
www.allitebooks.com

http://www.allitebooks.org

OpenStack Trove Essentials

Build your own cloud based Database as a Service
using OpenStack Trove

Alok Shrivastwa

Sunil Sarat

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

OpenStack Trove Essentials

Copyright © 2016 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: March 2016

Production reference: 1220316

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78528-561-5

www.packtpub.com

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

Credits

Authors
Alok Shrivastwa

Sunil Sarat

Reviewer
Denys Makogon

Commissioning Editor
Dipika Gaonkar

Acquisition Editor
Rahul Nair

Content Development Editor
Viranchi Shetty

Technical Editor
Nirant Carvalho

Copy Editors
Jonathan Todd

Madhusudan Uchil

Project Coordinator
Izzat Contractor

Proofreader
Safis Editing

Indexer
Hemangini Bari

Graphics
Kirk D'Penha

Production Coordinator
Shantanu N. Zagade

Cover Work
Shantanu N. Zagade

www.allitebooks.com

http://www.allitebooks.org

About the Authors

Alok Shrivastwa is a technologist from India, currently working as the director
of cloud services for Microland Ltd. in their Center of Innovation. He has a keen
interest in all things physical and metaphysical and is an innovator at heart. He
has worked with multiple large- and medium-sized enterprises, designing and
implementing their network security solutions, automation solutions, databases,
VoIP environments, datacenter designs, public and private clouds, and integrations.

He has also created several tools and intellectual properties in the field of
operationalization of emerging technologies. He has authored a book, Learning
OpenStack, with Packt Publishing, and has authored several whitepapers and blogs
on technology and metaphysical topics, in addition to writing poems in Hindi. Also,
he has been a guest speaker for undergraduate engineering students in Chennai.

You can connect with him at https://in.linkedin.com/in/alokas or follow
him on Twitter at @alok_as.

We are like the fire at the end of the matchstick, we appear when we
are needed, and once our work here is completed, we disappear into
the same nothingness we all came from. I thank that nothingness
we all fondly call God. I thank my mother, Seema, for making me
who I am today; my lovely sisters, Kawshiki and Abhabya; my
beautiful wife, Priyanka, for tolerating the insanity; and my father
for supporting me throughout.

I thank the reviewers who were patient in reviewing the work and
shaped the flow of the book. I thank all the editors at Packt for being
extremely helpful and understanding and finally Packt Publishing
for allowing me to share whatever little I know.

www.allitebooks.com

https://in.linkedin.com/in/alokas
http://www.allitebooks.org

Sunil Sarat is the vice president of cloud and mobility services at Microland Ltd.,
an India-based global hybrid IT infrastructure services provider.

He played a key role in setting up and running the emerging technologies practice,
dealing with areas such as public/private cloud (AWS and Azure, VMware vCloud
Suite, Microsoft, and OpenStack), hybrid IT (VMware vRealize automation/
orchestration, Chef, and Puppet), enterprise mobility (Citrix Xenmobile and VMware
Airwatch), VDI /app virtualization (VMware Horizon Suite, Citrix XenDesktop/
XenApp, Microsoft RDS, and AppV), and associated transformation services.

He is a technologist and a business leader with expertise in creating new practices
and service portfolios, building and managing high-performance teams, strategy
definition, technological roadmaps, and 24/7 global remote infrastructure
operations. He has varied experience in handling diverse functions such as
innovation/technology, service delivery, transition, presales/solutions,
and automation.

He has authored whitepapers, blogs, and articles on various technologies and
service-related areas, is a speaker at cloud-related events, and reviews technical
books. He has authored Learning OpenStack and reviewed Learning AirWatch and
Mastering VMware Horizon 6, all by Packt Publishing.

He holds various industry certifications in the areas of compute, storage, and
security and holds an MBA in marketing.

Besides technology and business, he is passionate about filmmaking and is a
part-time filmmaker as well.

For more information, you can visit his LinkedIn profile at https://www.linkedin.
com/in/sunilsarat or follow him on Twitter at @sunilsarat.

Firstly, I would like to thank the Existence for enabling me to write
this book. I would like to thank my family—my mother, Ratna; wife,
Abhaya; and my twins, Advika and Agnika—for supporting me
throughout. Thanks to my friends Karthieyan K., Syed, Samina, and
Mayank for their encouragement.

I thank Microland for all the exposure and support provided, which
was instrumental for me to write this book. My gratitude to my co-
author Alok Shrivastwa and, last but not least, to Packt Publishing
for the opportunity and guidance.

www.allitebooks.com

https://www.linkedin.com/in/sunilsarat
https://www.linkedin.com/in/sunilsarat
http://www.allitebooks.org

About the Reviewer

Denys Makogon is a senior Python software engineer at EPAM and works in
Kharkiv, Ukraine. He is a writer and developer by day and a reader by night. His
passion is helping people bring their technical skills up to the next level along with
developing skills that would become key features in obtaining a story of success
for both sides—developers and customers. He is an IT "tough guy", cloud-native
application developer, and has started work as a software architect in cloud-based
solutions. He is the founder of the Project Invader open source organization, mainly
focused on developing and designing platform and software as a service applications
for OpenStack. He is a contributor to the OpenStack DBaaS and the CloudValidation
open source framework. He is a founder and technical project lead of the BeeDB
project. He has worked on OpenStack Cloud Applications Development (http://
as.wiley.com/WileyCDA/WileyTitle/productCd-1119194318.html).

I would like to say thank you to the entire team that helped me get
the work done in time and at an appropriate level and supported
me within this project and to my family that helped me stay
concentrated on this book.

www.allitebooks.com

http://as.wiley.com/WileyCDA/WileyTitle/productCd-1119194318.html
http://as.wiley.com/WileyCDA/WileyTitle/productCd-1119194318.html
http://www.allitebooks.org

www.PacktPub.com

eBooks, discount offers, and more
Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at customercare@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on Packt
books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

www.allitebooks.com

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

[i]

Table of Contents
Preface vii
Chapter 1: Introducing OpenStack Trove 1

Database as a Service 1
Advantages 2

Reduced database management costs 2
Faster provisioning and standardization 3
Easier administration 3
Scaling and efficiency 3

Trove 4
Architecture 5

Shared components 5
API 5
The task manager 6
The guest agent 6
The conductor 6

Terminology 7
Datastore 7
Datastore version 7
Instance 8
Configuration group 8
Flavor 8
Database 8

A multi-datastore scenario 9
Database software distribution support 11
Putting it all together 12
Use cases 13

Dev/test databases 13
Web application databases 13

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Features 14
The Juno release 14
The Kilo release 14
The Liberty release 14

Summary 15
Chapter 2: Setting up Trove with DevStack in a Box 17

Requirements 17
Operating system 18
Database 18
Messaging queue 18
Web server 18
Internet connection 18

Preparing the server 18
Minimum configuration required 19
Server configuration 19
Setting the IP address 20

Installing prerequisites 21
Adding a user 21
Installing packages 22

DevStack 22
Downloading the DevStack script 23

Using a proxy with GitHub 23
Understanding the DevStack files 25

stack.sh 25
unstack.sh 25
rejoin-stack.sh 25
run_test.sh 26
exercise.sh 26
clean.sh 26
local.sh 26

Configuring the DevStack installation 26
Step 1 – copy the local.conf file from the samples directory to the base directory 28
Step 2 – modify the localrc section 28
Step 3 – modify the local.conf to install Trove and Swift 29

Installing DevStack 30
Using a proxy server 30

Verifying the installation 34
Troubleshooting the install 35

Working with screen 36
Screen control key 36
Useful commands 36

Table of Contents

[iii]

DevStack and screen 37
Killing DevStack 38
Restarting DevStack services 38

Summary 40
Chapter 3: Installing Trove in an Existing OpenStack Environment 41

Different methods of deploying OpenStack 42
Required OpenStack services 44
Planning the install 44

Where to install the Trove components 44
Take a backup 45

Installing Trove 46
Installing Trove from source 46
Installing with the Ubuntu OpenStack repository 48

Configuring Trove 49
Setting up the MySQL database 50
Keystone configuration 51
Modifying the configuration files 52

trove.conf 52
trove-taskmanager.conf and trove-conductor.conf 53
trove-guestagent.conf 53

Initializing the Trove database 54
Restarting the services 54

Summary 55
Chapter 4: Preparing the Guest Images 57

Structure of a guest image 58
Instance creation using the guest image 59
Creating the Trove guest image 61

Installation using configuration management systems 62
Installation using templates 62

Disk Image Builder 63
Red stack scripts 72

Uploading the Trove images 72
Modify QCOW2 images using guestfish 75

Installing guestfish 76
Loading the images 76
Modify the files on the image 76
Send commands 77

Example: Adding a user to the Ubuntu QCOW2 image 77
Summary 78

Table of Contents

[iv]

Chapter 5: Provisioning Database Instances 79
Checking for prerequisites 79
Launching our first instance 81

Logging into the instance via SSH 89
Launching the instance using the GUI 90
Connect to the database instance 93
Instance operations 93

Resize 93
Terminate the Trove instances 94

Troubleshooting 94
Summary 95

Chapter 6: Configuring the Trove Instances 97
Default datastore and version configuration 97
Modifying the instance configuration 102

Configuration groups 102
Defining configuration parameters 103
Uploading configuration parameters 104
Creating a configuration 105
Applying the configuration to an instance 105

Verification 106
Viewing the configuration 107
Patching the configuration 109
Updating the configuration 110
Removing the configuration 111

Verification 111
Adding a new parameter 112

Summary 113
Chapter 7: Database Backup and Restore 115

Formulating a backup and recovery plan 115
Backing up/restoring in Trove 116
The concept of strategies in Trove 116

The backup/restore strategy in action 118
Configuring the backup strategies 119
Configuring the storage strategies 120

Backup prerequisites 121

Table of Contents

[v]

Backups and restores 121
Full backup 121
Incremental backup 122
Viewing the backup 123
Restoring backups 124
Deleting backups 125

Summary 126
Chapter 8: Advanced Database Features 127

Replication and clustering 128
Replication 128
Clustering 129

Replication in Trove 129
Supported data stores 129
Setting up replications 130
Creating a replicated pair 132
Verifying replication 133
Failover options 134

Promote to the replica master 136
Eject the master 137
Detach replica 138

Clustering in Trove 139
Supported data store 139
Creating and uploading the MongoDB image 140
Creating a cluster 141

Summary 144
Index 145

[vii]

Preface
Database management has come a long way over the last decade or so. The process
of provisioning databases used to start with racking and stacking a physical
server, installing and configuring an operating system, and finally, installing and
configuring a database management system. This entire process took weeks and,
in some cases, months. Once the database is provisioned, you then of course have
a whole host of things to be managed, including availability, backups, security,
and performance. This provisioning and management consumed a lot of time and
resources. During the evolution, we had two trends that have had a significant
impact on the way databases were provisioned and managed. Automation eased
the management aspect and virtualization eased the provisioning, at least up to
the operating-system layer. Meanwhile, the other trend that we have seen is that
enterprises are moving away from a single database technology model to a model
which is fancily termed "polyglot persistence". This basically means adopting
multiple database technologies with the intention of storing the data in a database
that is best suited for that type of data. With multiple types of database technologies
coming into play, enterprises are finding it difficult to manage this complexity while
maintaining corporate standards and compliance.

Preface

[viii]

Fortunately for us, over the last couple of years, cloud is the other trend that came to
our rescue. With the advent of cloud, we have initially seen self-service based agile
provisioning of infrastructure take off, which has been termed as Infrastructure as
a Service and has automated a lot of aspects and made infrastructure management
easier. Building on this a bit more, we now have self-service based agile provisioning
of multiple types of databases, which is popularly known as Database as a Service
(DBaaS). This has made things much easier for enterprises in terms of bringing in
efficiencies and enforcing corporate standards and compliance. Enterprises can
avail DBaaS from a public cloud such as Amazon Web Services or Microsoft Azure.
Alternatively, they can build their own private cloud-based DBaaS and the need
for this could be owing to various reasons such as data privacy and security. This
is where OpenStack and Trove comes into the picture. OpenStack Trove is an open
source implementation of DBaaS. While it has been in existence for a couple of
years, it has started gaining momentum only recently with enterprises giving
it a serious thought.

The benefits of DBaaS in general and OpenStack Trove in particular are obvious.
The key challenge, however, is that beyond the documentation that is available from
the OpenStack project itself, there is not much reading material out there to help
potential DBAs and system/cloud administrators. This lack of skill and know-how
is one of the potential inhibitors to OpenStack Trove adoption.

This book is an attempt to provide all the essential information that is necessary
to kick-start your learning of OpenStack Trove and set up your own cloud-based
DBaaS. In this book, the readers will be introduced to all major components of
OpenStack Trove. Following this, the readers will get to understand how to set
up Trove in both development and production environments, configuring it, and
performing management activities such as backup and restore. Not to mention,
it also deals with certain advanced database features, such as replication and
clustering. This book takes a more practical approach to learning, as the learning
from each chapter will contribute to the reader's ability to build his/her own private
cloud-based DBaaS by the time he/she completes reading this book. We hope you
will enjoy reading this book and, more importantly, find it useful in your journey
towards learning and implementing DBaaS using OpenStack Trove.

What this book covers
Chapter 1, Introducing OpenStack Trove, introduces the concept of Database as a
Service and its advantages, followed by a quick introduction to the OpenStack
Trove project and its components.

Preface

[ix]

Chapter 2, Setting up Trove with DevStack in a Box, provides a list of prerequisites for
the book. This chapter also helps you understand DevStack and its components and
then helps you set up Trove with DevStack.

Chapter 3, Installing Trove in an Existing OpenStack Environment, gives you an
overview of the different available methods to deploy Trove. It deals a little
bit more in detail with installing Trove from source and the Ubuntu repository.

Chapter 4, Preparing the Guest Images, as the name implies, details how to build
production-ready images that will be required by Trove.

Chapter 5, Provisioning Database Instances, looks at creating and launching instances
using both CLI and GUI.

Chapter 6, Configuring the Trove Instances, introduces you to configuring Trove
instances and also how to make configuration changes to multiple Trove instances
using configuration groups.

Chapter 7, Database Backup and Restore, introduces the concept of Strategies and
provides an overview of how to back up and restore Trove instances.

Chapter 8, Advanced Database Features, deals with advanced features such as
replication and clustering in Trove.

What you need for this book
For all the chapters, you will require Ubuntu system and DevStack installed.

Who this book is for
This book is intended for database administrators having experience with RDBMS
and NoSQL databases wanting to offer DBaaS (short for Database as a Service) to
the end users using OpenStack Trove. It assumes that the readers have experience
in database administration with one or more databases, preferably with MySQL

This book will help any reader trying to build their skills in OpenStack Trove.
We believe that this is the right kind of opportunity for all those of you who have
embarked on a journey to build OpenStack Trove skills and enhance your career in
the next generation cloud world

Preface

[x]

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:
"We should be able to find the screen name using the screen –ls command."

A block of code is set as follows:

FLOATING_RANGE=192.168.1.0/27
FIXED_RANGE=10.1.10.0/24
FIXED_NETWORK_SIZE=256
FLAT_INTERFACE=eth0
ADMIN_PASSWORD=adm1npwd
DATABASE_PASSWORD=dbr00tpwd
RABBIT_PASSWORD=rabb1tpwd
SERVICE_PASSWORD=oss3rvice
SERVICE_TOKEN=x1y1z1token

Any command-line input or output is written as follows:

export http_proxy=http://172.21.2.17:80

export https_proxy=http://172.21.2.17:80

export no_proxy=localhost,172.22.6.0/24

New terms and important words are shown in bold. Words that you see on
the screen, for example, in menus or dialog boxes, appear in the text like this:
"Once you are able to log in, navigate to System | System Information."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Preface

[xi]

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it helps
us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or added
to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all
media. At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

www.packtpub.com/authors
http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Preface

[xii]

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

[1]

Introducing OpenStack Trove
OpenStack Trove truly and remarkably is a treasure or collection of valuable things,
especially for open source lovers like us and, of course, it is an apt name for the
Database as a Service (DBaaS) component of OpenStack. In this book, we shall see
why this component shows the potential and is on its way to becoming one of the
crucial components in the OpenStack world.

In this chapter, we will cover the following:

• DBaaS and its advantages
• An introduction to OpenStack's Trove project and its components

Database as a Service
Data is a key component in today's world, and what would applications do without
data? Data is very critical, especially in the case of businesses such as the financial
sector, social media, e-commerce, healthcare, and streaming media. Storing and
retrieving data in a manageable way is absolutely key. Databases, as we all know,
have been helping us manage data for quite some time now.

Databases form an integral part of any application. Also, the data-handling needs
of different type of applications are different, which has given rise to an increase
in the number of database types. As the overall complexity increases, it becomes
increasingly challenging and difficult for the database administrators (DBAs) to
manage them.

DBaaS is a cloud-based service-oriented approach to offering databases on demand
for storing and managing data. DBaaS offers a flexible and scalable platform that
is oriented towards self-service and easy management, particularly in terms of
provisioning a business' environment using a database of choice in a matter of a
few clicks and in minutes rather than waiting on it for days or even, in some
cases, weeks.

Introducing OpenStack Trove

[2]

The fundamental building block of any DBaaS is that it will be deployed over a cloud
platform, be it public (AWS, Azure, and so on) or private (VMware, OpenStack,
and so on). In our case, we are looking at a private cloud running OpenStack. So, to
the extent necessary, you might come across references to OpenStack and its other
services, on which Trove depends.

XaaS (short for Anything/Everything as a Service, of which DBaaS is one such
service) is fast gaining momentum. In the cloud world, everything is offered as
a service, be it infrastructure, software, or, in this case, databases. Amazon Web
Services (AWS) offers various services around this: the Relational Database Service
(RDS) for the RDBMS (short for relational database management system) kind of
system; SimpleDB and DynamoDB for NoSQL databases; and Redshift for data
warehousing needs.

The OpenStack world was also not untouched by the growing demand for DBaaS,
not just by users but also by DBAs, and as a result, Trove made its debut with the
OpenStack release Icehouse in April 2014 and since then is one of the most popular
advanced services of OpenStack.

It supports several SQL and NoSQL databases and provides the full life cycle
management of the databases.

Advantages
Now, you must be wondering why we must even consider DBaaS over traditional
database management strategies. Here are a few points you might want to consider
that might make it worth your time.

Reduced database management costs
In any organization, most of their DBAs' time is wasted in mundane tasks such as
creating databases, creating instances, and so on. They are not able to concentrate on
tasks such as fine-tuning SQL queries so that applications run faster, not to mention
the time taken to do it all manually (or with a bunch of scripts that need to be fired
manually), so this in effect is wasting resources in terms of both developers' and
DBAs' time. This can be significantly reduced using a DBaaS.

Chapter 1

[3]

Faster provisioning and standardization
With DBaaS, databases that are provisioned by the system will be compliant with
standards as there is very little human intervention involved. This is especially
helpful in the case of heavily regulated industries. As an example, let's look at
members of the healthcare industry. They are bound by regulations such as HIPAA
(short for Health Insurance Portability and Accountability Act of 1996), which
enforces certain controls on how data is to be stored and managed. Given this
scenario, DBaaS makes the database provisioning process easy and compliant as
they only need to qualify the process once, and then every other database coming
out of the automated provisioning system is then compliant with the standards or
controls set.

Easier administration
Since DBaaS is cloud based, which means there will be a lot of automation,
administration becomes that much more automated and easier. Some important
administration tasks are backup/recovery and software upgrade/downgrade
management. As an example, with most databases, we should be able to push
configuration modifications within minutes to all the database instances that have
been spun out by the DBaaS system. This ensures that any new standards being
thought of can easily be implemented.

Scaling and efficiency
Scaling (up or down) becomes immensely easy, and this reduces resource hogging,
which developers used as part of their planning for a rainy day, and in most cases, it
never came. In the case of DBaaS, since you don't commit resources upfront and only
scale up or down as and when necessary, resource utilization will be highly efficient.

These are some of the advantages available to organizations that use DBaaS. Some
of the concerns and roadblocks for organizations in adopting DBaaS, especially in a
public cloud model, are as follows:

• Companies don't want to have sensitive data leave their premises.
• Database access and speed are key to application performance. Not being

able to manage the underlying infrastructure inhibits some organizations
from going to a DBaaS model.

In contrast to public cloud-based DBaaS, concerns regarding data security,
performance, and visibility reduce significantly in the case of private DBaaS systems
such as Trove. In addition, the benefits of a cloud environment are not lost either.

Introducing OpenStack Trove

[4]

Trove
OpenStack Trove, which was originally called Red Dwarf, is a project that was
initiated by HP, and many others contributed to it later on, including Rackspace.
The project was in incubation till the Havana release of OpenStack.

It was formally introduced in the Icehouse release in April 2014, and its mission is to
provide scalable and reliable cloud DBaaS provisioning functionality for relational
and non-relational database engines.

As of the Liberty release, Trove is considered as a big-tent service.

Big-tent is a new approach that allows projects to enter the OpenStack code
namespace. In order for a service to be a big-tent service, it only needs to follow some
basic rules, which are listed here. This allows the projects to have access to the shared
teams in OpenStack, such as the infrastructure teams, release management teams,
and documentation teams. The project should:

• Align with the OpenStack mission
• Subject itself to the rulings of the OpenStack Technical Committee
• Support Keystone authentication
• Be completely open source and open community based

At the time of writing this book, the adoption and maturity levels are as shown here:

The previous diagram shows that the Age of the project is just 2 YRS and it has a
27% Adoption rate, meaning 27 of 100 people running OpenStack also run Trove.

Chapter 1

[5]

The maturity index is 1 on a scale of 1 to 5. It is derived from the following
five aspects:

• The presence of an installation guide
• Whether the Adoption percentage is greater or lesser than 75
• Stable branches of the project
• Whether it supports seven or more SDKs
• Corporate diversity in the team working on the project

Without further ado, let's take a look at the architecture that Trove implements in
order to provide DBaaS.

Architecture
The trove project uses some shared components and some dedicated project-related
components as mentioned in the following subsections.

Shared components
The Trove system shares two components with the other OpenStack projects:
the backend database (MySQL/MariaDB), and the message bus.

The message bus
The AMQP (short for Advanced Message Queuing Protocol) message bus
brokers the interactions between the task manager, API, guest agent, and
conductor. This component ensures that Trove can be installed and
configured as a distributed system.

MySQL/MariaDB
MySQL or MariaDB is used by Trove to store the state of the system.

API
This component is responsible for providing the RESTful API with JSON and XML
support. This component can be called the face of Trove to the external world since
all the other components talk to Trove using this. It talks to the task manager for
complex tasks, but it can also talk to the guest agent directly to perform simple tasks,
such as retrieving users.

Introducing OpenStack Trove

[6]

The task manager
The task manager is the engine responsible for doing the majority of the work. It
is responsible for provisioning instances, managing the life cycle, and performing
different operations. The task manager normally sends common commands, which
are of an abstract nature; it is the responsibility of the guest agent to read them and
issue database-specific commands in order to execute them.

The guest agent
The guest agent runs inside the Nova instances that are used to run the database
engines. The agent listens to the messaging bus for the topic and is responsible
for actually translating and executing the commands that are sent to it by the task
manager component for the particular datastore.

Let's also look at the different types of guest agents that are required depending
on the database engine that needs to be supported. The different guest agents
(for example, the MySQL and PostgreSQL guest agents) may even have different
capabilities depending on what is supported on the particular database. This way,
different datastores with different capabilities can be supported, and the system is
kept extensible.

The conductor
The conductor component is responsible for updating the Trove backend database
with the information that the guest agent sends regarding the instances. It eliminates
the need for direct database access by all the guest agents for updating information.
This is like the way the guest agent also listens to the topic on the messaging bus and
performs its functions based on it.

The following diagram can be used to illustrate the different components of Trove
and also their interaction with the dependent services:

Chapter 1

[7]

Nova

Cinder

Glance

Swift

Disk

Nova VM

RPC

K
eystone

N
eutron

Horizon
Dashboard

Trove API

Trove Task
Manager

Trove Conductor

Trove
Database

R
abbit M

Q
 M

essage B
us

RPC

RPC

Request
Backup

Guest Agent DB

DB Backup

Datastore Images

Request Instance

Request Storage

Terminology
Let's take a look at some of the terminology that Trove uses.

Datastore
Datastore is the term used for the RDBMS or NoSQL database that Trove can
manage; it is nothing more than an abstraction of the underlying database engine,
for example, MySQL, MongoDB, Percona, Couchbase, and so on.

Datastore version
This is linked to the datastore and defines a set of packages to be installed or already
installed on an image. As an example, let's take MySQL 5.5. The datastore version
will also link to a base image (operating system) that is stored in Glance.

The configuration parameters that can be modified are also dependent on the
datastore and the datastore version.

Introducing OpenStack Trove

[8]

Instance
An instance is an instantiation of a datastore version. It runs on OpenStack Nova
and uses Cinder for persistent storage. It has a full OS and additionally has the
guest agent of Trove.

Configuration group
A configuration group is a bunch of options that you can set. As an example, we
can create a group and associate a number of instances to one configuration group,
thereby maintaining the configurations in sync.

Flavor
The flavor is similar to the Nova machine flavor, but it is just a definition of memory
and CPU requirements for the instance that will run and host the databases.

Normally, it's a good idea to have a high memory-to-CPU ratio as a flavor for
running database instances.

Database
This is the actual database that the users consume. Several databases can run in a
single Trove instance. This is where the actual users or applications connect with
their database clients.

The following diagram shows these different terminologies, as a quick summary.
Users or applications connect to databases, which reside in instances. The instances
run in Nova but are instantiations of the Datastore version belonging to a Datastore.
Just to explain this a little further, say we have two versions of MySQL that are
being serviced. We will have one datastore but two datastore versions, and any
instantiation of that will be called an instance, and the actual MySQL database
that will be used by the application will be called the database (shown as DB
in the diagram).

Chapter 1

[9]

Configuration Group

Datastore VersionDatastore

Trove

MySQL 5.5
Ubuntu 14.04

Nova

Applications

Instances

Storage

Cinder

Network

MySQL
PostgreSQL
Mongo DB

DB

DB

DB

A multi-datastore scenario
One of the important features of the Trove system is that it supports multiple
databases to various degrees. In this subsection, we will see how Trove works
with multiple Trove datastores.

www.allitebooks.com

http://www.allitebooks.org

Introducing OpenStack Trove

[10]

In the following diagram, we have represented all the components of Trove (the
API, task manager, and conductor) except the Guest Agent databases as Trove
Controller. The Guest Agent code is different for every datastore that needs to
be supported and the Guest Agent for that particular datastore is installed on the
corresponding image of the datastore version.

Common commands
like “Create Instance”

Database specific
commands

Trove Controller
Horizon

Dashboard

Guest Agent
(MySQL)

Guest Agent
(Mongo DB)

Instance

Instance

Instance

Instance

Guest Agent
(Oracle)

Guest Agent
(Cassandra)

M
es

sa
ge

 B
us

The guest agents by default have to implement some of the basic actions for the
datastore, namely, create, resize, and delete, and individual guest agents have
extensions that enable them to support additional features just for that datastore.

The following diagram should help us understand the command proxy function of
the guest agent. Please note that the commands shown are only indicative, and the
actual commands will vary.

Chapter 1

[11]

GRANT ALL PRIVILEGES ON test123.*TO ‘user’@’%’
IDENTIFIED BY’ pwd123’ WITH GRANT OPTION;

Create Admin User

Name:”user1”
Password : pwd123
DB: test123

{user.”user1”
pwd: “pwd123”
customData: {},
roles: [
{role: db:”admin” ”test123”
]
}

Guest Agent
(MySQL)

Guest Agent
(Mongo DB)

Instance

AQMPTrove Controller

Instance

At the time of writing this book, Trove's guest agents are installable only on
Linux; hence, only databases on Linux systems are supported. Feature requests
(https://blueprints.launchpad.net/trove/+spec/mssql-server-db-support)
were created for the ability to create a guest agent for Windows and support
Microsoft SQL databases, but they have not yet been approved at the time
of writing this and might be a remote possibility.

Database software distribution support
Trove supports various databases; the following table shows the databases
supported by this service at the time of writing this. Automated installation is
available for all the different databases, but there is some level of difference when it
comes to the configuration capabilities of Trove with respect to different databases.

https://blueprints.launchpad.net/trove/+spec/mssql-server-db-support

Introducing OpenStack Trove

[12]

This has lot to do with the lack of a common configuration base among the different
databases. At the time of writing this book, MySQL and MariaDB have the most
configuration options available, as shown in this list:

Database Version
MySQL 5.5, 5.6
Percona 5.5, 5.6
MariaDB 5.5, 10.0
Couchbase 2.2, 3.0
Cassandra 2.1
Redis 2.8
PostgreSQL 9.3, 9.4
MongoDB 2.6, 3.0
DB2 Expre 10.5
CouchDB 1.6

So, as you can see, almost all the major database applications that can run on Linux
are already supported on Trove.

Putting it all together
Now that you have understood the architecture and terminologies, we will take a
look at the general steps that are followed:

1. Horizon/Trove CLI requests a new database instance and passes the
datastore name and version, along with the flavor ID and volume size as
mandatory parameters. Optional parameters such as the configuration
group, AZ, replica-of, and so on can also be passed.

2. The Trove API requests Nova for an instance with the particular image and a
Cinder volume of a specific size to be added to the instance.

3. The Nova instance boots and follows these steps:
1. The cloud-init scripts are run (like all other Nova instances).
2. The configuration files (for example, trove-guestagent.conf)

are copied down to the instance.
3. The guest agent is installed.

4. The Trove API will also have sent the request to the task manager, which will
then send the prepare call to the message bus topic.

Chapter 1

[13]

5. After booting, the guest agent listens to the message bus for any activities
for it to do, and once it finds a message for itself, it processes the prepare
command and performs the following functions:

 ° Installing the database distribution (if not already installed on
the image)

 ° Creating the configuration file with the default configuration for
the database engine (and any configuration from the configuration
groups associated overriding the defaults)

 ° Starting the database engine and enabling auto-start
 ° Polling the database engine for availability (until the database engine

is available or the timeout is reached)
 ° Reporting the status back to the Trove backend using the

Trove conductor

6. The Trove manager reports back to the API and the status of the machine
is changed.

Use cases
So, if you are wondering all the places where we can use Trove, it fits in rather nicely
with the following use cases.

Dev/test databases
Dev/test databases are an absolute killer feature, and almost all companies that start
using Trove will definitely use it for their dev/test environments. This provides
developers with the ability to freely create and dispose of database instances at will.
This ability helps them be more productive and removes any lag from when they
want it to when they get it.

The capability of being able to take a backup, run a database, and restore the backup
to another server is especially key when it comes to these kinds of workloads.

Web application databases
Trove is used in production for any database that supports low-risk applications,
such as some web applications. With the introduction of different redundancy
mechanisms, such as master-slave in MySQL, this is becoming more suited to
many production environments.

Introducing OpenStack Trove

[14]

Features
Trove is moving fast in terms of the features being added in the various releases.
In this section, we will take a look at the features of three releases: the current
release and the past two.

The Juno release
The Juno release saw a lot of features being added to the Trove system. Here is a
non-exhaustive list:

• Support for Neutron: Now we can use both Nova-network and Neutron for
networking purposes.

• Replication: MySQL master/slave replication was added. The API also
allowed us to detach a slave for it to be promoted.

• Clustering: MongoDB cluster support was added.
• Configuration group improvements:

 ° The functionality of using a default configuration group for a
datastore version was added. This allows us to build the datastore
version with a base configuration of your company standards.

 ° Basic error checking was added to configuration groups.

The Kilo release
The Kilo release majorly worked on introducing a new datastore. The following is
the list of major features that were introduced:

• Support for the GTID (short for global transaction identifier)
replication strategy

• New datastores, namely Vertica, DB2, and CouchDB, are supported

The Liberty release
The Liberty release introduced the following features to Trove. This is a non-
exhaustive list:

• Configuration groups for Redis and MongoDB
• Cluster support for Redis and MongoDB
• Percona XtraDB cluster support

Chapter 1

[15]

• Backup and restore for a single instance of MongoDB
• User and database management for MongoDB
• Horizon support for database clusters
• A management API for datastores and versions
• The ability to deploy Trove instances in a single admin tenant so that the

Nova instances are hidden from the user

In order to see all the features introduced in the releases, please look at
the release notes of the system, which can be found at these URLs:
Juno : https://wiki.openstack.org/wiki/ReleaseNotes/Juno
Kilo : https://wiki.openstack.org/wiki/ReleaseNotes/Kilo
Liberty : https://wiki.openstack.org/wiki/ReleaseNotes/
Liberty

Summary
In this chapter, we were introduced to the basic concepts of DBaaS and how Trove
can help with this. With several changes being introduced and a score of one on five
with respect to maturity, it might seem as if it is too early to adopt Trove. However,
a lot of companies are giving Trove a go in their dev/test environments as well as for
some web databases in production, which is why the adoption percentage is steadily
on the rise.

A few companies that are using Trove today are giants such as eBay, who run their
dev/test Test databases on Trove; HP Helion Cloud, Rackspace Cloud, and Tesora
(which is also one of the biggest contributors to the project) have DBaaS offerings
based on the Trove component.

Trove is increasingly being used in various companies, and it is helping in reducing
DBAs' mundane work and improving standardization. In the next chapter, we will
see how to quickly set up Trove using DevStack scripts.

https://wiki.openstack.org/wiki/ReleaseNotes/Juno
https://wiki.openstack.org/wiki/ReleaseNotes/Kilo
https://wiki.openstack.org/wiki/ReleaseNotes/Liberty
https://wiki.openstack.org/wiki/ReleaseNotes/Liberty

[17]

Setting up Trove with
DevStack in a Box

There are several distributions of OpenStack that are available out there and almost
all of them can be used along with Trove. Since the focus of this book is Trove and
not so much deploying OpenStack itself, we will set up Trove along with DevStack,
which is a script that helps in quickly setting up a development environment
of OpenStack.

In this chapter, we will look at setting up our Stack in a single node deployment and
follow up with setting up the Trove system. In brief, this chapter will deal with:

• Prerequisites for following along with this book
• Understanding DevStack and its components
• Setting up the Trove system with DevStack
• Working with screen and performing some functions in DevStack

At the end of the book, we will have a working Trove install in less than a couple
of hours. It is not recommended to use this method (using DevStack) to roll out a
production environment.

Requirements
In order to use DevStack, the requirements are fairly minimal and the setup is fairly
easy. We can set up a range of deployments right from a single node deployment to
a multiple node deployment in a few moments. The following list shows what
we need.

Setting up Trove with DevStack in a Box

[18]

Operating system
DevStack runs on Ubuntu, RHEL, and Fedora and can work on most other popular
Linux distributions. The latest releases of these operating systems are supported.
In this book, we will be using Ubuntu 14.04 as our base operating system for the
DevStack install.

Database
From a database perspective, DevStack runs with MySQL (or Maria DB) and
PostgreSQL. We will be using Maria DB (the open source fork of MySQL) in
this book.

Messaging queue
DevStack supports both RabbitMQ and QPID. In this book, we will be using
RabbitMQ.

Web server
Apache is supported by DevStack and we will be using this in our installation.

Internet connection
Internet connection is a must as the script will pull the actual repositories from
GitHub in order to install the OpenStack services. You can use a direct Internet
connection or a connection through a proxy.

The process to use a proxy is shown in the following sections, but please
note that this is completely optional and only to be used when we are
using a proxy in an enterprise lab environment. If not using the proxy,
you can safely ignore these commands.

Preparing the server
We will be creating a single node install of DevStack and be using Nova networking,
rather than Neutron networking for the sake of simplicity.

Chapter 2

[19]

It is possible to run DevStack in multiple environments, right from running it on a
virtual machine (VM) in your laptop/desktop, physical hardware, or even in public
cloud environments like Azure and Rackspace.

In this book, we will create our VM running on an ESXi server in our lab
environment. The only limitation in following this approach is that we will be
able to use only QEMU as opposed to KVM (we can edit to pass the 64 bit flags up,
but that will not give us true 64 bit in the nested hypervisor environment).

Minimum configuration required
In order to run DevStack, the following are the bare minimum requirements:

• RAM: 4 GB
• CPU: 2 cores
• Disk: 20 GB
• Internet connection: Yes
• Operating system: DevStack-supported operating system

We will be using this environment later to show replication, backup, and so on.
For running some serious tests, we may need at least twice or thrice the amount of
processing power and memory mentioned in the preceding list.

Server configuration
The server configuration that we are using is as follows:

• RAM: 8 GB
• CPU: 4 cores
• Hard disk 1: 40 GB
• Hard disk 2: 40 GB
• Operating system: Ubuntu 14.04
• NIC card: 1
• Internet connection: via HTTP proxy
• Proxy authentication needed: No

Setting up Trove with DevStack in a Box

[20]

The proxy is being used deliberately in this book, so as to show how to install
DevStack with a proxy in play. The second hard drive can be added later for the
Cinder service to create its volumes on.

Setting the IP address
We will set a static IP address onto our server. We will need the following
information. Please fill in the table with the relevant information as applicable
to your environment:

Name Value
IP address 172.22.6.246
Default gateway 172.22.6.1
Subnet mask 255.255.255.0
DNS server 172.22.6.35

We will edit the file /etc/network/interfaces and set eth0 (or the appropriate
interface) with the static IP address. The eth0 section will look something like this:

iface eth0 inet static
address 172.22.6.246
gateway 172.22.6.1
netmask 255.255.255.0
dns-nameservers 172.22.6.35

The first line specifies that the interface eth0 will have an inet (IPv4) address and is
static. The remaining lines are self-explanatory.

After this, please restart the service using the command:

service networking restart

If you have a desktop install, or are using the network configuration manager
to set the IP address, you will have to first disable it by editing the file at
/etc/NetworkManager/NetworkManager.conf and disabling the DNS
masquerading and setting the managed under the [ifupdown] section to true.

Once the configuration is set, please type the ifconfig command to verify:

ifconfig –a

Chapter 2

[21]

Please verify that the IP address was assigned. You can check the default gateway by
typing the command:

netstat –rn

You should also verify that the DNS servers were set in the file /etc/resolv.conf,
by using the command:

cat /etc/resolv.conf

Installing prerequisites
Before we can run the DevStack script, we will have to perform a couple of
prerequisite actions:

• Add a user and give it sudoers access
• Install packages

Adding a user
We will create a user called stack and give that user sudoers permission. We will
need root access to do so.

sudo su

adduser stack

Setting up Trove with DevStack in a Box

[22]

This will create the user and also creates the home directory for the user. We will
now give this user all sudoers permissions as this user will be the one to install
all the different components. When a list of questions appears, just select all
the defaults.

echo "stack ALL=(ALL) NOPASSWD: ALL" | sudo tee -a /etc/sudoers

Executing this command will add the user stack to the sudoers file allowing the
stack user with all the permissions. We could even put the stack user in the admin
group, but then it will need a password, hence this method is followed.

Installing packages
There are a few packages we will need to install before we can proceed any further:

• git: This package provides the git command line to clone the repositories.
• screen: This provides a screen where we can execute long running

commands without being interrupted. This is needed so that the installation
can continue even if we accidently close the session.

• corkscrew: This is used if we need to tunnel the git using the HTTP proxy
(as we will be doing in our case).

The following command will install these packages:

sudo apt-get clean

sudo apt-get update

sudo apt-get install git screen corkscrew

Once the installation is complete, we can proceed to actual installation of
DevStack itself.

DevStack
DevStack, as we have already discussed, is a script that installs the other OpenStack
components in a development environment. There are several modes in which
DevStack can be installed, but the only thoroughly tested mode is the All-In-One
Single box installation.

The DevStack script itself is located on the GitHub and needs to be pulled from there.
This ensures that we always have the latest script.

Chapter 2

[23]

Downloading the DevStack script
DevStack can be downloaded by the git clone command. We will clone that in our
home directory.

cd ~

git clone https://git.openstack.org/openstack-dev/devstack

This will clone the DevStack project onto the local devstack folder. Since we are
using a proxy server, this may not work right off the bat. If you don't have a proxy
server, then you can skip this section.

Using a proxy with GitHub
In order to make git work with a proxy, we will use corkscrew. We will need the
following information:

Name Value
Proxy IP 172.21.2.17
Proxy port 80
Proxy username NA
Proxy password NA

In order to perform a read-only operation, we will need to create a file in some
location; in our case, we will create a file, mygitproxy.sh, in our home directory.

We will need to add the following lines to the file and set it in the proxy
configuration of git:

#!/bin/bash
exec corkscrew <Proxy IP> <Proxy Port> $*

In our case, we will create the file and substitute our proxy IP and proxy port.
Copying and pasting the following will create the file called mygitproxy.sh
and the contents of the file are delimited using the EOT:

cat <<EOT >> /home/alokas/mygitproxy.sh

#!/bin/bash

exec corkscrew 172.21.2.17 80 \$*

EOT

Setting up Trove with DevStack in a Box

[24]

We also have to change the permission for this file to be executable by using the
chmod command.

chmod +x /home/alokas/mygitproxy.sh

The contents of the file are as shown in the following screenshot:

As a last step, we have to now change the git global configuration to use this file,
which is done by using the following command:

git config --global core.gitproxy '/home/alokas/mygitproxy.sh'

We also have to set the environment variables: http_proxy, https_proxy
and no_proxy.

export http_proxy=http://172.21.2.17:80

export https_proxy=http://172.21.2.17:80

export no_proxy=localhost,172.22.6.0/24

The http and https_proxy commands set the proxies to be used and no_proxy is
used to ignore the proxy. We will need to provide the details of our local networks,
so that the local connections are not proxied.

We know that the different components in the OpenStack system
talk to each other by using the HTTP RESTful API calls. The purpose
of setting no_proxy is simply to ensure that those calls don't go
through the proxy and fail.

We should now be able to execute the git clone command that was mentioned in
the earlier section (cd ~ && git clone https://git.openstack.org/openstack-
dev/devstack).

Chapter 2

[25]

The devstack repository is now cloned onto your local environment. Please change
to that directory by typing the command:

cd ~/devstack

We are now in the DevStack directory, which we have just cloned from git.

Understanding the DevStack files
Once in the directory, you will see several files and scripts. Although it is not
necessary to know what these scripts do in detail, it is definitely a good idea to
know the contents.

stack.sh
Being the most important script in the directory, stack.sh is used to install the
different components of OpenStack. This script allows us to specify configuration
options of which git repositories to use, what are the services you want to be
enabled in your environment, and their network configurations and so on. It uses
a configuration file called stackrc for this purpose, which has most of the user
configuration information.

unstack.sh
As the name suggests, unstack.sh is used to stop all OpenStack services except
common services like MySQL and RabbitMQ.

rejoin-stack.sh
The rejoin-stack.sh script rejoins an existing screen, or re-creates a screen session
from a previous run of stack.sh. This is used after you have rebooted the server and
would want to go back to where you left off. We will need to run this script and the
VMs that we created and the data will be restored.

Setting up Trove with DevStack in a Box

[26]

Please be advised that the rejoin stack doesn't actually power on the guest VMs
running on OpenStack. You have to manually power them up from the Horizon
dashboard or the CLI commands.

run_test.sh
The run_test.sh script runs tests on the entire project for any stray white spaces
and major style formatting. We would use this if we were contributing to the
DevStack code itself; however, in this book, we won't have much use for this script.

exercise.sh
The function of this script is to run all the examples present in the
devstack/exercises directory and report on the results. The directory
already has some scripts to demonstrate the capabilities of OpenStack;
we may choose to add some more files in the directory.

clean.sh
The function of this script is to remove all the files used by OpenStack. In case you
run this, you may need to download all the files again.

local.sh
The function of this script (found in the samples directory) is to run some additional
scripts after stack.sh has completed its job. We need to copy this to the base
directory for it to function properly.

Configuring the DevStack installation
DevStack uses the stackrc file located in the base directory. However, the settings
of stackrc can be overridden by the local.conf file if placed in the root directory.
A copy of the local.conf file can be found in the samples directory.

By default, the following services will be installed when running DevStack:

• Nova (API, Certificate, Object Store, Compute, Network, Scheduler, VNC
proxies, Certificate Authentication): Compute service

• Cinder (Scheduler, API, Volume): Block volumes
• Glance (API and Registry): Image store

Chapter 2

[27]

• Horizon: Dashboard
• Keystone: Identity
• MySQL: Database
• RabbitMQ: Message bus
• Tempest: OpenStack Integration Test Suite

We can also install other components like Swift, Heat, Ceilometer, Trove, and so on
by modifying the stackrc file or the localrc file.

Although Tempest is going to be installed, we will not be using it in this book as we
are not going to be developing anything in OpenStack itself.

Before we start configuring the local.conf file in order to provide the install and
configure options to the stack.sh script, here are a few things that we need to keep
handy for us to modify:

Name Name in config file Value
Password for MySQL root user DATABASE_PASSWORD dbr00tpwd

Password for RabbitMQ RABBIT_PASSWORD rabb1tpwd

Passwords for different
OpenStack service accounts

SERVICE_PASSWORD oss3rvice

Password for admin account ADMIN_PASSWORD adm1npwd

Random service token SERVICE_TOKEN x1y1z1token

IP range for instances FIXED_RANGE 10.1.10.0/24

Floating IP range FLOATING_RANGE 192.168.1.0/27

Interface FLAT_INTERFACE eth0

Number of IPs in the range for
instances

FIXED_NETWORK_SIZE 256

This is all the information we need to get started. Please note that in this case, we are
using Nova networking and a simple flat network, where all the instances will be
connected to the same bridge and can talk to each other.

If we do decide to use Neutron networking, then some additional settings need
to be added.

Setting up Trove with DevStack in a Box

[28]

The localrc settings need to look like the following:

FLOATING_RANGE=192.168.1.0/27
FIXED_RANGE=10.1.10.0/24
FIXED_NETWORK_SIZE=256
FLAT_INTERFACE=eth0
ADMIN_PASSWORD=adm1npwd
DATABASE_PASSWORD=dbr00tpwd
RABBIT_PASSWORD=rabb1tpwd
SERVICE_PASSWORD=oss3rvice
SERVICE_TOKEN=x1y1z1token

Please ensure there are no spaces between the equal sign and the values themselves,
otherwise the script will fail midway.

Step 1 – copy the local.conf file from the samples
directory to the base directory
Assuming that you have also cloned devstack in your home directory, let us change
the directory.

cd ~/devstack

cp samples/local.conf ./

You should see the local.conf file copied to the base directory. This will be the only
file we need to edit in order to install.

Step 2 – modify the localrc section
Under the [[local|localrc]] section, we have to modify the settings with
the values that we have just defined. After the edit, the file will look like the
following screenshot:

Chapter 2

[29]

Step 3 – modify the local.conf to install Trove and
Swift
As a final step, we will enable Trove and Swift (for database backups).
The following commands will append the lines between the delimiters (EOF)
to the local.conf file.

Before executing the command, let us take a look at how this all works.
ENABLED_SERVICES is an array, which is used by the stack.sh script to install
and configure the different OpenStack services. += appends to the array and
-= takes away from the array.

So essentially, we enable the Swift and Trove services. We also enable the installation
of the Trove client by enabling the plugin:

cd ~/devstack

cat <<EOF >> local.conf

ENABLED_SERVICES+=,trove,tr-api,tr-tmgr,tr-cond

enable_plugin trove git://git.openstack.org/openstack/trove

enable_plugin python-troveclient git://git.openstack.org/openstack/
python-troveclient

ENABLED_SERVICES+=,s-proxy,s-object,s-container,s-account

EOF

www.allitebooks.com

http://www.allitebooks.org

Setting up Trove with DevStack in a Box

[30]

Enabling Neutron
Optionally, we can enable Neutron networking by adding the following
lines to the local.conf:
ENABLED_SERVICES +=,neutron,q-meta,q-l3,q-dhcp,q-
agt,q-svc

ENABLED_SERVICES -= n-net

This simply enables the Neutron services and disables the Nova
networking service. But, for the sake of simplicity, we will not be using
Neutron in this book.

That's it, we are now ready to install DevStack in our environment.

Installing DevStack
DevStack is normally installed with a single command. However, this takes a
very long time to complete and, in order to save ourselves the trouble of being
disconnected from the SSH session and having to restart the entire install, we will
use screen.

Screen is a program that helps to open several terminal instances on one single
physical terminal instance.

We will start a screen session and run the installer (typing the screen command
starts a new screen session).

screen

cd ~/devstack

./stack.sh

You can then either monitor the progress or disconnect from the screen (by pressing
Ctrl + A and Ctrl + D) and let the process run on the backend. When you want to go
back to the screen, please type screen –r (to reconnect).

Running the stack.sh script will run several things and will install the OpenStack
components that have been selected in the stackrc file. However, since we are using
a proxy server, we have to make some simple additional changes before we can run
with it.

Using a proxy server
Please follow this section only while using a proxy server to install DevStack,
otherwise, skip it completely.

Chapter 2

[31]

We need to make the following changes:

• Export the proxy variables
• Add GIT_BASE to the local section of the local.conf file

We can export the proxy variables as we did in the previous section when we were
cloning DevStack itself.

export http_proxy=http://172.21.2.17:80

export https_proxy=http://172.21.2.17:80

export no_proxy=localhost,172.22.6.0/24

Using your favorite editor, go ahead and edit the local.conf file (as we did in the
previous section); add a line as shown:

GIT_BASE=http://github.com

The local.conf file will have the contents as shown in the following screen capture:

Once this is complete, we can now just run the stack.sh script, which will spew out
a ton of output of the actions it is performing. Once that is complete, the script will
give you the URLs to access your new OpenStack deployment.

Please use the same three commands mentioned to start the installation.

screen

cd ~/devstack

./stack.sh

Setting up Trove with DevStack in a Box

[32]

The script will start the installation as shown in the following screen capture:

During the process of the installation, it may ask you for your password for the
sudoers access and any other passwords that you may not have specified in the
local.conf file.

After this, depending on your Internet connection speed, you may have to wait
for several minutes or hours for the packages to be downloaded and installed on
your server.

The DevStack script clones all the different OpenStack components in the
/opt/stack folder. You can navigate to this folder and see what individual
services are cloned in the individual folders under this base folder.

Chapter 2

[33]

We will need to reconnect to the screen session to see the output if we have
disconnected, by typing:

screen –r

During the installation, you will also see that there are additional screens that are
started as the DevStack script (this screen is called stack).

In this case, we know that our screen is the one that is not stack, so we will connect to
it by passing PID.TTY.Host in the command as shown:

screen –r 2237.pts-0.DevStack

Once the installation is complete, the script will give an output in the
following format:

Our stack in the box is ready. It should have installed Horizon, Nova, Keystone,
Cinder, Trove, and Swift. We can now log in to the Horizon portal with the
URL mentioned.

Setting up Trove with DevStack in a Box

[34]

Verifying the installation
If we don't have any errors in the log file, the stack should be ready. However,
let's complete a few quick verification tasks before we go to the next section.

The first thing that we will do is log in to the horizon portal, the URL of
which has been outputted by the stack.sh script. In our case, it is
http://172.22.6.246/dashboard. We need to be able to log in with
the credentials that we choose in the configuration file.

Once you are able to log in, navigate to System | System Information. This screen
should be able to show you the status of the components of OpenStack that
were installed.

Chapter 2

[35]

You should be able to see all the services that are installed and the hosts on which
they are installed. Since this is a single node installation, all the services will be
installed on the same server. However, if you have done a multi-node install,
then we will be able to see multiple servers listed in the services.

Please feel free to navigate around the Horizon portal and explore it; you will
see that there are two tenants that are created: admin tenant and demo tenant.
The admin user will have access to both of the tenants.

Troubleshooting the install
If there have been issues with the install, please navigate to the /opt/stack/logs
directory and look for stack.sh.log. This will show all the activities that the script
performed, and will point out what caused the failure.

Setting up Trove with DevStack in a Box

[36]

Working with screen
Since we are using DevStack in this book, screen becomes a core concept of running
DevStack. In this section, we will take a look at some screen commands and how we
will be using them in order to interact with DevStack.

Screen is software that essentially is a window manager in Linux. It helps
the user to use multiple shell windows from a single SSH session. This is
recommended to be used when we have a long running command that
needs to survive network disruptions.

Screen is normally used to run long running processes. DevStack creates and runs its
entire services in its own screen and if you were to use the ~/devstack/restack.sh
script, it would connect you to the already running screen session.

We installed screen as a prerequisite earlier in the chapter; let us now look at some of
the commands that will help us.

Screen control key
Pressing Ctrl + A activates the control mode and any key you press after that is
passed as a control key and not as a key press sent to the shell.

In order to use this, you have to press Ctrl + A, release, and press the key that you
want to send as a command.

For example, for help, you would press Ctrl + A, release it, and then press the ? key.

Useful commands
Some of the useful commands in screen are as follows:

• screen <screen name>: To create a new screen session
• screen –ls: To list all the screen sessions
• screen –r <screen name>: To reconnect to a screen
• screen –X –S <screen name> <command>: To pass a command

to the screen

Once inside the screen, the following commands can come in handy:

• Ctrl + A and then ?: Screen help page
• Ctrl + A and then " (Control key and double quotes): List of all windows in a

screen (especially helpful to select the different services running in DevStack)

Chapter 2

[37]

• Ctrl + A and then C: Create a window in screen
• Ctrl + A and then N: Go to next window
• Ctrl + A and then D: Detach from the screen
• Ctrl + A and then K: Kill the screen

DevStack and screen
Since DevStack runs in the screen called stack, we will be able to use all of the
commands in order to manage the DevStack system. The screen windows keep
debug logs of all the different services.

We should be able to find the screen name using the screen –ls command.
The DevStack default screen name is Stack.

We could connect to it using the command screen –r 20276.stack (the name
shown in the previous command output).

We can then see all the different services at a glance by using Ctrl + A and then ".

Setting up Trove with DevStack in a Box

[38]

We could switch to the window running a particular service by using the up and
down arrows and hitting enter.

Killing DevStack
We could kill the stack by using the command:

screen –X –S 20276.stack quit

That sends the quit command to the screen thereby killing all the services.

Restarting DevStack services
DevStack installs the services and opens a screen for the services. Since the startup
scripts are not installed (like in the case of the production install), in order to restart
the services, we will need to use the following procedure:

1. Connect to the stack screen by:
screen –r 20276.stack

Chapter 2

[39]

2. You will see a screen like the preceding one.
3. Browse to the service you want to restart by pressing Ctrl + A and N (for

next screen) and Ctrl + A and P, for the previous screen, until you reach the
service. Please read the service name at the lower left-hand corner.

4. We could also use the other methods of navigating the screens as mentioned
previously. In this example, we will navigate to the Nova Scheduler Service.

5. Press Ctrl + C to stop this service, and the prompt will return.
6. Press the up arrow (to see the last command) and press the Enter key to

restart. This command is just a long command line with the location of the
configuration file.

Setting up Trove with DevStack in a Box

[40]

We could copy this command line and create our own startup scripts should we
choose not to use this method.

The service has now been restarted and we can continue to work on the server.
We can use the other features of the screen with DevStack.

Summary
In this chapter, we learned how to use DevStack to get a stack in the box with Trove
going quickly and easily. We understood DevStack files and installed and configured
DevStack. We have also learned to work with screens.

Please do remember that DevStack is not to be used in a production environment,
but can definitely be used to develop code or learn OpenStack quickly.

In the next chapter, we will talk about installing Trove in an existing OpenStack
installation in a production setup.

[41]

Installing Trove in an Existing
OpenStack Environment

In the previous chapter, we installed OpenStack with Trove on a single node using
DevStack scripts. In this chapter, we will discuss how to add Trove onto your
existing OpenStack installation.

Depending on the original distribution that was used to install OpenStack, the
process for Trove will vary slightly and in all likelihood, we will use the same
processes that we used for the other OpenStack components.

In this chapter, we will look at:

• Different deployment methods available for OpenStack
• Installing Trove from source
• Installing Trove from the Ubuntu repository

The installation itself is the simplest part of the process. Configuration is what
takes most time and effort in the entire process. However, the good news is
that the configuration is fairly similar for all the different distributions.

You can skip this chapter for now and come back to it at a later point in
time if the objective is to simply get started in Trove using the DevStack
install, which we have done in the previous chapter. This chapter deals
with getting this up and ready in a production environment so that
on completion of this book, you may put the knowledge to use in a
production environment.

Installing Trove in an Existing OpenStack Environment

[42]

Different methods of deploying
OpenStack
Before we start adding Trove in our production environments, let's take a look at
various methods that are available to install/deploy the OpenStack environment.

One method that we have already seen in the last chapter is utilizing DevStack
scripts, but we also know that it is not fit for a production environment. There
are several distributions of OpenStack, which can be downloaded from
their repositories.

The most famous distributions for different categories are as follows:

• OS distribution: Ubuntu
 ° Installed using aptitude (apt-get) found on Debian systems and

provides a repository for each release of OpenStack.

• Third-party distribution: Mirantis
 ° Installed and configured using another big-tent project called Fuel.

The Trove plugin is available for us to use Fuel to install Trove.

• Distribution optimized for Trove: Tesora

 ° The distribution is available only as a DBaaS platform, which means
if you have installed this, then you already have Trove.

There are other distributions like, say, VIO (short for VMware Integrated
OpenStack), which has its own custom scripts to deploy OpenStack. In order
to see which method users prefer, let's take a look at the user survey taken of
OpenStack users about the different tools that are used to deploy OpenStack
across various environments.

Chapter 3

[43]

How to install Trove using all of the preceding tools will be exhaustive, time
consuming, and will also need us to discuss the nature of the tools, which would fall
outside the scope of this book. However, the scripts for some of them are listed next,
which you can use for your production install:

• SaltStack: https://github.com/saurabhsurana/trove-installer/tree/
master/saltstack

• SaltStack-based OpenStack: https://github.com/EntropyWorks/salt-
openstack

• OpenStack with Puppet: https://wiki.openstack.org/wiki/Puppet/
Deploy

• OpenStack with Chef: https://docs.chef.io/openstack.html
• OpenStack with Ansible: https://github.com/openstack/openstack-

ansible

• OpenStack with PackStack: https://wiki.openstack.org/wiki/
Packstack

• OpenStack with Juju: https://jujucharms.com/openstack
• OpenStack with Fuel: https://wiki.openstack.org/wiki/Fuel

https://github.com/saurabhsurana/trove-installer/tree/master/saltstack
https://github.com/saurabhsurana/trove-installer/tree/master/saltstack
https://github.com/EntropyWorks/salt-openstack
https://github.com/EntropyWorks/salt-openstack
https://wiki.openstack.org/wiki/Puppet/Deploy
https://wiki.openstack.org/wiki/Puppet/Deploy
https://docs.chef.io/openstack.html
https://github.com/openstack/openstack-ansible
https://github.com/openstack/openstack-ansible
https://wiki.openstack.org/wiki/Packstack
https://wiki.openstack.org/wiki/Packstack
https://jujucharms.com/openstack
https://wiki.openstack.org/wiki/Fuel

Installing Trove in an Existing OpenStack Environment

[44]

Depending on what distribution you are using, they may or may not support Trove
(most of them do) and in the event your distribution doesn't support Trove natively,
you can install Trove from source as shown later in the chapter.

If your distribution supports Trove, then you would install it as you would install
other OpenStack services. As an example, if you are using the Mirantis distro,
then you would use Fuel and a Trove plugin to install Trove on your system.

Required OpenStack services
The best aspect of OpenStack is that you can choose to run services as per your
requirement. However, there are some basic services that Trove and its features
are dependent on; they need to be present:

• Keystone – for authentication
• Cinder – for block devices
• Swift – for backups
• Nova – for the VMs that would run the instances
• Horizon – for the GUI

Neutron is an optional component, and in its absence, the Nova network can provide
the basic networking capabilities that are needed.

Keystone, Cinder, and Nova are mandatory, without which the service can't even
perform its basic function. In the absence of Swift, the system will provide databases,
but the backup/restore and replication/clusters and so on wouldn't work.

Planning the install
Before we go ahead with adding Trove to our production install, there are a couple
of things we should do:

• Decide where to install the Trove components
• Take backups

Where to install the Trove components
In a production install of OpenStack, you would have a variety of nodes that would
be functioning as:

• Controller node
• Compute node

Chapter 3

[45]

• Storage node
• Network node

There might be a single node for each of these roles or multiples of these nodes
depending on how large a footprint OpenStack is managing.

The best place you would install the services of Trove would be on the controller
node, except of course the guest agent, which will be installed on the instance that
Nova spins up.

If there are multiple controller nodes (in the case of an HA install of OpenStack),
you will have to install the Trove components on both of them.

Take a backup
Now that we have chosen to use the controller node as the place where we will
install the Trove server components, frequently, the controller node is normally
virtual. It is a good idea to take a snapshot of the node, so if anything goes wrong, we
will be able to restore it back to the current stage. If you are using a physical machine
as the controller node, then this might not be easy, but you may still be able to take a
snapshot using additional tools such as Acronis in order to take a physical snapshot.

Please note that this is an optional step and you may proceed without
performing this.

Installing Trove in an Existing OpenStack Environment

[46]

Once the backup is complete, we can move on to installing the system and
configuring it.

Installing Trove
We will take a look at installing Trove from its source and also using the Ubuntu
OpenStack distribution repository.

Installing Trove from source
If our current distribution doesn't support Trove, or we have installed the
production environment from source, we will have to choose to install Trove
directly from source.

It is assumed that all the services that Trove requires (like Nova, Swift, and
Keystone) are already installed and we also have the details about the supporting
components like the MySQL and RabbitMQ services.

We will need to ensure that the following packages are installed. We just use
aptitude to check and install them if they don't already exist.

sudo apt-get install build-essential libxslt1-dev qemu-utils mysql-client

sudo apt-get install python-dev python-pexpect python-mysqldb
libmysqlclient-dev

After this is complete, we will have to install the latest versions of setuptools and pip.
We will install this in the user directory so as to not conflict with the system settings.

First, visit https://pypi.python.org/pypi/setuptools/ and https://pypi.
python.org/pypi/pip/ to find out the latest version numbers.

We execute the following command to find the title of the pages that will give us the
version number:

curl --silent https://pypi.python.org/pypi/setuptools/ | grep "<title>"

curl --silent https://pypi.python.org/pypi/pip/ | grep "<title>"

https://pypi.python.org/pypi/setuptools/
https://pypi.python.org/pypi/pip/
https://pypi.python.org/pypi/pip/

Chapter 3

[47]

In our case, setuptools was at version 18.4 and the pip version was 7.1.2 as shown.

We will export these as variables.

export mypip=7.1.2

export myst=18.4

We will then download and install these in our home directory.

cd ~

wget https://pypi.python.org/packages/source/s/setuptools/setuptools-
$myst.tar.gz

tar -xfvz setuptools-$myst.tar.gz

cd setuptools-$myst

python setup.py install –user

The preceding commands simply download the file, after substituting the version
number, and unpack. That is, they will execute the install script as the user and not
in the global realm. We will follow the same commands for pip as well.

wget https://pypi.python.org/packages/source/p/pip/pip-{{latest}}.tar.gz

tar xfvz pip-$mypip.tar.gz

cd pip-$mypip

python setup.py install –user

Once this completes, we will export our home directory as all the packages are
installed in our home directory itself. We do this by sourcing the profile file.

echo PATH="$HOME/.local/bin:$PATH" >> ~/.profile

. ~/.profile

Since we don't want the main Python libraries to be touched, we will create a virtual
environment and install Trove there. If you log out after you have created the virtual
environment, just use the last line (source env/bin/activate) to get back to the
virtual environment.

We can ignore the creation/activation of the virtual environments
(virtual environment and source commands to follow) if we don't
mind the system libraries getting touched. This will happen in the
case of production systems, as they will technically be installed to
serve a single purpose, in this case running OpenStack.

Installing Trove in an Existing OpenStack Environment

[48]

In the virtual environment, we will clone the git repositories for Trove and its client.

pip install virtualenv --user

virtualenv --system-site-packages env

source env/bin/activate

cd ~

git clone https://git.openstack.org/openstack/trove.git

git clone https://git.openstack.org/openstack/python-troveclient.git

The preceding commands effectively clone the repositories onto the current
directory, and Python is running in a virtual environment.

After this, we will quickly test the requirements and install Trove and its client.

cd ~/trove

pip install -r requirements.txt -r test-requirements.txt

sudo python setup.py install

cd ~/python-troveclient

sudo python setup.py install

If you will also be developing the Trove system (which will
not be the case in a production install), we can use the sudo
python setup.py develop (replace the install with develop
in the preceding two statements).

This will install Trove and its client. However, at this point in time, Trove is
non-functional, and the configuration needs to be updated for this to function.
The configuration process is the same as that of a production or multi-node
deployment configuration. Therefore, please refer to the configuration section
of the next installation procedure (Configuring Trove).

Installing with the Ubuntu OpenStack
repository
In the case where we have an OpenStack production or a pre-production
environment installed with Ubuntu's OpenStack distribution (install guides for the
Liberty release can be found at http://docs.openstack.org/liberty/install-
guide-ubuntu/), we can use the following section to add Trove on top of that.

Even if we have used, say, Puppet or Chef to install the OpenStack environment, it
would have used the Ubuntu/Red Hat distro depending on the operating system of
the node, so if you have an Ubuntu system, then chances are we can use this to add
the Trove system.

http://docs.openstack.org/liberty/install-guide-ubuntu/
http://docs.openstack.org/liberty/install-guide-ubuntu/

Chapter 3

[49]

We can install Trove by using the aptitude package manager.

apt-get install python-trove python-troveclient trove-common trove-api \

trove-taskmanager

It is assumed that the repositories will be set because we have already installed
other components of OpenStack. Once the installation is complete, we will now be
configuring the Trove system.

Installing the packages should also create a user called trove. We will verify that it is
indeed the case; if not, we can add the user manually.

awk -F":" '{ print $1 }' /etc/passwd | grep –x trove

If we get an output on the screen, then the user exists. If we don't get an output,
we can add it by using the command:

useradd -m trove -s /bin/bash

As the next step, we will configure the Trove system.

Configuring Trove
Configuring the Trove system is the final piece of the puzzle. If you have used
an automated system (like SaltStack or DevStack), the configuration should
automatically be done, provided the configuration parameters were passed
down to the scripts.

If we have installed from source or from a repository manually, then the
configuration becomes a mandatory part.

Before we start the configuration, we will need the following information handy.
Some of this information will be new, and some of it will already exist based on the
other components that are already installed (MySQL IP and Port, RabbitMQ server
configuration, and so on).

We always follow a practice to fill out the details in a tabular format so that we can
easily access them.

Installing Trove in an Existing OpenStack Environment

[50]

Please note that the table is filled with details from our existing environment, but
these will be different for your environment.

Requirement Value
Hostname/IP of controller node 172.22.6.246
Database IP and port localhost:3306
RabbitMQ server localhost
RabbitMQ username stackrabbit
RabbitMQ password rabb1tpwd

MySQL root password dbr00tpwd

Keystone admin username admin

Keystone admin password adm1npwd

Trove password oss3rvice

Trove DB password tr0v3db

Setting up the MySQL database
We can log in to the MySQL server using the command:

mysql -u root –p

We will then create the database and assign user permissions to it. We could also use
the root account to access the database. However, in a production environment, it is
recommended that we use service accounts rather than the root account.

create database trove;

grant all privileges on trove.* TO trove@'localhost' identified by
'tr0v3db';

grant all privileges on trove.* TO trove@'%' identified by 'tr0v3db';

We need both the lines because some versions of the database
ignore localhost from the wild char %.

Chapter 3

[51]

Keystone configuration
We will have to create the Trove user, service, and endpoint in the Keystone system.
In order to do this, we will first export the required environment variables.

export OS_TENANT_NAME=admin

export OS_AUTH_URL=http://172.22.6.246:5000/v2.0

export OS_USERNAME=admin

export OS_PASSWORD=adm1npwd

We will also save this in a file and source it to export the variables for us.

keystone user-create --name trove –pass oss3rvice

keystone user-role-add --user trove --tenant service --role admin

This will create the user and add it as an admin in the service tenant. We will then
create a service and its endpoint.

keystone service-create --name trove --type database --description
"Trove: The OpenStack Database Service"

This command will output the unique ID of the service, which you should note
down and substitute in the following command to create the endpoint for the service.

Although the command mentions the region name as regionOne, you will have to
set that to the region name being used in your environment.

keystone endpoint-create

--service-id <Insert Service ID here> \

--publicurl http:// 172.22.6.246:8779/v1.0/%\(tenant_id\)s \

--internalurl http://172.22.6.246:8779/v1.0/%\(tenant_id\)s \

--adminurl http://172.22.6.246:8779/v1.0/%\(tenant_id\)s \

--region regionOne

The Keystone endpoints can be verified by the command keystone endpoint-list
or openstack endpoint list.

Installing Trove in an Existing OpenStack Environment

[52]

The details can be seen by the command openstack endpoint show trove.

Modifying the configuration files
We will need to modify the following configuration files for Trove to work:

• /etc/trove/trove-conductor.conf

• /etc/trove/trove.conf

• /etc/trove/trove-taskmanager.conf

• /etc/trove/trove-guestagent.conf

trove.conf
In the main Trove configuration file, which is located at /etc/trove/trove.conf,
we will edit the configuration to ensure the following is present. Please substitute the
values from your environment, wherever applicable.

[DEFAULT]
trove_api_workers = 2
use_syslog = False
debug = True
default_datastore = mysql
sql_connection = mysql://trove:tr0v3db@localhost/trove
rabbit_password = rabb1tpwd
rabbit_userid = openstack
[keystone_authtoken]
signing_dir = /var/cache/trove
cafile = /opt/stack/data/ca-bundle.pem
auth_uri = http://172.22.6.246:5000
project_domain_id = default
project_name = service

Chapter 3

[53]

user_domain_id = default
password = oss3rvice
username = trove
auth_url = http:// 172.22.6.246:35357
auth_plugin = password

trove-taskmanager.conf and trove-conductor.conf
Both the /etc/trove/trove-conductor.conf and /etc/trove/trove-
taskmanager.conf files should be updated to contain the following:

[DEFAULT]
use_syslog = False
debug = True
trove_auth_url = http://172.22.6.246:35357/v2.0
nova_proxy_admin_pass =
nova_proxy_admin_tenant_name = trove
nova_proxy_admin_user = radmin
taskmanager_manager = trove.taskmanager.manager.Manager
sql_connection = mysql://trove:tr0v3db@localhost/trove
rabbit_password = rabb1tpwd
rabbit_userid = openstack

trove-guestagent.conf
This file is different in the sense that this is used by the guest agent, which is installed
on the instance and not on the Trove server. This file is sent to the guest instance by
the trove-taskmanager service using cloud-init.

Please edit the file as shown next, by setting the auth_url and rabbit_host ,
userid, and password:

[DEFAULT]
log_file = trove-guestagent.log
log_dir = /var/log/trove/
ignore_users = os_admin
control_exchange = trove
trove_auth_url = http://172.22.6.246:35357/v3
nova_proxy_admin_pass =
nova_proxy_admin_tenant_name = trove
nova_proxy_admin_user = radmin
rabbit_password = rabb1tpwd
rabbit_host = 10.1.10.1
rabbit_userid = stackrabbit

Installing Trove in an Existing OpenStack Environment

[54]

Initializing the Trove database
After the configuration changes have been made, we will initialize the Trove
database by executing the commands.

trove-manage db_sync

trove-manage datastore_upgrade mysql

This pushes the schema to the Trove database that was created during the
installation phase. If we were to log in to the MySQL database that we created for
Trove and take a look at it, we will now see that the tables are populated as shown in
the following screenshot:

Restarting the services
Once the configuration has been completed, we need to restart all the services.

sudo service trove-api restart

sudo service trove-taskmanager restart

sudo service trove-conductor restart

This method will add the Trove project to an existing production installation running
on the Ubuntu OpenStack distribution.

Chapter 3

[55]

Summary
In this chapter, we have looked at the installation of Trove in a production
environment and configuring Trove.

In the next chapter, we will learn how to create the guest images that we would use
in either the DevStack environment or the production install.

[57]

Preparing the Guest Images
Now that the Trove system is installed, the next step is to build the images that we
will use for the DBaaS to function properly. This is possibly the most important step
as this will be the gold standard that Trove will use for a particular data store.

For the sake of simplicity and especially for testing, we can use the prebuilt
images that are available from OpenStack itself. These images should strictly
be used for testing and development use and should not be used in a production
environment. The images are available for download and are located at
http://tarballs.openstack.org/trove/images/ubuntu/.

In order to use the images from the preceding repository, we can only use the
10.0.0.0/24 subnet in the FIXED_RANGE of DevStack. This is because of the fact
that the default gateway for these images is set to 10.0.0.1.

In our case, we have used 10.1.10.0/24, so the default gateway needs to be
10.1.10.1. Hence, the images cannot be used directly. We have two options
to use the prebuilt images:

• Run the ~/devstack/unstack.sh script and remove the DevStack install,
change the FIXED_RANGE variable, and rerun the ~/devstack/stack.sh
script

• Use guestfish to modify the default gateway of the images before uploading
them to the Glance repository

http://tarballs.openstack.org/trove/images/ubuntu/

Preparing the Guest Images

[58]

We would, however, recommend you create a new image using Disk Image Builder
(DIB) by following the instructions in this chapter.

For use with production systems, it is recommended to create our own images; that
way, we can conform to standards set by the company's security team. We will also
deal with creating the DIB elements that you can use to install other components.

Structure of a guest image
A guest image is technically just another Nova template on which some additional
customization has been performed. The guest image technically has to fulfill the
following aspects:

• It should have an operating system, and a database engine (installed or the
ability to install it) format that Trove supports

• It should be in a format that Nova can boot – which means it should be of the
same format of the hypervisor that we are trying to use with Nova

• It should have the Trove guest agent installed (or a way to install and
configure the Trove guest agent)

The image, like all the other OpenStack images, will be stored in Glance so that it
can be called and used by Nova and finally by Trove to orchestrate and manage the
database engine that will be installed in the system itself.

As we have already seen in the previous chapters, the guest agent is different for
different database engines, and hence the correct version of the guest agent needs
to be installed on the system.

The images that are available for testing from the previously mentioned URL don't
come with an installed guest agent, but they do so during boot time. This was done
intentionally so that any changes are reflected quickly without us having to build the
guest image if we change the configuration of the guest agent.

We should also remember that one image can only house one guest agent at the
moment, and hence if we have to create two Trove data stores, we need to create
two images. Also, images need to be created per hypervisor type if multi-hypervisor
deployment is being used in OpenStack. as shown in the following:

Chapter 4

[59]

Trove Guest Agent

DB Engine

Operating System

Trove Guest Agent

DB Engine

Operating SystemQ
C

O
W

2
Im

ag
e VM

D
K Im

age

Glance

In order to understand the images and why they are created in the way that they are,
let us take a look at the way the boot Trove images behave in the system. In order
to check this, we will see exactly what happens when a trove create command
is executed.

The trove create command is used to spin up a database instance. We will see the
details of the command and the options later in this book, but for now, let's take a
look at the sample command.

trove create <name> <flavor id> --size <Disk Volumes> --datastore
<Database engine name> --datastore_version <version>

Instance creation using the guest image
Once we run the command, the following steps are executed and the Trove instance
is requested:

1. The Trove API service authenticates with Keystone and gets the token.
2. The Trove API validates the Trove flavor to check if it is valid.
3. The Trove API hands off to the task manager with a Create Instance API

call after generating a unique identifier for the Trove database instance.

Preparing the Guest Images

[60]

4. The task manager prepares the file for injection. There are two files:
 ° trove-guestagent.conf: This has the guest agent configuration

with the Trove, RabbitMQ's URL, and user credentials alongside the
Keystone URL – we configured this file in the previous chapter

 ° guest_info.conf: This file is generated and has three major things:

 ° The guest_id: This is actually the unique identifier generated
by the Trove API

 ° The datastore manager: This is the database type that
will be used

 ° Tenant ID: The Keystone tenant ID

5. The task manager, along with the files, sends the API command to Nova to
boot the guest image.

6. Nova locates the image in Glance and creates an instance from it.
7. The Nova subsystem uses cloud-init to inject the files into the system.
8. Cinder volumes are added and mounted to the server.
9. The task manager creates a Guest queue in the AMQP system and leaves a

prepare message.
10. The guest agent comes up and connects to the Guest queue (it connects to the

right queue because of the injected files).
11. The guest agent picks up the prepare message and creates the database.

The following functions are performed:
 ° The guest agent checks if the database engine is available on the

system. If not, it executes a command to install the agent.
 ° The guest agent mounts the cinder volume and partitions the newly

detected drive.
 ° The guest agent moves the data directory for the database engine to

the newly mounted cinder volume
 ° The guest agent copies the default configuration of the

database engine.
 ° The guest agent starts the database service.

12. The guest agent starts sending out periodic heartbeat messages to the Trove
conductor, which updates them in the Trove database.

The Trove task manager also keeps updating the Trove database
with the status message.

Chapter 4

[61]

Armed with the preceding information, we are now ready to create the image
for Trove.

Creating the Trove guest image
We can use any method that we are comfortable with to create the Trove guest
image. We need to just bear in mind some simple points:

• Cinder volumes will be added to the instance
• The partitioning of the new volume is also handled by Trove
• The database mount points are moved to the Cinder volume
• The software should be installed on the root volume

cloud-init is used to copy the guest_info file and guest agent configuration file.
More often than not, it has problems with replacing files, so avoid keeping similar-
named files in the destination.

The next decision that we have to take is between smaller initial boot time and a
large number of images or a longer boot time with fewer images in the repository.

In order to explain the preceding, consider the following example of having to
support two different data stores (MySQL and MongoDB).

On the images, we need to install the databases themselves. If we pre-install these,
the boot times will be less as the guest agent can immediately come up and run
its magic.

On the other hand, if we are ok to have the initial boot time on the higher side,
we can install the database engine on the first boot.

Keeping all of this information in mind, installation approaches can be classified into
two major categories:

• Installation using configuration management systems
• Installation using templates

Preparing the Guest Images

[62]

Installation using configuration management
systems
If your templates use configuration management systems like Chef, Puppet,
CFEngine, and so on, we can just use the templates but set up the configuration
management system to perform the following tasks:

• Install database engine (MySQL, Percona, and so on)
• Install the guest agent
• Start the guest agent

Installing the guest agent would also suffice, considering the fact that the guest agent
can install the database engine if it has access to the repositories (internal/Internet).
If you also recollect, the configuration files would already have been injected using
the cloud-init script. So once the guest agent starts, it can straight away go to step
10 shown in the previous diagram; that is, connect to the message queue and start
processing the prepare message.

This approach will work for any hypervisor image as this is independent of the
image and acts completely outside the system. The obvious advantage of this
approach is that the same system could work for different flavors of the operating
systems and different databases as most configuration management systems allow
for recipes to be configured on a per operating-system basis. This means that we
can reuse our Nova images, install the guest images, and convert them for use
with Trove.

The downside of this method is that it will take slightly more time than the template
method, but this can be offset a little by having a local repository so that the Internet
bandwidth and availability doesn't impact the provisioning time drastically.

Installation using templates
Installation using templates is fairly similar, but this increases the overhead in the
management of templates. The advantage is that it is extremely fast when compared
to the previous method.

In order to create the images for KVM/QEMU, we can use two methods:

• Disk Image Builder
• Red stack

Chapter 4

[63]

These methods output images in the qcow2 format, which can be used with these
hypervisors; however, qcow2 can also be converted into VMDK format to work with
VMware hypervisors if we so choose. We could also use methods such as SUSE
Studio among others.

Disk Image Builder
This is by far the most commonly used method to create Trove images. It was created
by HP and NTT Docomo to create images. The Disk Image Builder (DIB) system
works on the construct of elements, which are nothing but scripts in a certain order
to build the system.

Installing the DIB
No installation is required for the DIB. It can be run directly from source and hence
in order to use it, we will clone the repository and use it.

sudo apt-get install qemu-utils kpartx

cd /opt/stack

git clone https://git.openstack.org/openstack/diskimage-builder

If you are using an HTTP proxy, we will use the methods mentioned in
the previous chapters to configure apt-get and git to use the proxies.

The repository is cloned; we can see the DIB elements by navigating to the directory.

cd diskimage-builder/elements

Preparing the Guest Images

[64]

A directory list command will show us all the elements.

Each of the elements is a directory and has a folder structure, with some child
directories. We will discuss these in a bit more detail in the next section.

We will then install the DIB utilities.

cd /opt/stack

git clone https://github.com/openstack/dib-utils.git

cd dib-utils

 ./setup.py build

sudo ./setup.py install

This will provide the utilities to DIB, and is normally installed during the Trove
install components. However, if we are using a proxy, this step will fail and so
will the creation of the image, hence we have installed it manually.

Basic working of the DIB
The DIB creates a chroot in which it creates the images. As you already know,
it performs activities sequentially and the order of the scripts is as follows:

• root.d: The first set of scripts to run outside the chroot environment.
• extra-data.d: Used to copy data from outside the chroot to inside the

chroot environment. All the steps after this run inside the chroot.
• pre-install.d: Runs the pre-provisioning script.
• install.d: Runs the install script.
• post-install.d: Runs the post-provisioning script.

Chapter 4

[65]

• block-device.d: Runs outside the chroot environment and is used to
configure the block devices.

• finalise.d: Final steps.
• cleanup.d: Cleans up after finishing its work.

Although all these scripts are available, not all of them may be used in the elements.

Installing Trove-integration scripts and TripleO
The basic DIB templates don't have all the information for creating the Trove image.
Hence, we need to also get some additional scripts from the trove-integration project.
This is again done by cloning a git repository.

cd /opt/stack

git clone https://github.com/openstack/trove-integration.git

git clone https://git.openstack.org/openstack/tripleo-image-elements.git

The DIB elements are located in the trove-integration/scripts/files/elements
directory.

As you can see, this folder has the elements that will install different databases on the
different operating systems. (We have elements for Fedora and Ubuntu.) We shall be
using Ubuntu-MySQL for our purposes.

Preparing the Guest Images

[66]

SSH keys
If we don't already have the SSH keys generated and added to the authorized_keys
section, it should be done now.

ssh-keygen -t rsa -b 4096

Choose the defaults and this will generate key-pair, id_rsa, and id_rsa.pub.
authorized_keys need to be updated using the public key. This is required as we
need to be able to send the keys into the image for us to be able to log in to the Trove
instance later. We can choose not to do this, but then we won't be able to SSH into
the instance for troubleshooting.

cat ~/.ssh/id_rsa.pub >> ~/.ssh/authorized_keys"

We will change the permissions on the directories as expected.

chmod 755 ~/.ssh

chmod 644 ~/.ssh/authorized_keys

Install Percona keys (only if using proxies)
There is a script that runs in the pre-install phase of MySQL, MariaDB, and Percona
install. This sets the Percona keys and repositories. However, if we are using the
apt-key command, we have to pass the proxies explicitly.

Please follow this only if you are using a web proxy. If the system you are using for
the disk building has direct Internet access, then this step needs to be ignored.

The following commands show the changes that are required in case of MySQL,
but the same will be applicable in other cases as well.

We will take a backup of the file.

cp /opt/stack/trove-integration/scripts/files/elements/ubuntu-mysql/pre-
install.d/10-percona-apt-key \

/opt/stack/trove-integration/scripts/files/elements/ubuntu-mysql/pre-
install.d/10-percona-apt-key.old

Execute the following command to modify the apt-key command in the script.
Please replace 172.21.2.17:80 with your proxy IP and port.

sed -i "s%apt-key adv%apt-key adv --keyserver-options \

http-proxy=http://172.21.2.17:80%g" "/opt/stack/trove-integration/
scripts/files/elements/ubuntu-mysql/pre-install.d/10-percona-apt-key"

Chapter 4

[67]

A simple diff command should show that the http-proxy command parameters
have been added.

Creating your own DIB elements (optional)
One of the things that we may want to do is to create our own DIB elements in order
to install some additional components or even to change the way the installation
works. Although the scripts that can be used are beyond the scope of this book,
we shall take a look at the basics of how one could achieve it.

Since we have already seen the structure of the DIB elements in the previous sections
of this chapter, in order to create a DIB element ourselves, we could copy a folder
structure of any existing DIB elements and replace the scripts with our own. As an
example, installing the nagios-nrpe agent on the system so that we can add it to
Nagios monitoring after the database instance spins up.

We will copy the directory structure of an existing DIB element to a new folder; in
this case, we choose to use ubuntu-mysql.

mkdir -p /opt/stack/trove-integration/scripts/files/nagios-nrpe

cp -r /opt/stack/trove-integration/scripts/files/elements/ubuntu-mysql/*
/opt/stack/trove-integration/scripts/files/nagios-nrpe/

Once the new folder is populated, we can now delete the files we don't need.
We will execute the command:

cd /opt/stack/trove-integration/scripts/files/nagios-nrpe

find . -name "*" -type f –delete

This will leave the directory structure but delete the files inside it. Please ensure the
delete is suffixed and not prefixed or everything will be deleted.

We can now execute the ls command and verify that the files are indeed deleted. We
chose this particular DIB element because it has only two elements: preinstall.d
and install.d.

Preparing the Guest Images

[68]

We will need only install.d in this case. We will now create the install script that is
executed inside the chroot environment.

cd install.d

cat <<EOF > 10-install-nrpe

#!/bin/bash

cd /tmp

wget https://assets.nagios.com/downloads/nagiosxi/agents/linux-nrpe-
agent.tar.gz

tar xzf linux-nrpe-agent.tar.gz

cd linux-nrpe-agent

sudo ./fullinstall

EOF

This will create the script to install nrpe. We will then change that to executable by
using the command:

chmod 755 10-install-nrpe

This element can now be used and it will install the NRPE agent in the image.
We can use this to run our own scripts to install several components on the images.
We just have to put the element name (in our case nagios-nrpe) and the element
will be added.

In order to get more details on developing different DIB elements and debugging
them, please refer to http://docs.openstack.org/developer/diskimage-
builder/developer/developing_elements.html.

Creating images using the DIB
The image creation process is a simple command in the DIB, where we pass the name
of the elements to install in a certain order. However, some preparatory work needs
to be done before the command can be executed.

Exporting environment variables
Before we can execute the command, we need to export some variables. The absence
of these means the script will fail.

• HOST_USERNAME: The OS username that is on the Trove server; this is used to
identify the right keys/SSH keys and the authorized_keys file.

• HOST_SCP_USERNAME: The username used to copy the guest agent.

http://docs.openstack.org/developer/diskimage-builder/developer/developing_elements.html
http://docs.openstack.org/developer/diskimage-builder/developer/developing_elements.html

Chapter 4

[69]

• GUEST_USERNAME: The username that will run the guest agent on the Trove
guest machine.

• NETWORK_GATEWAY: The IP of the Trove controller node. This would be
set to 10.0.0.1 in the prebuilt images and that's why they can't be used
straightaway in this book/another environment where the IP ranges
are different.

• REDSTACK_SCRIPTS: The Location where the Trove integration project
is downloaded.

• PATH_TROVE: The path where Trove source files are kept in the Trove
controller node.

• ESCAPED_PATH_TROVE: Same as the preceding, but the slashes are escaped.
• SSH_DIR: The location where authorized_keys, id_rsa, and id_rsa.pub

files are placed on the Trove controller node.
• GUEST_LOGDIR: The location where the log file needs to be created.
• ESCAPED_GUEST_LOGDIR: Same as the preceding, but the slashes are escaped.
• DIB_CLOUD_INIT_DATASOURCES: Used to determine where the metadata for

the instance needs to be obtained.
• ELEMENTS_PATH: This needs to have the TripleO elements path and Trove

integration script.
• RELEASE: The Ubuntu release version; since we are using 14.04, we will use

trusty as the value.

We will export these using values for our environment. In the production
environment, not much other than the usernames and network gateway
would change.

export HOST_USERNAME=alokas
export HOST_SCP_USERNAME=alokas
export GUEST_USERNAME=ubuntu
export NETWORK_GATEWAY=10.1.10.1
export REDSTACK_SCRIPTS=/opt/stack/trove-integration/scripts
export PATH_TROVE=/opt/stack/trove
export ESCAPED_PATH_TROVE='\/opt\/stack\/trove'
export SSH_DIR=/home/alokas/.ssh
export GUEST_LOGDIR=/var/log/trove/
export ESCAPED_GUEST_LOGDIR='\/var\/log\/trove\/'
export DIB_CLOUD_INIT_DATASOURCES='ConfigDrive'
export RELEASE=trusty
export ELEMENTS_PATH=/opt/stack/trove-integration/scripts/files/
elements:/opt/stack/tripleo-image-elements/elements

Preparing the Guest Images

[70]

Building the QCOW2 image
Once the variables have been exported, we can execute the disk-image-create
command in order to generate the image.

In a production system, we would typically not be using the i386
architecture as this will cause performance degradation. However, we use
it here as we are running a nested virtualization (for the purposes of this
book) and the hypervisor that's installed is QEMU for 32 bit.

The command is shown next:

cd /opt/stack

diskimage-builder/bin/disk-image-create -a i386 \

-o /home/alokas/images/ubuntu_mysql/ubuntu_mysql -x \

--qemu-img-options compat=0.10 ubuntu vm heat-cfntools cloud-init-
datasources \

ubuntu-guest ubuntu-mysql

If we need to know the command format and the options available, we
can execute /opt/stack/diskimage-builder/bin/disk-image-
create --help.
This will print the command help.
Usage: disk-image-create [OPTION]... [ELEMENT]...

The image-create command that we are using functions in the following way:

• We set the architecture to create a 32 bit image using –a i386.
• We set the output file path by using

–o /home/alokas/images/ubuntu_mysql.
• We set the tracing on using the -x option.
• We set the QEMU Image Options (compat=0.10) to mention that we want a

QEMU version 2 image and not the version 3 image.

Chapter 4

[71]

• We then mention the elements that we need to install – these are all
the elements that are picked from the base DIB elements and also the
trove-integration project. We can choose to create new elements and
include them in the list if we want more software installed on our image:

 ° Ubuntu
 ° vm
 ° heat-cfntools
 ° cloud-init-datasources
 ° Ubuntu-guest
 ° Ubuntu-mysql

If the guest needs to connect to the Internet using the proxy, then the
local-settings element can be used to set the proxy and SSH keys.

You could take a look at all the elements (by looking at the scripts in their individual
directories); however, we will take a look at the ubuntu-mysql element. This element
is provided by the trove-integration package and is located at /opt/stack/
trove-integration/scripts/files/elements/ubuntu-mysql. We will look
inside the directory in the install.d folder.

We find the 30-mysql script, which does the actual install of MySQL. Looking at the
script (only the relevant part being shown next):

#!/bin/sh

. . .

apt-get -y install libmysqlclient18 mysql-server-5.6 percona-
xtrabackup-22

. . .

We can see that it installs mysql-server version 5.6. If you have a different version of
that script, the version might be different. If you need to change the version that is
installed, you can change this line before running the DIB command.

Once the command is executed, you will see a whole lot of information of what the
system is actually doing at the moment. This will include downloading software
from the Internet and executing the install scripts.

Preparing the Guest Images

[72]

Since access to the Internet is required, please ensure that the proxy
variables are set (if they are needed). Also ensure that you have set the
proxy in the Percona repository or anywhere else where the keys might
be needed. We have not used the element that we created as that is not
needed at the moment for our purposes.

At the end of it, you should see an image created.

This image is now ready to be used for the Trove system.

Red stack scripts
The name for scripts can be traced back to the time when Trove was called the
Red Dwarf. They have a fairly simple installation process for Ubuntu. The scripts
were installed when we installed the Trove-integration package. If you have not
downloaded the package, refer to the section Installing Trove-integration scripts and
TripleO earlier in the chapter. We will also need to perform the exporting of the
environment variables as we did in the DIB install.

cd /opt/stack/trove-integration/scripts

./redstack build-image mysql

We can replace mysql in the preceding command with percona, mongodb, redis,
Cassandra, couchbase, postgresql, couchdb to create the image for these database
engines. The scripts also set up a DevStack environment; hence, we won't be using
this method. But we have shown it just for the sake of completeness.

Uploading the Trove images
Once we have created the guest images, we now need to perform the Trove
operations to upload the images and register them with the Trove system for
it to be usable.

We will export the credentials as we have done in the past.

cd ~

export OS_TENANT_NAME=admin

Chapter 4

[73]

export OS_AUTH_URL=http://172.22.6.246:5000/v2.0

export OS_USERNAME=admin

export OS_PASSWORD=adm1npwd

Once this is done, we will execute the command trove datastore-list. At this
point in time, it will come up as empty as we have not registered any data stores.

We will upload our newly created image as the mysql datastore. This needs the
following steps:

1. Upload image to Glance.
2. Create the Trove datastore using the trove-manage command:

glance image-create --name mysql \
--disk-format qcow2 \
--container-format bare --visibility public \
--file /home/alokas/images/ubuntu_mysql/ubuntu_mysql.qcow2

Preparing the Guest Images

[74]

We will note down the image ID, which in our case is 49412d90-2580-4e25-a463-
f232a517657b.

The image is now uploaded. As the next step, we will create a data store for mysql
and then subsequently add a version.

trove-manage datastore_update mysql ''

This creates the mysql data store. We will now update the version and
other parameters.

trove-manage datastore_version_update mysql 5.6 \

mysql 49412d90-2580-4e25-a463-f232a517657b \

"mysql-server-5.6" 1

Please note that we are using version 5.6, as the ubuntu-mysql element installs
MySQL version 5.6. The guest agent, while booting, checks for the database version
that is installed on the instance and the one requested in the data store version, and
if a different version is installed, then it tries to install the right version. This feature
allows us to install the database during the first boot process. This is fine when it
comes to an upgrade, but in case of a downgrade, the system may not be able to
handle it, so it's recommended that the data store version be the same as the
version already installed in the image so as to avoid failure.

Let us take a look at the command and what it means:

• The datastore name is mysql.
• The version of the data store is 5.6.
• The manager of the datastore is MySQL – Trove guest agent has manager

classes for the different data stores that it supports; normally, it is the name
of the database itself. Here is a list of all the manager names and their
class names:

Manager
name

Trove class

Percona trove.guestagent.datastore.mysql.manager.Manager

Redis trove.guestagent.datastore.experimental.redis.
manager.Manager

Chapter 4

[75]

Manager
name

Trove class

Cassandra trove.guestagent.datastore.experimental.
cassandra.manager.Manager

Couchbase trove.guestagent.datastore.experimental.
couchbase.manager.Manager

MongoDB trove.guestagent.datastore.experimental.mongodb.
manager.Manager

PostgreSQL trove.guestagent.datastore.experimental.
postgresql.manager.Manager

Vertica trove.guestagent.datastore.experimental.vertica.
manager.Manager

DB2 trove.guestagent.datastore.experimental.db2.
manager.Manager

MySQL trove.guestagent.datastore.mysql.manager.Manager

• The unique ID mentioned is the image ID from Glance (that we noted
down earlier).

• The next parameter is the user-friendly name.
• The final one is to set the active flag to true.

Once the command completes successfully, we should be able to execute the
trove datastore-list command and we should see the output.

Modify QCOW2 images using guestfish
If we want to modify the QCOW2 image that we have just created or the one that
is downloaded from the Internet, without booting, we could do so by using the
guestfish utility. This is provided by the libguestfs library.

Preparing the Guest Images

[76]

Installing guestfish
The installation of guestfish is fairly simple.

apt-get install libguestfs-tools

On some versions (like 12.04), the command is apt-get install guestfish. It will
also ask for the creation of the virtual appliance; please do so. Once the appliance is
installed, you can then execute the command sudo guestfish (or as root).

Loading the images
Once in the guestfish console, you can then load the qcow2 image by typing the
command add <full path to qcow2 imange>.

add /home/alokas/mysql.qcow2

We will then type the command run, which will load the image.

Once the slider reaches 100%, we are ready to proceed further.

Modify the files on the image
We can mount the volumes that are available in the image; we can execute the
command list-filesystems.

><fs> list-filesystems

/dev/sda1: ext4

We can now mount the volume using the command format
mount <volume name> <mount point>.

mount /dev/sda1 /

Chapter 4

[77]

Once the filesystem is mounted, we can modify the files at our will by using vi;
for example, to modify the SSH configuration (vi /etc/ssh/sshd_config).

We could also mount the filesystem as read only if we don't want to accidentally
make changes.

Send commands
We can also send commands to guestfish. However, care should be taken that the
command doesn't have user interactions or the guestfish shell will freeze.

The command format is command "bash -c '<command to be passed>'".

Example: Adding a user to the Ubuntu QCOW2
image
For example, we need to add a user (testuser) to an Ubuntu system with the
password test123 and add it to the sudoers group, so we can log in using the
console (or SSH if the SSH configuration is modified to allow it). We will first
generate the password hash using perl (outside of guestfish).

pass=$(perl -e 'print crypt($ARGV[0], "password")' "test123")

This will store the hash in a variable called pass; we will check the output by
echo $pass, and we have to note down this hash (in our case, this is
paOElDH7voHBo).

We will then use the command format of guestfish and execute.

Preparing the Guest Images

[78]

This will add the user testuser with the password test123. Using the quit command,
we can get out of the shell and use the modified image. For more information, read
the manual using the man guestfish command.

Summary
After going through the chapter, we should now have a basic idea of how the images
in Trove are different from the base Nova images.

Now that all the basic building blocks are in place, in the next chapter, we will start
with the real action in terms of actually provisioning instances.

[79]

Provisioning Database
Instances

At this juncture, we are ready to provision our first database instance. We will
use the image that we created in the previous chapter. In case you did not create
an image in the previous chapter, we could also use the test images that we can
download from http://tarballs.openstack.org/trove/images/ubuntu/ (see
previous chapter for details) or get other images purpose built for OpenStack Trove
provided by companies like Tesora.

Checking for prerequisites
So, now that we are ready to provision, we need to check that the system has all that
it needs to provision a database instance for us.

www.allitebooks.com

http://tarballs.openstack.org/trove/images/ubuntu/
http://www.allitebooks.org

Provisioning Database Instances

[80]

We will quickly check the following:

• Flavors available: We can check this by using the command trove
flavor-list, which will essentially show us the flavors and the nova
instance sizes where the database will be running. We will need this
information while launching new Trove instances. We will need the ID from
these for whichever flavor we want to launch. The flavors simply show us
the flavors defined in the nova subsystem and can also be seen using the
nova flavor-list command.

• Datastore available: This is essentially which image to boot from. We created
the MySQL image in the last chapter, so this should be available for us.
This can be verified by the command trove datastore-list.

• Datastore versions available: We will also need to check that at least
one datastore version is available for the datastore. We will execute
the command:

trove Datastore-version-list <ID of Datastore>

Chapter 5

[81]

The other things to check will be if the hypervisor has enough space in order to
provision the instances, whether cinder has enough space to provide for the volume,
and finally if the tenant that we are using has available quotas, all of which we can
check from the dashboard.

Launching our first instance
We will launch our first Trove instance with one simple command. We will discuss
the command format in detail in the coming section. However, the simplest
command will need the following information:

• Flavor ID: The ID of the flavor. Say we are spinning up an m1.small, we will
use the ID 2.

• Name: This will be the name of the instance; you can choose it to describe the
instance. In our case, let us say mytest.

• Size of the volume: As we have discussed earlier in the book, Trove installs
and moves the data volumes to the cinder volume. Therefore, we will need to
provide the size for it.

• Datastore: The name of the datastore, in our case MySQL.
• Datastore version: The version of the datastore, in our case 5.6.

Now that we have all the information we need, let us take a look at the command:

trove create mytest 2 --size 1 --datastore mysql --datastore_version 5.6

This will return the ID of the instance being created.

This instance will be ready in a while; we can track the progress using the trove
list command. The system will first request nova to create an instance using the
glance image and then wait for the guest agent to boot up, connect to the queue,
pick up the message, and connect to trove-taskmanager to work its magic.

Provisioning Database Instances

[82]

There are several other options you can use and pass in the command-line options
(type trove help create to see the options and the descriptions).

Let's take a look at what is happening under the covers while the system is being
built. We would like to bring to your attention a diagram that we saw in the previous
chapter. The following is a snippet of the diagram that we saw previously:

Client Trove API

Trove Task
Manager

Trove
Control

DB

Guest Agent

Guest DB Cinder
Volume

CinderNova

Rabbit MQ

Trove C
onductor

Clinder
Volume

Nova Instance

Chapter 5

[83]

The broad steps in the creation phase are the following:

1. The Trove API receives the request and passes it along to the task manager.
2. The Trove Task Manager makes API calls to Nova and Cinder to create an

instance, a volume, and mounts the volume on the instance.
3. The Trove Task Manager then leaves a prepare message in the RabbitMQ.
4. The Guest Agent boots on the guest instance and retrieves the prepare

message and installs and/or configures the database engine and starts it.

In the preceding diagram, the trove create command has put the trove instance in
the build state. We will now execute the commands nova list and cinder list to
see what is happening.

The Trove task manager makes the API calls to the instance and the cinder
volume to:

• Create the nova instance
• Create the cinder volume
• Attach the cinder volume to the Nova instance
• Boot the nova instance

The following output from nova list shows the machine is getting provisioned:

We need to notice a few points here:

• The ID of the nova instance is different from that of the Trove instance,
which is because trove effectively is the superset and represents the whole
nine yards (including nova instance, cinder volume, guest agent, and so on).

• Power State is NOSTATE and machine state is BUILD. We can see that
block_device_mapping is the current task, which essentially means the
cinder volume is being created and mounted on the instance.

Provisioning Database Instances

[84]

A simple cinder list will confirm this.

Looking at the command, we should take notice of a few things:

• The size of the drive is the same value that we passed on to the trove
create command (1 GB)

• The disk is non-bootable as this is going to be the data drive
• The multi-attach is set to off as it will be only associated to one instance

at a time
• It's attached to the Nova instance

If we continue to execute the nova list command, the status will change from
BUILDING to ACTIVE and the power state will change to Running.

Meanwhile, the Trove guest agent would have created a queue and left the Prepare
message there. In order to view the message left in the AMQP queue, we will need
the RabbitMQ management plugin.

The RabbitMQ management plugin can be installed on the system by using
the command:

sudo rabbitmq-plugins enable rabbitmq_management

This enables the RabbitMQ management plugin, which can provide the GUI
and CLI access to the message queue system. We will now need to restart the
rabbitmq-server process.

sudo service rabbitmq-server restart

After this is completed, we should be able to log in to the GUI using the following
URL: http://172.22.6.246:15672/ (replace the IP address with the IP of the
server running the DevStack instance). The username and password will be guest
and guest respectively (unless you have changed it in the RabbitMQ configuration).

Look at all the queues tab and filter it with the ID of the Trove instance (in our case
879dcf19-8fd6-4044-9a4c-30577b5b52dd).

Chapter 5

[85]

You will see that the guest queue is created and has a message waiting to be read.

We can read the message, but that may hamper the working of the
system, because even if we set Re-Queue to true, the message will
be marked as redelivered.

If we look at the queue, it will be cleared once the guest instance picks the message
up. A sample message looks like this:

The message itself is a fairly long string of JSON and has the following information:

• Service context – with the endpoint URLs for services
• System configuration/information:

 ° Device name and mount points (where the data directory
is mounted)

 ° RAM – RAM is required for the calculation of some values
(as we will see in the next chapter) in the configuration

 ° Root password for the MySQL database

• The configuration template for the database engine

Provisioning Database Instances

[86]

With this information, the guest agent is able to configure the instance (as per the
prepare call steps that were mentioned in the previous chapter) to the requirements
of the user.

The following table provides a glimpse of what is happening depending on the state
of the Trove instance and the underpinning Nova instance:

Trove state Nova state –
current task

Remarks

BUILD BUILD – attaching
block storage

The cinder volume is being created
and mounted on the system.

BUILD BUILD – spawning The glance image is being copied to
the hypervisor and booting up.

BUILD ACTIVE The nova instance and cinder volumes
are ready. The OS is booting up on
the instance and the Trove system is
waiting for the guest agent to come up
and process the Prepare message.

ERROR ACTIVE Something went wrong in the guest
agent phase. Things to check:

• guest agent properly installed
• The appropriate datastore

version installed/access to the
Internet to install the same

• Trove timing out before the
guest agent can finish the
process

• Wrong guest agent
configuration/default
gateway/routing information

ERROR ERROR The Nova/Cinder/Glance system
having some issues. Please
troubleshoot the underpinning
systems.

ACTIVE ACTIVE Everything was fine. The guest
database is ready for use.

If all goes well, we would end up in the ACTIVE state of Trove, which means we can
now hand off the system to the actual requestor.

Chapter 5

[87]

However, if the DB creation errors out, we might want to take a look at the
appropriate logs (dependent on where it errored out). At the present moment, we
can only look at the guest-agent logs by logging into the instance using SSH (or using
the VNC console, if we have set up user credentials). However, there is a blueprint
that is completed and under review (expected to be published by the Mitaka-3
release) that will allow users to download the guest-agent logs without access to
the instance. The link to this feature is https://blueprints.launchpad.net/
trove/+spec/datastore-log-operations.

We finally take a look at the networking aspect of the Trove system. The networking
is controlled by either the nova network (as it is in our case) or Neutron (if we were
using neutron networking); however, Trove also dictates the creation and association
of a security group by default.

Since this is the MySQL datastore, the Trove system creates a security group and
allows port 3306 through the group.

Let's take a look at the output of nova show< instance name> (pay attention to the
security_groups values).

https://blueprints.launchpad.net/trove/+spec/datastore-log-operations
https://blueprints.launchpad.net/trove/+spec/datastore-log-operations

Provisioning Database Instances

[88]

We can see that there are two security groups associated. Let's now take a look at the
rules allowed or denied by those security groups.

The commands to view the security groups will change if we are using Neutron.
The corresponding neutron commands are neutron security-group-list and
neutron security-group-show <security group name>.

The default security group will not come into play as it is empty. However, as per
the default configuration in nova (allow_same_net_traffic), the same subnet
traffic is not restricted using the security group. However, from the outside, only
access to port 3306 is allowed unless explicitly allowed in the security group.

If you are wondering where the values for the TCP/UDP ports are to be opened
for each datastore picked up, the answer is trove-taskmanager.conf (if the
configuration options are not set, the default values are used – the defaults
are stored in the file trove/common/cfg.py).

The following shows the configuration options that we can put in the trove-
taskmanger.conf file and modify it to impact the security groups. For example,
setting the tcp_ports setting for MySQL to 3306, 22 (from just 3306) will add the
SSH port while creating the security group.

[mysql]
Format (single port or port range): A, B-C
where C greater than B
tcp_ports = 3306
[cassandra]
tcp_ports = 7000, 7001, 9042, 9160
[default]
trove_security_groups_support = True

In order to disable the creation of security groups completely, set the configuration
option trove_security_groups_support to False in trove-taskmanager.conf.

Chapter 5

[89]

This is not recommended in a production environment as this may open security
risks to the database instances.

Logging into the instance via SSH
We can access the guest instance, either by using SSH or by using the VNC console;
this is not necessary for the functioning of Trove.

Please note that the security group will prevent access to SSH
unless either a rule is added or the source server is on the
same subnet.
In our case, we are executing SSH from the Trove controller
system with the IP 10.1.10.1, which is in the same subnet,
and nova.conf has an option called allow_same_net_
traffic (which defaults to True) that has not been fiddled
with in our case, so we should be able to SSH in.

One reason for logging in can be to troubleshoot a guest agent failure. We can log
in to the instance (if you have created the image as shown in the previous chapter)
using the private key that you created for your own user. (The Trove integration
element also copies the authorized_keys file to the image.)

We can find details about the instance by using the command trove show
<instance name/id>.

We can see that the instance IP address is 10.1.10.2. We should be able to ssh to it by
using the command:

ssh ubuntu@10.1.10.2 -i ~/.ssh/id_rsa

Provisioning Database Instances

[90]

ubuntu is the username that we set in the export variable, and the identity file is the
private key whose path we exported while creating the image.

This method only works if we have created the image using the DIB/
Redstack method shown in the previous chapter. If the template was
created with any other method, you will have to inject the SSH keys
yourself (or create user credentials for the admin user).

The guest agent log is located at /var/log/trove/trove-guestagent.log.

As we can see, we are able to log in. You may want to log in in order to troubleshoot
if somehow the guest agent doesn't work. You will be able to see the cinder drive
mounted with the MySQL data directory pointing to that.

You will also notice that the database engine is installed and started (you can check it
with the ps -ef command). If we also take a look at the configuration file, it will be
configured based on the configuration template for the particular datastore (more on
this in the next chapter).

Launching the instance using the GUI
The GUI is another method that we can use to request ourselves a database instance.
More often than not, most of the users will be using this method. So, once we log in
to the horizon dashboard, we can go to the Database | Instances dashboard.

Chapter 5

[91]

Click on Create Instance and we will fill in the details:

Provisioning Database Instances

[92]

We can also initialize the database and create a database user (we could pass the
parameters in the CLI command as well):

We could choose to launch it from a backup image or create a replica, but more on
this will be covered in the upcoming chapters:

So, we select None and then click on Launch. The GUI will show the state of the
instance. We will wait until the instance is marked ACTIVE.

We should be able to access the MySQL database using the username/password
over the network.

Chapter 5

[93]

Connect to the database instance
Now that the instance is created, we can now log in to the database by using the
standard MySQL client; we will use the command:

mysql -udbuser -pdbpass –h 10.1.10.3

As we can see, the user is allowed access and access is also granted to testdb1 that
we created.

Instance operations
There are other instance operations that can be performed by Trove.

Resize
We can resize the instance and also the data volume. We can change the volume
using the command:

trove resize-volume <instance name> <new size>

trove resize-instance <instance name> <new flavor-id>

Example:

trove resize-volume mytest 2

This will increase the size of the volume to 2 GB. We can execute the instance resize
command as well.

Provisioning Database Instances

[94]

We can also perform these operations from the context menu in the GUI using the
context menu.

Terminate the Trove instances
If we want to delete the instances that we have created in Trove, the command is:

trove delete <instance id>

WARNING: The data on the instance will be deleted irreversibly so
we should use it with care. It's a good idea to take a backup of the
database before termination.

Let us delete the instance that we created. We will get the instance ID by using the
trove list command and then execute the trove delete command.

The command will delete the instance. This activity can also be done from the
context menu in the GUI.

Troubleshooting
If an instance doesn't boot or move to an active state, here are a few steps that you
can perform to fix the issues:

1. Check if the Nova instance has booted: This is the first step. Check if the nova
instance has successfully changed its state to Running. If not, you may have
to troubleshoot the nova system and look at the logs of nova.

2. Guest agent startup: Check that the guest agent is successfully able to start
up. You can do this by logging in to the VNC console (if you have set up user
credentials) or SSH (if you have set up keys while creating the image).

Chapter 5

[95]

3. cloud-init: Verify that cloud-init is working as it needs to inject the
configuration files for the guest agent.

4. Network between the Trove guest agent and RabbitMQ:
 ° Remember that the Trove guest agent needs to connect to the

message queue to retrieve its task. If the message is sitting in
the guestagent.<uuid> queue for a long time and is never
acknowledged, then there might be a network issue.

 ° Ensure that the trove-guestagent.conf configuration file values
are correct and that it is pointed to the correct RabbitMQ host with
correct credentials.

5. Internet access to the guest instance: If the packages need to be downloaded,
ensure that the guest has an available Internet connection. If proxy access
needs to be provided, ensure that the local-settings element is used in
the DIB.

6. Logs: Check the logs of trove-api, trove-taskmanager, and finally the
guest agents log to troubleshoot the issue.

Summary
In this chapter, we looked at creating instances using the CLI and GUI, connecting
to the instance, and also looked at some basic instance operations. Now that we
have a functional system, we will take a look at advanced features in the upcoming
chapters. In the next chapter, we will look at managing and tuning the databases.

[97]

Configuring
the Trove Instances

So far, we have successfully installed Trove, created images for the templates,
and also spun up instances by using the CLI and the GUI. In this chapter, we will
understand the following things about Trove:

• How the default configuration of the instance is determined
• How to make modifications to the configuration of a single or a group of

instances using configuration groups in Trove
• How to resize the Trove instances

Default datastore and version
configuration
Each database engine, be it MySQL, MongoDB, Percona, and so on, has a default
configuration file that the database engine looks for, when starting the service on the
guest instance.

The Trove system sends this configuration file using the guest agent (we can see
this if we intercept the Prepare message sent in the RabbitMQ queue as shown in
the previous chapter). In this section, we will take a look at where Trove stores this
information and how we could change it in order to suit our company's needs.

The default configuration that is used by all instances to start up is set in template
files. trove.conf has a configuration option called template_path that is used to
specify the folder where the datastore templates are being stored.

Configuring the Trove Instances

[98]

The default value of this in a package install is /etc/trove/templates.
On a DevStack instance that we are running, the default value is
trove/templates in the path where Trove is installed. The full path is
/opt/stack/trove/trove/templates.

This contains one subfolder for each of the datastores that Trove supports.
The templates for a particular datastore are found in the corresponding folder.

So, say if we want to look at the MySQL templates for the configuration, we will
navigate to the mysql folder.

Now that we are in the folder, let us quickly talk about the templating mechanism
that Trove follows. Trove supports templates for every type of configuration
file that it has to create (it has a template for replication, both master and slave
– replica_source.template and replica.template; it also has them for a
single instance configuration – called config.template, and so on.)

All datastores will at least have one configuration template for the single
instance/base configuration (config.template). If there are specific configurations
for a specific datastore version, it is put in a separate folder inside the configuration
template (take a peek inside the 5.5 folder), which is used when that specific
datastore version is instantiated, otherwise the default is used.

If we take a look at the config.template file, we will notice another thing. This
template file is not copied as is. The file is variable based, which is then substituted
before being used by the database engine. The only variable that is used.

If you notice, the configuration values have the flavor['ram'] variable, which is
substituted with the memory size in MB and then the configuration value is set.

Chapter 6

[99]

For example, key_buffer_size will be set to 200 M (50 * 2048 / 512) for an
m1.small (2048 MB RAM) and 400 M for an m1.medium instance. (In order to
see the RAM size for the instances, use the command trove flavor-list.)

We can modify the template file by editing it using your favorite
text editor. The change made takes effect immediately and the new
template is used on the next instance of the datastore that Trove
creates after the modification.

One other thing that is found in the folder is validation-rules.json. This file,
as its name suggests, performs validation on the user-defined configuration groups
(which we will see in the next section of the chapter).

Configuring the Trove Instances

[100]

As Trove administrators, we can modify the validation-rules.json file, in order
to add/remove configuration capability and to set the minimum and the maximum
allowed values. As an example, looking at the sort_buffer_size configuration
from the default validation-rules file:

{
 "name": "sort_buffer_size",
 "restart_required": false,
 "max": 18446744073709551615,
 "min": 32768,
 "type": "integer"
},

If our standard dictates that the minimum value for this configuration parameter
should be 65536, we should be able to modify the file and load this using the
command trove-manage db_load_datastore_config_parameters. The full
syntax and the command in action can be seen in the later part of the chapter.

Now that we know about the template file, if we need to know the values that have
been computed (based on the formulas) and passed along for a particular instance,
we can see the default configuration of an instance by typing the command trove
configuration-default <instance name>. In the following screenshot, we take
a look at the configuration of our instance mysql_gui, which is an m1.small:

Chapter 6

[101]

The command format might lead us to believe that these are the default
values running on the instance itself. However, these are simply from the
config.template file after substitution. If the template has been modified after the
instance was instantiated, these values will be wrong. In a production environment,
it is recommended that we design the default configuration file for a particular
datastore version before the system goes live and after that all configuration
modifications can be done by modifying the default configuration.

Modifying the default configuration file is as easy as editing the config.template
file. For instance, if we want innodb_log_file_size to be 100 M rather than the
default 50 MB, we will simply edit the config.template file in the templates
directory and make the change.

Do note that this configuration doesn't get updated in the instances that have
already been requested using the older configuration template. (but when you
look at the trove configuration-default command output, you might be led
to believe erroneously that the older systems have also been updated. Hence, it is
recommended to modify the default configuration before setting the datastore
in production)

In order to test this, let us request another MySQL instance called test12 using our
trove create command:

The instance is created with the same specs as that of our older mysql_gui instance
that we created.

We will run remote ssh commands to verify that it is indeed the case (10.1.10.2 is
the old mysql_gui instance and 10.1.10.3 is the newer test12 instance).

Configuring the Trove Instances

[102]

It is absolutely not necessary to SSH into a Trove instance. This is
only to show that the configuration file has been modified on one
instance and not on the other.

As we can see, the configuration of the old instance is not changed but the new
instance has the new log file size.

Modifying the instance configuration
So, we have seen how the default configuration can be modified. But what about
the instances that are already available and running? Can we make configuration
changes to those? The answer to this question is very much a yes.

Configuration groups
Let us look at the Trove configuration groups. These technically are some
configurations that can be applied on one or more instances. It is to be noted
that at any given point in time, only one configuration group can be active.

Trove
Instance 1

Trove

Trove
Instance 2

Trove
Instance 3

Tr
ov

e
In

st
an

ce
 3

Tr
ov

e
In

st
an

ce
 4

Tr
ov

e
In

st
an

ce
 5

Configuration 1

Trove Guest
Agent

Nova
Instance

Tr
ov

e
In

st
an

ce
 6

Configuration 2 Configuration 3

Chapter 6

[103]

The steps in using the configuration groups are:

1. Define the modifiable configuration parameters (in the
validation-rules.json file): A copy of validation-rules is
provided by default; we can modify it as needed.

2. Upload the configuration parameters in the Trove system: This is a one-time
activity that is done when validation-rules.json is changed.

3. Create a configuration.
4. Attach it to one or more instances.

The configuration is synchronized across the instances. This means that, once the
configuration is created and attached, modifying the configuration will modify it
on all the instances that it is associated with. This makes it extremely useful when
we want different configurations for different groups of instances (think about the
configuration of prod/dev).

Defining configuration parameters
Trove already ships with a validation-rules.json file in its templates directory
(the same directory where we found the base configuration template).

Each parameter will have the following properties (please note that this is a JSON
string and hence the curly braces are delimiters):

There are several of these and you can see that the instructions for the configuration
and whether the instance needs to be rebooted are mentioned in the JSON file. This
file, with its default values, is more than enough for most cases, but we could modify
the parameter values in certain cases (for example, innodb_log_buffer_size,
where we can tweak the min/max value as per your standards). This is merely
defining configuration parameters in a file and these values do not take effect
until the next step is completed.

Configuring the Trove Instances

[104]

Uploading configuration parameters
We can check the configuration parameters that are currently defined by using the
command trove configuration-parameter-list --datastore <Datastore
name> <datstore version>, so we will execute.

trove configuration-parameter-list --datastore mysql 5.6

This is expected as we have not loaded validation-rules.json yet.

If we try attaching a configuration to a datastore, whose configuration parameters
have not been initialized, we will get an error stating that the configuration groups
is not supported for that particular datastore.

Now, we will upload the validation-rules.json file by using the command
trove-manage db_load_datastore_config_parameters mysql 5.6 \

/opt/stack/trove/trove/templates/mysql/validation-rules.json

The db_load_datastore_config_parameters command takes the datastore name,
datastore version, and file path as inputs and uploads the configuration template.
Once the command succeeds, we can execute the parameter list one more time and
we shall see the following output:

Now, we can move on to the next step.

Chapter 6

[105]

Creating a configuration
Now, we need to create a configuration patch that we need to apply to an instance or
a group of instances. This is done by using the configuration-create command.

The command takes the configuration parameters as a JSON string (key-value pair)
and separated by commas.

trove configuration-create test-configuration \

 --datastore mysql --datastore_version 5.6 \

 '{ "max_connections":200, "max_user_connections":200 }' \

 --description "Testing Configuration Group"

The previous output shows the configuration that was created. We can now apply
this configuration to the instance of our choice.

Applying the configuration to an instance
We can apply the configuration by using the configuration-attach
command, which has the format trove configuration-attach <instance name
/ id> <configuration id>; we will use the instance mysql_gui and the ID
of test-configuration.

trove configuration-attach mysql_gui 26a1d629-df68-42bc-826b-684af8f70e64

This command provides no output if successful, but we would have applied
our recently created configuration to the mysql_gui instance. We can apply the
configuration to as many instances of the same datastore type and version as
we please.

Configuring the Trove Instances

[106]

We can also use trove update <instance_name> --configuration <config id>
in order to attach the configuration to the instance.

If the configuration needs a restart, the changes will not be effective immediately and
we will see the status RESTART_REQUIRED in the trove list command.

We can choose to apply the configuration and restart the instance later, by using the
command trove restart <instance_id / name>. In our case, this will be

trove restart mysql_gui.

This will restart the MySQL instance and disconnect any active connections to the
system. It is recommended that this be done only during the change window for a
production instance.

Verification
In order to verify that the configuration has indeed been applied, we can log in to the
instance using the MySQL command line.

mysql –udbuser –pdbpass –h 10.1.10.2

Once logged in, execute the following command:

show global variables like '%max_connections%';

This should show that the max connections have been set to 200 from the default 400.
We can also use the command format select @@global.<variable name>.

Chapter 6

[107]

The override.config.template file from the templates folder is used for
creating the overridden configuration file and is placed in the mysql/conf.d
folder on the instance.

The file can be seen on the instance only after logging in to the instance
using SSH or VNC Console. This is not a required step; however, for the
purposes of understanding the working, we may want to do it.

A screenshot showing the overridden config file is shown on the instance.

Hence, the configuration on an instance is persisted across instance reboots.

Viewing the configuration
If we want to check the contents of the configuration, we will use the trove
configuration-show command with the configuration ID, which can be
retrieved by the trove configuration-list command.

Configuring the Trove Instances

[108]

So, in our case, we will execute the trove configuration-list command and note
down the ID for the configuration we are trying to retrieve (in our case, 26a1d629-
df68-42bc-826b-684af8f70e64).

We will then execute the trove configuration-show 26a1d629-df68-42bc-826b-
684af8f70e64 command to see the values.

As we can see, the configuration sets max_user_connections and max_connections
to a certain value.

In order to check which instances are associated with this configuration, we will
execute trove configuration-instances <configuration id>.

This shows that the configuration is only applied to a single instance (mysql_gui) at
the moment.

Chapter 6

[109]

Patching the configuration
Once the configuration is applied to an instance or a bunch of instances, we can
patch the configuration and it will be applied to all the instances attached to
the configuration.

In order to effectively understand the use of patching, we will also attach the
configuration to our second guest instance (test12) using the command trove
configuration-attach test12 26a1d629-df68-42bc-826b-684af8f70e64.
If you don't already have a second instance, you can launch it.

Once this is done, we can ensure that both instances show up in the output of
the trove configuration-instances command output.

The patching of the configuration is done by using the command format:

trove configuration-patch <configuration-id> <JSON for the patch>.

In our case, we will drop max_user_connections to 150 rather than 300:

trove configuration-patch 26a1d629-df68-42bc-826b-684af8f70e64 \

'{ "max_user_connections": 150 }'

We can verify that the configuration was patched by looking at the output of the
trove configuration-show <configuration-id> command. We can also verify
by using a similar method that we used to verify in the Applying configuration section:
mysql -udbuser -pdbpass -h 10.1.10.2 \.

-e "select @@global.max_user_connections;"

This should give you an output of 150, rather than the previous 200.

We should be able to create a new database user and password for the second
instance as we did not specify it during the create time.

trove database-create test12 testdb2

trove user-create test12 dbuser2 dbpass2

trove user-grant-access test12 dbuser2 testdb2

The preceding creates a database (testdb2) and user (dbuser2) with the password
(dbpass2) and grants access to the newly created database. Check on the second
instance (Test12) mysql -udbuser2 -pdbpass2 -h10.1.10.3 \

-e "select @@global.max_user_connections;"

Configuring the Trove Instances

[110]

We will notice that this also has the same configuration.

If you remember, we had changed the default configuration port to 3307 before
spinning the test12 instance; hence, the port needs to be specified.

Updating the configuration
The difference between patching and updating is that the update command should
replace the entire contents of the configuration and not just update the values in the
configuration. The command format is as following:

trove configuration-update <config id> '<new JSON>'

At the time of writing this book, there is a documented bug
(Bug ID: 1449238), https://bugs.launchpad.net/
trove/+bug/1449238, which doesn't completely replace it but
leaves the old configuration in.
Say we want to replace test-configuration with just setting
wait_timeout to 300 (the default is set to 120 – check the
configuration-default output), we will use the command.

trove configuration-update 26a1d629-df68-42bc-826b-684af8f70e64 \

'{ "wait_timeout": 300 }'

We verify it with the trove configuration-show command.

https://bugs.launchpad.net/trove/+bug/1449238
https://bugs.launchpad.net/trove/+bug/1449238

Chapter 6

[111]

This will update the configuration; however, please remember that due to the bug,
even the older configuration will still exist.

This is effectively the bug; once the bug resolves, this will not exist.

In order to ensure that this doesn't happen, we should detach the configuration and
reattach it, so that the older configuration doesn't exist.

Removing the configuration
The configuration can be removed from the two instance commands:

• trove update <instance_name> --remove_configuration

• trove configuration-detach <instance_name>

This restores the configuration to the default configuration. Please note that
this is the configuration in my.cnf (which was generated from the default
configuration when the instance was spun up and may be different from
the current default configuration).

This command, as you can see, has no output.

If a restart is required for the service, you need to execute trove restart
<instance name/id> before you can reapply a new configuration.

Verification
We can execute the same commands that we did to verify that the configuration took
effect. We will also see that the file has been removed from the guest instance.

Configuring the Trove Instances

[112]

Please notice that the 20-user-001-common.cnf file no longer exists.

Adding a new parameter
We can only add the configuration parameters that are listed in the output of the
trove configuration-parameter-list command. This is populated from the
validation-rules.json file that we imported earlier.

Let's take a use case: in a company X, in the dev/test environment, the MySQL
database instances run on port 3308 and production instances run on the default
port 3306, but port is not a valid configuration parameter and if we try to create a
configuration, we will get an error like ERROR: The configuration parameter port is
not supported for this datastore: MySQL 5.6. (HTTP 422.). We will need to modify
validation-rules.json. So in this case, we will add the JSON (I have added
somewhere in between. There is no dependency on the placement of this).

So, the configuration is port, which is an integer value and can be from 1025
to 65535 as they are non-privileged ports. We will need to restart the MySQL
instance when we are changing the port, so restart_required is set to true.

Once the validation-rules.json file is modified, we will upload it using
trove-manage db_load_datastore_config_parameters and then follow
the process from creating a configuration and applying it.

Modifying the port is not supported by Trove; however, it can be performed as
shown earlier. If we have to modify the port, please remember to change the port for
the network security group or the database will be inaccessible. Different datastores
may have different configuration strategies, but most of them implement the default
file configuration. The databases that allow configuration management during the
time of writing are MySQL, MariaDB, Percona, Percona XtraDB, and Redis. Other
database support for configuration changes is planned in the near future.

Chapter 6

[113]

Summary
In this chapter, we have basically looked at configuring and tuning databases.
Some of the key tasks include defining configuration groups, defining configuration
parameters, patching and updating the configuration, defining and uploading
configuration parameters, and finally adding a new parameter.

In the next chapter, we shall look at the most common DBA task, which is backup
management of the databases.

[115]

Database Backup
and Restore

Data being critical in every enterprise IT, it needs to be protected. This protection is
done at various levels, by creating a cluster/replica to ensure more than one hot/
warm copy of the data exists.

In order to have a cold copy of the data for disaster recovery, a database backup
is normally taken. Database backups and restore are possibly one of the most
important operational tasks of a DBA. Trove helps automate the entire process,
from backing it up, encrypting data at rest, and also restoring the backup. Trove
also supports incremental backups of your databases and supports creating a new
instance from an existing backup.

In this chapter, we will cover the following topics:

• Formulating a backup and recovery plan
• The concept of strategies in Trove
• Configuration aspects
• Backing up and restoring Trove guest instances

Formulating a backup and recovery plan
There are two kinds of backups: full backup and incremental backup. Trove helps
with both of the backups (with certain data stores), as we will see later in the chapter.
A plan needs to be formulated in order to successfully execute these.

Database Backup and Restore

[116]

The frequency of both or either of these backups needs to be based on the
following parameters:

• Importance of the data
• Frequency of changes in the database
• Recovery objectives (RTO, RPO)

Based on the preceding parameters, we will need to derive the following key points:

• Frequency of full backups
• Frequency of incremental backups (if any)
• Frequency of testing the backups (by restoring the database)
• Need for offsite shipping of the database backup
• Frequency and modes of offsite shipping

This plan is applicable to any form of backup and this will help us with scripting and
automating the backup tasks.

Backing up/restoring in Trove
Trove uses backup strategies in order to back up the database. The backups are
stored as defined in the storage strategy (defaults to Swift), which is at object
storage system. The backup is encrypted by default to protect the data in rest.

There can be several use cases of backup and restore in Trove:

• Cold copy of data for recovery purposes
• Point in time snapshot in order to create a different branch of development
• Multiple copies of the database independent of each other for purposes like

auditing, running reports based on old data, and so on

The Trove system internally uses backup and restore strategies to seed the
replication data (discussed in the next chapter). Let's now dive in and see how
the backup/restore methodology works in Trove.

The concept of strategies in Trove
Strategy in the world of Trove means a construct that allows developers to extend
the functionalities of Trove by writing specialized implementations that can
be abstracted.

Chapter 7

[117]

This is a fully pluggable architecture, and what this actually means is that different
technologies and different codes can be used to perform the same functions across
different database engines.

The concept of strategies is used for backups, restores, replication, clustering, and
storage (this determines where the backups are stored along with its associated
properties). These are implemented in the guest agent code (can also be implemented
for the API and task manager components), which also makes the code run closest to
the place where the action has to happen.

So, effectively, each strategy needs to implement a list of functions at a minimum
(these can be seen in the base.py file for that particular strategy), which the system
can then use to call and perform the functions.

For example, each backup strategy needs to provide a command that needs to be
executed in order to take the backup, and each storage strategy needs to implement
a save function, which will allow us to save to that particular storage system.

The following diagram shows the concept of strategies. It also shows that the control
components use an abstracted term and send the message using the message bus, say
create_backup, and the guest agent looks at the default or configured strategy for
that particular database engine and executes those commands.

Trove Task Manager

create_backup

Guest Instance

MySQL DB

Guest Instance

Mongo DB

Guest Agent Guest Agent

For MongoDB, lets use mongodump as
that’s the strategy implemented.

Message Bus (Rabbit MQ)

create_backup

The strategy is to use InnoDBEx for MySQL
Lets use those commands

Database Backup and Restore

[118]

The concept is valid for everything that supports the strategies. Please note that
not all the control components are shown in this case and the diagram is for
representation purposes only.

The backup/restore strategy in action
In order to better understand how the strategy will work, let's take a look at the
following diagram that shows the backup taking place. The steps are enumerated
as follows:

1. The Trove API passes on the command to the Trove Task Manager.
2. The Trove Task Manager leaves a Message in the Rabbit MQ queue

for the Guest Agent to pick up.

3. The Guest Agent pulls the message and checks the backup and storage
strategy (configured/default) for the particular data store version.

4. The backup commands are executed by the guest agent. (It gets the command
by the strategy definition.) For example, if the MySQLDump strategy is
used, then the command executed is mysqldump --all-databases –user
<username> --password, along with the command to zip and encrypt
the backup (these are all defined in the strategy files (as shown in the
next section)).

5. The Guest Agent stores the backup as stored in the storage strategy.

Chapter 7

[119]

Configuring the backup strategies
The strategies are configured by default, but we can choose to override them.
The configuration options are:

• backup_strategy: The name of the strategy to use, for example,
InnoBackupEx, MySQLDump, MongoDump, and so on

• backup_namespace: The file to load the code for the strategies from
• backup_incremental_strategy: The name of the strategy that needs to be

used while taking incremental backups

These configuration options are set in the trove-guestagent.conf file, which will
inject them to the guest during build time.

We don't have to configure anything additional in the guest agent configuration; this
section is purely informational.

In order to understand the different strategies available to us and the corresponding
namespaces, let us take a look at the following table, which shows the different
backup strategies that are available in Trove at the time of writing the book:

Data store name /
Backup type

Strategy name Strategy namespace

MySQL / Full MySQLDump trove.guestagent.strategies.
backup.mysql_impl

MySQL / Full InnoBackupEX trove.guestagent.strategies.
backup.mysql_impl

MySQL / Incremental InnoBackupExIncremental trove.guestagent.strategies.
backup.mysql_impl

Couchbase / Full CbBackup trove.guestagent.strategies.
backup.experimental.
couchbase_impl

Mongo DB / Full MongoDump trove.guestagent.strategies.
backup.experimental.mongo_
impl

PostgreSQL / Full PgDump trove.guestagent.strategies.
backup.experimental.
postgresql_imp

Redis / Full RedisBackup trove.guestagent.strategies.
backup.expreimental.redis_
impl

Database Backup and Restore

[120]

As we can see, at this point in time, only MySQL (and its variants like MariaDB) have
the ability to perform the incremental backup and offer two strategies for full backup
(if we choose not to use InnoDB, we could just use MySQLDump). Also, not all the
different data stores support full backup at this moment.

This means that we can also implement a simple backup strategy of our choice, if we
so choose, by writing a different Python class. However, in most cases, we don't have
to as the ones provided by default with Trove are sufficient.

Configuring the storage strategies
The storage strategy denotes the place where the backups can be stored. At the time
of writing this book, only SwiftStorage, which is the object storage in OpenStack,
has been implemented. The default configuration parameters are:

• storage_strategy: The name of the storage strategy
• storage_namespace: The file where this strategy is implemented

There are plans to add support for other storage strategies like AWS S3 and so on.
But since this is the only strategy available to us at the moment, let us take a moment
to also look at its sub-configuration parameters. The bucket, where the backups need
to be stored, whether the backup needs to be encrypted, if it needs to be encrypted,
what key needs to be used, and so on. All of these are configured using the following
configuration variables:

• backup_swift_container: The place where the backups will be stored
(default value is database_backups)

• backup_use_gzip_compression: Do we compress the backup
(default is true)

• backup_use_openssl_encryption: Do we encrypt the backup
(default is true)

• backup_aes_cbc_key: Which key to use for encryption
• backup_use_snet: Can the backup use the Swift service network

(default is false)
• backup_chunk_size: Chunk size for backups
• backup_segment_max_size: Max size for each segment of the backup

Most times, the default would work fine. But these options can be configured should
we need to tweak their values.

Chapter 7

[121]

Backup prerequisites
The requisites for backup are fairly simple:

• We have a database for which backup has to be taken.
• The Swift system is configured and accessible. (In DevStack, please check if

the Swift services are enabled.)
• There is space in the Swift system to store backups.
• All required configuration options are in place.

In our case, we don't have to worry about the last point as we will leave the entire
configuration to the default values. Also, we have the second and third point taken
care of. Since we are using MySQL as the database, the first point also has been
satisfied. (Please note that while creating the DIB image, we installed the InnoDB
tool by using the ubuntu-mysql element provided. So, we are good to go.)

Backups and restores
Now that we have established that the prerequisites are in order, we will perform the
actual functions.

Full backup
The Trove command line with the backup-create option helps us create a full
backup of the database.

Please note that backup/restore may turn off (or pause) the database service for a
brief moment to ensure that data is not corrupted. So, caution should be exercised
while taking backups or performing restores of production databases.

The command format is trove backup-create <instance-id> <backup-name>.
Please remember that we can check the instance ID using the trove list command.

Database Backup and Restore

[122]

So, in order to back up the test12 database, we would execute:

trove backup-create 723c048e-bd5b-4e1a-84cd-836be970d7db myfirstbackup-1

The details of the backup are shown on the screen. The backup command also backs
up the metadata, which is especially useful while restoring or creating another
database from the current backup.

Incremental backup
Incremental backup, as we know, is only supported for MySQL at this time, and we
can perform an incremental backup of the database that we just backed up.

For the incremental backup to work, we will obviously need a parent or a full
backup to anchor the incremental backup onto, so we will need the backup-id
of a full backup to be used as a parent.

We will use the last backup we just took, whose id was e3737982-2220-42a3-8e63-
52d61f73f523 (it will be different for you).

The command format to take the incremental backup is similar to that of the full
backup. The only exception is that a --parent parameter is being passed, so it will
be trove backup-create <instance-id> <backup name> --parent <parent
backup-id>.

So, we will execute the following command:

trove backup-create 723c048e-bd5b-4e1a-84cd-836be970d7db incremental-bkp
--parent e3737982-2220-42a3-8e63-52d61f73f523

Chapter 7

[123]

The output is similar, with the exception of parent_id being shown.

Viewing the backup
The backups can be listed by using the trove backup-list command:

trove backup-list

The output shows that incremental-bkp has myfirstbackup as its parent. The backup
is also stored in the Swift storage, so let us take a look at the Swift containers,
by using the command swift list.

As we can see, only the database_backups container is created. Please note that this
is a default name for the Swift container and can be overridden by the configuration
variables as shown in the previous sections.

Database Backup and Restore

[124]

If you get a user warning that states UserWarning: Providing attr without
filter_value to get_urls() is deprecated as of the 1.7.0 release while executing the
Swift command, you will need to set an additional environmental variable called
OS_REGION_NAME.

Please set this to the default region name of your system. You can view this
by executing the command keystone endpoint-list and then looking
under the region. For us, it was RegionOne, so we export the variable with
the following command:

export OS_REGION_NAME=RegionOne

We will then look into the container itself, by typing the command:

swift list database_backups

While we could technically download these backups elsewhere, please remember
that these backups are encrypted (by default) and will be of no use outside Trove,
unless the key is known.

Restoring backups
In Trove, the restoration of the database is not done directly, but by creating a
new instance and loading the data onto it. We can restore from a full backup or an
incremental backup. If we choose to restore from an incremental backup, the entire
chain (up to the last parent full backup) is restored onto the system.

So, in order to create a new instance from a backup, we simply use the
trove create command passing–backup parameter, trove create <name>
<flavor-id> --size <volume size> --backup <backup-id>.

In our case, we will use incremental backup to ensure the full chain restore happens.

trove create copyoftest 2 --size 1 \

--backup e8ba6800-7ff0-40c8-9dd3-e396b84dd4f1 \

--datastore mysql --datastore_version 5.6

Chapter 7

[125]

The new instance starts building and once it gets to the active state, we can verify
that the same databases were found.

Deleting backups
The backup can be deleted by the trove backup-delete command by passing
backup-id as the argument to the command. It is to be noted that we should only
delete the full backups after all the incremental backups dependent on them are
deleted. If the parent is deleted, then Trove automatically deletes the dependent
backups as well.

So, here we delete the parent backup:

trove backup-delete e3737982-2220-42a3-8e63-52d61f73f523

When we execute a subsequent backup-list, we see that both the backups were
deleted, as the incremental backup was dependent on the parent.

Database Backup and Restore

[126]

Summary
In this chapter, we dealt with backups and restores of the database. We have learned
about the ways backup is implemented in Trove. In the next and final chapter,
we will look at more advanced features such as replication and clustering.

[127]

Advanced Database Features
We are at the last leg of our journey and so far we have seen how Trove can help
users in creating, configuring, resizing, taking backups, and restoring different data
stores. However, all of these tasks deal with a single instance.

With something as important as data (especially if it is production data), no
organization in the world will risk running a single instance. Therefore, in a
production setup, it is imperative that some sort of high availability for
databases is introduced.

While there are several options, two of the most used ones are replication and
clustering when it comes to databases.

In this chapter, we will deal with these features of Trove. Currently, these features
are only available for some of the databases that Trove supports.

Another point to keep in mind is that Trove itself is not the provider for these
features, but merely provides a platform to help configure these if the underlying
databases themselves support it. Which means if database engine type X doesn't
support a feature (replication or clustering), then Trove cannot be used to set that up.

Trove enables these features using strategies (the same concept that was seen in the
previous chapter for backups).

In this chapter, we will go over the following topics:

• Understanding replication and clustering
• How to set up replication in Trove and the different failover options

available to the administrator
• How to set up clustering in Trove

Advanced Database Features

[128]

The replication example will be set up in the MySQL data store and we already
have the image created for MySQL. For the clustering piece, we will use MongoDB
(for which we have not yet created an image and so we will also be creating an image
for the MongoDB data store).

Replication and clustering
While the detailed discussion on this topic is beyond the scope of this book, it makes
logical sense to briefly look at what these mean before we get into the nitty gritty of
configuring the two using Trove.

Please do remember that this is a general understanding and certain advanced
features provided by some database engines may follow a different pattern.

Replication
Replication defined in the simplest terms is the process of keeping a copy of the
data available on another node. Replication typically has two or more nodes, where
one is the master (where reads and writes happen) and the others are slaves (where
only reads can happen). There are concepts of master-master replication, but that's
beyond the scope of this book.

There are two main reasons/benefits for which one could opt for replication:

• For failover (Business Continuity Plan):
 ° In the event the master fails, the slave can be promoted and the

applications can continue to work
 ° The failover is mostly manual, but can be automated with scripts
 ° There can be consistency issues with the data as replication of the

data is a timed activity and there could be a possibility of data loss
with the master

• For performance improvement:

 ° In order to share the load of data reads (for reports), slaves could
serve the purpose

 ° In such scenarios, masters are used for database writes and real-time
data reads, while slaves can be used for near real-time data reads

Chapter 8

[129]

Clustering
Clustering focusses on a single-point agenda, Availability. Clustering is available at
various levels from hardware clusters to operating system clusters to application
clusters. However, in terms of databases, a cluster ensures that the atomicity of the
transaction is only completed when the data is written on all the nodes.

Clusters are used where high availability is desired without any loss of data.

Replication in Trove
Replication is natively available to most of the relational database engines. However,
the methods that might be used to replicate data may vary from database engine to
database engine. There might be a possibility that more than one method may be
available for a database engine.

As we already know, this is also based on the concept of strategies, so let's take a
look at the various strategies available for replication.

Replication uses the Trove backup/restore to set up the initial data
transfer from the master to the slave. So, if Swift is unavailable or
backup is not configured, this feature will not be operational.

Supported data stores
At the time of writing this book, the following data stores and their methods are
supported for replication:

Data store
name

Strategy name Replication strategy class name

MySQL MysqlBinlogReplication trove.trove.guestagent.
strategies.replication.mysql_
binlog

MySQL/
Percona

MysqlGTIDReplication trove.trove.guestagent.
strategies.replication.mysql_
gtid

MySQL/
Percona/
MariaDB

MysqlReplicationBase trove.trove.guestagent.
strategies.replication.mysql_
base

Advanced Database Features

[130]

Data store
name

Strategy name Replication strategy class name

MariaDB MariaDBGTIDReplication trove.trove.guestagent.
strategies.replication.
experimental.mariadb_gtid

Redis RedisSyncReplication trove.trove.guestagent.
strategies.replication.
experimental.redis_sync

MySQL base strategies can also be used for its variants like Percona and MariaDB.
GTID-based replication was introduced in MySQL version 5.6. MariaDB also
introduced GTID-based replication, but it was not compatible with MySQL
and Percona. Therefore, Trove implemented another class for MariaDB GTID
implementation as seen from the previous table.

As we already know, strategies are implemented in the guest agent, and therefore,
we can also plug our own strategies if your enterprise has a different mechanism or
we want to enable it for a data store that has not yet been implemented.

The classes that are implemented for any replication to work are:

• get_master_reference: Provides the reference to the master node
• snapshot_for_replication: Captures a snapshot of the master database
• enable_as_master: Configure to act as master
• enable_as_slave: Configure to act as slave
• detach_slave: Detach the slave from the master
• demote_master: Switch off replication from the master node

The current implementation supports only master-slave, where the slave is
populated asynchronously and is read only.

Setting up replications
Setting up a replica works in the same way backup and restore works due to the
concept of strategies; however, for the sake of clarity of understanding, let us take
a look at the process.

We cannot attach a currently running instance as a replica of another running
instance. Replication is only done when we create an instance in Trove as a
replica of the master.

Chapter 8

[131]

The high-level process is as follows:

• User requests a replica of an already running Trove database
• A backup of the existing database is taken
• Another instance is created using the same backup

Replication is established.

API

Nova

Launch
Instance

Create an
Instance

Create a Replicated Slave

Trove Task Manager

Guest Agent

Backup

DB DB

Guest AgentConfigure as
Slave

Configure as
Master

Swift

1

4
5

7
8

9

3

Take Backup2

Backup

Restore
Backup

6

Replicate

The order is not strictly sequential, and some of them happen in parallel.

Advanced Database Features

[132]

Creating a replicated pair
In this example, we will create a replication of an already existing MySQL database.
The command format is very much trove create with the –replica_of (and
optionally replica-count to create more than one replica) parameter passed to it.
The parameter will need the ID of the Trove instance, so we will execute the trove
list command to get that.

To show the replication, we will create a replication master using the trove create
command as follows (you may choose to ignore this and just create a replica of an
already running instance, but we will create a new one for the purpose of this book).

trove create repl-master 2 --size 1 --datastore mysql \

--datastore_version 5.6

Once the master is ready, we can extract its ID (looking at the trove list
command), as we will need it for the next command.

The ID is 0d42cc11-a2df-499f-9b25-5dfdaf597fab (the screenshot has been snipped).

We will create a replica using the command:

trove create repl-slave 2 --size 1 --datastore mysql \

--datastore_version 5.6 --replica_of 0d42cc11-a2df-499f-9b25-5dfdaf597fab

Chapter 8

[133]

If we execute the trove list command, we will see that the master database will be
in the state of BACKUP and the slave will be in the BUILD state as expected.

We will wait for the replica to be active before verifying the replication. The
configuration for the replicated slave is controlled by the file present in the
templates folder as seen earlier in Chapter 6, Configuring the Trove Instances.

In our case, replica.config.template and replica_source.config.template
are used for the slave and master respectively.

Verifying replication
Replication can be verified by making some modifications to the primary (master)
and ensuring that the modifications also propagate back to the slave node.

We will create a database called testdb on the master by using the
database-create command.

trove database-create 0d42cc11-a2df-499f-9b25-5dfdaf597fab testdb

Advanced Database Features

[134]

This will create the database on the master, but since the slave is replicated, we can
execute a database-list command for the slave, and testdb will also show up on
both the nodes.

We can log in and also check that the replication is indeed configured.

Please note that the replication is only from the master to the slave; any
changes to the slave will not be replicated back to the master. This is by
design of MySQL replication and is not controlled by Trove.

Trove has no role to play in this process after it sets up the initial replication and
hence we won't be talking about the understanding of MySQL replication itself
as it is beyond the scope of this book.

Trove can, however, perform some failover functions in the replication that it has set
up. We will take a look at that in the next section.

Failover options
We will take a look at the basic functions that Trove can perform when it comes
to failover:

• Detach replica (detach-replica)
 ° This breaks replication permanently and is an irreversible action.

Please remember that Trove can only create a new replica; it cannot
set an already existing instance as the replication slave.

 ° This can be used as a point in time snapshot, to have another version
of the database.

• Promote to replication master (promote-to-replica-source)
 ° This replaces the current (running) master with a new master

• Eject the master (eject-replica-source)

 ° This essentially is used to eject an already failed master to establish a
new master

Chapter 8

[135]

In order to show the appropriate working of these commands, we will create
another replica of the same source (repl-master). We will execute another
trove create command.

trove create repl-slave2 2 --size 1 --datastore mysql \

 --datastore_version 5.6 \

 --replica_of 0d42cc11-a2df-499f-9b25-5dfdaf597fab

This will create a second replica called repl-slave2; we will wait for this to be
active as well.

We will execute the trove show <instance name/ ID> command to see all the
replicas that are available.

As we can see, the Trove instance called repl-master has two replicas listed.
We can verify that the newly created replica also has the database that we
created on the master (testdb).

trove database-list ab18c2c8-fd52-4198-b4d0-1d204806f776

You should see that the database exists.

Advanced Database Features

[136]

Promote to the replica master
We can promote any of the databases to the master, and the state of that database
should be copied over.

Say, for instance, we create a database called testdb12 on repl-slave using the
following command:

trove database-create 51ede63f-9a93-4b8b-a5fb-28e9b5e06632 testdb12

This database will only be available in the repl-slave instance and will not be
replicated, as the current replicated source is repl-master. So if we check the
database-list on the other nodes, they won't list testdb12.

Now, if we promote the instance repl-slave to the replica master, for, say,
taking down the master for maintenance, we will execute the command
trove promote-to-replica-source <instance name/id>.

trove promote-to-replica-source repl-slave

Once this command is executed, the status of all the instances will be set to
PROMOTE and Trove will work its magic; we will wait for all of them to
come back to ACTIVE.

It will also replicate testdb12 to the other nodes as a side effect. Hence, executing
the database-list command on repl-slave2 as shown next will now list testdb
and testdb12:

trove database-list ab18c2c8-fd52-4198-b4d0-1d204806f776

Chapter 8

[137]

Please use this method to take the master into account. Also, remember that this
doesn't handle the application connections to the databases. In a production
environment, if we were to do this, then the DNS record must be changed to
ensure that the applications write to the correct master server.

This method also swaps the public IPs (floating IP address) of the servers if they are
available. This method allows the master to maintain the same public IP address and
the applications can keep connecting to the same IP address.

There is a blueprint at https://blueprints.launchpad.net/trove/+spec/
barbican-integration to enable Barbican integration for DNS changes in
the roadmap.

Eject the master
This should be only done in a failed master scenario. This command can only be
executed in the current master (at this point, the instance repl-slave is the master
of the replication group) and only if the master is not responding. These safeguards
are coded into the Trove system to prevent accidental ejections.

This command ejects the current master and then forces a re-election for the new
master. The new master is effectively the one with the most current replica of the
old master.

In order to simulate this, let us turn off the current master repl-slave by simply
killing the guest agent as shown in the following screenshot:

This will kill the heartbeat that the guest agent sends and emulates a
server-down scenario.

https://blueprints.launchpad.net/trove/+spec/barbican-integration
https://blueprints.launchpad.net/trove/+spec/barbican-integration

Advanced Database Features

[138]

We will now execute the command:

trove eject-replica-source repl-slave

This will remove repl-slave as the master, change the status to EJECT, and force the
election of the new master.

Once it transitions back to active, we will quickly execute the show command and see
what happened.

As we can see, repl-master got elected the new master as it has the replicas in the
output. repl-slave2 remained a slave (note the replica_of output); the recently
ejected master repl-slave is now an independent database. Please note that even
when the server comes up, none of the other servers will point to it and replicate
from it.

Detach replica
Detach replica is to remove replication between the source and the replica. This step
cannot be revoked and this creates a point in time snapshot.

Say we want to now finally break away repl-slave2 from our replication group,
so that all the servers are now independent; we can execute the command:

trove detach-replica repl-slave2

Chapter 8

[139]

This will detach the replica from its master. Another use case for doing this will be a
dev/test environment, where a database is created and populated with test data, and
then the replica can be disconnected to work on the database without impacting the
base data.

We should also remember that we cannot delete a master database until any of the
replicas exist, so we will need to use this command to detach the replicas before the
master can be deleted.

Clustering in Trove
This is also implemented by the use of strategies, but unlike in the case of replication
that is a guest agent strategy alone, the strategy for clustering comprises a strategy
for trove-api, trove-taskmanager, and trove-guestagent.

This is due to the contrast among different database engines in the way they
implement clustering. Having said that, Trove in this case also is purely an enabler
and the database engine itself has to support clustering for Trove to even consider
implementing a strategy.

Supported data store
The Juno release brought clustering to MongoDB, and now with the current release,
we have clustering enabled for the following data stores and the associated actions
that are supported:

Data store name Cluster actions supported
MongoDB Create/add shards/grow/shrink/delete
PXC Create/delete/grow/shrink
Redis Create/delete
Vertica Create/delete

As we can see, MongoDB has more features when it comes to clustering in Trove
compared to its counterparts; we will use that to test clustering.

Advanced Database Features

[140]

Please remember that we don't have a MongoDB image, so we
either create our own like shown in the previous chapters, or we can
download the image from the Tarballs site. Please remember that
the IP range needs to be 10.0.0.0/24 if we need to use images
downloaded from the website.
Since we don't have the image, we will use DIB to create a new
image using the following command. Please remember to export
the variables before running the command (as shown in Chapter 5,
Provisioning Database Instances).

Creating and uploading the MongoDB image
The command to build the MongoDB image is shown as follows:

cd /opt/stack

diskimage-builder/bin/disk-image-create -a i386 \

-o /home/alokas/images/ubuntu_mongo/ubuntu_mongodb -x \

--qemu-img-options compat=0.10 ubuntu vm heat-cfntools \

cloud-init-datasources ubuntu-guest ubuntu-mongodb

We will then upload the image to Glance.

glance image-create --name mongodb --disk-format qcow2 \

 --container-format bare \

 --visibility public \

 --file /home/alokas/images/ubuntu_mongo/ubuntu_mongodb.qcow2

We will have to note down the ID of the image in the output of the previous
command. We will then create the data store and the data store version.

trove-manage datastore_update mongodb ''

trove-manage datastore_version_update mongodb 2.4.9 \

 mongodb 0b446ab8-5c35-44eb-902c-d3b040d03296 mongodb 1

Chapter 8

[141]

Once the MongoDB image is ready, we will need to create a suitable flavor for
MongoDB, which we can do by executing the command nova flavor-create by
passing the flavor ID (please ensure the flavor ID is not already taken by using the
command nova flavor-list. In this case, we have used 6 as that was not used;
we specify the RAM to be 1024 MB or 1 GB and 4 GB disk).

nova flavor-create mongodb.f1 6 1024 4 1

Creating a cluster
Understanding the sharded clustering concepts in MongoDB is beyond the scope
of this book; however, from a very basic point of view, the MongoDB cluster has
three components:

• Replica sets
• Configuration servers
• Query routers

The replica sets are a group of MongoDB processes that keep the same information
(replication that we discussed earlier). The query router is used to route the queries
to appropriate replica sets/shards. The configuration server stores the metadata for
the shards.

The reason it is recommended to have an odd number of servers in a replica set is
that we will always have voting ability and will be able to elect a primary node.

Advanced Database Features

[142]

A simplified diagram to show the whole process of clustering is next. The replicated
set keep the data replicated among themselves and the query router and the
configuration server directs the query to the correct node. Please note that
with a single replica set, there is no sharding shown in the diagram.

We can then create the MongoDB three-node cluster using the following command:

trove cluster-create mongo-cl --datastore mongodb \

--datastore_version 2.4.9 \

--instance flavor_id=6,volume=4 \

--instance flavor_id=6,volume=4 \

--instance flavor_id=6,volume=4

Please note that the MongoDB cluster needs a minimum of three nodes (to
ensure the replicated set has the ability to elect a master). At the time of
writing this book, only a three-node cluster is supported. However, in the
future, a three, five, or seven-node cluster may be supported.

Chapter 8

[143]

Please note that the cluster is not viewable by the generic trove list command.
In order to view the cluster, we have to execute the trove cluster-list command
and see that the cluster is created. The cluster is considered ready for use, when
the Task Name in the cluster-list output task is set to NONE as shown in the
following screenshot:

In order to see the cluster members, we use the command trove cluster-instance
<ClusterName>. So, in our case, the command will be:

trove cluster-instance mongo-cl

The configuration server and query router are also spun up, which should be seen in
the output of the nova list command.

Advanced Database Features

[144]

Summary
The Trove system, when set up properly, can ease administration overheads,
reduce wait time for database instances, and help the DBA to focus their
energies on performing tasks such as query optimization.

Some of the benefits you can offer your enterprises by implementing Trove
are enforce security, compliance, and best practices – since provisioning and
management are highly automated, Trove is the best mechanism to implement
security and enterprise-wide best practices practically at no cost. With Trove, you
can choose the database of your choice depending on the use case and yet manage
them seamlessly. And then we have agility – faster provisioning that helps you
innovate at a faster rate and improved turnaround times for support.

We hope that this book helped you with the fundamental skills that are required
for you to kickstart your Trove learning and wish you a successful Database as
Service journey.

[145]

Index
A
advantages, DBaaS

about 2
easier administration 3
efficiency 3
faster provisioning and standardization 3
reduced database management costs 2
scaling 3

Amazon Web Services (AWS) 2
AMQP (Advanced Message Queuing

Protocol) 5
architecture, OpenStack Trove

about 5
API 5
conductor 6
guest agent 6
implementing 12, 13
shared components 5
task manager 6

B
backup prerequisites 121
backups

about 121
deleting 125
full backup 121
incremental backup 122
restoring 124
viewing 123, 124

big-tent service 4

C
Cinder 83
clustering 128, 129
clustering, in Trove

about 139
cluster, creating 141-143
MongoDB image, creating 140
MongoDB image, uploading 140
supported data store 139

create_backup 117

D
database administrators (DBAs) 1
Database as a Service (DBaaS)

about 1
advantages 2

database backup and restore
about 115
backing up/restoring, in Trove 116
backup and recovery plan,

formulating 115, 116
database instance

first instance, launching 81
prerequisites 79, 80
troubleshooting 94, 95

database software
distribution support 11, 12

DevStack
about 22
DevStack files 25
DevStack installation, configuring 26

[146]

DevStack script, downloading 23
installation, troubleshooting 35
installation, verifying 34, 35
installing 30
installing, proxy server used 30-32
killing 38
requisites 17
server, preparing 18
services, restarting 38-40

DevStack files
about 25
clean.sh 26
exercise.sh 26
local.sh 26
rejoin-stack.sh 25
run_test.sh 26
stack.sh 25
unstack.sh 25

DevStack installation
configuring 26, 27
local.conf file, copying from samples

directory to base directory 28
local.conf, modifying to install Trove

and Swift 29, 30
localrc section, modifying 28

DevStack script
downloading 23
proxy, using with GitHub 23, 24

Disk Image Builder (DIB)
about 58, 63
basic working 64
custom DIB elements, creating 67, 68
environment variables, exporting 68, 69
images, creating with 68
installing 63, 64
Percona keys, installing 66
QCOW2 image, building 70, 71
SSH keys 66
TripleO, installing 65
Trove-integration scripts, installing 65

DynamoDB 2

F
failover options, in replication

about 134, 135
master, ejecting 137, 138
replica, detaching 138, 139
replica master, promoting to 136, 137

features, OpenStack Trove
Juno release 14
Kilo release 14
Liberty release 14

first Trove instance
database instance, connecting to 93
instance operations 93
launching 81-88
launching, GUI used 90-92
logging into, via SSH 89, 90
resizing 93
terminating 94

G
GTID (global transaction identifier) 14
Guest Agent 10, 83
Guest Agent code 10
Guest Agent databases 10
guest image

about 58
for instance creation 59, 60
structure 58, 59

H
HIPAA 3

I
instance configuration

applying 105, 106
configuration groups 102, 103
configuration parameters, defining 103
configuration parameters, uploading 104
creating 105
modifying 102

[147]

parameter, adding 112
patching 109
removing 111
updating 110, 111
verification 106, 107, 111, 112
viewing 107, 108

J
Juno release

about 14
reference 15

K
Kilo release

about 14
reference 15

L
Liberty release

about 14
reference 15

M
multi-datastore scenario 9-11

N
Nova 83

O
OpenStack

deploying methods 42-44
OpenStack services 44
OpenStack Trove

about 1, 4
architecture 5
features 14
installing 46

installing, from source 46-48
installing, with Ubuntu OpenStack

repository 48, 49
terminology 7

OpenStack with Ansible
reference 43

OpenStack with Chef
reference 43

OpenStack with Fuel
reference 43

OpenStack with Juju
reference 43

OpenStack with PackStack
reference 43

OpenStack with Puppet
reference 43

P
packages

corkscrew 22
git 22
screen 22

prerequisites, database instance
datastore 80
datastore versions 80
flavors 80

prerequisites, DevStack
installing 21
packages, installing 22
user, adding 21

Q
QCOW2 images, modifying with guestfish

about 75
commands, sending to guestfish 77
files, modifying 76
guestfish, installing 76
images, loading 76
user, adding to Ubuntu QCOW2 image 77

[148]

R
RDBMS (relational database

management system) 2
Red Dwarf 4
Redshift 2
Red stack scripts 72
Relational Database Service (RDS) 2
replication 128
replication, in Trove

about 129
failover options 134, 135
replicated pair, creating 132, 133
setting up 130, 131
supported data stores 129, 130
verifying 133, 134

Re-Queue 85
requisites, DevStack

database 18
Internet connection 18
messaging queue 18
operating systems 18
web server 18

S
SaltStack

reference 43
SaltStack-based OpenStack

reference 43
screen

control key 36
DevStack, running in 37, 38
useful commands 36
working with 36

server, DevStack
configuration 19, 20
IP address, setting 20, 21
minimum configuration 19
preparing 18

shared components
about 5
message bus 5
MySQL / MariaDB 5

SimpleDB 2
strategies

about 117
backup/restore strategy 118
backup strategies, configuring 119
storage strategies, configuring 120

T
terminology, OpenStack Trove

about 7
configuration group 8
database 8
datastore 7
datastore version 7
flavor 8
implementing 12, 13
instance 8

Trove. See OpenStack Trove
Trove API 83
Trove configuration

about 49
configuration files, modifying 52
keystone configuration 51
MySQL database, setting up 50
trove-conductor.conf 53
trove.conf 52
trove-guestagent.conf 53
trove-taskmanager.conf 53

Trove Controller 10
Trove database

initializing 54
services, restarting 54

Trove guest image
creating 61
installation, configuration management

systems used 62
installation, templates used 62

Trove guest image installation,
using templates

about 62
Disk Image Builder 63
Red stack scripts 72

[149]

Trove images
uploading 72-75

Trove install
backup, performing 45
planning 44
Trove components, installing 44

Trove instances
configuring 97
default datastore and version

configuration 97-102
Trove Task Manager 83

U
use cases

about 13
dev/test databases 13
web application databases 13

V
VIO (VMware Integrated OpenStack) 42
virtual machine (VM) 19

W
web application databases, use case 13

X
XaaS (Anything/Everything as a Service) 2

	Cover
	Copyright
	Credits
	About the Authors
	About the Reviewer
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Introducing OpenStack Trove
	Database as a Service
	Advantages
	Reduced database management costs
	Faster provisioning and standardization
	Easier administration
	Scaling and efficiency

	Trove
	Architecture
	Shared components
	API
	The task manager
	The guest agent
	The conductor

	Terminology
	Datastore
	Datastore version
	Instance
	Configuration group
	Flavor
	Database

	A multi-datastore scenario
	Database software distribution support
	Putting it all together
	Use cases
	Dev/test databases
	Web application databases

	Features
	The Juno release
	The Kilo release
	The Liberty release

	Summary

	Chapter 2: Setting Up Trove with DevStack in a Box
	Requirements
	Operating system
	Database
	Messaging queue
	Web server
	Internet connection

	Preparing the server
	Minimum configuration required
	Server configuration
	Setting the IP address

	Installing prerequisites
	Adding a user
	Installing packages

	DevStack
	Downloading the DevStack script
	Using a proxy with GitHub

	Understanding the DevStack files
	stack.sh
	unstack.sh
	rejoin-stack.sh
	run_test.sh
	exercise.sh
	clean.sh
	local.sh

	Configuring the DevStack installation
	Step 1 – copy the local.conf file from the samples directory to the base directory
	Step 2 – modify the localrc section
	Step 3 – modify the local.conf to install Trove and Swift

	Installing DevStack
	Using a proxy server

	Verifying the installation
	Troubleshooting the install

	Working with screen
	Screen control key
	Useful commands
	DevStack and screen
	Killing DevStack
	Restarting DevStack services

	Summary

	Chapter 3: Installing Trove in an Existing OpenStack Environment
	Different methods of deploying OpenStack
	Required OpenStack services
	Planning the install
	Where to install the Trove components
	Take a backup

	Installing Trove
	Installing Trove from source
	Installing with the Ubuntu OpenStack repository

	Configuring Trove
	Setting up the MySQL database
	Keystone configuration
	Modifying the configuration files
	trove.conf
	trove-taskmanager.conf and trove-conductor.conf
	trove-guestagent.conf

	Initializing the Trove database
	Restarting the services

	Summary

	Chapter 4: Preparing the Guest Images
	Structure of a guest image
	Instance creation using the guest image
	Creating the Trove guest image
	Installation using configuration management systems
	Installation using templates
	Disk Image Builder
	Red stack scripts

	Uploading the Trove images
	Modify QCOW2 images using guestfish
	Installing guestfish
	Loading the images
	Modify the files on the image
	Send commands
	Example: Adding a user to the Ubuntu QCOW2 image

	Summary

	Chapter 5: Provisioning Database Instances
	Checking for prerequisites
	Launching our first instance
	Logging into the instance via SSH
	Launching the instance using the GUI
	Connect to the database instance
	Instance operations
	Resize

	Terminate the Trove instances

	Troubleshooting
	Summary

	Chapter 6: Configuring
the Trove Instances
	Default datastore and version configuration
	Modifying the instance configuration
	Configuration groups
	Defining configuration parameters
	Uploading configuration parameters
	Creating a configuration
	Applying the configuration to an instance
	Verification

	Viewing the configuration
	Patching the configuration
	Updating the configuration
	Removing the configuration
	Verification

	Adding a new parameter

	Summary

	Chapter 7: Database Backup
and Restore
	Formulating a backup and recovery plan
	Backing up/restoring in Trove
	The concept of strategies in Trove
	The backup/restore strategy in action
	Configuring the backup strategies
	Configuring the storage strategies

	Backup prerequisites
	Backups and restores
	Full backup
	Incremental backup
	Viewing the backup
	Restoring backups
	Deleting backups

	Summary

	Chapter 8: Advanced Database Features
	Replication and clustering
	Replication
	Clustering

	Replication in Trove
	Supported data stores
	Setting up replications
	Creating a replicated pair
	Verifying replication
	Failover options
	Promote to the replica master
	Eject the master
	Detach replica

	Clustering in Trove
	Supported data store
	Creating and uploading the MongoDB image
	Creating a cluster

	Summary

	Index

