creating application 'jenkins' ... done

 Jenkins created successfully. Please make note of these
credentials:

 User: admin

 Password: xxxxxx

Note: You can change your password at: https://jenkins-
{domain-name}.rhcloud.com/me/configure

Continuous Integration for OpenShift Applications

332

4.	 Log in to Jenkins at https://jenkins-{domain-name}.rhcloud.com/me/
configure using the credentials you got in step 1. I recommend that you change the
Jenkins password to something that you can easily remember. To change the password,
enter your new password in the Password section, and click on the Save button:

5.	 After saving your new password, log out and log in again using the new password. You
will be presented with the Jenkins dashboard as shown in the following screenshot:

Chapter 10

333

6.	 Now that you have created the Jenkins server application, you can add the Jenkins
cartridge to the jobstore application. To add the cartridge, run the following
command:
$ rhc add-cartridge jenkins --app jobstore

7.	 Go to the Jenkins dashboard at https://jenkins-{domain-name}.rhcloud.
com/, and you will see a new job configured for the jobstore application, as shown
in the following screenshot:

8.	 Click on the jobstore-build link (https://jenkins-{domain-name}.rhcloud.
com/job/jobstore-build/) to view the Jenkins job details.

9.	 To initiate a new build, you can either click on the Build Now link on the left-hand
side or make a change to the project source, commit it, and then push the change to
the application Git repository. Let's make a small change to our application source
code. Change the title in the src/main/webapp/index.html location from
<title>JobStore</title> to <title>JobStore with Jenkins</title>:
$ git commit -am "updated title"

$ git push

10.	 The git push logs will show that Jenkins is building the project as follows:
remote: Executing Jenkins build.

remote: You can track your build at https://jenkins-
xxxx.rhcloud.com/job/jobstore-build

remote:

remote: Waiting for build to
schedule................................Done

remote: Waiting for job to
complete..............................

Continuous Integration for OpenShift Applications

334

11.	 You can view the build logs in the Jenkins web console by clicking on the Console
Output option as shown in the following screenshot:

12.	 After the job is completed, you will see the build status under Build History. The
successful builds are shown in blue and failed builds are shown in red.

13.	 You can verify that your changes are applied by opening the application URL in your
favorite browser (http://jobstore-{domain-name}.rhcloud.com). You will
see that the title has been updated to Jobstore with Jenkins.

How it works…
One of the powerful features of Jenkins is its ability to distribute builds over multiple
machines. Jenkins uses the master/slave architecture to manage distributed builds. In the
master/slave architecture, there is a Jenkins server whose job is to schedule jobs, dispatch
builds to the slave for the actual execution, monitor the slave health, and record and present
build results. The slave runs the actual build and shares job results with the master.

OpenShift uses the Jenkins master/slave architecture to build your applications. You can only
have one Jenkins master for an OpenShift domain, and all the applications under that domain
will use the Jenkins master for application builds. The Jenkins master, depending on the
Jenkins job configuration for that application, will create a slave that will build the application.
Every OpenShift Jenkins installation has the OpenShift Jenkins plugin installed. This plugin
makes it possible for Jenkins to talk with your OpenShift account and create slaves on your
behalf. The Jenkins slaves are nothing more than OpenShift gears.

Chapter 10

335

In step 1, you created the Jenkins master application. You can use the master instance to
execute jobs directly but, most of the time in the master/slave architecture, slaves are used
to build the projects. The Jenkins master created by OpenShift is configured not to run any
jobs by setting the number of executors configuration to 0. The number of executors lets you
define the number of concurrent jobs an instance can run. As the number of executors for
the master instance is set to 0, you can't use it to build any project. You can set the number
of executors to a number greater than 0 by updating the # of executors system configuration
value in the Jenkins configuration screen (https://jenkins-{domain-name}.rhcloud.
com/configure), as shown in the following screenshot. In the Using Jenkins to build projects
hosted on GitHub recipe, you will use the Jenkins master to build the project. Have a look at
the following screenshot:

Once you have created the Jenkins master application, you can add the Jenkins client to the
jobstore application. If you try to add the Jenkins client to an application before creating the
Jenkins master, you will get an error message in the rhc add-cartridge command logs.

In step 5, you added the Jenkins client cartridge to the jobstore application. The Jenkins
client cartridge creates a new Jenkins job for the jobstore project. In Jenkins, a job defines
what needs to be done. You can view the job configuration by opening https://jenkins-
{domain}.rhcloud.com/job/jobstore-build/configure in your favorite browser.

Continuous Integration for OpenShift Applications

336

The job configuration can be divided into three sections: builder configuration, source code
management configuration, and build configuration.

ff Builder configuration: The configuration values shown in the following screenshot
will be used to create a slave. The configuration says that it needs a builder slave
with a small gear size of type redhat-jbosseap-6. This means the slave gear will
have a JBoss EAP 6 cartridge installed. It also defines a timeout for which the Jenkins
master will wait for the slave to come online. The default builder timeout is 5 minutes
or 300000 milliseconds. The Restrict where this project can be run configuration
defines that this project will only be built on the slave with the label jobstore-
build. As you might have probably noticed, the name of the label is the same as
the name of the job. The OpenShift Jenkins plugin uses the label name to read the
job configuration and creates a slave using the builder configuration of the job. So, if
you change the name of the label from jobstore-build to jobstore-os-build,
then the Jenkins plugin will not be able to find the associated job configuration, and
the job will not be executed.

ff Git configuration: The next important configuration is the Git version control
configuration. This configuration specifies the application Git repository URL. The
Jenkins job will clone this Git repository using the specified Git repository URL and
build this project. The following screenshot shows the Git configuration:

Chapter 10

337

ff Build configuration: This is the most important part of our job configuration. It
defines what needs to be done. The job configuration is shown in the following
screenshot. The configuration does the following:

1.	 It downloads the contents from the actual application to the builder
application using Git and rsync.

2.	 If the force_clean_build marker is not present, then it also copies
the content of the $OPENSHIFT_BUILD_DEPENDENCIES_DIR and
$OPENSHIFT_DEPENDENCIES_DIR directories from the actual application
to the builder application. When the force_clean_build marker is
present, then the dependencies are downloaded again on the builder
application, and the build will take more time to finish.

3.	 Then, it builds the application using whatever build commands the cartridge
uses. For Java applications, it will use the mvn clean install –
Popenshift –DskipTests command.

4.	 After the build finishes successfully, it stops the application gear.

5.	 Then Jenkins copies the new content from the builder application to the
actual application using rsync.

6.	 Finally, it starts the application. Have a look at the following screenshot:

Continuous Integration for OpenShift Applications

338

If you don't have Jenkins enabled in your application, then the code is built on the same
gear on which the application is running. When you push changes to your application gear,
OpenShift first stops your application, builds the application, deploys the artifact, and finally
starts the application.

In step 8, after adding the Jenkins cartridge to the jobstore application, you made a
change to the source code and pushed changes to the application gear. This time, rather than
building the project on the application gear, the Jenkins server launches a slave and initiates
the build. The process is explained in detail in the following steps:

1.	 The user makes a change and pushes the changes to the application gear using the
git push command.

2.	 After receiving the bits, a Git action hook is called that notifies the Jenkins server.

3.	 The Jenkins server creates a dedicated Jenkins slave (builder) to build this project.
You can see the new gear created by Jenkins using the rhc apps command:
jobstorebldr @ http://jobstorebldr-xxxx.rhcloud.com/ (uuid:
539b660ce0b8cdeba00000e1)

--

Domain: xxxx

Created: 2:28 AM

Gears: 1 (defaults to small)

Git URL: ssh://539b660ce0b8cdeba00000e1@jobstorebldr-
xxxx.rhcloud.com/~/git/jobstorebldr.git/

SSH: 539b660ce0b8cdeba00000e1@jobstorebldr-
xxxx.rhcloud.com

Deployment: auto (on git push)

jbosseap-6 (JBoss Enterprise Application Platform 6)

--

Gears: 1 small

4.	 Jenkins runs the build using the steps mentioned in the build configuration section.
After a successful build, the build artifact is copied to the application gear using the
rsync tool, as mentioned in the build configuration.

5.	 Jenkins starts the application after a successful build and then archives the build
artifact that you can use later.

6.	 After 15 minutes of idle time, the Jenkins builder is destroyed and will no longer show
up in the rhc apps command-line output. The build artifacts, however, will still exist
in Jenkins and can be viewed there.

Chapter 10

339

Using Jenkins with your OpenShift application has the following advantages:

ff No application downtime in case of build failure: Without Jenkins' support,
OpenShift runs the build on the same gear on which your application is running.
It first stops all the cartridges on the application gear, runs the build, and finally
deploys the successful build artifact. In the event of build failure, the build artifact
will not be deployed and your application will have downtime. With CI enabled for your
application, OpenShift stops the application only after the build finishes successfully.
This avoids downtime due to build failures.

ff More resources to build your project: As the Jenkins builders run on separate
gears, they have additional resources, such as memory and storage, to run your
application build.

ff Store previous builds: Jenkins can store your previous successful build artifacts for
you. You can use these build artifacts if you want to roll back to a previous version.

ff Jenkins plugins: Jenkins has a strong and active community that has built a variety
of plugins to perform various common tasks. You can use these plugins to automate
various tasks of your application. Throughout this chapter, you will install various
Jenkins plugins to do various tasks.

You can view the logs of your Jenkins server using the following command:

$ rhc tail --app jenkins

There's more…
You can also enable Jenkins support at application creation time using the --enable-
jenkins option as shown in the following command:

$ rhc create-app jobstore jbosseap postgresql-9.2 --from-code
https://github.com/OpenShift-Cookbook/chapter7-jobstore-javaee6.git -
-enable-jenkins

The preceding command will create the Jenkins server application and add the Jenkins
client to the application. If the Jenkins server application already exists, then it only adds
the jenkins client cartridge to the application.

See also
ff The Increasing the slave idle timeout recipe

ff The Installing Jenkins plugins recipe

ff The Creating a Jenkins workflow for your OpenShift applications recipe

Continuous Integration for OpenShift Applications

340

Increasing the slave idle timeout
The Jenkins master creates slaves to build the project. These slaves remain alive only for 15
minutes after building the project, that is, they will be reused only if the next build request is
received within 15 minutes of finishing the first build. If they don't receive the build request in
15 minutes after building the project, then the Jenkins master will kill the slave instance. The
next build request will again create a new slave and build the application on it. Slave creation
is a time-consuming process and is not ideal during the development cycle, when you expect
quick feedback from your CI server.

In this recipe, you will learn how to increase the slave idle timeout so that you can reuse the
slave for a longer time and get quick feedback from the CI server.

Getting ready
This recipe assumes that you already have a Jenkins-enabled application, as discussed in the
Adding Jenkins CI to your application recipe.

How to do it…
Perform the following steps:

1.	 Log in to your Jenkins dashboard, and then go to the Jenkins configuration page at
https://jenkins-{domain-name}.rhcloud.com/configure.

2.	 Under the Cloud configuration section, there is a Slave Idle Time to Live
configuration as shown in the following screenshot. The default configuration
is 15 minutes.

3.	 Update the Slave Idle Time To Live value to 60 minutes, and save the configuration
by clicking on the Save button.

Chapter 10

341

How it works…
The Jenkins master created by OpenShift comes bundled with a few plugins that Jenkins
needs to work effectively. You can see all the installed plugins by navigating to Plugin
Manager | Installed as shown in the following screenshot:

The plugin that makes it possible for Jenkins to talk with your OpenShift account is OpenShift
Origin Jenkins Cloud Plugin. This plugin is responsible for managing the slave gears that
build your application.

Most of the Jenkins plugins have global configuration and job-level configuration. Global
configuration applies to all the Jenkins jobs, whereas the job-level configuration applies only
to a particular Jenkins job. You can view the Jenkins global configuration by navigating to
the Configure System screen at https://jenkins-{domain-name}.rhcloud.com/
configure. Many plugins that you will install will also need to be configured here. Jenkins
dynamically adds new fields when you install the plugins.

The default screen contains a number of sections to configure either a general, system-wide
parameter or various plugin configurations. The OpenShift Jenkins plugin adds the OpenShift
Cloud subsection under the Cloud section. This configuration is used to talk with your
OpenShift account and create slaves required to build your application.

In the preceding steps, you increased the slave idle timeout to 60 minutes in the OpenShift
Cloud configuration section. This is the maximum slave idle timeout that you can assign to the
slave. The next slave that Jenkins will create will use this configuration and will be alive for
60 minutes after building the project.

Continuous Integration for OpenShift Applications

342

See also
ff The Adding Jenkins CI to your application recipe

ff The Installing Jenkins plugins recipe

ff The Creating a Jenkins workflow for your OpenShift applications recipe

Installing Jenkins plugins
The extensible architecture of Jenkins makes it very powerful. There are third-party plugins that
enable you to add extra features to your Jenkins instance. These features enable you to work
with different SCM tools, such as Git, to generate code quality and code coverage reports, or to
automate other manual tasks, such as database schema migration, and so on. In this recipe,
you will learn how you can install the Green Balls plugin (https://wiki.jenkins-ci.org/
display/JENKINS/Green+Balls) to your OpenShift Jenkins instance. The Green Balls
plugin makes Jenkins use green balls instead of blue balls for successful builds.

Getting ready
This recipe assumes you already have a Jenkins-enabled application, as discussed in the
Adding Jenkins CI to your application recipe.

How to do it…
Perform the following steps to install a plugin:

1.	 Log in to your OpenShift Jenkins dashboard and go to the Manage Jenkins screen
at https://jenkins-{domain-name}.rhcloud.com/manage. The Manage
Jenkins screen is a central place where you can configure all the aspects of the
Jenkins system configuration.

2.	 Next, click on Manage Plugins to work with Jenkins plugins. You can install,
remove, or update plugins through the Manage Plugins screen. Have a look
at the following screenshot:

https://wiki.jenkins-ci.org/display/JENKINS/Green+Balls
https://wiki.jenkins-ci.org/display/JENKINS/Green+Balls

Chapter 10

343

3.	 The Manage Plugins screen is divided into four tabs: Updates, Available, Installed,
and Advanced, as shown in the following screenshot:

The Updates tab shows all the installed plugins that have updates, the Available
tab shows all the plugins that you can install on your Jenkins instance, the Installed
tab shows all the plugins that are already installed on your Jenkins instance, and
the Advanced tab allows you to manually install the plugin or force Jenkins to check
for updates.

Continuous Integration for OpenShift Applications

344

4.	 All the Jenkins plugins available in the Jenkins plugin registry are shown in the
Available tab. If you click on the Available tab, you will find that the list is empty.
To enable Jenkins to show plugins under the Available tab, navigate to Manage
Plugins | Advanced, and click on the Check Now button, as shown in the following
screenshot, to forcefully check for new updates:

5.	 Once done, you will see a list of plugins available under the Available tab.

6.	 To install the Green Balls plugin, filter the available plugins, and then click on
Install without restart. Have a look at the following screenshot:

Chapter 10

345

7.	 After the plugin is installed, you will see the Green Balls plugin in action. Please clean
your browser cache if you still see blue balls.

How it works…
In the preceding steps, you installed the Green Balls plugin to your OpenShift Jenkins
instance. The Green Balls plugin does what it says: it makes successful builds display
as green balls instead of the default blue balls.

There are a couple of ways to install plugins to your Jenkins instance. You can either use the
automatic method or the manual method. In the preceding steps, you used the automatic
method to install the plugins. The automatic method works for plugins that are listed in
the Jenkins central plugins registry available at http://updates.jenkins-ci.org/
download/plugins/. The plugins that are not available in the central plugin registry need
to be installed manually. To install a plugin manually, navigate to Manage Jenkins | Manage
Plugins | Advance. In the Advanced tab, there is a section called Upload Plugin that you can
use to upload your plugin. Click on the Choose File button, select the plugin from your local
machine, and then click on the Upload button to upload the plugin:

http://updates.jenkins-ci.org/download/plugins/
http://updates.jenkins-ci.org/download/plugins/

Continuous Integration for OpenShift Applications

346

The manually installed plugins are not installed until you restart Jenkins. So, once the plugin
is uploaded, restart Jenkins by going to https://jenkins-{domain-name}.rhcloud.
com/safeRestart. This will restart Jenkins after the current builds have been completed
and will install your plugin.

See also
ff The Adding Jenkins CI to your application recipe

ff The Using Jenkins to build projects hosted on GitHub recipe

ff The Creating a Jenkins workflow for your OpenShift applications recipe

Using Jenkins to build projects hosted
on GitHub

You can use the OpenShift Jenkins instance to build your non-OpenShift projects as well.
This recipe will use a Maven-based project publicly hosted on GitHub at https://github.
com/OpenShift-Cookbook/chapter10-demo-app. The goal of this recipe is to build the
project whenever you push code to the GitHub repository and send an e-mail in case the build
status changes, that is, the build fails or recovers from a build failure. This is the first step an
organization takes when they try to introduce CI.

Getting ready
This recipe assumes that you already have a Jenkins-enabled application, as discussed in
the Adding Jenkins CI to your application recipe.

How to do it…
Perform the following steps to learn how to build projects hosted on GitHub:

1.	 In this recipe, we will use the Jenkins master to build the project. Go to
https://jenkins-{domain-name}.rhcloud.com/configure, and update
the # of executors property to 1. Any number greater than 0 will allow the master
to run build jobs. Also, change the Usage field value to Leave this machine for tied
jobs only. This configuration will make sure that the master instance is only used for
the job explicitly configured to run on the master. Later in the job configuration, you
will configure a job to run only on the master. Click on the Save button to save the
new values:

https://github.com/OpenShift-Cookbook/chapter10-demo-app
https://github.com/OpenShift-Cookbook/chapter10-demo-app

Chapter 10

347

2.	 One of the goals of this recipe is to send e-mails when the project becomes
unstable. To allow Jenkins to send an e-mail, you have to provide e-mail settings
in the E-mail Notification section under the Jenkins Configure System screen.
Click on the Advanced tab to see all the configuration options. The configuration
shown in the following screenshot uses Gmail to send e-mails. Gmail is shown just
for demonstration here. Google might send you an e-mail stating that someone is
hacking your account, as your account is accessed from a different location than it is
usually used. Ideally, you should use your organization SMTP server configuration.

Continuous Integration for OpenShift Applications

348

3.	 You can also send a test e-mail to check the configuration. Check the Test
configuration by sending a test e-mail checkbox and providing it with the e-mail
address you want to send an e-mail to. You will receive an e-mail like the one shown
in the following screenshot:

4.	 One thing that you will find annoying in the preceding screenshot is that the address
is not configured yet in the from section of the e-mail. You can configure it to
something else by updating the value of the System Admin e-mail address property
from address not configured yet to something user friendly, as shown in the following
screenshot. After making this change, the notification e-mails from Jenkins will be
sent with this address in the from header.

5.	 Fork the GitHub repository (https://github.com/OpenShift-Cookbook/
chapter10-demo-app) by clicking on the Fork button. You need to log in to
GitHub with a valid account before you can fork this repository. You have to fork this
repository so that you can push your changes to the repository.

6.	 Go to your Jenkins dashboard, and click on New Job. Have a look at the following
screenshot:

https://github.com/OpenShift-Cookbook/chapter10-demo-app
https://github.com/OpenShift-Cookbook/chapter10-demo-app

Chapter 10

349

7.	 Select the Build a free-style software project build type, and give it a name,
chapter10-github-recipe-build, as shown in the following screenshot.
Click on OK to create the job.

8.	 Next, you will be shown the job configuration page where you can configure this job.
The first configuration that you will update is under the Source Code Management
section. As the project is hosted on GitHub, enter the URL of the GitHub repository
that you want to build. The GitHub repository URL will be https://github.
com/<username>/chapter10-demo-app.git. The username corresponds
to your GitHub username. The following screenshot shows the Source Code
Management section:

Continuous Integration for OpenShift Applications

350

9.	 Next, you have to configure when this build should get triggered. This is configured
under the Build Triggers section. In the configuration shown in the following
screenshot, you told Jenkins to poll SCM every minute. It uses the same syntax
as crontab on Unix/Linux.

10.	 Now that the Jenkins job knows from where and how often to get the source code,
the next step is to tell the job what to do with the source code. This is achieved by
defining the build steps. A job can have one or more build steps. To add a new build
step, click on the Add build step dropdown, and select Execute shell, as shown in
the following screenshot:

11.	 This will render a text area where you can enter the command you want to run. Enter
the mvn clean install command in the text area.

12.	 The next configuration that you can optionally specify in your job is what to do after
building your project. This is defined by creating one or more post-build actions. Let's
add an action that will send an e-mail when the build becomes unstable. Click on
the Add post-build action drop-down list, and then select E-mail notification. In the
Recipients textbox, provide a whitespace-separated list of e-mail IDs that you want to
send an e-mail to in the event of a build failure, as shown in the following screenshot:

Chapter 10

351

13.	 The last configuration left before you can save this job is to configure it to run on the
master node. This is done by checking the Restrict where this project can be run
checkbox and then giving it the name of the node that should be used to build the
project, as shown in the following screenshot:

14.	 Now, save the configuration by clicking on the Save button.

15.	 To test the new Jenkins job, first clone the project on your local machine. To clone the
project, use the following command. Please replace the username with your GitHub
account username.
$ git clone git@github.com:<username>/chapter10-demo-app.git

16.	 To test whether the job is working correctly, let's change one of the test cases so that
it fails. Update the MessageRepositoryTest assertion from assertEquals(1,
messages.size()); to assertEquals(2, messages.size());.

17.	 Commit the code, and push the changes to your GitHub repository:
$ git commit -am "added test failure"

$ git push

18.	 Jenkins will pick the change and start a new build. The build will fail, and you will
receive an e-mail with the job logs.

19.	 Now, let's fix the build failure by reverting the change from assertEquals(2,
messages.size()); to assertEquals(1, messages.size());. Then run the
following commands:
$ git commit -am "fixed test failure"

$ git push

Continuous Integration for OpenShift Applications

352

20.	 Again, Jenkins will pick the change and start a new build. This time, you will receive an
e-mail saying that the build is back to normal, as shown in the following screenshot:

How it works…
You created a freestyle Jenkins job that will poll Jenkins every minute and, if it detects a new
commit, it will build the project. In step 1, you updated the Jenkins master configuration so
that it can run build jobs. By default, the Jenkins master is not configured to run any builds.
Setting the number of executors to 1 in the Jenkins system configuration enables the Jenkins
master to run builds. The number of executors lets you define how many concurrent builds a
Jenkins instance can perform.

E-mail is one of the most popular ways of communication. In step 2, you configured Jenkins
to send an e-mail using the Gmail SMTP settings. You can send 99 e-mails per day using
the Gmail SMTP server, which is fine for most individual projects, but for your organization
projects, you should use your organization SMTP server.

This recipe requires you to have your own Git repository that will be polled by Jenkins. This is
required so that you can push changes to your Git repository, as you can't push changes to
the Git repository of another person unless you are added as a collaborator. You forked the
repository in step 3 so that you have your own copy of this repository that you can work with.

In step 4, you created a new Jenkins job that will be used to build the project you forked in
step 3. You used a freestyle build job, as it is the most flexible build option that you can use
to build any type of project.

From steps 5 through step 9, you configured the job so that Jenkins polls the Git repository
every minute and uses the Jenkins master to build the project. After saving the job in step 10,
you will see your new job listed in the Jenkins dashboard. Jenkins will automatically run the
build for the first time, as it does not have any history for this job. After running the job for the
first time, Jenkins will wait for the changes in your Git repository before it starts another build.

Once the job was configured, you tested the Jenkins job in steps 11 through 15 by making
a change to your local repository and pushing the change to GitHub. Jenkins will poll the Git
repository in the next one minute, detect the change, and start the build.

Chapter 10

353

See also
ff The Creating a Jenkins workflow for your OpenShift applications recipe

Creating a Jenkins workflow for your
OpenShift applications

In this recipe, you will create a Jenkins workflow that you could use to build and deploy
applications on OpenShift.

Getting ready
This recipe will cover all the steps from the start to make sure you have all the three
gears available.

How to do it…
Perform the following steps to create a Jenkins workflow for your OpenShift applications:

1.	 Create a new Jenkins server application by running the following command. This
was covered in detail in the Adding Jenkins CI to your application recipe.
$ rhc create-app jenkins jenkins

2.	 Create an OpenShift Apache Tomcat 7 application that will be used to deploy the
project. The project will be created with the --no-git option, as we do not want to
clone the repository, because the code will be hosted on GitHub. The --enable-
jenkins option will create a new Jenkins job that will build and deploy the
application on OpenShift:
$ rhc create-app forumapp tomcat-7 postgresql-9 --enable-
jenkins --no-git

3.	 Log in to your Jenkins dashboard, and you will see the forumapp-build job listed on
the dashboard.

4.	 Create a new Jenkins job with the name forumapp-github-build by following
the steps mentioned in the Using Jenkins to build projects hosted on GitHub recipe.
Once the job is created, any change pushed to your GitHub repository will result in a
Jenkins build.

5.	 Next, install the Jenkins Cobertura plugin by following the instructions mentioned in
the Installing Jenkins plugins recipe.

Continuous Integration for OpenShift Applications

354

6.	 Once the plugin is installed, create another job with the name forumapp-quality-
build. But, rather than creating a job from the start, you can use the forumapp-
github-build job as a template. After entering the details, click on OK:

7.	 You will be directed to the forumapp-quality-build job configuration page.
Update the following configuration values to suit this job:

1.	 Change the Restrict this project can be run value from master to
forumapp-build.

2.	 Uncheck Poll SCM under the Build Triggers section.

3.	 Change the Execute Shell command from mvn clean install to mvn
clean package -Pquality.

8.	 Now, you need to add two post-build actions to forumapp-quality-build, first
to kick the forumapp-build job that will deploy the application to OpenShift and,
second, publish the Cobertura code coverage report. Add the post-build action to
trigger forumapp-build when the build succeeds. To add the Cobertura code
coverage post-build action, click on the Add post-build action hook option, select
Publish Cobertura Coverage Report, and provide **/ target/site/cobertura/
coverage.xml for the Cobertura xml report pattern field.

9.	 After updating the forumapp-quality-build job configuration, click on the
Save button.

10.	 One of the responsibilities of forumapp-github-build is to start the forumapp-
quality-build job after it has been completed successfully. Update the
forumapp-github-build job configuration by adding a post-build action. Add the
Build other projects post-build action to build forumapp-github-build when the
build is successful. Click on the Save button after adding the post-build action:

Chapter 10

355

11.	 Now that you have configured the forumapp-github-build and forumapp-
quality-build jobs, you need to update the forumapp-build job configuration
to pull the code from the GitHub repository and deploy the latest code to OpenShift.
Go to https://jenkins-{domain-name}.rhcloud.com/job/forumapp-
build/configure, and add a new Execute Shell build step. This build step will
first add a Git remote to the GitHub repository and then pull code from the GitHub
repository. This is shown in the following commands:
$ git remote add upstream -m master
https://github.com/<username>/chapter10-demo-app.git

$ git pull -s recursive -X theirs upstream master

12.	 Please replace the username with your GitHub account username. Also, make
sure that the order of the build action hooks is the same as the order shown in the
following screenshot:

Continuous Integration for OpenShift Applications

356

13.	 Click on the Save button to save the configuration.

14.	 Now, to test whether all our jobs are configured properly, go to the Jenkins dashboard
and manually start the forumapp-github-build job. Instead of manually starting
the job, you could also make a change to the application source and push the change
to the GitHub repository. Jenkins will detect the change and start the build process.

15.	 After all the builds are successfully completed, you will see all the builds in a healthy
state on the Jenkins dashboard, as shown in the following screenshot:

16.	 To view the code coverage of your project, go to the forumapp-quality-build page, and
click on Coverage Report to see the code coverage of your project:

Chapter 10

357

How it works…
In the preceding steps, you created a simple workflow with three Jenkins jobs, each
responsible for a specific task. The first job polls the GitHub repository at a specified interval
for code changes and then builds the project when the changes are found. This job builds the
project and runs its unit tests. It used the Jenkins master to build the project. The advantage
of using Jenkins for light jobs like this is that you don't have to wait for the slave creation. You
should only use the master for jobs that are light in nature; otherwise, the Jenkins master
might go down.

The first build, if successful, starts the quality job that runs the code coverage over
the application code. This build uses Cobertura (http://cobertura.github.io/
cobertura/) to identify the parts of the Java application that lack test coverage. The quality
build was configured to execute the mvn clean install -Pquality command. This
command will run the Maven Cobertura plugin. The Maven plugin will generate both HTML
and XML reports. The XML report is used by Jenkins to parse the coverage results. The quality
build will use the Jenkins slave instead of the master, as a quality build usually tends to be
memory- and CPU-intensive, and you will not like the master going down because of one job.

On successful completion of the quality build, the third Jenkins job will deploy the application
to OpenShift. This job will also use the Jenkins slave.

See also
ff The Upgrading Jenkins to the latest version recipe

Upgrading Jenkins to the latest version
The Jenkins application created by OpenShift runs an old version of Jenkins. At the time of
this writing, the Jenkins application created by OpenShift runs the 1.509.1 Version. This
version is quite old, and some Jenkins plugins do not work with this version. In this recipe,
you will learn how to upgrade Jenkins to the latest version. The latest version of Jenkins at the
time of this writing is 1.567.

This recipe is experimental, and I don't recommend that people use
it for their production Jenkins instances. The aim of this recipe is to
show that it is feasible to upgrade the Jenkins version. This might
result in build data loss or a break in the Jenkins instance. So, use
this recipe in your test environments first.

http://cobertura.github.io/cobertura/
http://cobertura.github.io/cobertura/

Continuous Integration for OpenShift Applications

358

Getting ready
This recipe assumes you already have a Jenkins-enabled application, as discussed in the
Adding Jenkins CI to your application recipe.

How to do it…
Perform the following steps to upgrade the Jenkins version:

1.	 Open a new command-line terminal, and SSH into your Jenkins application by running
the following command:
$ rhc ssh --app jenkins

2.	 Create a new directory called jenkins-latest-version inside $OPENSHIFT_
DATA_DIR, and download the latest Jenkins WAR file using wget by running the
following command:
cd $OPENSHIFT_DATA_DIR && mkdir jenkins-latest-version && cd
jenkins-latest-version && wget http://mirrors.jenkins-
ci.org/war/latest/jenkins.war

3.	 Exit the SSH session by typing the exit command.

4.	 Create two environment variables by running the following command. Please replace
$OPENSHIFT_DATA_DIR with your Jenkins application's $OPENSHIFT_DATA_DIR
environment variable value:
rhc env-set JENKINS_WAR_PATH=$OPENSHIFT_DATA_DIR/jenkins-
latest-version/jenkins.war JENKINS_JAR_CACHE_PATH="~/app-
root/data/.jenkins/cache/jars" --app jenkins

5.	 Go to the Jenkins plugin manager, and uninstall the OpenShift Jenkins plugin. Restart
Jenkins after uninstalling the plugin for the changes to take effect. You can restart
Jenkins by going to the https://jenkins-{domain-name}.rhcloud.com/
safeRestart URL.

Chapter 10

359

6.	 After the Jenkins restart, you will see the latest version of Jenkins running, as shown
in the following screenshot:

7.	 The default OpenShift plugin installed with the Jenkins installation does not work with
the latest version of Jenkins. You have to build the latest OpenShift Jenkins plugin
from source. The source code is available on GitHub at https://github.com/
openshift/jenkins-cloud-plugin. I have packaged the latest version and
made it available at https://github.com/OpenShift-Cookbook/chapter10-
openshift-jenkins-plugin. Download the latest plugin from https://
github.com/OpenShift-Cookbook/chapter10-openshift-jenkins-
plugin/raw/master/openshift.hpi to a convenient location on your machine.

8.	 Install the plugin manually by going to the plugin manager Advanced tab and
uploading the plugin.

9.	 Restart Jenkins so that the plugin gets installed.

https://github.com/openshift/jenkins-cloud-plugin
https://github.com/openshift/jenkins-cloud-plugin
https://github.com/OpenShift-Cookbook/chapter10-openshift-jenkins-plugin
https://github.com/OpenShift-Cookbook/chapter10-openshift-jenkins-plugin
https://github.com/OpenShift-Cookbook/chapter10-openshift-jenkins-plugin/raw/master/openshift.hpi
https://github.com/OpenShift-Cookbook/chapter10-openshift-jenkins-plugin/raw/master/openshift.hpi
https://github.com/OpenShift-Cookbook/chapter10-openshift-jenkins-plugin/raw/master/openshift.hpi

Continuous Integration for OpenShift Applications

360

10.	 Go to the Jenkins system configuration, add a new OpenShift cloud, and click on
Save. Have a look at the following screenshot:

11.	 Go to Plugin Manager (https://jenkins-{domain-name}.rhcloud.com/
pluginManager/), and update all the installed plugins.

12.	 Finally, to test whether all of your existing jobs are working fine, start an existing job
manually. If you followed the last recipe, then you will already have three Jenkins
jobs listed on the Jenkins dashboard.

How it works…
The OpenShift Jenkins cartridge allows a user to upgrade the Jenkins version by defining an
environment variable, JENKINS_WAR_PATH. If this environment variable were used, then
the OpenShift Jenkins cartridge will use the Jenkins war file located at this path. From step 1
through step 4, you first downloaded the latest version of Jenkins WAR and then created the
JENKINS_WAR_PATH environment variable.

Chapter 10

361

You also created another environment variable called JENKINS_JAR_CACHE_PATH. This is
required with Jenkins Version 1.540 or higher. The reason you need to set this environment
variable is that if you don't set this environment variable, then Jenkins will try to cache the
plugin in the user home directory at ~/.jenkins/cache/jars. In OpenShift, you can only
write to the $OPENSHIFT_DATA_DIR directory. This environment variable makes sure that
JARs are cached in a writable directory; otherwise, your build will fail.

After setting the environment variables, you restarted Jenkins so that the new environment
variables are picked up by Jenkins. You will now see the latest Jenkins version running.

See also
ff The Adding Jenkins CI to your application recipe

11
Logging and Scaling

Your OpenShift
Applications

The specific recipes of this chapter are as follows:

ff Viewing application logs
ff Working with JBoss application logs
ff Enabling JBoss access logs
ff Working with Tomcat application logs
ff Working with Python application logs
ff Creating scalable applications
ff Configuring a different health check URL for HAProxy
ff Configuring HAProxy to use a different balance algorithm
ff Creating scalable apps from nonscalable apps
ff Enabling manual scaling with marker files

Introduction
This chapter consists of recipes that will help you to work with the application logs and create
scalable applications. The logging recipes will help you to access your application logs and
debug any problems you might encounter while running your applications. You will learn how
OpenShift uses a component called logshifter to store all application- and cartridge-
specific logs in OPENSHIFT_LOG_DIR. This chapter will go into application logging in detail
and cover various aspects of logging the JBoss, Tomcat, and Python applications. The logging
concepts covered in this chapter will help you work with any web cartridge logs.

Logging and Scaling Your OpenShift Applications

364

The Viewing application logs recipe will give you a general introduction to application logging,
with the PHP web cartridge as an example. You will learn how to access application logs using
the rhc command-line tool, and understand the log format used by Apache-based cartridges.
Next, you will learn how to access JBoss application logs in the Working with JBoss application
logs and Enabling JBoss access logs recipes. The Working with Python application logs recipe
will cover how to effectively work with Python application logs.

The second section of this chapter will discuss application scaling in detail. You will learn how
to create autoscalable applications in the Creating scalable applications recipe. Autoscaling
is not always desired, and at times you need manual control over application scaling. In the
Enabling manual scaling with marker files recipe, you will learn how to disable autoscaling
and manually scale OpenShift applications using the rhc command-line tool.

Viewing application logs
Logs are important data generated by your application that can help you understand user
heuristics, monitor application performance, and debug problems. They are the first place
you look when something goes wrong in your application. OpenShift uses a service called
logshifter, which collects logs from all the different pieces of your application and
makes them accessible at a single location. These logs can then be fed to your favorite log
management solution, such as Splunk, to gain more useful insights. In this recipe, you will
learn how easily you can view all the logs of your application using a single command. This
recipe covers logging in a cartridge-agnostic manner. The language-specific aspects of
logging will be covered later in this chapter.

Getting ready
To complete this recipe, you will need rhc installed on your machine. Also, we will make use
of the OpenShift application created in the Creating an OpenShift application using the rhc
command-line client recipe in Chapter 3, Creating and Managing Applications.

To recreate the application, run the following command:

$ rhc create-app myapp php-5.4

How to do it…
To view the logfiles of your application, perform the following steps:

1.	 Open a command-line terminal and run the following command, either from within
the application directory or by passing the application name using the --app option.
Have a look at the following command:
$ rhc tail

Chapter 11

365

2.	 You can also use the app name, as shown in the following command:
$ rhc tail --app myapp

3.	 Open your favorite browser and go to http://myapp-{domain-name}.rhcloud.
com. You will notice new logs being tailed on your command-line terminal. A small
snippet of logs is shown in the following command-line output:
117.212.42.145 - - [22/Jun/2014:15:28:03 -0400] "GET /
HTTP/1.1" 200 39627 "-" "Mozilla/5.0 (Macintosh; Intel Mac OS
X 10_8_5) AppleWebKit/537.36 (KHTML, like Gecko)
Chrome/35.0.1916.153 Safari/537.36"

How it works…
Every OpenShift application uses one or more cartridges to do its work. Each cartridge is
configured to log messages to stdout or stderr. An OpenShift service called logshifter
captures all the messages sent to stdout as well as stderr and logs them properly.
In OpenShift Online, all the messages captured by logshifter are written to the
$OPENSHIFT_LOGS_DIR directory. You can SSH into your application gear using the
rhc ssh command and look into the $OPENSHIFT_LOGS_DIR directory, as follows:

[myapp-{domain-name}.rhcloud.com logs]\> cd $OPENSHIFT_LOG_DIR

[myapp-{domain-name}.rhcloud.com logs]\> ls

php.log

As you can see in the preceding command line, the $OPENSHIFT_LOGS_DIR directory
contains one logfile called php.log. All the application and Apache logs (both access and
error) will be written to this logfile. The name of the logfile depends on the tag name passed
to logshifter during the cartridge startup. For example, the php cartridge is started using
the nohup /usr/sbin/httpd $HTTPD_CMD_CONF -D FOREGROUND |& /usr/bin/
logshifter -tag php & command. This command ensures that the Apache logs are
piped to the logshifter service and uses php as the tag name. The tag name serves two
purposes: first, it identifies the program that generated the log message, and second, it is
used as the name of the logfile.

In step 1, you ran the rhc tail command; this command opened an SSH tunnel behind the
scenes and ran the tail –f */log*/* command on your application gear. The -f option
allows a file to be monitored continuously. As new lines are added to the logfile, tail will
update the display. The rhc tail command will tail all the logs in your application gear's
$OPENSHIFT_LOG_DIR directory, as shown in step 2. The sample output is shown in the
following command. All the Apache-based cartridges (PHP, Python, Perl, and Ruby) will have
similar output in the logs. Have a look at the following command output:

117.212.42.145 - - [22/Jun/2014:15:28:03 -0400] "GET / HTTP/1.1" 200
39627 "-" "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_8_5)
AppleWebKit/537.36 (KHTML, like Gecko) Chrome/35.0.1916.153
Safari/537.36"

Logging and Scaling Your OpenShift Applications

366

At first glance, the output might look a bit cryptic; on closer inspection, it is no different
from most application logs. The log follows Apache Combined Log Format (https://
httpd.apache.org/docs/trunk/logs.html#combined). The format used is
"%{X-Forwarded-For}i %l %u %t \"%r\" %>s %b \"%{Referer}i\" \"%
{User-Agent}i\"". Let's look at all these options one by one:

ff %{X-Forwarded-For}i: This is the HTTP request X-Forwarded-For header. It
contains the IP address of the original client. In the log line shown in the preceding
command, it corresponds to 117.212.42.145.

ff %l: This is the user identity determined by identd. This will return - when the value
is not present. In the log line shown in the preceding command, the value is -.

ff %u: This is the remote user determined by HTTP authentication. This will return -
when the value is not present. In the log line shown in the preceding command, the
value is -.

ff %t: This is the time when the HTTP request is received. In the log line shown in the
preceding command, the value is [22/Jun/2014:15:28:03 -0400].

ff \"%r\": This is the first line of the HTTP request. In the log line shown in the
preceding command, the value is GET / HTTP/1.1.

ff %>s: This is the HTTP status code. In the log line shown in the preceding command,
the value is 200, which means the request was successful.

ff %b: This is the response from the server in bytes. In the log line shown in the
preceding section, the value is 39627.

ff \"%{Referer}i\": This is the referrer URL that is linked to this URL. In the log line
shown in the preceding section, the value is -, which means it was not present.

ff \"%{User-Agent}i\": This is the user agent taken from the HTTP request
header. In the log line shown in the preceding section, the value is Mozilla/5.0
(Macintosh; Intel Mac OS X 10_8_5) AppleWebKit/537.36 (KHTML,
like Gecko) Chrome/35.0.1916.153 Safari/537.36.

As mentioned in the preceding section, logshifter will write one logfile per cartridge. So,
if you add the MySQL cartridge to your application, then logshifter will create another
logfile with the name mysql.log and write all the MySQL-specific logs to it. The rhc tail
command will tail all the files present inside $OPENSHIFT_LOG_DIR. Make sure to run the
tail command again so it can read the new logfile:

==> app-root/logs/php.log <==

117.212.42.145 - - [22/Jun/2014:17:18:09 -0400] "GET / HTTP/1.1" 200
39627 "-" "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_8_5)
AppleWebKit/537.36 (KHTML, like Gecko) Chrome/35.0.1916.153
Safari/537.36"

==> app-root/logs/mysql.log <==

https://httpd.apache.org/docs/trunk/logs.html#combined
https://httpd.apache.org/docs/trunk/logs.html#combined

Chapter 11

367

140622 17:17:31 [Note] Event Scheduler: Loaded 0 events

140622 17:17:31 [Note] /opt/rh/mysql55/root/usr/libexec/mysqld: ready
for connections.

The mysql.log logfile will contain all the MySQL logs. If you want to tail only a specific
cartridge log, then you can use the -f or --files option of the rhc tail command, as
shown in the following command. This will tail only the mysql.log file.

$ rhc tail --files app-root/logs/mysql.log

You can view all the rhc tail command options by looking at its help, as shown in the
following command:

$ rhc tail --help

Another responsibility logshifter performs is rolling logfiles based on the file size when
they reach a configurable threshold. It also allows you to retain a configurable number
of rolled files before removing the oldest prior to the next roll. You can configure the file
size and the number of rolled files using the LOGSHIFTER_$TAG_MAX_FILESIZE and
LOGSHIFTER_$TAG_MAX_FILES environment variables, where $TAG is replaced by an
uppercase string equal to the value of the -tag argument. The default values used by
logshifter are 10M (M for megabytes) for file size and 10 for the number of rolled files.
Let's suppose you want to configure values as 20M for file size and 5 for the number of rolled
files. To configure these new values, you have to first use the rhc env command to set new
environment variables and then restart the application, as shown in the following command:

$ rhc env-set LOGSHIFTER_PHP_MAX_FILES=5
LOGSHIFTER_PHP_MAX_FILESIZE=20M && rhc restart-app

You can specify the file size in kilobytes (for example, 100K), megabytes (for example, 20M),
gigabytes (for example, 10G), or terabytes (for example, 2T). The value of 0 for the file size
will effectively disable the file rolling.

There's more…
You can also ask the rhc tail command to output the last n lines using --opts or -o. To
output the last 100 lines, run the following command:

$ rhc tail --opts "-n 100"

You can pass other tail command options, as well, using the --opts option.

Logging and Scaling Your OpenShift Applications

368

See also
ff The Creating an OpenShift application using the rhc command-line client recipe in

Chapter 3, Creating and Managing Applications

ff The Working with JBoss application logs recipe

ff The Working with Tomcat application logs recipe

ff The Working with Python application logs recipe

Working with JBoss application logs
As mentioned in the Viewing application logs recipe, logs are important data generated by
your applications. This recipe will cover in detail how you can work with logs in OpenShift's
JBoss cartridge applications. This recipe will start with viewing logs of an existing JBoss
application, and then you will add application-specific logging using the SLF4J library. This
recipe assumes you have already read the Viewing application logs recipe.

Getting ready
This recipe will use the application created in the Creating and deploying Java EE 6
applications using the JBoss EAP and PostgreSQL 9.2 cartridges recipe in Chapter 7,
OpenShift for Java Developers. You can recreate the application using the following command:

$ rhc create-app jobstore jbosseap postgresql-9.2 --from-code
https://github.com/OpenShift-Cookbook/chapter7-jobstore-javaee6.git

How to do it…
Perform the following steps:

1.	 You can view the JBoss cartridge logs by running the following command:
$ rhc tail --files */log*/jbosseap.log --app jobstore

2.	 You used the --files option to restrict the rhc tail command to only show
JBoss-specific logs; otherwise, it will show all the logs in the $OPENSHIFT_LOG_DIR
directory. This will print logs, as shown in the following command:
==> app-root/logs/jbosseap.log <==

2014/06/28 13:05:59,844 INFO [org.jboss.web] (ServerService
Thread Pool -- 65) JBAS018210: Register web context:

2014/06/28 13:06:00,153 INFO [org.jboss.as.server]
(ServerService Thread Pool -- 36) JBAS018559: Deployed
"ROOT.war" (runtime-name : "ROOT.war")

Chapter 11

369

3.	 Open the application URL at http://jobstore-{domain-name}.rhcloud.
com in your favorite browser, and you will see Hibernate-specific logs in your terminal.
When you go to the application root, then an HTTP GET request is made to fetch
all the companies in the database. The following query is the SQL statement that
Hibernate executes to get data from the database:
2014/06/28 13:42:50,423 INFO [stdout] (http-
127.13.169.1/127.13.169.1:8080-1) Hibernate: select
company0_.id as col_0_0_, company0_.name as col_1_0_,
company0_.description as col_2_0_ from Company company0_

4.	 OpenShift's JBoss cartridge is configured to log all the INFO and preceding messages
to the console. As mentioned in the Viewing application logs recipe, any message
written to stdout will be picked by logshifter and written to a logfile. For the
JBoss EAP cartridge, the logfile name is jbosseap.log, and for the JBoss AS
7 cartridge, the logfile name will be jbossas.log. You can update the logging
configuration to show all the DEBUG and preceding messages by updating the logging
subsystem in the standalone.xml file inside the .openshift/config directory
with the following code:
<subsystem xmlns="urn:jboss:domain:logging:1.3">
 <console-handler name="CONSOLE">
 <level name="DEBUG" />
 <formatter>
 <pattern-formatter
 pattern="%d{yyyy/MM/dd HH:mm:ss,SSS} %-5p [%c] (%t)
%s%E%n" />
 </formatter>
 </console-handler>
 <logger category="com.arjuna">
 <level name="WARN" />
 </logger>
 <logger category="org.apache.tomcat.util.modeler">
 <level name="WARN" />
 </logger>
 <logger category="sun.rmi">
 <level name="WARN" />
 </logger>
 <logger category="jacorb">
 <level name="WARN" />
 </logger>
 <logger category="jacorb.config">
 <level name="ERROR" />
 </logger>
 <root-logger>

Logging and Scaling Your OpenShift Applications

370

 <level name="DEBUG" />
 <handlers>
 <handler name="CONSOLE" />
 </handlers>
 </root-logger>
</subsystem>

5.	 Commit the changes in your local Git repository, and then push them to the OpenShift
application gear. OpenShift will now use the updated standalone.xml file, and you
will see the DEBUG logs in the output of the rhc tail command.

6.	 As the application is not logging anything, the output of the rhc tail command
either shows the application server logs or the logs of the different libraries used
by your application. You can use any of the Java logging libraries to add application-
specific logs. In this recipe, you will use SLF4J with java.util.logging binding
to log the application logs, but you can use any other SLF4J binding, such as
log4j or logback, as well. Open the Maven pom.xml file, and add the following
dependencies to it:
<dependency>
 <groupId>org.slf4j</groupId>
 <artifactId>slf4j-api</artifactId>
 <version>1.7.7</version>
</dependency>
<dependency>
 <groupId>org.slf4j</groupId>
 <artifactId>slf4j-jdk14</artifactId>
 <version>1.7.7</version>
</dependency>

7.	 Open the CompanyResource.java file inside the org.osbook.jobstore.rest
package in an editor, and add a couple of statements to import the SLF4J classes,
as shown in the following code:
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

8.	 After adding the import statements, update the createNewCompany() and
showAll() methods in CompanyResource.java with log messages, as shown
in the following code:
private Logger logger =
LoggerFactory.getLogger(CompanyResource.class);
@Inject
private CompanyService companyService;

@POST
@Consumes(MediaType.APPLICATION_JSON)

Chapter 11

371

public Response createNewCompany(@Valid Company company) {
 logger.debug("inside createNewCompany().. creating new
company {}" , company);
 Company existingCompanyWithName =
companyService.findByName(company.getName());
 if (existingCompanyWithName != null) {
 logger.debug("Company with name {} already exists : {}"
, company.getName(), existingCompanyWithName);
 return Response.status(Status.NOT_ACCEPTABLE)
 .entity(String.format("Company already exists
with name: %s",company.getName())).build();
 }
 company = companyService.save(company);
 logger.info("Created new company {}" , company);
 return
Response.status(Status.CREATED).entity(company).build();
}

@GET
@Produces(MediaType.APPLICATION_JSON)
public List<Company> showAll() {
 List<Company> companies = companyService.findAll();
 logger.info("Found {} companies" , companies.size());
 return companies;
}

9.	 Revert the changes you made to the standalone.xml file in step 3 to view only
the INFO messages. Change the root-logger level to INFO, as shown in the
following code:
<root-logger>
 <level name="INFO" />
 <handlers>
 <handler name="CONSOLE" />
 </handlers>
</root-logger>

10.	 Commit the changes to the local Git repository, and then push them to the application
gear using the git push command.

11.	 After the changes are deployed, make another request to the web application,
and this time you will see your application logs in the rhc tail command output,
as follows:
2014/06/28 14:24:50,959 INFO
[org.osbook.jobstore.rest.CompanyResource] (http-
127.13.169.1/127.13.169.1:8080-1) Found 1 companies

Logging and Scaling Your OpenShift Applications

372

12.	 If you try to create a new company, then you see that only the INFO messages are
getting logged. This is because the logging configuration in the standalone.xml
file is configured to only log INFO and preceding messages to the console.

13.	 To view the debug messages of your application, you have to update the
standalone.xml logging subsystem configuration with the one shown
in the following code:
<subsystem xmlns="urn:jboss:domain:logging:1.3">
 <console-handler name="CONSOLE">
 <level name="DEBUG" />
 <formatter>
 <pattern-formatter
 pattern="%d{yyyy/MM/dd HH:mm:ss,SSS} %-5p [%c] (%t)
%s%E%n" />
 </formatter>
 </console-handler>
 <logger category="com.arjuna">
 <level name="WARN" />
 </logger>
 <logger category="org.apache.tomcat.util.modeler">
 <level name="WARN" />
 </logger>
 <logger category="sun.rmi">
 <level name="WARN" />
 </logger>
 <logger category="jacorb">
 <level name="WARN" />
 </logger>
 <logger category="jacorb.config">
 <level name="ERROR" />
 </logger>
 <logger category="org.osbook.jobstore">
 <level name="DEBUG"></level>
 </logger>
 <root-logger>
 <level name="INFO" />
 <handlers>
 <handler name="CONSOLE" />
 </handlers>
 </root-logger>
</subsystem>

Chapter 11

373

14.	 Now, you will also see the application-specific DEBUG logs in the output of the
rhc tail command:
2014/06/28 14:40:22,410 DEBUG
[org.osbook.jobstore.rest.CompanyResource] (http-
/127.13.169.1:8080-1) inside createNewCompany().. creating new
company

How it works…
In the preceding steps, you learned how you can view the logs of a JBoss application and
add application-specific logging using the SLF4J library. In step 1, you ran the rhc tail
command to view all the JBoss-specific logs. All the JBoss EAP-specific logs are written to the
jbosseap.log file. This file contains both the JBoss server.log and boot.log content.
As discussed in the Viewing application logs recipe, logshifter will collect all the logs
written to stdout or stderr and write them to the cartridge-specific logfile. Logging the
subsystem configuration in the standalone.xml configuration file controls the logging in
JBoss cartridges. The standalone.xml file is present inside the .openshift/config
directory, and you can override it to meet your needs. The logging subsystem consists of three
parts: one or more handler configurations, such as console-handle or file-handler,
one or more loggers to define a logger category, such as com.arjuna shown in the next code,
and a root-logger declaration. You can read more about the JBoss logging configuration
in the official documentation at https://docs.jboss.org/author/display/AS71/
Logging+Configuration. Have a look at the following code:

<subsystem xmlns="urn:jboss:domain:logging:1.3">
 <console-handler name="CONSOLE">
 <level name="DEBUG" />
 <formatter>
 <pattern-formatter
 pattern="%d{yyyy/MM/dd HH:mm:ss,SSS} %-5p [%c] (%t)
%s%E%n" />
 </formatter>
 </console-handler>
 <logger category="com.arjuna">
 <level name="WARN" />
 </logger>
 <root-logger>
 <level name="DEBUG" />
 <handlers>
 <handler name="CONSOLE" />
 </handlers>
 </root-logger>
</subsystem>

https://docs.jboss.org/author/display/AS71/Logging+Configuration
https://docs.jboss.org/author/display/AS71/Logging+Configuration

Logging and Scaling Your OpenShift Applications

374

In step 3, you updated the root-logger level to DEBUG. This enables the JBoss server
to generate DEBUG and preceding-level logs.

From step 5 through step 11, you first added the application logs using the SLF4J library and
then updated standalone.xml logger subsystem configuration to allow JBoss to log the
application DEBUG and preceding messages. This was done by adding an application-specific
logger category at the DEBUG level. Have a look at the following code:

 <logger category="org.osbook.jobstore">
 <level name="DEBUG"></level>
 </logger>

There's more…
After reading through this recipe, you might be wondering if there is a way to update the
logging configuration at runtime. Yes, you can do so using the JBoss admin console. To use
the JBoss admin console, first run the rhc port-forward command, as follows:

$ rhc port-forward --app jobstore

Then, go to the admin console at http://127.0.0.1:9990/. Navigate to Configuration |
Core | Logging, as shown in the following screenshot:

Chapter 11

375

Now, go to LOG CATEGORIES, and you will see a category for org.osbook.jobstore, as
shown in the following screenshot:

Change the Log Level value to INFO, and click on the Save button:

Now, if you try to create a new company, you will not see the DEBUG messages. You will only
see the INFO and preceding messages.

Logging and Scaling Your OpenShift Applications

376

See also
ff The Viewing application logs recipe

ff The Enabling JBoss access logs recipe

Enabling JBoss access logs
Access logs are very useful when you want to see a list of all the requests processed by a
server. For Apache-based cartridges, access logs are enabled by default, but you will have to
enable it manually in JBoss-based cartridges. In this recipe, you will learn how to enable the
access logs for JBoss cartridges.

Getting ready
This recipe will pick up where we left off in the Working with JBoss application logs recipe.

How to do it…
Perform the following steps to enable the access logs:

1.	 Open the standalone.xml file inside the .openshift/config directory in your
favorite editor.

2.	 Update the urn:jboss:domain:web:1.5 subsystem with the one shown in the
following code:
<subsystem xmlns="urn:jboss:domain:web:1.5"
 default-virtual-server="default-host" native="false">
 <connector name="http" protocol="HTTP/1.1" scheme="http"
 socket-binding="http" />
 <virtual-server name="default-host" enable-welcome-
root="false">
 <alias name="localhost" />
 <access-log pattern="%a %t %H %p %U %s %S %T"
rotate="true">
 <directory path="app-root/logs/" relative-
to="user.home" />
 </access-log>
 </virtual-server>
 <valve name="remoteipvalve" module="org.jboss.as.web"
 class-name="org.apache.catalina.valves.RemoteIpValve">
 <param param-name="protocolHeader" param-value="x-
forwarded-proto" />
 </valve>
</subsystem>

Chapter 11

377

3.	 Commit the changes to the local Git repository, and then push them to the application
gear using the git push command.

4.	 Run the rhc tail command again, and you will see the access logs in the tail
command output, as follows:
==> app-root/logs/access_log.2014-06-28 <==

106.211.32.170 [28/Jun/2014:15:43:28 -0400] HTTP/1.1 80
/api/v1/companies 200 - 5.409

How it works…
An access log stores all the user requests for individual resources. These include requests to
fetch HTML files, JavaScript files, CSS files, REST calls, and so on. The data stored in this file
can then be analyzed by another application to get meaningful information out of it. An access
log can help you with following:

ff It can help to calculate the number of unique visitors to your website.

ff It can help to calculate the number of successful and failed requests. The requests
with the 2XX code are considered successful, and the requests with 4xx and 5xx
are considered errors.

ff It can help basic performance analysis. Each access log line contains the time taken
to process the request.

ff It can help to analyze your web application usage pattern in terms of the time of the
day, the day of the week, and so on.

In the preceding steps, you updated the urn:jboss:domain:web:1.5 subsystem
configuration to enable the access logs. Adding the following two lines to the configuration
enables the access logs:

<access-log pattern="%a %t %H %p %U %s %S %T" rotate="true">
<directory path="app-root/logs/" relative-to="user.home" />

The access-log element enables the access logs, and the directory element is used
to specify the directory that should be used to generate the logs. The preceding directory
element configures JBoss to write the access logs to $OPENSHIFT_LOG_DIR as it looks for
the app-root/logs directory relative to the user home. The app-root/logs directory
relative to the user home is $OPENSHIFT_LOG_DIR. We have used this value so that the
rhc tail command can read this file along with other JBoss logs. The access-log element
takes one mandatory attribute called pattern. The pattern element defines the logs
format. The following pattern codes are supported:

ff %a: Remote IP address

ff %A: Local IP address

ff %b: Bytes sent, excluding HTTP headers, or - if zero

Logging and Scaling Your OpenShift Applications

378

ff %B: Bytes sent, excluding HTTP headers

ff %h: Remote hostname (or IP address if resolveHosts is false)

ff %H: Request protocol

ff %l: Remote logical username from identd (always returns -)

ff %m: Request method (GET, POST, and so on)

ff %p: Local port on which this request was received

ff %q: Query string (prepended with a ? if it exists)

ff %r: First line of the request (method and request URI)

ff %s: HTTP status code of the response

ff %S: User session ID

ff %t: Date and time in Common Log Format

ff %u: Remote user that was authenticated (if any), else -

ff %U: Requested URL path

ff %v: Local server name

ff %D: Time taken to process the request in milliseconds

ff %T: Time taken to process the request in seconds

ff %I: Current request thread name (can compare later with stacktraces)

See also
ff The Working with JBoss application logs recipe

ff The Viewing application logs recipe

Working with Tomcat application logs
In this recipe, you will learn how to work with logs in Tomcat cartridges. You will start
with tailing the logs of an existing Tomcat application, and then you will learn how to add
application-specific logging using the SLF4J library.

Getting ready
This recipe will use the application created in the Creating and Deploying Spring Applications
using the Tomcat 7 cartridge recipe in Chapter 7, OpenShift for Java Developers. You can
recreate the application using the following command:

$ rhc create-app jobstore tomcat-7 mysql-5.5 --from-code
https://github.com/OpenShift-Cookbook/chapter7-jobstore-spring.git --
timeout 180

Chapter 11

379

How to do it…
Perform the following steps:

1.	 You can view the logs of a Tomcat application using the rhc tail command. Tomcat
logs are written to a file named jbossews.log inside the $OPENSHIFT_LOG_DIR
directory:
$ rhc tail --files */log*/jbossews.log --app jobstore

2.	 The jbossews.log file will contain logs of both Tomcat-specific and application-
specific logs, as shown in the following output:
INFO: Starting ProtocolHandler ["http-bio-127.5.249.129-8080"]

Jun 29, 2014 5:03:01 AM org.apache.catalina.startup.Catalina
start

INFO: Server startup in 22062 ms

3.	 Before you can add application-specific logging, you will have to add the following
dependencies to your Maven pom.xml file. In this recipe, you will use SLF4J along
with logback binding to add application logging:
<dependency>
 <groupId>org.slf4j</groupId>
 <artifactId>slf4j-api</artifactId>
 <version>1.7.7</version>
</dependency>
<dependency>
 <groupId>ch.qos.logback</groupId>
 <artifactId>logback-classic</artifactId>
 <version>1.0.13</version>
</dependency>

4.	 Open the CompanyResource.java file inside the org.osbook.jobstore.rest
package in an editor, and add a couple of statements to import the SLF4J classes,
as shown in the following code:
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

5.	 Now, update the CompanyResource Java class under the org.jobstore.rest
package to add application-specific logging, as follows:
private Logger logger =
LoggerFactory.getLogger(CompanyResource.class);

@RequestMapping(method = RequestMethod.POST, consumes =
MediaType.APPLICATION_JSON_VALUE, produces =
MediaType.APPLICATION_JSON_VALUE)

Logging and Scaling Your OpenShift Applications

380

public ResponseEntity<Company>
createNewCompany(@RequestBody Company company) {
 logger.debug("inside createNewCompany().. creating new
company {}" , company);
 Company existingCompany =
companyRepository.findByName(company.getName());
 if(existingCompany != null){
 logger.debug("Company with name {} already exists : {}"
, company.getName(), existingCompany);
 return new ResponseEntity<>(HttpStatus.NOT_ACCEPTABLE);
 }
 company = companyRepository.save(company);
 logger.info("Created new company {}" , company);
 return new ResponseEntity<>(company,HttpStatus.CREATED);
}

@RequestMapping(method=RequestMethod.GET, produces =
MediaType.APPLICATION_JSON_VALUE)
public @ResponseBody List<Company> showAll(){
 List<Company> companies = companyRepository.findAll();
 logger.info("Found {} companies" , companies.size());
 return companies;
}

6.	 Commit the changes to the local Git repository, and then push them to the application
gear using the git push command.

7.	 After the application restarts, you will start seeing various log messages. A short
snippet is shown in the following output:
05:43:00.182 [http-bio-127.5.249.129-8080-exec-6] INFO
org.jobstore.rest.CompanyResource - Created new company
Company [id=1, name=Red Hat, description=open source company,
contactEmail=contact@redhat.com]

05:43:00.245 [http-bio-127.5.249.129-8080-exec-6] DEBUG
o.s.w.s.m.m.a.HttpEntityMethodProcessor - Written [Company
[id=1, name=Red Hat, description=open source company,
contactEmail=contact@redhat.com]] as "application/json" using
[org.springframework.http.converter.json.MappingJackson2HttpMe
ssageConverter@1d300d2]

8.	 You can use the logback configuration file to enable the logging of specific
packages. Create a new file with the name logback.xml inside the src/main/
resources directory, and add the following contents to it:
<?xml version="1.0" encoding="UTF-8"?>
<configuration>

Chapter 11

381

 <appender name="console" class="ch.qos.logback.core.
ConsoleAppender">
		 <encoder>
			 <pattern>%d %5p %C:%4L - %m%n</pattern>
		 </encoder>
	 </appender>
	 <logger name="org.jobstore" level="debug" />
	 <root level="WARN">
		 <appender-ref ref="console" />
	 </root>
</configuration>

9.	 Commit the changes to the local Git repository, and push them to the application
gear using the git push command. After the app restarts, you will only see the
application-specific DEBUG and preceding messages. Have a look at the following
commands:
INFO: Server startup in 49113 ms

2014-06-29 06:07:27,817 INFO
org.jobstore.rest.CompanyResource: 45 - Found 1 companies

2014-06-29 06:07:38,513 DEBUG
org.jobstore.rest.CompanyResource: 31 - inside
createNewCompany().. creating new company Company [id=null,
name=test, description=test, contactEmail=test@test.com]

2014-06-29 06:07:38,752 INFO
org.jobstore.rest.CompanyResource: 38 - Created new company
Company [id=2, name=test, description=test,
contactEmail=test@test.com]

How it works…
In the preceding steps, you learned how to view the logs of a Tomcat application and add
application-specific logging using the SLF4J library. In step 1, you ran the rhc tail command
to view all the Tomcat-specific logs. All the Tomcat-specific logs are written to the jbossews.
log file. As discussed in the Viewing application logs recipe, logshifter will collect all the
logs written to stdout or stderr and write them to the cartridge-specific logfile.

From step 2 through step 5, you added log statements to the CompanyResource.java file
using the SLF4J library. The SLF4J library underneath uses the Logback library that has a
default log level of DEBUG. This means if you don't specify any Logback configuration, then
all the DEBUG and preceding messages will be logged to jbossews.log.

Logging and Scaling Your OpenShift Applications

382

Logback can be configured using the logback.xml file. In step 6, you created a
logback.xml file and added configuration to only the log application DEBUG messages.
All other messages will be logged at WARN level. Then, finally, in step 7, you committed the
changes and pushed them to the application gear.

There's more…
You can enable the access logs for the Tomcat cartridge by performing the following steps:

1.	 Open the Tomcat server.xml configuration file inside the .openshift/config
directory in your favorite editor.

2.	 Add the AccessLogValve configuration to the server.xml file's Host element:
<Valve
className="org.apache.catalina.valves.AccessLogValve"
directory="${user.home}/app-root/logs"
prefix="localhost_access_log." suffix=".txt" pattern="%h %l
%u %t "%r" %s %b"/>

3.	 Commit the changes to the local Git repository, and push them to the application
gear using the git push command.

4.	 Run the rhc tail command again, and this time, you will see the access logs,
as well:
==> app-root/logs/localhost_access_log.2014-06-29.txt <==

127.5.249.129 - - [29/Jun/2014:07:18:57 -0400] "POST
/api/v1/companies HTTP/1.1" 201 133

127.5.249.129 - - [29/Jun/2014:07:18:58 -0400] "GET
/api/v1/companies HTTP/1.1" 200 344

See also
ff The Viewing application logs recipe

ff The Working with JBoss application logs recipe

ff The Enabling JBoss access logs recipe

Working with Python application logs
In this recipe, you will learn how to add view and logging to your Python applications. As
discussed in Chapter 8, OpenShift for Python Developers, OpenShift Python applications
use Apache with mod_wsgi.

Chapter 11

383

Getting ready
This recipe will use the application created in the Creating and deploying Flask web
applications using Python and PostgreSQL cartridges recipe in Chapter 8, OpenShift for
Python Developers. You can recreate the application using the following command:

$ rhc create-app jobstore python-2.7 postgresql-9.2 --from-code
https://github.com/OpenShift-Cookbook/chapter8-jobstore-python-
flask.git

How to do it…
Perform the following steps:

1.	 Open a new command-line terminal, and navigate to the directory where you have
created the Python application.

2.	 To view the logs of a Python application, run the following command:
$ rhc tail --files */log*/python.log

3.	 By visiting the application URL, you will see the following logs in the rhc tail
command output when you make a request to the application:
117.207.184.93 - - [29/Jun/2014:14:50:09 -0400] "GET
/api/v1/companies HTTP/1.1" 200 17 "http://jobstore-
osbook.rhcloud.com/" "Mozilla/5.0 (Macintosh; Intel Mac OS X
10_8_5) AppleWebKit/537.36 (KHTML, like Gecko)
Chrome/35.0.1916.153 Safari/537.36"

4.	 Open the jobstore.py file inside the application directory, and add the following
lines just above the index() function. The following lines import the logging
module and then create a new logger object with the INFO log level. This logger will
be used in the next step for logging.
import logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

5.	 Next, update the index() function with a log statement, as shown in the
following code:
@app.route('/')
def index():
logger.info('inside index()...')
return render_template('index.html')

Logging and Scaling Your OpenShift Applications

384

6.	 Commit the change to the local Git repository, and then push the changes to the
application gear. After the app has started successfully, visit the application URL
and you will see the log message you added to jobstore.py, as follows:
[Sun Jun 29 14:56:08 2014] [error] INFO:jobstore:inside
index()...

7.	 There are times when you will prefer to use a different file to store your application
logs. This can be done using TimedRotatingFileHandler. Open jobstore.py
in the application root directory and replace the logging lines added in step 3 with the
ones shown in the following code:
import logging
import logging.handlers
logger = logging.getLogger(__name__)
logger.setLevel(logging.DEBUG)
formatter = logging.Formatter('%(asctime)s - %(name)s -
%(levelname)s - %(message)s')
log_location = os.environ.get('OPENSHIFT_LOG_DIR') if
os.environ.get('OPENSHIFT_LOG_DIR') else '/tmp/'
log_filename = log_location + 'jobstore.log'
handler =
logging.handlers.TimedRotatingFileHandler(log_filename,when
='midnight',backupCount=5)
handler.setFormatter(formatter)
logger.addHandler(handler)

8.	 Commit the change, and push the changes to the application gear. After the app
restarts, you will see a new file, jobstore.log, with all the application-specific
logs, as shown in the following command lines. You will have to run the rhc tail
command so that the tail command can find the new file, as follows:
==> app-root/logs/jobstore.log <==

2014-06-29 15:25:34,158 - jobstore - INFO - inside index()...

How it works…
Python application logs are logged in the python.log file inside $OPENSHIFT_LOG_DIR.
This file will contain both Apache access logs and error logs, as well as any application-specific
logs. The log follows Apache Combined Log Format discussed in the Viewing application
logs recipe.

To add application-level logging, you used the Python standard logging module in step 3. After
pushing these changes to the application gear, you will start seeing your application-specific
log messages. You will only see the log messages with the level INFO or above. This is because
you have configured the default logging level to logging.INFO.

Chapter 11

385

OpenShift, by default, will log all the messages written to stdout or stderr to the python.
log file. If you want to use a different logfile for application-specific logs, then you can
use TimedRotaingFileHandler to log messages to the jobstore.log file inside
$OPENSHIFT_LOG_DIR, as shown in step 5. In step 6, you pushed the changes to the
OpenShift application gear, and after running the rhc tail command again, you will start
seeing messages written to jobstore.log in the output.

See also
ff The Viewing application logs recipe

Creating scalable applications
As your application becomes popular and more users start using it, you will have to scale
your application to meet the increased usage. Application scaling can be done in either of
the following two ways: vertical scaling (or scaling up) and horizontal scaling (scaling out).
Vertical scaling is about adding more power to a single machine, that is, faster CPU, more
RAM and SSD, and so on. Vertical scalability has a limit and the cost increases exponentially.
Horizontal scaling, on the other hand, is about handling more requests and load by adding
more machines.

With most PaaS solutions such as OpenShift, you will soon hit the vertical scaling limit. Currently,
in OpenShift, you can't get a bigger gear size than 2 GB of RAM space (that is, large gear), so
it is recommended that you design your application for horizontal scalability. There are many
good books, such as Scalability Rules, Martin L. Abbott and Michael T. Fisher, Addison-Wesley
Professional, written on this subject, and you can refer to them for more information. I have
also written an article on best practices to create scalable web applications (https://www.
openshift.com/blogs/best-practices-for-horizontal-application-scaling)
that you can refer to, as well.

In this recipe, you will learn how to create scalable applications in OpenShift.

Getting ready
To complete this recipe, you will need rhc installed on your machine. This recipe will require
all three available gears, so please make sure to delete any existing applications.

How to do it…
To create a scalable application, perform the following steps:

1.	 Open a command-line terminal and change the directory to a convenient location
where you want to create the application.

https://www.openshift.com/blogs/best-practices-for-horizontal-application-scaling
https://www.openshift.com/blogs/best-practices-for-horizontal-application-scaling

Logging and Scaling Your OpenShift Applications

386

2.	 Next, execute the following command to create the scalable application:
$ rhc create-app jobstore jbosseap postgresql-9 --scaling --
from-code https://github.com/OpenShift-Cookbook/chapter7-
jobstore-javaee6.git

How it works…
The rhc create-app command used in the preceding steps instructs OpenShift to create
an application named jobstore with the JBoss EAP and PostgreSQL 9.2 cartridges. The
--scaling option tells OpenShift to create a horizontally scalable application instead of a
nonscalable application. The --from-code option tells OpenShift to use the specified Git
repository as the reference application. You can also use -s instead of --scaling. The -s
option is a shorthand notation of the --scaling option.

This command will create two OpenShift gears. The HAProxy load balancer and JBoss EAP
application server will share the first gear, and the PostgreSQL database will use the second
gear. The gear that has the HAProxy cartridge installed is called the main gear. All the
commands that work against a gear will apply to this gear. For example, when you run the rhc
ssh command, you will be logged in to the HAProxy gear. Similarly, the rhc tail command
will tail the logs in the app-root/logs directory of this gear.

HAProxy is a software-based load balancer that sits in front of your web application and
accepts all the incoming requests. It then parses the HTTP request and, depending on its
configuration, will route the incoming request to a backend. The backend here means one
or more JBoss EAP instances. OpenShift helps you scale your application by adding new
application instances (in our example, JBoss EAP instances) as the number of concurrent
HTTP connections reaches a threshold. The current threshold is 16 concurrent HTTP
connections. This behavior is called autoscaling, as OpenShift manages the application
scaling without any user intervention. You can also configure your application to use manual
scaling, which will give you more control over application scaling. This will be covered in the
Enable manual scaling with marker files recipe.

OpenShift currently does not support database scaling. You can use services such as Amazon
RDS (covered in the Using an Amazon RDS MySQL DB instance with OpenShift recipe in
Chapter 4, Using MySQL with OpenShift Applications), Enterprise DB PostgreSQL Cloud
Database (covered in the Using EnterpriseDB PostgreSQL cloud database with OpenShift recipe
in Chapter 5, Using PostgreSQL with OpenShift Applications), or MongoLab (covered in the
Using MongoLab MongoDB-as-a-Service with OpenShift recipe in Chapter 6, Using MongoDB
and Third-party Database Cartridges with OpenShift Applications) to get database scaling.

Every OpenShift scalable application has a daemon running called haproxy_ctld. This
daemon controls the autoscaling behavior by polling the HAProxy Unix socket status port every
five seconds to collect the basic HAProxy statistics. By default, it is configured to use the HTTP
concurrent connection of autoscaling, but users can customize it to autoscale applications
based on other factors such as CPU usage, as well (https://www.openshift.com/
blogs/customizing-autoscale-functionality-in-openshift).

https://www.openshift.com/blogs/customizing-autoscale-functionality-in-openshift
https://www.openshift.com/blogs/customizing-autoscale-functionality-in-openshift

Chapter 11

387

The daemon checks the current concurrent HTTP connections, and if the number of
concurrent connections is more than 90 percent of the allocated, that is, 16, then it fires
the scale-up event. When a scale-up event happens, the daemon will make an HTTP request
to the OpenShift broker to add a new gear to the application. The broker will spin up a new
gear with the same configuration as the existing application gear, attach the new gear with
HAProxy, use the rsync command to copy the contents of the ~/app-root/repo directory
on the main gear to the new gear, and finally start the new gear. From now on, HAProxy will
start sending requests to both the gears based on the configured algorithm. By default,
OpenShift uses sticky sessions along with the least connection balance algorithm to make
sure that the request from a user ends up on the same gear always, and the server with the
least connection gets the request from the new client. Users can override the default HAProxy
configuration according to their needs. We will cover that later in this chapter.

Applications will scale down when your application web traffic falls below 50 percent of the
allocated HTTP connections for several minutes. Then, the new gear will be removed, and it
will also be removed from the HAProxy configuration.

An OpenShift application developer can see the HAProxy stats on the HAProxy status page.
This page is located at http://jobstore-{domain-name}.rhcloud.com/haproxy-
status, as shown in the following screenshot:

The HAProxy status page is divided into two sections: stats and express. The stats section
is configured to listen to all the requests made to the HAProxy status page. Every time you
refresh the http://jobstore-domainname.rhcloud.com/haproxy-status page
page, the total number of sessions under the Sessions tab will increment. This is shown
under the Total column. The Cur column is the number of users currently accessing the status
page. The Max column is the maximum number of concurrent users. All these numbers are
calculated since HAProxy was started; if you restart HAProxy, the stats will reset.

Logging and Scaling Your OpenShift Applications

388

The express section is more interesting from the application point of view. The local-gear row
corresponds to the requests handled by JBoss EAP. The total number of sessions handled by
the application is shown in the Total column. The Cur column is the number of users currently
accessing the application. The Max column is the maximum number of concurrent users. All
these figures pertain to the time period since HAProxy was started; if you restart HAProxy, the
stats will reset. In the preceding screenshot, we can see that local-gear has handled seven
requests, one at a time. When the application scales, it will add more rows for the new gears.

There's more…
You can define the minimum and maximum values for application scaling. By default, a
scalable application will consume at least one gear and, at peak traffic, can consume all the
gears in your OpenShift account. You can set the minimum and maximum values using the
rhc scale-cartridge command, as shown in the following command:

$ rhc scale-cartridge <web cartridge> --app <app_name> --min <minimum
gears> --max <maximum gear>

Let's take the following example:

$ rhc scale-cartridge jbosseap --app jobstore --min 2 --max 4

The preceding command will make sure that the jobstore application will at least have two
instances of the JBoss EAP cartridge, and at maximum, four instances.

See also
ff The Configuring a different health check URL for HAProxy recipe

ff The Configuring HAProxy to use a different balance algorithm recipe

ff The Enabling manual scaling with marker files recipe

Configuring a different health check URL
for HAProxy

In this recipe, you will learn how to update the HAProxy configuration file to configure a
different heath check URL.

Getting ready
To complete this recipe, you will need rhc installed on your machine. This recipe will utilize
the application created in the Creating scalable applications recipe.

Chapter 11

389

How to do it…
Perform the following steps:

1.	 Open a command-line terminal and navigate to the application directory created in
the Creating scalable applications recipe.

2.	 SSH into the main application gear using the rhc ssh command, as follows:
$ rhc ssh --app jobstore

3.	 Change the directory to the haproxy configuration directory, as follows:
$ cd haproxy/conf

4.	 Now, open the haproxy.cfg file using VIM, and remove the following content:
option httpchk GET /

In its place, insert the following content:

option httpchk GET /api/v1/ping

5.	 Finally, restart the HAProxy cartridge from your local machine using the rhc
command-line client:
$ rhc restart-cartridge --cartridge haproxy --app jobstore

How it works…
HAProxy performs periodic health checks to determine the health of the application gears.
The default configuration pings the root URL / every two seconds. If HAProxy receives an HTTP
code other than 2xx or 3xx, then it considers it a server failure, and your application will
give a Service Unavailable error. One scenario where you will see this behavior is when
you use OpenShift to host your REST backend at a nonroot URL, such as /api/v1/. In the
preceding steps, you updated the haproxy.cfg file to use a different health check URL.

See also
ff The Configuring HAProxy to use a different balance algorithm recipe

ff The Enabling manual scaling with marker files recipe

Logging and Scaling Your OpenShift Applications

390

Configuring HAProxy to use a different
balance algorithm

The HAProxy load balancer can work with several load-balancing algorithms. The configuration
used by HAProxy in OpenShift applications uses the leastconn load-balancing algorithm. This
algorithm is useful when you have long-lived connections, but is not recommended for short
connections. For short connections, as in the case of our application, it is more suitable to use
the roundrobin algorithm.

In this recipe, you will learn how to configure HAProxy to use the roundrobin balance
algorithm instead of the leastconn algorithm.

Getting ready
To complete this recipe, you will need rhc installed on your machine. This recipe will utilize
the application created in the Creating scalable applications recipe.

How to do it…
Perform the following steps to configure HAProxy to use the roundrobin balance algorithm:

1.	 Open a command-line terminal and navigate to the application directory created in
the Creating scalable applications recipe.

2.	 Scale the JBoss EAP cartridge to use two JBoss EAP instances by running the
following command:
$ rhc scale-cartridge --min 2 --cartridge jbosseap-6

3.	 SSH into the main application gear using the rhc ssh command, as follows:
$ rhc ssh --app jobstore

4.	 Once you are inside the application gear, change the directory to the haproxy/conf
directory, as follows:
$ cd haproxy/conf

5.	 It is always a good idea to make a backup of the configuration files before making any
changes to them. Use the copy command to create a copy of the haproxy.cfg file
in $OPENSHIFT_DATA_DIR, as follows:
$ cp haproxy.cfg $OPENSHIFT_DATA_DIR

Chapter 11

391

6.	 Now, open the haproxy.cfg file using VIM, and update the section under balance
leastconn to the following code:
balance roundrobin
 server gear-2 host2:port2 check fall 2 rise 3 inter
2000 weight 1
 server local-gear host1:port1 check fall 2 rise 3 inter
2000 weight 1

7.	 Replace gear-2 with your application's second gear name. Also, replace host1 and
host2 and port1 and port2 with the gear 1 and gear 2 host and port values. You
can get the values from the copy of haproxy.cfg saved in step 5.

8.	 You can ask HAProxy to reload the configuration by running the following command:
$ rhc reload-cartridge --cartridge haproxy

9.	 Run Apache Benchmark to see the new configuration in action, as follows:
$ ab -n 1000 -c 20 http://jobstore-{domain-
name}.rhcloud.com/api/v1/companies

10.	 In the preceding test, ab will make a total of 1000 requests with 20 concurrent
requests at a time. As we are using the roundrobin algorithm, both the gears should
handle 500 requests each. You can verify the number of requests by looking at the
following HAProxy status page (screenshot):

How it works…
HAProxy supports various load-balance algorithms. The algorithm you choose will determine
which backend server will be used to serve the request. The default load-balance algorithm
used by OpenShift's scalable applications is leastconn. This algorithm selects the server with
the least number of active connections. HAProxy is also configured to use persistent cookies
to achieve sticky session behavior. Session stickiness ensures that a user request is served
from the same gear that served their first request.

Logging and Scaling Your OpenShift Applications

392

In the preceding steps, you overrode the default configuration to use the roundrobin algorithm.
The algorithm to use can be set using the balance parameter. The roundrobin algorithm
selects servers in turn to make sure requests are balanced fairly. You can assign weights to
the servers to manipulate how frequently a server is selected compared to others. In step 6,
you used roundrobin as the value of the balance parameter and assigned a weight of 1 to
both the servers. Because we gave both servers the same weight, both will serve an equal
number of requests. Then, you asked HAProxy to reload the configuration using the rhc
reload-cartridge command in step 7.

In step 8, you ran a load test on the application using Apache Benchmark, to see if your
changes were working as expected. Because both servers had a weight of 1, they
both handled 500 requests each.

Now, let's update the HAProxy configuration to use different weights for different servers.
Update the haproxy.cfg roundrobin section with the following code:

balance roundrobin
 server gear-2 host2:port2 check fall 2 rise 3 inter 2000
weight 1
 server local-gear host1:port1 check fall 2 rise 3 inter 2000
weight 2

Again, reload the configuration by running the rhc reload-cartridge command, and then
run the Apache Benchmark test performed in step 8. Because gear-2 has a weight of 1 and
gear-1 has a weight of 2, gear 1 will serve twice as many requests as gear 2. You can verify
that by looking at the following HAProxy status page (screenshot):

See also
ff The Configuring a different health check URL for HAProxy recipe

ff The Enabling manual scaling with marker files recipe

Chapter 11

393

Creating scalable apps from nonscalable
apps

OpenShift currently does not support the conversion of an existing nonscalable application to
a scalable application. In this recipe, you will learn how to create a new scalable application
using an existing nonscalable application.

Getting ready
To complete this recipe, you will need rhc installed on your machine. This recipe will require
all three available gears, so please make sure to delete any existing applications.

How to do it…
Perform the following steps to covert a nonscalable application to a scalable application:

1.	 Open a new command-line terminal and navigate to a convenient location where
you want to create the application.

2.	 Create a nonscalable application with JBoss EAP 6 using the following command:
$ rhc create-app jobstore jbosseap postgresql-9.2 --from-code
https://github.com/OpenShift-Cookbook/chapter7-jobstore-
javaee6.git

3.	 To create a scalable application using the application created in step 2, run the
following command:
$ rhc create-app jobstorescalable --from-app jobstore --
scaling

How it works…
Using another application as a template, you can create a new application using the --from-
app option. When you specify the --from-app option, OpenShift will use the template
application configuration to create the new application. The configuration includes existing
cartridges, storage configuration, gear sizes, scaling configuration, deployment configuration,
and so on.

In the preceding steps, you created a scalable application from a nonscalable application.
Because you want to create a scalable application, you have to provide the --scaling
option; otherwise, a nonscalable application will be created. You can also specify different
gear sizes using the --gear-size option:

$ rhc create-app jobstorescalable --from-app jobstore –-scaling --
gear-size large

Logging and Scaling Your OpenShift Applications

394

Apart from --scaling and --gear-size, you can also provide the --env, --no-git, and
--enable-jenkins options.

The --from-app option makes use of application snapshots to transfer the template
application data and Git repository. It first takes the jobstore application snapshot,
transfers it to the jobstorescalable application, and then restores it. This can be
seen in the application creation logs as shown in the following command line:

Setting deployment configuration ... done

Pulling down a snapshot of application 'jobstore' to
/var/folders/9s/kp39j6zj1wg90n4jwshtdykh0000gn/T/jobstore_temp_clone.
tar.gz

...

done

Restoring from snapshot
/var/folders/9s/kp39j6zj1wg90n4jwshtdykh0000gn/T/jobstore_temp_clone.
tar.gz to application

'jobstorescalable' ...

done

The cartridge data is not transferred when you create an application
using --from-app, but any data stored in $OPENSHIFT_DATA_DIR
is transferred to the new application.

See also
ff The Creating scalable applications recipe

ff The Enabling manual scaling with marker files recipe

Enabling manual scaling with marker files
In this recipe, you will learn how you can disable autoscaling and add gears manually to a
scalable application using the rhc command-line tool.

Getting ready
To complete this recipe, you will need rhc installed on your machine. This recipe will utilize
the application created in the Creating scalable applications recipe.

Chapter 11

395

How to do it…
Perform the following steps to manually add a new gear to a scalable application:

1.	 Open a command-line terminal and navigate to the application directory created in
the Creating scalable applications recipe.

2.	 Create a new marker file with the name disable_auto_scaling in the
.openshift/marker directory inside your application director. On Mac and Linux
machines, you can use the following command:
$ touch .openshift/markers/disable_auto_scaling

3.	 On Windows machines, you can create a new file using the File menu.

4.	 Commit the file to the local Git repository, and push the changes to the OpenShift
application gear Git repository using the following commands:
$ git add .

$ git commit -am "disabled auto scaling"

$ git push

5.	 Restart the HAProxy cartridge so that it does not run the haproxy_ctld process.
The haproxy_ctld process is responsible for publishing scale-up and scale-down
events. Have a look at the following command:
$ rhc cartridge-restart haproxy

6.	 Now, to add a new gear to your application, you can use the following command:
$ rhc scale-up-app --app jobstore

7.	 To remove a gear from your application, you can use the following command:
$ rhc scale-down-app --app jobstore

How it works…
OpenShift scalable applications are by default autoscalable in nature, which means they can
add or remove web cartridge gears based on the number of concurrent users. While autoscaling
is useful in most cases, there are times when you will prefer to control the scaling behavior
yourself. You will enable manual scaling in situations where you can anticipate web traffic on
your application well in advance. Examples are a holiday season or a promotion, where you
know in advance that you can expect more visitors to your applications. For such situations,
you can enable manual scaling to have a bunch of gears available to serve the web traffic.

Logging and Scaling Your OpenShift Applications

396

OpenShift allows users to manually add or remove gears using the rhc scale-up-app
or rhc scale-down-app commands. These commands add or remove one gear at a
time. Under the covers, these commands use the OpenShift REST API to publish scale-up
and scale-down events to the broker. OpenShift Broker consumes these requests and acts
accordingly. After running the rhc scale-up-app command in step 5, you should see that
the jobstore application is consuming three gears. You can also see the new gear in the
HAProxy status page:

$ rhc show-app --app jobstore

jobstore @ http://jobstore-osbook.rhcloud.com/ (uuid:
53d405dd4382ec661c001842)

 Domain: osbook

 Created: 1:17 AM

 Gears: 3 (defaults to small)

There's more…
As mentioned in the preceding section, the rhc scale-up-app or scale-down-app
commands use the REST API to add or remove a gear. So, if you don't want to use OpenShift
tooling to perform manual scaling, then you can call the REST API yourself to add or remove
gears from the application.

To scale up using curl, you can run the following command:

curl -k -X POST
https://openshift.redhat.com/broker/rest/domains/{domain_name}
/applications/{app_name}/events --user
"openshift_login:openshift_login_password" --data
"event=scale-up"

Replace domain_name, app_name, openshift_login, and openshift_login_
password with their respective values.

To scale down using curl, you can run the wfollowing command:

curl -k -X POST
https://openshift.redhat.com/broker/rest/domains/{domain_name}/applic
ations/{app_name}/events --user
"openshift_login:openshift_login_password" --data "event=scale-down"

See also
ff The Creating scalable applications recipe

ff The Enabling manual scaling with marker files recipe

Running OpenShift on a
Virtual Machine

OpenShift Origin is the free and open source flavor of OpenShift PaaS. It is the upstream project
to both OpenShift Online and Enterprise. You will learn how to run OpenShift Origin in a Virtual
Machine (VM) running on your machine. This will help you work with OpenShift even when you
are not connected to the Internet. You can use the OpenShift Origin VM as your development
environment to test your changes, and then when you are ready for deployment, you can push
the source code to OpenShift Online. To use the OpenShift Origin VM as your development
environment, run the rhc setup --server command. The --server option should point
to the OpenShift Origin VM broker. You can refer to the Specifying a different OpenShift server
hostname recipe in Chapter 1, Getting Started with OpenShift, for more details.

To prepare yourself, you will need to have VirtualBox installed on your machine. If you
do not have it installed, please download it from the official website at https://www.
virtualbox.org/. Also, install the 7-Zip software for your operating system, which you
can download from its official website at http://www.7-zip.org/download.html.

Perform the following steps to run OpenShift on a VM:

1.	 Download the OpenShift Origin Version 3 VM image. The VM is over 2 GB in size. You
can run the following command:
$ wget https://mirror.openshift.com/pub/origin-
server/release/3/images/openshift-origin.zip –secure-
protocol=SSLv3

2.	 Windows users can download either via the browser, or they can first download
the wget software for Windows at http://gnuwin32.sourceforge.net/
packages/wget.htm, and then use it to download the OpenShift Origin VM.

https://www.virtualbox.org/
https://www.virtualbox.org/
http://www.7-zip.org/download.html
http://gnuwin32.sourceforge.net/packages/wget.htm
http://gnuwin32.sourceforge.net/packages/wget.htm

Running OpenShift on a Virtual Machine

398

3.	 The advantage of using wget is that you can resume the partial download using the
-c option. This will help if you are at a location where the Internet connection is not
stable, so you can resume the download using the following command:
$ wget -c https://mirror.openshift.com/pub/origin-
server/release/3/images/openshift-origin.zip --secure-
protocol=SSLv3

4.	 Next, unpack the zip archive using the 7-Zip file archiver:
$ 7z x openshift-origin.zip

5.	 Typing in this command will result in three additional files, as shown in the
next command:
$ ls -1t

These are OpenShift Origin Release 3.vmx, OpenShift Origin Release
3.vbox, and origin-rel3.vmdk.

6.	 Start the VirtualBox manager, and click on the New button. Have a look at the
following screenshot:

Appendix

399

7.	 Change the details required for the OpenShift Origin VM. You can keep whatever
name you like, but you have to use Type as Linux and Version as Fedora (64 bit).
Have a look at the following screenshot:

8.	 Next, set the memory size to 1 GB, as this will give the VM a reasonable amount
of memory to work well with. Have a look at the following screenshot:

Running OpenShift on a Virtual Machine

400

9.	 Next, you will add a virtual hard drive to the new machine. Please select the Use an
existing virtual hard drive file option, and click on the Choose a virtual hard drive
file upload button. Have a look at the following screenshot:

10.	 VirtualBox will present a file selection dialog. Browse to find the origin-rel3.vmdk
file, and select it. Click on the button labeled Open. Have a look at the following
screenshot:

Appendix

401

11.	 After selecting the file, click on Create to create a new VM. You will see a new VM in
the virtual manager display. Have a look at the following screenshot:

12.	 Next, you will set up a bridged network adapter, which will allow you to work with the
OpenShift Origin VM from your local machine. Select the VM, and right-click on it.
Then, click on the Settings icon:

Running OpenShift on a Virtual Machine

402

13.	 Navigate to the Network settings, and select Adapter 2. Check the Enable Network
Adapter checkbox, and then set the Attached to drop-down menu to Bridged
Adapter. Finally, set the name to the network adapter you want to bridge. Have
a look at the following screenshot:

Each system may have different names for their physical network adaptors. Click on
OK after making the preceding changes.

Appendix

403

14.	 Start the VM by clicking on the Start button. Have a look at the following screenshot:

15.	 When the VM has finished booting, it will present you with a tutorial that will help
you understand how to work with the OpenShift Origin VM, as shown in the following
screenshot:

After you enter yes, the tutorial will walk you through the features of the OpenShift
Origin VM from an administrator's perspective.

Running OpenShift on a Virtual Machine

404

16.	 After finishing the admin tutorial, you will be shown a menu where you can select
options to interact with the OpenShift Origin VM. Choose the second option to
connect with the web console. You will be shown the web console details, as
shown in the following screenshot:

17.	 Copy the URL and paste it into your browser. The default username/password
combination is demo/changeme. Have a look at the following screenshot:

Log in to the web console using the default username and password. You will be
directed to the application creation page. You can create the WordPress application
by following the steps mentioned in the Creating a WordPress application using the
web console recipe in Chapter 1, Getting Started with OpenShift.

Index
Symbols
.git directory 73
.htaccess file

used, for configuring Apache 289-291
@NotNull annotation 202
.openshift directory

action_hooks directory 73
cron directory 73
markers directory 74

.psqlrc configuration file
used, for configuring OpenShift application

psql shell 157-159
@Size annotation 202

A
access-log element 377
access logs

enabling, for Tomcat cartridge 382
account details

viewing, rhc used 40
action_hooks directory 73
add-member command 54
add-on cartridge

about 70
adding 78-80
managing 78-80

admin member
adding, to domain 59

Amazon AWS
reference link 131

Amazon RDS MySQL DB instance
using, with OpenShift 134-140

Amazon Relational Database Service
(Amazon RDS) 134

Apache
configuring, .htaccess file used 289-291

Apache Ant
URL, for blog 194

Apache Combined Log Format 366
Apache Maven

download link 194
Apache Tomcat 194
Apache Tomcat 8

URL, for blog 194
application

cleaning up 110, 111
cloning, to local machine 28, 29
creating, rhc used 71-74
cron cartridge, adding to 81-83
deleting 111, 112
details, viewing 84-86
Jenkins CI, adding to 331-335
MariaDB cartridge, adding to 187-189
MongoDB cartridge, adding to 168-170
MySQL 5.5 cartridge, adding to 78-80
MySQL cartridge, adding to 115-118
phpMyAdmin cartridge, adding to 120, 121
PostgreSQL cartridge, adding to 144-147
Redis cartridge, adding to 189-191
restarting 76, 77
RockMongo cartridge, adding to 171
starting 76, 77
stopping 76, 77

application backups
restoring 94, 95
taking 94, 95

406

application deployments
rolling back 97, 98
tracking 97, 98

application gear
rhc, using for SSH 87, 88

application Git repository
cloning, rhc used 86, 87

application logs
viewing 364-367

application resource limits
checking 33, 34

application scaling
values, defining for 388

application security
configuring, by defining database login module

in standalone.xml 204-209
application-specific environment variables

removing 94
setting 90-93
value, updating 94

autocomplete feature
enabling, in rhc command-line client 38

autoscale applications
URL, for blogs 386

B
Backbone.js

URL 311
Bean Validation

URL, for documentation 202
binary deployments

configuring 105-107
performing 105-107

Boilerpipe
URL 76

broker 10
build configuration 337, 338
builder configuration 336

C
Canonical Name (CNAME) 109
cartridges

add-on cartridge 70
downloadable cartridge 70
web cartridge 69

clean Maven build
forcing 229, 230

clean Python virtual environment
forcing 279, 280

CLI
used, for managing JBoss cartridges 212-217

clone command 29
Cloud

Java applications, debugging in 252-258
Cobertura

URL 357
CoffeeScript

using, with OpenShift Node.js
applications 326-328

components, OpenShift
broker 10
gear 10
node 10

configuration, default Git branch
for deployment 99-102

configuration, Node supervisor
options 301, 302

Contexts and Dependency Injection (CDI) 198
Continuous Integration (CI) 329
Control Groups (cgroups) 69
cron cartridge

adding, to application 81-83
cron directory 73
custom domain name

using 108, 109
custom Python package

installing 285-288

D
default Git branch

configuring, for deployment 99-102
default Maven build command

overriding 230, 231
dependency hell

URL 267
deployment

default Git branch, configuring for 99-102
deployment tracking

enabling, during application creation 99

407

domain
about 46
admin member, adding to 59
creating, rhc used 47
deleting, rhc used 65
details, viewing with rhc 50-53
editor member, adding to 57, 58
gear sizes, restricting for 63
leaving, rhc used 64
members, removing from 62
members, viewing in 60, 61
renaming, rhc used 48-50
viewer members, adding to 53-56

downloadable cartridges
about 70
using, with OpenShift applications 83, 84

DROP EXTENSION command 166

E
Eclipse

download link 194
used, for developing OpenShift

Java applications 233-245
Eclipse IDE, for Java EE Developers

download link 195
Eclipse package

URL 233
Eclipse System Explorer

used, for SSH into application gear 247-252
editor member

adding, to domain 57, 58
Enterprise Archive (EAR) 75
EnterpriseDB Cloud Database 144
EnterpriseDB PostgreSQL Cloud Database

using, with OpenShift 162-164
Enterprise JavaBeans (EJBs) 203
environment variable, Python application

URL 264
Express

URL 294
express-generator module 319
Express web applications

creating, Node.js used 311-321
deploying, MongoDB cartridges

used 311-320
Extreme Programming (XP) 329

F
Flask framework

URL 267, 270
Flask web applications

creating, Python used 270-276
deploying, PostgreSQL cartridges

used 270-276

G
gear 10
gear sizes

restricting, for domain 63
Geddy

URL 294
gem install command 35
Gevent

about 262
using, with Python applications 281-285

git clone command 29
Git configuration 336
Google Web Toolkit (GWT) 216
Green Balls plugin

URL, for installing 342

H
HAProxy

about 386
configuring, for roundrobin balance algorithm

usage 390-392
health check URL, configuring for 388, 389

hot deployment
enabling, for Java applications 226, 227
enabling, for Node.js applications 309, 310
enabling, for Python applications 277, 278

I
IDE Integration 9
index.php file 74
Infrastructure as a Service (IaaS) 8
installation, custom Python package 285-288
installation, JAR file 231-233
installation, Jenkins plugins 342-345
installation, modules

with JBoss cartridges 209-212

408

installation, PostgreSQL extensions 164, 165
installation, rhc command-line client 34, 35
interaction, OpenShift

IDE Integration 9
REST API 9
rhc command line 9
web console 9

J
JAR file

installing 231-233
Java applications

debugging, in Cloud 252-258
hot deployment, enabling for 226, 227

Java Archive (JAR) 75
Java EE 193
Java EE 6

URL, for official tutorial 195
Java EE 6 applications

creating, JBoss EAP used 195-203
deploying, PostgreSQL 9.2 cartridges

used 195-203
Java Enterprise Edition. See Java EE
Java, for operating system

download link 194
Java Platform Debugger

Architecture (JPDA) 258
Java Virtual Machine (JVM) 222
JBoss access logs

enabling 376-378
JBoss application logs

working with 368-374
JBoss AS7 binary

download link 213
JBoss cartridges

managing, CLI used 212-217
managing, management web interface

used 212-217
modules, installing with 209-212

jboss-cli console 217
JBoss EAP

used, for creating Java EE 6
applications 195-203

JBoss logging configuration
URL, for documentation 373

Jenkins
about 330
support, enabling at application creation 339
upgrading, to latest version 357-361
URL 330
URL, for distribute build jobs 330

Jenkins central plugins registry
URL 345

Jenkins CI
adding, to application 331-335

Jenkins plugins
installing 342-345
URL 330

Jenkins, using with OpenShift application
advantages 339

Jenkins workflow
creating, for OpenShift applications 353-357

job configuration
build configuration 337, 338
builder configuration 336
Git configuration 336

jobstore application
creating 196-199

jobstore directory
.git directory 201
.openshift directory 201
deployments directory 201
pom.xml file 200
src directory 200

JPA
URL, for documentation 202

JSON 61

L
leastconn load-balancing algorithm 390
local machine

application, cloning to 28, 29
MongoDB cartridge, accessing from 172-174
MongoDB cartridge, connecting from 174-177
MySQL cartridge, connecting from 124-127
MySQL database, accessing from 122-124
PostgreSQL cartridge, accessing

from 150, 151
logging configuration

updating, at runtime 374, 375

409

login modules
reference link 209

logs 364
logshifter service 364

M
management web interface

used, for managing JBoss cartridges 212-217
manual deployments

performing 103-105
manual scaling

enabling, with marker files 394-396
MariaDB cartridge

adding, to application 187-189
marker files

manual scaling, enabling with 394-396
markers directory 74
Maven

URL, for documentation 194
Maven-based project, hosted on GitHub

URL 346
Maven build

skipping 227, 228
members

removing, from domain 62
viewing, in domain 60, 61

modules
installing, with JBoss cartridges 209-212

mod_wsgi module 262
MongoDB

about 168
URL 295

MongoDB cartridge
accessing, from local machine 172-174
adding, to application 168-170
used, for deploying Express web

applications 311-321
MongoDB cartridge REST interface

enabling 178, 179
MongoDB database, adding from OpenShift

web console
URL 170

MongoLab
URL 183

MongoLab MongoDB-as-a-Service
using, with OpenShift 183-187

MySQL 5.5 cartridge
adding, to application 78-80

MySQL cartridge
adding, from OpenShift web

console 119, 120
adding, to application 115-118
connecting, from local

machine 124-127, 174-177
reference link 119

MySQL community server
URL, for downloading 122

MySQL configuration settings
updating 130

MySQL database
accessing, from local machine 122-124
connection, securing 140

MySQL max connections setting
updating 128, 129

MySQL Workbench
URL, for downloading 124
used for connecting MySQL cartridge, from

local machine 124-127

N
node 10
Node.js

about 293
URL 295
used, for creating Express web

applications 311-320
Node.js application

creating 295-300
dependencies, managing 303-306
hot deployment, enabling for 309, 310

node server.js command 299
node-supervisor module

about 294
reference link 294

Node supervisor options
configuring 301, 302

nonscalable apps
scalable apps, creating from 393, 394

npm install command 299

410

O
OpenJDK 6

switching to 224, 225
OpenShift

about 8, 68
Amazon RDS MySQL DB instance,

using with 134-140
components 10
EnterpriseDB PostgreSQL Cloud Database,

using with 162-164
MongoLab MongoDB-as-a-Service, using

with 183-187
reference, for sign-up page 11, 12
reference link, for application settings web

page 13
reference link, for applications web page 15
reference link, for domain web page 49
reference link, for quickstarts 17
running, on VM 397-404

OpenShift account
reference link, for settings web page 24
setting up, rhc used 36, 37

OpenShift application psql shell
configuring, .psqlrc configuration file

used 157-159
OpenShift applications

downloadable cartridges, using with 83, 84
Jenkins workflow, creating for 353-357

OpenShift blog
URL 324

OPENSHIFT_DATA_DIR environment
variable 91

OpenShift domains
creating, web console used 12-14

OpenShift Enterprise 9
OpenShift Java applications

developing, Eclipse used 233-245
OpenShift Node.js applications

CoffeeScript, using with 326-328
OpenShift Online

about 9
reference link, for account settings

web page 12
reference link, for login page 12

OpenShift Online account
creating 11, 12

OpenShift Online pricing
reference link 9, 12

OpenShift Origin 9, 397
OpenShift PaaS 397
OpenShift server hostname

specifying 41, 42
OpenShift SFTP support

URL 302
OpenShift Travis CI integration

URL, for blog 330
OpenShift web console

PostgreSQL database, adding from 148, 149

P
pam_namespace 69
pattern codes

%a 377
%A 377
%b 377
%B 378
%D 378
%h 378
%H 378
%I 378
%l 378
%m 378
%p 378
%q 378
%r 378
%s 378
%S 378
%t 378
%T 378
%u 378
%U 378
%v 378

pgAdmin
URL, for downloading 152
used, for connecting PostgreSQL

cartridge 152-155
phpMyAdmin

about 120
URL 120

411

phpMyAdmin cartridge
adding, from OpenShift web console 121
adding, to application 120, 121

pip
URL, for installation instructions 260

Platform as a Service (PaaS) 8, 68
PostgreSQL 143
PostgreSQL 9.2 cartridges

used, for deploying Java EE 6
applications 195-203

PostgreSQL cartridge
accessing, from local machine 150, 151
adding, to application 144-147
connecting, pgAdmin used 152-155
used, for deploying Flask web

applications 270-276
PostgreSQL database

adding, from OpenShift web
console 148, 149

PostgreSQL Extension Network
URL 164

PostgreSQL extensions
installing 164, 165

PostgreSQL max_connections setting
reference link 157
updating 155, 156

PostgreSQL server
URL, for downloading 150

projects
building, hosted on GitHub 346-352

Python
about 259
URL, for installation instructions 260
used, for creating Flask web

applications 270-276
Python application

creating 261-263
dependencies, managing 264-269
Gevent, using with 281-285
hot deployment, enabling for 277, 278
requirements.txt file 263
setup.py file 263
wsgi.py file 263

Python application logs
working with 382-384

Python virtual environment
accessing 280, 281

Q
quickstart 17

R
Redis 167
Redis cartridge

adding, to application 189-191
Redis, using with Java application

URL, for blog 192
Remote Dictionary Server. See Redis
Remote System Explorer

URL, for documentation 252
repository cloning

change, deploying 30-32
REST API

about 9
reference link, for documentation 9

Restify
URL 294

rhc
admin member, adding to domain 59
editor member, adding to domain 57, 58
gear sizes, restricting for domain 63
members, removing from domain 62
members, viewing in domain 60, 61
updating 42
used, for cloning application

Git repository 86, 87
used, for creating application 71-74
used, for creating domain 47, 48
used, for deleting domain 65
used, for leaving domain 64
used, for renaming domain 48-50
used, for running command in application's

SSH session 89, 90
used, for setting up OpenShift account 36, 37
used, for viewing account details 40
used, for viewing domain details 50-53
viewer members, adding to domain 53-56

rhc account command 40
rhc add-cartridge command 82, 83, 169, 172
rhc add-member command 54
rhc app-ssh command 90

412

rhc cartridge-add
command 116, 121, 145, 188

rhc cartridge command 80
rhc cartridge-show mysql command 122
rhc command-line client

autocomplete feature, enabling in 38
installing 34, 35

rhc configure-domain command
--no-allowed-gear-sizes option 64
about 64

rhc create-app command
--app option 72
--type option 72
about 262, 297, 386

rhc create-domain command
about 47
options 48

rhc -delete command 112
rhc delete-domain command 65
rhc deploy command 105
rhc domain-create command 47
rhc env-set command 93
rhc git-clone command 87
rhc leave-domain command 65
rhc list-member command 61
rhc member-remove command 62
rhc port-forward command 123, 124, 127
rhc reload-cartridge command 392
rhc remove-cartridge command 80
rhc restart-app command 77
rhc scale-cartridge command 388
rhc scale-up-app command 396
rhc scp command 223
rhc setup command 37, 42
rhc setup --server command 397
rhc show-app command 84, 122
rhc show-cartridge command 145
rhc show-domain command 51
rhc snapshot commands 96
rhc snapshot-save command 95
rhc source code

reference link 34
rhc start-app command 77
rhc stop-app command 77
rhc tail command 223, 365, 367
rhc threaddump command 223

rhc tidy-app command 110
RoboMongo

about 174
download link 174
URL 174
used, for connecting to MongoDB

cartridge 174-177
RockMongo

about 171
URL 171

RockMongo cartridge, adding from OpenShift
web console

URL 172
roundrobin balance algorithm

about 390
HAProxy, configuring for usage 390-392

Ruby
reference link 35

RubyGems 43

S
Sails.js

URL 294
samurai

URL 223
scalable apps

about 71
creating 385-388
creating, from nonscalable apps 393, 394

scale-down-app command 396
scheduled MongoDB database backups

performing 180-182
scheduled MySQL database backups

performing 131-133
scheduled PostgreSQL database backups

performing 159-161
Secure Shell. See SSH
security credentials

URL, for accessing 160, 182
Security Enhanced Linux (SELinux) 69
Sendmail

URL 90
single-page web application

URL 311
slave idle timeout

increasing 340, 341

413

Software as a Service (SaaS) 8
Spring applications

creating, Tomcat 7 cartridge used 217-222
deploying, Tomcat 7 cartridge used 217-222

Spring Framework 194, 217
SSH 18
ssh-agent utility 27
ssh-keygen utility

-b option 22
-C option 22
-t option 21

SSH key passphrases
working with 25-27

SSH keys
uploading, web console used 18-24

subprojects, OpenShift
OpenShift Enterprise 9
OpenShift Online 9
OpenShift Origin 9

T
team collaboration 46
template application

deplists.txt file 298
index.html file 298
node_modules directory 298
package.json file 298
README.md file 298
server.js file 298

template Git repository URL
specifying 75, 76

thread dumps, Java cartridges
taking 222-224

Tomcat 7 cartridge
used, for creating Spring

applications 217-222
used, for deploying Spring

applications 217-222
Tomcat application logs

working with 378-382
Tomcat cartridge

access logs, enabling for 382
Twitter4J library

installing, as module 210-212

U
use_npm marker

using 307, 308

V
viewer members

adding, to domain 53-56
VirtualBox

download link 397
virtualenv tool

about 260
URL, for installation instructions 260, 265

Virtual Machine (VM)
about 397
OpenShift, running on 397-404

W
Walmart

URL 294
WAR file

download link 214
Web Archive (WAR) 75
web cartridges 69
web console

about 9
used, for creating OpenShift domains 12-14
used, for creating WordPress

application 14-18
used, for updating SSH keys 18-24

Web Server Gateway Interface (WSGI) 262
Web Sockets

working with 321-326
wget software

download link 397
WordPress application

creating, web console used 14-18
WSGI interface

reference link 262

Thank you for buying

OpenShift Cookbook

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective MySQL
Management" in April 2004 and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licenses, and offering information to
anybody from advanced developers to budding web designers. The Open Source brand also runs
Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open Source project
about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should be
sent to author@packtpub.com. If your book idea is still at an early stage and you would like to
discuss it first before writing a formal book proposal, contact us; one of our commissioning editors
will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Implementing OpenShift
ISBN: 978-1-78216-472-2 Paperback: 116 pages

A fast-paced, practical guide for using OpenShift to
deploy your own open source Platform-as-a-Service

1.	 Discover what the cloud is, tear through the
marketing jargon, and go right to the tech.

2.	 Understand what makes an open source
Platform-as-a-Service work by learning about
OpenShift architecture.

3.	 Deploy your own OpenShift Platform-as-a-Service
cloud using DevOps orchestration and configuration
management.

Mongoose for Application
Development
ISBN: 978-1-78216-819-5 Paperback: 142 pages

Learn to speed up your application development by
using Mongoose to harness the power of Node.js
and MongoDB

1.	 Rapid application development with Mongoose on
the Node.js stack.

2.	 Use Mongoose to give structure and manageability
to MongoDB data.

3.	 Practical examples on how to use Mongoose for
CRUD operations.

4.	 Provides a number of helpful tips and takes away
the complexity of everyday MongoDB operations.

Please check www.PacktPub.com for information on our titles

OpenStack Cloud Computing
Cookbook
Second Edition
ISBN: 978-1-78216-758-7 Paperback: 396 pages

Over 100 recipes to successfully set up and manage
your OpenStack cloud environments with complete
coverage of Nova, Swift, Keystone, Glance, Horizon,
Neutron, and Cinder

1.	 Updated for OpenStack Grizzly.

2.	 Learn how to install, configure, and manage all
of the OpenStack core projects including new
topics such as block storage and software
defined networking.

3.	 Learn how to build your Private Cloud utilizing
DevOps and Continuous Integration tools and
techniques.

JBoss AS 7
Configuration, Deployment, and
Administration
ISBN: 978-1-84951-678-5 Paperback: 380 pages

Build a fully-functional, efficient application server using
JBoss AS

1.	 Covers all JBoss AS 7 administration topics in a
concise, practical, and understandable manner,
along with detailed explanations and lots of
screenshots.

2.	 Uncover the advanced features of JBoss AS,
including High Availability and clustering,
integration with other frameworks, and creating
complex AS domain configurations.

3.	 Discover the new features of JBoss AS 7, which has
made quite a departure from previous versions.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Getting Started with OpenShift
	A brief introduction into OpenShift
	Creating an OpenShift Online account
	Creating OpenShift domains using the web console
	Creating a WordPress application using the web console
	Uploading SSH keys using the web console
	Working with the SSH key passphrases
	Cloning the application to the local machine
	Deploying your first change
	Checking the application's gear quota
and limits
	Installing the OpenShift rhc command-line client
	Setting up an OpenShift account using rhc
	Enabling the autocomplete feature in an rhc command-line client
	Viewing the account details using rhc
	Specifying a different OpenShift server hostname
	Updating rhc

	Chapter 2: Managing Domains
	Introduction
	Creating a domain using rhc
	Renaming a domain using rhc
	Viewing domain details using rhc
	Adding viewer members to a domain
using rhc
	Adding an editor member to a domain
using rhc
	Adding an admin member to a domain
using rhc
	Viewing all the members in a domain
using rhc
	Removing members from a domain using rhc
	Restricting gear sizes for a domain using rhc
	Leaving a domain using rhc
	Deleting a domain using rhc

	Chapter 3: Creating and Managing Applications
	Introduction
	Creating an OpenShift application using the rhc command-line client
	Specifying your own template Git
repository URL
	Starting/stopping/restarting an application
	Adding and managing add-on cartridges
	Adding a cron cartridge to an application
	Using downloadable cartridges with OpenShift applications
	Viewing application details
	Cloning the application Git repository
using rhc
	SSH into the application gear using rhc
	Running a command in the application's
SSH session using rhc
	Setting application-specific environment variables
	Taking and restoring application backups
	Tracking and rolling back application deployments
	Configuring the default Git branch for deployment
	Doing manual deployments
	Configuring and doing binary deployments
	Using your own custom domain name
	Cleaning up the application
	Deleting the application

	Chapter 4: Using MySQL with OpenShift Applications
	Introduction
	Adding a MySQL cartridge to your application
	Adding a phpMyAdmin cartridge to your application
	Accessing a MySQL database from your local machine
	Connecting to a MySQL cartridge from your local machine using MySQL Workbench
	Updating the MySQL max connections setting
	Updating the MySQL configuration settings
	Performing scheduled MySQL database backups
	Using an Amazon RDS MySQL DB instance with OpenShift

	Chapter 5: Using PostgreSQL with OpenShift Applications
	Introduction
	Adding the PostgreSQL cartridge to your application
	Accessing the PostgreSQL cartridge from your local machine
	Connecting to the PostgreSQL cartridge using pgAdmin from your local machine
	Updating the PostgreSQL max_connections setting
	Using the .psqlrc configuration file to configure the OpenShift application psql shell
	Performing scheduled PostgreSQL database backups
	Using EnterpriseDB PostgreSQL Cloud Database with OpenShift
	Installing PostgreSQL extensions

	Chapter 6: Using MongoDB and Third-party Database Cartridges with OpenShift Applications
	Introduction
	Adding a MongoDB cartridge to your application
	Adding a RockMongo cartridge to your application
	Accessing a MongoDB cartridge from your local machine
	Connecting to a MongoDB cartridge using Robomongo from your local machine
	Enabling the MongoDB cartridge REST interface
	Performing scheduled MongoDB database backups
	Using MongoLab MongoDB-as-a-Service
with OpenShift
	Adding a MariaDB cartridge to your application
	Adding a Redis cartridge to your application

	Chapter 7: OpenShift for
Java Developers
	Introduction
	Creating and deploying Java EE 6 applications using the JBoss EAP and PostgreSQL 9.2 cartridges
	Configuring application security by
defining the database login module
in standalone.xml
	Installing modules with JBoss cartridges
	Managing JBoss cartridges using the management web interface and CLI
	Creating and deploying Spring applications using the Tomcat 7 cartridge
	Taking thread dumps of Java cartridges
	Choosing between Java 6 and Java 7
	Enabling hot deployment for Java applications
	Skipping the Maven build
	Forcing a clean Maven build
	Overriding the default Maven build command
	Installing the JAR file not present in the Maven central repository
	Developing OpenShift Java applications using Eclipse
	Using Eclipse System Explorer to SSH into the application gear
	Debugging Java applications in the Cloud

	Chapter 8: OpenShift for Python Developers
	Introduction
	Creating your first Python application
	Managing Python application dependencies
	Creating and deploying Flask web applications using Python and PostgreSQL cartridges
	Enabling hot deployment for Python applications
	Forcing a clean Python virtual environment
	Accessing an application's Python virtual environment
	Using Gevent with Python applications
	Installing a custom Python package
	Using the .htaccess file to configure Apache

	Chapter 9: OpenShift for
Node.js Developers
	Introduction
	Creating your first Node.js application
	Configuring Node supervisor options
	Managing Node.js application dependencies
	Using the use_npm marker
	Enabling hot deployment for Node.js applications
	Creating and deploying Express web applications using Node.js and MongoDB cartridges
	Working with Web Sockets
	Using CoffeeScript with OpenShift Node.js applications

	Chapter 10: Continuous Integration for OpenShift Applications
	Introduction
	Adding Jenkins CI to your application
	Increasing the slave idle timeout
	Installing Jenkins plugins
	Using Jenkins to build projects hosted
on GitHub
	Creating a Jenkins workflow for your OpenShift applications
	Upgrading Jenkins to the latest version

	Chapter 11: Logging and Scaling Your OpenShift Applications
	Introduction
	Viewing application logs
	Working with JBoss application logs
	Enabling JBoss access logs
	Working with Tomcat application logs
	Working with Python application logs
	Creating scalable applications
	Configuring a different health check URL
for HAProxy
	Configuring HAProxy to use a different balance algorithm
	Creating scalable apps from nonscalable apps
	Enabling manual scaling with marker files

	Appendix: Running OpenShift on a Virtual Machine
	Index

